
Bifurcations of nontrivial solutions of a
cubic Helmholtz system

Rainer Mandel, Dominic Scheider

CRC Preprint 2018/32, November 2018

KARLSRUHE INSTITUTE OF TECHNOLOGY

KIT – The Research University in the Helmholtz Association www.kit.edu

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197484954?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Participating universities

Funded by

ISSN 2365-662X

2



ar
X

iv
:1

81
1.

00
78

9v
1 

 [
m

at
h.

A
P]

  2
 N

ov
 2

01
8

BIFURCATIONS OF NONTRIVIAL SOLUTIONS OF A CUBIC

HELMHOLTZ SYSTEM

RAINER MANDEL, DOMINIC SCHEIDER

Abstract. This paper presents local and global bifurcation results for radially symmetric
solutions of the cubic Helmholtz system

{

−∆u− µu =
(

u2 + b v2
)

u on R3,

−∆v − νv =
(

v2 + b u2
)

v on R3.

It is shown that every point along any given branch of radial semitrivial solutions (u0, 0, b)
or diagonal solutions (ub, ub, b) (for µ = ν) is a bifurcation point. Our analysis is based on
a detailed investigation of the oscillatory behavior of solutions at infinity that are shown to
decay like 1

|x| as |x| → ∞.

1. Introduction and main results

Systems of two coupled nonlinear Helmholtz equations arise, for instance, in models of non-
linear optics. In this paper, we analyze the physically relevant and technically easiest case of
a Kerr-type nonlinearity in N = 3 space dimensions, that is, we study the system

(H)

{

−∆u − µu = (u2 + b v2)u on R3,

−∆v − νv = (v2 + b u2) v on R3

for given µ, ν > 0 and a constant coupling parameter b ∈ R. We are mostly interested
in existence results for fully nontrivial radially symmetric solutions of this system that we
will obtain using bifurcation theory. Such an approach is new in the context of nonlinear
Helmholtz equations or systems. In order to describe the methods used in earlier related
works we briefly discuss the available results for scalar nonlinear Helmholtz equations of the
form

−∆u − λu = Q(x)|u|p−2u on RN .(1)

Here, the main difficulty is that solutions typically oscillate and do not belong to H1(RN).
In the past years, Evéquoz and Weth developed several methods allowing to find nontrivial
solutions of such equations under certain conditions on Q and p, some of which we wish to
mention. In [6, 8], they discuss the case of compactly supported Q and 2 < p < 2∗ := 2N

N−2
.

The idea in [6] is to solve an exterior problem where the nonlinearity vanishes and knowledge
about the far-field expansion of solutions is available. The remaining problem on a bounded
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domain can be solved using variational techniques. In particular, Evéquoz and Weth provide
a result about the existence and asymptotic behavior of solutions in the radially symmetric
setting, see Theorem 5.2 of [6]. The approach in [8] uses Leray-Schauder continuation with
respect to the parameter λ in order to find solutions of (1). Existence of solutions under the
assumption that Q ∈ L∞(RN) decays as |x| → ∞ or is periodic is proved in [7] using a dual
variational approach, which yields (dual) ground state solutions and, in the case of decaying
Q, infinitely many bound states. The technique relies on the Limiting Absorption Principle
of Gutiérrez, see the explanations before Theorem 6 in [9], which leads to the additional

constraint 2(N+1)
N−1

< p < 2∗. Furthermore, assuming that Q is radial, the existence of a

continuum of radially symmetric solutions of (1) has been shown by Montefusco, Pellacci
and the first author in [13]. These results rely on ODE techniques and only require p > 2
and a monotonicity assumption on Q.

To our knowledge, the only available result on nonlinear Helmholtz systems like (H) has been
provided by the authors in [14] where, using the methods developed in [7], the existence of a
nontrivial dual ground state solution is proved for the system











−∆u − µu = a(x)
(

|u| p2 + b(x)|v| p2
)

|u| p2−2u on RN ,

−∆v − νv = a(x)
(

|v| p2 + b(x)|u| p2
)

|v| p2−2v on RN ,

u, v ∈ Lp(RN)

for N ≥ 2, certain nonnegative, ZN -periodic coefficients a, b ∈ L∞(RN) with 0 ≤ b(x) ≤
p − 1 and 2(N+1)

N−1
< p < 2∗. Under additional easily verifiable assumptions the ground state

can be shown to be fully nontrivial, i.e., both components are nontrivial. Given the above
assumptions this result does not apply in the case of a cubic nonlinearity p = 4 when N = 3
which we dicuss in the present paper. In contrast to [14] we construct fully nontrivial, radially
symmetric solutions for arbitrarily large and small b ∈ R that, however, need not be dual
ground states.

Our results are inspired by known bifurcation results for the nonlinear Schrödinger system










−∆u+ λ1u = µ1u
3 + b uv2 on RN ,

−∆v + λ2v = µ2v
3 + b vu2 on RN ,

u, v ∈ H1(RN ), u > 0, v > 0

(2)

where one assumes λ1, λ2 > 0 in contrast to (H). We focus on bifurcation results by Bartsch,
Wang and Wei in [4] and Bartsch, Dancer and Wang in [3] and refer to the respective
introductory sections for a general overview of methods and results for (2). In the first-
mentioned paper positive solutions of (2) are found in Theorem 1.1 where the authors show
that a continuum consisting of positive radially symmetric solutions (u, v, λ1, λ2, µ1, µ2, b)
with topological dimension at least 5 bifurcates from a two-dimensional set of semipositive
solutions (u, v) = (uλ1,µ1 , 0) parametrized by λ1, µ1 > 0. The existence of countably many
bifurcation points giving rise to sign-changing radially symmetric solutions was proved by
the first author in his dissertation thesis (Satz 2.1.6 of [12]).
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In the special case N = 2, 3 and λ1 = λ2 > 0 and µ1, µ2 > 0, Bartsch, Dancer and Wang
proved in [3] the existence of countably many mutually disjoint global continua of solutions
bifurcating from some diagonal solution family of the form

{(ub, ub, b) : b > −1} ⊂ H1
rad(R

N )×H1
rad(R

N)× R

with a concentration of bifurcation points as b ց −1. Here ub := (1 + b)−1/2u0 where u0 ∈
H1

rad(R
N ) is a nondegenerate solution of the nonlinear Schrödinger equation −∆u + u = u3.

Moreover, having introduced a suitable labeling of the continua, the authors showed that the
k-th continuum consists of solutions where the radial profile of u− v has exactly k−1 nodes,
cf. Theorem 2.3 in [3].

In the Helmholtz case, we will analyze the corresponding cases of bifurcations from semitrivial
and diagonal solutions in Theorems 2 and 4, respectively. In contrast to the Schrödinger
case, we will show that bifurcation occurs at every point in a topology suitable for the
system (H). Looking more closely, we find the same structure of discrete bifurcation points
as in the Schrödinger case when fixing a set of asymptotic parameters τ1, ω prescribing the
oscillatory behavior of solutions as |x| → ∞ as in the conditions (Aω) respectively (Adiag

ω )
below. Whereas, in the Schrödinger case, the bifurcating solutions are characterized by
their nodal structure, we characterize them in the Helmholtz case by a condition on the
”asymptotic phase” of the solution (disguised as an integral), which at least close to the j-th
bifurcation point takes the value ω+ jπ, see Proposition 8 and the explanations following it.

We now present our main results. Motivated by the decay properties of radially symmetric
solutions of nonlinear Helmholtz equations in [13], e.g. Theorem 1.2 (iii), we look for solutions
in the Banach space X1 where, for q ≥ 1,

Xq :=
{

w ∈ Crad(R
3,R) | ‖w‖Xq

<∞
}

where ‖w‖Xq
:= sup

x∈R3

(1 + |x|2) q

2 |w(x)|.(3)

Working on these spaces, we will be able to derive compactness properties which are crucial
when proving our bifurcation results. Throughout, we discuss classical, radially symmetric
solutions u, v ∈ X1 ∩ C2(R3) of the system (H) and related equations. Let us remark here
only briefly that, using elliptic regularity, all weak solutions in u, v ∈ L4

rad(R
3) are actually

smooth and, thanks to Proposition 8 in the next section, belong to X1 ∩ C2(R3).
In our first result, we study bifurcation of solutions (u, v, b) of the nonlinear Helmholtz
system (H) from a branch of semitrivial solutions of the form

Tu0 := {(u0, 0, b) | b ∈ R} ⊆ X1 ×X1 × R

in the Banach space X1 ×X1 × R. In contrast to the Schrödinger case, we will demonstrate
that for each of the uncountably many radial solutions u0 ∈ X1 ∩ C2(R3) (see [13]) of the
scalar problem

−∆u0 − µu0 = u30 on R3(h)
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we have that every point in Tu0 is a bifurcation point for fully nontrivial solutions of (H). As
a consequence of some auxiliary results in Section 2, we will derive the following result on
the scalar Helmholtz equation at the end of Section 5.

Proposition 1. Let µ > 0 and let u0 ∈ X1 ∩ C2(R3) be any radially symmetric solution of
the nonlinear Helmholtz equation (h). Then u0 satisfies

u0(x) = c0
sin(|x|√µ+ σ0)

|x| +O

(

1

|x|2
)

as |x| → ∞

for some constants c0 6= 0 and σ0 ∈ [0, π), and there exists a unique τ0 ∈ [0, π) with the
property that the problem

{

−∆w − µw = 3u20(x) w on R3,

w(x) =
sin(|x|√µ+τ0)

|x| +O
(

1
|x|2

)

as |x| → ∞

admits a nontrivial solution w0 ∈ X1 ∩ C2(R3). Moreover, this solution w0 is unique.

Here and in the following, we fix µ, ν > 0 and u0 ∈ X1 ∩ C2(R3) with associated constants
σ0, τ0 ∈ [0, π) as in Proposition 1. For τ1 ∈ [0, π) \ {τ0}, we observe in particular that

(N)

{

−∆w − µw = 3u20(x) w on R3,

w(x) =
sin(|x|√µ+τ1)

|x| +O
(

1
|x|2

)

as |x| → ∞ implies w = 0.

This nondegeneracy property will be used later to prove that the linearization of the sys-
tem (H) close to points (u0, 0, b0) ∈ Tu0 admits at most one-dimensional kernels. Our strategy
will be to use bifurcation from simple eigenvalues with b acting as a bifurcation parameter.
The existence of isolated and algebraically simple eigenvalues will be ensured by assuming
radial symmetry and by imposing suitable conditions on the asymptotic behavior of the so-
lutions u, v. For τ1, ω ∈ [0, π) with τ1 6= τ0, we define S(ω) ⊆ X1 ×X1 ×R \ Tu0 as the set of
all solutions (u, v, b) ∈ X1 ×X1 × R \ Tu0 of (H) satisfying the asymptotic conditions

u(x)− u0(x) = cu
sin(|x|√µ+ τ1)

|x| +O

(

1

|x|2
)

v(x) = cv
sin(|x|√ν + ω)

|x| +O

(

1

|x|2
) as |x| → ∞(Aω)

for some cu, cv ∈ R. Propositions 5 and 8 in the following section will show that an asymptotic
behavior of such form is natural to assume for solutions of the system (H). We emphasize
that we do not denote the dependence of the set S(ω) and of the asymptotic conditions (Aω)
on the choice τ1 ∈ [0, π) \ {τ0}. With that, we obtain the following

Theorem 2. Let µ, ν > 0, fix any u0 ∈ X1 solving the nonlinear Helmholtz equation (h) and
choose τ1 ∈ [0, π) \ {τ0} with τ0 as in Proposition 1. Then, for every ω ∈ [0, π), there exists

a strictly increasing sequence (bk(ω))k∈Z such that (u0, 0, bk(ω)) ∈ S(ω) where S(ω) denotes
the set of all solutions (u, v, b) ∈ X1 ×X1 × R \ Tu0 of (H) satisfying (Aω). Moreover,

(i) the respective connected components Ck(ω) of (u0, 0, bk(ω)) in S(ω) are unbounded in
X1 ×X1 × R; and
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(ii) each bifurcation point (u0, 0, bk(ω)) has a neighborhood where the set Ck(ω) is a smooth
curve in X1×X1×R which, except for the bifurcation point, consists of fully nontrivial
solutions.

The main tools in proving this statement are the Crandall-Rabinowitz Bifurcation Theorem,
which will be used to show the local statement (ii) of Theorem 2, and Rabinowitz’ Global
Bifurcation Theorem, which will provide (i). For a reference, see [5], Theorem 1.7 and
[15], Theorem 1.3. We add some remarks the proof of which will be given after having
proved Theorem 2 in Section 3.

Remark 3. (a) We will also see that fully nontrivial solutions of (H) satisfying the
asymptotic condition (Aω) bifurcate from some point (u0, 0, b) ∈ Tu0 if and only if
b = bk(ω) for some k ∈ Z.

(b) Furthermore, we will prove that the map R → R, kπ + ω 7→ bk(ω) where 0 ≤ ω <

π, k ∈ Z is strictly increasing and onto with bk(ω) → ±∞ as k → ±∞. Thus, in
particular, every point (u0, 0, b) ∈ Tu0, b ∈ R, is a bifurcation point for fully nontrivial
radial solutions of (H), which is in contrast to the case of Schrödinger systems where
bifurcation points are isolated, cf. [12], Satz 2.1.6.

(c) Close to the respective bifurcation point (u0, 0, bk(ω)) ∈ Tu0, each continuum Ck(ω) is
characterized by a phase parameter ω+kπ derived from the asymptotic behavior of v.
It seems that, in the Helmholtz case of oscillating solutions, the integer k takes the role
of the nodal characterizations in the Schrödinger case, cf. Satz 2.1.6 in [12]. That
phase parameter is constant on connected subsets of the continuum until it possibly
runs into another family of semitrivial solutions Tu1 with u1 6= u0; unfortunately we
cannot provide criteria deciding whether or not this happens. For this reason we
cannot claim that Ck(ω) contains an unbounded sequence of fully nontrivial solutions.

(d) The condition τ1 6= τ0 is a nondegeneracy condition which ensures that the simplicity
requirements of the above-mentioned bifurcation theorems are satisfied. If we addi-
tionally impose τ1 6= σ0, we infer u 6= 0 for any solution (u, v, b) ∈ Ck(ω). Moreover,
the proof will show that the values bk(ω) do not depend on the choice of τ1.

In our second result we provide a counterpart of the global bifurcation result by Bartsch,
Dancer and Wang [3] described earlier. The authors obtained infinitely (but countably)
many mutually disjoint continua of solutions bifurcating from a diagonal solution family
of (2) with elements (ub, ub, b) where ub = (1 + b)−1/2u0 and u0 is a nondegenerate solution
of −∆u + u = u3. Using the same functional analytical setup as in Theorem 2, we find an
analogue of these results for the nonlinear Helmholtz system (H). For u0 as in Proposition 1
and τ1, ω ∈ [0, π), τ1 6= τ0, we introduce the diagonal solution family

Tu0 :=
{

(ub, ub, b)
∣

∣ b > −1
}

⊆ X1 ×X1 × R with ub := (1 + b)−1/2 u0
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and denote by S(ω) the set of all solutions (u, v, b) ∈ X1 × X1 × R \ Tu0 of the nonlinear
Helmholtz system (H) with

u(x) + v(x) = 2ub(x) + c̃
sin(|x|√µ+ τ1)

|x| +O

(

1

|x|2
)

u(x)− v(x) = c
sin(|x|√µ+ ω)

|x| +O

(

1

|x|2
) as |x| → ∞(Adiag

ω )

for some c̃, c ∈ R. Our existence result for fully nontrivial solutions of (H) bifurcating from T

with asymptotics (Adiag
ω ) reads as follows.

Theorem 4. Let µ > 0, fix any u0 ∈ X1 solving the nonlinear Helmholtz equation (h) and
choose τ1 ∈ [0, π) \ {τ0} with τ0 as in Proposition 1. Then, for every ω ∈ [0, π), there exists

a sequence (b̃k(ω))k∈Z such that (ub̃k(ω), ub̃k(ω), b̃k(ω)) ∈ S(ω) where S(ω) denotes the set of

all solutions (u, v, b) ∈ X1 ×X1 × R \ Tu0 of (H) satisfying (Adiag
ω ). Moreover,

(i) the respective connected components Ck(ω) of (ub̃k(ω), ub̃k(ω), b̃k(ω)) in S(ω) are un-
bounded in X1 ×X1 × R; and

(ii) each bifurcation point (ub̃k(ω), ub̃k(ω), b̃k(ω)) has a neighborhood where the set Ck(ω)
contains a smooth curve in X1 × X1 × R which, except for the bifurcation point,
consists of fully nontrivial, non-diagonal solutions.

Again, similar statements as in Remark 3 can be proved. In particular, one can check that
every point on Tu0 is a bifurcating point by a suitable choice of ω.

Let us give a short outline of this paper. In the Section 2, we introduce the concepts and
technical results we use in the proof of Theorems 2 and 4, which are presented in the Sec-
tion 3 and Section 4. In the final section, we provide the proofs of the auxiliary results of
Section 2. Among those, we also prove Proposition 1 from above.

2. On the scalar problem. Spectral properties

The main challenge in proving Theorem 2 is a thorough analysis of the linearized problem
which we provide in this chapter. Throughout, we fix λ > 0 and discuss the linear Helmholtz
equation

−∆w − λw = f on R3(4)

for some f ∈ X3, where X3 is defined in (3). We will frequently identify radially symmetric
functions x 7→ w(x) with their profiles; in particular, we denote by w′ := ∂rw,w

′′ = ∂2rw the
radial derivatives. The results we establish in this section will demonstrate how to rewrite
the system (H) in a way suitable for Bifurcation Theory.

2.1. Representation Formulas. First, we discuss a representation formula for solutions of
the linear inhomogeneous Helmholtz equation (4). The results resemble a Representation
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Theorem by Agmon, Theorem 4.3 in [2], but in our setting, the proof is much easier. To this
end, we introduce the fundamental solutions

(5) Ψλ, Ψ̃λ : R
3 → R, Ψλ(x) :=

cos(
√
λ|x|)

4π|x| and Ψ̃λ(x) :=
sin(

√
λ|x|)

4π|x| (x 6= 0)

of the equation −∆w − λw = 0 on R3. Throughout, we will require knowledge of the
mapping properties of convolutions with Ψλ resp. Ψ̃λ. Various results of such type have been
established by Evéquoz and Weth in [7] and further publications, assuming f ∈ Lp

′
(RN)

and w ∈ Lp(RN) for suitable p, p′ ∈ (1,∞). In the spaces X3 resp. X1, which satisfy the
continuous embeddings

X1 →֒ L
p
rad(R

3) for 3 < p ≤ ∞, X3 →֒ L
q
rad(R

3) for 1 < q ≤ ∞,(6)

we prove the following stronger statements. In particular, we obtain a compactness result,
which will be most useful in order to establish spectral results such as Proposition 12 below.

Proposition 5. For arbitrary constants α, α̃ ∈ R, we formally introduce the convolution

operator Rλf :=
(

αΨλ + α̃Ψ̃λ

)

∗ f . Then,

(a) the linear map L
4

3

rad(R
3) → L4

rad(R
3), f 7→ Rλf is well-defined and continuous;

(b) the linear map X3 → X1, f 7→ Rλf is well-defined, continuous and compact;

(c) for f ∈ X3, we have w := Rλf ∈ X1 ∩ C2(R3) with −∆w − λw = α · f on R3; and

(d) for f ∈ X3, the profile of w := Rλf satisfies the asymptotic identity

w(r) =

√

π

2
f̂(
√
λ) · α cos(r

√
λ) + α̃ sin(r

√
λ)

r
+
δf (r)

r2
· (|α|+ |α̃|) as r → ∞

where |δf(r)| ≤ 2√
λ
· ‖f‖X3

as well as f̂(
√
λ) =

√

2
π

∞
∫

0

f(r) sin(r
√
λ)

r
√
λ

r2 dr. Further,

Ψ̃λ ∗ f = 4π
√

π
2
f̂(
√
λ) · Ψ̃λ, and the radial derivative satisfies

w′(r) =

√

π

2
f̂(
√
λ) · −α

√
λ sin(r

√
λ) + α̃

√
λ cos(r

√
λ)

r
+O

(

1

r2

)

as r → ∞.

This was motivated by yet unpublished results provided by Evéquoz, which in case N = 3
yield a constant C(λ) > 0 with

∥

∥

∥
min{| · |, | · | 32} ·

∣

∣

∣
(Ψλ + iΨ̃λ) ∗ f

∣

∣

∣

∥

∥

∥

L∞(R3)
≤ C(λ) · ‖f‖

L
4
3 (R3)

for all f ∈ Srad(R
3).

The fact that we choose the stronger topology of X3 instead of L
4

3

rad(R
3) will imply that

the convolution even maps to L∞
rad(R

3) without additional weight at the origin and provide
further compactness properties. Moreover, the proof will show that the decay rate prescribed
by the X3 space is not the optimal one yielding continuity and compactness as in (b). In
fact, the same proof yields continuity even if X3 is replaced by X2+ε (ε > 0) and compactness
assuming X9/4+ε (ε > 0).
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From Proposition 5, we now derive the representation formulae we require later to construct
the functional analytic setting in the proof of Theorem 2. For ω ∈ (0, π), we define the linear
convolution operators

(7) Rω
λ : X3 → X1, f 7→ Ψλ ∗ f + cot(ω) Ψ̃λ ∗ f

which provide solutions of the Helmholtz equation (4) the asymptotic behavior of which is
described by the phase parameter ω as follows.

Corollary 6. Let ω ∈ (0, π) and f ∈ X3. Then, for w ∈ X1, we have w = Rω
λf if and only

if w is a C2 solution of −∆w − λw = f on R3 with asymptotic behavior

w(x) = γ · sin(|x|
√
λ+ ω)

|x| +O

(

1

|x|2
)

as |x| → ∞

for some γ ∈ R.

We observe that the operatorRω
λ is not well-defined for ω = 0 due to the pole of the cotangent.

Thus we have to extend some of the previous results in a suitable framework. First, by the
Hahn-Banach Theorem, we construct continuous linear functionals α, β ∈ X ′

1 as follows. On
the linear subspace

U1(λ) :=

{

w ∈ X1

∣

∣

∣

∣

w(x) = αw
sin(|x|

√
λ)

4π|x| + βw
cos(|x|

√
λ)

4π|x| +O

(

1

|x|2
)

as |x| → ∞ for some αw, βw ∈ R

}

,

we let, for w ∈ U1(λ) with w(r) = αw
sin(r

√
λ)

4πr
+ βw

cos(r
√
λ)

4πr
+O

(

1
r2

)

as r = |x| → ∞,

α(λ)(w) := αw = lim
n→∞

[

4π · 2πn+ π
2√

λ
· w
(

2πn + π
2√

λ

)]

,

β(λ)(w) := βw = lim
n→∞

[

4π · 2πn√
λ

· w
(

2πn√
λ

)]

.

(8)

But then |α(λ)(w)|, |β(λ)(w)| ≤ lim supr→∞ |4π
√
1 + r2 · w(r)| ≤ 4π ‖w‖X1

for w ∈ U1(
√
λ);

hence, after continuous extension, α(λ), β(λ) ∈ X ′
1. In particular, for any f ∈ X3 and λ > 0,

Proposition 5 (d) implies Ψλ ∗ f, Ψ̃λ ∗ f ∈ U1(λ) with

α(λ)(Ψλ ∗ f) = β(λ)(Ψ̃λ ∗ f) = 0,

α(λ)(Ψ̃λ ∗ f) = β(λ)(Ψλ ∗ f) = 4π

√

π

2
· f̂(

√
λ).

(9)

We find characterizations as in Corollary 6 both without any asymptotic condition and in
the case ω = 0:

Corollary 7. Let f ∈ X3 and w ∈ X1, ω ∈ [0, π), and consider continuous linear functionals
α(λ), β(λ) ∈ X ′

1 satisfying (8). Then the following characterizations hold:

(a) w is twice continuously differentiable and solves −∆w − λw = f on R3 if and only if
w = Ψλ ∗ f + α(λ)(w) · Ψ̃λ.
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(b) Let σ ∈ {−1,+1}. w is twice continuously differentiable, solves −∆w − λw = f on
R3 and satisfies

w(x) = γ
sin(|x|

√
λ)

|x| +O

(

1

|x|2
)

as |x| → ∞

for some γ ∈ R if and only if w = Ψλ ∗ f + (α(λ)(w) + σβ(λ)(w)) · Ψ̃λ. In this case,
β(λ)(w) = 0.

2.2. The Asymptotic Phase. Frequently, equations of interest will take the form (4) with
f = g · w for some g ∈ X2, see (3). We can then use ODE methods, more specifically the
Prüfer transformation, to discuss the corresponding initial value problem for the profiles,

−w′′ − 2

r
w′ − λw = g(r) w on (0,∞) with w(0) = 1, w′(0) = 0.(10)

Proposition 8. Assume g ∈ X2. Then the ODE initial value problem (10) has a unique
(global) solution w : [0,∞) → R which asymptotically satisfies

w(r) = ρλ(g)
sin(r

√
λ+ ωλ(g))

r
+O

(

1

r2

)

,

w′(r) = ρλ(g)
√
λ
cos(r

√
λ+ ωλ(g))

r
+O

(

1

r2

)

as r → ∞ for some ρλ(g) > 0 and ωλ(g) ∈ R. Here, the value of ωλ(g) is given by

ωλ(g) =
1√
λ

∫ ∞

0

g(r) sin2(φ(r)
√
λ) dr

where φ : [0,∞) → R solves

{

φ′ = 1 + 1
λ
g(r) sin2(φ

√
λ),

φ(0) = 0.

(11)

We will refer to the term ωλ(g) as the asymptotic phase of the solution w of (10); we suggest
to think of it as a way of quantifying the effect of the right-hand side of equation (10) on
the solution w in a situation where solutions typically oscillate. More precisely, writing
ωλ(g) = ω + kπ for some k ∈ Z and ω ∈ [0, π), the parameter ω describes the shift of phase

between the profile r · w(r) and sin(r
√
λ) at large radii; and the profile r · w(r) attains k

additional nodes when compared with sin(r
√
λ) in sufficiently large intervals containing 0.

Looking back to the asymptotic conditions imposed in Corollaries 6 and 7, we see that they
are of the form

−∆w − λw = g · w on R3, ωλ(g) ∈ ω + πZ.

Such boundary conditions at infinity will provide operators with spectral properties suitable
for building the functional analytic framework in which to prove Theorem 2.

Remark 9. The previous results are closely related to those in Corollary 6. In fact, comparing
the asymptotic expansions in Corollary 6 applied with f = g ·w and Proposition 8, we identify
ωλ(g) ∈ ω + πZ and ρλ(g) = |γ|.
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We point out two aspects in which Proposition 8 provides stronger statements: First, there
is no singularity in case ω = 0 as it appears in the definition (7) of the convolution operators
Rω
λ . Second, we explicitly have ρλ(g) > 0. However, in order to construct the functional

analytic setting when proving Theorem 2, we will use the convolution operators Rω
λ due to

their differentiability and compactness properties, see Proposition 5. The ODE results will
then be helpful to extract spectral properties.

As a first auxiliary result, we prove the following continuity property.

Proposition 10. The asymptotic phase is continuous as a map ωλ : X2 → R, g 7→ ωλ(g).

When studying eigenvalue problems of a linearization of (H) as often required in Bifurcation
Theory, it will be helpful to know the dependence of the asymptotic phase ωλ(b u

2
0) on the

(eigenvalue) parameter b ∈ R. Here we denote by u0 ∈ X1 ∩ C2(R3) some solution of
−∆u0 − µu0 = u30 on R3.

Proposition 11. The map R → R, b 7→ ωλ(b u
2
0) is continuous, strictly increasing and onto

with ωλ(0) = 0.

2.3. The spectrum of the linearization. In the proof of Theorem 2, we will rewrite the
nonlinear Helmholtz system (H) in the form

u = Rτ
µ(u(u

2 + b v2)), v = Rω
ν (v(v

2 + b u2)), u, v ∈ X1

for some τ, ω ∈ (0, π), which additionally imposes a certain asymptotic behavior on the
solutions, see Corollary 6. In order to analyze the linearized problem, we fix some nontrivial
u0 ∈ X1∩C2(R3) with −∆u0−µu0 = u30 on R3 and study the spectra of the linear operators

Rω
λ : X1 → X1, w 7→ Rω

λ(u
2
0w) =

(

Ψλ + cot(ω) Ψ̃λ

)

∗ [u20w],(12)

which are compact thanks to Proposition 5 (b). We now present the final result in this
Section:

Proposition 12. Let ω ∈ (0, π), λ > 0 and u0 as before. By Proposition 11, for k ∈ Z, we
define bk(ω, λ, u

2
0) ∈ R via ωλ(bk(ω, λ, u

2
0) u

2
0) = ω + kπ. Then the spectrum of Rω

λ is

σ(Rω
λ) = {0} ∪ σp(Rω

λ), σp(R
ω
λ) =

{

1

bk(ω, λ, u20)

∣

∣

∣

∣

k ∈ Z

}

.

Moreover, all eigenvalues are algebraically simple, and the sequence (bk(ω, λ, u
2
0))k∈Z is strictly

increasing and unbounded below and above.

This excludes the case ω = 0, even though the values bk(0, λ, u
2
0) ∈ R, k ∈ Z, can be defined

accordingly. Indeed, the first step of the proof of Proposition 12 above provides the following
statement for all ω ∈ [0, π):

Remark 13. Fix ω ∈ [0, π). Then the problem

−∆w − λw = bu20 w on R3, w(x) = γ
sin(|x|

√
λ+ ω)

|x| +O

(

1

|x|2
)

as |x| → ∞

for some γ ∈ R has a nontrivial radial solution w ∈ X1∩C2(R3) if and only if b = bk(ω, λ, u
2
0)

for some k ∈ Z.
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3. Proof of Theorem 2

We will first present the proof in case of asymptotic parameters 0 < ω, τ1 < π, τ1 6= τ0, which
more clearly exhibits the main ideas of exploiting suitable asymptotic properties of solutions.
Afterwards, we demonstrate the modifications required in order to cover the case ω = 0.

The case ω ∈ (0, π) and τ1 ∈ (0, π) \ {τ0}. Step 1: The Setting.

Let ω ∈ (0, π). We define the map

F : X1 ×X1 × R → X1 ×X1,

F (w, v, b) :=

(

w −Rτ1
µ (w

3 + 3u0w
2 + 3u20w + b (u0 + w)v2)

v −Rω
ν (v

3 + bv(u0 + w)2)

)

with the convolution operators Rτ1
µ ,Rω

ν : X3 → X1 from Definition (7). Observe that F is
well-defined since u, v, w ∈ X1 implies uvw ∈ X3. Recalling Corollary 6 and (h), we have

F (w, v, b) = 0 ⇔ (u, v, b) := (u0 + w, v, b) satisfies (H) with asymptotics (Aω).

So we aim to find nontrivial zeros of F . Second, we observe that F has a trivial solution
family, that is F (0, 0, b) = 0 holds for every b ∈ R. Third, F ( · , b) is a compact perturbation
of the identity on X1 × X1 since the operators Rτ1

µ ,Rω
ν : X3 → X1 are compact thanks

to Proposition 5 (b). Moreover, F is twice continuously Fréchet differentiable; we have for
ϕ, ψ ∈ X1 and b ∈ R, denoting by D the Fréchet derivative w.r.t. the w and v components,

DF (0, 0, b)[(ϕ, ψ)] =

(

ϕ

ψ

)

−
(

3Rτ1
µ (u

2
0 ϕ)

bRω
ν (u

2
0 ψ)

)

=

(

ϕ− 3Rτ1
µ ϕ

ψ − bRω
νψ

)

(13)

with compact linear operators Rτ1
µ ,R

ω
ν : X1 → X1 as in equation (12). We deduce that,

due to (N) and τ1 6= τ0, DF (0, 0, b)[ϕ, ψ] = 0 implies ϕ = 0. So nontrivial elements of
kerDF (0, 0, b) are of the form (0, ψ) where ψ satisfies ψ = b Rω

νψ. Proposition 12 reveals
that such nontrivial ψ exists if and only if b = bk(ω, ν, u

2
0), i.e. ων(b u

2
0) = kπ + ω for some

k ∈ Z, and that the associated eigenspaces are one-dimensional. We denote bk(ω) instead of
bk(ω, ν, u

2
0). Thus b ∈ {bk(ω) | k ∈ Z} is a necessary condition for bifurcation of solutions of

F (w, v, b) = 0 from (0, 0, b). We show in the following that it is also sufficient.

Step 2: Local Bifurcation.

We apply the Crandall-Rabinowitz Bifurcation Theorem and, to this end, verify its simplicity
and transversality assumptions at the point (0, 0, bk(ω)). As F ( · , b) is a compact perturbation
of the identity on X1 × X1, the Riesz-Schauder Theorem implies that DF (0, 0, bk(ω)) is a
Fredholm operator of index zero. By the previous step,

kerDF (0, 0, bk(ω)) = span

{(

0
ψk

)}

for some ψk ∈ X1 \ {0}. To see that the transversality condition holds, we first compute

∂bDF (0, 0, bk(ω))[(0, ψk)]
(13)
= −

(

0
Rω
νψk

)

= − 1

bk(ω)

(

0
ψk

)

.
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Then, assuming there was v ∈ X1 with v − bk(ω)R
ω
ν v = ψk, we conclude

v ∈ ker(I − bk(ω)R
ω
ν )

2 \ ker(I − bk(ω)R
ω
ν ),

which contradicts the algebraic simplicity of the eigenvalue bk(ω)
−1 of Rω

ν proved in Proposi-
tion 12. Thus ∂bDF (0, 0, bk(ω))[(0, ψk)] 6∈ ran DF (0, 0, bk(ω)), and the Crandall-Rabinowitz
Bifurcation Theorem provides the curve of solutions of F (w, v, b) = 0 as described in (ii). We
remark that it is smooth since F is of class C∞. Further, possibly shrinking the neighborhood
where the local result holds, we may w.l.o.g. assume fully nontrivial solutions (u0 + w, v)
of (H) since the direction of bifurcation with respect to X1 ×X1 is given by (0, ψk).

Step 3: Global Bifurcation.

We have already seen that F ( · , b), b ∈ R, is a compact perturbation of the identity on
X1 ×X1. Thus the application of Rabinowitz’ Global Bifurcation Theorem only requires to
verify that the index of F ( · , b) in (0, 0) changes sign at each value b = bk(ω), k ∈ Z. By the
identity (13), for b 6∈ {bk(ω) | k ∈ Z},

indX1×X1

(

F ( · , b), (0, 0)
)

= indX1×X1

(

DF (0, 0, b), (0, 0)
)

(13)
= indX1

(

I − 3Rτ1
µ , 0

)

· indX1

(

I − bRω
ν , 0
)

,

and hence indX1×X1

(

F ( · , b), (0, 0)
)

changes sign at b = bk(ω) if and only if so does indX1

(

I−
bRω

ν , 0
)

. The latter change of index occurs since bk(ω) is an isolated eigenvalue of algebraic
multiplicity 1 of Rω

ν , see Proposition 12.

Notice that, by Step 2, (u0, 0, bk(ω)) ∈ S(ω), and the Global Bifurcation Theorem by Ra-

binowitz asserts that the associated connected component Ck(ω) of S(ω) is unbounded or
returns to the trivial branch at some point (u0, 0, b

∗) ∈ Tu0. We prove that, in any case, the
component is unbounded.
To see this, we recall the asymptotic phase ων as introduced in Proposition 8. It satisfies
ων(bk(ω)u

2
0) = ω+ kπ by definition of bk(ω), see Step 1, as well as ων(v

2 + bu2) ∈ ω+ πZ for
all (u, v, b) ∈ Ck(ω) with v 6= 0 due to (Aω) - indeed, we recall here that Proposition 8 rules

out the case that v 6= 0 with v(x) = O
(

1
|x|2

)

as |x| → ∞.

So if all elements (u, v, b) ∈ Ck(ω) \ Tu0 satisfy v 6= 0, then as a consequence of the continuity
of ων as stated in Proposition 10 and of the fact that Ck(ω) is connected by definition, we infer
that ων(v

2 + bu2) = ω + kπ for all (u, v, b) ∈ Ck(ω). Let us now assume that Ck(ω) returns
to the trivial family in some point (u0, 0, b

∗) ∈ Tu0 , b∗ 6= bk(ω). Then ων(b
∗u20) 6= ω + kπ,

hence (u, v, b) 7→ ων(v
2 + bu2) is not constant on Ck(ω). Thus, there exists a semitrivial

element (u1, 0, b1) ∈ Ck(ω) \ Tu0 , u1 6= u0. Since Ck(ω) is maximal connected, it contains the
unbounded semitrivial family Tu1 = {(u1, 0, b) | b ∈ R}.

The case ω = 0 and τ1 ∈ (0, π) \ {τ0}. Step 1: The Setting.

We recall that, in case ω = 0, the map F resp. Rω
ν is not well-defined due to the pole of the

cotangent. We replace it by

Gσ : X1 ×X1 × R → X1 ×X1,
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Gσ(w, v, b) :=

(

w −Rτ1
µ (w

3 + 3u0w
2 + 3u20w + b (u0 + w)v2)

v −Ψν ∗ [v (v2 + b (w + u0)
2)]− (α(ν)(v) + σβ(ν)(v)) · Ψ̃ν

)

with the functionals α(ν), β(ν) as in Corollary 7 and for σ = ±1. We will prove the local
bifurcation result for each map Gσ but, in order to find global bifurcation, we require G+

resp. G− in order to verify the change of the index at (0, 0, b) with b ≥ 0 resp. b ≤ 0. Part (b)
of that Corollary states that Gσ(w, v, b) = 0 if and only if the point (u0 + w, v, b) solves the
nonlinear Helmholtz system (H) with asymptotics (Aω), ω = 0. In particular, G+(w, v, b) = 0
if and only if G−(w, v, b) = 0. Due to (N), (ϕ, ψ) ∈ kerDG(0, 0, b) if and only if

ϕ ≡ 0, −∆ψ − νψ = b u20 ψ, ψ(x) = cψ
sin(|x|√ν)

|x| +O

(

1

|x|2
)

for some cψ ∈ R \ {0}. Propositions 8 and 11 thus tell us that a nontrivial solution ψ =
ψk ∈ X1 exists if and only if the asymptotic phase satisfies ων(b u

2
0) ∈ πZ, equivalently

b = bk(0, ν, u
2
0) =: bk(0) for some k ∈ Z, and that the eigenspace is one-dimensional. Thus

solutions of (H), (Aω) for ω = 0, bifurcate from a point (u0, 0, b) ∈ Tu0 only if b = bk(0) for
some k ∈ Z. We show that it happens indeed by checking the assumptions of the Crandall-
Rabinowitz Theorem.

Step 2: Local Bifurcation.

First, we infer that, since Gσ( · , b) is a compact perturbation of the identity, DGσ(0, 0, bk(0))
is a 1− 1−Fredholm operator. It remains to check transversality. We compute

∂bDGσ(0, 0, bk(0))[0, ψk] = −
(

0
Ψν ∗ [u20 ψk]

)

and assume by contradiction that there exist ϕ, ψ ∈ X1 with DGσ(0, 0, bk(0))[(ϕ, ψ)] =
∂bDGσ(0, 0, bk(0))[(0, ψk)]. Then ϕ = 0 due to (N), and

ψ = bk(0) Ψν ∗ [u20 ψ] + (α(ν)(ψ) + σβ(ν)(ψ)) · Ψ̃ν −Ψν ∗ [u20 ψk].(14)

Thus, applying the functional α(ν) to (14), we find

α(ν)(ψ) = bk(0)α
(ν)(Ψν ∗ [u20 ψ]) + (α(ν)(ψ) + σβ(ν)(ψ)) · α(ν)(Ψ̃ν)− α(ν)(Ψν ∗ [u20 ψk])

(9)
= α(ν)(ψ) + σβ(ν)(ψ)

and thus, since σ 6= 0, we conclude β(ν)(ψ) = 0. Equation (14) andDGσ(0, 0, bk(0))[(0, ψk)] =
(0, 0) further provide, due to Proposition 5 (c), the differential equations

−ψ′′
k −

2

r
ψ′
k − νψk = bk(0) u

2
0(r)ψk, −ψ′′ − 2

r
ψ′ − νψ = bk(0) u

2
0(r)ψ − u20 ψk(15)

for r > 0. Moreover, due to β(ν)(ψ) = 0 as shown above and β(ν)(ψk) = 0 which holds
since DGσ(0, 0, bk(0))[(0, ψk)] = (0, 0) as explained in Step 1, Proposition 5 (d) yields for the
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profiles

ψk(r) = ck ·
sin(r

√
ν)

r
+O

(

1

r2

)

, ψ′
k(r) = ck

√
ν · cos(r

√
ν)

r
+O

(

1

r2

)

,

ψ(r) = c · sin(r
√
ν)

r
+O

(

1

r2

)

, ψ′(r) = c
√
ν · cos(r

√
ν)

r
+O

(

1

r2

)(16)

as r → ∞ for some c ∈ R, ck ∈ R \ {0}. Multiplying the differential equations (15) by ψ
resp. ψk and taking the difference yields (r2(ψkψ

′ − ψψ′
k))

′ = r2u20(r)ψ
2
k, hence for R > 0

∫ R

0

r2u20(r)ψ
2
k(r) dr = R2 (ψk(R)ψ

′(R)− ψ(R)ψ′
k(R))

(16)
= O

(

1

R

)

.

Thus letting Rր ∞, we infer u0ψk ≡ 0, a contradiction. Hence

∂bDGσ(0, 0, bk(0))[(0, ψk)] 6∈ ranDGσ(0, 0, bk(0)),

as asserted, proving transversality and thus bifurcation from a simple eigenvalue.

Step 3: Global Bifurcation.

Having already mentioned that Gσ( · , b) is a compact perturbation of the identity on X1×X1,
Rabinowitz’ Global Bifurcation Theorem applies and yields unbounded connected compo-
nents Ck(0) ⊆ S(0) once we show that the index

indX1×X1

(

Gσ( · , b), (0, 0)
)

= indX1×X1

(

DGσ(0, 0, b), (0, 0)
)

= indX1

(

I − 3Rτ1
µ , 0

)

· indX1

(

I −Kb, 0
)

where we let Kb := bΨν ∗ [u20 · ] + (α(ν) + σβ(ν)) · Ψ̃ν

changes sign at b = bk(0), k ∈ Z for a suitable choice of σ ∈ {−1,+1}. More precisely, we
analyze bifurcation at bk(0) ≥ 0 using the map G+ and at bk(0) < 0 using G−.
In the following, we verify that 1 is an algebraically simple eigenvalue of Kbk(0) and, moreover,
the corresponding perturbed eigenvalue λb ≈ 1 of Kb for b ≈ bk(0) has the property that
λb − 1 changes sign as b crosses bk(0). For the existence, algebraic simplicity and continuous
dependence of the perturbed eigenvalue λb on b we refer to Kielhöfer’s book [11], p. 203.
Rabinowitz’ Global Bifurcation Theorem in the version of [11], Theorem II.3.3 then applies,
and unboundedness of the component can then be proved as in Step 3 above.

Algebraic Simplicity. Here we adapt the proof of algebraic simplicity in Proposition 12 to
the case ω = 0 resp. to the map Gσ. Let us assume that ker(I − Kbk(0)) = span{w} and
v ∈ ker(I −Kbk(0))

2 \ ker(I −Kbk(0)). Then v−Kbk(0)v ∈ ker(I −Kbk(0)), and without loss of
generality, we have v −Kbk(0)v = w = Kbk(0)w, hence

w = bk(0) Ψν ∗ [u20w] + (α(ν)(w) + σβ(ν)(w)) · Ψ̃ν ,

v = bk(0) Ψν ∗ [u20 (v + w)] + (α(ν)(v + w) + σβ(ν)(v + w)) · Ψ̃ν .
(17)

Corollary 7 implies that the profiles satisfy

−w′′ − 2

r
w′ − νw = bk(0)u

2
0 w, −v′′ − 2

r
v′ − νv = bk(0)u

2
0 (v + w) on R3(18)
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as well as β(ν)(w) = 0. Applying α(ν) to the second identity in (17) and recalling the identi-
ties (9), we further have β(ν)(v) = −σα(ν)(w). The asymptotic expansions in Proposition 5 (d)
imply

w(r) = α(ν)(w)
sin(r

√
ν)

r
+O

(

1

r2

)

,

w′(r) = α(ν)(w)
√
ν
cos(r

√
ν)

r
+O

(

1

r2

)

,

v(r) = α(ν)(v)
sin(r

√
ν)

r
− σα(ν)(w)

cos(r
√
ν)

r
+O

(

1

r2

)

,

v′(r) = α(ν)(v)
√
ν
cos(r

√
ν)

r
+ σα(ν)(w)

√
ν
sin(r

√
ν)

r
+O

(

1

r2

)

.

(19)

For r ≥ 0, we introduce q(r) := r2 (w(r)v′(r)− v(r)w′(r)). Using the differential equations
in (18), we find after a short calculation

q′(r) = −r2bk(0)u20(r)w2(r) (r > 0),

hence q is nondecreasing if bk(0) ≤ 0 and nonincreasing if bk(0) ≥ 0. On the other hand,
q(0) = 0, and the asymptotic expansions (19) imply as r → ∞

q(r) = σ · α(ν)(w)2
√
ν +O

(

1

r

)

.

Since α(ν)(w) 6= 0 according to Proposition 8, and since we choose σ = +1 to discuss bk(0) ≥
0 and σ = −1 for bk(0) < 0, this contradicts the monotonicity derived before. Hence
ker(I −Kbk(0)) = ker(I −Kbk(0))

2, as claimed.

Perturbation of the eigenvalue. We now discuss the perturbation of the simple eigenvalue
λbk(0) = 1 of Kbk(0). Throughout the following lines, we consider a perturbed value b ≈
bk(0), b 6= bk(0) and the corresponding eigenpair λb ≈ 1 and wb ∈ X1 with Kbwb = λbwb. It
satisfies

−∆wb − νwb =
b

λb
u20(x) wb on R3, (λb − 1)α(ν)(wb) = σβ(ν)(wb).(20)

This immediately implies that λb 6= 1 since b ≈ bk(0), b 6= bk(0) and hence β(ν)(wb) 6= 0 due
to the strict monotonicity of the asymptotic phase, see Proposition 11. We recall that the
asymptotic phase of wb satisfies

ων(bk(0)u
2
0) ∈ πZ and

α(ν)(wb)

β(ν)(wb)
= cot(ων(bλ

−1
b u20)) (b 6= bk(0), b ≈ bk(0)).(21)

The latter is a consequence of various representation results applied to (20),

wb(x)
Cor. 7,(9)

= β(ν)(wb) ·Ψν(x) + α(ν)(wb) · Ψ̃ν(x) +O

(

1

|x|2
)

,

wb(x)
Cor. 6
=

(

Ψν + cot(ων(bλ
−1
b u20)) · Ψ̃ν

)

∗
[

b

λb
u20(x) wb

]
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Prop. 5
= 4π

√

π

2
· b
λb
û20wb(

√
ν) ·

(

Ψν(x) + cot(ων(bλ
−1
b u20)) · Ψ̃ν(x)

)

+O

(

1

|x|2
)

.

We now discuss the values bk(0) ≥ 0, i.e. σ = +1. In case b > bk(0) we show that λb > 1.
Assuming λb < 1, we infer from the second identity in (20) that sgn α(ν)(wb) 6= sgn β(ν)(wb)
and thus ων(bλ

−1
b u20) ∈

(

−π
2
, 0
)

+ πZ due to (21). But since bλ−1
b > bk(0), the monotonicity

stated in Proposition 11 implies ων(bλ
−1
b u20) ∈ ων(bk(0)u

2
0) +

(

0, π
2

)

⊆
(

0, π
2

)

+ πZ, a contra-
diction. Hence, as claimed, λb > 1. In the same way, for b < bk(0), we can show that λb < 1.
Following the same strategy, we see for bk(0) < 0, i.e. σ = −1, that b > bk(0) implies λb < 1
and b < bk(0) implies λb > 1.
We have thus proved that, as b crosses bk(0), the perturbed eigenvalue λb crosses λbk(0) = 1 and

hence the sign of the Leray-Schauder index indX1×X1

(

Gσ( · , b), (0, 0)
)

changes at b = bk(0)
for all k ∈ Z and for σ ∈ {±1} chosen as above.

The case τ1 = 0. This is covered by redefining the first components of F resp. Gσ,

(w, v, b) 7→ w −Ψµ ∗ [w3 + 3u0w
2 + 3u20w + b (u0 + w)v2]−

[

α(µ)(w) + β(µ)(w)
]

· Ψ̃µ

=: h(w, v, b)

instead of

(w, v, b) 7→ w −Rτ1
µ (w

3 + 3u0w
2 + 3u20w + b (u0 + w)v2).

This redefinition is similar to the changes in the second component when passing from F

resp. parameters ω ∈ (0, π) to Gσ suitable for ω = 0. Then still, F resp. Gσ is a compact
perturbation of the identity. The redefinition ensures that, due to Part (b) of Corollary 7,
h(w, v, b) = 0 implies that

−∆w − µw = (u0 + w)3 − u30 + b (u0 + w)v2 on R3,

w(x) = cw
sin(|x|√µ)

|x| +O

(

1

|x|2
)

as |x| → ∞

for some cw ∈ R, i.e. that the w component of zeros of F resp. Gσ satisfies (H), (Aω).
Similarly, for ϕ, ψ ∈ X1 with Dh(0, 0, b)[(ϕ, ψ)] = (0, 0), we obtain

−∆ϕ− µϕ = 3u20(x)ϕ on R3,

ϕ(x) = cϕ
sin(|x|√µ)

|x| +O

(

1

|x|2
)

as |x| → ∞

for some cϕ ∈ R \ {0}, which implies ϕ = 0 thanks to the nondegeneracy condition (N).
These are the only properties of the first component of F resp. Gσ required in the proof for
τ1 6= 0, which we can now again follow line by line, closing the proof of Theorem 2. �

Proof of Remark 3.

(a) The Steps 1 of the proof above in fact show that solutions of (H), (Aω) bifurcate from
(u0, 0, b) ∈ Tu0 only if b = bk(ω) for k ∈ Z; Steps 2 show that this condition is also
sufficient.
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(b) By Proposition 11, the map q : R → R, q(b) := ων(b u
2
0) is strictly increasing and onto.

Having chosen bk(ω) = q−1(ω+ kπ) for ω ∈ [0, π), k ∈ Z, we infer strict monotonicity
and surjectivity of the map R → R, ω + kπ 7→ bk(ω).

(c) In Steps 2 we have seen that in a neighborhood of the bifurcation point (u0, 0, bk(ω)),
the continuum Ck(ω) contains only fully nontrivial solutions apart from (u0, 0, bk(ω))
itself. Following the argumentation which was given in detail for the case ω ∈ (0, π) at
the end of Step 3 (and also holds for ω = 0), we infer for all (u, v, b) ∈ Ck(ω) from this
neighborhood that the asymptotic phase of v satisfies ων(v

2 + bu2) = ω + kπ. More
generally, ων(v

2+ bu2) = ω+ kπ holds on every connected subset of Ck(ω) containing
(u0, 0, bk(ω)) but no other semitrivial solution with v = 0.

(d) Assuming τ1 6= σ0, any solution (u, v, b) of (H), (Aω) satisfies

u(x) = u0(x) + w(x) = c0
sin(|x|√µ+ σ0)

|x| + cw
sin(|x|√µ+ τ1)

|x| +O

(

1

|x|2
)

as |x| → ∞ for some cw ∈ R, c0 ∈ R \ {0} by Proposition 1 and by the asymptotic
condition (Aω). Hence, comparing the leading-order terms, we see that u 6= 0. More-
over, as recalled in (b), the values bk(ω) = q−1(ω + kπ) do not change when choosing
another asymptotic parameter τ1 in (Aω). �

4. Proof of Theorem 4

We now prove the occurence of bifurcations from the diagonal solution family

Tu0 :=

{

(ub, ub, b)

∣

∣

∣

∣

ub =
1√
1 + b

u0, b > −1

}

as stated in Theorem 4. To this end we first rewrite the system (H) in an equivalent but
more convenient way. Looking for solutions (u, v, b) ∈ X1 × X1 × R \ T, we introduce the
functions w1, w2 ∈ X1 via

u =: ub + w1 − w2, v =: ub + w1 + w2.

A few computations then yield that bifurcation at the point (ub, ub, b) occurs if and only if
we have bifurcation from the trivial solution of the nonlinear Helmholtz system

{

−∆w1 − µw1 = (1 + b)
(

(w1 + ub)
3 − u3b

)

+ (3− b)(w1 + ub)w
2
2 on R3,

−∆w2 − µw2 = (1 + b)w3
2 + (3− b)(w1 + ub)

2w2 on R3,
(22)

and the asymptotic conditions (Adiag
ω ) are equivalent to

w1(x) = c1
sin(|x|√µ+ τ1)

|x| +O

(

1

|x|2
)

, w2(x) = c2
sin(|x|√µ+ ω)

|x| +O

(

1

|x|2
)

(23)

as |x| → ∞ for some c1, c2 ∈ R. As in the proof of Theorem 2, the functional analytical
setting in the special cases ω = 0 or τ1 = 0 is different from the general one since a substitute
for the operators Rτ1

µ ,Rω
µ has to be found, see the definition of Gσ in the proof of Theorem 2.

In order to keep the presentation short we only discuss the case τ1, ω ∈ (0, π) and refer to the
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proof of Theorem 2 for the modifications in the remaining cases. So we introduce the map
F : X1 ×X1 × (−1,∞) → X1 ×X1 via

F (w1, w2, b) :=

(

w1

w2

)

−





Rτ1
µ

(

(1 + b)
(

(w1 + ub)
3 − u3b

)

+ (3− b)(w1 + ub)w
2
2

)

Rω
µ

(

(1 + b)w3
2 + (3− b)(w1 + ub)

2w2

)



 .

Then F (0, 0, b) = 0 for all b > −1, F ( · , b) is a compact perturbation of the identity onX1×X1

and it remains to find bifurcation points for this equation. First we identify candidates for
bifurcation points, so we first compute those b ∈ (−1,∞) where kerDF (0, 0, b) is nontrivial.
Using

DF (0, 0, b)[(φ1, φ2)] =

(

φ1

φ2

)

−
(

Rτ1
µ

(

3(1 + b)u2bφ1

)

Rω
µ

(

(3− b)u2bφ2

)

)

=

(

φ1

φ2

)

−
(

3Rτ1
µ φ1

3−b
1+b

·Rω
µφ2

)

,

we get that nontrivial kernels occur exactly if 3−b
1+b

= bk(ω) for some k ∈ Z, cf. Steps 1 in the

previous proof. For the analogous result in the Schrödinger case we refer to Lemma 3.1 [3].
So we find

kerDF (0, 0, b) = span
{

(

0
ψk

)

}

provided b =
3− bk(ω)

bk(ω) + 1
> −1

for some ψk ∈ X1 \ {0}. Notice that the first component of the kernel element is zero by
choice of τ1, see Proposition 1. Using the algebraic simplicity of ψk proved in Proposition 12
we infer exactly as in the proof of Theorem 2 that the transversality condition holds and that
the Leray-Schauder index changes at the bifurcation point. So, choosing as (b̃k(ω))k∈Z the

subsequence of (bk(ω))k∈Z with 3−bk(ω)
bk(ω)+1

> −1, the Crandall-Rabinowitz Bifurcation Theorem

and Rabinowitz’ Global Bifurcation Theorem yield statements (ii) and (i) of the Theorem,
respectively.
Unboundedness of the components can also be deduced as before. Indeed, assuming that
Ck(ω) is unbounded, it returns to Tu0 at some point (ub∗ , ub∗, b

∗) 6= (ubk(ω), ubk(ω), bk(ω))
by Rabinowitz’ Theorem. We then infer that the phase ων((1 + b)w2

2 + (3 − b)(w1 + ub)
2)

cannot be constant along Ck(ω). Due to Proposition 8 applied to w2 in (22), this requires the
existence of some element (u, v, b) ∈ Ck(ω) with w2 =

1
2
(v−u) = 0, and hence the associated

unbounded diagonal family belongs to Ck(ω). �

5. Proofs of the Results in Section 2

Before proving Proposition 5, we establish two helpful explicit results. The first one pro-
vides a formula for the Fourier transform of radially symmetric functions, to be found e.g.
in [16], p. 430.

Lemma 14. For f ∈ X3 and x ∈ R3 \ {0}, we have

f̂(x) =

√

2

π

∫ ∞

0

f(r) · sin(|x|r)|x|r r2 dr.
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We denote by

Φλ(x) :=
ei
√
λ|x|

4π|x|
(5)
= Ψλ(x) + i Ψ̃λ(x) for λ > 0, x ∈ R3 \ {0}(24)

a (complex) fundamental solution of the Helmholtz equation −∆φ − λφ = 0 on R3, and
provide the following pointwise formula for convolutions with kernel Φλ.

Lemma 15. For f ∈ X3 and x ∈ R3 \ {0}, we have

(Φλ ∗ f)(x) =
ei
√
λ|x|

|x| ·
∫ |x|

0

sin(
√
λr)√
λr

· f(r) r2 dr + sin(
√
λ|x|)

|x| ·
∫ ∞

|x|

ei
√
λr

√
λr

· f(r) r2 dr

=

√

π

2
f̂(
√
λ) · e

i
√
λ|x|

|x| +

∫ ∞

|x|
f(r) · e

i
√
λr sin(

√
λ|x|)− ei

√
λ|x| sin(

√
λr)√

λr|x|
r2dr.

Proof. Let f ∈ X3 and x 6= 0. Observing that the singular function Φλ is locally integrable in
R3, the convolution is well-defined and we compute using spherical coordinates with respect
to the x direction

(Φλ ∗ f)(x) =
∫

R3

ei
√
λ|x−y|

4π|x− y| f(y) dy

=

∫ ∞

0

∫ π

0

∫ 2π

0

ei
√
λ
√

|x|2+r2−2|x|r cos(ϑ)

4π
√

|x|2 + r2 − 2|x|r cos(ϑ)
f(r) r2 sin(ϑ) dϕdϑdr

=

∫ ∞

0

[

ei
√
λ
√

|x|2+r2−2|x|r cos(ϑ)

2i
√
λ|x|r

]ϑ=π

ϑ=0

f(r) r2 dr

=

∫ ∞

0

ei
√
λ||x|+r| − ei

√
λ||x|−r|

2i
√
λ|x|r

· f(r) r2 dr

=

∫ |x|

0

ei
√
λ|x| · sin(

√
λr)√

λ|x|r
· f(r) r2 dr +

∫ ∞

|x|

ei
√
λr · sin(

√
λ|x|)√

λ|x|r
· f(r) r2 dr.

When combined with Lemma 14, this yields the asserted identity. �

5.1. Proof of Proposition 5. We now prove, one by one, the assertions of Proposition 5
for convolutions with Φλ in place of αΨλ+ α̃Ψ̃λ. The latter (real-valued) case can be deduced
from the former using formula (24). Unless stated otherwise, we extend norms defined on
spaces of real-valued functions to complex-valued functions g : R3 → C by considering the
respective norm of |g| : R3 → R.
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(a) is a consequence of Theorem 2.1 in [7]. The solution properties stated in (c) can be
verified by direct computation. We prove continuity and compactness as stated in (b) and
the asymptotic properties given in (d).

Step 1: Proof of (b), first part. Continuity.

Due to the continuous embedding X3 ⊆ L
4

3

rad(R
3), see (6), the convolution is well-defined for

f ∈ X3. Using Young’s convolution inequality, we get

|(Φλ ∗ f)(x)| ≤ |
(

1B1(0)Φλ
)

∗ f(x)|+ |
(

1R3\B1(0)Φλ
)

∗ f(x)|

≤
∫

R3

|f(x− y)|1B1(0)(y)
dy

4π|y| +
∥

∥

(

1R3\B1(0)Φλ
)

∗ f
∥

∥

L∞(R3)

≤ ‖f‖L∞(R3)

∫

B1(0)

dy

4π|y| +
∥

∥1R3\B1(0)Φλ
∥

∥

L4(R3)
‖f‖

L
4
3 (R3)

≤ ‖f‖L∞(R3)

∫

B1(0)

dy

4π|y| + ‖f‖
L

4
3 (R3)

(∫

R3\B1(0)

dy

(4π|y|)4
)

1

4

=
1

2
‖f‖L∞(R3) + (4π)−

3

4 ‖f‖
L

4
3 (R3)

≤ 1

2
‖f‖X3

+ (4π)−
3

4





∫

R3

‖f‖
4

3

X3

(1 + |y|2)2 dy





3

4

≤
(

1

2
+

(
∫ ∞

0

1

1 + r2
dr

)
3

4

)

‖f‖X3

≤ 1 + π

2
· ‖f‖X3

.

Next, by means of Lemma 15, we estimate for x ∈ R3 \ {0} in the weighted norm

||x| · (Φλ ∗ f)(x)| =
∣

∣

∣

∣

∣

ei
√
λ|x| ·

∫ |x|

0

sin(
√
λr)√
λr

· f(r) r2 dr + sin(
√
λ|x|) ·

∫ ∞

|x|

ei
√
λr

√
λr

· f(r) r2 dr
∣

∣

∣

∣

∣

≤
∫ |x|

0

1√
λr

·
‖f‖X3

(1 + r2)
3

2

r2 dr +

∫ ∞

|x|

1√
λr

·
‖f‖X3

(1 + r2)
3

2

r2 dr

≤ 1√
λ
· ‖f‖X3

·
∫ ∞

0

dr

1 + r2

=
π

2
√
λ
· ‖f‖X3

.

Combining both estimates, we have shown that

‖Φλ ∗ f‖X1
= sup

x∈R3

√

1 + |x|2|(Φλ ∗ f)(x)| ≤
[

1 + π

2
+

π

2
√
λ

]

· ‖f‖X3
.
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Step 2: Proof of (d), first part. Asymptotics of w.

For f ∈ X3 and r = |x| > 0, Lemma 15 implies
∣

∣

∣

∣

∣

(Φλ ∗ f)(r)−
√

π

2
f̂(
√
λ)

ei
√
λr

r

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ ∞

r

f(s)
ei
√
λs sin(

√
λr)− ei

√
λr sin(

√
λs)√

λsr
s2ds

∣

∣

∣

∣

∣

≤
∫ ∞

r

‖f‖X3

(1 + s2)
3

2

· 2√
λr

sds

≤ ‖f‖X3
· 2√

λr

∫ ∞

r

1

s2
ds

= ‖f‖X3
· 2√

λr2
.

(25)

As a consequence, we derive the formula stated for Ψ̃λ ∗ f . Due to (c), Ψ̃λ ∗ f is a radial
solution of the homogeneous Helmholtz equation −∆w − λw = 0 on R3 and hence a scalar
multiple of Ψ̃λ itself. The asymptotics in (25) justify the asserted constant.

Step 3: Proof of (d), second part. Asymptotics of w′.

We let w := Φλ ∗ f , denote by w′ the radial derivative, again identifying the radial functions
with their profiles. We introduce the auxiliary function z(r) := r ·w(r) (r ≥ 0). Then by (c)
z is twice continuously differentiable with

−z′′ − λz = r · f(r) on (0,∞), z(r) =

√

π

2
f̂(
√
λ) · ei

√
λr +O

(

1

r

)

as r → ∞.

Letting δ(r) := z(r)−
√

π
2
f̂(
√
λ) · ei

√
λr, we observe

δ(r) = O

(

1

r

)

, δ′′(r) = −λδ(r)− r · f(r) = O

(

1

r

)

as r → ∞.

By Taylor’s Theorem, for r > 0, we find τ(r) ∈ (0, 1) with δ(r+1) = δ(r)+δ′(r)+ 1
2
δ′′(r+τ(r)),

whence also δ′(r) = O
(

1
r

)

. In other words,

z′(r) = i
√
λ ·
√

π

2
f̂(
√
λ) · ei

√
λr +O

(

1

r

)

as r → ∞,

and this proves the assertion since w′(r) = z′(r)
r

− z(r)
r2

= z′(r)
r

+O
(

1
r2

)

.

Step 4: Proof of (b), second part. Compactness.

We consider a bounded sequence (fn)n in the space X3 and aim to prove convergence of a
subsequence of (un)n where un := Φλ ∗ fn in the space X1. First, due to the continuous
embeddings into reflexive Lp spaces stated in (6), we can pass to a subsequence with

fnk
⇀ f weakly in L4(R3) ∩ L 4

3 (R3), unk
⇀ u weakly in L4(R3)
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for some f ∈ L4
rad(R

3) ∩ L
4

3

rad(R
3), u ∈ L4

rad(R
3). Using Proposition A.1 in [7] and a suitable

diagonal sequence, we may assume that the subsequence satisfies unk
⇀ u weakly inW 2,4

loc (R
3)

and hence unk
→ u strongly in C1

loc(R
3), the latter thanks to the Rellich-Kondrachov Em-

bedding Theorem 6.3 in [1]. We will prove that (unk
)k is a Cauchy sequence in X1. We let

ε > 0 and choose

R := max

{

8
√
2

ε
√
λ
· sup
n∈N

‖fn‖X3
, 1

}

.(26)

Then since unk
→ u in C1

loc(R
3), in particular, unk

→ u uniformly on B̄R(0), and we can
choose k1(ε) ∈ N with

sup
|x|≤R

(1 + |x|2) 1

2 |unk
(x)− unl

(x)| < ε for all k, l ≥ k1(ε).(27)

We next observe that Lemma 14 implies f̂nk
(
√
λ) → f̂(

√
λ) as k → ∞ since fnk

⇀ f weakly

in L
4

3 (R3). Thus, we find k2(ε) ∈ N with the property that

√
π|f̂nk

(
√
λ)− f̂nl

(
√
λ)| < ε

2
for all k, l ≥ k2(ε).(28)

Since fn ∈ X3, we estimate for |x| > R ≥ 1 and k, l ≥ k2(ε) using (d)

(1 + |x|2) 1

2 |unk
(x)− unl

(x)|
(25)

≤
√

π

2
|f̂nk

(
√
λ)− f̂nl

(
√
λ)|(1 + |x|2) 1

2

|x| +
2(1 + |x|2) 1

2

√
λ|x|2

· ‖fnk
− fnl

‖X3

≤
√
π|f̂nk

(
√
λ)− f̂nl

(
√
λ)|+ 2

√
2√

λR
· 2 sup

n∈N
‖fn‖X3

(26),(28)
< ε.

Combining this with (27), we have

‖unk
− unl

‖X1
= sup

|x|≥0

(1 + |x|2) 1

2 |unk
(x)− unl

(x)| < ε for all k, l ≥ max{k1(ε), k2(ε)}.

Hence (unk
)k∈N is a Cauchy sequence in X1, which implies unk

→ u strongly in X1. �

5.2. Proof of Corollary 6. Let f ∈ X3 and ω ∈ (0, π). First, given w ∈ X1 with w = Rω
λf ,

Proposition 5 (c) implies that w ∈ C2(R3) and (−∆ − λ) w = f on R3. Proposition 5 (d)
with α = 1, α̃ = cot(ω) further states

w(x) =

√

π

2
f̂(
√
λ) · sin(ω) cos(|x|

√
λ) + cos(ω) sin(|x|

√
λ)

sin(ω)|x| +O

(

1

|x|2
)

=

√

π

2

f̂(
√
λ)

sin(ω)
· sin(|x|

√
λ+ ω)

|x| +O

(

1

|x|2
)
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as |x| → ∞, as asserted. Conversely, let us now assume that w ∈ X1 solves −∆w − λw = f

on R3 and satisfies

w(x) = γ · sin(|x|
√
λ+ ω)

|x| +O

(

1

|x|2
)

as |x| → ∞ for some γ ∈ R. Then w −Rω
λf is a radially symmetric solution of the homoge-

neous Helmholtz equation, hence w−Rω
λf = α̃ ·Ψ̃λ for some α̃ ∈ R. Due to Proposition 5 (d),

α̃ · Ψ̃λ(x) = w(x)−Rω
λf(x) =

(

γ −
√

π

2
f̂(
√
λ)

)

· sin(|x|
√
λ+ ω)

|x| +O

(

1

|x|2
)

as |x| → ∞, which implies α̃ = 0 and hence w = Rω
λf . �

5.3. Proof of Corollary 7.

(a) Assuming that w ∈ X1 is a C2 solution of −∆w − λw = f on R3, Proposition 5 (c)
implies that w−Ψλ ∗ f is a radially symmetric solution of the homogeneous equation
−∆v−λv = 0. Hence w−Ψλ∗f = α̃ ·Ψ̃λ, w ∈ U1(λ), and α̃ = α(ν)(w) by definition of
the functional α(ν). Conversely, assuming that w = Ψλ∗f +α(ν)(w) · Ψ̃λ, the assertion
follows from Proposition 5 (c).

(b) If we assume that w ∈ X1 is a C2 solution of

−∆w − λw = f on R3, w(x) = γ
sin(|x|

√
λ)

|x| +O

(

1

|x|2
)

as |x| → ∞,

we infer w = Ψλ ∗ f + α(ν)(w) · Ψ̃λ from (a) and β(ν)(w) = 0 from the defining
equations (8) since w ∈ U1(λ). On the other hand, given that w = Ψλ ∗f +(α(ν)(w)+
σβ(ν)(w))·Ψ̃λ, we deduce that w is twice continuously differentiable with −∆w−λw =
f from Proposition 5 (c). By assumption, w ∈ U1(λ), and applying α(ν) to the identity

w = Ψλ ∗ f +(α(ν)(w)+σβ(ν)(w)) · Ψ̃λ yields β
(ν)(w) = 0 thanks to the equations (9).

�

5.4. Proof of Proposition 8. Let g ∈ X2. Then the profile w : [0,∞) → R is a (global)
solution of the initial value problem (10) if and only if y : [0,∞) → R, y(r) = r · w(r) solves

{

−y′′ − λy = g(r) · y on (0,∞),

y(0) = 0, y′(0) = 1.
(29)

Moreover, w ∈ X1 if y is bounded. Global existence and uniqueness of such y ∈ C2([0,∞)) are
consequences of the Picard-Lindelöf Theorem and of Gronwall’s Lemma since g ∈ L1([0,∞)).
Our proof of boundedness of y and of the asserted asymptotic expansions is inspired by
perturbation results due to Hartman in [10]. It is an application of the Prüfer transformation,
see equation (2.1) in [10]. Since y 6≡ 0, uniqueness implies that y(r)2 + y′(r)2 > 0 for all
r ≥ 0. We thus parametrize using polar coordinates in the phase space

y(r) = ̺(r) · sin(φ(r)
√
λ), y′(r) = ̺(r) ·

√
λ cos(φ(r)

√
λ) (r ≥ 0)(30)
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with functions ̺ : [0,∞) → (0,∞) and φ : [0,∞) → R. A short calculation shows that we
thus obtain a solution of (29) if and only if ̺ and φ satisfy the first-order system











(log ̺)′ = − g(r)

2
√
λ
sin(2φ

√
λ) on (0,∞),

φ′ = 1 + g(r)
λ

sin2(φ
√
λ) on (0,∞),

̺(0) = 1√
λ
, φ(0) = 0.

(31)

Eqivalently, for r ≥ 0,

̺(r) =
1√
λ
· exp

(

−
∫ r

0

g(t)

2
√
λ
sin(2φ(t)

√
λ) dt

)

,

φ(r) = r +

∫ r

0

g(t)

λ
sin2(φ(t)

√
λ) dt.

(32)

We will frequently refer to the estimate

∀ r ≥ 0
1√
λ
exp

(∣

∣

∣

∣

∫ r

0

g(t)

2
√
λ
sin(2φ(t)

√
λ) dt

∣

∣

∣

∣

)

≤ 1√
λ
exp

(

π

4
√
λ

‖g‖X2

)

=: Cg.(33)

Indeed, it immediately yields boundedness of the solution since, due to g ∈ X2,

|y(r)|
(30)

≤ |̺(r)|
(32)

≤ 1√
λ
· exp

(∣

∣

∣

∣

∫ r

0

g(t)

2
√
λ
sin(2φ(t)

√
λ) dt

∣

∣

∣

∣

)

(33)

≤ Cg.

Analogously, we see that the improper integrals in

ωλ(g) :=

∫ ∞

0

g(t)√
λ
sin2(φ(t)

√
λ) dt and ̺λ(g) :=

1√
λ
· exp

(

−
∫ ∞

0

g(t)

2
√
λ
sin(2φ(t)

√
λ) dt

)

converge, observe ̺λ(g) > 0, and verify the asserted asymptotic behavior of y as r → ∞:
∣

∣

∣
y(r)− ̺λ(g) sin(r

√
λ+ ωλ(g))

∣

∣

∣

(30)
=
∣

∣

∣
̺(r) sin(φ(r)

√
λ)− ̺λ(g) sin(r

√
λ+ ωλ(g))

∣

∣

∣

≤
∣

∣

∣
[̺(r)− ̺λ(g)] sin(φ(r)

√
λ)
∣

∣

∣
+
∣

∣

∣
̺λ(g)

[

sin(φ(r)
√
λ)− sin(r

√
λ+ ωλ(g))

]∣

∣

∣

(33)

≤ Cg ·
(∣

∣

∣

∣

̺(r)

̺λ(g)
− 1

∣

∣

∣

∣

+
∣

∣

∣
sin(φ(r)

√
λ)− sin(r

√
λ+ ωλ(g))

∣

∣

∣

)

where we estimate both terms as follows
∣

∣

∣

∣

̺(r)

̺λ(g)
− 1

∣

∣

∣

∣

(32)
=

∣

∣

∣

∣

exp

(∫ ∞

r

g(t)

2
√
λ
sin(2φ(t)

√
λ) dt

)

− 1

∣

∣

∣

∣

(33)

≤ Cg ·
∣

∣

∣

∣

∫ ∞

r

g(t)

2
√
λ
sin(2φ(t)

√
λ) dt

∣

∣

∣

∣

≤ Cg ·
‖g‖X2

2
√
λ

·
∫ ∞

r

dt

1 + t2



BIFURCATIONS OF NONTRIVIAL SOLUTIONS OF A CUBIC HELMHOLTZ SYSTEM 25

≤ Cg ·
‖g‖X2

2
√
λ

· 1
r
,

∣

∣

∣
sin(φ(r)

√
λ)− sin(r

√
λ+ ωλ(g))

∣

∣

∣
≤
∣

∣

∣
φ(r)

√
λ− r

√
λ− ωλ(g)

∣

∣

∣

=

∣

∣

∣

∣

∫ ∞

r

g(t)√
λ
sin2(φ(t)

√
λ) dt

∣

∣

∣

∣

≤
‖g‖X2√

λ
·
∫ ∞

r

dt

1 + t2

≤
‖g‖X2√

λ
· 1
r
.

Thus y(r) − ̺λ(g) sin(r
√
λ + ωλ(g)) = O

(

1
r

)

as r → ∞. Similarly one can show that

y′(r)− ̺λ(g)
√
λ cos(r

√
λ+ ωλ(g)) = O

(

1
r

)

as r → ∞. Since y(r) = r · w(r), the Proposition
is proved. �

5.5. Proof of Proposition 10. We consider gn, g0 ∈ X2 with gn → g0 ∈ X2 and aim to
show that ωλ(gn) → ωλ(g0). By φn ∈ C1((0,∞)) ∩ C([0,∞)), we denote the unique solution
of

φ′
n = 1 +

gn(r)

λ
sin2(φn

√
λ), φn(0) = 0.

Then we have pointwise convergence, φn(r) → φ0(r) for all r ≥ 0. Indeed, let us fix any
R > 0 and estimate for 0 ≤ r ≤ R and n ∈ N

|φn(r)− φ0(r)| =
∣

∣

∣

∣

∫ r

0

gn(t)

λ
sin2(φn(t)

√
λ)− g0(t)

λ
sin2(φ0(t)

√
λ) dt

∣

∣

∣

∣

≤ 1

λ

∫ r

0

|gn(t)− g0(t)| dt +
1

λ

∫ r

0

|g0(t)| ·
∣

∣

∣
sin2(φn(t)

√
λ)− sin2(φ0(t)

√
λ)
∣

∣

∣
dt

≤ 1

λ

∫ ∞

0

‖gn − g0‖X2

dt

1 + t2
+

2 ‖g0‖∞√
λ

∫ r

0

|φn(t)− φ0(t)| dt

≤ π

2λ
‖gn − g0‖X2

+
2 ‖g0‖∞√

λ

∫ r

0

|φn(t)− φ0(t)| dt.

Thus, by Gronwall’s Lemma, we have for 0 ≤ r ≤ R

|φn(r)− φ0(r)| ≤
π

2λ
‖gn − g0‖X2

· e
2‖g0‖∞√

λ
r ≤ π

2λ
‖gn − g0‖X2

· e
2‖g0‖∞√

λ
R
.

Since gn → g0 inX2, we conclude φn → φ0 locally uniformly on [0,∞), in particular pointwise.
Now we can deduce the convergence of the asymptotic phase,

ωλ(gn) =
1√
λ

∫ ∞

0

gn(r) sin
2(φn(r)

√
λ) dr → 1√

λ

∫ ∞

0

g0(r) sin
2(φ0(r)

√
λ) dr = ωλ(g0),
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which is a consequence of the Dominated Convergence Theorem. Indeed, the integrands
converge pointwise and are integrably majorized by

∣

∣

∣
gn(r) sin

2(φn(r)
√
λ)
∣

∣

∣
≤

supn∈N ‖gn‖X2

1 + r2
(r ≥ 0).

�

5.6. Proof of Proposition 11. Let us first recall that, given the assumptions of Proposi-
tion 11, equation (11) implies for b ∈ R

ωλ(b u
2
0) =

b√
λ

∫ ∞

0

u20(r) sin
2(φb(r)

√
λ) dr

where φb satisfies φ
′
b = 1+ b

λ
u20(r) sin

2(φb
√
λ) on (0,∞), φb(0) = 0. We immediately see that

ωλ(0) = 0 and sgn ωλ(b u
2
0) = sgn (b) for all b ∈ R \ {0}. Further, continuity of b 7→ ωλ(b u

2
0)

is a consequence of Proposition 10. The assertions are proved once we show that b 7→ ωλ(b u
2
0)

is strictly increasing with

ωλ(b u
2
0) → ±∞ as b→ ±∞.

Step 1: Strict monotonicity. We let b1 < b2, define

χ(r) :=

{

sin2(φb2 (r)
√
λ)−sin2(φb1 (r)

√
λ)

φb2 (r)
√
λ−φb1 (r)

√
λ

if φb2(r) 6= φb1(r),

2 sin(φb1(r)
√
λ) cos(φb1(r)

√
λ) else

and observe that χ is bounded with 0 ≤ |χ(r)| ≤ 2 and continuous. ψ := φb2 − φb1 satisfies

ψ′ =
b2 − b1

λ
u20(r) sin

2(φb2(r)
√
λ) +

b1√
λ
u20(r)χ(r)ψ, ψ(0) = 0.

The unique solution is given by the Variation of Constants formula. We have

ωλ(b2 u
2
0)− ωλ(b1 u

2
0) = lim

r→∞
ψ(r) =

∫ ∞

0

b2 − b1

λ
u20(̺) sin

2(φb2(̺)
√
λ)e

∫∞
̺

b1√
λ
u2
0
(τ)χ(τ) dτ

d̺ > 0

since the integrand is nonnegative and not identically zero.

Step 2: Asymptotic behavior as b→ ∞.

By the uniqueness statement of the Picard-Lindelöf Theorem, u0 6≡ 0 requires u0(0) 6= 0. We
can thus choose r0 > 0 with

1

2
u20(0) < u20(r) <

3

2
u20(0) for all r ∈ [0, r0].(34)

We intend to use a comparison technique. By definition of r0, we have for b > 0

φ′
b = 1 +

b

λ
u20(r) sin

2(φb
√
λ)

(34)

≥ 1 +
b

2λ
u20(0) sin

2(φb
√
λ) on [0, r0], φb(0) = 0.

We now study the modified initial value problem

ψ′
b = 1 +

b

2λ
u20(0) sin

2(ψb
√
λ) on [0, r0], ψb(0) = 0.
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For 0 ≤ r ≤ r0 with r 6∈ π
2
+ πZ, its unique solution is given by the expression

ψb(r) =
1√
λ






nπ + arctan







tan
(

r
√
λ

√

1 + b
2λ
u20(0)

)

√

1 + b
2λ
u20(0)













if n ∈ N0,

∣

∣

∣

∣

∣

√

1 +
b

2λ
u20(0)

√
λ r − nπ

∣

∣

∣

∣

∣

<
π

2
.

(35)

Then φb ≥ ψb on [0, r0], in particular φb(r0) ≥ ψb(r0). Substituting t :=
√
λφb(r), we estimate

ωλ(b u
2
0) =

b√
λ

∫ ∞

0

u20(r) sin
2(φb(r)

√
λ) dr

(34)

≥ bu20(0)

2
√
λ

∫ r0

0

sin2(φb(r)
√
λ) dr

=
bu20(0)

2
√
λ

∫

√
λφb(r0)

0

sin2(t)
dt

λ
1

2φ′
b(φ

−1
b (λ−

1

2 t))

(34)

≥ bu20(0)

2λ

∫

√
λφb(r0)

0

sin2(t)
dt

1 + 3
2
b
λ
u20(0)

=
bu20(0)

2λ+ 3bu20(0)

∫

√
λφb(r0)

0

sin2(t) dt

≥ bu20(0)

2λ+ 3bu20(0)

∫

√
λψb(r0)

0

sin2(t) dt

and hence ωλ(b u
2
0) → ∞ as b→ ∞ since formula (35) implies ψb(r0) → ∞ as b→ ∞.

Step 3: Asymptotic behavior as b→ −∞.

For b < −1, we introduce

rb := max

{

r > 0

∣

∣

∣

∣

φb(r) =
1√
λ
arcsin(|b|− 1

4 )

}

.

Then rb ∈ (0,∞) is well-defined since, due to 1 − |b|
λ

‖u0‖2X1

1+r2
≤ φ′

b ≤ 1 and φb(0) = 0, we have

r − |b|
λ
‖u0‖2X1

arctan(r) ≤ φb(r) ≤ r for r ≥ 0. In particular, we have

φb(rb) =
1√
λ
arcsin(|b|− 1

4 ) and φb(r) >
1√
λ
arcsin(|b|− 1

4 ) for all r > rb.(36)

We prove below that rb → ∞ as b→ −∞. Then for r ≥ rb, equation (36) and φ′
b ≤ 1 imply

φb(r) ≤ φb(rb) + (r − rb) = r +

(

1√
λ
arcsin(|b|− 1

4 )− rb

)

.
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Then the asymptotic phase satisfies

ωλ(b u
2
0) =

√
λ · lim

r→∞
(φb(r)− r) ≤ arcsin(|b|− 1

4 )− rb
√
λ→ −∞ as b→ −∞.

It remains to prove that rb → ∞ as b → −∞. We assume by contradiction that we find a
subsequence (bk)k∈N and r̃ > 0 with bk ց −∞, rbk → r̃ as k → ∞. Then, since φ′

bk
≤ 1 and

due to equation (36), we have

1√
λ
arcsin(|bk|−

1

4 ) ≤ φbk(r) ≤
1√
λ
arcsin(|bk|−

1

4 ) +
1√
λ

for rbk ≤ r ≤ rbk +
1√
λ
, k ∈ N.

Since |bk| → ∞ we may assume w.l.o.g. 1√
λ
arcsin(|bk|−

1

4 ) ≤ φbk(r) ≤ 1√
λ
· π
2
, hence

sin(φbk(r)
√
λ) ≥ |bk|−

1

4 for rbk ≤ r ≤ rbk +
1√
λ
, k ∈ N.(37)

We conclude, as k → ∞,

φbk

(

rbk +
1√
λ

)

= φbk(rbk) +

∫ 1√
λ

0

φ′
bk
(rbk + τ) dτ

(36)
=

1√
λ
arcsin(|bk|−

1

4 ) +

∫ 1√
λ

0

[

1− |bk|
λ
u20(rbk + τ) sin2(φbk(rbk + τ)

√
λ)

]

dτ

(37)

≤ 2√
λ
+

1√
λ
−
√

|bk|
λ

·
∫ 1√

λ

0

u20(rbk + τ) dτ

=
3√
λ
−
√

|bk|
λ

·
(

∫ 1√
λ

0

u20(r̃ + τ) dτ + o(1)

)

→ −∞

since u20 > 0 almost everywhere. On the other hand that, for every k ∈ N, the differential

equation φ′ = 1 + bk
λ
u20(r) sin

2(φ
√
λ) states that φbk(r) = 0 implies φ′

bk
(r) = 1 and thus φbk

cannot attain negative values, which contradicts the limit calculated before. �

5.7. Proof of Proposition 12. For ω ∈ (0, π) and λ > 0, we compute the spectrum of the
linear operator

Rω
λ : X1 → X1, w 7→ Rω

λ [u
2
0w] =

(

Ψλ + cot(ω)Ψ̃λ

)

∗ [u20w].

Compactness of Rω
λ is a consequence of Proposition 5 (b). Then immediately σ(Rω

λ) =
{0} ∪ σp(Rω

λ) with discrete eigenvalues of finite multiplicity.

Step 1: Eigenvalues.

We find the eigenfunctions of Rω
λ , that is, we look for such η ∈ R, η 6= 0 and w ∈ X1 that

Rω
λw = η · w.
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Corollary 6 implies that this is equivalent to η ∈ R, η 6= 0 and w ∈ X1 ∩ C2(R3),

−∆w − λw =
1

η
· u20(x) w on R3

with w(x) = cw
sin(|x|

√
λ+ ω)

|x| +O

(

1

|x|2
)

as |x| → ∞

for some cw ∈ R. By Proposition 8, such an eigenfunction exists if and only if

ωλ

(

1

η
u20

)

= ω + kπ for some k ∈ Z;

in this case, cw 6= 0 and every eigenspace is one-dimensional since the radially symmetric
solution w is unique up to multiplication by a constant. Since we have seen in Proposition 11
that R → R, b 7→ ωλ(b u

2
0) is strictly increasing and onto, we can define bk(ω, λ, u

2
0) via

ωλ(bk(ω, λ, u
2
0) u

2
0) = ω + kπ for all k ∈ Z, and conclude

σp(R
ω
λ) =

{

1

bk(ω, λ, u20)

∣

∣

∣

∣

k ∈ Z

}

.

Step 2: Simplicity.

It remains to show that the eigenvalues are algebraically simple. We consider an eigenvalue
η := 1

bk(ω,λ,u
2

0
)
of Rω

λ with eigenspace ker (Rω
λ − ηIX1

) = span {w}. We have to prove that

ker (Rω
λ − ηIX1

)2 = ker (Rω
λ − ηIX1

) .

So let now v ∈ ker (Rω
λ − ηIX1

)2. We assume for contradiction that v 6∈ ker (Rω
λ − ηIX1

).
By assumption on v, we have Rω

λv − ηv ∈ ker (Rω
λ − ηIX1

) \ {0}, and since η 6= 0 we may
assume without loss of generality

Rω
λv − ηv = −ηw = −Rω

λw.

We observe that v, w ∈ C2(R3) by Proposition 5 as well as

−w′′ − 2

r
w′ − λw =

1

η
u20(r) · w, −v′′ − 2

r
v′ − λv =

1

η
u20(r) · (v + w) on (0,∞).(38)

Furthermore, Proposition 5 (d) implies

w(r) = cw · sin(r
√
λ+ ω)

r
+O

(

1

r2

)

, w′(r) = cw
√
λ · cos(r

√
λ+ ω)

r
+O

(

1

r2

)

,

v(r) = cv ·
sin(r

√
λ+ ω)

r
+O

(

1

r2

)

, v′(r) = cv
√
λ · cos(r

√
λ+ ω)

r
+O

(

1

r2

)

(39)

for some cw, cv ∈ R. Let us define q(r) = r2(w′(r)v(r) − v′(r)w(r)) for r ≥ 0. Then, using
the differential equations (38), we find q′(r) = 1

η
r2u20(r) · w2(r) for r ≥ 0. Hence, depending

on the sign of η, q is monotone on [0,∞) with q(0) = 0. On the other hand, the asymptotic
expansions in (39) imply that q(r) = O

(

1
r

)

as r → ∞. We conclude q(r) = 0 for all r ≥ 0.
Since all zeros of w are simple, one can deduce that v(r) = c0 · w(r) for all r ≥ 0 and some
c0 ∈ R, and thus v ∈ ker (Rω

λ − ηIX1
), a contradiction. �
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5.8. Proof of Proposition 1. The existence of a continuum of radially symmetric solutions
u0 ∈ X1 ∩ C2(R3) of the nonlinear Helmholtz equation (h) has been shown in Theorem 1.2
of [13]. Given such a solution u0, the asymptotic expansion is a consequence of Proposition 8
applied to equation (10) with g := u20 ∈ X2, λ := µ and with unique solution w := u0

u0(0)
.

Proposition 8 also provides a unique radially symmetric solution w1 ∈ X1∩C2(R3) of −∆w−
µw = 3u20(x) w on R3, w(0) = 1. As for u0, the asymptotic behavior of w1 is

w1(x) = γ · sin(|x|
√
µ+ τ0)

|x| +O

(

1

|x|2
)

as |x| → ∞

for some γ 6= 0 and τ0 ∈ [0, π); then, w0 :=
w1

γ
has the asserted properties. �
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PhD thesis, Karlsruhe Institute of Technology (KIT), 2012.
[13] R. Mandel, E. Montefusco, and B. Pellacci. Oscillating solutions for nonlinear Helmholtz equations.

Zeitschrift für angewandte Mathematik und Physik, (6):121, 2017.
[14] R. Mandel and D. Scheider. Dual variational methods for a nonlinear Helmholtz system. Nonlinear

Differential Equations and Applications NoDEA, 25(2):13, Mar 2018.
[15] P. H. Rabinowitz. Some global results for nonlinear eigenvalue problems. Journal of Functional Analysis,

7(3):487 – 513, 1971.



BIFURCATIONS OF NONTRIVIAL SOLUTIONS OF A CUBIC HELMHOLTZ SYSTEM 31

[16] E. M. Stein. Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. Mono-
graphs in harmonic analysis 3; Princeton mathematical series 43. Princeton University Press, Princeton,
NJ, 2nd print. (with corr. and additions) edition, 1995.

R. Mandel, D. Scheider

Karlsruhe Institute of Technology

Institute for Analysis

Englerstraße 2

D-76131 Karlsruhe, Germany

E-mail address : rainer.mandel@kit.edu
E-mail address : dominic.scheider@kit.edu


	1. Introduction and main results
	2. On the scalar problem. Spectral properties
	2.1. Representation Formulas
	2.2. The Asymptotic Phase
	2.3. The spectrum of the linearization

	3. Proof of Theorem ??
	The case (0, ) and 1 (0, ) { 0 }.
	The case = 0 and 1 (0, ) { 0 }.
	The case 1 = 0.
	Proof of Remark ??

	4. Proof of Theorem ??
	5. Proofs of the Results in Section ??
	5.1. Proof of Proposition ??
	5.2. Proof of Corollary ??
	5.3. Proof of Corollary ??
	5.4. Proof of Proposition ??
	5.5. Proof of Proposition ??
	5.6. Proof of Proposition ??
	5.7. Proof of Proposition ??
	5.8. Proof of Proposition ??

	Acknowledgements
	References

