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Abstract— In electrical drive applications torque tracking is
conflicting with the subsidiary goal of loss minimization. In this
Paper a lexicographic optimization is proposed to solve this
conflict by stringent prioritization. A novel model predictive
control (MPC) with a single objective function is presented
which is proved to be equal to lexicographic optimization in
steady state. The loss weighting factor does not affect the steady
state tracking offset and no current set points are needed.
Results are confirmed by a simulation with an experimental
validated machine model. The torque of an anisotropic perma-
nent magnet synchronous machine (PMSM) fed by a voltage
source inverter (VSI) is controlled with minimal ohmic losses.
The optimization under input constraints is done using the
projected fast gradient method (PFGM).

I. INTRODUCTION

One key in designing a model predictive control (MPC) is
the formulation of the objective function as a mathematical
representation of the actual control objective. The scope of
this paper is controlling the electromagnetic torque of a
permanent magnet synchronous machine (PMSM) towards
its reference value as fast as possible. Additionally, the
steady state operation should be optimal in terms of power
efficiency. The distinctiveness of this approach from the state
of the art is the utilization of the lexicographic idea compared
to a trade-off between tracking and loss minimization in the
objective function allowing rigorous treatment of this multi-
objective problem. We believe that a hierarchical approach
is much closer to the desired control objective for the torque
tracking. Straight forward application of the lexicographic
optimization to the torque control results in two optimization
problems. This is not desirable for real time implementations
due to the small sampling times in drive control. It is shown,
how to solve the lexicographic problem in the steady state in
a single optimization step in order to ease the computation.

A. State of the Art

In general, MPC for electrical drives can be classified in
continuous control set (CCS) MPC with a modulator and
finite control set (FCS) MPC without a modulator. Newer
results for applying FCS MPC to PMSM can be found in
[1]–[7]. FCS MPC is used for applications where a constant
current quality rather than a constant switching frequency
is important [8]. An advantage of CCS MPC is the higher

1Christoph Schnurr and Sören Hohmann are with the Karlsruhe Insti-
tute of Technology, Department of Electrical Engineering and Informa-
tion Technology, Institute of Control Systems, 76131 Karlsruhe, Germany
c.schnurr@kit.edu

2Johannes Kolb is with SHARE am KIT, Schaeffler
Technologies AG & Co. KG, 76131 Karlsruhe, Germany
johannes.kolb@schaeffler.com

switching frequency with the same sample time, due to
the modulator. This is notably for computational intensive
MPC approaches. That approach is presented in [9], where
saturation effects are neglected and constraints simplified.
For precise modeling of PMSM with high power density,
the magnetic circuit cannot be described linear anymore.
This would lead to inferior control performance compared
to approaches that consider saturation effects. Also [10]
utilizes CCS but does not inherently fulfill input constraints
since it uses an explicit offline solution rather than online
optimization.

The PFGM method [11] is shown in newer research [12],
[13] and [14] to be capable for computations times in the
lower and sub millisecond ranges. Also in drive application it
has been already used. In [15] it is applied to solve the Model
Predictive Pulse Pattern Control Problem online, where the
switching times of the semiconductors (the pulse pattern) is
optimized online. The usage for solving an MPC problem
similar to this approach is presented in [8] and [16]. In
the former one a current control of a AC/DC transmitter
is designed. In the latter one the d-component of the current
and the torque of a PMSM is controlled. However, the
components of the flux vector in the dq-frame are used as
states and no losses are considered.

As known from the basic machine theory, all steady
states resulting the same torque lie on a hyperbola in the
current plane. Thus, there is some degree of freedom in
this control objective. The currents which cause the low-
est losses are desired in steady state operation for torque
tracking. Minimizing losses is the goal of various MPC
approaches for PMSM control including e.g. [6], [17]–[19].
However, usually a trade-off is found by incorporating the
two control objectives in the cost function as a weighted
sum. This degenerates tracking performance since it slows
down the tracking and also leads to a steady state error.
To remedy that problem special methods for offset free
tracking have to be used. State of the art of these are
adding the disturbance dynamics to the prediction model and
then use an observer to estimate the real disturbance [20],
[21] or the delta input formulation [21], [22]. Approaches
that addresses several control objectives are named multi-
objective MPC. In [23] the objectives torque tracking and
efficiency are combined for an induction machine using an
optimization based weighting function generation algorithm.
In [24] the multiple objectives for torque and flux tracking
of an induction machine are solved with a ranking algorithm
resulting in an equal trade-off for tracking of both variables.
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B. Motivation

In MPC for electrical drives it is common to control the
state vector to stationary optimized references (see e.g. [25]
for MPC speed control). In this approach the torque tacking
is formulated in the objective function Therefore no current
references are needed at all. This avoids the creation and
usage of look-up tables for the mapping from the reference
torque to the reference currents. From the state of the art we
conclude, that the usage of PFGM as optimization algorithm
for the MPC in electrical drives is a well suited. There is
a lack of accuracy in the modelling of the machine and
the constraints in many MPC approaches. The choice of the
currents to be the states of the state space model is necessary
here, since the ohmic losses and hence the currents are used
in the objective function. However, this causes more effort
in handling the nonlinear relation between flux and currents
compared to using the flux components as states. That is
because with the latter choice for the state vector a static
nonlinear mapping can be used [8], [26]. The dissent between
tracking and loss minimization in the objective function of
MPC is not yet resolved satisfactorily because only trade-offs
are found. It can be solved more elegantly by formulating an
MPC with a lexicographic objective. This approach utilizes
a stringent prioritization to answer this open question. The
idea of using lexicographic optimization within MPC is
traced back to [27] and [28]. To the authors best knowledge,
lexicographic approaches have not yet been used for MPC
in electrical drive torque control applications.

C. Contribution and Outline

A novel approach to solve a lexicographic optimization
problem for steady states in a single objective function is
presented. This is done by applying a transformation to the
lower prioritized component of the objective function. The
transformation is proved to be equal to the lexicographic
standard approach in the unconstrained case, i.e., steady state
operation. During transients, the presented approach reaches
an optimum, that results from a weighted combination of
the two control objectives. The new method is applied to
design an MPC for torque control of a nonlinear PMSM.
The MPC utilizes a PFGM optimization algorithm like
[8]. However, it is now extended to loss consideration in
the objective function as well as direct torque control in
contrast to current control with look-up-tables. The approach
is confirmed and further analyzed by simulation with an
experimental validated machine model.

In section II the model of the PMSM which is the basis
for controller synthesis is presented. Section III will show,
how to solve the lexicographic problem for the steady state
in a single optimization step. This method is then adapted
for MPC and applied to the PMSM torque tracking problem
in section IV. Simulations are shown in section V and
important properties are highlighted. The paper closes with
summarizing conclusions in section VI.

II. MODELING OF THE PMSM

Since the MPC utilizes a modulator, the complete mod-
eling and control scheme is shown in the rotor oriented
reference frame (dq-frame).

A. Machine Equations

As motivated before, the nonlinear magnetics have to
be considered. Therefore, for the proposed controller, the
functions describing the relation between the magnetic flux
ψdq(idq(t)) and the current idq(t) =

[
id(t) iq(t)

]T
ψdq(idq(t)) =

[
ψd (id (t) , iq (t))
ψq (id (t) , iq (t))

]
(1a)

in the dq-frame has to be known. Typically (see e.g. [29]),
they are considered in the form of look-up-tables depending
on the currents in the dq-frame. From now on time de-
pendencies of the current vector idq(t), the voltage vector
udq(t) =

[
ud(t) uq(t)

]T
and the following signals and

their components are suppressed. Additionally, the arguments
of the flux function ψdq(idq(t)) and their elements are
dropped for better readability. The System is described as
per unit system. This leads to the voltage equations

ud = rsid + ψ̇d − ωelψq, (2a)

uq = rsiq + ψ̇q + ωelψd (2b)

describing the dynamics of the PMSM with the normalized
stator resistance rs and the electrical angular velocity ωel. It
is assumed, that ωel is constant. This is appropriate in many
applications, where the mechanical time constant is much
bigger than the electrical one. The number of pole pairs and
the constant 2/3 resulting from the amplitude invariant Park
Transformation are included in the normalization constant.
Hence, the torque m can be calculated as

m = ψdiq − ψqid. (3)

B. Affine State Space Model

Starting with the machine equations (2), the model is
customized to allow MPC operation. To receive a convex
optimization function an affine state space model is deduced.

1) Linearization: Equations (1) and (2) can be combined
to a nonlinear system of differential equations. Using the
currents as states x =

[
id iq

]T ∈ R2, voltages as inputs
u =

[
ud uq

]T ∈ R2 and the torque as output m ∈ R
a nonlinear state space description depending on look-up-
tables of the flux results. After applying the total differential,
one gets an affine state space description for the d- and
q-current. We assume that in the neighborhood of the current
state, which is reachable within the prediction horizon of
the MPC, it is sufficient to use a linearization of the system
dynamics. This was qualitatively validated by simulations,
since a receding linearization [30] with multiple operating
points over the prediction horizon shows no major impact
on model accuracy. Then a first-order Taylor approximation
of the equations for ẋ can be done. For a fixed operating



point zT =
[
xT uT

]
∈ R4 this results in the affine system

ẋ = Ac (z)x+Bc (z)u+Gc (z) (4a)
m = Cc (z)x+ Fc (z) (4b)

with the matrices Ac(z) ∈ R2×2, Bc(z) ∈ R2×2 , Gc(z) ∈
R2, Cc(z) ∈ R1×2 and the scalar Fc(z) ∈ R. The equations
for the matrix elements are rather complex but can be
determined as explicit equations depending on the current
operating point z offline. The affine system model (4) is the
basis for the discretization step.

2) Discretization: In accordance with [31] and [32] simu-
lations show that a discretization with Euler Approximation
is not reasonable for higher angular velocities ωel. The
system was discretized with a third order Picard Iteration
[33]. This leads to the affine discrete state space system

xk+1 = A (zk)xk +B (zk)uk +G (zk) (5a)
mk = C (zk)xk + F (zk) . (5b)

For every prediction step of the MPC this affine machine
model is recalculated by employing the current operating
point zk and the current angular velocity ωel. From now on
the operating point zk dependency of the matrices are left
out for better readability as well as the index k representing
the current time instance of the signals.

III. LEXICOGRAPHIC OPTIMIZATION FOR STEADY STATE
OPERATION

Given are an objective vector

J(x) =
[
J1(x) J2(x) . . . Jk(x)

]T
(6)

consisting of k ∈ N different scalar objective functions, a
feasible set X for the decision vector x ∈ Rn and the image
of the feasible set J = J(X ). From [34] follows:

Definition 1 (lexicographic optimum): An objective vec-
tor J∗ is a lexicographic optimum iff

∅ =

{
J ∈ J | Ji(x) < J∗i , i = min

j∈Ik
{j | Jj(x) 6= J∗j }

}
,

where J∗j = min
x∈X

Jj(x) and Ik = {1, . . . , k}.
Definition 2 (lexicographic minimizer): The

lexicographic minimizer x∗ is defined as the argument
of the objective function at the lexicographic optimum:
J∗ = J(x∗).
A straight forward reformulation of definition 1 leads to a
hierarchical constrained optimization problem sequence [28]:

x∗ ∈ {x ∈ X | Ji(x) ≤ Ĵ∗i , j ∈ Ik}

Ĵ∗i = min
x∈X

(
Ji(x) | Jj(x) ≤ Ĵ∗j , j ∈ Ii−1

)
Ĵ∗1 = min

x∈X
(J1(x)) . (7)

Hence, the lexicographic minimizer for two objectives could
be calculated by the solution of two consecutive constrained
optimization problems. However, this is not practicable for
real time implementations as they appear in drive control

applications. The novelty of this approach is a more efficient
solution for this problem for the steady state operation, i.e.,
no state constraints x ∈ X are active. The proposed scheme
reformulates the optimization problem, such that it can be
solved in single optimization step. Let now be

Ji(x) = xTHix+ hT
i x (8)

the form of the objective functions. Then the following facts
can be stated [28]:

Remark 1: Assume that at least one Hi is positive defi-
nite, then x∗ is unique.

Remark 2: However, all Jj with j greater than the small-
est i with positive definite Hi can be omitted, since they do
not affect x∗.

Remark 3: Every function of the type

J(x) = ‖c(x)‖2 with c(x) =
[
c1(x) · · · cm(x)

]T
(9)

where ‖·‖2 denotes the 2-norm and m < n with x ∈ Rn,
can be reformulated in the form of (8) by neglecting the
constant terms as usual in optimization. Since the result of
a 2-norm is always non-negative the function is convex, but
with m < n Matrix Hi will be not positive definite.

It is assumed, that only reachable set points are fed to
the MPC. However, this is no severe restriction, since it is
common to limit the values of the reference to the maximum
rating in steady state. The following theorem gives a solution
for the lexicographic minimizer for stationary operation in a
single optimization step:

Theorem 1 (unconstrained lexicographic minimizer):
Given two convex functions: J1(x) in the form of (8) but
deduced from (9) and J2(x) in the form of (8) with H2

positive definite, as well as a matrix R satisfying

R−1 = RT , (10)

aTRb = 0 (11)

for any linear dependent vectors a, b ∈ Rn, the objective
vector J(x) =

[
J1(x) J2(x)

]T ∈ R2 has the uncon-
strained lexicographic minimizer

x∗ = arg min
x

(
J1(x) +

m∑
i=1

(
∂J2(x)

∂ (R∇ci (x))

)2
)
. (12)

To illustrate the idea and to motivate the use of the
rotational matrix R in Fig. 1 the components of (12) are
drawn for an example with x ∈ R2 and m = 1. Fig. 1
also guides the proof of theorem 1, but first the following is
introduced:

Definition 3: Xy is called optimal set of objective function
Jy(x), iff

Xy = {x | Jy(x) = min
x
Jy(x)}.

Lemma 1: For the objective functions Ja(x), Jb(x) and
Jc(x) = Ja(x) + Jb(x) provided that Xa ∩ Xb 6= ∅ it is
obvious, that

Xc = Xa ∩ Xb.
Proof: [Sketch of proof of theorem 1] From the afore-

mentioned assumption of only feasible reference values



Fig. 1. Visualization of (12) for x ∈ R2 and m = 1

follows, that in steady state the solution of the optimization
problem lies within the input constraint set area. Hence,
the constraint x ∈ X in definition 1 can be dropped. The
lexicographic minimizer of an objective vector J(x) =[
J1(x) J2(x)

]T ∈ R2 is given by

J∗1 = min (J1(x))

x∗ = arg min
x

( J2(x) | J1(x)− J∗1 = 0) .

Applying the Karush-Kuhn-Tucker conditions to the equality
constraint g(x) = J1(x) − J∗1 results in the equivalent
problem

Xt2 =
{
x | ∀i ∇J2(x) (R∇ci(x))

T
= 0
}

(13)

x∗ = {x | x ∈ X1 ∩ Xt2} . (14)

By geometrically reasoning it follows from the assumptions
on the definiteness of J1 and J2, that X1 and Xt2 are linearly
independent: The linear subspace of all points with a constant
gradient direction of the strictly convex function J2 can never
be orthogonal to that gradient direction. This leads to X1 ∩
Xt2 6= ∅. From remark 1 follows, that lemma 1 can be applied
to calculate the unique x∗ using theorem 1.

IV. CONTROLLER SYNTHESIS

The two control objectives are torque tracking and loss
minimization and described by J1 and J2 respectively. They
are prioritized in their numeric order. The controller will
solve this lexicographic optimization problem for steady
state operation. The control objective is evaluated over the
prediction horizon in the cost function of the MPC. In the
following section IV-A the cost function is examined solely
for a single instant of time for ease of understanding. In

section IV-B the cost function is expanded over the prediction
horizon.

A. Problem Formulation

1) Control Objective: The torque m(x) of the PMSM
should track the reference mr. Hence, it is natural to penalize
the quadratic control deviation in the cost function:

J1(x) = ∆m(x)2 = (m(x)−mr)2. (15)

This is the first and most important control objective. The
subsidiary control objective is to minimize the copper losses
P (idq) = (i2d + i2q)rs, which obviously is a convex function.
Hence,

J2(x) = xT Ix (16)

can be used to represent the loss minimization. The resistance
can be replace by the identity matrix I , since it does not
affect the optimizer.

2) Constraints: In addition, the MPC only calculates
feasible voltage vectors. The voltage constraint for a standard
two-level three phase VSI in the voltage plane is a hexagon in
the dq-frame rotating with ωel, thus the orientation depends
on the rotor angle θ. It is described by the constraint
u ∈ U(θ). Furthermore the minimization of the objective
functions (15) and (16) is subject to the system model (5).

3) Lexicographic Optimization for PMSM: The lexico-
graphic approach is applied to a loss optimized torque control
of a PMSM: Calculate the lexicographic minimum in the
steady state of the objective vector

J(x) =
[
∆m(x)2 xT Ix

]T
, (17)

subject to (5) and u ∈ U(θ). With J1 and J2 defined by (15)
and (16), respectively. Note: The given problem has a unique
minimizer and has no redundant objectives (straight forward
application of remarks 1 and 2).

B. MPC Design

1) Model Adaption for MPC: First, the model from (5) is
stacked [21]. So far, the dependencies from point in time
k were omitted, but to make things clear they are used
temporarily now. The vectors xs(k) ∈ R2np , us(k) ∈ R2np

and ms(k) ∈ Rnp encapsulate the discrete time values over
a prediction horizon of length np as shown for the states:

xs(k)T =
[
x(k)T . . . x(k + np − 1)T

]
. (18)

From now on all variables indexed with s are determined by
the above scheme. This leads to the stacked model

xs(k + 1) = Asx(k) +Bsus(k) +Gs (19a)
ms(k,x) = Csxs(k) + F s (19b)

with the matrices As ∈ R2np×2, Bs ∈ R2np×2np , Gs ∈
R2np , Cs ∈ Rnp×2np and F s ∈ Rnp . The matrices are
calculated by repeatedly applying (5) over the prediction
horizon np.



2) Objective Function Construction and Optimization
with Constraints: The stacked variables can now be used
to formulate the first control objective in the cost function
in a single matrix equation J1,s(k,x) = ‖∆ms(k,x)‖22.
For better readability two abuses of notation are made: time
step dependency is omitted again and the objectives are now
expressed in terms of the inputs us instead of the states
xs. Note: the states depend on the inputs: xs(us), which is
obviously the case in discrete models but not accounted by
notation. Using the substitution approach [21] the objectives
are expressed solely depending on the stacked inputs us:

J1,s(us) = uT
sH1,sus + hT

1,sus, (20)

J2,s(us) = uT
sH2,sus + hT

2,sus. (21)

The substitution procedure removes the additional equality
constraint imposed by the system model (19) from the
optimization problem. The optimization problem is only
constrained by the inequality constraint induced by the
inputs. The resulting feasible set is a simple set with a cheap
projection operator (see [35] and the reference therein for
details). The substitution procedure is an important step in
modifying the objective function in order to use projective
algorithms like the PFGM.

Now, the conditions for applying theorem 1 to J1,s and
J2,s are revised. The statements in [36] on convexity pre-
serving operations can be adopted to vector compositions of
affine mappings:

Lemma 2: Suppose the function fc(x) is built by the
composition of fa : R 7→ Rk and the affine function
fb : Rn 7→ Rk defined by fc(x) = fa(fb(x)). If fa(x)
is strictly convex, function fc(x) is strictly convex.

Remark 4: J1,s and J2,s are still in the form of (8).
Lemma 2 can be directly applied to show that H2,s in (21) is
positive definite. In (20) we have H1,s = BT

s C
T
s CsBs with

Cs ∈ Rnp×2np . Hence, H1,s is proven to be not positive
definite. Together with remarks 1 and 2 it follows, that the
objective vector has no redundant objectives and that the
lexicographic minimizer is unique.

Remark 5: If Rs is a block diagonal matrix consisting of
np blocks of R, Rs satisfies (10) and (11) and RT

s also
does.

Remark 6: J2,s in (21) is strictly convex and J2,s in (21)
leads to a linear manifold X1,s. Geometrically reasoning
shows, that X1,s and Xt2,s are linearly independent. With
X1,s given by definition 3 and Xt2,s defined by accordingly
applying (13) to the stacked objectives J1,s and J2,s.

Remark 7: Torque reference values are assumed to be fea-
sible, that means they must be reachable. Thus, the minimizer
lies within the feasible set and the voltage constraint can be
dropped in steady state operation.
Remarks 4 to 7 show, that theorem 1 can be applied to
calculate the lexicographic minimizer in steady state for the
stacked objectives J1,s and J2,s. This leads to

Js(us) = J1,s(us) + λ ‖CsBsRs(2H2,sus +H2,s)‖22 .
(22)

Theorem 1 holds in steady state, but it does not hold when
the constraint u ∈ U(θ) is active. In the latter case (i.e.,
in transients) the objective function (22) turns out to be a
weighted sum of the squared tracking error and the losses.
Hence, the weighting factor λ is introduced and can be used
to adjust the dynamic behavior. For a larger λ the second
objective J2,1 is given more weight. This leads to smaller
inputs which slows down dynamics.

The resulting optimization problem is:

u∗s = arg min Js(us)

s.t. us ∈ Us(θs)
(23)

with the objective from (22) and Us(θs) being U(θ) ex-
panded over the prediction horizon. Up to here the approach
was generally applicable to system models in the form of
(5) and two prioritized objectives fulfilling the assumptions
in theorem 1.

C. Overall Controller Scheme

For PMSM torque tracking (23) can be solved very effi-
ciently using the PFGM optimization algorithm. The reason
for that is the simple projection on the symmetrical polytopic
constraint set Us(θs) also used in [37]. For faster computa-
tion times early termination and warm starting is used, see [8]
for details. In Fig. 2 an overview of the resulting controller
structure is given. As previously explained, the reference
value mr has to be limited to the maximum rating in steady
state operation. This is done in the Limiter block. Effects
like part-to-part variability and degradation with aging have
to be considered for setting the correct limits, however this
task is not in the scope of this contribution.

In general, applications may not provide knowledge of
future reference values, thus m̂s is solely the np times
repetition of m̂r and feeds as the stacked reference value
for the calculation of ∆ms. The Prediction block for θs
is straight forward, since ωel is known and assumed to be
constant. The steps to calculate the matrices of the operation
point depended affine state space model from section II-B
are subsumed in the block Matrix Generation. The procedure
presented in section IV-B is contained in the blocks Objective
Function, Constraint Generation and PFGM. Note that the
receding horizon strategy is applied. Hence, in Fig. 2 the
PFGM block only applies the first entry of u∗s to the plant
and the others are discarded.

D. Classification of the Presented Approach

To classify the proposed method a short summarizing
overview of the properties is given now. It is an MPC
scheme based on the receding horizon policy applied to
a piecewise linear state space system with the machine
currents as states in the dq-frame. Hence, the approach is
classified as an CCS MPC with online optimization that can
handle effects like cross coupling, saturation and magnetic
anisotropy. The controlled variable is the electromagnetic
torque of the machine, thus no current set values are needed.
The rotating hexagonal voltage constrained in the dq-frame,
owing the topology of the voltage source inverter (VSI), is



Fig. 2. Simulation overview

implemented without further simplifications. The MPC uses
the PFGM for optimization of the objective function which
considers ohmic losses as well as the torque tracking error
over the prediction horizon.

V. SIMULATION STUDY

A. Simulation Setup

The PMSM model used for the simulation is experimen-
tally validated, as it was also used in [29]. This machine
model is implemented in MATLAB Simscape and simulated
with a variable-step solver using a relative tolerance of 0.2%.
The VSI is modeled as an ideal voltage source. The MPC is
implemented in MATLAB Simulink and runs with a constant
sampling time of 125 µs which corresponds to a switching
frequency of the VSI of 8 kHz. All simulations are done
in the dq-frame, thus the set voltage from the controller is
directly applied as input to the machine model.

1) Properties of the Simulated Drive: The VSI is assumed
to be a two-level inverter with a DC link voltage of 400 V.
The model of the PMSM, that is designed for electric
vehicles, has parameters as given in table I. The machine
has interior permanent magnets and hence has an anisotropic
magnetic circuit which causes a reluctance torque. Simula-
tions shown here are carried out at constant angular velocity
of the drive. The angular velocity is at nominal value (i.e.,
5000 1/min).

TABLE I
MACHINE PROPERTIES

Nom. power Pn 90.32 kW

Nom. speed Ωn 5000 min−1

Number of pole pairs p 3

Resistance Rs 0.0284 Ω

PM flux linkage ΨPM 0.1019 Wb

2) Controller Setup: The PI controller with a static map-
ping from reference torque to reference currents (classical
MTPA and MTPV strategy) used for comparison is the same
as in [38]. The prediction horizon of the MPC is set to
np = 2. Fore the sake of completeness the termination
conditions of the PFGM used for the simulation are stated,
despite it is not the focus of this publication. The termination
conditions of the PFGM used for the simulation are: The
minimum step size in the decision variable, i.e. the inputs,
is set to 0.0017 pu, which equals 3 Volts absolute. The
maximum amount of iterations for the PFGM is set to 5.
This setup has the aim to reach short computation times
while preserving good performance.

B. Torque Dynamics and Comparison to Conventional PI
Control

In Fig. 3 the response of the system to a step change in the
reference torque can be seen for increasing values of λ from
(a) to (c). Fig. 3 shows the desired behavior and confirms
the idea and their theoretical realization. The increase in
parameter λ = 80 does not deteriorate the tracking offset
in steady state. Thus, it can be used as a tuning parameter
for the transition speed of the torque. However, the settling
of the torque in Fig. 3c shows slow oscillations with small
amplitudes. The small offset that is observed stems from
friction and iron losses of the PMSM model. Additionally, a
faster response compared to PI current control is achieved.
Of course PI control could be tuned to reach the reference
faster but this will lead to higher overshoots. However, they
can occur in the proposed MPC, but are rather traced back
to computational inaccuracies of the optimization caused by
the early termination technique.

C. Current Dynamics

Fig. 4 shows the elements of the normalized state vector
xT =

[
id iq

]
over time during the torque reference step

shown in Fig. 3b. It is obvious, that the lexicographic MPC
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Fig. 3. Simulation results of the controlled variable m for different settings of λ: The PI controller is the same in all the graphs and allows the comparison
between the different settings of λ. In (a) the fastest possible transition with λ = 0.1 is reached. Whereas (c) with λ = 80 shows the setting nearly
producing same behavior as the PI controller. Setting λ = 10 leads to an intermediate dynamic shown in figure (b).

approach differs from the PI controller. Although the corre-
sponding torque trajectory is aperiodic, the state trajectories
in Fig. 4 oscillate around the state trajectory produced by
PI control. The states move along a hyperbola in the state
space that produces a constant torque as they approach their
terminal value, which can be seen in Fig. 5. This makes it
possible to achieve extreme fast torque responses without
overshoots, since the oscillations in the currents are along
these hyperbolas. It is observed, that for smaller λ the
oscillations in the states increase, while they decrease for
bigger ones. This is explicable by theory, since a bigger
λ leads to an increased weighting of the losses during
transients, which will also penalize current oscillations. A
rise in torque dynamics leads to higher current oscillations.

The prediction horizon of np = 2 results in low compu-
tational demand, but leads already to good results as shown
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Fig. 4. Currents over time compared for the MPC with λ = 10 and the
PI controller

before. As a result a maximum computation time of 27 ms
during the transition in Fig. 3a could be reached with a
desktop computer with CPU clock of 2.5 GHz and 8 GB
RAM running at 800 MHz.

VI. SUMMARY AND CONCLUSION

Simulations show, that in drive applications there is a
benefit in tracking torques compared to control strategies
which track reference currents. Only with an approach
directly minimizing the torque tracking error rather than
the current tracking error this degree of freedom can be
utilized for faster dynamics. This also holds for an MPC
tracking states rather than the torque because the remaining
degree of freedom is not left to the MPC and the underlying
optimization step. However, torque tracking is a control
objective with an ambiguous solution, i.e., all states lying on
the constant torque hyperbola are satisfying this demand. To
resolve this issue and for energy efficiency it is reasonable to
incorporate losses in the objective function. This is the first
time a lexicographic approach was used for torque tracking
of electrical drives to solve this multi-objective problem.
Furthermore a computationally efficient new method was
presented to find the lexicographic minimizer in a single
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Fig. 5. Currents in the state space plane for the MPC with λ = 10 and
the PI controller



optimization step for steady state operation. The proposed
approach does not increase the tracking error in steady state
by rising the loss weight. The dynamic of the resulting MPC
can be set by a single parameter. State of the art methods
for offset free tracking like disturbance observer or the delta
input formulation can be used additionally if it is required
by the application owing to model uncertainties or unknown
disturbances. However, the proposed method will enhance
the dynamic.
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