

Industry Supported Improved Design of DEMO BoP for HCPB BB Concept with Energy Storage System (ID #O3C.5)

E. Bubelis, W. Hering, S. Perez-Martin (KIT)

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Outline

- **o** Eurofusion at KIT
- **Heat sources data for DEMO BoP**
- DEMO HCPB BB with FW cooled in series with BZ & Plant configuration with IHTS/ESS
- **o** Preliminary sizing of components and cost estimates
- Conclusions
- o Acknowledgments

Eurofusion at KIT

- The KIT fusion work is well integrated within the German Helmholtz Programme Nuclear Fusion and within the European Fusion Programme (EUROfusion).
- Within EUROfusion, KIT is contributing to 18 out of 36 Work Packages, mostly within the Power Plant Physics and Technology (PPPT) section.
- In the framework of the EUROfusion PPPT, the Working Package Breeding Blanket (WPBB) aims at investigating 4 different Breeding Blanket (BB) concepts for a EU Demonstration Fusion Reactor (DEMO).
- One of these concepts is the Helium Cooled Pebble Bed (HCPB) BB, which is based on the use of pebbles of lithiated ternary compounds and Be or beryllides as tritium breeder and multiplier materials, respectively, EUROFER97 as structural steel and He as coolant.
- ➢ KIT experts are working on the design of DEMO BoP for the HCPB BB option.
- The task of Balance of Plant (BoP) for DEMO is to utilize heat from different internal sources, such as Breeding Blanket (BB), Divertor (DIV) and Vacuum Vessel (VV) and to convert it into electricity in an optimum way so as to fulfill the objective of demonstrating fusion electricity generation in a Demonstration Fusion Power Reactor (DEMO) around the middle of the century.

Heat sources data for DEMO BoP

	HTF Operation Reference						Heating										
						Fusion		1	Energy demand	1			I	Energy demand	1		Energy demand
System			Fluid	time	type	Power,		Ther	nal per IB seg	ment,		Thermal per OB segment,					Thermal,
						MW	MW						MW			MW	
BB	HCPB						RP IB FW	NH IB FW	HF IB FW	IB FW	IB BZ	RP OB FW	NH OB FW	HF OB FW	OB FW	OB BZ	Total IB + OB
Objective(s)	TBR =	1.205	Helium	Pulse	stationary	2037	2.8	2.0	0.9	5.7	10.6	3.9	3.2	1.7	8.8	19.2	2101.7
t from breeder blar	HF BZ =	0.08		Dwell	stationary					0.057	0.106				0.088	0.192	21.017
										IB FW	IB BZ				OB FW	OB BZ	Total IB + OB
			Purge Gas	Pulse	stationary												
				Dwell	stationary												

H		HTF	Ope	ration		Coolant te	mperatures	Coolant pressure	Segmen	t Pres	ssure drop		Coolant pressure Mass flow rate			ass flow rate				
System	System		Fluid time type		type	Ti °	n, C	Tout, °C	p_inlet, MPa	Δр, МРа		p_outlet, MPa			G per segment, kg/s		G, kg/s			
BB	HCPB					IB FW	IB BZ	OB FW OB BZ		IB FW IB I	SZ (OB FW OB BZ	IB FW	IB BZ	OB FW	OB BZ	IB FW	IB BZ	OB FW OB BZ	Total
Objective(s)	TBR =	1.205	Helium	Pulse	stationary	30	00	500	8	0.214		0.174	7.7	86	7.8	26	16	i.4	26.8	2038.6
t from breeder blan	HF BZ =	0.08		Dwell	stationary				8											
						IB FW	IB BZ	OB FW OB BZ		IB FW IB I	SZ (OB FW OB BZ	IB FW	IB BZ	OB FW	OB BZ	IB FW	IB BZ	OB FW OB BZ	Total
			Purge Gas	Pulse	stationary	4	50	450	0.2	0.0039		0.0065	0.19	61	0.1	935	0.1	.65	0.331	0.497
				Dwell	stationary				0.2											

			HTF	Operation	Operation	Heating	Coolant ter	mperatures	Coolant	pressure	Segment Pressure drop	Mass flow rate
System	Objective(s)		Fluid	time Pulse/Dwell	type	Energy demand Thermal [MW]	Tin [°C]	Tout [°C]	p_in [MPa]	p_out [MPa]	∆p [MPa]	G [kg/s]
	Heat from Divertor	PFU	water	Pulse	stationary	136	130	136.0	5	3.9	1.1	5326
DIV		Option 2		Dwell	stationary	1.42	133	133	5	3.9		5326
DIV		Cassette	water	Pulse	stationary	115.2	180	210	3.5	3.4	0.1	861
				Dwell	stationary	1.07	195	195	3.5	3.4		861

		HTF	Operation	Operation	Reference	Nuclear Heating	Coolant ter	nperatures	Coolant p	ressures	Segment Pressure drop	Mass flow rate
					Fusion	Energy demand						
			time		Power,	The rmal,	Tin,	Tout,	p_in,	p_out,	Δр,	G,
System	Objective(s)	Fluid	Pulse/Dwell	type	MW	MW	°C	°C	MPa	MPa	MPa	kg/s
VV	Heat from vacuum vessel	water	Pulse	stationary		86	190	200	3.15	3.1		1928
			Dwell	stationary		1	195	195	3.15	3.1		1928

DEMO HCPB BB with FW cooled in series with BZ & Plant configuration with IHTS/ESS (~91% – pulse time – 2h)

arlsruhe Institute of Technolog

DEMO HCPB BB with FW cooled in series with BZ & Plant configuration with IHTS/ESS (~103% – dwell time – 10min)

HCPB Tube&shell IHX main data – 2017 Base Case								
Parameter	INBOARD	OUTBOARD						
Thermal Power [MW]	208.05	265.80						
T _{in} /T _{out} Helium [°C]	500/287.66	500/289.31						
T _{in} /T _{out} Molten Salt [°C]	270/465	270/465						
Tubes active length (per pass) [m]	12.19	11.61						
Tube number (per pass) [-]	5801	7426						
Shell diameter [m]	3.50	3.94						
Ext. heat transfer surface $[m^2]$	8464.46	10316.49						
Helium Volume [m ³]	49.48	61.32						
Tube external diameter [mm]	19.05	19.05						
Helium pressure drop [bar]	0.88	0.85						
Molten Salt pressure drop [bar]	1.05	1.03						

Simulations by I. Moscato (UNIPA)

3 PHTS IB HXs and 6 PHTS OB HXs are foreseen to be used in the current DEMO BoP conceptual design for HCPB BB option (18 sectors). *Ref: 2MGE9F*

7

Each He blower (circulator) shown in the DEMO BoP conceptual design for HCPB BB option (18 sectors), in reality will be represented by two He compressors of 8MW power each, connected serially with each other.

The reserved place for 2 He blowers with the respective frequency inverters should be 17.5 m long and 8 m wide, also occupying 3 m space in the height.

Each TM weights 14 tons and costs 16M Euro; each FI (ACS 5000) weights ~9 tons and costs ~ 1M Euro.

(INR)

Institute for Neutron Physics and Reactor Technology (INR)

TH Design					
PHTS (Primary)	Tube	Side			
PCS (Secondary)	Shell Side				
Tube material	Austeni c steel SA-688 TP304	Austenic steel SA-688 TP304			
Tube dimensional data (normalized)	1 1/4 in BWG 18	1 1/4 in BW G 18			
Outer diameter (mm)	31,75	31,75			
Thi ckness (mm)	1,2446	1,2446			
Tube pitch size (mm)	39,6875	39,6875			
Baffle spacing (m)	1,2	1,2			
Pitch-Tube layout	Square	Square			
Number of tube passes	1	1			
Number of shell passes	1	1			
Number of tubes	1091	1200			
Heat transfer area (m2)	705,75	718,53			
Length (m)	6,49	6			
Shell diameter (m)	1,56	1,64			

	•					
TH Design						
PHTS (Primary)	Т	ube Si de				
PCS (Secondary)	Shell Side					
Tube material	SA 213 TP 304	SA 213 TP 304				
Tube dimensional data (normalized)	1/2 in BWG 17	1/2 in BWG 17				
Outer di ameter (mm)	15,875	15,875				
Thickness (mm)	1,4732	1,4732				
Tube pitch size (mm)	27,78125	27,78125				
Baffle spacing (m)	1,2	1,2				
Pitch-Tube layout	square	square				
Number of tube passes	2	2				
Number of shell passes	2	2				
Number of tubes	2511	2762				
Heattransfer area (m2)	3023,72	3096,52				
Length (m)	12,07	11,24				
Shell diameter (m)	2,34	2,46				

DIV-PFU HX design

DIV-Cas HX design

M. J. Montes Pita (UNED) group performed HXs simulations and have defined HXs characteristics and design. Pumps preliminary design parameters were also defined. *Ref: 2MSJRU*

VV PHTS HX design

#	HEX Tubes dimensions	Unit	Value
1	Material		INCONEL 600
2	Internal diameter	т	0.014096
3	Thickness	m	0.00089
4	External diameter	m	0.015876
5	Tube internal flow area	m^2	1.56E-4
6	Relative wall roughness		2.838E-4

VV PHTS coolant pump parameters

#	Description	Unit	Value
1	Total pressure drops per loop	kPa	106.75
2	Pump efficiency		0.78
3	Max. pressure drops in VV	kPa	50
4	Total pumping power per system	kW	1227.77
5	Total El. Motor Power per system	kW	1574.06

#	HEX features	Unit	Value
1	Tubes number		1459
2	Total tubes flow area	m^2	0.2277
3	Diameter shell	m	0.867
4	Shell flow area	m^2	0.301
5	Tube thermal length	m	5.7296
6	HEX surface	m^2	416.939
7	PHTS water velocity	m/s	4.89
8	PCS water velocity	m/s	1.185
9	HEX tubes DP	kPa	2.19E+2
10	HEX shell DP	kPa	25.9

A. Del Nevo (ENEA) group performed HX simulations and have defined HX characteristics and design. Pumps preliminary design parameters were also defined. *Ref: 2MV6DV*

Two-tank thermal storage system was proposed by Kraftanlagen Heidelberg (KAH) from the available information of Concentrated Solar Power (CSP) plants as follows:

Thermal Storage System						
Heat transfer fluid	Molten Hitec salt					
Total mass of Hitec XL salt per tank	5040000 kg					
Tank nominal volume per tank	3000 m³					
Tank heat storage capacity	426 MWht					
Size per tank	Diameter: 23.8 m; Height: 6.8 m					
Footprint of thermal storage system	Approx. 2550 m ²					

Currently there is no commercial offer for a thermal storage system available.

Costs for such a Thermal Storage system were estimated to be ~12.66M Euro, plus the costs for the HITEC salt, which are in the order of ~3.92M Euro.

Turbogenerator specification was provided by Siemens Power and Gas Division.

Turbogenerato	r (PCS ST)
Live steam pressure	130 bar(abs)
Live steam flow rate	842 kg/s
Live steam temperature	447 °C
Max. PCS Output	$\approx 1009 MW$
Turbogenerator weight	Approx. 1285000 kg
Turbine manufacturer	Siemens
Turbine type	SST5-6000: I50 / 6x12.5m ²
No. of turbine stages	1 IP turbine stage; 3 LP turbine stages
Turbine rated speed	3000 rpm
Electrical generator manufacturer	Siemens
Electrical generator type	SGen5-3000W
Electrical generator rating	965 MVA
Condenser cooling water quantity	35184 kg/s
Condenser cooling water inlet temperature	20 °C
Condenser cooling water outlet temperature	29.5 °C
Turbogenerator space reservation	L=52m;H=24m;W=19m

The DEMO BoP turbogenerator consists of the steam turbine (PCS ST) together with a condenser, including condensate drain, two steam re-heaters and the electrical generator.

Deaerator specification was provided by our industrial partner KAH.

Spray Type Deaerator				
Operation pressure	4.25 bar(abs)			
Feed water outlet mass flow	1069 kg/s			
Max. PCS Output	$\approx 1009 MW$			
Deaerator gross volume	415 m³			
Deaerator size	Diameter: 4 m; Length: 35 m			
Total weight	Approx. 152000 kg			
Performance	Approx. 7 ppb (oxygen)			
Space reservation	L=40m;H=6m;W=5m			

Reference deaerator design, Company Stork B.V.

PCS Pump 1 (Main FW pump) specification was provided by our industrial partner KAH.

Feed Water Pump Aggregate (PCS pump 1)			
Pump manufacturer	KSB		
Pump drive type	Electrical drive		
Main pump type	CHTD 8/3		
Booster pump type	YNK 350-620		
Gear box power rating	13 MW		
Motor rating	14 MW		
Space reservation	L=16m;H=3m;W=3.4m		

Each feedwater pump aggregate consists of one booster pump, gearbox, electrical motor and main pump connected in series.

PCS Pump 2 specification should be very close to the specification of PCS Pump 1.

(INR)

PCS FW Pump (condensate extraction pump) specification was provided by our industrial partner KAH.

PCS circulation Pump (PCS FW pump)				
Pump manufacturer	KSB			
Pump drive type	Electrical drive			
Pump type	YNK 500/800			
Motor rating	2 MW			
Space reservation	L=7m;H=3m;W=2.9m			

Space requirements and costs (1/2):

DEMO BOP Component	Design dimensions, m		Space reservation, m			Waisht t	Costs*,	
	Length	Width/Diam	Height	Length	Width/Diam	Height	weight, t	M Euro
PHTS IB HX	12.2	3.5						2.4
PHTS OB HX	11.7	4						3
PHTS IB He blower + FI				$17.5^{(x2)}$	8 ^(x2)	$3^{(x2)}$	23	17
PHTS OB He blower + FI				$17.5^{(x2)}$	8 ^(x2)	$3^{(x2)}$	23	17
PCS DIV1 HX	6.5	1.7						0.4
PCS DIV1 Pump								
PCS DIV2 HX	12.1	2.5						2.8
PCS DIV2 Pump								
PCS VV HX	10.8	1.5						0.7
PCS VV Pump								
IHTS Hot Tank		23.8	6.8				_	
IHTS Cold Tank		23.8	6.8	71 /	25 7	Q		16.6
IHTS Pump 1				/1.4	55.7	0		
IHTS Pump 2								
PCS FW1 HX	14.4	2.5						1.1
PCS FW2 HX	4	1.7						0.2
PCS FW3 HX	9.8	2		21	3.5	4	43.9	2.1
PCS FW4 HX	8.3	3.2						3.1

Space requirements and costs (2/2):

DEMO BOP Component	Design dimensions, m		Space reservation, m			Waight t	Costs*,		
	Length	Width/Diam	Height	Length	Width/Diam	Height	weight, t	M Euro	
PCS SG1 PH	14.8	1.5						0.9	
PCS SG1	11.7	3.6						9.0	
PCS SG1 SH	3.9	1.4						0.4	
PCS SG2 PH	25.8	2.9						6.9	
PCS SG2	8.9	3.5						7.1	
PCS SG2 SH	23.1	2.4						6.5	
DRAIN									
PCS SR1 HX									
PCS SR2 HX				50	10	24	1795	00.7	
PCS ST				52	19	24	1285	90.7	
PCS GENERATOR									
PCS CONDENSER	23	8.8							
PCS Pump 1				16	3.4	3	-		
PCS Pump 2				16	3.4	3	-	7.6	
PCS FW Pump				7	2.9	3	-		
DEAERATOR	35	4		40	5	6	152	10.4	

* Costs for pipework, valves, I&C, relay station, cooling towers, machine hall building and auxiliaries are not considered

Conclusions

- A short overview of the current (as of February 2018) DEMO BoP design, for HCPB BB option (18 sectors design), being developed and improved at KIT was presented.
- The development process of the DEMO BoP model was supported by our industrial partners: Siemens Power and Gas Division and Kraftanlagen Heidelberg (KAH).
- Presented were key components of the PCS, including preliminary sizing and cost estimates.
- However, the industrial components for IHTS/ESS and PHTS are still to be specified. Currently foreseen IHTS/ESS and PHTS component designs are based primarily on the design calculations performed by the project partners (UNIPA, UNED & ENEA).

Acknowledgments

This work has been carried out within the framework of the EUROfusion Consortium (WPBOP) and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No. 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

