

Evaluation of the spectrum-unfolding methodology for neutron activation systems of fusion devices

Prasoon Raj¹, Bethany Colling², Axel Klix¹, Chantal R. Nobs², Lee W. Packer², Mario Pillon³ and JET Contributors*

EUROfusion Consortium, JET, Culham Science Centre, Abingdon, OX14 3DB, UK

¹Karlsruhe Institute of Technology (KIT), Germany ²Culham Centre for Fusion Energy (CCFE), UK ³E.N.E.A. C.R. Frascati, Italy * See the Appendix of F. Romanelli et al., Proceedings of the 25th IAEA Fusion Energy Conference 2014, Saint Petersburg, Russia ³E.N.E.A. C.R. Frascati, Italy

Aim – To develop and evaluate an improved, fast and robust methodology for processing of neutron activation data from fusion reactors

Spectral Adjustment Toolkits –

MAXED from UMG-3.3

- Unfolding using MAXED & GRAVEL (UMG) from PTB (DE)
- Maximum entropy algorithm for adjusting default spectrum
- Frequently implemented and used in fusion applications
 - χ2 parameter often difficult to decide & only total errors given

STAYSL from STAYSL-PNNL

- Adapted from Perey's least squares unfolding code STAYSL
 Pre-calculation & formatting tools for input data & files
 > SigPhi Calculator, BCF, SHIELD, NJpp etc.
 A potential alternative to common codes used in fusion
- Propagates all sources of error to errors in group-wise fluxes

Input Experimental Data, Response Functions & Default Spectra –

Foil	Mass (g)	Reaction	T _{1/2} (s)	Ε _γ (keV)	Rate (s ⁻¹)
Data set — 1: Early Neutron Source (ENS)					
Test at Cyclotron Fast Neutron Source, Nuclear Physics Institute (NPI) Řež $\Phi_{estimated} = 2.3 \times 10^9 \text{ cm}^{-2} \text{ s}^{-1}$ $T_{irradiation} = 9.5 \text{ h}$ $T_{cooling} = 3 \text{ mon}$					
AU	0.3047	^{nat} Au (n, x) ¹⁹⁵ Au	1.6 × 10 ⁷	98.9	6.3 × 10 ⁵
Υ	0.7000	⁸⁹ Y (n, 2n) ⁸⁸ Y	9.2 × 10 ⁶	1836.1	3.7 × 10 ⁶
CO	2.7911	⁵⁹ Co (n, 3n) ⁵⁷ Co	2.3 × 10 ⁷	122.1	2.7 × 10 ⁶
		^{nat} Co (n, x) ⁵⁸ Co	6.1 × 10 ⁶	810.8	1.5 × 10 ⁷
		⁵⁹ Co (n, p) ⁵⁹ Fe	3.8×10^{6}	1099.2	1.0 × 10 ⁶
Data set — 2: Test Blanket Modules (TBM) of ITER					
Test at KN2 Laboratory, Joint European Torus (JET) Reactor, Culham $\Phi_{estimated} = 9.7 \times 10^{10} \text{ cm}^{-2} \text{ s}^{-1}$ $T_{irradiation} = 3 \text{ s}$ $T_{cooling} = 28 \text{ s}$					
AL	0.0699	²⁷ Al (n, γ) ²⁸ Al	1.3 × 10 ²	1778.7	5.2 × 10 ⁵
CR	2.1211	⁵² Cr (n, p) ⁵² V	2.2×10^2	1434.1	2.5 × 10 ⁵
NB	4.4726	⁹³ Nb (n, 2n) ^{92m} Nb	8.7 × 10 ⁵	934.5	1.6 × 10 ⁶

Adjusted Spectra & Differences w.r.t. Default Inputs –

Conclusions of this Evaluation –

- MAXED & STAYSL successfully evaluated for use in fusion
- Net neutron fluxes predicted very well by both of the codes
- STAYSL-PNNL established as a good addition to the tools
- MAXED: up to 28% deviation from best guess spectrum STAYSL: less than 1% difference in any energy-group

STAYSL shows strong dependence on input uncertainty data

Future Developments for Unfolding Methodology –

- Optimally utilize the in-built methods in STAYSL-PNNL for defining covariance matrices for input fluxes, activities etc.
- Compare available nuclear data libraries for production of cross-section files and covariance matrices for unfolding
- Produce high-confidence covariance matrix for input spectrum

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.