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EQUILIBRIUM MEASURES AND EQUILIBRIUM POTENTIALS

IN THE BORN-INFELD MODEL

DENIS BONHEURE, PIETRO D’AVENIA, ALESSIO POMPONIO, AND WOLFGANG REICHEL

Abstract. In this paper, we consider the electrostatic Born-Infeld model

(BI)



















− div

(

∇φ
√

1− |∇φ|2

)

= ρ in RN ,

lim
|x|→∞

φ(x) = 0

where ρ is a charge distribution on the boundary of a bounded domain Ω ⊂ RN . We are interested
in its equilibrium measures, i.e. charge distributions which minimize the electrostatic energy of
the corresponding potential among all possible distributions with fixed total charge. We prove
existence of equilibrium measures and we show that the corresponding equilibrium potential is
unique and constant in Ω. Furthermore, for smooth domains, we obtain the uniqueness of the
equilibrium measure, we give its precise expression, and we verify that the equilibrium potential
solves (BI). Finally we characterize balls in RN as the unique sets among all bounded C2,α-
domains Ω for which the equilibrium distribution is a constant multiple of the surface measure on
∂Ω. The same results are obtained also for Taylor approximations of the electrostatic energy.
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1. Introduction and main results

In this paper we consider the electrostatic Born-Infeld model. Let ρ be a charge distribution on
the boundary of a bounded domain Ω ⊂ RN (N = 3 being the physically relevant case), i.e., we
consider ρ as an element of the set P (∂Ω) of all positive Borel measures on RN supported on ∂Ω
with

∮

∂Ω dρ = 1. We consider the electrostatic potential generated by ρ as the unique minimizer
φρ of the Born-Infeld electrostatic action

I(φ) =
∫

RN

(

b2 − b
√

b2 − |∇φ|2
)

dx−
∮

∂Ω
φdρ

where φ runs through the set X of all Lipschitz functions with Lipschitz-constant less or equal b
and

∫

RN |∇φ|2 dx < ∞. One of the main results of [7] shows that I has a unique minimizer in
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X ; further uniqueness questions were addressed in [23]. For each electrostatic potential φρ we can
consider the Born-Infeld electrostatic energy E (details of the definition are given in Section 2)

E(φρ) := −I(φρ).
Among all possible charge distributions ρ ∈ P (∂Ω) one can search for those distributions, which
create least-energy potentials. Such a distribution ρ∗ ∈ P (∂Ω) is called equilibrium distribution
and is defined as follows:

E(φρ∗) = min
ρ∈P (∂Ω)

E(φρ).

The corresponding minimizer φρ∗ is called an equilibrium potential. The main purpose of this
paper is the study of the existence and the properties of ρ∗.

Our first set of results is as follows. We prove that

(i) equilibrium distributions exist, cf. Theorem 4.1;
(ii) the equilibrium potential φρ∗ is unique and takes a constant value λ∗ in Ω, cf. Theorem 4.4

and Corollary 4.5.

An open question in the electrostatic Born-Infeld theory is the following: is it true or not that
electrostatic potentials, i.e., minimizers of I on X , are weak solutions of the electrostatic Born-
Infeld equations

(BI)







− div

(

b∇φ
√

b2 − |∇φ|2

)

= ρ in RN ,

lim
|x|→∞

φ(x) = 0.

The answer in general seems not to be known. It is however true when Ω is a ball and ρ a constant
multiple of the surface-measure on ∂Ω, cf. [7]. In the case where ∂Ω ∈ C2,α we can say more on
the equilibrium potential. This is our second set of results. We prove that

(iii) φρ∗ is a weak solution of (BI) which is smooth outside ∂Ω, cf. Theorem 4.7;
(iv) the (unique) value λ∗ has a unique characterization given in Proposition 4.11: in particular

dρ∗ = −b ∂νφρ∗
√

b2 − |∇φρ∗ |2
dσ,

where ∂νφρ∗ denotes the outer normal derivative of φρ∗ w.r.t. Ω;
(v) the equilibrium distribution ρ∗ is unique, cf. Corollary 4.12.

As a third set of results we consider in Section 5 a regularized Born-Infeld model, where the action
is given by

(1.1) In(φ) =
n∑

h=1

αh
2h

‖∇φ‖2h2h −
∮

∂Ω
φdρ, α1 = 1, αh =

1 · 3 · 5 · · · (2h− 3)

2h−1(h− 1)!
b2(1−h).

This arises from the Taylor expansion formula b2 − b
√
b2 − x2 =

∑∞
h=1

αh

2hx
2h which converges for

x ∈ [−b, b]. As before the corresponding electrostatic energy is given by En(φ) := −In(φ). One can
define the electrostatic potential φnρ , the equilibrium distribution ρ∗,n and the equilibrium potential
φnρ∗,n within the approximated model as before based on the notion of action and energy. Our
results for this approximated model are as follows:

(vi) there exist equilibrium distributions ρ∗,n and the associated equilibrium potential φnρ∗,n is

unique and constant on Ω; if, moreover, ∂Ω is C1,α then ρ∗,n is unique, cf. Theorem 5.4;
(vii) the weak limit ρ̄ of ρ∗,n as n → ∞ is an equilibrium distribution for the Born-Infeld

electrostatic model. In case ∂Ω ∈ C2,α it coincides with ρ∗, i.e., the unique equilibrium
distribution of the Born-Infeld model, cf. Proposition 5.9.
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In the final Section 6 we characterize balls in RN in the following way:

(viii) for the Born-Infeld model, the ball is the unique set among all bounded C2,α-domains Ω
for which the equilibrium distribution ρ∗ is a constant multiple of the surface measure dσ
on ∂Ω;

(ix) the same holds for the approximated model if ρ∗,n is a constant multiple of dσ on ∂Ω.

Results on the Born-Infeld electrodynamic theory are relatively sparse in the mathematical lit-
erature. Well-posedness and stability issues are addressed in [32]. In [30] the interaction of two
circularly polarized waves was shown to fulfill the Born-Infeld model in vacuum. In [35] one can
find a discussion of the electro- and magnetostatic cases without sources. Special explicit solutions
of the dynamical Born-Infeld model, e.g., propagating and counter-propagating plane waves, as
well as connections to minimal surfaces can be found in [27]. A regularity result for the electro-
static Born-Infeld equation can be derived from the milestone paper of Bartnik and Simon [2].
The result was extended to more general data by Bonheure and Iacopetti [6] but a sharp result is
not known. The electrostatic Born-Infeld problem has many similarities with the mean curvature
problem for graphs in Minkowski space. A variational approach to this geometric problem is given
in [3]. Essential properties of the constant mean curvature problem were already considered in
fundamental work by Calabi [12], Cheng and Yau [13], Treibergs [33], Bartnik and Simon [2] and
Gerhardt [20]. We refer to [26] for more insight on the geometry of Lorentz-Minkowski spaces and
we also mention the recent contribution [5] concerning spacelike radial graphs. The characteriza-
tion of balls by their electrostatic properties in the linear Maxwell-Poisson context was achieved
in [28], [29] for dimensions N ≥ 2, in [14], [17] for N = 2, and in [18] for the p-Laplacian context.

2. Equilibrium measures and equilibrium potentials in electrostatic theories

Let us consider an electromagnetic field (E,B) in R3 described by a gauge potential (φ,A) as
follows:

E = −∇φ− ∂tA, B = ∇×A.

In the Lagrangian formulation of electromagnetic theories like Maxwell, Born, Born-Infeld the
evolution of the fields (E,B) is described by the principle of stationary action, i.e., the equations
of motion are the Euler-Lagrange equations of the action functional

∫

R4

L(φ,A,∇φ,∇A, ∂tφ, ∂tA) d(x, t).

Here L is called the Lagrangian density. Let us recall the following definition of the energy of an
electromagmetic field (E,B) (see e.g. [16, 19]). In the following we write 〈·, ·〉 to denote the dual
pairing between a space and its dual space.

Definition 2.1. Let V = (φ,A) and suppose that L = L(V,∇V, ∂tV) is the Lagrangian density
of the electromagmetic field (E,B). The Lagrangian at time t is defined by

I(V) :=

∫

R3

L(V,∇V, ∂tV) dx

and the energy at time t is defined as

E(V) :=

∫

R3

T 00(V,∇V, ∂tV) dx,

where

T 00(V,∇V, ∂tV) =
∂L(V,∇V, ∂tV)

∂(∂tV)
· ∂tV − L(V,∇V, ∂tV).
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In the electrostatic case V = (φ, 0) with φ independent of t, the Lagrangian becomes

I(φ) =
∫

R3

L(φ,∇φ) dx

and the electrostatic energy is given by

(2.1) E(φ) = −I(φ) = −
∫

R3

L(φ,∇φ) dx.

Let us recall that the Legendre-transform H of the Lagrangian is given by

H(φ) = 〈I ′(φ), φ〉 − I(φ) =
∫

R3

(
∂L(φ,∇φ)

∂φ
φ+

∂L(φ,∇φ)
∂∇φ · ∇φ

)

dx− I(φ).

Clearly, if φ is a solution of the Euler-Lagrange equation, then H(φ) = −I(φ).
In the classical Maxwell theory, the Lagrangian density is given by

LM =
1

2
(|E|2 − |B|2)− ρφ+ J ·A,

where ρ is a charge distribution and J is a current density. According to (2.1) the electrostatic
Maxwell energy reads

EM(φ) = −IM(φ) = −1

2

∫

R3

|∇φ|2 dx+ 〈ρ, φ〉

and the Legendre-transform of the Lagrangian IM yields

HM(φ) =
1

2

∫

R3

|∇φ|2 dx.

The notation 〈ρ, φ〉 stands for the duality bracket between a finite Borel measure ρ on R3 and a
continuous function. The electrostatic potential generated by a given distribution ρ in absence
of currents arises as the unique solution of the Euler-Lagrange equation corresponding to the
Lagrangian IM, i.e. the unique solution of the Poisson equation

(2.2) −∆φ = ρ in R3, lim
|x|→∞

φ(x) = 0.

For a positive Borel measure ρ with compact support and with finite total mass, the distributional
solution to (2.2) is given by the (Newtonian) potential (see [34, Definition 2.1, Theorem 4.1])

(2.3) φρ(x) =
1

4π

∫

supp ρ

1

|x− y| dρ(y).

In general, this is not a finite energy solution. For instance, it is well known that if ρ = δ0 (the
Dirac-delta measure at 0), then φρ(x) =

1
4π|x| does not have finite energy. Notice that, whenever

φρ from (2.3) has finite energy, we have

EM(φρ) = HM(φρ) =
1

2

∫

R3

|∇φρ|2 dx =
1

8π

∫

supp ρ

∫

supp ρ

1

|x− y| dρ(y) dρ(x).

Given Ω ⊂ R3, we denote by P (∂Ω) the set of probability measures on ∂Ω, i.e., the set of
positive Borel measures ρ on RN which are supported on ∂Ω and normalized by

∮

∂Ω dρ = 1. For
every ρ ∈ P (∂Ω), let φρ be the corresponding solution of (2.2) given by (2.3). We can now define
the notion of an equilibrium measure in the Maxwell potential theory.

Definition 2.2. A probability measure ρ∗ ∈ P (∂Ω) is called an equilibrium measure or equilibrium
distribution for EM or, equivalently for HM, if

EM(φρ∗) = inf
ρ∈P (∂Ω)

EM(φρ) = inf
ρ∈P (∂Ω)

HM(φρ) = inf
ρ∈P (∂Ω)

1

8π

∮

∂Ω

∮

∂Ω

1

|x− y| dρ(y) dρ(x).
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The corresponding solution φρ∗ of (2.2) given by (2.3) is called equilibrium potential.

Notice that the expressions for EM,HM and the double integral may be infinite for some measures
ρ ∈ P (∂Ω). The infimum, however, is always attained by a unique equilibrium measure and the
equilibrium potential is constant on Ω, except for a subset of capacity zero, cf. [34, Theorem 6.3,
Theorem 7.1, and Theorem 9.1].

Let us now consider the Lagrangian density introduced by Born and the modified one by Born
and Infeld, namely

LB = b2

(

1−
√

1− |E|2 − |B|2
b2

)

− ρφ+ J ·A

and

LBI = b2

(

1−
√

1− |E|2 − |B|2
b2

− (E ·B)2

b4

)

− ρφ+ J ·A

where b > 0 is the Born field strength parameter (see [8–11]). In the electrostatic case, Born and
Born-Infeld Lagrangian densities lead by (2.1) to the same energy

E(φ) = −I(φ) = −b2
∫

R3

(

1−
√

1− |∇φ|2/b2
)

dx+ 〈ρ, φ〉.

The Legendre-transform of I yields

H(φ) = b2
∫

R3

(

1
√

1− |∇φ|2/b2
− 1

)

dx.

In the sequel we set b = 1 since the exact value of b has no qualitative influence on our analysis.
One can generalize the functionals E ,I,H to RN with N ≥ 3. Then, at least formally, the

Euler-Lagrange equation for the Lagrangian I is given by

(BI)







− div

(

∇φ
√

1− |∇φ|2

)

= ρ in RN ,

lim
|x|→∞

φ(x) = 0.

As shown in [7] for a large class of measures, finite energy solutions of (BI) can be found by
minimizing the functional I on the set

X = D1,2(RN ) ∩ {φ ∈ C0,1(RN ) : ‖∇φ‖∞ ≤ 1},
which is a closed and convex subset of the space D1,2(RN ).

In particular, following the definition of a weak solution [7, Definition 1.2], we have that a weak
solution of (BI) must minimize I on X , cf. [7, Proposition 2.6].

For any ρ ∈ P (∂Ω), we have that ρ ∈ X ∗ and by [7, Theorem 1.3] there exists a unique φρ ∈ X
which minimizes I (some details on the properties of X ∗ are given in Section 3 after Lemma 3.2).
Notice that, by [7, Lemma 2.12], φρ ≥ 0. Unfortunately, as far as we are aware, it is not known
whether in general the minimizer φρ is a solution of (BI). Thus, dealing with the Born-Infeld
Lagragian, we have to define equilibrium measures through the minimizer φρ of I rather than
through the solution of (BI).
Definition 2.3. A probability measure ρ∗ ∈ P (∂Ω) is called an equilibrium measure or equilibrium
distribution for E if

E(φρ∗) = inf
ρ∈P (∂Ω)

E(φρ),
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where for every ρ ∈ P (∂Ω) we denote by φρ the unique minimizer of I on X . The corresponding
minimizer φρ∗ of I is called equilibrium potential.

Remark 2.4. As a consequence of the definition of a weak solution of (BI), see [7, Definition
1.2], we have, in particular, that a weak solution φρ ∈ X satisfies

(2.4)

∫

RN

|∇φρ|2
√

1− |∇φρ|2
dx = 〈ρ, φρ〉,

and so, in this case, the energy of the solution φρ is

E(φρ) =
∫

RN

(

−1 +
√

1− |∇φρ|2 +
|∇φρ|2

√

1− |∇φρ|2

)

dx =

∫

RN

(

1
√

1− |∇φρ|2
− 1

)

dx = H(φρ).

In contrast, a minimizer φρ ∈ X of I in general satisfies (2.4) only with “≤” instead of “=”.
Henceforth, in general, we only have E(φρ) ≥ H(φρ).

3. Preliminary results

Here we provide the functional analytic setting for the minimization of the Lagrangian. We
prove in Lemma 3.7 that the minimizer φρ depends continuously on the measure ρ. Thereafter we
provide several tools which allow to deduce that φρ attains its maximum on ∂Ω, cf. Lemma 3.11.

Let ρ ∈ P (∂Ω). In the following we add a subscript to any functional that depends on the
choice of the measure ρ in its definition to emphasize this dependence and to keep the notation
closer to [7]. For instance,

Iρ(φ) :=
∫

RN

(

1−
√

1− |∇φ|2
)

dx− 〈ρ, φ〉, φ ∈ X .

We also define the functional J : X → R that does not depend on the measure ρ by

J (φ) :=

∫

RN

(

1−
√

1− |∇φ|2
)

dx, φ ∈ X .

Observe that, since ‖∇φ‖∞ ≤ 1, we can write J as the infinite series

(3.1) J (φ) =

+∞∑

h=1

αh
2h

‖∇φ‖2h2h.

The exact values of the coefficients αh are given in (1.1). Next we recall some fundamental
properties of the set X ([7, Lemma 2.1]).

Lemma 3.1. The following assertions hold:

(i) X is continuously embedded in W 1,p(RN ) for all p > 2∗ = 2N/(N − 2);
(ii) X is continuously embedded in L∞(RN );
(iii) if φ ∈ X , then lim|x|→∞ φ(x) = 0;
(iv) X is weakly closed;
(v) if (φn)n ⊂ X is bounded, there exists φ̄ ∈ X such that, up to a subsequence, φn ⇀ φ̄ weakly

in D1,2(RN ) and uniformly on compact sets.

Next we give a more detailed version of (ii) from the previous lemma.

Lemma 3.2. For any t > max{N, 2N
N−2} there exists a constant C(t) such that, for all φ ∈ X ,

‖φ‖∞ ≤ C(t)‖∇φ‖
2
t

2 (1 + ‖∇φ‖
2
N

2 ).
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Proof. With t as in the assumption, define s = tN
N+t . Then s < N and t = s∗ = Ns

N−s . Since

t > 2∗ = 2N
N−2 , we deduce that s > 2. Recall also that, by (i) and (ii) in Lemma 3.1, X embeds

into W 1,t(RN ) and therefore into L∞(RN ). Hence, for every φ ∈ X , using Sobolev inequality with
t = s∗ and the fact that |∇φ| ≤ 1, we get

‖φ‖∞ ≤ C(t)(‖∇φ‖t + ‖φ‖t) ≤ C̄(t)(‖∇φ‖t + ‖∇φ‖s) ≤ C̄(t)(‖∇φ‖
2
t

2 + ‖∇φ‖
2
s

2 )

since s, t > 2. This proves the claim because 1
s = 1

t +
1
N . �

As mentioned in the introduction, one of the main results of [7, Theorem 1.3] states that for
every ρ ∈ X ∗ there exists a unique minimizer φρ ∈ X of Iρ. We denote by X ∗ the dual space of
D1,2(RN ) ∩ C0,1(RN ) endowed with the norm ‖∇ · ‖L2 + ‖∇ · ‖L∞ . Note that X ∗ % D1,2(RN )∗

since, e.g., finite Borel measures on RN are included in X ∗. Moreover, cf. [7, Theorem 1.5], if
ρ ∈ L∞(RN ) then this unique minimizer is a strictly spacelike, weak solution in the sense given in
the following two definitions.

Definition 3.3 (cf. [2]). Let Ω ⊂ RN be open. A function φ ∈ C0,1(Ω) is called strictly spacelike
if φ ∈ C1(Ω) and |∇φ(x)| < 1 for all x ∈ Ω.

Definition 3.4 (cf. [7]). Let ρ ∈ X ∗. A function φ ∈ X is called a weak solution of (BI) if

(3.2)

∫

RN

∇φ · ∇ψ
√

1− |∇φ|2
dx = 〈ρ, ψ〉 for all ψ ∈ C∞

c (RN ).

Remark 3.5. Note that the requirement that (3.2) holds for all ψ ∈ C∞
c (RN ) is equivalent to

asking that (3.2) holds for all ψ ∈ X , which is the original definition given in [7].

Lemma 3.6. There exists a constant C > 0 such that

‖∇φρ‖2 ≤ C

for every ρ ∈ P (∂Ω).

Proof. Since Iρ(0) = 0 and 1
2τ ≤ 1−

√
1− τ , for τ ∈ [0, 1], we have

0 ≥ Iρ(φρ) ≥
1

2
‖∇φρ‖22 − ‖φρ‖L∞(∂Ω)

and so, by Lemma 3.2,

‖∇φρ‖22 ≤ 2C(t)‖∇φρ‖
2
t

2 (1 + ‖∇φρ‖
2
N

2 )

with t > max{N, 2N
N−2}. Thus, since 2

t < 1 and 2
t +

2
N < 1, we get the claim. �

Lemma 3.7 (Continuous dependence of φρ on ρ). If ρk, ρ ∈ P (∂Ω) with ρk ⇀ ρ as k → ∞ weakly
in the sense of measures, then

(3.3) lim
k→∞

Iρk(φρk) = Iρ(φρ)

and φρk → φρ strongly in D1,2(RN ) and locally uniformly on RN as k → ∞.

Proof. The boundedness of {φρk}k∈N (see Lemma 3.6) and Lemma 3.1 imply the existence of a
φ ∈ X such that φρk ⇀ φ weakly in D1,2(RN ) and uniformly on compact sets as k → ∞. Then,
since J is convex and continuous on X , it is weakly lower semicontinuous and so

J (φ) ≤ lim inf
k→∞

J (φρk).

Moreover, as k → ∞,

|〈ρk − ρ, φρk〉| ≤ 2‖φρk − φ‖L∞(∂Ω) + |〈ρk − ρ, φ〉| → 0,(3.4)

|〈ρk, φρk〉 − 〈ρ, φ〉| ≤ |〈ρk − ρ, φ〉|+ ‖φρk − φ‖L∞(∂Ω) → 0.(3.5)
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Thus, using (3.4) and the fact that φρk minimizes Iρk , we have

Iρ(φ) ≤ lim inf
k→∞

Iρ(φρk) = lim inf
k→∞

[Iρk(φρk) + 〈ρk − ρ, φρk〉]= lim inf
k→∞

Iρk(φρk)
≤ lim sup

k→∞
Iρk(φρk) 6 lim sup

k→∞
Iρk(φρ) = lim

k→∞
Iρk(φρ) = Iρ(φρ)

that implies, by the uniqueness of the minimum, φ = φρ and (3.3) holds. In particular, using (3.5),
we have that

(3.6) lim
k→∞

J (φρk) = J (φρ).

On the other hand, by Clarkson’s inequality [22], we have that
∥
∥
∥
∥

∇φρk −∇φρ
2

∥
∥
∥
∥

2h

2h

+

∥
∥
∥
∥

∇φρk +∇φρ
2

∥
∥
∥
∥

2h

2h

≤ 1

2
(‖∇φρk‖2h2h + ‖∇φρ‖2h2h), h ∈ N,

and so
+∞∑

h=1

αh
2h

∥
∥
∥
∥

∇φρk −∇φρ
2

∥
∥
∥
∥

2h

2h

+
+∞∑

h=1

αh
2h

∥
∥
∥
∥

∇φρk +∇φρ
2

∥
∥
∥
∥

2h

2h

≤ 1

2

+∞∑

h=1

αh
2h

(‖∇φρk‖2h2h + ‖∇φρ‖2h2h),

namely

J
(
φρk − φρ

2

)

+ J
(
φρk + φρ

2

)

≤ 1

2
(J (φρk) + J (φρ)).

By the weak lower semicontinuity of J we see that

J (φρ) ≤ lim inf
k→∞

J
(
φρk + φρ

2

)

.

Therefore, using (3.6), we obtain

0 ≤ lim inf
k→∞

J
(
φρk − φρ

2

)

≤ lim sup
k→∞

J
(
φρk − φρ

2

)

≤ lim sup
k→∞

[
1

2
(J (φρk) + J (φρ))− J

(
φρk + φρ

2

)]

= J (φρ)− lim inf
k→∞

J
(
φρk + φρ

2

)

≤ 0

and thus

(3.7) lim
k→∞

J
(
φρk − φρ

2

)

= 0.

Hence (3.7) allows us to conclude since, by the inequality 1
2τ ≤ 1−

√
1− τ , for τ ∈ [0, 1], we have

that for all φ ∈ X , ‖∇φ‖22 ≤ 2J (φ). �

Lemma 3.8. Let ρ ∈ L∞(RN ) have compact support and let φρ ∈ X be the minimizer of Iρ.
Suppose that 0 < maxRN φρ = φρ(x0) for some point x0 ∈ RN . Then x0 lies in supp ρ or x0 lies
in a bounded connected component of RN \ supp ρ where φρ ≡ φρ(x0). In any case

(3.8) supp ρ ∩ {x ∈ RN : φρ(x) = max
RN

φρ} 6= ∅.

Proof. Since ρ ∈ L∞(RN ) has compact support, we see that ρ ∈ X ∗. Therefore [7, Theorem 1.5]
implies that φρ is a weak, strictly spacelike solution of (BI), i.e. φρ ∈ C1(RN ) ∩ X , |∇φρ| < 1 in
RN and (3.2) holds.
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Suppose x0 6∈ supp ρ. Then there exists an open ball B centered at x0 such that B̄ ∩ supp ρ = ∅
and

(3.9)

∫

B
a(x)∇φρ · ∇ψ dx = 0 for all ψ ∈ C∞

c (B)

where a(x) = (1 − |∇φρ(x)|2)−1/2 ≥ δ > 0 in B. Since φρ attains its maximum on B at x0 ∈ B,
the strong maximum principle (see e.g. [21, Theorem 8.19]) applies. We then deduce that φρ ≡
const. = φρ(x0) on B and in fact on the entire connected component of RN \ supp ρ containing x0.
This connected component must be bounded since φρ(x) → 0 as |x| → ∞ by (iii) in Lemma 3.1. �

To develop our theory further we next rely on the idea that one can “mollify” a measure as
expressed in the following lemma. The proof is a straightforward consequence of the definition of
the mollified measure.

Lemma 3.9. Let µ ∈ P (∂Ω), ε > 0 and ηε : RN → [0,∞) be the standard mollifier supported in
Bε(0). Define the function fε ∈ L∞(RN ) by

fε(x) :=

∮

∂Ω
ηε(y − x) dµy, x ∈ RN ,

and the measure µε ∈ P (RN ) by

dµε := fε dx.

Then µε ⇀ µ as ε→ 0 in the sense of measures and suppµε ⊂ suppµ+Bε(0).

We also use the following lemma on the location of maxima of locally uniformly convergent
sequences of continuous functions. A proof by contradiction is again straightforward.

Lemma 3.10. Let {φk}k∈N be a sequence of continuous functions on RN that converges locally
uniformly to φ and suppose that T := {x ∈ RN : φ(x) = maxRN φ} is compact and that for all
k ∈ N the sets Tk := {x ∈ RN : φk(x) = maxRN φk} are contained in a fixed compact set K. For
any given δ > 0 and sufficiently large k the function φk attains its maximum only at points in
T +Bδ(0).

As a consequence of the previous lemmas, we can now deduce that for any ρ ∈ P (∂Ω), φρ attains
its maximum value on the boundary of Ω.

Lemma 3.11. For any ρ ∈ P (∂Ω), we have that maxRn φρ = max∂Ω φρ.

Proof. Suppose that M := maxRN φρ > max∂Ω φρ and define the compact set T = {x ∈ RN :
φρ(x) = M}. Clearly T ∩ ∂Ω = ∅ and dist(T, ∂Ω) > 0. By Lemma 3.9, let ε0, δ > 0 be so small

that the mollified measure ρε satisfies dist(suppρε, T + Bδ(0)) > 0 for all ε ∈ (0, ε0]. Note that
suppρε ⊂ ∂Ω + Bε(0) ⊂ BR(0) for all ε ∈ (0, ε0] and a suitable R > 0. Therefore, if a point x
belongs to a bounded component of RN \ supp ρε then |x| ≤ R. By Lemma 3.8, applied to ρε and
φρε , we find that φρε has its maximum points all within the set BR(0) for all ε ∈ (0, ε0]. Since

φρε → φρ as ε → 0 locally uniformly on RN , by Lemma 3.10 we know that for small ε > 0 the

function φρε attains its maximum over RN only at points yε ∈ T+Bδ(0). However, since T+Bδ(0)
and supp ρε are disjoint we get a contradiction to (3.8) from Lemma 3.8. This contradiction finishes
the proof.

�
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4. Equilibrium measures and equilibrium potentials: existence and properties

In this section, we prove our main results. We begin with existence of equilibrium measures
(Theorem 4.1), their properties (Theorem 4.4) and the uniqueness of equilibrium potentials (Corol-
lary 4.5). Then, in case of C2,α-smooth domains we show that the equilibrium potential solves
(BI) (Theorem 4.7), we give a characterization (Proposition 4.11) and address the uniqueness
questions for the equilibrium measure (Corollary 4.12, Proposition 4.13).

Theorem 4.1. There exists an equilibrium measure ρ∗ for E.
Proof. Recall from [7, Proposition 2.3] that Iρ(φρ) = −E(φρ) < 0. Hence we infer that

inf
ρ∈P (∂Ω)

E(φρ) > 0.

Let {ρk}k∈N be a minimizing sequence. Since ∂Ω is compact, the sequence {ρk}k∈N is tight and
hence there exists ρ∗ ∈ P (∂Ω) such that ρk ⇀ ρ∗ (see [4]). By Lemma 3.7 we get that

E(φρ∗) = lim
k→∞

E(φρk) = inf
ρ∈P (∂Ω)

E(φρ)

so that ρ∗ is an equilibrium measure for E . �

From now on, we denote by ρ∗ an equilibrium measure. It satisfies the following properties.

Proposition 4.2. For every µ ∈ P (∂Ω) we have the inequality

(4.1) λ∗ := 〈ρ∗, φρ∗〉 ≤ 〈µ, φρ∗〉.
Proof. Let µ be an arbitrary measure in P (∂Ω). For t ∈ [0, 1], define the probability measure
ρt := (1− t)ρ∗ + tµ. Then

E(φρt)− E(φρ∗) = Iρ∗(φρ∗)− Iρ∗(φρt) + t〈µ− ρ∗, φρt〉 ≤ t〈µ− ρ∗, φρt〉
and

E(φρt)− E(φρ∗) = −Iρt(φρt) + Iρt(φρ∗) + t〈µ− ρ∗, φρ∗〉 ≥ t〈µ− ρ∗, φρ∗〉,
for t ∈ (0, 1] imply that

〈µ− ρ∗, φρ∗〉 ≤
E(φρt)− E(φρ∗)

t
≤ 〈µ − ρ∗, φρt〉.

Passing to the limit as t→ 0+ and using the Lemma 3.7 we get that

lim
t→0

E(φρt)− E(φρ∗)
t

exists and = 〈µ− ρ∗, φρ∗〉.

Finally, since E(φρt)− E(φρ∗) ≥ 0, we obtain the claimed inequality (4.1). �

Lemma 4.3. For every x ∈ ∂Ω we have φρ∗(x) ≥ λ∗. Moreover φρ∗ = λ∗ a.e. with respect to ρ∗

on ∂Ω.

Proof. If we take µ = δx for x ∈ ∂Ω and insert this measure into (4.1), we get φρ∗(x) ≥ λ∗.
Moreover, by the definition of λ∗ we have

0 =

∮

∂Ω
(φρ∗(x)− λ∗)
︸ ︷︷ ︸

≥0

dρ∗

which implies φρ∗ = λ∗ a.e. with respect to the measure ρ∗ on ∂Ω. �

Theorem 4.4. For every x ∈ Ω we have φρ∗(x) = λ∗.
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Proof. We divide the proof in two steps: we first show that the statement is true on ∂Ω and, then,
also in Ω.

Step 1: for every x ∈ ∂Ω we have φρ∗(x) = λ∗.
Suppose M := max∂Ω φρ∗ > λ∗ and define

T = {x ∈ ∂Ω : φρ∗(x) =M}.
Note that ρ∗(T ) = 0 and, sinceM > λ∗, the continuity of φρ∗ implies that even ρ∗

(
T +Bδ(0)

)
= 0

for all sufficiently small δ ∈ (0, δ0] by Lemma 4.3.
Let us show that in particular (T + Bδ0/2(0)) ∩ suppρ∗ = ∅. Suppose for contradiction that

x ∈ (T + Bδ0/2(0)) ∩ supp ρ∗. Then for every open neighbourhood Nx of x we have ρ∗(Nx) > 0,

and in particular for Nx = Bδ0/2(x). But Bδ0/2(x) ⊂ T +Bδ0(0) and hence ρ∗(Nx) = 0 so that we

have reached a contradiction. We now have that dist(supp ρ∗, T +Bδ0/2(0)) > 0.
Let ε0 be so small that the mollified measure ρ∗ε (according to Lemma 3.9) satisfies dist(suppρ∗ε, T+
Bδ0/2(0)) > 0 for all ε ∈ (0, ε0]. Arguing as in Lemma 3.11 we get that φρ∗ε attains its maximum

only at T +Bδ0/2(0) for sufficiently small ε. However, since T + Bδ/2(0) and supp ρ∗ε are disjoint
we get, as before, a contradiction to (3.8) from Lemma 3.8. This finishes the first step.

Step 2: for every x ∈ Ω we have φρ∗(x) = λ∗.
Let us define the function

φ̂ρ∗(x) =

{

φρ∗(x), x ∈ RN \ Ω,
λ∗, x ∈ Ω.

Then φ̂ρ∗ ∈ X , J (φ̂ρ∗) ≤ J (φρ∗) and by Step 1

〈ρ∗, φ̂ρ∗〉 =
∮

∂Ω
λ∗ dρ∗ = 〈ρ∗, φρ∗〉

so that finally Iρ∗(φ̂ρ∗) ≤ Iρ∗(φρ∗). The uniqueness of the minimizer implies φ̂ρ∗ = φρ∗ and this
finishes the proof. �

From Theorem 4.4 we obtain the following result, which shows in particular the interesting fact
that although in general we do not know about the uniqueness of the equilibrium measure, the
equilibrium potential is always unique.

Corollary 4.5. For every µ ∈ P (∂Ω) we have the equality

(4.2) λ∗ = 〈ρ∗, φρ∗〉 = 〈µ, φρ∗〉.
Moreover, the value λ∗ and the equilibrium potential φρ∗ are unique in the following sense: when-
ever ρ∗, ρ∗∗ are equilibrium measures then φρ∗ = φρ∗∗ and λ∗ = λ∗∗.

Proof. The equality (4.2) follows directly from Theorem 4.4. In particular, 〈ρ∗∗ − ρ∗, φρ∗∗〉 = 0.
Therefore, we have

−E(φρ∗) = Iρ∗(φρ∗) 6 Iρ∗(φρ∗∗) = Iρ∗∗(φρ∗∗) = −E(φρ∗∗).
Since the two energies E(φρ∗), E(φρ∗∗) are equal, we obtain Iρ∗(φρ∗) = Iρ∗(φρ∗∗). By the uniqueness
of the minimizer of Iρ∗ we get φρ∗ = φρ∗∗ which also implies λ∗ = λ∗∗. �

Lemma 4.6. The value λ∗ is strictly positive.

Proof. By Theorem 4.4 and Lemma 3.11 we find λ∗ = max∂Ω φρ∗ = maxRN φρ∗ . Since moreover
φρ∗ vanishes at infinity, we deduce that λ∗ > 0. Suppose for contradiction that λ∗ = 0. Then,
by [7, Proposition 2.7],

∫

RN

|∇φρ∗ |2
√

1− |∇φρ∗ |2
dx 6 〈ρ∗, φρ∗〉 = λ∗ = 0.
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Hence φρ∗ = 0 and so Iρ∗(φρ∗) = 0, in contradiction to Iρ∗(φρ∗) < 0, cf. [7, Proposition 2.3]. �

For smooth domains, we can give a more precise description of the equilibrium measure and of
its properties.

Theorem 4.7. Suppose that ∂Ω ∈ C2,α, for some α > 0. Then φρ∗ is the unique weak solution of

(4.3)







− div

(

∇φ
√

1− |∇φ|2

)

= ρ∗ in RN ,

lim
|x|→∞

φ(x) = 0.

Moreover, for every r > 0 sufficiently large, φρ∗ ∈ C2,α(Br(0)\Ω) and there exists θ = θ(r) ∈ (0, 1)

such that |∇φρ∗ | 6 1− θ < 1 in Br(0).

Proof. By Theorem 4.4 we know that φρ∗ = λ∗ in Ω. The proof will be divided into two steps.
In the first step, we show local regularity and strict positivity. In the second step, boundary
regularity is included.

Step 1 (local regularity): Let us show that φρ∗ ∈ C∞(RN \ Ω), that it is strictly positive

and strictly spacelike in RN \ Ω and satisfies

(4.4)







− div

(

∇φ
√

1− |∇φ|2

)

= 0 in RN \ Ω,

φ = λ∗ on ∂Ω,

lim
|x|→∞

φ(x) = 0.

To prove this claim we adapt some ideas of [2, 7] to our case. Let O be an arbitrary bounded
domain with smooth boundary in RN \Ω. We define the set

C0,1
φρ∗

(O) =
{
φ ∈ C0,1(O) | φ|∂O = φρ∗ |∂O, |∇φ| 6 1

}

and the functional IO : C0,1
φρ∗

(O) → R by

IO(φ) =

∫

O

(

1−
√

1− |∇φ|2
)

dx.

The set of all possible light rays in O is

K = {xy ⊂ O | x, y ∈ ∂O, x 6= y, |φρ∗(x)− φρ∗(y)| = |x− y|} .
Since φρ∗ |O is the unique minimizer of IO and we infer from [2, Corollary 4.2] that φρ∗ is strictly
spacelike in O \K, that it satisfies

− div

(

∇φρ∗
√

1− |∇φρ∗ |2

)

= 0 in O \K,

and that
φρ∗(tx+ (1− t)y) = tφρ∗(x) + (1− t)φρ∗(y), 0 < t < 1,

holds for every x, y ∈ ∂O such that |φρ∗(x) − φρ∗(y)| = |x − y| and xy ⊂ O. Assume now by
contradiction that K 6= ∅. Then there exist x, y ∈ ∂O such that x 6= y, |φρ∗(x)−φρ∗(y)| = |x− y|,
xy ⊂ O. Without loss of generality we can assume that φρ∗(x) > φρ∗(y). It follows that for all
t ∈ (0, 1),

(4.5) φρ∗(tx+ (1− t)y) = tφρ∗(x) + (1− t)φρ∗(y) = φρ∗(y) + t|x− y|.
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Since, for any R > 0 such that O ⊂ BR, the function φρ∗ |BR\Ω is a minimizer of IBR\Ω on the

set C0,1
φρ∗

(BR \ Ω), then, by [2, Theorem 3.2], we have that (4.5) holds for all t ∈ R such that

tx+ (1 − t)y ∈ BR \ Ω. Therefore we can stretch the light ray until one of these two possibilities
occur: either both end-points belong to ∂Ω, or, at least in one direction, the light ray is unbounded.
The first case is clearly impossible since φρ∗ = λ∗ on ∂Ω whereas the second case contradicts the
boundedness of φρ. This shows that K = ∅ and therefore the C∞-regularity of φρ on the open set

RN \Ω follows from [2, Remarks at page 148].
Finally, suppose for contradiction that φρ∗ > 0 in RN fails. Since φρ∗(x) → 0 as x → ∞ this
implies that φρ∗ attains its non-positive minimum at a point x0 in RN . By Theorem 4.4 and

Lemma 4.6 we find that x0 6∈ Ω, i.e., x0 belongs to a connected component Z of RN \Ω. Since φρ∗
is a classical solution of (4.4) and since the equation in (4.4) is locally uniformly elliptic in RN \Ω,
we find by the classical maximum-principle that φρ∗ ≡ φρ∗(x0) ≤ 0 on Z. But ∂Z ∩ ∂Ω 6= ∅ and
φρ∗ |∂Ω = λ∗ > 0. This contradiction shows that φρ∗ > 0 in RN .

Step 2 (boundary regularity): Now we show that for every r > 0 sufficiently large, φρ∗ ∈
C2,α(Br(0) \Ω) and there exists θ = θ(r) ∈ (0, 1) such that |∇φρ∗ | 6 1− θ < 1 in Br(0).

Note that the claim implies that φρ∗ is not only the unique minimizer of Iρ∗ but actually a weak
solution of (4.3). The reason is that the strictly spacelike function φρ∗ lies in the interior of X ,
and hence variations in all directions can be computed for the minimizer φρ∗ of Iρ∗ which then
turns out to be a weak solution of (BI). The uniqueness follows from [7, Proposition 2.6] and this
ends the proof of the theorem.

The proof relies on an application of [2, Theorem 3.6]. It uses the construction of a strictly spacelike
function ψ̄ which has the same boundary values as φρ∗ on suitable sets exhausting RN \ Ω. We
begin with the construction of ψ̄. For any ε > 0, let us define Φε = {x ∈ RN | φρ∗(x) < ε}, Σε the
complementary set in RN of the unbounded connected component of Φε and Γε = ∂Σε. We set,
moreover,

R = max
x∈∂Ω

|x| and Rε = min
x∈Γε

|x|.

We want to show that

(4.6) ∃ε̄ > 0 such that λ∗ +R < Rε̄.

Suppose by contradiction that this does not hold. Then R 1
n
6 λ∗ + R for any n > 1. Hence,

for any n > 1, there exists xn ∈ RN such that |xn| = R 1
n

6 λ∗ + R and φρ∗(xn) = 1
n . Since

{xn}n∈N ⊂ B̄λ∗+R, there exists x̄ ∈ B̄λ∗+R such that, up to a subsequence, xn → x̄. Therefore
φρ∗(x̄) = 0 contradicting the fact that φρ∗ > 0 in the whole RN .

By Sard’s Lemma Γε is of class C
∞ for almost all ε ∈ (0, λ∗). Since moreover ε 7→ Rε is decreasing,

we can find a suitable ε̄ > 0 such that Γε̄ is of class C∞ and simultaneously (4.6) holds. Let us
define ψ : RN → R, as follows

ψ(x) =







λ∗ x ∈ BR,
ε̄− λ∗

Rε̄ −R
(|x| −R) + λ∗ x ∈ BRε̄ \BR,

ε̄ x ∈ RN \BRε̄ .

Observe that, in BRε̄ \BR, we have that |∇ψ| = λ∗ − ε̄

Rε̄ −R
<

λ∗

Rε̄ −R
< 1, by (4.6). Note that ψ is

a Lipschitz function on RN . By taking R′ slightly larger than R and R′
ε̄ slightly smaller than Rε̄

we can construct a corresponding function ψ′ : RN → R with gradient still bounded away from 1.
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Mollifying ψ′ we obtain a C∞-function ψ̄ : RN → R such that ψ̄ = λ∗ on ∂Ω, ψ̄ = ε̄ on Γε̄ and
|∇ψ̄| 6 1− θ0 in RN for some θ0 > 0. The function ψ̄ is therefore a strictly spacelike extension of
the boundary values of φρ∗ to the entire set Σε̄ \ Ω. We can therefore apply [2, Theorem 3.6] to
conclude that there exists θε̄ > 0 such that |∇φρ∗ | 6 1− θε̄ < 1 in Σε̄ \ Ω. The claim now follows
since Sard’s Lemma again implies that there exists a sequence of ε̄n ց 0 such that Γε̄n is C∞,
(4.6) holds and Σε̄n \ Ω exhausts RN \ Ω as n→ ∞. �

At least for convex bounded sets Ω the function φρ, ρ ∈ P (∂Ω), solves pointwise in RN \ Ω a
homogeneous Born-Infeld equation. This is achieved by adpating the proof of Theorem 4.7.

Proposition 4.8. Let Ω ⊂ RN bounded and convex. Then, for any ρ ∈ P (∂Ω), φρ is a strictly

spacelike in RN \ Ω and satisfies pointwise






− div

(

∇φ
√

1− |∇φ|2

)

= 0 in RN \ Ω,

φ = φρ on ∂Ω,

lim
|x|→∞

φ(x) = 0.

Proof. Replacing the constant boundary values λ∗ by φρ|∂Ω one can follow the arguments of Step 1
of Theorem 4.7 until one reaches the two possibilities for light rays. The second kind of light ray
extending to infinity leads to a contradiction as before. However, the first kind of light ray would
only extend to two points on ∂Ω, where φρ takes certain values (not necessarily equal to the
constant λ∗ like for φρ∗). Therefore, no contradiction can be reached in general, and thus these
kind of light rays must be a-priori excluded by assuming the convexity of Ω. �

The next two propositions lead to a unique characterization of the value λ∗, and hence, to the
uniqueness of the equilibrium measure (Corollary 4.12). We denote by ν the outer normal to ∂Ω
and write ∂ν for the normal derivative.

Proposition 4.9. Let Ω ⊂ RN be C2,α and λ ∈ (0,+∞). Then there exists a unique classical
solution φλ ∈ X of

(4.7)







− div

(

∇φ
√

1− |∇φ|2

)

= 0 in RN \ Ω,

φ = λ in Ω,

lim
|x|→∞

φ(x) = 0.

Additionally, φλ ≡ λ in every bounded connected component of RN \ Ω, and if Z0 denotes the
unbounded connected component of RN \Ω then 0 < φλ < λ in Z0 and ∂νφλ < 0 on ∂Z0. Moreover
φλ is the unique solution of (BI) with ρ = ρλ, where

(4.8) dρλ := − ∂νφλ(x)
√

1− |∂νφλ(x)|2
dσ, x ∈ ∂Ω,

is a positive and bounded measure supported on ∂Ω.

Remark 4.10. Note that ρλ defined in (4.8) is a positive and bounded measure on ∂Ω with finite
total mass, but not necessarily a probability measure.

Proof of Proposition 4.9. We argue as in the proof of Theorem 4.7. Replacing λ∗ by λ in Step 1
we obtain the existence of a unique classical solution φλ of (4.7), which is strictly spacelike and
positive in RN \Ω. Step 2 then establishes, that φλ is strictly spacelike and regular up to ∂Ω and
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satisfies φλ ∈ C2,α(Br(0) \Ω) for sufficiently large r > 0. In particular ∂νφλ is well defined on ∂Ω.
Since (4.7) is locally uniformly elliptic we can apply the classical maximum principle to show that
0 < φλ < λ in the unbounded connected component Z0 of RN \ Ω and φλ ≡ λ in every bounded
connected component of RN \ Ω. This implies ∂νφλ(x) 6 0 for all x ∈ ∂Ω, and the Hopf Lemma
even allows to conclude ∂νφλ < 0 on ∂Z0 ⊂ ∂Ω, where ν is the exterior unit normal on ∂Ω.
Finally, let us show that φλ solves (BI) with right-hand side ρ = ρλ given by (4.8). Since φλ is
constant in Ω, for any ϕ ∈ C∞

c (RN ) we have
∫

RN

∇φλ · ∇ϕ
√

1− |∇φλ|2
=

∫

RN\Ω

∇φλ · ∇ϕ
√

1− |∇φλ|2

=

∫

RN\Ω
− div

(

∇φλ
√

1− |∇φλ|2

)

ϕ−
∫

∂Ω

∂νφλ
√

1− |∂νφλ|2
ϕ dσ

= −
∫

∂Ω

∂νφλ
√

1− |∂νφλ|2
ϕ dσ

which shows that φλ is the (unique) weak solution of (BI) with ρλ given by (4.8). �

The next proposition shows that λ∗ is the unique value λ such that ρλ is actually a probability
measure.

Proposition 4.11. Let Ω ⊂ RN be of class C2,α and for all λ > 0 let φλ be the unique solution
of (4.7). Then the value λ∗ from Proposition 4.2 is the unique value of λ ∈ (0,+∞) such that the
measure

dρλ = − ∂νφλ
√

1− |∂νφλ|2
dσ, x ∈ ∂Ω,

is a probability measure on ∂Ω.

Proof. Step 1 in Theorem 4.7 shows that φρ∗ = φλ∗ . Moreover, since Theorem 4.7 and Propo-
sition 4.9 also imply that φρ∗ and φλ∗ are solutions of (BI) with right-hand sides ρ∗ and ρλ∗
respectively, we can conclude that ρ∗ = ρλ∗ . Thus the existence of a value λ such that ρλ is a
probability measure on ∂Ω is proven and we just need to show its uniqueness. We can conclude if
we prove that the map

Υ : λ 7−→
∫

∂Ω
dρλ for λ ∈ (0,+∞)

is strictly increasing. For this purpose let λ1, λ2 ∈ (0,+∞) with λ1 < λ2 and, for i = 1, 2, φi := φλi
be the corresponding solutions of (4.7) and ρi := ρλi . Let us observe that φ̃1 := φ1 + λ2 − λ1 and
φ2 satisfy both the following problem







− div

(

∇φ
√

1− |∇φ|2

)

= 0 in RN \ Ω,

φ = λ2 in Ω,

while
lim

|x|→∞
φ̃1(x) = λ2 − λ1 > 0 = lim

|x|→∞
φ2(x).

Next we apply a comparison argument to φ̃1 and φ2, cf. [21, Theorem 10.1]. For this purpose, let

F (ξ) = (1− |ξ|2)−1/2, ξ ∈ RN with |ξ| < 1. Notice that for ψ := φ̃1 −φ2 and χt := tφ̃1+(1− t)φ2,
t ∈ [0, 1] we have

∇φ̃1
√

1− |∇φ̃1|2
− ∇φ2
√

1− |∇φ2|2
= F (∇φ̃1)∇φ̃1 − F (∇φ2)∇φ2 =

∫ 1

0

d

dt

(
F (∇χt)∇χt

)
dt = a(x)∇ψ,
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where

a(x) :=

∫ 1

0

(
F (∇χt(x)) + F ′(∇χt(x)) · ∇χt(x)

)
dt =

∫ 1

0
(1− |∇χt(x)|2)−3/2 dt.

Arguing as in Theorem 4.7 the function a(x) > 0 is bounded in bounded subsets of RN \Ω. Hence,
ψ satisfies the locally uniformly elliptic equation







− div(a(x)∇ψ) = 0 in RN \ Ω,
ψ = 0 in Ω,

lim
|x|→∞

ψ(x) = λ2 − λ1 > 0.

Therefore, the maximum principle applies and states that ψ attains its zero minimum on ∂Ω and
its positive maximum at infinity. On every bounded connected component Z of RN \Ω we get that
ψ ≡ 0 since ψ = 0 on ∂Z. On the unbounded component Z0 of RN \ Ω we get 0 < ψ < λ2 − λ1
and the Hopf Lemma implies that ∂νψ > 0 on ∂Z0 ⊂ ∂Ω, where ν is the exterior unit normal on
∂Ω. Thus, ∂νφ1 = ∂ν φ̃1 > ∂νφ2 on ∂Z0 which implies that Υ(λ1) < Υ(λ2) as claimed. �

An immediate consequence of Proposition 4.11 is the following uniqueness result.

Corollary 4.12. If Ω ⊂ RN is of class C2,α then the equilibrium measure is unique.

Without regularity assumptions on the domain we are able to show only some partial result
about the uniqueness of the equilibrium measure. This result is strictly related to the conjecture
that any minimizer of the functional Iρ is also a (weak) solution of the corresponding PDE.

Proposition 4.13. Let Ω ⊂ RN be bounded with no further regularity of ∂Ω. Suppose that the
equilibrium potential weakly solves (BI). Then the equilibrium measure is unique.

Proof. Let ρ∗ be an equilibrium measure for which φρ∗ weakly solves (BI) with right-hand side
ρ∗. Let ρ∗∗ be any other equilibrium measure. From Corollary 4.5 we know that the equilibrium
potentials φρ∗ and φρ∗∗ coincide. Since φρ∗ solves (BI), we have in particular

(4.9)

∫

RN

|∇φρ∗ |2
√

1− |∇φρ∗ |2
dx = 〈ρ∗, φρ∗〉.

But since 〈ρ∗, φρ∗〉 = 〈ρ∗∗, φρ∗∗〉 we get that (4.9) also holds for φρ∗∗ . By [7, Remark 2.8] this
implies that φρ∗∗ also solves (BI) with right-hand side ρ∗∗. Hence φρ∗ , φρ∗∗ are (identical) weak
solutions of (BI) with right-hand sides ρ∗, ρ∗∗, and therefore these measures coincide. �

We conclude this section with the following observation: the functionals E and H coincide on
solutions of (BI) but they can differ at a minimizer φρ of Iρ in case it is not a solution. However,
since H is well defined on each minimizer of the functional Iρ for all ρ ∈ X ∗ we can also study the
minimization of H(φρ) with respect to ρ ∈ P (∂Ω). The result is given next.

Proposition 4.14. There exists a measure ρ̃ such that

(4.10) H(φρ̃) = inf
ρ∈P (∂Ω)

H(φρ).

If φρ̃ and φρ∗ are both solutions of (BI) with the respective measures, then ρ̃ = ρ∗.

Proof. By Remark 2.4 we know that H(φρ) ≤ E(φρ) for every ρ ∈ X ∗. Moreover, if we take
a minimizing sequence {ρk}k∈N ⊂ P (∂Ω) for H, there exists ρ̃ ∈ P (∂Ω) such that, up to a
subsequence, ρk ⇀ ρ̃ weakly in the sense of measures and, by Lemma 3.7, φρk → φρ̃ strongly in
D1,2(RN ). Since H is lower-semicontinuous, cf. Remark 4.15, one finds

H(φρ̃) ≤ lim inf
k

H(φρk) = inf
ρ∈P (∂Ω)

H(φρ),
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and so we get (4.10). Finally, recalling that E and H coincide on solutions of (BI), we observe
that

inf
ρ∈P (∂Ω)

E(φρ) = E(φρ∗) = H(φρ∗) > H(φρ̃) = E(φρ̃) > E(φρ∗)

and hence equality holds. Therefore we conclude by Proposition 4.13. �

Remark 4.15. The functional H : X → [0,∞] is a proper, convex and lower semicontinuous
functional with domain

dom(H) = {φ ∈ X : H(φ) <∞}.
Moreover, H is continuous on dom(H)◦. Lower-semitcontinuity follows from Fatou’s lemma. The
continuity on dom(H)◦ can be found in [15, Corollary 2.5].

5. The approximated problem

Using (1.1) and (3.1), we can approximate, at least formally, the equation (BI) by

(5.1)







−
n∑

h=1

αh∆2hφ = ρ in RN ,

lim
|x|→∞

φ(x) = 0

where for h ∈ N the operator ∆2h(·) = div(|∇ · |2h−2∇·) is the 2h-Laplacian. Weak solutions of
(5.1) can be found as critical points of the Lagrangian functional

Inρ (φ) =
n∑

h=1

αh
2h

‖∇φ‖2h2h − 〈ρ, φ〉n

on the space X2n, which is defined as the completion of C∞
c (RN ) with respect to the norm

‖∇ · ‖2 + ‖∇ · ‖2n. A similar construction can be found in [24]. Naturally, we assume that
ρ ∈ X ∗

2n. The symbol 〈·, ·〉n denotes the duality bracket between X2n and X ∗
2n. Because of the

continuity, convexity and coercivity of the functional Inρ there exists a unique minimizer φnρ on
X2n which is also a weak solution of (5.1) and Inρ (φnρ ) ≤ 0. Observe that for all m 6 n we have
that X ⊂ X2n ⊂ X2m.

As in the Maxwell and Born-Infeld case, cf. Section 2, we define the electrostatic energy as
En(φ) := −Inρ (φ) and the Legendre-transform Hn of the Lagrangian Inρ is given by Hn(φ) =
∑n

h=1
2h−1
2h αh‖∇φ‖2h2h. For weak solutions φnρ the energy and the Legendre-transform of Inρ coincide

and hence

En(φnρ ) = Hn(φ
n
ρ ) = −Inρ (φnρ ) =

n∑

h=1

2h− 1

2h
αh‖∇φ‖2h2h.

For this reason, in the discussion of equilibrium measures we will consider only the following
minimization problem

min
ρ∈P (∂Ω)

Hn(φ
n
ρ ).

The next result shows that, for n large, the functional Inρ is well defined in X2n for all ρ ∈ P (∂Ω)
and so, the existence of the unique minimizer φnρ is guaranteed.

Lemma 5.1. If n > N/2 then X2n ⊂ Cb(RN ) and hence P (∂Ω) ⊂ X ∗
2n. Moreover, X2n embeds

compactly into Cb(D) for every bounded set D ⊂ RN .
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Proof. If φ ∈ X2n, then |∇φ| ∈ L2(RN ) and therefore φ ∈ L2∗(RN ). We will show that there exists
C > 0 such that

‖φ‖∞ ≤ C(‖∇φ‖2 + ‖∇φ‖2n).
We argue similarly as in [16, Proposition 8]. Let us consider a family of N -dimensional cubes Qk
such that |Qk| = 1 and

⋃

kQk = RN and ϕ ∈ C∞
c (RN ). For every x, y ∈ RN and t ∈ [0, 1] we have

ϕ(x)− ϕ(y) =

∫ 1

0
∇ϕ(tx+ (1− t)y) · (x− y)dt,

and averaging with respect to y on an arbitrary Qk,

ϕ(x)−
∫

Qk

ϕ(y)dy =

∫

Qk

(∫ 1

0
∇ϕ(tx+ (1− t)y) · (x− y)dt

)

dy.

Then, if x ∈ Qk,

|ϕ(x)| ≤
∣
∣
∣
∣

∫

Qk

ϕ(y)dy

∣
∣
∣
∣
+

∫

Qk

(∫ 1

0
|∇ϕ(tx+ (1− t)y) · (x− y)|dt

)

dy

≤ ‖ϕ‖L2∗ (Qk)
+

N∑

i=1

∫

Qk

(∫ 1

0
|∂iϕ(tx+ (1− t)y)|dt

)

dy

≤ C‖∇ϕ‖2 +
N∑

i=1

∫ 1

0




1

(1− t)N

(
∫

(1−t)Qk+tx
|∂iϕ(y)|2ndy

) 1
2n

(1− t)
N(2n−1)

2n



 dt

≤ C‖∇ϕ‖2 +N

∫ 1

0

[

(1− t)−
N
2n ‖∇ϕ‖L2n((1−t)Qk+tx)

]

dt

≤ C‖∇ϕ‖2 +
2Nn

2n−N
‖∇ϕ‖2n.

The conclusion X2n ⊂ Cb(RN ) follows now from a density argument. Since the L∞-estimate
implies that X2n ⊂ W 1,2n(B) for every ball B ⊂ RN and since we have 2n > N we get the
compact embedding of X2n into Cb(B). �

Lemma 5.2. Let n > N/2. Then there exists a constant Cn > 0 such that for every ρ ∈ P (∂Ω)
‖∇φnρ‖2 + ‖∇φnρ‖2n ≤ Cn.

The constant Cn is uniformly bounded if n is bounded away from N/2.

Proof. The proof of Lemma 5.1 shows that there exists Cn > 0 with

‖φnρ‖∞ ≤ Cn(‖∇φnρ‖2 + ‖∇φnρ‖2n),
and that Cn is uniformly bounded if n is bounded away from N/2. Then

0 ≥ Inρ (φnρ ) ≥
αn
2n

‖∇φnρ‖2n2n +
α1

2
‖∇φnρ‖22 − Cn(‖∇φnρ‖2 + ‖∇φnρ‖2n)

and we conclude. �

Next we give the counterpart of Lemma 3.7. The proof, based on Clarkson’s inequalities, is
almost the same as the one of Lemma 3.7 with Lemma 5.2 replacing Lemma 3.6. We omit the
details .

Lemma 5.3 (Continuous dependence of φnρ on ρ). Let n > N/2. If ρk, ρ ∈ P (∂Ω) with ρk ⇀ ρ as
k → ∞ weakly in the sense of measures then φnρk → φnρ strongly in X2n and locally uniformly on

RN , as k → ∞.
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We now establish existence and uniqueness of the equilibrium measure ρ∗,n for Hn and show
that φnρ∗,n is constant on Ω. First, we assume as before only boundedness of Ω and no further

regularity. We need to adapt the proof of Lemma 3.8. Since φnρ is a weak solution of (5.1) on RN

we get that φnρ weakly solves

−
n∑

h=1

αh∆2hφ
n
ρ = 0 on B

where B is an open ball with B ∩ suppρ = ∅. By [25, Lemma 1] we obtain that φnρ is C1 on

RN \supp ρ and hence it satisfies (3.9) on B with a(x) =
∑n

h=1 αh|∇φnρ (x)|2h−2 being a continuous

function which is locally bounded on RN \ suppρ and bounded away from zero. Therefore, [21,
Theorem 8.19] applies and we can finish the proof as in Lemma 3.8. The remaining results of
Section 3 stay valid for φnρ without any change. Likewise, the results of Section 4 from Theorem 4.1
up to and including Lemma 4.6 stay true without change. This all works under the only assumption
that Ω is bounded. In particular, we have that the equilibrium potential is always unique.

It remains to establish uniqueness of the equilibrium measure, and here we need (as before)
more regularity of ∂Ω. We do not need any analogue for Theorem 4.7 since we already have that
φnρ∗,n is a weak solution of (5.1) with right-hand side ρ∗,n. Furthermore φnρ∗,n weakly solves

(5.2)







−∑n
h=1 αh∆2hφ = 0 in RN \ Ω,

φ = λ in Ω,

lim
|x|→∞

φ(x) = 0.

with λ = λ∗,n = 〈ρ∗,n, φnρ∗,n〉. The existence of a weak solution φλ of (5.2) for any λ > 0 follows
from minimization of a suitable functional in a space similar to X2n. We leave these details to the
reader. The C1,α-regularity of this φλ on BR(0)\Ω for every R > 0 follows by assuming ∂Ω ∈ C1,α

and combining Theorem 1 and Lemma 1 from [25]. This leads to the definition of the positive and
bounded measure

(5.3) dρnλ := −
(

n∑

h=1

αh|∂νφnλ|2h−2

)

∂νφ
n
λ dσ

as in Proposition 4.9. Note that due to the uniform ellipticity of (5.2) in a neighbourhood of the
boundary, the Hopf Lemma shows that dρnλ is strictly positive on the boundary of the unbounded

connected component of RN \ Ω. The characterization of the value λ∗,n as the unique value such
that dρnλ is a probability measure on ∂Ω is then established in the same way as in Proposition 4.11
with the direct consequence of uniqueness of the equilibrium measure ρ∗,n. Notice that this works
under the assumption ∂Ω ∈ C1,α. The following statement summarizes these results.

Theorem 5.4. Let n > N/2 and assume ∂Ω ∈ C1,α. There exists a unique equilibrium measure
ρ∗,n ∈ P (∂Ω) for Hn. Moreover, φnρ∗,n = λ∗,n on Ω̄ and for every µ ∈ P (∂Ω)

(5.4) λ∗,n := 〈ρ∗,n, φnρ∗,n〉 = 〈µ, φnρ∗,n〉.

Remark 5.5. Based on the local C1,α regularity of φnρ∗,n we can also improve the regularity. In

case ∂Ω ∈ C2,α we can interpret the differential equation −∑n
h=1 αh∆hφ

n
ρ∗,n = 0 on RN \ Ω as a

linear differential equation for φnρ∗,n with locally α-Hölder continuous and locally uniformly elliptic

coefficients. This leads to local C2,α regularity up to the boundary and in particular that φnρ∗,n is a

classical solution on RN \Ω.
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The remaining part of this section is devoted to show that the sequence ρ∗,n weakly converges to
a limit measure ρ̄ (Lemma 5.8) which is in fact an equilibrium measure for the Born-Infeld energy
E (Proposition 5.9).

Lemma 5.6. Let N/2 < m < n and ρ ∈ P (∂Ω). Then

Imρ (φmρ ) < Inρ (φnρ )
and

Hn(φnρ ) < Hm(φmρ ).

Proof. The conclusion follows easily observing that

Imρ (φmρ ) ≤ Imρ (φnρ ) < Inρ (φnρ )
and, since φnρ , φ

m
ρ are weak solutions,

Hn(φnρ ) = −Inρ (φnρ ) < −Imρ (φmρ ) = Hm(φmρ ).

�

For n ∈ N, let us consider hn := minρ∈P (∂Ω)Hn(φρ) = Hn(φnρ∗,n) and In := minψ∈X2n Inρ∗,n(ψ) =
Inρ∗,n(φnρ∗,n). As an immediate consequence of Lemma 5.6 and of the fact that In = −hn, we have
the following monotonicity result.

Lemma 5.7. The sequence {hn}n>N/2 is strictly decreasing and the sequence {In}n>N/2 is strictly
increasing.

Lemma 5.8. There exists ρ̄ ∈ P (∂Ω) such that ρ∗,n ⇀ ρ̄ weakly in the sense of measures, φnρ∗,n ⇀

φρ̄ weakly in X2m for all m > N/2 and uniformly on compact subsets of RN as n → ∞. Here
φρ̄ ∈ X is the unique minimizer of Iρ̄ : X → R. Moreover

(5.5) H(φρ̄) 6 lim
n

Hn(φnρ∗,n).

Proof. Let ρ̄ ∈ P (∂Ω) such that, up to subsequences, ρ∗,n ⇀ ρ̄ weakly in the sense of measures, as
n→ ∞. Let m,n ∈ N with N/2 < m 6 n. Since

Hm(φnρ∗,n) 6 Hn(φnρ∗,n) = hn 6 h1,

we see that ‖∇φnρ∗,n‖2+‖∇φnρ∗,n‖2m 6 C(m). Therefore, up to a subsequence, {φnρ∗,n}n∈N is weakly

convergent in X2m and, by Lemma 5.1, locally uniformly in RN . By a diagonalization argument,
we deduce that the weak limit φ ∈ ⋂m>1 X2m. The fact that φ ∈ X (i.e., ‖∇φ‖∞ ≤ 1) follows as
in [7, Theorem 5.2]. Let I := limn→∞ In.

Let us show that I = Iρ̄(φ). First note that

In ≤ Inρ∗,n(φ) ≤ Iρ∗,n(φ) = Iρ̄(φ) + 〈ρ̄− ρ∗,n, φ〉
︸ ︷︷ ︸

→0 as n→∞

which implies that I ≤ Iρ̄(φ). Now let us show the reverse inequality. Next note that since
Imρ∗,m(φnρ∗,n) ≤ Inρ∗,m(φnρ∗,n), for all m 6 n, and by weak lower semicontinuity

Imρ∗,m(φ) ≤ lim inf
n

Imρ∗,m(φnρ∗,n) ≤ lim inf
n

Inρ∗,n(φnρ∗,n)
︸ ︷︷ ︸

=In

+ lim
n→∞

〈ρ∗,n − ρ∗,m, φnρ∗,n〉

= I + 〈ρ̄− ρ∗,m, φ〉
where we have used that φnρ∗,n → φ uniformly on ∂Ω as n → ∞. Subtracting 〈ρ̄ − ρ∗,m, φ〉 from
both sides, we get

Imρ̄ (φ) ≤ I.
Passing to the limit on m we get Iρ̄(φ) ≤ I. Altogether we have obtained the claim Iρ̄(φ) = I.



EQUILIBRIUM MEASURES AND EQUILIBRIUM POTENTIALS IN THE BORN-INFELD MODEL 21

To see that φ = φρ̄ observe first that we have the inequalities

In ≤ Inρ∗,n(ψ) ≤ Iρ̄(ψ) + 〈ρ̄− ρ∗,n, ψ〉 for all ψ ∈ X .
This implies

Iρ̄(φ) = I = lim
n→∞

In ≤ Iρ̄(ψ) for all ψ ∈ X
so that φ = φρ̄.

Finally, it remains to show that (5.5) holds. By the monotonicity of hn from Lemma 5.7 and
hn ≥ 0 we infer that h∞ := limn→∞ hn exists. Notice that the lower semicontinuity and the fact
that Hm(φnρ∗,n) 6 Hn(φnρ∗,n) for m 6 n, imply that, for every m ∈ N, we have

Hm(φρ̄) ≤ lim inf
n

Hm(φnρ∗,n) ≤ lim inf
n

Hn(φnρ∗,n) = h∞.

Hence (5.5) holds. �

Now we can finally show that the weak limit ρ̄ of the sequence ρ∗,n is indeed an equilibrium
measure for the Born-Infeld energy E .
Proposition 5.9. The measure ρ̄ is an equilibrium measure for E considered in the Section 4.
In particular we have φρ∗ = φρ̄. If ∂Ω is C2,α for some α > 0 then ρ̄ is the unique equilibrium
measure for E.
Proof. By (5.4) and Lemma 5.8, we have that for every µ ∈ P (∂Ω)

λ̄ := 〈ρ̄, φρ̄〉 = 〈µ, φρ̄〉.
Hence

Iµ(φµ) 6 Iµ(φρ̄) = Iρ̄(φρ̄) + 〈ρ̄− µ, φρ̄〉 = Iρ̄(φρ̄),
which implies that ρ̄ is an equilibrium measure for E . Since by Corollary 4.5 we know that the
equilibrium potential for E is unique, this implies φρ∗ = φρ̄. Uniqueness of the equilibrium measure
under the assumption ∂Ω ∈ C2,α is already contained in Corollary 4.12. �

6. Characterization of balls via equilibrium measures

Theorem 6.1. Let Ω ⊂ RN be of class C2,α and let φρ∗ be the equilibrium potential for the
Born-Infeld electrostatic model. Then Ω is a ball if and only if the equilibrium distribution ρ∗ is
a constant multiple of the surface measure dσ on ∂Ω. The same characterization is true for the
approximated model.

Proof. One direction of the theorem is trivial: if Ω is a ball, then the uniqueness of the equilibrium
potentials (see Corollary 4.5 and Theorem 5.4) implies their radial symmetry. In particular, ∂νφρ∗
and ∂νφ

n
ρ∗,n are constant on the boundary of the ball. Therefore, using Proposition 4.11 for φρ∗

and its counterpart, formula (5.3), for φnρ∗,n , the corresponding equilibrium measures given by

(6.1) dρ∗ = − ∂νφρ∗
√

1− |∂νφρ∗ |2
dσ

and

(6.2) dρ∗,n = −
(

n∑

h=1

αh|∂νφnρ∗,n |2h−2

)

∂νφ
n
ρ∗,n dσ

are both are constant multiples of dσ on the boundary of the ball.
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Now we consider the nontrivial part of the theorem. It will follow from an application and slight
modification of [29, Theorem 1], which itself is based on the moving plane method of Alexandrov-
Serrin [1, 31]. Define

g(s) =
1√

1− s2
for s ∈ [0, 1) and gn(s) =

n∑

h=1

αhs
2h−2 for s ∈ [0,∞)

with αh as given in (1.1). Notice that

g ∈ C2[0, 1), and g(s) > 0, (g(s)s)′ > 0 for all s ∈ [0, 1)

and

gn ∈ C2[0,∞), and gn(s) > 0, (gn(s)s)
′ > 0 for all s ∈ [0,∞).

Observe that the function gn directly satisfies condition (I)1 of [29, Theorem 1], whereas g satisfies
(I)1 not on [0,∞) but only on [0, 1). As we will see later this is still sufficient since [0, 1) covers
the range of |∇φρ∗ |.

Next we recall the properties of φρ∗ and φnρ∗,n. Since we are assuming that ρ∗ and ρ∗,n are
constant multiples of the surface measure dσ on ∂Ω, and by (6.1) and (6.2), we get that the
functions g(∂νφρ∗)∂νφρ∗ and gn(∂νφ

n
ρ∗,n)∂νφ

n
ρ∗,n are both constant on ∂Ω. Since g(s)s and gn(s)s

are strictly increasing this implies that ∂νφρ∗ and ∂νφ
n
ρ∗,n are both constant on ∂Ω. Proposition 4.9

implies for φρ∗ that this constant is strictly negative. The same is true for φnρ∗,n by the counterpart
of Proposition 4.9 explained after (5.3). The fact that ∂νφρ∗ is strictly negative on ∂Ω implies

again by Proposition 4.9 that RN \Ω only consists of one connected (unbounded) component and
0 < φρ∗ < λ∗ in RN \Ω. The same holds for φnρ∗,n .

We can now list the properties of the equilibrium potentials. Using Theorem 4.7, Proposi-
tion 4.9 and Proposition 4.11, for every ball Br(0), with r > 0 large enough, the potential φρ∗ is

a C2,α(Br(0) \Ω)-solution of

(6.3)







− div(g(|∇φρ∗ |)∇φρ∗) = 0, in RN \Ω,
0 < φρ∗ < λ∗, in RN \Ω,

φρ∗ = λ∗ on ∂Ω,
∂νφρ∗ = const. < 0 on ∂Ω,

lim
|x|→∞

φρ∗(x) = 0

with supBr(0)
|∇φρ∗ | = 1− θ(r) < 1 for some θ(r) ∈ (0, 1).

Similarly, as stated in Remark 5.5, for every ball Br(0), with r > 0 large enough, the potential

φnρ∗,n is a C2,α(Br(0) \ Ω)-solution of

(6.4)







− div(gn(|∇φnρ∗,n |)∇φnρ∗,n) = 0, in RN \ Ω,
0 < φnρ∗,n < λ∗ in RN \ Ω,

φnρ∗,n = λ∗,n on ∂Ω,
∂νφ

n
ρ∗,n = const. < 0 on ∂Ω,

lim
|x|→∞

φnρ∗,n(x) = 0.

To finish the proof, let us first consider the approximated model (6.4). Here the function gn and
the problem (6.4) directly fulfill the assumptions of case (I) of [29, Theorem 1] which yields radial
symmetry of φnρ∗,n and that Ω is a ball.

Now let us consider the Born-Infeld model (6.3). Here the function g is not defined on [0,∞) as
required by [29, Theorem 1], but only on [0, 1), where it also satisfies the requirement (I)1, namely
g ∈ C2[0, 1), g(s) > 0, (g(s)s)′ > 0 on [0, 1). If one investigates the proof of [29, Theorem 1] then
it is clear that (I)1 is required for the linearized equation fulfilled by w(x) = φρ∗(x

λ) − φρ∗(x).



EQUILIBRIUM MEASURES AND EQUILIBRIUM POTENTIALS IN THE BORN-INFELD MODEL 23

Here xλ stands for the reflection of x at a hyperplane Tλ :=
{
x ∈ RN : x1 = λ

}
and λ denotes the

geometrically critical position of the hyperplane. This linearized equation is determined as

(6.5) div(A(x)∇w) = 0 on {x ∈ RN : x1 > λ and xλ 6∈ Ω},
where

A(x)∇w :=

∫ 1

0

d

dt
[g(|∇wt|)∇wt]dt =

[
∫ 1

0

(

1
√

1− |∇wt|2
Id+

∇wt ⊗∇wt
(1− |∇wt|2)3/2

)

dt

]

∇w

and wt(x) := tφρ∗(x
λ)+(1−t)φρ∗(x). Clearly, when x ranges in a compact subset K of the domain

of definition of w then |∇wt(x)| takes values in a compact subset of [0, 1) and A(x) is uniformly
positive definite on K. As a consequence, (6.5) is uniformly elliptic in K. This is sufficient for
the proof of [29, Theorem 1] when applied to problem (6.3). In fact, this shows that it is enough
to satify the requirement (I)1 on range(|∇φρ∗ |) instead of [0,∞). As a result, we get that φρ∗ is
radially symmetric and that Ω is a ball. This completes the proof of Theorem 6.1. �
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