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Sex allocation theory has proved to be one the most successful theories in evol-

utionary ecology. However, its role in more applied aspects of ecology has

been limited. Here we show how sex allocation theory helps uncover an other-

wise hidden cost of neonicotinoid exposure in the parasitoid wasp Nasonia
vitripennis. Female N. vitripennis allocate the sex of their offspring in line

with Local Mate Competition (LMC) theory. Neonicotinoids are an eco-

nomically important class of insecticides, but their deployment remains

controversial, with evidence linking them to the decline of beneficial species.

We demonstrate for the first time to our knowledge, that neonicotinoids

disrupt the crucial reproductive behaviour of facultative sex allocation at

sub-lethal, field-relevant doses in N. vitripennis. The quantitative predictions

we can make from LMC theory show that females exposed to neonicotinoids

are less able to allocate sex optimally and that this failure imposes a significant

fitness cost. Our work highlights that understanding the ecological conse-

quences of neonicotinoid deployment requires not just measures of

mortality or even fecundity reduction among non-target species, but also

measures that capture broader fitness costs, in this case offspring sex allo-

cation. Our work also highlights new avenues for exploring how females

obtain information when allocating sex under LMC.
1. Introduction
Sex allocation theory explains the evolution of how organisms allocate invest-

ment into male or female offspring [1,2]. Building on key theoretical

contributions from, among others Fisher [3], Hamilton [4] and Trivers &

Willard [5], theoreticians have put together and tested a formidably successful

body of theory, which has explained patterns of sex ratio variation across organ-

isms as diverse as microbes to humans [2]. Perhaps the most successful

component of sex allocation theory, in terms of quantitative tests of theory,

has been Hamilton’s theory of Local Mate Competition (LMC) [4]. Briefly, con-

sider a species of parasitic wasp that lays several eggs on the pupa of another

insect, such as a fly or butterfly. The male and female wasps develop and then

emerge from the host, mate among each other, with the female offspring then

dispersing to find new hosts. If a single female (termed a foundress) lays eggs

on a host, Hamilton demonstrated that the optimal sex ratio for that female to

produce is a female-biased one, producing the minimal number of sons to fer-

tilize her daughters. This female-biased sex ratio both reduces competition

among her sons for mates (i.e. it reduces LMC among kin) and also increases

the number of available mates for those sons [6]. When several foundresses

lay eggs together though, the extent of LMC among brothers is reduced, favour-

ing less female-biased sex ratios. Females that can facultatively alter their

offspring sex ratios with respect to the level of LMC their sons will face are,

therefore, favoured by natural selection. LMC theory has been extended to

include a variety of factors, such as variation in mating within patches [7]
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and alternative patterns of dispersal [8], and has proved

remarkably successful in predicting the sex allocation pat-

terns in a wide-variety of organisms, not just parasitoid

wasps [2].

While sex allocation theory has provided an important

test of evolutionary principles, it has proven more limited

in applied contexts (e.g. [9]). Here we explore how sex allo-

cation theory can help us unravel the costs of exposure to

controversial neonicotinoid pesticides. Neonicotinoids are

the most widely used insecticides in the world, with global

annual sales of over US $2.6 billion [10]. They are potent

neurotoxins and act by binding to nicotinic acetylcholine

receptors in the central nervous system, causing disruption

of neural transmission. They are typically highly toxic to

invertebrates at extremely low doses, but have the advantage

of comparatively lower vertebrate toxicity [11]. However,

their use remains highly contentious [12]. In particular, neo-

nicotinoids have been linked to declines in species that

provide key ecosystem services, such as pollinating insects

[13–15]. Moreover, their deployment has also recently been

correlated with declines in farmland birds [16]. The broader

ecological significance of these findings remains debated

though, and the extent to which observed changes are the

effects of a (desired) reduction in arthropods in the agricul-

tural environment (reducing food for other species for

example), versus the toxic effects of neonicotinoids in the

environment more generally remains unclear.

To date, much of the work on the ecological significance

of neonicotinoids has focused on one class of beneficial

insect: the pollinating insects, in particular honeybees and

species of bumblebee (e.g. [15,17,18]). However, pollinators

are not the only beneficial insects in the environment. Parasi-

toid wasps, which kill their arthropod hosts, are important

natural enemies of many agricultural pests, and also contrib-

ute to often extensive biological control programmes (taken

together parasitoids are estimated to bring ecosystem services

worth an estimated US $4.5 billion per year in the USA [19]).

Maintaining healthy populations of these natural enemies, or

alternatively, viable biocontrol programmes, is a key aim of

integrated pest management strategies. Parasitoid wasps lay

their eggs on or in arthropod hosts (which may be at the

egg, larval, pupal or adult stage, depending on species), with

the wasp larvae hatching and then predating on the host [20].

As highlighted above, one of the most important reproductive

decisions for female parasitoids to make is the sex of her off-

spring [20]. As with all Hymenoptera, parasitic wasps are

haplodiploid, with males developing from unfertilized (hap-

loid) eggs, and females developing from fertilized (diploid)

eggs. Females can, therefore, control sex allocation by control-

ling whether or not an egg is fertilized before being laid.

Here we consider the effect of the commonly used neonico-

tinoid imidacloprid on the sex allocation behaviour and

general reproduction of the gregarious parasitoid wasp

Nasonia vitripennis. Female N. vitripennis allocate sex closely

in accordance with LMC theory [7,21,22]. Importantly, the pat-

terns of sex allocation revealed in laboratory studies have been

replicated in the field [23,24]. As with many parasitoids, they

take nectar in the wild and commonly feed on sucrose sol-

utions in the laboratory [25]. In our first experiment, we

tested the effects of varying doses of imidacloprid on female

survival, which provided us with information concerning

lethal versus sub-lethal doses. In our second experiment, we

considered the effects of (sub-)lethal doses of imidacloprid
on facultative sex allocation and oviposition. We also used

existing LMC theory to estimate the fitness costs imposed on

females by any such disruption to their sex ratio behaviour.

While there are a number of possible pathways by which sex

allocation may be disrupted by blocking neurotransmission

(see §4), we expect facultative sex allocation to be disrupted

in some way by exposure to imidacloprid.
2. Material and methods
(a) Study organism and general husbandry
Nasonia vitripennis (Hymenoptera, Chalcidoidea) is a generalist

parasitoid of large dipteran pupae, including the Calliphoridae

[26]. Females typically oviposit between 20 and 50 eggs in an

individual host and limit superparasitism if possible. Male off-

spring emerge shortly before females (after approx. 14 days at

258C [27]). Male individuals are brachypterous and are unable

to fly, remaining close to the emergence site where they compete

with each other for emerging females, including their sisters.

Females disperse after mating to locate fresh hosts. The focal

females used in these experiments were from the AsymC strain

(the genome reference strain [28]). Wasps were maintained on

Calliphora vomitoria or Calliphora vicina hosts at 258C, 16 L : 8 D

light conditions. For some experimental treatments co-foundresses

were required. These were taken from the red-eye mutant STDR

strain, allowing us to track the offspring of a single AsymC

female using eye colour (e.g. [22]). The STDR strain was

maintained under identical conditions to the AsymC strain.

To control for possible host and other maternal effects, exper-

imental females were not taken straight from the mass cultures.

Instead, 2-day old, mated females were isolated into individual

glass vials and given hosts to parasitize. Mated females from the

resulting F1 generation were used in experiments. These exper-

imental females were then ‘pre-treated’: females were given

access to a single host for 24 h, which allows host-feeding and

facilitates egg development [29]. This host was removed and dis-

carded and females were given access to honey solution for

a further 24 h. At this point females were allocated to their

experimental treatments.

(b) Experiment 1: neonicotinoid exposure and longevity
In our first experiment, we exposed mated, 2-day old female

N. vitripennis to imidacloprid at various concentrations (1, 10,

100 and 200 ppb), in 20% sucrose solution for up to 140 h. Exper-

imental females were isolated into individual glass vials. Females

were then allocated to one of five imidacloprid diets: control,

1 ppb, 10 ppb, 100 ppb and 200 ppb (n ¼ 30 per treatment).

Pure imidacloprid (Sigma Aldrich, Dorset, UK) was dissolved

in a known volume of distilled water and then diluted to the

appropriate concentration in 20% sucrose solution. The control

was composed of sucrose alone. Diets were provided in a

200 ml volume in the lid of a 1.5 ml microcentrifuge tube

placed into the bottom of the glass vials. Females were exposed

to the solutions continuously for a period of 72 h with mortality

checks performed three times daily at 10.00, 14.00 and 18.00 h.

Solutions were refreshed on a daily basis during this 72 h

period and a final mortality check was made at 140 h.

(c) Experiment 2: neonicotinoid exposure and sex
allocation

In our second experiment, we exposed females to imidacloprid in

sucrose solution for 48 h (control, 2 ppb, 10 ppb, 100 ppb). We

used 2 ppb in this experiment as it is very close to the 1.9 ppb

value reported by Godfray et al. [15] for the average maximum
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neonicotinoid concentration in nectar for seed-treated crops

across 20 studies. We then tested the facultative sex allocation

responses of treated and control (fed only sucrose solution)

females in a standard LMC experiment. We isolated 2-day old

mated AsymC females and placed them in individual glass

vials, before providing each with a single host for 24 h as a

pre-treatment to facilitate egg development as before. Pre-treat-

ment hosts were then discarded and each female was given a

piece of filter paper soaked in honey solution for a further 24 h.

The filter paper was then removed and 150 females were allo-

cated to each of four imidacloprid diets (control, 2 ppb, 10 ppb

or 100 ppb). The lid of a 1.5 ml microcentrifuge tube was again

placed in the bottom of each glass vial and 200 ml of the appro-

priate diet transferred to the lids. Females were allowed access to

their imidacloprid diets for 48 h. Fresh solution was provided on

the second day.

Females were then allocated to one of 12 treatment combi-

nations from a 3 � 4 factorial design, with females from the four

diets placed individually in one of three co-foundress treatments

(alone, four co-foundresses or nine co-foundresses, yielding

total foundress numbers of 1, 5 and 10, respectively). The appropri-

ate number of STDR cofoundresses was provided and then

three hosts were added to each vial. Vials were incubated at 258C
16 L : 8 D cycle. After 60 min, one-way escape tubes were added

to each vial to allow females to disperse away from the hosts, pre-

venting us from forcing females to super-parasitize hosts. After

24 h, all females were removed from the hosts and discarded.

Hosts were returned to the incubator and 14 days later emergent

offspring were sexed, genotyped by eye colour (red-eyed or wild-

type) and counted. Data from females that produced no offspring,

produced only male offspring (putative virgins) or produced more

than 10 diapause larvae were discarded. This left between 30 and

44 replicates for each of the 12 treatment groups, and a total

sample size of N ¼ 482 females.

(d) Statistical analysis
All statistical analyses were carried out in SPSS v. 21 using a

general linear model framework. To test for significant differ-

ences in sex ratio a generalised linear model (GLM) with

binomial error structure and a logit link function was used. To

correct for over-dispersion, common when analysing binomial

data, F-tests were used. The main effects ‘foundress number’

and ‘imidacloprid diet’ were coded as continuous variables as

we expect increasing neonicotinoid dosage to have an increased

effect (a directional hypothesis is being tested).

(e) Estimating the fitness costs of disrupting sex
allocation

We used an approach similar to Shuker & West [22]. First, we

estimated the fitness of a focal female if she was producing the

optimal sex ratio predicted by the simplest LMC model for hap-

lodiploids, which assumes all foundress females produce the

same clutch size [30]. The fitness equation is as follows:

W ¼ 1

2

S2

S2 þ (N � 1)S1

� �
[(N � 1)(1� S1)þ (1� S2)]

þ N
2N � 1

� �
[1� S2],

where N is the number of foundresses, S2 is the sex ratio of the

focal female and S1 is the sex ratio of the rest of the brood.

Following Hamilton [30], the optimal sex ratio is given as:

S� ¼ (N � 1)(2N � 1)

[N(4N � 1)]
:

For 5 foundress patches, the optimal sex ratio is therefore S* ¼

0.38, while for a 10 foundress patch, the optimal sex ratio is
S* ¼ 0.438. We calculated the relative fitness of an average

female from each treatment (control, 2 ppb, 10 ppb and

100 ppb) when compared to a hypothetical female that was

behaving optimally.

Next, we allowed the clutch sizes of females to vary (as

they did in the experiment). This is especially relevant here

as treated females appeared to have reduced fecundity at all

levels of imidacloprid exposure (see below; figure 2b). The

exact sex ratio a female is predicted to produce depends on a

number of factors, including exactly when in the sequence of

parasitism a female oviposits (is she first, last or somewhere

in between), if she encountered some or all co-foundresses, if

she encountered previous eggs, and whether she has laid on

one or more hosts. To disentangle these factors requires

specific experiments [7,22]. Here, we make the simplifying

assumption that all other brood on a patch are laid first,

before our female commences oviposition. We assume that

this brood has the sex ratio produced by control single foun-

dress females (S1 ¼ 0.08; see figure 2a). We then calculated

the relative clutch size of an average focal female from each

treatment to give us the parameter T (focal female clutch

size/number of other brood). The optimal sex ratio of a focal

female is given by:

S�2 ¼
SQRT[2(1þ F)(1þ 2F)(1þ T)S1]� 2(1þ 2F)S1

2T(1þ 2F)
,

where T is as described above, F is the inbreeding coefficient,

S1 is the sex ratio of the initial brood and S2 is the sex ratio

of the focal female. We use F ¼ 0.197 from the most recent

and complete study of N. vitripennis population genetics in

the wild [23]. (With haplodiploidy, we need to take inbreeding

explicitly into account if females contribute different numbers

of offspring to a patch: for a full review of LMC theory, see

West [2].)

We calculated the optimal sex ratio for females in the 5 and

10 foundress treatments, and then used the following equation

to calculate the fitness of females that behaved optimally under

these conditions, and then calculate the relative fitness of our

actual control and treated females:

W ¼ TS2

S1 þ TS2

� �
[1� S1 þ T(1� S2)]

1þ F
2

� �
þ T(1� S2)

1þ 3F
2

� �
:

3. Results
(a) Experiment 1
As expected, imidacloprid reduced female longevity in a

dose-dependent manner, with concentrations of 100 ppb and

200 ppb leading to significantly increased mortality after

140 h (log-rank test: x2
4 ¼ 41:63, p , 0.0001; figure 1). These

latter concentrations are typically higher than that to which

wasps would be exposed in the wild, with 1 ppb and 10 ppb

being sub-lethal and within the more field-realistic range for

non-target invertebrate exposure.

(b) Experiment 2
Imidacloprid disrupts facultative sex allocation in female

Nasonia (figure 2a). As expected under LMC, offspring sex

ratios varied with foundress number, with single foundresses

producing the most female-biased sex ratios (binomial

GLM: F1,478 ¼ 72.86, p , 0.0001). However, there was also a

significant interaction between foundress number and neoni-

cotinoid treatment (F1,478 ¼ 6.34, p ¼ 0.012). When females

oviposited alone (as single foundresses), they produced

http://rspb.royalsocietypublishing.org/
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roughly the same sex ratios regardless of exposure. However,

neonicotinoid-exposed females responded less strongly to

reduced LMC in the multi-foundress treatments, producing

more female-biased sex ratios in the 5 and 10 foundress

condition than the controls. Moreover, the effect was dose-

dependent, and failure to respond adaptively in the 10

foundress treatment occurred even at the lowest, sub-lethal

concentration (2 ppb; figure 2a).

Imidacloprid exposure also reduced offspring production

by approximately 20–25%, including at the very lowest con-

centration (F1,478 ¼ 15.93, p , 0.0001; figure 2b). Indeed, the

reduction in offspring production did not appear to be

dose-dependent, but manifested at all exposure levels.

Females also produced less offspring when ovipositing with

co-foundresses (this was expected as shared hosts provide

less resources: F1,478 ¼ 148.85, p , 0.0001; figure 2b), and

this reduction did not vary with imidacloprid treatment

(interaction: F1,478 ¼ 0.57, p ¼ 0.45).

Our results show that neonicotinoid exposure, even at

sub-lethal, field-relevant levels, can change reproductive

behaviour in a parasitoid wasp. However, by produc-

ing more females than expected under multi-foundress

conditions, short-term benefits might have pertained in

a biological control context (i.e. by producing more

daughters, which would then go on to attack more pest

individuals). Unfortunately, the reduction in fecundity at

even sub-lethal exposure meant that female offspring

production was still higher in the controls (F1,478 ¼ 14.28,

p , 0.0001; figure 2c).
(c) Sex allocation costs of imidacloprid exposure
Thanks to the well-developed LMC theory base, we were

also able to estimate the evolutionary fitness costs that

the reduction in facultative sex allocation, imposed by
imidacloprid exposure, resulted in. Under the simplest sex

ratio model, that assumes equal clutch sizes for each foun-

dress, neonicotinoid exposure reduced female fitness by up

to 4.5% for 10 foundress groups, and up to 7.1% for 5 foun-

dress groups (i.e. selection differentials of s ¼ 0.045 and

0.071, respectively). However, if we included the differences

in clutch sizes between control and treated females, the fit-

ness costs rose to in excess of 40% (i.e. s . 0.4; figure 3).

Imidacloprid exposure can therefore result in large fitness

costs by disrupting sex allocation.
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4. Discussion
Exposure to the neonicotinoid imidacloprid disrupts the abil-

ity of female N. vitripennis to facultatively allocate sex. This

effect is apparent thanks to our knowledge of the theory of

sex allocation under LCM [2,4]. The effects we see occur at

sub-lethal doses, especially in the highest foundress-number

treatment. These concentrations are within the range of

‘field-relevant’ concentrations reported in the literature,

although we recognize that the measurement of ‘field-rel-

evant’ is both highly contentious and likely to be context-

dependent, varying with crop species, application procedure,

local environmental conditions and so forth [14,31]. Nonethe-

less, our data suggest that exposure to a neonicotinoid

damages in some way the machinery females use to allocate

sex adaptively in the presence of varying numbers of co-

foundresses. Importantly, this disruption to sex allocation

imposes a significant cost to female N. vitripennis, a cost

that would be hidden by just considering the mortality

costs of imidacloprid exposure, and a cost that is also not

fully encapsulated by the reduction in fecundity seen here

and in other parasitoids [32,33].

As well as identifying this cryptic cost of neonicotinoids,

our results also suggest new insights into the mechanism of

adaptive sex allocation in Nasonia wasps. The similar sex

ratios produced by single foundresses, regardless of exposure,

suggests that the fertilization ability of females is not in itself

disrupted, nor is the general process of sex determination dis-

rupted. Instead, it is the response to co-foundresses that

appears to be affected. This is an important observation,

strongly suggesting that the neuromuscular control of sperm

release—central to the selective fertilization of eggs that is at

the heart of hymenoptera sex allocation [34]—is not damaged

by neonicotinoid exposure.

In N. vitripennis, much work has explored the range of cues

that females use to estimate the extent of LMC their offspring

will experience when allocating sex under LMC [7,18,35–38].

For instance, we know that the co-foundress response is

associated (at least phenotypically) with the number of

times a female touches or bumps into another female [34].
Interestingly, mechanoreceptors in insects use acetylcholine

as their neurotransmitter [39]. This means that mechanorecep-

tors are exactly the type of receptors that we might expect

neonicotinoids to disrupt, and with it the ability to perceive

through touch the presence of co-foundress females. This

also then suggests a new methodological route for experiments

to explore further how females assess foundress number.

Moreover, these findings offer clues towards solving one of

the key problems of breeders of gregarious parasitoid wasps

for biological control programmes, namely maximizing

female production under mass-rearing conditions [9]. A chemi-

cal that disrupts facultative sex allocation at high foundress

numbers, but that did not also have an associated fecundity

cost, would solve this problem. Our work here suggests that

such a chemical might be within reach. However, as mentioned

above, female N. vitripennis also respond to a variety of other

cues when assessing the likely level of LMC that their sons

will experience (such as the presence of eggs on hosts [22]),

and the next task will be to explore whether neonicotinoids

also influence the perception and use of those cues.

These results highlight how important it is to broaden the

discussion about the ecologically relevant effects of neonicoti-

noids, at low, field-applicable doses. ‘Quality’ of reproduction

is as important as quantitative effects such as fecundity; here

we have measured an offspring trait known to be very relevant

for fitness, i.e. its sex, and shown that sex allocation is disrupted

by neonicotinoids. Moreover, sex allocation is a key trait for

many other beneficial insects, including both parasitic and pol-

linating Hymenoptera [20,40]. Social and solitary pollinating

Hymenoptera have to allocate sex in response to various aspects

of the environment, and disruption of sex allocation may lead to

long-term fitness consequences for these insects (and other

components of natural and agricultural ecosystems). Therefore,

the costs of sex allocation need to join the growing list of costs of

neonicotinoids in terms of the functioning and health of ben-

eficial insects and other non-target organisms [13,41]. We also

need to test whether exposure to neonicotinoids across multiple

generations will select for changes in sex allocation behaviour,

including a change in how or what cues are perceived by

females when they are making sex ratio decisions. The costs

that the disruption to sex allocation can impose are apparent

thanks to the development and testing of sex allocation

theory across the last five decades [2], clearly showing the rel-

evance of what might seem rather arcane evolutionary theory.

Finally, our work emphasizes that subtle behavioural effects

are apparent even if life-history traits such as longevity are unaf-

fected. The potential scale of these effects needs to enter our

discussion of the economic and ecological costs and benefits

of neonicotinoid use.
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