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Abstract. In this paper we propose new models of two complementary optical sensors to obtain 2.5-D mea-
surements of opaque surfaces: a deflectometric and a plenoptic sensor. The deflectometric sensor uses active
triangulation and works best on specular surfaces, while the plenoptic sensor uses passive triangulation and
works best on textured, diffusely reflecting surfaces. We propose models to describe the measurement uncer-
tainties of the sensors for specularly to diffusely reflecting surfaces under consideration of typical disturbances
like ambient light or vibration. The predicted measurement uncertainties of both sensors can be used to obtain
optimized measurements uncertainties for varying surface properties on the basis of a combined sensor system.
The models are validated exemplarily based on real measurements.

1 Introduction

Automated quality inspection of product surfaces requires a
fast and robust sensor, capable of detecting all relevant de-
fects without damaging the surface. Optical measurement
techniques fulfill these requirements but are highly depen-
dent on the surface properties. For example, pattern pro-
jection and passive stereoscopic methods require diffuse re-
flectance, while deflectometric methods depend on specular
reflectance of the inspected surface. Many surfaces are par-
tially specular or a mixture of diffusely and specularly re-
flecting parts and cannot be robustly measured with only one
method. By combining several measurement methods into a
single sensor system that adapts its algorithms to exploit the
advantages of the single methods, we are capable of mea-
suring surfaces with a large variety of surface properties. To
demonstrate the principle, we propose uncertainty models for
plenoptic and deflectometric sensors, and based on the mod-
els we simulate both sensors under similar circumstances on
varying partially specular surfaces.

1.1 Related work

Tutsch et al. (2011) give a good overview of optical 3-D
measurement techniques with structured illumination that in-
cludes passive triangulation and deflectometry. The measure-
ment uncertainty for the deflectometric sensor is based on
the phase noise model from Fischer et al. (2012), which is
itself based on parameters defined in the EMVA 1288 mea-
surement standard by the European Machine Vision Associa-
tion. Fiete and Paul (2014) describe a systematic approach to
model the imaging chain using the optical transfer function,
that will be used in Sect. 2.

Plenoptic cameras have been used in computational imag-
ing for several decades now. However, Perwaß and Wiet-
zke (2012) proposed the first plenoptic camera for indus-
trial applications. They commercialized their camera in the
company Raytrix. In the recent years, several papers on the
metric calibration of Raytrix cameras were published; see
Johannsen et al. (2013), Heinze et al. (2016), Zeller et al.
(2016), Strobl and Lingenauber (2016) and Zeller et al.
(2017). Furthermore, the potential of plenoptic cameras with
respect to 3-D measurement was derived analytically by Per-
waß and Wietzke (2012) as well as Zeller et al. (2016) and
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Table 1. Simulation parameters, with corresponding symbols (S)
for deflectometry (D), plenoptic (P) and units (U).

Parameter S D P U

Geometry

Camera distance s 0.5 0.5 m
Screen distance r 0.5 m
Viewing angle α 90 90 deg

Lens

Focal length f 16 16 mm
Wavelength λ 550 550 nm
f Number F 2.8 2.8
Measurement range 1s 0.15 m
MLA sensor distance B 350 µm
Micro lens aperture DM 126.5 µm

Phase shifting

Mean exposure β 0.5
Phase shifts M 4

Sensor

Overall system gain K 0.25 DN/e−

Dark noise σd 12 13 e−

Signal noise σI 9.13 DN
Saturation capacity µe.sat 15 13.5 ke−

Quantization 10 bit
Pixel pitch 1c 6.45 5.5 µm

Surface MTF

Ideally specular c 8 8
Mirror c 3.8 3.8
High gloss c 2.9 2.9
Low gloss c 2.5 2.5

demonstrated experimentally by Heinze et al. (2016), Zeller
et al. (2016), and Sardemann and Maas (2016). Nevertheless,
all existing analytical evaluations considered the optical sys-
tem only from a purely geometrical perspective, ignoring the
effects of real optical systems as is done in this paper.

1.2 Outline

First, in Sect. 2 we introduce the photometric properties of
the measurement system by means of the spatial distribu-
tion of light and the modulation transfer function. In Sects. 3
and 4 we describe the deflectometric sensor and the plenop-
tic sensor and derive their measurement uncertainties. Then
in Sect. 5 we compare the uncertainties for both methods.
All plots shown in this paper use parameters from an exem-
plary setup given in Table 1. Finally, in Sect. 6 we present, by
way of example, real measurements to validate the proposed
models.

2 Photometry

Deflectometry, as well as the plenoptic method, relies on the
recognition of spatial light patterns to identify unique posi-
tions that can be triangulated. The reliability of this recogni-
tion depends on the pattern contrast. When the pattern con-
trast is very low, noise introduced by the camera dominates
the pattern. In the following section we introduce a system-
atic approach to describe the pattern contrast and a reduction
of this contrast depending on its spatial frequencies. Despite
the 2-D nature of image-based measurements we decided to
describe our approach in 1-D, since the direction has no im-
pact on the results.

2.1 Fringe modulation

2.1.1 Deflectometry

In deflectometry the camera integrates light emitted at some
point x by the screen Lscr(x) (radiance) and reflected by the
surface (ignoring spectral dependency). The light Lcam(m)
reaches the camera image plane at some point m “smeared”
by the screen itself, the reflection at the surface, the refraction
and diffraction by the camera lens and the sensor itself. The
smearing can be mathematically described as a convolution
of the incoming light with the point spread function (PSF).
We assume that the PSF is translation-invariant to the object
and the sensor point:

PSF(x,m)= PSF(x−m). (1)

Now, the image radiance is the convolution of the
screen radiance and the point spread functions of the
screen (PSFscr(x)), the surface (PSFsrf(x)) and the camera
(PSFcam(x)):

Lcam(x)= Lscr(x)×PSFscr(x)×PSFsrf(x)×PSFcam(x). (2)

Instead of using PSFs in the spatial domain, the imaging
properties of optical systems can be described in the Fourier
domain, depending on the spatial frequency k. Then the opti-
cal transfer function (OTF), which is the Fourier transform of
the PSF, is used instead. As we are only interested in modu-
lation changes, we separate the OTF into modulation transfer
function (MTF) and phase transfer function (PTF):

OTF(k)=MTF(k)eiPTF(k). (3)

Additionally, we normalize the MTF to 1 for the DC com-
ponent:

M(k)=MTF(k)/MTF(0). (4)
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We will introduce the patterns shown on the screen Iscr(x)
(radiant intensity) in Sect. 3.1. The radiant intensity from the
screen is linked with the radiance from Eq. (2) by multipli-
cation with the pixel size Ascr and the cosine of the incident
angle θscr of the optical axis to the screen normal direction
(which is approximately the same for all points on the screen
for a small screen size compared to the screen distance):

Iscr(xscr)= Lscr(xscr)Ascr cos(θscr). (5)

The radiance distribution γscr(kscr) with the spatial fre-
quency kscr on the screen is the spectrum of the radiance
(F{·} denotes the Fourier transform):

γscr(kscr)= |F{Lscr(x)}|/|F{Lscr(x)}|kscr=0

= |F{Iscr(x)}|/|F{Iscr(x)}|kscr=0.

The irradiance on the camera sensor is linked with the ra-
diance from Eq. (2) by multiplication with the solid angle of
the sensor pixel �cam and the cosine of the incident angle
θcam of the optical axis to the sensor normal direction (which
again is approximately the same for all points on the sensor
for a small sensor size compared to the camera distance):

Ecam(xcam)= Lcam(xcam)�cam cos(θcam). (6)

Now we obtain the irradiance distribution on the camera
sensor,

γcam(kcam)= |F{Lcam(x)}|/|F{Lcam(x)}|kcam=0

= |F{Ecam(x)}|/|F{Ecam(x)}|kcam=0,

as a product of the screen radiance distribution γscr(kscr) and
the MTFs:

γcam(kcam)= γscr(kscr) ·Mscr(kscr) ·Msrf(kcam)
·Mcam(kcam). (7)

Note the usage of different spatial frequencies kcam and
kscr. We will introduce the correspondence between camera
and screen spatial frequencies for simple surface shapes in
Sect. 3.4. In Sect. 5 we will discuss the optimum screen pat-
tern, minimizing the measurement uncertainty. The screen
and camera MTF can be measured in advance using a plane
first-surface mirror with Msrf(kcam)≈ 1. If necessary, the
camera MTF can be measured separately in advance using
calibrated MTF targets and subsequently the screen MTF can
be measured with the calibrated camera at close range to the
screen; see Triantaphillidou and Jacobson (2004). The sur-
face MTF Msrf depends on the surface roughness and posi-
tion between screen and camera, so Msrf has to be measured
for a fixed setup.

2.1.2 Plenoptic

Things change for the passive plenoptic setup, where the sur-
face itself is considered as an emitter of structured light. We
assume that the surface itself reflects unstructured light from
the environment depending on the surface texture γsrf(ksrf).
However, for surfaces which do not show perfect Lamber-
tian reflectance, that surface texture is superimposed by the
specular reflections on the surface and imaged and sensed by
the plenoptic camera (described by Mcam(kcam)) and lead to
a radiance distribution γcam(kcam) on the camera sensor. The
superposition of the surface texture showing Lambertian re-
flectance with the specular reflections of unstructured light
from the environment can be considered as a reduction of the
signal-to-noise ratio (SNR) as it increases the noise level on
the surface. Instead of increasing the noise level, we model
this superposition as a spatial-frequency-dependent attenua-
tion of the surface texture γsrf(ksrf). Anyway, on the image
sensor no absolute signal levels can be measured since they
are equalized by the automatic exposure control of the cam-
era. The relative attenuation of the surface texture γsrf(ksrf)
due to specular reflectance is modeled by a function that we
call the Lambertian surface MTF M̃srf. Since this Lambertian
surface MTF M̃srf(ksrf) models the deviation from a perfect
Lambertian reflectance it behaves reciprocally to the surface
MTF Msrf(ksrf) defined for the deflectometric setup. Hence,
similar to Eq. (7) we obtain the following:

γcam(kcam)= γsrf(ksrf) · M̃srf(ksrf) ·Mcam(kcam). (8)

In the best case for plenoptic measurements, the surface
pattern consists of intensity steps with an modulation of 1
over a wide spatial frequency spectrum:

γsrf(ksrf)= 1. (9)

This pattern is superimposed by the specular reflection of
pattern in the environment. Hence, in contrast to deflectome-
try, the specular reflection decreases the measurable patterns
contrast for the plenoptic setup. A detailed definition of the
surface MTF will be discussed in Sect. 2.5.

2.2 Camera MTF

Following Fiete and Paul (2014) the camera OTF consists
of the lens OTF and the sensor OTF. In the best case of a
diffraction-limited optical system, the lens OTF is given by
the following:

OTFlens(k,λ)=



2
π

(
cos−1

(
k
kc

)
−

k
kc

√
1−

(
k
kc

)2
)

for k
kc
≤ 1

0
for k

kc
> 1

(10)
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Figure 1. Camera MTF of deflectometric camera, plenoptic camera
and camera with diffraction-limited lens.

with k = kcam and

kc =
D

λf
=

1
λF

.

F is the ratio of the focal length f and the diameter D of
the entrance pupil and is commonly known in photography
as the “f number”. Ignoring signal sampling, noise, quanti-
zation and anisotropy, the OTF of the sensor is given (with
k = kcam) by the following:

OTFsensor(k)=
sin(π1ck)
π1ck

. (11)

The bandwidth of the sinc function depends on the aper-
ture of a pixel on the sensor and is assumed to be equal to
the pixel pitch 1c. The camera MTF is the composition of
the lens OTF in Eq. (10) and the sensor OTF in Eq. (11) as
follows:

Mcam(kcam)= |OTFlens(kcam)| · |OTFsensor(kcam)| . (12)

In Fig. 1 we show the camera MTFs for the deflectomet-
ric and the plenoptic camera with lens MTFs as given in the
manufacturer data sheet and sensor MTF derived from pa-
rameters in Table 1 in comparison with camera MTF for the
same sensor and a diffraction-limited lens.

2.3 Defocus MTF

The OTF introduced in the previous section describes a cam-
era in focus; in this section we will discuss a camera out of
focus. Let the camera be in focus at some object distance g
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Figure 2. Deflectometric camera MTF for defocused image of
screen points with 1.0 m distance and focal plane distances g.

with corresponding image distance b. A point with size 1x
and distance g+1g corresponds to a point with size 1c̃ on
the image plane with 1c̃

1x
=

b
g+1g

. The size of a point on the

surface out of focus depends on the aperture size D
1x
=

g
1g

.
Eliminating 1x leads to

1c̃ =
bD1g

g(g+1g)
. (13)

Using the thin lens equation 1
f
=

1
g
+

1
b

the image distance
b can be eliminated and we get the size for a point out of
focus on the sensor:

1c̃ =
Df1g

(f − g)(g+1g)
. (14)

The size of a point on the image plane 1c̃ cannot be
smaller than the camera pixel size 1c, and thus we define
it as follows:

1c̃ :=max
(

Df1g

(f − g)(g+1g)
,1c

)
. (15)

The OTF for an image out of focus depends on the size of
this point (see Beyerer et al., 2012) and replaces the sensor
OTF in Eq. (11), where J1 is the Bessel function of first kind
and order:

OTFsensor(k)= 2
J1(π1c̃k)
π1c̃k

. (16)

Figure 2 shows the camera MTF of screen points with
1.0 m distance for several focus distances g from the surface
(g = 0.5 m) to the screen (g = 1.0 m).

J. Sens. Sens. Syst., 7, 517–533, 2018 www.j-sens-sens-syst.net/7/517/2018/



M. Ziebarth et al.: Measurement uncertainty of deflectometric and plenoptic sensors 521

0 20 40 60
0

0.2

0.4

0.6

0.8

1

kcam in 1/mm

M
m

ot

1 µm

5 µm

10 µm

50 µm

Figure 3. Motion blur MTF caused by camera motion in image
space.

2.4 Motion blur

In many situations the camera is shaking during exposure
due to vibrations caused by heavy machines, etc. Fiete and
Paul (2014) give an OTF for motion blur caused by a random
movement of the camera during the exposure with standard
deviation σmot:

OTFmotion = e−2π (k2
camσ

2
mot). (17)

Of course, the measured surface may also be subject to
vibrations, but due to the complexity of the implications of
changing surface normals during exposure it is not covered
here. The influence of translational camera motion blur on
the MTF according to Eq. (17) is shown in Fig. 3. Note that
the motion blur is related to the pixel pitch (here 6.45 µm), so
motions during exposure smaller than half the pixel pitch in
image space have almost no impact on the modulation.

2.5 Roughness

With more surface roughness the reflectance decreases from
specular to diffuse; see Fig. 4. Harvey et al. (2012) and Har-
vey (2013) describe the relation of surface roughness mea-
sured as root mean squared (RMS) surface height and the
optical properties of the surface using total integrated scatter
and the MTF. They observe that the RMS value has to be cal-
culated within the relevant scale. However, this model seems
to be valid only for very smooth surfaces, so in the following
we propose a simple parametric model for the surface MTF:

Msrf(kcam)= e−10−ckcam . (18)

Figure 4. Image of a reflected pattern for five different surfaces
ranging from high to low gloss for a pattern on the screen with spa-
tial frequency kcam = 1 mm−1. Note the modulation change from
left (high gloss, c = 3.8) to right (low gloss, c = 2.5), where the
pattern is almost invisible.

0 20 40 6010−5

10−4

10−3

10−2

10−1

100

kcam in 1/mm

M
sr

f

c = 8

c = 3.9

c = 2.9

c = 2.5

Figure 5. Reflectance surface MTF for different surface gloss pa-
rameters.

This matches the MTF measurements of the surfaces
shown in Fig. 4, but has no dependency on physical param-
eters like the surface roughness. For each surface type, the
parameter c has to be estimated. The five surfaces shown
in Fig. 4 have parameters in the range c = 2.5. . .3.8. As
Msrf(kcam) depends on the camera distance s and the screen
distance r , it has to be estimated again, if the setup changes.
Figure 5 shows the surface MTF for different gloss factors c.

While deflectometry utilizes the specularity of the sur-
face, passive triangulation approaches like plenoptic-camera-
based methods rely on Lambertian reflectance. Hence, for the
plenoptic camera we consider the specular component as an
additional noise component and therefore model the Lamber-
tian surface MTF M̃srf as follows:
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Figure 6. Lambertian surface MTF for different surface gloss pa-
rameters.

M̃srf(kcam)= 1−Msrf(kcam)

= 1− e−10−ckcam . (19)

Figure 6 shows the Lambertian surface MTF for different
gloss factors c.

2.6 Ambient light

In the previous section we described how surface roughness
increases the amount of light scattered by the surface. If more
ambient light is present in the scene, the light scattered in
the direction of the camera also increases. This can be mea-
sured as the Michelson contrast, i.e., the ratio of the differ-
ence and the sum of the maximum and minimum radiance
(Lmin,Lmax). To visualize the influence of (constant, unstruc-
tured) ambient light, we assume that the radiance of the pat-
tern, received by the camera, is increased by a constant offset
Lamb, which leads to a modified surface MTF:

Mamb(kcam)=
Lmax−Lmin

Lmax+Lmin+ 2Lamb
, (20)

Msrf(kcam)=Mamb(kcam)e−10−ckcam . (21)

If the ambient radiance reflected into the camera equals
half the radiance of the maximum pattern intensity, the pat-
tern contrast decreases to one-half of the original contrast.
Calculating the influence of ambient radiance emitted by the
surface requires knowing the location of the ambient light
sources and the surface BRDF (bidirectional reflectance dis-
tribution function). On specular reflecting surfaces, ambient
light does not influence the contrast of a reflected pattern,
but more diffuse reflection increases the amount of ambient

radiance reflected into the camera. The contrast of a surface
texture is influenced by the amount of specularly reflected
light.

3 Deflectometry

Deflectometry (see Werling et al., 2009), is a relatively in-
expensive but powerful method for inspection and measure-
ment of specular surfaces. A generic setup is shown in Fig. 7.
The basic idea is to measure the surface normals by iden-
tifying the origin xscr of each camera ray (going through
xcam and the optical center) that is reflected at the surface.
A phase-shifting algorithm is used to identify this origin on
the screen xscr. We use M > 3 shifts of a cosine fringe pat-
tern (as seen in Fig. 4) with frequency kscr on the screen to
identify the location of xscr with subpixel uncertainty in one
direction. The result of this algorithm is the phase φ at the
current screen point xscr:

φ(xscr)= 2πkscrxscr. (22)

Hence, the measurement uncertainty of the camera ray origin
on the screen σxscr is given by the following:

σxscr =
σφ

2πkscr
. (23)

In the following section we will look at the phase-shifting
algorithm and the phase noise model.

3.1 Phase shifting

Let the origin xscr of each camera ray be a point on a flat
screen showing a sequence of i = 1. . .M cosine patterns cap-
tured by the camera with intensity I at the position xcam on
the image plane with relative mean exposure β and relative
pattern contrast γcam(kcam):

Ii(xcam)= βIsat(1+ γcam(kcam) · cos(φ(xscr)+ψi)). (24)

β and γcam are both constrained to 0. . .1 and β(1+ γcam)≤ 1.
The maximum exposure is the saturation capacity of the sen-
sor Isat. Each pattern Ii(xscr) is shifted in M equidistant
steps by ψi = 2πi

M
. In the case of a four-step phase shifting

(M = 4) the phase is obtained from the captured intensities
as follows:

φ = arctan
(
I3− I1

I4− I2

)
. (25)

To get the absolute position on the screen xscr the phase
φ ∈ (0. . .2π ) has to be unwrapped by determining m in
Eq. (26).

xscr =
1
kscr

(
m+

φ

2π

)
,with m ∈ N. (26)
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One popular phase-unwrapping method is the heterodyne
method, which uses two different pattern frequencies. See
Zuo et al. (2016) for comparison of phase-unwrapping meth-
ods.

3.2 Phase noise

A model describing the phase noise of Eq. (25) for a symmet-
ric M-step algorithm was derived by Fischer et al. (2012):

σφ =

√
2
M

1
γcamβµe.sat

√
βµe.sat+ σ

2
d +

1
12K2 . (27)

The model is based on the EMVA 1288 camera noise model
by the European Machine Vision Association with the pa-
rameters of saturation capacity µe.sat, dark noise variance σ 2

d
and overall system gain K . Hence, the authors show a way
to estimate the EMVA 1288 camera parameters using a de-
flectometric setup. Since β and γ depend on local surface re-
flection properties, the authors propose a way to estimate the
measurement uncertainty in Eq. (27) based on the observed
intensities for each pixel separately:

σφ.est =

√
K
2 (y1+ y2+ y3+ y4)+R4

(y1− y3)2+ (y2− y4)2 . (28)

Here yi = Ii −µd denotes the physically correct intensi-
ties, µd is the mean dark noise andR4 the noise term, defined
as follows:

R4 = 2K2(σ 2
d −µd )+

1
6
. (29)

The two parameters influenced by the environment and the
surface are β and γ . We can ensure β = 0.5, if the camera ex-
posure is chosen appropriately. The pattern contrast on the
sensor γcam is given as product of the MTF functions for
the screen, surface, ambient light, camera and motion blur
in Sect. 2. The rest of the parameters can be either chosen
(M) or are known from the camera data sheet (EMVA 1288
parameters). Alternatively σφ can be estimated directly from
a measurement using Eq. (28).

3.3 Geometric properties

In the following section the uncertainty of the surface height
σz will be derived. Let the surface be acquired in many small
mirror segments. The width of each segment is the lateral un-
certainty σx , and the slant uncertainty is σα; see Fig. 7. The
uncertainty in surface height is then obtained by the follow-
ing:

σz = σx tan
(σα

2

)
. (30)

σxscr

σx

σz
σα

σα/2

Camera

Screen

Surface

s

r

σc

σθ

f

Figure 7. Measurement uncertainty σz of a deflectometric system
with lateral uncertainty σx caused by discretization σc on the cam-
era sensor and uncertainty of the origin of incident rays from the
screen σxscr caused by the phase-shifting algorithm.

The lateral uncertainty σx is determined by the angular un-
certainty σθ and the distance s of the camera to the surface
(assuming only small angles between viewing and surface
normal direction):

σx = s tanσθ . (31)

The angular uncertainty of the camera σθ is determined by
the discretization on the sensor σc =1c and the focal length
f :

tanσθ =
σc

f
. (32)

Either the size of one projected pixel from Eqs. (31)
and (32) or the defocus on the surface caused by focal plane
distances g ∈ [s,r] and the aperture size D ( D

σx
=

g
s−g

) set
the lower limit of lateral uncertainty:

σx :=max
(
sσc

f
,D
s− g

g

)
. (33)

The slant uncertainty of each surface segment σα is de-
termined by the screen σxscr from Eq. (23) and the screen
distance r (assuming only small angles between direction of
reflected ray and screen normal):

tanσα =
σxscr

r
. (34)

Combining the above equations, the uncertainty of the sur-
face height σz (with tan(σα2 )≈ tanσα

2 ) is as follows:

σz ≈ σx
σxscr

2r
. (35)
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3.4 Surface shape

Assume that the specular surface has a convex spherical
shape. Then the screen appears smaller, which results in a
smaller fringe period. In the simple case of a plane mirror,
the effective fringe pattern frequency depends only on the
distance from the camera to the screen:

kcam = kscr
r + s− f

f
. (36)

If the surface is curved (at least piecewise) like a sphere
with radiusR, the imaging properties can be described by the
imaging properties of a convex (positive radius) or concave
(negative radius) mirror with focal length fs =−R2 :

kcam = kscr
f (fs − r)+ rs− fs(r + s)

f fs
. (37)

This equation has a pole at fs = (f r− rs)/(f − r− s) for
concave surfaces, where the screen is located in a caustic.
Near this pole, even infinitely small changes of the screen
pattern would lead to changes in the image plane, but this
configuration is impractical for a real inspection task.

4 Plenoptic camera

A plenoptic camera is a single sensor system which records
a 4-D light-field representation of a scene in a single image.
That means a point in the object space does not only corre-
spond to a single image point in the image, as it would be
for a regular camera, but to multiple image points. In other
words, a plenoptic camera does not only capture a single ray
emitted from a certain point in the object space but multiple
light rays with different incident angles. Hence, the four di-
mensions describe two spatial dimensions and two angular
dimensions. Even though plenoptic sensors for industrial ap-
plications are still expensive (see Raytrix GmbH, 2016), they
rely on a quite simple idea. In general any industrial camera
can be transformed into a plenoptic camera by placing a mi-
cro lens array (MLA) in front of the image sensor.

The 4-D light field recorded by a plenoptic camera enables
tasks like 3-D measurement or software-based refocusing af-
ter an image is captured. Industrial tasks for plenoptic cam-
eras may include 3-D microscopy or the inspection of pro-
duction parts.

Here we describe the principle of plenoptic depth mea-
surement based on the concept of a focused plenoptic cam-
era developed by Lumsdaine and Georgiev (2009). As well
as this, we formulate an uncertainty prediction model for the
plenoptic depth measurement that relies on this concept.

Figure 8 shows the imaging process of a focused plenoptic
camera in the Galilean mode (see Lumsdaine and Georgiev,
2009). The main lens produces a virtual image of the real ob-
ject at distance bL behind the main lens. Due to the MLA a
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Figure 8. Image projection of a focused plenoptic camera in the
Galilean mode. One object point is projected to multiple micro im-
ages on the sensor.

Figure 9. Raw image recorded by a focused plenoptic camera. Dif-
ferent to a regular camera, a plenoptic camera has a micro lens ar-
ray (MLA) placed in front of the sensor (see Fig. 8). Therefore, the
raw image recorded by the camera is not one consistent central per-
spective image, but consists of thousands of circular micro images
where each micro images shows only a small portion of the com-
plete scene, as can be seen in the figure. From the magnified sec-
tion, one can see that the same object point is projected to multiple
neighboring micro images.

point of the virtual image is projected onto multiple micro
images on the sensor. In the figure each micro lens is repre-
sented by a small dot on the MLA plane. The micro image
points corresponding to the point of the virtual image are at
the intersections of the dashed lines with sensor. Figure 9 ex-
emplarily shows the image formed on the sensor of focused
plenoptic camera, consisting of a hexagonal grid of micro
images.
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s

α

Plenoptic camera

Surface

Figure 10. Plenoptic measurement setup. Expected measurement
uncertainty can be predicted based on the given geometric setup,
the surface pattern and the MTF of the plenoptic camera.

The image distance bL results from the object distance s
and the main lens focal length f as defined by the thin lens
equation:

bL =
s · f

s− f
. (38)

Based on disparities µ, which can be measured in the mi-
cro images, one is able to calculate the image distance bL and
from that the respective object distance s of a certain point,
under the assumption that all intrinsic camera parameters are
known; see Zeller et al. (2016).

4.1 Uncertainty prediction model

In contrast to deflectometry, the plenoptic camera is a passive
measurement system that relies on high-contrast patterns on
the surface to be measured. Besides, the surface has to have
Lambertian reflectance to obtain correct measurements.

In the following we define a model to predict the measure-
ment accuracy of the plenoptic camera for a certain measure-
ment setup. This measurement setup is shown in Fig. 10.

In analogy to deflectometry and to obtain a general defini-
tion of the surface contrast we define the surface structure as
a fringe pattern similar to Eq. (24).

Of course, the pattern on the surface which is captured by
the camera will never be a perfect fringe pattern but can al-
ways be modeled as a mixture of frequencies. However, this
formulation gives us the possibility to model the camera re-
sponse dependent on the frequency ksrf of the surface pattern.
In general, the structures to be measured on the surface are
intensity steps and thus contain the complete frequency spec-
trum.

In a local region one can consider the imaging process just
as a scaling of the fringe pattern on the surface in combina-
tion with a frequency-dependent attenuation of the intensity
modeled by the MTF of the imaging system. Therefore, by
applying the assumption of being in a local region around a

certain point, perspective distortion does not have to be con-
sidered.

4.1.1 Imaging scale

In contrast to a regular camera, which can be defined mathe-
matically by a pinhole camera model, the imaging scale of a
plenoptic camera is not proportional to the distance between
main lens and object s. Instead, a plenoptic camera basically
performs two perspective projections, one by the main lens
from object space to the virtual image and one from the vir-
tual image on the sensor. The scaling between object space
and virtual image sL is given by the following:

sL =
s

bL
. (39)

Furthermore, one gets the scaling between virtual image and
the micro images on the sensor as given by the following:

sML =
bL− bL0

B
. (40)

Here, bL0 is the distance between MLA and main lens and B
is the distance between image sensor and MLA (see Fig. 8).
Both scaling factors (sL and sML) behave reciprocally to each
other. While an increasing object distance s results in an in-
creasing scaling factor sL, the scaling factor sML decreases
at the same time since the virtual image distance bL is also
decreasing.

Besides the scaling of the pattern due to perspective pro-
jection, the fringe pattern is compressed if the viewing an-
gle of the plenoptic camera α is not 90◦ to the surface (see
Fig. 10). This results in an additional scaling of the pattern
sα defined as follows:

sα =
1

|sin(α)|
, (41)

with 0< α < π .
Based on the defined scaling factors one can define the

following relations between surface xsrf, virtual image xvim
and sensor coordinates xcam:

xsrf = sα · sL · xvim, (42)
xvim = sML · xcam, (43)
xsrf = sα · sL · sML · xcam. (44)

Hence, we obtain the following frequencies of the fringe pat-
tern in the virtual image kvim and on the sensor kcam, respec-
tively:
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kcam = sα · sL · sML · ksrf, (45)
kvim = sα · sL · ksrf. (46)

Following the Shannon–Nyquist sampling theorem we can
calculate from Eq. (45) an upper boundary for the fringe pat-
tern frequency on the surface. Thus, to avoid aliasing, the
following condition has to hold:

1
1c

!
> 2kcam. (47)

Here, 1c is the pixel pitch of the sensor. After inserting
Eq. (45) into Eq. (47) and rearranging it, one receives the
following condition for the frequency of the fringe pattern
on the surface to assure aliasing-free sampling:

ksrf <
1

2 ·1c · sα · sL · sML
. (48)

4.1.2 Attenuation

Similarly to in deflectometry, we can describe the imaging
properties of the plenoptic camera by its MTF. In a plenoptic
camera, we have a sequence of two optical systems: the main
lens and the MLA. This results in an MTF of the complete
plenoptic camera that depends on the distance to the surface.
This can be formulated as the sequence of two MTFs with a
nonlinear connection between kvim and kcam:

γcam(kcam)= γsrf(ksrf) ·ML(kvim) ·MML(kcam). (49)

For simplification, we approximate the complete MTF
Mcam(kcam) as follows:

γcam(kcam)≈ γsrf(ksrf) ·Mcam(kcam). (50)

By this approximation we neglect the depth scaling from the
virtual image on the sensor and therefore consider ML and
MML to be defined on a common frequency axis. However,
the error made by the approximation is negligible for object
distances that are large with respect to the focal length fL
and short depth ranges, which have to be measured. An al-
ternative would be to define and measure a depth-dependent
MTF.

For a Raytrix camera the MLA consists of three different
types of micro lenses to increase the depth of field of the
camera. Therefore, strictly speaking one has to define three
different MTFs for the respective micro lens types.

For the simulations in Sect. 5 we assume a plenoptic cam-
era MTF Mcam(kcam) as defined in Eq. (12). However, it
might be worth investigating differences in the camera MTF
of a plenoptic camera in comparison to a regular monocular
camera.

Figure 11. Epipolar lines in a hexagonally arranged MLA. Due to
the reason that the micro images are rectified to each other by na-
ture, the epipolar line for a pair of micro images is defined by the
vector between the respective principal points. The figure exemplar-
ily shows one epipolar line (blue) for the five shortest stereo baseline
distances (red).

4.1.3 Measurement uncertainty

Depth measurements are obtained based on disparities µ,
which are estimated from the recorded micro images. The
accuracy of the estimated disparity mainly relies on the in-
tensity gradient along the epipolar line as well as the addi-
tive signal noise of the image sensor. The signal noise al-
ready combines noise sources like dark noise and quantiza-
tion noise.

For a given fringe pattern Isrf(xsrf), as defined in Eq. (24),
on the surface to be measured one obtains a maximum abso-
lute intensity gradient on the image sensor as follows:

gcam =max
∥∥∥∥∂Icam(xcam)

∂xcam

∥∥∥∥
= β · Isat · γcam · 2π · ‖kcam‖ . (51)

The MLA in a plenoptic camera is in most cases arranged
on a hexagonal grid. Therefore, for each micro lens multi-
ple epipolar lines in all possible directions are obtained. Fig-
ure 11 exemplarily shows the epipolar lines in a hexagonally
arranged MLA. Thus, in the following we equate the maxi-
mum absolute gradient gcam with the maximum absolute gra-
dient along one specific epipolar line.

Zeller et al. (2016) show that one can approximate the
variance of the estimated disparity σ 2

µ based on the variance
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of the signal noise σ 2
I and the maximum gradient along the

epipolar line gcam as follows:

σ 2
µ =

2 · σ 2
I

g2
cam

. (52)

As defined in the EMVA1288 standard, the signal noise
σI results from the system gain K , the dark noise σd, the
quantization noise σq, the gray value µy and the dark signal
µy.dark as follows:

σ 2
I =K

2σ 2
d + σ

2
q +K(µy −µy.dark). (53)

However, for later simulations we use an average value de-
rived from the camera specification as given in Table 1.
Eq. (52) states that for a high-intensity gradient along the
epipolar line the disparity can be determined more accurately
than for a low-intensity gradient.

For multifocus plenoptic cameras (see Perwaß and Wi-
etzke, 2012), like those from the manufacturer Raytrix, the
MLA consists of different types of micro lenses with dif-
ferent focal lengths. Therefore, for a certain object distance
one type of micro lenses will produce focused micro images
while the micro images of another type will be out of focus.
This effect of differently focused micro images also has to
be considered when estimating the disparity µ. How this fo-
cus disparity error can be modeled is shown by Zeller et al.
(2017).

For simplification, we do not consider the focus disparity
error here. Besides, by choosing an appropriate camera setup
one can assure that a pair of focused micro images is always
present for a given object point.

Based on the theory of propagation of uncertainties, one is
able to calculate the standard deviation of the measured ob-
ject distance σs from the disparity standard deviation σµ. The
relationship between σµ and σs is given by the following:

σs =
(s · (f − bL0)+ f · bL0)2

κ ·DM · f 2 ·B
· σµ. (54)

Equation (54) was derived by Zeller et al. (2017). Here DM
defines the diameter of a micro lens, while κ is a normalized
distance factor between the two micro lenses used for dispar-
ity estimation, i.e., κ is one for two directly adjacent micro
lenses. In a hexagonal arrangement of the MLA the small-
est 10 values of κ are 1.00, 1.73, 2.00, 2.65, 3.00, 3.46, 3.61,
4.00, 4.36 and 4.58. Perwaß and Wietzke (2012) showed that,
depending on the distance between virtual image and MLA
plane v, it can be guaranteed that micro lenses further apart
still see the same object point and therefore a larger value of
κ can be chosen.

5 Simulation

In the following section, we present simulation results for the
measurement uncertainty of both the deflectometric and the
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Figure 12. Deflectometric measurement uncertainty of the phase
on the screen, showing a pattern with fringe frequency translating
to kcam when reflected onto the sensor.

plenoptic sensor. They are derived for an exemplary setup
shown in Table 1. We chose similar settings for both systems
to make realistic comparisons. All simulation results that de-
pend on the spatial frequency of some pattern are shown
as a function of the spatial frequency on the image plane
kcam. The frequency limits have been chosen according to the
Shannon–Nyquist sampling theorem: the highest detectable
frequency is limited by the pixel pitch, i.e., kcam <

1
21c . The

surface MTF parameters for the low and high gloss and mir-
ror were estimated from real measurements, the value for the
ideally specular surface should be c→∞, but for numeri-
cal reasons we chose c = 8. For plots containing results of
both sensors, we plotted results in blue for the deflectometric
sensor and results in red for the plenoptic sensor.

5.1 Simulation results – deflectometry

We assume that the overall shape of the reflecting surface is
flat. Thus we can apply Eq. (36) to estimate the spatial fre-
quency on the sensor kcam from the frequency on the screen
kscr.

The first result, depicted in Fig. 12, shows the uncertainty
of the phase noise model using Eq. (27) for different surface
gloss parameters. It can be seen that the uncertainty increases
rapidly with the pattern frequency when the surface is not
perfectly specularly reflecting.

In contrast, higher spatial frequencies (and thereby shorter
period lengths) in Eq. (23) decrease the uncertainty in esti-
mating the screen position xscr. These two opposite effects
lead to a unique pattern frequency, where the resulting mea-
surement uncertainty on the screen reaches a minimum for
some frequency kscropt and a given roughness. As the un-
certainty of the surface slant σα given in Eq. (34) directly
depends on the uncertainty of the screen position, we can
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Figure 13. Deflectometric measurement uncertainty of the surface
normal for several focus distances and surface MTF parameters.

also see these minima in Fig. 13. Here the measurement
uncertainty of the surface normal dependent on the pattern
frequency kcam is shown for different focus distances g as
well as different surface gloss factors c. For focus distances
g < 1 m the image of the screen is defocused and the Bessel
function from Eq. (16) starts to appear. Please note that the
curves in Fig. 13 with g ≤ 0.8 m are subject to aliasing arti-
facts.

It can be seen that kscropt changes with the surface proper-
ties. With higher surface gloss c and the focus on the screen
(g→ 1 m), higher frequencies can still be resolved on the
sensor, and hence kscropt increases and leads to lower mea-
surement uncertainties. Of course, the camera sensor still
limits the highest resolvable frequency on the sensor:

kcam(kscropt )
!
<

1
21c

. (55)

In Fig 14 we show the measurement uncertainty from
Eq. (35) in z direction next to the results of the plenoptic
sensor. Note the triangle model shown in Fig. 7 that con-
nects the uncertainties of surface height σz, position on the
surface σx and angle of the reflected ray σα . Since both un-
certainties σx and σα are very small, the final measurement
uncertainty σz is very small as well (for plane surface mirrors
in the nanometer range). Also note that the surface height is
not measured directly, so σz is only valid for local changes.
The whole surface can be reconstructed by integration over
the surface gradients, but along with the integration, the un-
certainties sum up to larger errors for a global surface shape.
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Figure 14. Measurement uncertainty of plenoptic and deflectomet-
ric sensor for several surface MTF parameters. The pattern is shown
on the surface and also shown on the screen. Both pattern frequen-
cies are given relative to the camera sensor image frequencies kcam.

5.2 Simulation results – plenoptic camera

Similar to Sect. 5.1 we performed different simulations based
on the measurement uncertainty model defined in Sect. 4.1.
We chose a plenoptic sensor similar to the Raytrix R5 camera
(see Table 1).

In Table 1 the measurement range 1s defines the range
around the surface distance s for which measurements can
be obtained. To obtain depth measurements from a plenop-
tic camera it has to be assured that a point is visible in at
least two micro images. This is the case for virtual depth
v ≥ vmin = 2.0 (v := bL0−bL

B
; see Fig. 9) and thus for bL ≥

bLmin = bL0+ 2.0B for a hexagonally arranged MLA (see
Perwaß and Wietzke, 2012). Hence, bL0 is chosen such that
s+1s results in an image distance bL ≥ bLmin. Therefore,
for all distances larger than s+1s no depth measurements
can be obtained. By minimizing the measurement range 1s
one is able to improve the measurement accuracy.

5.2.1 Focal length

Figure 15 shows simulation results for a perfect Lambertian
surface. Here we varied the focal length f while all other pa-
rameters are as given in Table 1. As can be seen from the fig-
ure, the depth uncertainty of the camera can be significantly
improved by increasing the focal length. However, there ex-
ists an optimum focal length around f = 50 mm for which
the best measurement uncertainty is obtained. The reason for
that is the reciprocal behavior between image distance bL and
object distance s, which is dependent on the focal length f .
Hence, as long as the distance s is much larger than the focal
length f the depth uncertainty can be improved by increas-
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Figure 15. Measurement uncertainty of the plenoptic sensor for
different main lens focal lengths f and a perfect diffusely reflecting
surface.

ing the focal length. However, at approximately s ≈ 10·f the
best accuracy is obtained, as can be seen from the figure.

For the following simulations, which model the effect of
motion blur as well as different surface roughnesses, the fo-
cal length was set to f = 16 mm.

5.3 Simulation results – motion blur

Figure 16 shows the effect of different amounts of camera vi-
bration for both systems. The resulting motion blur behaves
as a low-pass filter which is modeled as given in Sect. 2.4.
Due to the implicit low-pass filtering the optimal pattern is
shifted to a lower frequency. Thus, the introduced blur sig-
nificantly degrades the measurement results.

5.4 Simulation results – surface roughness

While increasing surface roughness has a negative effect on
the deflectometric measurement results, due to less specular
reflectance, it has the opposite effect on the plenoptic mea-
surements. For the plenoptic setup best results are expected at
a completely Lambertian reflectance (surface gloss c→ 0).
Noise is introduced by the specular reflection component.
Figure 14 shows the expected measurement results for sur-
faces with different specularity.

Finally, in Fig. 17 we show the measurement uncertainty
as a function of the surface gloss c and the focus distance g,
assuming (for deflectometry) that the optimal pattern kscr =

kscropt is chosen for each case.
For high-gloss surfaces the deflectometric sensor is most

accurate with the camera focused on the screen. For low-
gloss surfaces it is preferable to focus on the surface and use
patterns with low spatial frequencies.
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Figure 16. Measurement uncertainty of plenoptic and deflectomet-
ric sensor with motion blur σmot. The pattern is shown on the sur-
face and also on the screen. Both pattern frequencies are given rel-
ative to the camera sensor kcam.
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Figure 17. Measurement uncertainty of surface height σz for a
screen showing an optimal pattern with fringe frequency kscropt for
low- to high-gloss surfaces c and a focus on surface g = 0.5 m to a
focus on screen g = 1.0 m in comparison with the plenoptic mea-
surement uncertainty σs.

6 Experiments

In this paper we present quite complex and complete math-
ematical models for the measurement process of a deflecto-
metric and a plenoptic sensor system, although for such com-
plex models it is almost impossible to validate them entirely.
Hence, we validate our models on the basis of only two dis-
tinct setups: one for deflectometry and one for plenoptic.

For both measurement systems we use the same configu-
rations as given in Table 1. However, one cannot guarantee
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Figure 18. Case of a thermometer used to validate the proposed
sensor models. The case consists of different surfaces with different
reflectance properties.

that all parameters match exactly, due to manufacturing tol-
erances as well as manual adjustments.

For both sensor systems we obtain measurements based
on the case of a thermometer that consists of surfaces with
different reflectance properties. This case is shown in Fig. 18.

Since for the plenoptic camera we cannot influence the
contrast of the surface pattern on the case, we performed a
second experiment, in which we generated a fringe pattern
on a screen and recorded this pattern with the plenoptic cam-
era. Here, we measured the measurement uncertainty for dif-
ferent fringe frequencies. This setup is shown in Fig. 24.

6.1 Experimental results – deflectometry

We used the deflectometric sensor shown in Fig. 19 to vali-
date the measurement uncertainty of the surface slant σα .

The measurements of the thermometer surface were taken
using 24 different pattern frequencies in the range kcam =

0.127–32.7 mm−1 with a logarithmic step size and under
dark and bright illumination conditions. For dark illumina-
tion conditions there is no ambient light, apart from stray
light emitted by the screen. For bright conditions there is ad-
ditional light from fluorescent ceiling lamps. Fringe modula-
tion γcam was obtained using the captured images under both
illumination conditions. Figure 20 shows the fringe modula-
tion for one low and one high pattern frequency.

The red boxes mark areas on the surface with different re-
flection properties: case and display. Measurements are taken
per pixel and then averaged over these two areas. On the one
hand, we calculated a spline interpolation γcam(kcam) from
the fringe modulation measurements, as shown in Fig. 21.
Using this continuous function of γcam(kcam) and the sen-

Figure 19. Setup used to measure the measurement uncertainty of
the deflectometric sensor for different frequencies of the fringe pat-
tern on the surface.
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Figure 20. Measurements of γcam for different pattern frequencies
under dark conditions.

sor model we are able to predict a continuous function for
σα(kcam).

On the other hand, we estimated σ̂φ for each pattern fre-
quency from the standard deviation over nine phase measure-
ments. Two phase measurements are shown in Fig. 22.

Hence, using Eq. (34), we calculated the standard devia-
tion of the surface slant σ̂α and compared it to the predicted
measurement uncertainty as shown in Fig. 23.

The predicted uncertainties for σα slightly underestimate
the measurement standard deviation, especially for the sur-
face case. This may be caused by inaccurate measurements
or interpolation of γcam. At kcam ≈ 1e−3 mm−1 the measure-
ment noise is dropping, because the standard deviation of the
phase σ̂φ is limited to 2π , while the frequency in Eq. (23)
is increasing. Apart from this, the model approximates the
uncertainty of the display surface slant very well.
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Figure 21. Measurements of the surface MTF (points) and extrap-
olated data (lines) for two areas on the surface (display and case)
and two illumination conditions (dark and bright surrounding).
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Figure 22. Measurements of φ for different pattern frequencies un-
der dark conditions. Measurement noise increases with the pattern
frequency, depending on the surface reflectance.

6.2 Experimental results – plenoptic camera

Using the setup which is shown in Fig. 24 we recorded sets of
images at different fringe frequencies. We recorded images at
10 different frequencies starting at a screen frequency kscr =

e−3pixel−1 up to kscr = e−1pixel−1 with a logarithmic step
size. For each frequency we recorded 20 images, which we
used to calculate the measurement statistics empirically. To
obtain the frequencies kcam of the fringe pattern in the camera
image we calculated the discrete Fourier transform (DFT) of
a single image and detected the peak of the first harmonic.
This way a scaling factor from kscr to kcam is obtained.

Figure 25 shows the mean empirical standard deviation σ̂s
of the measured distance s for a pixel in the depth map. Dif-
ferent than expected, we obtain a very low standard devia-
tion for the smaller frequency. Furthermore, for the highest
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Figure 23. Comparison of the predicted measurement uncertainty
(lines) and standard deviation (points) of σα using the deflectomet-
ric measurement model.

Figure 24. Setup used to measure the measurement uncertainty of
the plenoptic camera for different frequencies of the fringe pattern
on the surface.

frequency the standard deviation seems to increase slightly.
However, both effects are plausible. For low frequencies, the
gradient in the image is just not high enough to obtain re-
liable depth estimates, and hence no measurements at all or
only a few measurements are obtained. Thus, too few mea-
surements do not allow us to calculate reliable statistics. Due
to the periodic pattern, for high frequencies one obtains am-
biguous stereo matches in neighboring micro images. Hence,
the depth estimation has a higher number of outliers.

However, the standard deviation σ̂s behaves similarly to
that predicted by the presented model, as shown in Fig. 15.
Due to the fact that we have now accurate MTF for the screen
used in this experiment and the ambient light can only be
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Figure 25. Measurement uncertainty of the plenoptic sensor for
different main lens focal lengths f and a perfect diffusely reflecting
surface.

Figure 26. Case recorded by the plenoptic camera. Intensity (a) im-
age and depth map (b) calculated from the recordings of the plenop-
tic camera.

influenced to some degree, we cannot validate the model on
a more quantitative basis.

Figure 26 shows the reconstructed intensity image of the
case recorded by the plenoptic camera. Here, one can still
slightly see the borders of the micro images, which are a little
bit darker than the center.

In contrast to the deflectometric setup, we are not able to
validate our model based on the recordings of this case, since
we are not able to influence the pattern on the surface of the
case. However, we still measured the empirical standard de-
viation for two different positions on the case. Here, the mean
standard deviation is calculated based on a set of 40 images
for all valid points seen in Fig. 26b. We used all valid points

on the display and only those valid points on the case around
the “Min/Max” inscription.

For the display we measured a mean standard deviation of
8.8 mm and for the inscription a mean standard deviation of
12.8 mm. Intuitively one would expect to obtain a higher un-
certainty for the display than for the inscription on the case.
However, the depth estimation is already filtering out uncer-
tain estimates, which leads to a sparser depth map on the
display. This sparsity must also be taken into account when
rating the results. However, as can be seen from deflectome-
try, both the case and its display are not perfect Lambertian
surfaces. Hence, the obtained accuracy conforms quite well
to the simulations shown in Fig. 17.

7 Conclusions

In this paper we proposed two models to predict the measure-
ment uncertainty of a deflectometric and a plenoptic sensor.
Based on our introduced models, we have shown that, for
a given measurement setup, there exists an optimum fringe
pattern that results in the lowest measurement uncertainty. In
case of the deflectometric sensor, the achieved height mea-
surement uncertainty ranges between 1 and 100 nm if the sur-
face is at least partially specular. In contrast the measurement
uncertainty of the plenoptic sensor on a perfect diffusely re-
flecting and textured surface can be as low as several mi-
crometers, depending on the measurement setup.

While the deflectometric sensor has much lower uncer-
tainty for surface changes (3 orders of magnitude for par-
tially specular surfaces), it measures surface normals instead
of distances, which have to be integrated to obtain the surface
height. The plenoptic measurement could help to regularize
this integration by providing a relatively rough but robust dis-
tance measure.

While the simulation shows plausible results for the pro-
posed models, we furthermore were able to validate the mod-
els exemplarily by real measurements.
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