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STOCHASTIC GALERKIN-COLLOCATION SPLITTING
FOR PDES WITH RANDOM PARAMETERS

TOBIAS JAHNKE AND BENNY STEIN

Abstract. We propose a numerical method for time-dependent, semilinear partial differ-
ential equations (PDEs) with random parameters and random initial data. The method is
based on an operator splitting approach. The linear part of the right-hand side is discretized
by a stochastic Galerkin method in the stochastic variables and a pseudospectral method in
the physical space, whereas the nonlinear part is approximated by a stochastic collocation
method in the stochastic variables. In this setting both parts of the random PDE can be
propagated very efficiently. The Galerkin method and the collocation method are combined
with sparse grids in order to reduce the computational costs. This approach is discussed in
detail for the Lugiato-Lefever equation, which serves as a motivating example throughout,
but also applies to a much larger class of random PDEs. For such problems our method is
computationally much cheaper than standard stochastic Galerkin methods, and numerical
tests show that it outperforms standard stochastic collocation methods, too.

Keywords. Uncertainty quantification, splitting methods, spectral methods, (generalized)
polynomial chaos, Lugiato-Lefever equation, nonlinear Schrödinger equation, sparse grids,
stochastic Galerkin method, stochastic collocation

1. Introduction

Partial differential equations (PDEs) provide well-established models for many processes
and phenomena in science and technology. In many real-life applications, however, some part
of the information that is required to solve the problem – parameters, coefficient functions,
initial or boundary data – is not available or cannot be measured with the desired accuracy.
This is the reason why numerical methods for PDEs with uncertain or random data have
received ever-increasing attention in the last decades. Modelling randomness in the data and
understanding the influence of this randomness on the solution of the problem are central goals
of uncertainty quantification. Under this term, a new research area has emerged combining
stochastics, analysis, approximation theory, numerical mathematics, with applications in many
fields.

The main difficulty is that the solution of such a random1 PDE is a function which does
not only depend on the spatial variable x and (for time-dependent problems) on time t, but
also on an additional vector y which represents the randomness of the data. A very popular
way to deal with the randomness are generalized polynomial chaos expansions (PCE): the
solution is expanded in a series of multivariate orthogonal polynomials with respect to y,
and the goal is then to approximate the deterministic coefficient functions which only depend
on t and x. There are several approaches to do this. Stochastic collocation methods rely on
solving the same deterministic PDE with different parameters for a number of carefully chosen
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1The term random PDE denotes PDEs with random data. This is different from stochastic PDEs where

randomness is inherent in the dynamics.
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vectors y(j). From these sample solutions an approximation of the unknown coefficients of the
truncated PCE can be obtained, e.g., via high-dimensional quadrature formulas. Such schemes
are discussed, e.g., in [1, 38, 37, 53]. Stochastic Galerkin methods are based on a different
idea. The problem is considered in a space spanned by finitely many of the orthonormal
polynomials in y, and imposing the classical Galerkin condition leads to a system of PDEs for
the coefficient functions. This approach was discussed and analyzed, e.g., in [47, 54, 36, 20, 2].
The resulting system is usually coupled and large, and approximating its solution poses a
considerable numerical challenge unless only a very small number of polynomials is considered.
This is clearly a disadvantage of the stochastic Galerkin method in comparison to the stochastic
collocation method where only a number of decoupled PDEs has to be solved, which can
be done in parallel. Moreover, handling PDEs with nonlinear terms is cumbersome in the
Galerkin ansatz. On the other hand, the number of equations in the Galerkin method is
usually noticeably smaller than for the collocation approach if one uses the same polynomial
ansatz space; see the discussion below in Section 3.5. A brief comparison of Galerkin and
collocation methods can be found in [51, Sec. 6.1]; see also [3] for a more detailed discussion.

The evolution equation which has initiated our research and which serves as a motivating
example is the Lugiato-Lefever equation which models the generation of frequency combs in
a ring resonator. Such frequency combs are crucial for increasing the data transmission rate
through optical fibers. The Lugiato-Lefever equation is a semilinear Schrödinger equation with
cubic nonlinearity and additional damping and forcing terms. It involves three parameters
which represent dispersion, detuning and forcing. These parameters and also the initial data
are uncertain in the sense that they can only be measured up to a limited accuracy. Our main
objective is the construction of an efficient numerical method for a class of random PDEs
which contains the Lugiato-Lefever equation as one special case.

Our method makes use of the observation that solving only the linear part or only the
nonlinear part of the Lugiato-Lefever equation is numerically much easier than a direct ap-
proximation of the full equation. In absence of the nonlinear part, the stochastic Galerkin
method leads to a system of PDEs which can be decoupled. Hence, the linear part of the
Lugiato-Lefever equation can be propagated at rather low numerical costs. For the nonlin-
ear part, however, stochastic collocation is much more favorable, because it leads to a set
of ordinary differential equations (ODEs) with explicitly known solution. This suggests to
approximate the full PDE including both the linear and the nonlinear terms by applying the
Strang splitting method, which allows us to treat each of the two parts in its “natural” setting,
and to solve it in a very efficient way.

Numerical methods for elliptic PDEs with random coefficients have been proposed and an-
alyzed, e.g., in [12, 13, 47] and many other references. A number of authors have considered
parabolic [24, 28] or hyperbolic [37, 22, 34, 26] PDEs. For an overview of uncertainty quantifi-
cation and corresponding numerical methods, we refer the reader to the books [46, 52, 29, 44].
Splitting methods are very popular for time-integration of PDEs, but it seems that their use-
fulness for uncertainty quantification has so far not been fully exploited. In [50, 10], operator
splitting has been applied to solve hyperbolic PDEs with random coefficients, but in both
cases this was done in order to decompose the problem into globally hyperbolic subproblems,
whereas our motivation to use the splitting approach is to reduce the computational costs.

In Section 2 we introduce the Lugiato-Lefever equation as a motivating model problem.
Our method does not only apply to this PDE, but to a more general problem class which
is specified in Section 3.1. In Sections 3.2–3.5, we briefly review important building blocks
for our approach, namely polynomial chaos expansions, stochastic Galerkin and collocation
methods, and sparse grids. The new splitting method is presented in Section 4. Numerical
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experiments are shown in Section 5. In these examples the new splitting method turns out to
be more efficient than a pure stochastic collocation method, which underlines the advantage
of our approach.

2. A motivating example: The Lugiato-Lefever equation

2.1. The Lugiato-Lefever equation with deterministic data. The Lugiato-Lefever equa-
tion

∂tu(t, x) = ia∂2
xu(t, x)− (1 + ib)u(t, x) + f + i|u(t, x)|2u(t, x), t ≥ 0, x ∈ T,(1a)

u(0, x) = u0(x)(1b)

is a cubic semilinear Schrödinger equation on the one-dimensional torus T = R/2πZ with
additional damping, detuning and forcing terms; cf. [33]. The quantities a, b and f are
real-valued parameters. The Lugiato-Lefever equation has been proposed as a model for the
emergence of frequency combs in a ring resonator; cf. [9, 23]. The damping term −u in (1a)
describes radiation into an optical waveguide to which the ring resonator is coupled. The
forcing term f represents an external pump which is tuned to a resonance wavelength. If the
parameters a, b and f and the initial data in (1b) are chosen in a suitable way, then the
solution of (1a) converges to a soliton-like steady state u?(x) = limt→∞ u(t, x) with Fourier
coefficients

(2) ûk =
1√
2π

∫
T
e−ikxu?(x)dx, k ∈ Z.

Then, the graph of k 7→ log(|ûk|) has a particular structure which is called a frequency comb,
see Figure 3a in Section 5 for an example. Understanding this effect via numerical simulations
is important for signal processing, because the frequency combs generated by such a ring
resonator can be used as optical sources for high-speed data transmission. The central probem
is that technically suitable frequency combs occur only for special choices of the parameters
a, b and f (cf. [35]), and that for a large set of initial data the solution converges to a steady
state which is spatially constant and hence technically useless.

Before we proceed to the case of random data we briefly sketch how the Lugiato-Lefever
equation can be solved numerically when the parameters and the initial data are known.
Splitting methods are particularly attractive for this task. These time-stepping methods ap-
proximate the solution of (1) by solving the three PDEs

(S1) ∂tv = ia∂2
xv, (S2) ∂tv = −(1 + ib)v + f and (S3) ∂tv = i|v|2v(3)

one after the other in each time-step. The advantage of such a decomposition is that each of
the subproblems can be solved very efficiently. For every time interval [t0, tend] the solution
of (S1) with given initial data in L2(T) can be computed via the Fourier transform. For
numerical computations the infinite Fourier series has to be replaced by a finite sum, and
the Fourier transform is replaced by the discrete fast Fourier transform. Strictly speaking,
this yields only an approximation of the solution of (S1) in finitely many grid points, but
the error of this approximation is well understood and can be made arbitrarily small, see e.g.
[32, Thm. III.1.8]. The subproblems (S2) and (S3) do not involve any spatial derivatives
and are thus equivalent to ODEs in each point x. The exact solution of (S2) is given by the
variation-of-constants formula and the exact solution of (S3) is explicitly stated in equation
(37) below.

For j ∈ {1, 2, 3} let Φ
(j)
t be the flow of the differential equation (Sj), i.e. v(t) = Φ

(j)
t−t0(v0) is

the solution of (Sj) at time t ≥ t0 with initial condition v(t0) = v0. Then, the Strang splitting
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with step-size τ > 0 is defined by

un+1 = Φ
(1)
τ/2 ◦ Φ

(2)
τ/2 ◦ Φ(3)

τ ◦ Φ
(2)
τ/2 ◦ Φ

(1)
τ/2(un), n = 0, 1, 2, . . .

This method provides computationally cheap (second-order in time) approximations un ≈
u(tn, ·) at times tn = nτ . A Strang splitting scheme for the Lugiato-Lefever equation was
analyzed in detail in [25]. In this reference, the right-hand side of the PDE was split into
two instead of three parts, but we will see in Section 4 that splitting into three parts is more
favorable when the coefficients are random.

2.2. The Lugiato-Lefever equation with random data. Henceforth we consider the sit-
uation that the parameters a, b and f in (1a) are not given exactly but only up to some
uncertainty. To account for the randomness we introduce a new variable

y = (y1, . . . , yd) ∈ Γ(1) × · · · × Γ(d) = Γ, yi ∈ Γ(i) ⊆ R

on a suitable subset Γ ⊆ Rd and suppose that y is the realization of a random variable
Y : Ω → Γ on a probability space (Ω,Σ,P). We assume that the parameters a = a(y),
b = b(y), f = f(y) and the initial data u0 = u0(x, y) depend on y in a known, deterministic
way. Hence, instead of (1) we have to solve the random PDE

∂tu(t, x, y) = ia(y)∂2
xu(t, x, y)− (1 + ib(y))u(t, x, y) + f(y) + i|u(t, x, y)|2u(t, x, y),(4a)

u(0, x, y) = u0(x, y).(4b)

For every given realization y = Y (ω), ω ∈ Ω, the problem (4) can be solved in the same way
as the original problem (1), but our goal is to solve (4) when only the probability density of
Y is known.

The numerical method which will be constructed in Section 4 is not at all restricted to the
Lugiato-Lefever equation (4). Our approach can be applied to all PDEs of a certain type which
will be specified in the following section. We return to the special case of the Lugiato-Lefever
equation later in Sections 4 and 5.

3. Problem setting and classical UQ methods

3.1. Problem setting. We consider time-dependent, semilinear evolution equations of the
form

∂tu(t, x, y) = α(y)Au(t, x, y) + β(y)Bu(t, x, y) + γ(y)g(x) + F (u(t, x, y)),(5a)
u(0, x, y) = u0(x, y),(5b)

for t ≥ 0, x ∈ S = TN and y = (y1, . . . , yd) ∈ Γ(1) × · · · × Γ(d) = Γ ⊆ Rd. Henceforth,
the following assumptions are made. The operator A : L2(S) ⊇ D(A) → L2(S) generates a
strongly continuous semigroup (etA)t≥0 and B : L2(S) → L2(S) is a bounded operator which
maps D(A) into itself. Both operators act on u(t, ·, y) for fixed t and y. The nonlinearity
F : D(A) → D(A) is locally Lipschitz continuous. For every y ∈ Γ the parameters α(y)
and γ(y) are real scalars, and if A does not generate a group, then α(y) must be positive.
The parameter β(y) can be written as β(y) = β0 + β1(y) with β1(y) ∈ R and a constant
β0 ∈ C. In most applications, β0 is simply zero such that β(y) is real, but a nonzero β0

appears, for example, in the Lugiato-Lefever equation. The forcing term and the initial data
have the regularity g ∈ D(A) and u0(·, y) ∈ D(A) for every y ∈ Γ. These assumptions imply
local wellposedness of problem (5) in the classical sense for each y ∈ Γ, i.e. there exists
T = T (y) > 0 and

(6) u(·, ·, y) ∈ C([0, T ),D(A)) ∩ C1([0, T ), L2(S))
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which solves (5). This follows from [42, Thm. 6.1.7] and the remark thereafter.
A crucial assumption for our approach is that for known constants α ∈ R, β ∈ C and γ ∈ R

each of the three deterministic subproblems

∂tv(t, x) = αAv(t, x), v(t0, ·) ∈ D(A),(7a)

∂tv(t, x) = βBv(t, x) + γg(x), v(t0, ·) ∈ L2(S),(7b)
∂tv(t, x) = F (v(t, x)), v(t0, ·) ∈ D(A)(7c)

can be solved numerically at low costs for t ≥ t0 (again with α > 0 if A does not generate
a group). This assumption seems to be somewhat restrictive, but actually there are many
applications where this is indeed true. One example is the linear Schrödinger equation, which
is obtained for

D(A) = H2(S), Au = i∆u, Bu = V u, g ≡ 0, F (u) ≡ 0,

with a bounded potential V : S → R and β(y) = β1(y) ∈ R. Another example is the cubic
nonlinear Schrödinger equation where

D(A) = Hs(S), Au = i∆u, Bu = 0, g ≡ 0, F (u) = iν|u|2u

with s > N
2 and ν ∈ R. The Lugiato-Lefever equation (4) is recovered for N = 1 and

D(A) = H2(S), Au = i∂2
xu, Bu = iu, g ≡ 1, F (u) = i|u|2u

if we set α(y) = a(y), β(y) = i − b(y), and γ(y) = f(y) with a(y), b(y), f(y) ∈ R from (4).
Yet another example are reaction-diffusion equations such as, e.g.,

D(A) = H2(S), Au = ∂2
xu, Bu = −u,

with suitable functions F , g and real β(y) = β1(y) ∈ R. In all these examples, the subproblems
involving spatial derivatives can be solved via the Fourier transform because S = TN . We
remark, however, that the restriction to the N -dimensional torus S = TN is made in order to
keep the exposition simple. Other domains and boundary conditions can also be handled by
our method as long as the assumptions specified above are fulfilled. The requirement that B
is bounded may also be weakened, but then it is more difficult to keep track of the correct
function spaces for each of the subproblems. Our method can also be applied in cases where
the nonlinear operator F depends explicitly on y as long as the corresponding subproblem can
be solved efficiently.

As before, y is interpreted as a realization of a vector-valued random variable Y : Ω →
Γ, Y = (Y1, . . . , Yd), i.e. y = Y (ω) for some ω ∈ Ω, where (Ω,Σ,P) is a probability space.
Throughout it is assumed that Y1, . . . , Yd are stochastically independent, and that each Yi
has a known probability density function ρ(i) : Γ(i) → R. Typical choices are ρ(i)(yi) = 1

2 on
[−1, 1] for uniformly distributed Yi and ρ(i)(yi) = 1√

2π
exp(−y2

i /2) on (−∞,∞) for normally
distributed Yi.

If one is only interested in some deterministic quantity of interest (such as, e.g., the expected
value or variance) of the solution, one may solve (5) for a huge number of vectors y(j) ∈ Γ, j =
1, . . . , Q sampled from the distribution of Y . Afterwards, one may compute the quantity of
interest via the standard Monte Carlo estimators. The convergence rate of the naive Monte
Carlo method is known to be very slow. Although improvements such as multi-level or quasi-
Monte Carlo methods are available [21, 4, 8], we use a Monte Carlo method only for the
purpose of computing reference solutions.
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3.2. Generalized polynomial chaos expansions. From now on, we are only interested in
random variables which have finite second moments. For i ∈ {1, . . . , d} let

L2
ρ(i)

(Γ(i)) =
{
v : Γ(i) → C

∣∣∣ ‖v‖2ρ(i) <∞}
be the Hilbert space of measurable, square-integrable functions on Γ(i) with norm ‖v‖2

ρ(i)
=

〈v, v〉ρ(i) induced by the weighted inner product

〈v, w〉ρ(i) :=

∫
Γ(i)

v(yi)w(yi)ρ
(i)(yi)dyi.(8)

As usual, two functions are identified if they coincide outside of a set of Lebesgue measure
zero. Since Y1, . . . , Yd are independent by assumption, the probability density function of Y
is given by the product

ρ(y) = (ρ(1) ⊗ · · · ⊗ ρ(d))(y) =

d∏
i=1

ρ(i)(yi), y = (y1, . . . , yd).

The space L2
ρ(Γ) =

{
v : Γ→ C

∣∣∣ ‖v‖ρ <∞} with norm ‖ · ‖ρ induced by the inner product

〈v, w〉ρ :=

∫
Γ

v(y)w(y)ρ(y)dy

is again a Hilbert space. Henceforth we assume that the solutions from (6) satisfy T :=
infy∈Γ T (y) > 0 and that y 7→ u(t, x, y) belongs to L2

ρ(Γ) for fixed values of t ∈ [0, T ) and
x ∈ S.

For i = 1, . . . , d let (φ
(i)
j )j∈N0 be a complete set of real-valued orthonormal polynomials on

L2
ρ(i)

(Γ(i)) with the properties deg(φ
(i)
j ) = j and φ(i)

0 ≡ 1. Such polynomials can be computed
efficiently by the usual three-term recursions. Multivariate orthonormal polynomials in L2

ρ(Γ)
can be constructed via tensorisation: If we let

(9) φk(y) = (φ
(1)
k1
⊗ · · · ⊗ φ(d)

kd
)(y) =

d∏
i=1

φ
(i)
ki

(yi), y = (y1, . . . , yd)

for a multi-index k = (k1, . . . , kd) ∈ Nd0, then by construction we have 〈φj, φk〉ρ = δjk for
j,k ∈ Nd0, where δjk is the Kronecker delta. Now we expand the solution u of (6) in a
generalized polynomial chaos expansion (PCE)

u(t, x, y) =
∑
k∈Nd0

uk(t, x)φk(y), uk(t, x) = 〈u(t, x, ·), φk〉ρ,(10)

where {φk | k ∈ Nd0} is a complete set of orthogonal polynomials in L2
ρ(Γ). The equality (10)

has to be understood in the usual sense that for a.e. x ∈ S and t ≥ 0, the left-hand side is the
limit of the series on the right-hand side w.r.t. ‖ · ‖ρ. This expansion was introduced by Xiu
and Karniadakis in [55] as an extension to Wiener’s classical polynomial chaos expansion from
[49]. The convergence of generalized PCEs can be established in many cases of interest, since
criteria are available which can be verified for most of the usual distributions encountered in
practice, see [16]. From the PCE (10) the expectation and the variance of ω 7→ u(t, x, Y (ω))
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can easily be computed: Setting 0 = (0, . . . , 0) ∈ Nd0, we arrive at

E[u(t, x, Y )] =

∫
Γ

u(t, x, y)ρ(y)dy =
∑
k∈Nd0

uk(t, x)

∫
Γ

φk(y)ρ(y)dy = u0(t, x)

and

V[u(t, x, Y )] =

∫
Γ

∣∣∣ ∑
k∈Nd0\{0}

uk(t, x)φk(y)
∣∣∣2ρ(y)dy =

∑
k∈Nd0\{0}

|uk(t, x)|2

due to u0(t, x) = φ0(y)u0(t, x) and∫
Γ
φk(y)ρ(y)dy = 〈φk, φ0〉ρ = δk0.

From (10), one can also derive similar formulas for higher-order moments and other statistical
quantities of interest, such as the covariance function and the global sensitivity coefficients,
see e.g. [51].

Since only finitely many terms can be computed in practice, we consider the truncated PCE∑
φ∈Π

uφ(t, x)φ(y) ≈ u(t, x, y), uφ(t, x) = 〈u(t, x, ·), φ〉ρ.(11)

Here, Π is a set of multivariate orthogonal polynomials which corresponds to a finite set of
multi-indices in Nd0 which is admissible. We adopt this notion from [14, Sec. 2.2]. A subset
K ⊆ Nd0 is called admissible if it is finite and for each k ∈ K the backward neighborhood of k
belongs to K. The backward neighborhood of a multi-index k = (k1, . . . , kd) ∈ Nd0 is the set
{k − ei | i = 1, . . . , d with ki ≥ 1}, where ei is the i-th canonical unit vector in Rd. Typical
choices for the set Π are:

(i) All polynomials up to a given degree p in all single variables, i.e. Πf
p = {φk | |k|∞ ≤ p}.

(ii) All polynomials up to a given total degree q, i.e. Πt
q = {φk | |k|1 ≤ q}.

We use the more flexible description with general Π since it allows us to include other poly-
nomial sets which occur as half-exact sets of sparse grid quadrature formulas, see Section 3.5
or [14] for details.

Next, we explain two well-established classes of methods which rely on the expansion (11),
namely stochastic Galerkin and stochastic collocation methods. In principle, both approaches
may be used to approximate the solution of (5), and an ansatz space of the form span(Π) can
be used for the discretization in y. We use both methods as building blocks for the splitting
method introduced in Section 4 later on.

3.3. The stochastic Galerkin approach. We aim to approximate the coefficient functions
uφ(t, x) from (11) by

ũφ(t, x) ≈ uφ(t, x), ũ(t, x, y) =
∑
φ∈Π

ũφ(t, x)φ(y) ≈ u(t, x, y)

such that for all t ≥ 0, x ∈ S and φ ∈ Π the Galerkin condition

〈∂tũ(t, x, ·), φ〉ρ = 〈α
∑
ψ∈Π

Aũψ(t, x)ψ, φ〉ρ + 〈β
∑
ψ∈Π

Buψ(t, x)ψ, φ〉ρ(12)

+ g(x)〈γ, φ〉ρ + 〈F (ũ(t, x, ·)), φ〉ρ
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holds. The left-hand side of (12) reduces to

〈∂tũ(t, x, ·), φ〉ρ =
∑
ψ∈Π

∂tũψ(t, x)〈ψ, φ〉ρ = ∂tũφ(t, x).

Together with the right-hand side of (12), we arrive at

∂tũφ(t, x) =
∑
ψ∈Π

Aũψ(t, x)〈αψ, φ〉ρ +
∑
ψ∈Π

Buψ(t, x)〈βψ, φ〉ρ

+ g(x)〈γ, φ〉ρ + 〈F (ũ(t, x, ·)), φ〉ρ.(13)

In order to obtain a system of differential equations for the coefficients ũφ(t, x), the function
ũ(t, x, ·) in the last term has to be substituted by (10). This leads to a complicated expression
which, in general, cannot be simplified. In the special case of the LLE with F (u) = i|u|2u, one
would obtain

i〈|ũ|2ũ, φ〉ρ = i
∑
ψ1∈Π

∑
ψ2∈Π

∑
ψ3∈Π

ũψ1 ũψ2 ũψ3〈ψ1ψ2ψ3, φ〉ρ

for the last term in (13). Hence, each φ ∈ Π would require the computation of a triple sum.
The computational costs of this operation are far too expensive in almost every setting. This
is a crucial disadvantage of the standard Galerkin approach. The method which we present
later in Section 4 does not have this downside.

Suppose for a moment that the last term on the right-hand side of (13) can be computed
in some way or the other. Now we switch from polynomials φ and ψ to single indices j, k to
enumerate the set Π. Formally, we set P = card(Π) and choose a bijection η : {1, . . . , P} → Π.
Then we set ũj(t, x) := ũη(j)(t, x) for all j = 1, . . . , P . The coefficient vector ũ(t, x) :=
(ũj(t, x))j is now the solution of

∂tũ(t, x) = MαAũ(t, x) + MβBũ(t, x) + g(x)Vγ + VF (ũ(t, x))(14)

with matrices and vectors

Mα = (〈αφj , φk〉ρ)Pj,k=1 , Mβ = (〈βφj , φk〉ρ)Pj,k=1 ,(15a)

Vγ = (〈γ, φj〉)Pj=1 , VF (ũ(t, x)) = (〈F (ũ(t, x, ·)), φj〉ρ)Pj=1 ,(15b)

Aũ(t, x) = (Aũj(t, x))Pj=1 , Bũ(t, x) = (Bũj(t, x))Pj=1 .

All of the quantities in (15a) and (15b) contain certain inner products, which have to be ap-
proximated by a quadrature rule. The same holds for the initial values ũ(0, x) = (ũj(0, x))Pj=1,
which are computed by projecting the given initial value u0 from (5b) into the ansatz space
span(Π). The quadrature rule should provide the exact matrices Mα and Mβ at least if α
and β are constant, which means that all the products φψ for φ, ψ ∈ Π should be integrated
exactly. Therefore the quadrature formula should depend on the set Π. If the quadrature rule
is not a tensor product of one-dimensional quadrature formulas, then the two types of errors
involved so far, namely truncation and quadrature errors, influence each other. This leads to
a phenomenon called internal aliasing, which produces wildly inaccurate approximations in
most cases. As shown in [15], this can be avoided if the polynomials in Π and the quadrature
rule are chosen in a special way and not independently of each other. Although we do not
explain here why the phenomenon of internal aliasing occurs when quadrature is applied in a
naive way, we point out that in this paper we always choose the quadrature rule in such a way
that internal aliasing does not occur. Details will be explained in Section 4.

Equation (14) is a coupled system of P time-dependent nonlinear PDEs on S = TN . After
a space discretization for (14) using a grid with MN points, every function ũj is described
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by a vector of MN function values. For the classical polynomial sets Πf
K and Πt

K , we have
P = (K+1)d and P =

(
K+d
d

)
, respectively. One then obtains ODE systems of size (K+1)dMN

and
(
K+d
d

)
MN . Already for relatively small values of K, these systems are very large even in

cases where the dimension N of the “physical” domain S = TN is rather small, say N = 1 or
N = 2. Note that P grows with d and therefore depends on the stochastic dimension, too.

We conclude that a naive stochastic Galerkin approach is often not feasible in practice
for the Lugiato-Lefever equation (4) or other problems of the type (5). This is due to the
nonlinearity, which does not really fit into the Galerkin approach, and the large size of the
resulting discrete system.

3.4. The stochastic collocation approach. The starting point for stochastic collocation
methods is again the PCE from (10) and its truncated version (11). Instead of deriving a
coupled system of PDEs as in the Galerkin method, we choose a number of collocation points
y(1), . . . , y(Q) ∈ Γ and compute numerical approximations vj(t, x) ≈ u(t, x, y(j)), at least for
discrete values of t and x. Then, we have to determine the coefficients uφ(t, x) in such a way
that the truncated PCE (11) corresponds in some sense to the sample solutions vj(t, x) ≈
u(t, x, y(j)). This can be done via interpolation or via a (pseudo-)spectral approximation
procedure. We prefer the latter, since the choice of nodes and their manipulation is more
cumbersome for Lagrange interpolation, as e.g. explained in [52, Section 7.2].

Let φ1, . . . , φP be an enumeration of the elements of Π. Spectral approximation uses evalu-
ations of a finite PCE

ũ(t, x, y) =
P∑
p=1

ũp(t, x)φp(y)

in the collocation points y(1), . . . , y(Q) to obtain a (possibly overdetermined) linear system

(ũ(t, x, y(j)))Qj=1 = Ψ · (ũp(t, x))Pp=1, Ψ = (Ψq,p) ∈ RQ×P , Ψq,p = φp(y
(q)).

After substituting ũ(t, x, y(j)) by the numerical approximations vj(t, x) the corresponding least-
squares problem has to be solved for each discrete value of t and x. The matrix Ψ does not
depend on t or x and is thus the same in each of these least-squares problems.

Pseudospectral approximation uses a different approach. Here, the integral in

uφ(t, x) = 〈u(t, x, ·), φ〉ρ =

∫
Γ
u(t, x, y)φ(y)ρ(y)dy

is approximated by a quadrature rule∫
Γ
u(t, x, y)φ(y)ρ(y)dy ≈

Q∑
j=1

u(t, x, y(j))φ(y(j))ω(j), φ ∈ Π,

with nodes y(1), . . . , y(Q) and weights ω(1), . . . , ω(Q). Hence, the collocation points where the
sample solutions are computed must be chosen to be the nodes of a suitable quadrature
formula. Finally, substituting again vj(t, x) for the unknown solution u(t, x, y(j)) yields the
approximation

uφ(t, x) ≈
Q∑
j=1

vj(t, x)φ(y(j))ω(j), φ ∈ Π.

In contrast to the stochastic Galerkin method, where a coupled system of PDEs has to be
solved, the approximations vj(t, x) ≈ u(t, x, y(j)) are independent from each other and can be
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computed in parallel. Moreover, a standard method can be used for this task because each
vj(t, x) is the numerical solution of a PDE with known data. These are important advantages
of the stochastic collocation method.

It is preferable to take a quadrature rule of high order to obtain a sufficiently accurate
approximation. The number Q of collocation points, however, is correlated with the dimension
d of the stochastic space, and in applications with large values of d, it is unavoidable to use a
sparse grid quadrature formula. To avoid internal aliasing, the set Π and the quadrature rule
are chosen appropriately, as for the Galerkin approach. This topic is covered in detail in the
next subsections.

3.5. Sparse grids. Full tensor grids in d dimensions involve so many grid points that numeri-
cal computations are too expensive unless d is very small. For this reason sparse grids are often
unavoidable both for stochastic Galerkin and for collocation methods. For an introduction to
sparse grids the reader is referred to [19, 48, 40, 39, 6]. What we present in this subsection
is not new but crucial for understanding the efficiency of the Galerkin-collocation splitting
method which will be constructed in Section 4.

Let us begin by introducing notation, starting with the one-dimensional case. Afterwards,
we describe full grids and then how one obtains sparse grids. Let i ∈ {1, . . . , d} be a (fixed)
dimension. For f : Γ(i) → C we define a quadrature formula of a certain level m ∈ N with
p(i)(m) ∈ N nodes

Q(i)
m (f) =

p(i)(m)∑
j=1

ω
(i)
j f(y

(i)
j ) ≈

∫
Γ(i)

f(y(i))ρ(i)(y(i))dy(i).

Here, (y
(i)
j )

p(i)(m)
j=1 are the nodes and (ω

(i)
j )

p(i)(m)
j=1 are the weights. (Actually, nodes and weights

should also have an index m, which we omit here in order to keep the notation as simple as
possible.) The product formula Q(i)

m has degree of exactness2 q(i)(m) ∈ N if Q(i)
m is exact for

all polynomials whose degree in y(i) is not larger than q(i)(m). We assume that the degree of
exactness of Q(i)

m and thus also the number of nodes p(i)(m) increases with m. The function
m 7→ p(i)(m) is called the growth rule. Typical growth rules are

plin(m) = m and pexp(m) =

{
2m−1 + 1, for m 6= 1,

1, for m = 1.
(16)

Another growth rule which appears later on is3

(17) pslow(m) = 2
⌈
m+1

2

⌉
− 1.

Here, dxe denotes the least integer greater than or equal to x.
Let us briefly explain why one may be interested in other growth rules than plin. Consider a

one-dimensional Newton-Cotes formula withM equidistant nodes yj = j
M−1 , j = 0, . . . ,M−1,

on the interval [0, 1]. If we choose the number of nodes according to pexp, then pexp(m+ 1) =
2m + 1 = 2 · (2m−1 + 1) − 1 = 2 · pexp(m) − 1. Hence, the quadrature nodes of level m
are completely contained in the nodes for level m + 1, and one obtains a nested family of
quadrature rules. This is beneficial for adaptive quadrature or – as we will see soon – in the

2The degree of exactness is not to be confused with the order of a quadrature rule. By definition, a
one-dimensional quadrature rule with degree of exactness q has the order q + 1.

3The slow growth rule pslow for, e.g., Gauss quadrature formulas was suggested by Burkardt and Webster
in [27] as a simple nesting improvement for the standard Gauss rules.



GALERKIN-COLLOCATION SPLITTING FOR RANDOM PDES 11

construction of sparse grids. For plin, however, the family is not nested. The growth rule for
a fully-nested family of Clenshaw-Curtis quadrature rules is gexp, too; cf. [11].

In principle, one could construct multi-dimensional quadrature formulas via tensorisation:
For f : Γ→ C and m = (m1, . . . ,md) ∈ Nd let

(Q(1)
m1
⊗ · · · ⊗ Q(d)

md
)(f) =

p(1)(m1)∑
j1=1

· · ·
p(d)(md)∑
jd=1

ω
(1)
j1
· · ·ω(d)

jd
f(y

(1)
j1
, . . . , y

(d)
jd

) ≈
∫

Γ
f(y)ρ(y)dy.

Note that this approximation requires p(1)(m1) · · · p(d)(md) function evaluations. We call such
a quadrature rule a tensor product quadrature rule and the corresponding grid a full grid. Now
we define the half-exact set Πf

m via

I(Πf
m) = {k ∈ Nd0 | ki ≤ b

q(i)(mi)
2 c for i = 1, . . . , d}, Πf

m = {φk | k ∈ I(Πf
m)},

where φk is again the multivariate orthonormal polynomial defined in (9). The upper index
f stands for “full grid” and bxc denotes the greatest integer less than or equal to x. The
admissible set Π as introduced in (11) and below corresponds to the set Πf

m here. The term
half-exact set comes from the fact that the square of a polynomial φk, k ∈ Nd0, is exactly
integrated by Q(1)

m1 ⊗ · · · ⊗ Q
(d)
md if and only if φk ∈ Πf

m or equivalently if k ∈ I(Πf
m).

As before, we denote the cardinality of Π = Πf
m by P = P (m) and the total number of nodes

which belong to the quadrature rule by Q = Q(m). Recall that these quantities determine
the number of deterministic PDEs which have to be solved for the stochastic Galerkin and
stochastic collocation methods, respectively. Example 6.1 in the Appendix shows that even
on full grids, P is usually smaller than Q (unless Gauss quadrature formulas are used). We
will see below that this effect is even more pronounced on sparse grids, which is crucial for
understanding the efficiency of our method.

Let us now discuss the construction of sparse grids, which is due to Smolyak in [45].
Smolyak’s idea was to combine certain full tensor grids with few nodes to obtain a quad-
rature formula which is exact for all polynomials which correspond to a certain admissible set.
Smolyak’s formula is explicitly given by

(18) Q`(f) =
∑
m∈I`

(−1)`+d−|m|
(

d− 1

`+ d− |m|

)
(Q(1)

m1
⊗ · · · ⊗ Q(d)

md
)(f),

where I` = {m ∈ Nd | `+ 1 ≤ |m| ≤ `+ d} is the Smolyak multi-index set of level `. Now we
define

(19) Π` :=
⋃

m∈I`

Πf
m.

It has been shown in [14, Cor. 3.3] that

(20) Π` ⊆ {φk | Q`(φkφk) = 〈φk, φk〉ρ = 1}.
This set Π` is used as a basis for the ansatz space of our method later on, which is why it
is central to what follows. We remark that it is usually not true that Q`(φkφj) = δkj for all
φk, φj ∈ Π`. Hence, a naive orthogonal expansion of a basis function φk does in general not
reproduce this function, i.e.

φk 6=
∑
φj∈Π

Q`(φkφj)φj in contrast to φk =
∑
φj∈Π

〈φk, φj〉ρ φj.(21)

The use of such a quadrature rule for spectral expansions must thus be modified; this will be
explained at the end of this subsection.
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Which choices are left? In each dimension, we can select a family of quadrature formulas.
Moreover, we have to choose a growth rule mi 7→ p(i)(mi) for each i = 1, . . . , d. This choice
usually depends on the family of quadrature formulas, since e.g. a Clenshaw-Curtis family is
often used with an exponential growth rule to obtain a nested family of sparse grid rules, as
explained before. Last but not least, we choose the level ` depending on the desired accuracy.
These choices then determine the set of nodes and weights of the sparse grid formula, the
half-exact set and in particular the polynomial basis Π` used for spectral expansions.

Let us give two examples of sparse grids and their half-exact sets. In Figure 1, a two-
dimensional sparse grid built from one-dimensional Clenshaw-Curtis quadrature rules on Γ =
[−1, 1]× [−1, 1] with uniform weight is shown. We choose level ` = 5 here. The growth rule is
pexp, which roughly speaking leads to increased accuracy for functions which primarily depend
on one of the two variables, and less accuracy for functions containing “mixed terms”.
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Figure 1. Two-dimensional Clenshaw-Curtis sparse grid of level ` = 5 with
exponential growth rule; left picture: nodes, right picture: Π` (yellow)

In Figure 2, a two-dimensional sparse grid built from one-dimensional Gauss-Hermite quad-
rature rules on (−∞,∞) × (−∞,∞) with Gaussian weight is shown. We choose level ` = 8
here. The growth rule is plin, which leads – compared to the previous example – to a half-exact
set with more mixed terms but less terms which just depend on one of the variables.

Now examine the values of P andQ for sparse grids. These values cannot be easily computed
from the Smolyak multi-index set, the growth rules and the type of quadrature formula, since
different full grids in Smolyak’s formula may have common nodes; cf. Example 6.2 in the
Appendix. In Tables 1 – 2, we compare the values of P and Q for different sparse grid rules in
2 and 5 dimensions. Let us recall that a stochastic Galerkin approach as explained in Section
3.3 leads to a system of P coupled PDEs, whereas a stochastic collocation approach as in
Section 3.4 leads to Q decoupled PDEs.

Clenshaw-Curtis quadrature rules have the possible downside of requiring in general more
quadrature nodes than Gauss quadrature rules to achieve a given polynomial exactness due to
the lower order. This is not the case in practice if one uses fully nested Clenshaw-Curtis grids.

We present a third option in Table 3, namely Gauss quadrature rules with growth rule pslow
from (17). Observe how the choice of growth rule pslow for Gauss rules greatly reduces the total
number of collocation points Q compared to plin, although the one-dimensional quadrature
formulas use the same or a higher number of points (since plin(m) ≤ pslow(m) for all m ∈ N).
This improvement originates from the fact that many collocation points occur on several grids
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Figure 2. Two-dimensional Gauss-Hermite sparse grid of level ` = 8 with
linear growth rule; left picture: nodes, right picture: Π` (yellow)

` 1 2 3 4 5 6 7 8

d = 2
P 3 6 10 15 21 28 36 45
Q 5 13 29 54 90 139 203 284
P/Q 0.60 0.46 0.34 0.28 0.24 0.20 0.18 0.16

d = 5
P 6 21 56 126 252 462 792 1287
Q 11 61 241 785 2239 5761 13657 30267
P/Q 0.55 0.34 0.23 0.16 0.11 0.083 0.061 0.045

Table 1. Values of P and Q for Gauss quadrature with plin

` 1 2 3 4 5 6 7 8

d = 2
P 3 6 12 25 53 113 241 513
Q 5 13 29 65 149 350 799 1781
P/Q 0.60 0.46 0.41 0.38 0.36 0.32 0.30 0.29

d = 5
P 6 21 61 166 437 1122 2822 6977
Q 11 61 241 801 2449 7205 20673 57737
P/Q 0.55 0.34 0.25 0.21 0.18 0.16 0.14 0.12

Table 2. Values of P and Q for Clenshaw-Curtis quadrature with pexp

corresponding to different levels when pslow is chosen. A comparison of slow growth Gauss
quadrature and Clenshaw-Curtis quadrature shows that this modification is even better in the
sense of a higher P/Q ratio, i.e. less quadrature nodes for a given size of the polynomials
basis.

We stress that the value of P is not the only relevant information which determines the
polynomial approximation space, since the selection of polynomials (more or less isotropic,
different accuracies in each direction) matters, too. Compare again Figures 1 and 2.

The choice of quadrature rules (Newton-Cotes, Gauss, Clenshaw-Curtis, etc.) is difficult and
discussed extensively in the literature. Gauss quadrature formulas have the highest possible
accuracy for the same number of nodes, but do not offer nested nodes for quadrature formulas
of different order, which would be beneficial in the sparse grid setting. In high dimensions or
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` 1 2 3 4 5 6 7 8

d = 2
P 5 9 13 21 25 37 41 57
Q 5 9 18 36 49 89 106 176
P/Q 1 1 0.76 0.64 0.56 0.46 0.42 0.35

d = 5
P 11 51 141 301 583 1023 1673 2633
Q 11 51 155 427 1069 2339 4963 9815
P/Q 1 1 0.93 0.77 0.62 0.52 0.42 0.34

Table 3. Values of P and Q for Gauss quadrature with pslow

for high levels, this leads to considerably more nodes than the use of e.g. Clenshaw-Curtis
quadrature formulas. A disadvantage of Clenshaw-Curtis quadrature is that it is not available
for weighted integrals over infinite domains, which appear frequently when one of the basic
random variables is normally distributed. A nested variation of Gauss quadrature formulas
with a degree of exactness between Clenshaw-Curtis and Gauss is available for Gaussian and
uniform weights (corresponding to normally and uniformly distributed random variables),
the Gauss-Patterson formulas; cf. Section 5. Several authors have suggested to use these
quadrature formulas for stochastic computations; cf. [19, 31, 5].

After this comparison between values of P and Q in different configurations, we conclude
that collocation methods have the following disadvantage compared to Galerkin methods:
In order to obtain numerical solutions with the same accuracy (meaning that we use the
same polynomial ansatz space span(Π)), the number Q of quadrature nodes in the collocation
method is typically large compared to the number of polynomials P = card(Π) in the Galerkin
approach. This observation is crucial for the splitting idea presented in the next section. One
may use the same value for P and Q for product formulas of one-dimensional Gauss quadrature
rules, but these are not feasible in practice for large values of d due to the curse of dimension.

3.6. Sparse pseudospectral approximation. In Section 3.4, we have pointed out that
pseudospectral approximation on sparse grids suffers from internal aliasing if the set of basis
polynomials and the quadrature rule are chosen in a naive way. Now we explain how this can
be avoided. As before, one seeks an approximation f̃ for a function f : Γ→ C of the form

f(y) =
∑
φ∈Nd0

fφφ(y) ≈
∑
φ∈Π

f̃φφ(y) = f̃(y), y ∈ Γ.

The true (but in general unavailable) coefficients fφ are replaced by certain f̃φ. As we have
seen in Section 3.4, pseudospectral approximation means that for every φ ∈ Π, one uses the
relation

fφ = 〈f, φ〉ρ =

∫
Γ
f(y)φ(y)ρ(y)dy

and approximates the integral on the right-hand side by a quadrature formula. Now we assume,
however, that values of f are only given on a sparse grid such that standard quadrature
formulas cannot be applied. The naive approach would be to approximate the integral on the
right-hand side by

(22) Q`(fφ) ≈
∫

Γ
f(y)φ(y)ρ(y)dy,

where Q` is the sparse grid quadrature operator from (18). This is a computable quantity
since we have assumed that the values of f are available on the nodes of the sparse grid. This
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approach, however, has to be modified because of (21). The following modification has been
suggested in [15], but our presentation is different. Let m ∈ I` be the multi-index of one
fixed full grid, and let ωm(yq) denote the weight from quadrature rule Qm at the node yq for
q ∈ {1, . . . , Q}. (If yq is not a node for m, then ωm(yq) is zero.) We rewrite the definition of
Q`(fφ) to

(23) Q`(fφ) =
∑
m∈I`

c(m)(Q(1)
m1
⊗ · · · ⊗ Q(d)

md
)(fφ) =

Q∑
q=1

∑
m∈I`

c(m)ωm(yq)φ(yq)f(yq)

with

c(m) = (−1)`+d−|m|
(

d− 1

`+ d− |m|

)
.

We choose an enumeration φ1, . . . , φP of the polynomials in Π and set Ξ̃ = (Ξ̃p,q) ∈ RP×Q
with

Ξ̃p,q =
∑
m∈I`

c(m)ωm(yq)φp(yq).

This yields Ξ̃(f(yq))
Q
q=1 = (Q`(fφp))Pp=1 ≈ (fφp)

P
p=1. In order to avoid the problem (21), the

matrix Ξ̃ has to be replaced by Ξ = (Ξp,q) ∈ RP×Q defined by

Ξp,q =
∑
m∈I`
φp∈Πfm

c(m)ωm(yq)φp(yq).(24)

This matrix is called the pseudospectral weight matrix, and according to [15] the correct sparse
pseudospectral approximation method (SPAM) is now given by

(f̃φp)
P
p=1 := Ξ(f(yq))

Q
q=1 ≈ (fφp)

P
p=1.

Hence, the coefficients f̃φ are obtained from the function values f(y1), . . . , f(yQ) by multipli-
cation with the pseudospectral weight matrix.

For later reference, we define the sparse pseudospectral operator

(25) S`f =

P∑
p=1

f̃φpφp

for f ∈ C(Γ,C). The SPAM is consistent in the sense that

S`(φk) = φk in contrast to
∑
φj∈Π

Q`(φkφj)φj 6= φk ;

cf. (21).

4. Galerkin-collocation splitting (GCS) method

Let us recall the observations from the previous sections: The Galerkin approach is well-
suited for the linear parts of problem (5) and probably more beneficial due to the reduced
number of equations, whereas the collocation approach has no difficulty in dealing with the
nonlinearity. Let us now introduce the idea of combining both approaches via the concept of
Strang splitting. To the best of our knowledge, such a method has not been proposed so far.
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We assume again that the solution u of (4) admits a PCE of the form

u(t, x, y) =
∑
k∈Nd0

uk(t, x)φk(y), uk(t, x) = 〈u(t, x, ·), φk〉ρ(26)

for each t ≥ 0 and a.e. x ∈ S. We choose the ansatz space span(Π) for a finite set of multi-
variate orthonormal polynomials Π as explained in (19) to obtain a numerical approximation

ũ(t, x, y) =
∑
φ∈Π

ũφ(t, x)φ(y) ≈
∑
k∈Nd0

uk(t, x)φk(y) = u(t, x, y).

The main idea is now to split the random PDE (5) into the three subproblems

∂tv(t, x, y) = α(y)Av(t, x, y), t ≥ t0, v(t0, x, y) = v0(x, y),(27a)
∂tv(t, x, y) = β(y)Bv(t, x, y) + γ(y)g(x), t ≥ t0, v(t0, x, y) = v0(x, y),(27b)
∂tv(t, x, y) = F (v(t, x, y)), t ≥ t0, v(t0, x, y) = v0(x, y),(27c)

with v0(·, y) ∈ D(A) for every y ∈ Γ, and then to apply a stochastic Galerkin method to the
linear parts (27a), (27b), and a stochastic collocation method to the nonlinear part (27c).

To obtain an approximation

ṽ(t, x, y) =
∑
φ∈Π

ṽφ(t, x)φ(y) ≈
∑
k∈Nd0

vk(t, x)φk(y) = v(t, x, y)(28)

for the solution of (27a) in the space span(Π), we use the Galerkin ansatz, which yields

〈∂tṽ(t, x, ·), φ〉ρ =
∑
ψ∈Π

Aṽφ(t, x)〈αψ, φ〉ρ for all φ ∈ Π(29)

with initial data

ṽ(t0, x, y) =
∑
φ∈Π

ṽφ(t0, x)φ(y), ṽφ(t0, x) = 〈v0(x, ·), φ〉ρ.(30)

In order to keep the presentation simple, we pretend for the moment that all inner products
can be computed exactly.

Now we use again single indices j = 1, . . . , P with P = |Π| to enumerate the polynomials
in Π such that Π = {φ1, . . . , φP }. If we set ajk = 〈αφj , φk〉ρ and Mα = (ajk)

P
j,k=1 as in (15a),

then (29) implies

∂tṽ(t, x) = MαAṽ(t, x)(31)

with
ṽ(t, x) = (ṽj(t, x))Pj=1 and Aṽ(t, x) = (Aṽj(t, x))Pj=1.

Since α(y) is real-valued, the matrix Mα is symmetric. Hence, we may decompose Mα =
QαΛαQ

>
α with Λα = diag(λα1 , . . . , λ

α
P ) and an orthogonal matrix Qα. The matrices Λα and Qα

have to be computed only once at the beginning of the time integration process because α(y)
does not depend on time. Via the transformation w = (w1, . . . , wP )> = Q>α ṽ, the system (31)
is equivalent to the decoupled equations

∂twj(t, x) = λαjAwj(t, x), j = 1, . . . , P.(32)

Each of these equations has the form (7a), and we have assumed in Section 3.1 that the solution

wj(t, ·) = exp
(
(t− t0)λαjA

)
wj(t0, ·)(33)

can be approximated numerically at low costs. In case of the Lugiato-Lefever equation, for
example, we have A = i∂2

xu, α = a, and if we discretize space via trigonometric polynomials,



GALERKIN-COLLOCATION SPLITTING FOR RANDOM PDES 17

then exp((t− t0)λαjA) is represented by the exponential of a diagonal matrix; cf. [32, 17]. Note
that the number of independent deterministic PDEs in (32) is equal to P , the dimension of
span(Π), and that these decoupled PDEs may be solved in parallel.

To approximate v in (27b), we mimic this procedure. Imposing the Galerkin condition
yields

〈∂tṽ(t, x, ·), φj〉ρ =
P∑
k=1

Bṽk(t, x)〈βφk, φj〉ρ + g(x)〈γ, φj〉ρ,

Abbreviating bjk = 〈βφk, φj〉ρ, Mβ = (bjk)
P
j,k=1 and Vγ = (〈γ, φj〉ρ)Pj=1, we obtain

(34) ∂tṽ(t, x) = MβBṽ(t, x) + g(x)Vγ

with
ṽ(t, x) = (ṽj(t, x))Pj=1 and Bṽ(t, x) = (Bṽj(t, x))Pj=1.

Recall that by assumption β(y) = β0 + β1(y) with β0 ∈ C and β1(y) ∈ R. Hence, it follows
that

Mβ = β0I + Mβ1 with Mβ1 = (〈β1φj , φk〉ρ)Pj,k=1 .

The symmetric matrix Mβ1 has an eigendecomposition Mβ1 = Qβ1Λβ1Q
>
β1

with an orthogonal
matrix Qβ1 . This yields the eigendecomposition Mβ = QβΛβQ

>
β with Qβ = Qβ1 and Λβ =

diag(λβ1 , . . . , λ
β
P ) = β0I + Λβ1 . After the transformation w = (w1, . . . , wP )> = Q>β ṽ, the PDE

system (34) decouples to

∂twj(t, x) = λβj Bwj(t, x) + g(x)(Q>βVγ)j , j = 1, . . . , P,

where (Q>βVγ)j denotes the j-th entry of Q>βVγ . Since each of these equations is of the type
(7b), the solution

wj(t, x) = exp
(

(t− t0)λβj B
)
wj(t0, x) +

∫ t

t0

exp
(

(t− s)λβj B
)
g(x)(Q>βVγ)jds(35)

can be approximated efficiently according to the assumption made in Section 3.1. In case of
the Lugiato-Lefever equation, for example, we have Bu = iu, β0 = i, β1 = b, γ = f and g ≡ 1
such that

wj(t, x) = exp
(

(t− t0)iλβj
)
wj(t0, x) + (iλβj )−1

(
exp

(
(t− t0)iλβj

)
− 1
)

(Q>βVγ)j .

Note that λβj 6= 0 for all j = 1, . . . , P due to β0 = i.
For (27c), we use the collocation approach instead of the Galerkin approach. As we will see

below, it is important that we use exactly the nodes y1, . . . , yQ ∈ Γ from which the quadrature
rule with half-exact set Π was built. For these yq we solve the Q deterministic differential
equations4

(36) ∂tv(t, x, yq) = F (v(t, x, yq)), v(t0, x, yq) = v0(x, yq), q = 1, . . . , Q.

4 The integer Q is not to be confused with the orthogonal matrices Qα and Qβ from above. The collocation
points y1, . . . , yQ ∈ Γ should not be confused with the components of a vector y = (y1, . . . , yd) ∈ Γ from before.
The latter does not appear in Section 4 anymore.
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In the splitting scheme, the function v0(x, y) is not explicitly given, but the coefficients of
its truncated PCE

v0(x, y) =
P∑
p=1

vp(t0, x)φ(y)

are available. To evaluate this sum at the points y1, . . . , yQ, only the values φ(y1), . . . , φ(yQ)
have to be computed for each φ ∈ Π. Now each of the initial value problems (36) has the
same structure as (7c), and approximating its solution numerically is cheap according to our
assumption in Section 3.1. In case of the Lugiato-Lefever equation (i.e. for F (v) = i|v|2v) the
exact solution of (36) is explicitly known, namely

v(t, x, yq) = exp
(
(t− t0)|v0(x, yq)|2

)
v0(x, yq), q = 1, . . . , Q, x ∈ S.(37)

From v(t, x, yq), q = 1, . . . , Q, at the new time t > t0, the coefficients ṽp(t, x) with

ṽ(t, x, yq) =
P∑
p=1

ṽp(t, x)φp(yq) ≈ v(t, x, yq), q = 1, . . . , Q

can be obtained by sparse pseudospectral approximation as explained in Section 3.5. Using
the notation from this section, we have

(ṽp(t, x))Pp=1 = Ξ(v(t, x, yq))
Q
q=1,

or, equivalently, ṽ(t, x, ·) = S`v(t, x, ·), where S` is the sparse pseudospectral operator defined
in (25).

The inner products in (30) and in the definitions of Mα, Mβ and Vγ can be computed as
follows. To determine the initial data (30) has to be replaced by ṽ(t0, x, ·) = S`v0(x, ·) with S`
from (25). The entries of Mα can be approximated via sparse pseudospectral approximation,
too. We do not do this directly, since from the definition of Π as a half-exact set it is clear
that for fixed ψ ∈ Π the sum ∑

φ∈Π

〈αψ, φ〉ρφ and S`(αψ)

will almost never coincide if α is non-constant due to the degrees of the participating poly-
nomials. Therefore, we suggest a small modification here. First, compute the pseudospectral
approximation S`(α) itself without the ψ from before, i.e.

α(y) ≈ S`α(y) =
P∑
p=1

α̃pφp(y),

and then we use the approximation

〈αφj , φk〉ρ ≈ 〈S`(α)φj , φk〉ρ =
P∑
i=1

α̃i〈φiφj , φk〉ρ.

For the integrals in the entries of the tensor (〈φiφj , φk〉ρ)Pi,j,k=1, we now use the exact formulas
which are available for most of the “typical” families of orthogonal polynomials, e. g. Legendre
and Hermite polynomials. A list of available formulas can be found in the Appendix in [30].
Now it is clear that for α ∈ span(Π), the matrix Mα can be computed exactly since S` is exact
on span(Π). In a similar fashion, one obtains computable approximations for Mβ and Vγ .

The steps of the Galerkin-collocation splitting (GCS) method are summarized in the fol-
lowing. It is assumed that the level ` and for each dimension a family of quadrature rules
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and a growth rule have been chosen. Recall that this determines the nodes and weights of the
sparse grid formula, the half-exact set and the polynomial basis Π = Π` = {φ1, . . . , φP } of the
ansatz space. Moreover, we suppose that the length of the time interval [0, T ] and the number
of time-steps Nt ∈ N have been chosen. The method computes approximations

Un(x, y) =
P∑
p=1

Unp (x)φp(y) = ũ(tn, x, y) ≈ u(tn, x, y)

with step-size τ = T/Nt at times tn = nτ for n = 0, 1, . . . , Nt. As before, the coefficients
are collected in a vector Un(x) := (Un1 (x), . . . , UnP (x))>. For simplicity, we only consider the
semidiscretization in time. Of course, discretizing also the spatial variable is unavoidable in
practice to compute numerical results, but the choice of a suitable space discretization depends
on the particular properties of the operators A and B in Section 3.1. We do not explicitely
state the x-dependency of the current approximation Un. We define the numerical flows

Φ(1)
τ Un = eτMαAUn,

Φ(2)
τ Un = eτMβBUn +

∫ τ

0
e(τ−s)MβBgVγds,

and Φ
(3)
τ Un = (v(τ, x, yq))

Q
q=1, where v = v(t, x, yq) solves the PDE

∂tv(t, x, yq) = F (v(t, x, yq)), t ≥ 0,

v(0, x, yq) = Un(x, yq)

for any q = 1, . . . , Q. Furthermore, we set Ψ = (φp(yq))q,p ∈ RQ×P .
Then the n-th approximation of our method can be written as

Un =
(

Φ
(1)
τ/2 ◦ Φ

(2)
τ/2 ◦ Ξ ◦ Φ(3)

τ ◦Ψ ◦ Φ
(2)
τ/2 ◦ Φ

(1)
τ/2

)n
U0

with U0(x) = Ξ(u0(x, y1), . . . , u0(x, yq))
> and Ξ from (24).

5. Numerical examples for the Lugiato-Lefever equation

In order to show how the GCS method performs in practice we apply it to the Lugiato-
Lefever equation with random parameters (4). As before this equation is considered on the one-
dimensional torus (i.e. x ∈ S = T), which is the natural setting for applications in electrical
engineering. The spatial derivatives are computed by spectral collocation with M = 512 grid
points xk; see Section 2.4 in [17] or Section III.1.3 in [32] for details. All computations were
carried out in MATLAB R© on a notebook with Intel R© CoreTM i7-6700HQ CPU with 4 physical
cores. All methods implemented use parallelization where it is possible.

The approximation of the solution u computed by the new method is denoted by uGCS. For
simplicity, we use the notation uGCS(t, x, y) with three arguments despite the fact that values
for uGCS are actually only computed for discrete times t ∈ {t0, t1, . . . , tNt} at discrete grid
points x ∈ {x1, . . . , xM}.

5.1. Experiments for the random equation. The first example illustrates the impact of
randomness in the data on the solution. This shows, in particular, that solving (4) instead
of the deterministic PDE (1) is unavoidable when parameters and initial data are uncertain.
The parameters and initial data used in this numerical example are

(38)
a(y1, y2) = (1 + δy1y2)ā, b(y1, y2) = (1 + δ

3(y1 + y2
2))b̄,

f(y1, y2) = (1 + δy2
2)f̄ , u0(x, y1, y2) = (1 + 0.2y1)1

2 exp(sin(2x)),
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with d = 2, y = (y1, y2), ā = 0.1025, b̄ = 0.5, f̄ = 1.25 and noise parameter δ = 0.5. These
values are chosen in such a way that the solution converges to a frequency comb (i.e. to a
steady state which is not constant in x) after a sufficiently large time interval. The random
variables Y1, Y2 which correspond to y1 and y2 are chosen to be uniformly distributed on
[−1, 1]. The corresponding orthonormal polynomials are (up to a normalization) the Legendre
polynomials. We have Ea = ā, Eb = b̄(1+ δ

9), Ef = f̄(1+ δ
3) and E[u0(x, Y )] = 1

2 exp(sin(2x)).
To discretize the stochastic variable y, we use a sparse grid of level ` = 7 built from one-

dimensional Clenshaw-Curtis (CC) quadrature rules with exponential growth rule and the
corresponding basis of orthonormal polynomials Π` as explained in Section 3.5. The GCS
method is applied with Nt = 5000 time-steps on the interval [0, T ] with T = 15. The absolute
value of the expectation and the standard deviation of the numerical approximation uGCS are
shown in Figure 3b – 3e. It can be seen that |E[uGCS(t, x, Y )]| changes rapidly at the beginning
of the time interval before it converges to a steady state with four pronounced peaks (Figure
3d). The information which is most relevant for electrical engineers is the frequency comb
k 7→ log(|ûk|) where ûk are the Fourier coefficients of such a steady state; see Section 2.1. The
frequency comb of E[uGCS(T, x, Y )] is depicted in Figure 3a.

The expectation E[uGCS(t, x, Y )] ≈ E[u(t, x, Y )] is certainly a relevant quantity in many
applications, but it only represents the mean behaviour of the system, whereas the solution of
(4) provides full information for every single y. For several samples y ∈ {y(1), y(2), y(3), ȳ}
the time evolution of the approximation uGCS(·, ·, y) and the corresponding final states are
shown in Figure 4. These plots illustrate that uGCS(·, ·, y) may change considerably when y
varies. This behaviour is quantified by the standard deviation shown in Figures 3c and 3e.

For a first plausibility check of our results we use the fact that evaluating the exact solution
of (4) for a fixed vector y = y? coincides with the exact solution of the deterministic PDE (1)
with deterministic parameters a = a(y?), b = b(y?) and f = f(y?). Hence, it can be expected
that evaluations of the approximation uGCS(·, ·, y) for y ∈ {y(1), y(2), y(3), ȳ} agree up to a
small numerical error with the corresponding approximations of (1). This is indeed the case:
The plots (not shown) obtained by solving (1) numerically for y ∈ {y(1), y(2), y(3), ȳ} are
visually almost indistinguishable from the ones in Figure 4.

The sample ȳ = (0, 1√
3
) in Figure 4h is particularly interesting, because evaluations with ȳ

coincide with the expectation of the parameters and the initial data, respectively:

a(ȳ) = Ea(Y ), b(ȳ) = Eb(Y ), f(ȳ) = Ef(Y ), u0(x, ȳ) = E[u0(x, Y )].(39)

Solving (1) with the expected data (39) is, of course, much simpler than solving (4), but
the outcome differs significantly5 from the expectation E[uGCS(t, x, Y )]; compare Figures 4h
and 3d. This underlines that considering the random PDE (4) instead of its deterministic
version (1) cannot be avoided even in cases where only the expectation of the solution is
sought after.

5.2. Convergence and efficiency. In order to study the convergence behaviour of the GCS
method we compare the final approximation uGCS(T, ·, ·) with a Monte Carlo reference solution
uMC(T, ·, ·) obtained with NMC = 10000 samples y(j)

MC from the joint distribution of Y . As for
uGCS we use the notation uMC(t, x, y) although uMC is only defined if t ∈ {t0, t1, . . . , tNt}, if
x ∈ {x1, . . . , xM} and if y = y

(j)
MC for some j = 1, . . . , NMC. Each realization uMC(·, ·, y(j)

MC) is
computed by solving the deterministic PDE (1) numerically with the Strang splitting method
discussed in Section 2.1. Since we focus on the error induced by discretizing the random

5This difference is not a numerical artefact, i.e. it is not caused by the fact that both the deterministic and
the random PDE are approximated by numerical methods.
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Figure 3. Solution to the random PDE (4) with the parameters from (38)

variables, we use the same spatial and temporal discretization for the Strang splitting and the
GCS method, namely M = 512 grid points in space and Nt = 5000 time-steps.

The approximation error is measured in the space L2
ρ(Γ, L

2(T)), i.e. by taking the expecta-
tion with respect to y and the L2(T) norm with respect to x. Of course, both the expectation
and the norm have to be replaced by their discrete counterparts, i.e.

2π

NMCM

NMC∑
j=1

M∑
k=1

|uMC(T, xk, y
(j)
MC)−uGCS(T, xk, y

(j)
MC)|2 ≈ E

[∫
T
|u(T, x, ·)− uGCS(T, x, ·)|2dx

]
.
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−3 −2 −1 0 1 2 3
0.6

0.8

1

1.2

1.4

1.6

1.8

space x

(d) |uGCS(T, x, y(2))|, y(2) = (0.45, 0.7)

0
15

0.5

10

1

4
2

1.5

5
0

2

-2
0 -4

(e) |uGCS(t, x, y(3))|, y(3) = (0, 1)
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Figure 4. Solution to the random PDE (4) via GCS with the parameters from
(38), evolution of deterministic solutions for different samples
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This is possible since the PCE of uGCS(T, ·, ·) can be evaluated for arbitrary y and in
particular at the samples y(j)

MC.
We study the convergence of the method with respect to the level `. This should be the

crucial parameter which determines the accuracy of the approximations in random space. We
expect spectral convergence since stochastic Galerkin and collocation methods usually achieve
this type of convergence if coefficients and initial data are smooth, which is the case here. All
parameters are as before in (38) except that we use δ = 0.3 and T = 3. (This corresponds to
less noisy parameters than before and a smaller time interval, both resulting in a smaller error.
In the former case the convergence rates in the experiments are just slower.) Results are given
in Figure 5. We also show the error and runtime of a competitive collocation method which
uses the points of the same sparse grid as collocation points. Clearly, both methods achieve
spectral convergence with more or less identical values for the L2-error, see Figure 5a. The
remarkable difference is that the GCS method is twice as fast for levels ` ≥ 7, as can be seen
in Figure 5b. We remark that for both methods the runtime just measures the time elapsed
between the beginning and the end of the time integration process. We do not measure the
time for setting up the sparse grid, the Galerkin matrices, the pseudospectral weight matrix
and everything else which has to be done only once before the time integration. This setup
process is negligible for both methods in our practical applications.
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Figure 5. Comparison of collocation and GCS methods using Clenshaw-
Curtis quadrature rules with exponential growth rule to solve problem (4)

Now we change the sparse grid to be built from Gauss-Legendre (GL) quadrature formulas
with linear growth rule with the corresponding choice of Π`. Results are shown in Figures
6a and 6b. Clearly, the GCS method outperforms the collocation method up to a factor of
3. One could argue that this comparison is not fair due to the fact that the sparse grid is in
no way nested and therefore the number of collocation points Q is disproportionately large in
contrast to the number P of basis polynomials in the GCS method. Recall, however, that this
also affects the propagation of the nonlinear part in the GCS method.

Next, we present a slight modification of slow growth sparse Gauss-Legendre grids. Here we
replace the growth rule plin by pslow from (17) for both the GCS and the collocation method.
This modification leads to a partially nested version of Gauss-Legendre sparse grids. Gauss-
Legendre grids with an odd number of points share the midpoint 0 and this node is therefore
contained in all of the full grids which are combined in Smolyak’s formula (18). Moreover, the
one-dimensional grids corresponding to an even index m and the next odd index m+1 are the
same and therefore even more nodes can be reused in the sparse grid formula with increasing
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Figure 6. Comparison of both methods with sparse grids built from Gauss-
Legendre quadrature formulas (linear and slow growth versions)

level and dimension. Using this setting, we obtain the results in Figures 6c and 6d. Both the
GCS and the collocation method are significantly faster with this sparse grid while keeping
the accuracy. Still the GCS is up to twice as fast.

The “steps” in the order plot for slow growth Gauss-Legendre grids can be explained by
the chosen growth rule pslow: Only quadrature rules with an odd number of nodes are com-
bined here. This is the reason why the sparse grids of even level usually achieve roughly the
same accuracy as the next odd-level rule. The approximations on two subsequent levels are
not identical, however, because the Smolyak multi-index sets are different and therefore the
combination of the involved full grids is different, too.

Gauss-Patterson quadrature. As a third family of quadrature formulas for which we test the
GCS method, we use the Gauss-Patterson (GP) quadrature formulas. These have received
increased attention for collocation methods, as they combine the advantages of high-order
Gauss quadrature with the nesting property of Clenshaw-Curtis grids.

We do not present the construction of these quadrature formulas, but give the main idea: In
the case of a uniform weight, one starts with the Gauss-Legendre quadrature formulas with 1
and 3 nodes and then recursively adds n+1 points to the n-point quadrature formula in such a
way that the highest polynomial exactness is achieved. The Gauss-Patterson (GP) quadrature
formula with 2m − 1 nodes then has degree of exactness 3 · 2m−1 − 1. Using this procedure,
one obtains quadrature formulas with 1, 3, 7, 15, 31, 63, . . . nodes having degrees of exactness
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1, 5, 11, 23, 47, 95, . . .. This was suggested in [41], see also [43, Sec. 4]. It is possible to add
some intermediate quadrature rules with n nodes to this list which maintain the nestedness and
have an “intermediate” degree of exactness n. This is possible for n = 13, 25, 27, 29, 49, . . ..6
Hence, these formulas are not available for an arbitrary number of quadrature nodes, but only
for the values

1, 3, 7, 13, 15, 25, 27, 29, 31, 49, . . . for [−1, 1] with uniform weight.

The growth rule we always choose for this family is such that each of the formulas in the family
appears once, i.e. p(1) = 1, p(2) = 3, p(3) = 7, p(4) = 13, and so on.

A similar procedure is possible for integrals over (−∞,∞) with Gaussian weight, too. Here,
one starts with the 1- and 3-point Gauss-Hermite quadrature formulas and then extends these
formulas keeping the property of nestedness. Such a family was developed in [18].

Let us now turn back to our original problem and use these quadrature formulas for our
problem. The result is given in Figure 7.
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Figure 7. Comparison of both methods with Gauss-Patterson quadrature formulas

The error is comparable with the error for slow growth Gauss grids from before in Figure
6c. Both the collocation and the GCS method are more efficient in terms of CPU time here.
The difference between the collocation method and the GCS is less pronounced, but still very
clearly present. All of the computations above are included in the work-precision diagram in
Figure 8 below.

As a result, we conclude that the Gauss-Patterson rules perform best in our test problem,
followed by slow growth Gauss rules. The error shows the same convergence behavior for each
of the quadrature formulas although the ansatz spaces are different. For each of the cases, we
observe that the splitting approach outperforms the straight-forward collocation method. As
we have argued in Section 3.3, the standard Galerkin-only approach (14), (15) for the problem
class (5) is in no way competitive, which is why we did not include it in our numerical tests.

5.3. Parameters in a five-dimensional random space with various distributions.
Now we extend the above example by introducing three additional random variables Y3, Y4 ∼
N (0, 1), Y5 ∼ Beta(1, 3

2) on which the parameters depend. Hence, the stochastic dimension is
now d = 5. The orthonormal polynomials corresponding to the normally and Beta distributed

6The family introduced here is sometimes called the Genz-Gauss-Patterson (GGP_E) family. Under this
name, it appears on the list available under the link [7].
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Figure 8. Work-precision diagram, all tests from this section

random variables are (up to a normalization) the Hermite and Jacobi polynomials, respectively.
As before, Y1, Y2 ∼ U(−1, 1). The parameters are explicitly given by

(40)
a(y) = (1 + δy1y2(1 + y5 − E[Y5]))ā, b(y) = (1 + δ

3(y1 + y2
2 + y3))b̄,

f(y) = (1 + δy2
2(1 + 1

2y
2
4))f̄ , u0(x, y) = (1 + 0.2y1)1

2 exp(sin(2x)).

If we replaced yi by E[Yi] for i = 3, 4, 5, we would obtain the parameters from (38) before. The
noise parameter is δ = 0.5. Now we apply three methods to the problem (4) with parameters
(40), namely GCS, collocation and a Monte Carlo sampling method with 1000 samples drawn
from the distribution of Y . All of them are discretized in time by the Strang splitting method
and in space by Fourier collocation, as in the section before. The time interval is [0, 8] and the
step-size in time is τ = 10−3. The Fourier collocation method uses M = 210 points in space.
The sparse grid to be used for both the GCS and the collocation method is built from one-
dimensional Gauss quadrature formulas with linear growth rule (level ` = 4). Note that Gauss
quadrature means the Gauss quadrature formula for the probability density function in the
corresponding dimension, i.e. Gauss-Legendre in the first and second variable, Gauss-Hermite
in the third and fourth variable, and Gauss-Jacobi in the fifth variable. The quantities P and
Q from the previous sections are P = 126, Q = 823. We compare the computed expectations
and standard deviations for the three methods, see Figures 9 and 10.

For each of the three methods, the expected value tends to a steady state with four pro-
nounced peaks. We have already seen this in the previous subsection in Figure 3b and not
surprisingly, the picture is nearly the same here – at least for the GCS and the MC method.
The collocation method has a slightly different shape at the first and third peak and a slightly
larger amplitude at the second and fourth peak. The behavior of the standard deviation in
Figure 10 is even more remarkable.

First, we observe that GCS and MC produce a similar picture here, and that both yield a
standard deviation with becomes stationary at the end of the time interval. Again, the collo-
cation method yields a different picture: The standard deviation does not become stationary
in this time interval, but increases even at time 8. This behavior seems to be wrong, since
the other two methods suggest that the solution has already reached its steady state at this
point. So far, the GCS solution seems to correspond very well to the Monte Carlo solution, in
contrast to the collocation method.
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Figure 9. Expected value of the solution of the random PDE (4) with the pa-
rameters from (40), computed with three different methods: GCS, collocation
and Monte Carlo
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Figure 10. Standard deviations for the solutions from Figure 9

Additionally, we now compare how the three methods can predict the solution for two special
realisations of Y = (Y1, . . . , Y5) which are given by

y(1) = (0.6,−0.8,−1, 1, 0.6), y(2) = (0.45, 0.95, 1, 1, 0.45) ∈ Γ = [−1, 1]2 × (−∞,∞)2 × [0, 1].

Note that the numerical solutions produced by the GCS and collocation methods can be
evaluated at any given sample7, whereas the Monte Carlo solution cannot predict the behavior
of the solution for a given realization unless the realization coincides with one of the Monte
Carlo samples. For the purpose of having reference solutions for the other two methods, we
can of course use the solver for the deterministic problem with the parameters for the given
realizations y(1) and y(2). Results are given in Figure 11 (the use of the deterministic solver is
indicated by the subscript det).

We observe that for y(1), the deterministic solver and the GCS solver yield very similar
results. Both methods reach a steady state with 6 pronounced peaks after time 6, whereas
the collocation method yields a solution which still increases at time 8 and has larger peaks
throughout. For y(2), the deterministic solver and the GCS method slightly differ, but are
qualitatively comparable. The steady state reached at the end of the time interval has 4
pronouced peaks with approximate height 2. The collocation method yields a solution with
more complicated dynamics, in particular the peaks given by the other methods do not grad-
ually increase. For these two realizations, we observe that the GCS method produces much

7For the collocation method, we use sparse pseudospectral approximation as explained in the end of Section
3 to computed a PCE from the solutions in the collocation points.
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more reliable solutions than the collocation method. This is underlined by the fact that the
L2-error of the solution u(T, x, y) (now again with full y-dependency) at the end of the time
interval is 0.63 for the GCS method and 0.78 for the collocation method, both compared to
the Monte Carlo solution as described in the previous subsection. The sampled L2-norm of
the Monte Carlo solution itself is 2.83. Clearly, the error is not as small as desired, but we
underline that this is a 5-dimensional problem with large noise parameter δ = 0.5 and a rather
long time interval [0, 8]. The time integration process in this example took only 387 seconds
of wall-clock time for the GCS and 749 seconds for the collocation method. We also note that
it is possible to construct samples y ∈ Γ for which the collocation method performs better: In
the special case that y ∈ Γ is one of the collocation points used by the collocation method,
the collocation method would compute the same solution as the deterministic solver. This is
not surprising and follows directly from the construction of these methods.

The numerical examples presented in this section demonstrate that the GCS method is
superior to standard Galerkin and collocation methods, at least in case of our model problem.
Our next goal is to develop a rigorous stability and convergence analysis for this method.
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Figure 11. Results of the GCS and collocation methods for two special real-
izations: y(1) (first row) and y(2) (second row), last column: results of solving
the deterministic PDE (1) with parameters a = a(y(i)), b = b(y(i)), f = f(y(i))
for i = 1, 2
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6. Appendix

6.1. Comparison of P and Q on full grids. Here we use the notations from Section 3.5.
In particular, let P be the cardinality of Π = Πf

m and let Q be the total number of nodes
which belong to the quadrature rule to be specified in the following. Let us choose the linear
growth rule p(m) = m and Gauss quadrature rules on the one-dimensional interval Γ = [−1, 1]
(with uniform weight). The degree of exactness of the level m quadrature rule is well-known,
namely q(m) = 2m− 1. The half-exact set of this quadrature rule is given by

Πf
m = {φk | k = 0, . . . , b q(m)

2 c = m− 1},
where φk denotes the k-th Legendre (orthonormal) polynomial. This set has cardinality P =
m. We also have Q = m here. In d dimensions, the situation is similar: The half-exact set of
the full grid which corresponds to the multi-index m = (m1, . . . ,md) ∈ Nd0 is given by

Πf
m = {φk1 · · ·φkd | ki = 0, . . . , b q(mi)2 c = mi − 1}.

Therefore P = Q = m1 · · ·md in this special case.
Now we show an example where P is smaller than Q for a tensor product quadrature

rule. If we change the growth rule to p = pexp from (16) and replace Gauss quadrature by
Clenshaw-Curtis quadrature, then the degree of exactness is q(m) = 2m−1 for m ≥ 1. The
growth rule is chosen in such a way that the level m quadrature nodes are contained in the
level m + 1 quadrature nodes for every m ∈ N. Now the situation is different, since we have
Q = p(m) = 2m−1 + 1, whereas for m ≥ 2 the half-exact set in one dimension is

Πf
m = {φk | k = 0, . . . , b q(m)

2 c = 2m−2}

and therefore contains only P = 2m−2 + 1 < Q elements.

6.2. Comparison of P and Q on sparse grids. In this example we illustrate the difference
between P and Q on sparse grids. We consider a two-dimensional sparse grid quadrature rule
for Γ = [−1, 1]× [−1, 1] with uniform weight built from one-dimensional Clenshaw-Curtis grids
according to the growth rule p(m) = pexp(m) in both dimensions. We choose level ` = 2, such
that the Smolyak multi-index set is I` = {(2, 1), (1, 2), (2, 2), (3, 1), (1, 3)}. Hence, the Smolyak
formula combines 5 full grids here. Their nodes are shown in Figure 12 (with ξ = 1√

2
).

Grid index Corresponding nodes
(2, 1) (1, 0), (−1, 0), (0, 0)

(1, 2) (0, 1), (0,−1), (0, 0)

(2, 2) (−1,−1), (−1, 0), (−1, 1),

(0,−1), (0, 0), (0, 1),

(1,−1), (1, 0), (1, 1)

(3, 1) (−1, 0), (−ξ, 0), (0, 0), (ξ, 0), (1, 0)

(1, 3) (0,−1), (0,−ξ), (0, 0), (0, ξ), (0, 1)
−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Figure 12. Contribution of different full grids to Smolyak’s formula (ξ = 1√
2
)

In total (after removing duplicate nodes), we have Q = 13 quadrature points. It follows
from (20) that the monomials

1, x, y, x2, y2, x3, y3, x4, y4, xy, x2y, xy2, x2y2
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are exactly integrated by the sparse grid formula. From these polynomials, only the squares
of

1, x, y, x2, y2, xy

are exactly integrated. Therefore, P = 6 = Q−1
2 .

Finally, let us compare this to full grids: A full grid which integrates the squares of x2 and y2

exactly and which is built from one-dimensional Clenshaw-Curtis grids would require at least
5 points in each dimension, therefore Q = 25 points in total. The sparse grid rule above only
requires roughly half as much. Its half-exact set would consist of P = 9 elements.
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