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Abstract

The flexibility of distributed energy resources (DERs) can be modeled in various ways.
Each model that can be used for creating feasible load profiles of a DER represents a
potential model for the flexibility of that particular DER. Based on previous work, this
paper presents generalized patterns for exploiting such models. Subsequently, the idea
of using artificial neural networks in such patterns is evaluated. We studied different
types and topologies of ANNs for the presented realization patterns and multiple
device configurations, achieving a remarkably precise representation of the given
devices in most of the cases. Overall, there was no single best ANN topology. Instead, a
suitable individual topology had to be found for every pattern and device configuration.
In addition to the best performing ANNs for each pattern and configuration that is
presented in this paper all data from our experiments is published online. The paper is
concluded with an evaluation of a classification based pattern using data of a real
combined heat and power plant in a smart building.

Keywords: Smart Grid, Modeling, Flexibility, Distributed energy resources, Demand
side management, Machine learning

Introduction

Traditionally, electricity has almost exclusively been produced in large power plants
connected to electricity transmission grids. The growing share of distributed energy
resources (DERs) connected to distribution grids makes reliable grid operation increas-
ingly challenging. Since solar and wind energy are volatile in nature, generation by DERs
that use these energy sources is intermittent. To limit the extent of necessary grid and
energy storage expansion, the exploitation of the already existing flexibility of DERs like
battery energy storage systems (BESSs) and combined heat and power (CHP) plants is
essential. Aside from conventional measures of demand response (DR), newer approaches
to achieve a comprehensive demand side management (DSM) (Palensky and Dietrich
2011) have been proposed, including hierarchical (Molderink 2011; Anders et al. 2014;
Toersche et al. 2015), distributed (Callaway and Hiskens 2011; Hinrichs and Sonnenschein
2017), decentralized (Bremer and Lehnhoff 2017; Rohbogner et al. 2014) and cellular
systems (Mauser et al. 2017b; Waffenschmidt 2017). A common necessity for all these
approaches is the need to at least model and often communicate flexibility.
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The flexibility of a particular DER or an aggregate of multiple DERs can be described as
the set of all feasible load profiles for a given time frame. Feasible in the context of DER
load profiles refers to load profiles that can be realized based on the current state while
providing all necessary services (Mauser et al. 2017a). In this paper we pick up the idea of
representing and communicating flexibility with artificial neural networks (ANNs) pre-
sented in (Forderer et al. 2018): A single ANN implicitly learns a flexibility model for one
or multiple aggregated DERs using generated or measured load profiles and state data
relating to the corresponding DERs as training data. It is important to note that a single
(measured) load profile does generally give only few clues about the available flexibility. In
order to derive an adequate description of the flexibility in a given state, a sufficient num-
ber of measured load profiles with comparable initial states is required. Since the ANNs
can be trained to consider these initial states, they should be able to deduce the actual
flexibility. The ANNs are trained locally and then transmitted to third parties to offer
flexibility information and act as surrogate models. Depending on the chosen training pat-
tern, such an ANN could, e.g., evaluate if a given load profile is feasible for a particular
DER. This approach enables the abstraction and communication of distributed flexibility
regardless of the type, configurations and sizes of the considered DERs. Since a trained
ANN may factor in the current state of the corresponding DERSs, it is sufficient to only
communicate states rather than a complete model once an ANN is known.

This paper aspires to evaluate the idea of using ANNSs as surrogate models for flexibility
by testing the effectiveness of different ANN types and topologies in conjunction with
the patterns presented in (Forderer et al. 2018). By explaining the particularly good or
bad results achieved for a given pattern and DER configuration, we aid future research
in designing better ANNs that represent energy flexibility. An additional evaluation is
conducted using real-world CHP data for one of these patterns.

Related work

As mentioned before, this paper is based on the ideas outlined in (Forderer et al. 2018).
Due to the variety of possible applications for the concept and patterns, the presented
results are related to a multitude of previous publications. In this section we give a brief
overview of findings motivating the concept and point out important distinctions from
other related work.

Regardless of using direct or indirect mechanisms for controlling DERs (Mauser et al.
2017a), it is necessary to employ some sort of model to determine flexibility. For exam-
ple, customers may respond diversely to time-of-use tariffs (Faruqui and George 2005;
Faruqui and Sergici 2010) and even these responses are heavily influenced by local
parameters (Jargstorf et al. 2015). Hence detailed models and information are needed.

Recently, machine learning has been shown to be beneficial in energy applications like
power system monitoring (Malbasa et al. 2017) and non-intrusive load monitoring (Batra
et al. 2014). Artificial neural networks, in particular, have been used for diverse tasks
including forecasting of consumption (Rodrigues et al. 2014), solar power (Abuella and
Chowdhury 2015), prices (Severini et al. 2015), as well as estimating the duration a heating
device is able to provide a requested change in power (MacDougall et al. 2016). One of the
most recent applications of ANNS is the automated operation of DERs (Santo et al. 2018).
Those applications have in common that the ANN is trained to perform a certain task in
the local energy management of a DER, building, facility, virtual power plant, or the like.
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In contrast to these, in the concept presented in (Forderer et al. 2018) and evaluated in
this paper the ANN is generated locally but used externally by a third party.

Regarding the concept and the patterns evaluated in this paper, support vector data
description (SVDD) (Bremer et al. 2011; Bremer and Sonnenschein 2013; NiefSe et al.
2016; Bremer and Lehnhoff 2017) and the cascade classification model (Neugebauer et
al. 2015; Neugebauer et al. 2016; Neugebauer et al. 2017) are the most relevant related
approaches. SVDD can be used to decide whether a load profile is feasible for a particular
DER or an aggregate of DERs or not. Additionally, SVDD (in theory) allows for repair-
ing infeasible load profiles. An important distinction to the models used in this paper is
that the SVDD model must be generated each time the flexibility is exchanged. The cas-
cade classification approach is an example for an application of the classification pattern
discussed in the next section.

Approach

Someone who seeks to generate suitable signals, i.e. incentives or commands, in order to
influence generation and consumption generally bases their decisions on descriptions of
the available flexibility. These descriptions are given by one or multiple models for the
flexibility provided by DERs. Since flexibility can be seen as a set of feasible load profiles,
the basic function of a model for flexibility is to enable an operator to find suitable profiles.
The set of feasible load profiles is often modeled by specifying the definitive constraints.
However, any other model allowing the generation of feasible load profiles, e.g. a simple
enumeration of load profiles, can pose as a model for the flexibility of DERs.

Realization patterns for modeling flexibility

The patterns outlined in this section are a generalization of the five usage patterns for
ANN-encoded abstracted flexibility presented in (Férderer et al. 2018). We omit pattern
E which allows the optimization and communication of load changes rather than absolute
load profiles, since it is basically an extension of the other patterns. Each pattern corre-
sponds to pattern specific (surrogate) models. Given one of these pattern specific models,
the pattern can be used to generate a set of feasible load profiles. Thereby, the pattern
specific model acts as a model for the flexibility of DERs. In the following, we refer to all
kinds of third parties performing DSM, e.g. electric utilities (Gellings 1985) or dedicated
regional EMSs (Kochanneck et al. 2015), with the term demand side manager (DSMgr).
For simplicity, we use the term building when referring to a provider of flexibility. Never-
theless, the concept is applicable to any kind of energy system, such as a single household,
a multi-family building, a commercial or industrial property, or a virtual power plant
aggregating multiple DERs. Since there are many more possibilities to achieve the goal of
generating feasible load profiles, the list of patterns is not exhaustive.

Pattern A: load profile classification

In the classification pattern the pattern specific model is a classifier. The DSMgr gener-
ates load profiles either randomly or according to a given algorithm and validates them,
i.e., classifies whether the load profiles are likely to be feasible. By memorizing the dis-
covered feasible profiles, a set of feasible load profiles is generated. This set is used for
determining the best load profiles in terms of the DSMgr’s goals and the resulting profiles
are transmitted to the respective building’s EMS.
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Pattern B: price-based load profile forecasting

The price-based forecasting pattern employs a model that forecasts a load profile for a
given arbitrary price signal. By applying the model to various price signals, again, a set of
load profiles is generated. After determining the optimal profiles, the corresponding price
signal is sent to each building.

Pattern C: load profile generation

In the generation pattern, the models are used to generate valid load profiles
from arbitrary representations. An intuitive type of representation is, for example,
a control sequence specifying how a DER operates. By processing the commands
in the control sequence the model can generate a load profile. Another type of
(latent) representation, usually used in Generative Adversarial Networks, is a vec-
tor of random variables. Given a model, the DSMgr creates representations either
randomly or according to an algorithm and generates a feasible load profile from
each representation. In this pattern, like in pattern A, load profiles are selected and
transmitted.

Pattern D: load profile validation and repair

The validation and repair pattern is based on models that allow transforming infeasible
load profiles into feasible profiles. Already feasible profiles either remain unchanged when
the model is applied or are filtered beforehand, e.g. through pattern A. In addition to
allowing the generation of feasible load profiles, the validation and repair pattern can
simplify the directed search for feasible load profiles if the transformed, i.e. repaired, load
profile is similar to the profile given to the model. Again, the target is the identification
and communication of desired load profiles.

Communication
In order to utilize the models for flexibility they need to be available to the DSMgr.
Based on the previous section and again (Forderer et al. 2018), this section discusses the
transmission and general utilization of the models. For this purpose, quantities are dis-
tinguished between parameters and variables. More precisely, parameters are constants
inherent to an energy system and variables reflect the current state of the system. A BESS,
for instance, can be modeled with the parameter ‘storage capacity’ that remains fixed and
the variable ‘state of charge! Regarding the communication, the model and its parameters
only need to be transmitted once. Variables, on the other hand, reflect the current state
of the system and thus have to be updated repeatedly.

In detail, initially and whenever the model and/or parameters are outdated, new models
are generated and parameters are determined by the EMS of the building and transmitted
to the DSMgr’s EMS (see Fig. 1):

1. Generate a model and determine the parameters in the local EMS of the building
according to the particular usage pattern (cf. patterns A to D)

2. Transmit the model and parameters to the DSMgr

3. Store the received information in the EMS of the DSMgr for later usage

The EMS of the DSMgr may already know suitable (predefined) models simplifying the
process to determining only the parameters and transmitting them.
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Fig. 1 Model and parameters representing the flexibility of one or multiple DERs in a building are
communicated to the demand side manager (cf. (Forderer et al. 2018))

Figure 2 depicts the process of generating feasible load profiles in order to determine a
signal for influencing the behavior of the building. Periodically or on demand, the EMS
of the building sends the variables relevant to the applied pattern to the DSMgr’s EMS.
The EMS of the DSMgr then uses the model and parameters it has previously stored, the
pattern dependent variables and additional pattern specific inputs (cf. patterns A to D) to
find the optimal load profile and thereby determine the signal to be sent to the EMS of
the building.

Concept of ANN-encoded flexibility

In this paper we evaluate the concept of ANN-encoded abstracted flexibility presented
in (Forderer et al. 2018). Therefore, the models for applying the patterns are all based
on ANNs. The ANNSs represent one or multiple DERs and act as surrogate models. We
assume that the variables provided by the building contain the current state of the DERs
that are represented by the ANN. The ANN input is then the current state and some
pattern specific data (see above) that needs to be generated by the EMS of the DSMgr.
Table 1 provides a summary of the pattern specific input and output of the ANNs.

Methodology and models

Although the patterns presented in this paper all serve the same purpose, which is to
enable the DSMgr to exploit the flexibility of DERs by deriving load profiles, they are very
different in terms of ANN input and output. Therefore, we have no single source of data
suitable for each pattern. The data used for training, testing, and evaluating the ANNs
is generated using random load profiles, simulation models, and optimization models.
All models are implemented in Python 3.5.2 using the SimPy 3.0.10 simulation frame-
work and Pyomo 5.3 with Gurobi 7.5.2 to solve the mixed integer linear programs (MILPs).
Table 2 provides a summary of how the data for each pattern is generated.

Demand Side Manager
Buidng \,.~~ .. .\ .. . ... rmTmmmmTmTT
9 Pattern dependent Energy Pattern dependent ' Flexibilty '

variables i

" Energy »| Management |uusssvanas U e eeerees »  Model & '
anagement (g System @ rnrnnnnnnninnnn i nnanans s Parameters 1
System Pattern dependent Pattern dependent 1 1
signal output T TTTTTTTT

Fig. 2 Based on regularly transmitted variables, e.g. the state of a DER, the demand side manager generates
and communicates a signal for influencing the buildings demand. The signal is determined using the
models transmitted earlier and the respective patterns (cf. (Forderer et al. 2018))
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Table 1 Summary of the data given to and generated by the ANNs

Pattern  Description ANN Input ANN Output

A Classification Current state, generated load profile Validity of load profile
B Forecasting Current state, generated price signal Expected load profile
C Generation Current state, generated load profile  Expected load profile

representation

D Validation (1) & repair (2) ~ Current state, generated load profile (1) Validity of load profile
(2) Expected load profile

Since the simulation models presented in this section recreate the behavior of actual
DERs and a single invalid action already leads to an infeasible load profile, the infeasible
profiles generated from these models tend to be close to feasible profiles. To create load
profiles that are spread evenly throughout the space of all (feasible and infeasible) load
profiles, we generate truly random profiles by drawing independent random values for
each time slot. The resulting power profiles have a length of 24 h and a resolution of 5 min.
Similarly, all simulation and optimization models generate profiles of the same length and
resolution.

For the evaluation of the concept, we consider a household of four persons in three

different DER equipment configurations:

1. Battery energy storage system (BESS)
2. Combined heat and power plant (CHP plant)
3. Combination of BESS and CHP plant

Each configuration is different in terms of constraints and the complexity of determin-
ing the set of feasible load profiles: While the BESS is allowed to operate freely within the
boundaries of its technical restrictions, the CHP plant’s operation is limited by the tem-
perature limits of the connected hot water tank and the household’s heat demand. Hence,
to determine the flexibility of the CHP plant, it is necessary to infer changes to the temper-
ature of the hot water tank and to determine whether the thermal demand can be satisfied
or not. The third configuration is used to evaluate the aggregation of multiple heteroge-
neous DERs. Electric and thermal demands in winter, summer, and intermediate seasons,
respectively, are determined from the average of 60 simulations of identical households
on a weekday using the CREST Demand Model (McKenna and Thomson 2016). The sea-
sons represent varying consumption patterns and are encoded as three binary variables
in the state vector the ANN receives. More detailed information on parameters is given
in Table 3.

For the evaluation, the model parameters of the DERs are scaled to not exceed £1 kW
and the energy demands as well as the hot water tank capacity are scaled accordingly, i.e.,
divided by 2.75. In practice, this scaling factor (if applied) would be given to the DSMgr

Table 2 Data sources for each pattern

Pattern Data Source

A Simulation Model 12 and random load profiles®
B Optimization with objective (2)

C Simulation Model 2

D Simulation Model 12 and random load profiles®

@Validated through optimization with objective (1) (cf. evaluation of load profile feasibility)
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Table 3 Overview of model parameters

Description Detail

Electrical demand Winter 15.7 kWh/day
Intermediate 13.9 kWh/day
Summer 12.5 kWh/day

Thermal demand Winter 59.9 kWh/day
Intermediate 46.9 kWh/day
Summer 18.6 kWh/day

BESS Power [—2.75,2.75] kW
Usable capacity 2.75 kWh
Efficiency ng 092

CHP Power el. 0 kW or 2.75 kW
Power thermal 0 kW or 6.875 kW

Hot water tank Capacity ~17.45kWh

750 L at 60°-80°C & 20°C environment
Efficiency is border of classes B & C (European Union 2013)

alongside the ANNS. The initial states of charge of the BESS and hot water tank range
from O to 100 % in steps of 10 %. Electricity time-of-use tariffs, which are used in pat-
tern B, divide every day into six time slots starting at 06:00, 12:00, 13:00, 17:00, 19:00,
and 22:00. Ensuring an average price of 30 cents/kWh throughout the day, the price for
every slot is set to either 24, 30, or 36 cents/kWh which leads to 33 possible combinations
per day.

Optimization models

Multiple MILPs are employed to evaluate the feasibility of load profiles, to repair infea-
sible profiles, and to find the profile featuring the lowest cost. Evaluation and repair
are achieved by minimizing the distance to the target load profile. To measure the dis-
tance, we use the Chebyshev distance L, i.e., the maximum absolute difference. The
objective is:

min  mMax |ppraw,k — PFeedink — PTargetkl (1)
PDraw:PFeedln  k

with ppraw,k and preedin x being the (average) power drawn from or fed into the grid during
time slot k. In every slot k, only one of these two non-negative variables is allowed to be
positive. The target power during slot k is given by prargetk € R. The objective can be
linearized by writing the MILP in epigraph form.

In the case of cost optimization, the objective is the minimization of the sum of all
energy costs in a given time horizon:

K
n}}n Z A - (CDraw,k - PDraw,k — CFeedIn,k - PFeedInk + CGask 'pGas,k) . (2)
" k=0
Here, power values are converted into energy by multiplying them with the slot length
A = 5min. Costs for electricity and gas per kWh in slot k are denoted by cppaw« and
CGas,k- Electricity feed-in to the grid is compensated with cpeeqmn k. Gas is neglected for
households without a CHP plant.
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All optimization models have either a CHP plant with a hot water tank, a BESS, or both.
Input parameters are the electrical and thermal demands for either summer, winter, or
the intermediate seasons, the energy tariffs, the initial state of charge (SoC) of the BESS,
and the initial water tank temperature. The optimization variables comprise, aside from
some auxiliary variables, the power supplied by the grid, the power feed-in, the BESS
(dis-)charge power ppy, and binary variables that determine whether the CHP plant is
running or not. When calculating the SoC of the BESS, the efficiency 5 is used as follows:

nB - Pk PBk =0

SoCy11 = SoCy + A - : 3)
w5 PBk s PBAK <0
Heat losses of the hot water tank pyossHwt,k are given by:
0.4 GHwt,k - eEnv
PlLossHwtk = @Hwt - (12 +5.93 + 1) - ———— (4)

40K

using the environmental temperature gy, the hot water tank temperature Oy 4, and
the volume of the tank vyt in liters. The factor aywt is set to 1 and hence the heat
loss at Ok = 60°C is equal to the boundary between the European space heater effi-
ciency classes B and C (European Union 2013). To add further constraints and reduce the
number of feasible CHP load profiles, we assume that the plant has to keep its state of
operation, i.e., being on or off, for at least 15 min which equals the length of 3 time slots.
The BESS, on the contrary, is not restricted by such a constraint.

Simulation models

Aside from generating load profiles based on some criterion of optimality by using one of
the MILPs, two simulation models are employed to explore further feasible and infeasible
load profiles, which are far from being optimal in any sense. In both models, the DERS’
behavior is determined by their internal state, defining how much electricity is consumed
or produced and which actions are valid. Once a DER transitions into an infeasible state,
e.g., by violating a storage restriction or by keeping a state for too short, a load profile is
deemed infeasible. The SoC of the BESS and the thermal losses of the tank are modeled
as given in Egs. 3 and (4). While the BESS may change its operation mode at any time, the
CHP plant has to remain in one mode for at least 15 min. In the simulation, as opposed to
the optimization, mode changes may occur at any time and thus are not restricted to the
beginning of each 5 min time slot.

Simulation model 1: random behavior

In this simulation model, which is used to generate training and evaluation data for the
patterns A and D, the DERs operate on their own by making random operational choices.
To generate feasible load profiles, possible choices may be restricted to those deemed valid
at the current time. However, even though the simulation intends to produce a feasible
profile, due to neglecting the future, situations may arise in which only invalid choices are
left and thus the resulting load profile is infeasible. In order to improve the classification,
we also generate infeasible profiles. Since all decisions are made randomly, simply allow-
ing invalid choices does not necessarily result in an infeasible profile. Overall, a balance
between the probabilities of valid and invalid choices has to be determined to generate
infeasible load profiles that are similar to feasible ones. The simulations of either the BESS
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or the CHP plant lead to clear statements about the feasibility of the resulting load pro-
files. The simulated and aggregated load of the combination of both, on the contrary, may
be incorrectly classified as infeasible. For example, in a simulation run, the BESS could
make the invalid choice of exceeding its capacity of 1kWh by continuously providing
1 kW for more than an hour and thereby invalidate the feasibility of the aggregated profile.
The same aggregate, on the other hand, could also be achieved by simply activating the
CHP plant and thus may still be feasible. We deal with this issue by evaluating all infeasi-
ble schedules of this particular configuration with the MILP introduced above according
to the rules derived later in this section.

Simulation model 2: control-vector-based behavior

The purpose of this simulation model is the generation of load profiles for pattern C. In
this model, the DERs receive a control vector, defining the actions they have to perform in
a certain time slot. Essentially, this input vector is an abstract representation of the result-
ing load profile. Since the overall feasibility can not be guaranteed for an arbitrary control
sequence, either the input has to be classified according to its feasibility or a similar but
feasible and thus repaired sequence has to be found. We repair the input vector by mak-
ing iterative adaptions, changing only elements related to time steps up to the time the
DER state becomes infeasible. For our tests, we studied two different representations:

1. A control sequence determining the operational mode of the DER for one day in
15 min intervals.

2. Six4h time slots in which one mode is activated once for a given time. The
representation is the mode and the associated time for every time slot.

The first representation is very similar to an actual load profile and hence closely related to
pattern D. However, the major difference to pattern D is that, here, the repair is achieved
using a set of simple rules instead of solving an optimization problem. The second rep-
resentation is considered in order to test a more abstract approach. Both representations

are first attempts and there are many other possibilities to represent load profiles.

Evaluation of load profile feasibility

While load profiles found by one of the optimization models are definitely feasible for the
particular household configuration, feasibility is not known for randomly generated load
profiles. Furthermore, a load profile generated by a simulation with multiple DERs may
mistakenly be classified as infeasible. Therefore, these profiles are used as targets and val-
idated by solving the corresponding MILP with the objective given in Eq. 1. Optimally, a
feasible profile would lead to a target function value of zero. Unfortunately, this is usu-
ally not the case. In contrast to the simulation models, the optimization models are able
to change the mode of operation only at the beginning of a time slot, i.e., every 5min.
Additionally, the solver may prematurely stop the optimization once the optimality gap,
i.e., the difference between the best found solution and a lower bound, is below a certain
threshold or a given time limit is exceeded. For this reason, it is very unlikely that the
target profile is matched exactly. To deal with this issue, we define feasibility and infeasi-
bility thresholds for both the objective value z, i.e., the maximum absolute deviation, and
the mean slot-wise absolute difference d between the target and the solution. The exact
values, which are justified below, can be found in Table 4.
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Table 4 Thresholds used in load profile evaluation

Configuration Value Feasible (<) Infeasible (>)
BESS z 89W 89W
d 89W 89W
CHP z 1050 W 1050 W
d 44W 350 W
BESS and CHP z 1139W 1139W
d 133W 439W

z maximum absolute deviation, d: average absolute deviation

Profiles that have values of z and d below the feasibility thresholds are deemed feasi-
ble. If at least one of both values is greater than or equal to the respective infeasibility
threshold, the load profile is guaranteed to be infeasible. Although there might be
indistinguishable load profiles, none occurred in our data.

As opposed to its MILP formulation, the simulated BESS is able to change its mode
multiple times within a single time slot. The target power for this slot, which is passed to
the optimization, is the average power. Since the optimization solver can decide only once
per slot and based on the target power, simply choosing power pp ) equal to the target
POWer Prargerx for a given slot k may not be valid. Based on (3) and since we assumed a
constant efficiency ng < 1, choosing ppx = PTargetk is only problematic when the original
load profile requires charging and discharging within the same time slot. In this case, the
resulting SoC is lower than the average power suggests!. Depending on the original load
profile, the optimized power may have to reproduce the actual SoC by deviating from
the target. With regard to the given model parameters, i.e., a (scaled) BESS with a power
between -1 kW and 1 kW, this deviation is at most:

A 1
—k-<n3-1k\Xf—-1k\X/> ~ 7Wh.
2 nB

This deviation is equal to a 5min load of 84 W. Adding a margin equal to the optimality
gap of 5% and rounding up leads to the threshold of 89 W for z and d (cf. configuration
“BESS” in Table 4).

The CHP plant may be either running and generating a (scaled) electrical power of 1 kW
or idling at 0 kW. In a feasible CHP load profile, the operation mode can only change once
within 3 consecutive slots, i.e., every 15 min. Further restrictions arise from the temper-
ature constraints of the hot water tank. In the worst case, the tank restrictions prevent
setting the correct CHP mode, thereby leading to a deviation of less than 1000 W. Adding
amargin of 5 %, the value of z is set to 1050 W (cf. configuration “CHP” in Table 4). Assum-
ing the deviation happens every time the mode is changed, which is at most in 96 of the
288 slots, the average absolute deviation can not exceed 333 W (% 1000 W - 2%%). Consid-
ering the gap, we end up using a threshold for d of 350 W. The feasibility threshold for the
average absolute deviation is set to 44 W (~ 1050 W - %), which is reached when there
are 12 mode changes with a deviation of 1050 W each. The number of 12 mode changes is
the maximum number of mode changes observed in the simulated load profiles. For the

household configuration with both BESS and CHP all values are added up.



Forderer et al. Energy Informatics 2018, 1(Suppl 1):21 Page 83 of 428

ANN design

For each of the usage patterns described in the approach section, the ANN has to rep-
resent a specific aspect of the abstracted energy flexibility. These aspects are learnt from
examples generated by the models that have been described in the previous sections. We
compare instances of the following classes of artificial neural network topologies by how
well they are able to internalize the characteristics of the specific models:

(FC) Feed-forward neural networks with fully-connected layers are evaluated as a
baseline.

(CNN) Convolutional Neural Networks are evaluated based on the idea that these
networks should detect or generate recurring patterns in the load profile.

(RNN) Finally, we explore Recurrent Neural Networks motivated by the idea that the
network should retrace a load profile step-by-step in temporal order, performing
a time-discrete simulation of the physical system. We use long short-term memory
units (Hochreiter and Schmidhuber 1997) as recurrent units.

Our main goal is to analyze overall practicability of the proposed approach. That is why
we use only a small amount of preferably simple topologies of each class in experiments
and do not systematically tune the hyper-parameters of the neural networks. The input
data, models, logs, and results are tracked with Sacred 0.7.2 and published on GitHub (see
declaration on data availability for a link). We used Keras 2.1.1 with the TensorFlow 1.4.1
backend to model and train our ANNs.

Figure 3 depicts the evaluated neural networks used for the feasibility classification task
and Fig. 4 shows the neural networks used for the load generation/prediction tasks. Each
neural network layer is represented by rounded rectangles and the rectangles represent
the input and output vectors. The first number in the layer is the number of neurons or
units. The abbreviation “FC” stands for fully-connected layer, “ReLU” is a rectangular lin-
ear unit, and “LSTM” is a Long/Short-Term Memory unit (Hochreiter and Schmidhuber
1997). During Up-Sampling, each input vector element is repeated several times.

Training and evaluation methodology

The data sets for each pattern and each combination of DER are pre-generated, shuffled
and split into 80 % used for training and validation and 20 % used for the model evalua-
tion presented in the results section. For the training of the ANNSs, these 80 % are split
again into training and validation sets using a ratio of 90/10. In all cases, we use the
Adam optimizer with the default parameters recommended in (Kingma and Ba 2014).
The best model of each ANN is selected based on the lowest loss value for the validation
data after each epoch. This model is evaluated using the 20 % test data which remains
unused for model training/validation. We train all networks with a batch size of 1024
and up to 5000 epochs. The training is stopped whenever the validation loss does not
improve in the last 100 epochs (early stopping with 100 epochs patience). Regularization
of weights or application of dropout is usually applied to achieve better generalization
(Goodfellow et al. 2016). We only use dropout in our classification networks.

DER state representation
The input of the network is a concatenation of a vector representing the current state
of the DER and the environment, namely the season, as well as a pattern-specific vector.
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In detail, the state consists of a one-hot-encoded season vector (winter, intermediate, or
summer) followed by the state of charge of the CHP plant’s hot water tank and the state
of charge of the BESS. If the modeled setup does not contain a CHP plant or BESS, the

particular SoC is always set to zero.

For the CNNs and RNN:Ss, applying the convolution or the recurrent time steps on the
DER state does not seem plausible. Instead, our classification CNN processes the DER
state in layers after the convolution (e.g., see Fig. 3a). The CNNs for generating load pro-
files process the DER state in the first fully-connected layer (e.g., see Fig. 3b). The RNN

converts the DER state into initial states of the memory units (e.g., see Fig. 3c).

Pattern A: load profile classification

The ANN for load profile classification has to perform a binary classification task based
on a DER state and a 24-h load profile divided into 96 time slots of 15 min. The output of

Page 84 of 428



Forderer et al. Energy Informatics 2018, 1(Suppl 1):21

(96) Load Profile,
(24) Price Profile,
(96) CS Control Vector, or
(12) MT Control Vector

(5) State

N

96x FC, ReLU

64x FC, ReLU
(64)

64x FC, ReLU

(64)

64x FC, ReLU

(64)
96x FC, Linear

(96) Load Profile

a

(96) Load Profile,
(24) Price Profile,
(96) CS Control Vector, or
(12) MT Control Vector

(5) State

96x FC, ReLU (96) Load Profile,
K\ Qt, (24) Price Profile,
(96) - (5) State (96) CS Control Vector, or
48’_‘ 1D-Convolution, (12) MT Control Vector
kernel size 5, padding 2, ReLU /\
(56)( FC, ReL[D (56:( FC, ReLID .
input

(96x48)
initial state (h, c)

Max Pooling, size 2

< 48x 1D-Convolution, 56x LSTM
k

ernel size 3, padding 1, ReLU

a

final state (h, ¢)

Max Pooling, size 2

Up-Sampling,

< 1x 1D-Convolution, ) factor 1, 4, or 8
ke ] size 5 ing 2 L
ernel size 5, padding 2, ReLU input. 96 time slots

1(12) initial state (h, ¢
Up-Sampling, factor 2 i 56x LSTM .
(24)
48x 1D-Convolution, r r® . h®) . state b of time slot ¢
kernel size 3, padding 1, ReLU
1(24)(48) 66)( FC, RCLLD (56x FC, RCLID.A. (96 times)
Up-Sampling, factor 2 l
(48x48) Clx FC, ReLID Gx FC, ReL[D ... (96 times)

< 48x 1D-Convolution,

kernel size 5, p'j((iding 2), R,eLU) (96) Load Profile
96x48

< 1x 1D-Convolution, (¢
k

ernel size 5, padding 2, Linear
©96)

(96) Load Profile

Fig. 4 Neural Network Topologies for Load Profile Prediction / Repair. a FC network, b CNN, € RNN

the network represents the probability (or belief) P(feasible) that the given load profile is
feasible for the DER in the given state. We use a sigmoid activation function in the output
layer and binary cross-entropy as loss function, which is the recommended default for
binary classification tasks (Goodfellow et al. 2016). We classify a load profile as feasible

whenever:

P(feasible) > P(infeasible) < P(feasible) > 0.5.
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The best performing ANN architectures within our experiments for each topology class
are depicted in Fig. 3. To be able to compare the topology classes, the architectures are
designed so that each topology has approximately 15,000 trainable parameters.

Pattern B: price-based load profile forecasting

In this pattern, the ANN predicts the load profile of the DER for a given price profile and
state. We expect the ANNSs to generate a 24 h load profile divided into 15 min time slots.
Therefore, there are 96 output neurons with linear activation. The loss function used for
training is the mean squared error. The expected load profiles are scaled such that the
numerical representations remain within the interval [ —1, 1].

The ANN topologies for patterns B to D are created based on the classification
topologies, where the input data dimensionality is gradually reduced in each layer. The
load profile generating ANNS, also, reduce the input data dimensionality to a cer-
tain degree, but then increase the dimensionality until the desired number of time
slots for the load profile is reached. This way, these topologies resemble autoencoders
(cf. (Goodfellow et al. 2016)). The resulting topologies are shown in Fig. 4. To be able
to compare the three topology classes, the architectures for load prediction are designed
such that the number of trainable parameters is approximately 30,000.

Pattern C: load profile generation
In this pattern, the task of the model is to generate a load profile based on a control vector
for the DER. Again, the load profiles are scaled to not exceed +1kW. The data for this
pattern is generated using the control-vector-based model described above. The control
sequences for the BESS and the CHP plant are divided into 96 slots of 15 min respectively.
In addition, we evaluate a second control vector type, where a day is divided into six time
slots of 4 h. Each slot contains an operation mode and a duration describing how long the
operation mode is active.

Except for the input dimensions of the first layer and an up-sampling factor, the ANN
topologies used for this task are essentially the same as those for pattern B. First experi-
ments have shown that the performance of the RNN benefits from processing the control

vector twice.

Pattern D: load profile repair
In this pattern, the ANN receives an infeasible load profile and has to construct a feasible
one. Feasible profiles would be filtered beforehand using the classification pattern (i.e., an
additional ANN). For our experiments we filtered according to the rules derived earlier
in this paper. Both input and output are 24 h load profiles in time slots of 15 min.

We evaluate the same ANN topologies used in patterns B and C and all load profiles
are scaled to not exceed +1 kW.

Results and evaluation

The practicality of our overall proposed approach depends heavily on the capability of
ANN:Ss to act as surrogate models for the flexibility of DERs. The ANNs must have a high
classification accuracy and a low prediction error. We evaluated several ANNs for the
patterns A, B, C, and D and discuss the results in the following subsections. We also used
the best CHP load profile classifier to validate whether real-world CHP load profiles are
identified as feasible.
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Load profile classification

To measure the performance, we use the Fj-score and accuracy (Goodfellow et al. 2016).
The Fj-score in terms of load profile feasibility is computed from precision, i.e., the share
of positively classified profiles that are really feasible, and recall, i.e., the share of all
feasible profiles that are positively classified, as follows:

F) = 2 - precision - recall | (precision + recall).

The evaluation results for load profile classification (pattern A) are depicted in Fig. 5a.
The proposed models achieve high F;-scores indicating that a neural network can distin-
guish feasible and infeasible load profiles quite well. In our experiments, however, there
was no single best topology for every DER setup. The RNN outperformed the other
topologies for the setup with a BESS and the combination of BESS and CHP, whereas the
CNN classified CHP load profiles slightly better. Looking at the average scores for each of
the three setups, CHP load profiles were distinguished most accurately, whereas classify-
ing the load profiles of the BESS/CHP combination was least accurate. One explanation
for this result could be the fact that the CHP plant has the strongest operational restric-
tions and the BESS/CHP combination has the most degrees of freedom for its operation.
The precisions of positive and negative choices for the classification of load profiles of a
single CHP plant are similar to those achieved by Neugebauer et al. in (2017).

Preliminary experiments to classify feasibility based on 5 min averages instead of 15 min
averages did not improve the general results. We also tested training three independent
ANN:Ss, one for each season, instead of encoding the level of thermal consumption in the
ANN input. Based on the given input data, there was no general improvement from using
three separate ANNSs for winter, summer and intermediate seasons. Therefore, we did not
pursue this approach any further.

Price-based load profile forecasting
The evaluation results are shown in Fig. 5b. As a reference, the average load observed in
the training data is determined, which is only one value. The predictor labeled “Const” in
Fig. 5b predicts just this average for every time slot. The best results were achieved by a
fully-connected network topology.

As can be seen from the mean absolute error (MAE), the predicted load profiles are off
by less than 5 W on average, i.e., the absolute error is less than 0.5 % of the scaled power of
either the BESS or the CHP plant. We suspect that such good results are achieved by the
neural networks that simply memorize a reference load profile for each price profile, as
there are only 33 valid price profiles and a load profile may be optimal for multiple input
states. In the application context, this behavior is acceptable if the structure of the tariff
does not change. If other price profiles are used, the ANN probably needs to be updated.

Load profile generation

The results for the evaluation of ANNs for load profile generation based on control
vectors are shown in Fig. 5c. Although the same three neural network topologies were
used for the different control vectors, the performance is very diverse: With a root mean
squared error (RMSE) of 5 W, the RNN achieves the best result for modeling the BESS
driven by a control sequence (CS), whereas the best result for a CHP plant driven by a
control sequence is an RMSE of 250 W.
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In general, the models perform better for the battery storage than for the CHP plant.
This may be caused by the activation of the plant due to thermal demand, especially for
heating in the winter. The thermal demand is a latent variable which the ANN has to infer
from the training samples. The BESS, on the other hand, is limited only by the energy

storage capacity and the current state of charge.

Load profile validation and repair

The task assigned by the repair pattern seems to be the hardest for our neural models,
as the results given in Fig. 5d show. Comparing our networks, the RNN has the lowest
RMSE in all DER setups. But still, the mean absolute error of the RNN is above 70 W. It is
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very likely that we did not find a suitable topology to solve the task of load profile repair.
A fundamental problem may be posed by the fact that repairing an infeasible load profile
can be done in many ways. Based on the optimization objective, there may be an infinite
number of possible repaired load profiles having the same target function value. Hence,
the profiles returned by the optimization are unlikely to follow a systematic scheme. In
pattern C, on the other hand, the control vector leads to a well-defined load profile. Based
on the results of pattern C, we expect that ANNSs are able to perform better on this task if

the profiles are repaired in a consistent and simple way.

Real-world CHP classification

Finally, we tested the best-performing neural network that had been trained for classifying
the feasibility of CHP load profiles (the CNN) with real-world data. From a time series,
we extracted 51 days from a period that is comparable to the summer state the ANN had
been trained with. Based on the measured temperature of the hot water tank, 47 out of
the 51 load profiles are correctly classified as feasible. A closer look at the four profiles
that were classified as infeasible revealed that they originate from days with very little
thermal demand. Hence, the CHP plant that generated these four profiles could not have
satisfied the thermal consumption that is assumed in the model and thus the profiles were
correctly classified as infeasible.

Conclusion and outlook

In this paper we evaluated the idea of using ANNs as surrogate models for the flexibility
of DERs. A major advantage of this approach is that, for a demand side manager, there
is no need to explicitly model DERs. In addition, the required amount of communica-
tion can be reduced to transmitting a few variables like DER states and prices or load
profiles which is a significant advantage with respect to concerns about privacy or data
economy.

As our results confirm, the concept of ANN-encoded abstracted flexibility is indeed
viable and there are multiple ways of implementing it. We achieved the best results for the
load profile classification, which we also successfully tested on real-world CHP data, and
the price-based load profile forecasting patterns. While the mixed results from the load
profile generation pattern indicate a general adequacy of the pattern itself, load profile
repair did not work out well for training data generated by the optimization models. Since
generation based on a control vector and repair are similar tasks, we conclude that this is
likely due to the determinacy of the rules applied in the generation pattern, as opposed
to the optimization which generates one of a possibly infinite number of repaired pro-
files. Hence, for future evaluations of the repair pattern there should be a well-defined
solution.

As this paper presents first results of implementing the concept of ANN-encoded
abstracted flexibility for energy management and smart grids, we are working on applying
the concept in additional realistic scenarios, with more and other types of DERs, consid-
ering additional constraints, improving the used ANNS, as well as refining the patterns.
Regarding the poor performance of our ANNs on some load profile generation tasks in
contrast to the good classification performance, future research could take advantage of
the classification ANN for a Generative Adversarial Network (Goodfellow et al. 2014) to
generate more accurate load profiles.
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Endnote
! This may be deduced intuitively from ng < 1, (3) and:

Ep ck—EpDk
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Actual SoC: SoCyy1 — SoCy = np - Eci — niB -Eppi

Average Power: pp =

with total amounts of energy charged Ep ¢ x and discharged Ep p ; during slot k.
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