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Climate change to severely impact 
West African basin scale irrigation 
in 2 °C and 1.5 °C global warming 
scenarios
Mouhamadou Bamba Sylla   1, Jeremy S. Pal2, Aissatou Faye1,3,4, Kangbeni Dimobe   1 & 
Harald Kunstmann5,6

West Africa is in general limited to rainfed agriculture. It lacks irrigation opportunities and technologies 
that are applied in many economically developed nations. A warming climate along with an increasing 
population and wealth has the potential to further strain the region’s potential to meet future food 
needs. In this study, we investigate West Africa’s hydrological potential to increase agricultural 
productivity through the implementation of large-scale water storage and irrigation. A 23-member 
ensemble of Regional Climate Models is applied to assess changes in hydrologically relevant variables 
under 2 °C and 1.5 °C global warming scenarios according to the UNFCCC 2015 Conference of Parties 
(COP 21) agreement. Changes in crop water demand, irrigation water need, water availability and the 
difference between water availability and irrigation water needs, here referred as basin potential, are 
presented for ten major river basins covering entire West Africa. Under the 2 °C scenario, crop water 
demand and irrigation water needs are projected to substantially increase with the largest changes 
in the Sahel and Gulf of Guinea respectively. At the same time, irrigation potential, which is directly 
controlled by the climate, is projected to decrease even in regions where water availability increases. 
This indicates that West African river basins will likely face severe freshwater shortages thus limiting 
sustainable agriculture. We conclude a general decline in the basin-scale irrigation potential in the 
event of large-scale irrigation development under 2 °C global warming. Reducing the warming to 1.5 °C 
decreases these impacts by as much as 50%, suggesting that the region of West Africa clearly benefits 
from efforts of enhanced mitigation.

In West Africa, rainfed agriculture is the most prominent instrument for securing income and overcoming pov-
erty1. Agricultural water requirements in the region are largely met by rainfall that is associated with the West 
African monsoon occurring in the boreal summer. Irrigated agriculture represents about 4% of the cultivated 
land in Sub-Saharan Africa and remains largely undeveloped due to a lack of sufficient economic resources and 
political will2. Consequentially, changes in monsoon intensity, timing and spatial patterns as well as temperatures 
have the potential to both positively and negatively impact agricultural productivity in West Africa and conse-
quently the wellbeing of its population.

In recent decades, drought, population increase and water withdrawals have increased water stress in the 
major river basins of West Africa3. Previous studies of climate change impacts on crops in the region gener-
ally project yields to decrease even by 2050 due to increased growing season temperatures and changes in the 
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monsoon precipitation variability, thereby amplifying food insecurity in an already vulnerable region4,5. These 
studies, however, are largely based on output from coarse resolution (~100 to 200 km) Couple Atmosphere-Ocean 
Global Climate Models (GCMs) that generally do not adequately resolve the mesoscale processes required to 
accurately simulate precipitation in the region, particularly in subregions with complex orography or coastlines6.

Regional climate models (RCMs) have had success in simulating and projecting climate change in West 
Africa7–14. However, these studies tend to be uncoordinated in the sense that they consider different emissions 
pathways and different future and historical time periods. In addition, they tend to focus on changes of tem-
perature and precipitation, and not to further variables that are additionally relevant to water resources. Lastly, 
hypotheses of future GHG emissions pathways engender an additional level of uncertainty in the projections 
which is also problematic of most of the GCM studies15,16.

The relatively few climate change impacts studies on water resources in West Africa suffer from the same 
issues as the pure RCM studies, in addition to two others17–20. First, there is a lack of observations in many river 
basins, and considerable discrepancies exist in available data used to calibrate respective hydrological models21,22. 
Second, there are significant uncertainties in projected changes by climate and/or hydrological models17,23,24. 
These combined sources of uncertainties and the high vulnerability of the region due to its economic conditions 
make it vital to provide reliable future climate information for water resources, including irrigation potential over 
the major river basins using a unified approach under consistent climate change scenarios.

In this study, we aim to reduce the uncertainties resulting from the aforementioned issues by taking advan-
tage of a 23-member high resolution ensemble of RCM simulations performed as part of the most recent high 
resolution COordinated Regional climate Downscaling EXperiment (CORDEX). Future warming scenarios con-
sidered here are based on the 2015 United Nations Framework Convention on Climate Change (UNFCCC) 21st 
Conference of Parties (COP 21) Paris Agreement, where all nations pledged to hold global temperature increase 
to below 2 °C (relative to pre-industrial levels) and to explore further efforts to limit the increase to 1.5 °C. How 
the hydroclimatology of the West African major river basins will respond under such a change has yet to be 
investigated. This study thus evaluates and intercompares climate change impacts on the hydroclimatology of 
the major West African river basins under 1.5 °C and 2 °C global warming scenarios. To overcome data scarcity 
related to the calibration and verification of hydrological models, output from the 23-member CORDEX RCM 
ensemble is used to characterize key variables relevant for the hydrology and water resources over the major West 
African river basins25. Specifically, changes in water availability and crop water demand and irrigation water need 
are examined and intercompared to assess the irrigation potential at basin level.

Methodology
Regional Climate Models Experiments.  While the study domain is West Africa, the analysis is focus-
ing on the 10 major river basins, most of them of transboundary nature: Senegal, Gambia, Niger, Volta, Chad, 
Sassandra, Bandama, Comoe, Mono and Oueme (Fig. 1). The RCM simulations, performed at a 50-km grid 
spacing and taken from CORDEX, consist of dynamically downscaled GCM output from the Coupled Model 
Inter-comparison Project, Phase 5 (CMIP5)26 for 150-year periods based on the Representative Concentration 
Pathways 4.5 (RCP4.5). 10 RCMs are used, forced by various combinations of seven GCMs for a total of 22 
RCM-GCM combinations (Table 1). Over West Africa, the CORDEX simulations, using both single RCMs and 
multi-model RCMs, have been previously evaluated27–31. Key findings relevant to this study include significant 
enhancements of the CMIP5 simulated impact-relevant precipitation and potential evapotranspiration charac-
teristics, both in terms of magnitude and fine-scale spatial distribution29,30,32,33.

Derivation of Global Warming Scenarios.  The 1.5 °C and 2 °C global warming scenarios are derived by 
extracting from each RCM simulation the 30-year period when the driving GCM projects an increase of 1.5 °C 
and 2 °C of global warming, respectively, compared to the pre-industrial level. Similarly, the historical reference 
period is taken from each RCM simulation as the 30-year period when the driving GCM simulates increase of 
0.48 °C of global warming compared to the pre-industrial level. The different periods defined for 0.48 °C, 1.5 °C 
and 2 °C for each driving GCM are summarized in Table SI1. After the extraction of these periods from each 
RCM simulation, the multimodel ensemble is performed for 0.48 °C (i.e. reference period), 1.5 °C and 2 °C (future 

Figure 1.  The West African domain highlighting the different major river basins.
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periods), respectively. Analyzing the simulations in this manner eliminates uncertainties related to emissions 
pathways, the choice of the baseline (i.e. the reference period) and of the future periods as well as to the prop-
agation of the driving GCMs present-day temperature biases into the future. In addition, the large multimodel 
ensemble reduces uncertainty from intermodel variability and best represents the response of the climate system 
to an imposed forcing34. Therefore, the approach applied here provides a robust assessment of climate change 
allowing for better quantitative decision-relevant information35.

Analysis Approach.  The overall goal of this study is to the assess large-scale irrigation potential at a basin 
level in West Africa for the historical period and for the expected future climate when the global warming is 
limited to 2 °C and 1.5 °C. Since irrigation at the large-scale requires the development of water storage reser-
voirs, crop cycles would no longer need to be fully tied to the rainy season. As a result, annual mean changes are 
considered assuming that water can be stored and used during the dry seasons when temperatures may be more 
favorable depending on the location or for a second cropping cycle.

To assess the overall irrigation potential for each major river basin in West Africa, we assess crop water 
demand, irrigation water need, water availability, and basin irrigation potential, as follows:

Crop Water Demand (CWD).  CWD is considered as the evapotranspiration rate ETo under well-watered condi-
tions. It can be considered as a proxy for the water required for an optimal growth for a reference crop that com-
pletely covers the soil, is kept short, well-watered and is growing under optimal agronomic conditions36. While 
each individual crop type can have higher or lower water requirements, this is generally accepted as a reference 
value. In practice, this reference value is multiplied by a crop coefficient that increases or decreases the crop water 
requirements based on the specific crop type and growth stage. However, in West Africa, most grown cereal crops 
have a total crop coefficient between ~0.8 and ~1, very close to that of the reference crop Alfalfa during their 
growing season. Therefore CWD for the reference crop can provides a general understanding on how crop water 
demand is projected to change in future climate over West Africa.

Here, CWD is estimated by applying two commonly used ETo formulations: Hamon37 and Hargreaves36. The 
Hamon formulation is based on day length, surface air temperature and saturated vapor pressure, whereas the 
Hargreaves formulation is a function of minimum and maximum temperatures (see SI for more details).

Irrigation Water Need (IWN).  IWN is water amount required in addition to effective rainfall mandatory to 
optimally sustain a crop. It is considered as the deficit, if any, between CWD and the effective rainfall for optimal 
crop growth assuming good soil conditions. Effective rainfall is considered as the portion of total rainfall available 
for plant growth. In this study, it is assumed that the actual evapotranspiration rate ET is the water used in the 
crop growth process and hence equivalent to the effective rainfall36. Therefore, IWN is simplified as the difference 
between ET0 and ET. If effective rainfall (ET) exceeds CWD (ETo), IWN is 0 and in the case of no effective rainfall, 
IWN is ET0 (see SI for more details).

Water Availability (WA).  Runoff is considered as a proxy of the water available for crop growth and is computed 
as difference between actual precipitation and actual ET. Changes in soil water storage are negligible for the time 
scales considered in this study.

Basin Irrigation Potential (BIP).  BIP provides a measure of water availability in excess or deficit of IWN that has 
the potential to be stored and used for irrigation. It is calculated as the difference between WA and IWN. If WA is 
greater than IWN, it is assumed that the basin can potentially meet its irrigation needs through the development 
of its water resources and vice versa. Therefore, a larger BIP in a future climate is indicative of a basin that has the 
potential to store more water (see SI for more details).

Since the development of water storage systems would potentially allow farmers to utilize water resources 
outside of the rainy season, the analysis is performed over the entire year and not just limited to the monsoon 
or growing seasons. This assumes a best-case scenario in the sense that West Africa in the future will improve 
its water resources infrastructure to best utilize its surface water and ground water resources to compensate for 
seasonal and inter-seasonal changes in rainfall. Annual changes are calculated as the difference between the future 
scenarios (1.5 °C or 2 °C global warming) minus the reference period (0.48 °C global warming). While future 
changes are expressed as percent of reference period values, the difference between the changes of the two scenar-
ios are expressed as percent of the 1.5 °C scenario value.

ALADIN CanRCM CRCM RCA CCLM HIRHAM RACMO REMO WRF

CCCma-CanESM2 & & &

CNRM-CM5 & & &

EC-EARTH & & & & &

GFDL-ESM2M &

HadGEM2-ES & & &

MPI-ESM-LR & & & &

NCC-NorESM1-M & & &

Table 1.  The list of CMIP5 GCMs (see Taylor et al.26), the CORDEX RCMs (see Jones et al. 2011) used in this 
study. The sign “&” means that the particular RCM was used for downscaling the corresponding CMIP5 GCM.
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Each of the aforementioned variables is first computed for each of the CORDEX RCM ensemble member at 
each grid point in a basin and then multimodel ensemble and averaging is performed. The Student’s t-test is used 
to characterize significant changes at a 90% confidence level.

More details about the methodology are included in the Supplementary Information (SI).

Results
Crop Water Demand and Irrigation Need.  CWD is related to the amount of water needed by a crop 
for optimal growth and is defined here as ET0. While in reality, some crops experience CWD higher than ET0 
and others less, this analysis provides a general understanding of how demands are projected to change in a 
warmer climate. Two methods (Hamon and Hargreaves) are used here to assess the projected change for the sake 
of robustness (see Analysis Approach). In the 2 °C global warming scenario, warmer temperatures result in an 
average increase in CWD by up to 10% to 15% with respect to the reference period in all major West African river 
basins (Fig. 2). While the Hargreaves formulation shows uniform changes throughout all basins (8% to 10%), the 
Hamon formulation shows more spatial variability. For example, the semi-arid Senegal, Niger and Chad basins of 
Sahel (north of 10°N) experience changes up to 15% and the more humid Sassandra, Bandama, Comoe, Mono, 
Oueme, southern Volta and Lower Niger basins of the Gulf of Guinea (south of 10°N) experience changes lower 
than 12%. If the future global warming is held to 1.5 °C, the projected changes are reduced by as much as 50% with 
the smallest changes in the Gulf of Guinea basins. It is worth noting that, although CWD increases in both ETo 
formulations, that of Hamon generally simulates higher changes than that of Hargreaves due its higher known 
sensitivity to temperature changes38,39).

Figure 2.  Projected changes in Potential Evapotranspiration (PET) using the methods of Hargreaves (Har; left 
panels) and Hamon (Ham; right panels) for 2 °C global warming scenario (upper panels), 1.5 °C global 
warming scenario (middle panels) and the difference between the two scenarios (lower panels). Changes for 
2 °C and 1.5 °C are expressed as a percent of reference period values. Differences between the changes of the 
two scenarios are expressed as percent of the 1.5 °C ones. Only areas where changes are significant at 90% are 
shaded.
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As most crops are rainfed in West Africa, the increased CWD combined with relatively small changes in 
precipitation (see Fig. SI1) would increase the potential for plant stress and reduce yields40. In fact, a recent study 
based on the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) fast-track global gridded crop models 
shows a reduction over West Africa of some cereals yields under both 1.5 °C and 2 °C global warming scenarios41. 
Similarly, more recent studies42,43 project substantial yield losses in the region irrespective of intensification case 
and for both scenarios of global warming.

As indicated above, CWD in West Africa is generally met through precipitation (i.e. effective precipitation). 
Deficits in CWD could potentially be mitigated through the development of large-scale irrigation. IWN meas-
ures crop water needs under optimal growing conditions solely in terms of additional water requirements and 
provided that other conditions are optimal (e.g. diseases and pest free, favorable soil conditions). Under the 2 °C 
global warming scenario, IWN is projected to increase by more than 15% and 30% of reference period values, 
respectively, for the Hargreaves and Hamon formulations over most basins (Fig. 3). While the Hargreaves for-
mulation displays the greatest changes (up to 20%) in western basins (i.e. Gambia, southern Senegal and Western 
Niger), Hamon formulation also shows extensive changes (up to 30%) in the Gulf of Guinea basins (Sassandra, 
Bandama and Volta). These spatial patterns of the changes differ from those of CWD. Furthermore, the increased 
CWD outweighs the smaller changes in ET0 irrespective of the formulation resulting in an overall increase of 
IWN. Limiting global warming to 1.5 °C reduces the increase to 10–20% over these regions. Although IWN is 
largely projected to increase over the region, it is not obvious whether future water availability will compensate 
for or exasperate these increases.

Figure 3.  Projected changes in Irrigation Water Need (IWN) using PET from the methods of Hargreaves 
(Har; left panels) and Hamon (Ham; right panels) for 2 °C global warming scenario (upper panels), 1.5 °C global 
warming scenario(middle panels) and the difference between the two scenarios (lower panels). Changes for 
2 °C and 1.5 °C are expressed as a percent of reference period values. Differences between the changes of the 
two scenarios are expressed as percent of the 1.5 °C ones. Only areas where changes are significant at 90% are 
shaded.
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Projected Water Availability and Basin Irrigation Potential.  The projected WA changes under 2 °C 
of global warming are regionally heterogeneous with both significant increases and decreases depending on the 
region (Fig. 4). On one hand, in Senegal, Gambia, central Niger, northern Volta and northern and southern Chad, 
decreased precipitation (see Fig. SI1) and ET (see Fig. SI2) combine to reduce WA up to 30% compared to the 
reference period. On the other hand, in the smaller basins of the Gulf of Guinea, such as Sassandra, Bandama, 
Comoe, as well as northern Niger and central Chad, the increased precipitation overcompensates the increased 
ET, resulting in WA increases by up to 30%. These patterns of changes are similar to those from previous stud-
ies41,44 who found total runoff increases in some portions of the Sahel (i.e. Niger) and decreases in western regions 
of West Africa coinciding with the Senegal and Gambia basins. This result is also consistent with Gosling et al.45 
who project positive changes in the upper Niger basin. Limiting global warming to 1.5 °C, decreases the negative 
changes and their spatial extent and strengthens and increases the spatial extent of positive changes in the Chad 
and Niger basins by as much as 60%. In addition, in Senegal and Gambia, the magnitude of negative changes is 
limited to 15% and in Sassandra, Bandama and the adjacent section of the Niger basin, the increases are limited 
to 10%.

To examine whether the water availability is in excess or deficit compared to the IWN over each basin, BIP 
is considered, which provides an indication of whether or not a basin can store more water to meet demands. 
Despite the increases in WA in some areas, decreases in BIP is projected for all basins and both models of ET0 
under the 2 °C global warming scenario (Fig. 5). In the Sahelian basins, such as Senegal, Gambia, Niger, Chad 
and to some extent Volta, the decreases are limited to around 10% to 30%. However, in the smaller basins located 
in the Gulf of Guinea (i.e. Sassandra, Bandama, Comoe, Mono and Oueme), the decrease is considerably larger 

Figure 4.  Projected changes in Total Runoff for 2 °C global warming scenario (upper panels), 1.5 °C global 
warming scenario (middle panels) and the difference between the two scenarios (lower panels). Changes for 
2 °C and 1.5 °C are expressed as a percent of reference period values. Differences between the changes of the 
two scenarios are expressed as percent of the 1.5 °C ones. Only areas where changes are significant at 90% are 
shaded.
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ranging between 35% to 65% with the highest decreases in Bandama and Oueme. This is largely a consequence 
of greater changes in IWN outweighing the increases in WA in many areas of these basins. Similar results are 
found for the 1.5 °C scenarios but with lower values (within 15% for the Sahel basins and between 25% to 60% 
in the Gulf of Guinea basins). The magnitude of the changes with the Hamon formulation is greater than that 
of Hargreaves due to the larger IWN changes (i.e. Fig. 3). An uncertainty analysis of the ensemble members 
reveals that in most of the basins, the inter-quantile ranges, median and most of the distribution of the pro-
jected BIP changes are negative. This indicates that although the individual ensemble members differ compared 
to the ensemble average, most of the experiments project decreases in BIP suggesting that the results are robust. 
Furthermore, the intermodel spread is larger in the basins along the Gulf of Guinea compared to that in the Sahel 
hinting more consistent changes in basins such Senegal, Gambia, Niger, Chad and to some extent Volta.

Overall, the results indicate that compared to the reference period, the 10 major West African river basins will 
likely face considerable challenges to meet future water demands under global warming with the Gulf of Guinea 
basins experiencing the largest deficit. While irrigation is an important adaptation measure to climate change, 
these changes also imply that, future demands will likely require substantially increased water withdrawals.

Discussion
In this study we assessed the hydroclimatology of the 10 major West African river basins under 1.5 °C and 2 °C 
global warming scenarios using a comprehensive ensemble of CORDEX regional climate model experiments. 
The results indicate that, under a relatively moderate rise of global temperature of 2 °C, the combined increases 
in CWD and smaller mixed changes in ET cause IWN to increase considerably regardless of the ET0 formulation. 
Such increases outweigh the projected WA changes even in regions where WA increases. For example, in western 
Gulf of Guinea, Niger and Central, where WA increases, changes in IWN are greater. This implies that the pro-
jected WA will not be sufficient to compensate for the projected IWN. Therefore, as climate warms, the potential 
to sustain irrigated agriculture or other activities that require large amounts of water such as hydropower is 
projected to decrease. A relatively small decrease in global warming from 2 °C to 1.5 °C significantly reduces the 
gap between IWN and WA greatly reducing the negative consequences of climate change on water resources. It 
should be emphasized that although some uncertainties are present in these projections, they are mostly in the 
magnitude of the changes as most of the models project negative changes.

It is worth mentioning that increased CO2 concentration in future climate could increase water use efficiency 
of plants. However, this is not taken into account in this study.

As population and urbanization intensify and economies grow, increasing municipal and industrial water 
needs are likely to amplify the overall water demands in West Africa. This study thus suggests that effective miti-
gation should be pursued to cap the global warming at 1.5 °C hoped for by COP21. Notwithstanding, West Africa 
will likely continue to face water limitations under climate change.

Figure 5.  Box-Whisker-Plots of projected changes in Basin Irrigation Potential (BIP) for the 2 °C global 
warming scenario (upper panels) and the 1.5 °C global warming scenario (lower panels). Changes for 2 °C 
and 1.5 °C are expressed as a percent of reference period values. Differences between the changes of the two 
scenarios are expressed as percent of the 1.5 °C ones.
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Adaptation measures should be well thought out and should consider concerted and intensified efforts (1) for 
the construction of surface and groundwater reservoirs to store water efficiently for irrigation, (2) for the imple-
mentation of efficient irrigation practices, and (3) for considering seasonal shifts in crop strategies to relatively 
cooler periods in the year.
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