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Abstract

Alzheimer’s disease (AD) is a large and growing public health problem. It is characterized by the
accumulation of amyloid-f3 peptides and abnormally phosphorylated tau proteins that are
associated with cognitive decline and dementia. Much has been learned about the genomics of AD
from linkage analyses and more recently, genome-wide association studies. Several but not all
aspects of the genomic landscape are involved in amyloid-metabolism. The moderate concordance
of disease among twins suggests other factors, potentially epigenomic factors, are related to AD.
We are at the earliest stages of examining the relation of the epigenome to the clinical and
pathologic phenotypes that characterize AD. Our literature review suggests that there is some
evidence of age-related changes in human brain methylation. Unfortunately, studies of AD have
been relatively small with limited coverage of methylation sites and microRNA, let alone other
epigenomic marks. We are in the midst of two large studies of human brains including coverage of
more than 420,000 autosomal cytosine-guanine dinucleotides (CGs) with the lllumina Infinium
HumanMethylation 450K BeadArray, and histone acetylation with chromatin
immunoprecipitation-sequencing. We present descriptive data to help inform other researchers
what to expect from these approaches in order to better design and power their studies. We then
discuss future directions to inform on the epigenomic architecture of AD.
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AGING AND DEMENTIA

Persons over the age of 65 are the most rapidly growing segment of the population
throughout the developed world as a result of increasing life expectancy and declining
fertility over the past century. This demographic trend will continue throughout the 215t
century, and similar trends are forecast for developing countries in the latter half of this
century. Thus, the world’s population is aging rapidly making common chronic conditions
of aging an urgent and growing public health problem. Looming large on this landscape is
age-related cognitive decline, which can progress to mild cognitive impairment (MCI), i.e.,
obvious cognitive impairment in which most activities of daily living remain intact,
followed by dementia, i.e., cognitive impairment contributing to impaired activities of daily
living. The incidence and prevalence of dementia increase markedly with age. There are
numerous causes of dementia. The most common cause is Alzheimer’s disease (AD);
however, cerebrovascular disease (CVD), Lewy body disease (LBD), and hippocampal
sclerosis (HS) are also well-recognized causes. More recently, TAR DNA-binding protein
43 (TDP-43), originally thought to be a relatively rare pathology, has been shown to be quite
common and also associated with dementia in aging populations. Thus, while Alzheimer’s
disease may play a large role in dementia, many other processes contribute to aging-related
cognitive decline.

The projected impact of dementia in general and AD in particular on both health care costs
and pension plan has recently captured the attention of economists, politicians and other
policy makers.1=® This is of particular concern in Western European countries with
publically funded health and pension systems. Thus, the USA and many European countries
now have or are developing “National Plans.”®-12 France was the first country with a
National Dementia Plan, launched in 2001. The Netherlands launched their National
Dementia Plan in 2008, followed by the UK in 2009, Denmark in 2010, and others have
followed suit. The US Congress unanimously passed the National Alzheimer’s Project Act
(NAPA; P.L. 111-375) in 2010 and the initial plan was unveiled in 2012. British Prime
Minister David Cameron, G8 president in 2013, announced at a G8 Dementia Summit, that
the G8 would lead a global plan to address AD.13-14

CLINICAL AND NEUROPATHOLOGIC FEATURES OF ALZHEIMER’S
DISEASE

Clinical manifestations

AD is the most common cause of dementia in old age. However, progress over the past
quarter century has led to new conceptualization of AD as a chronic disease that begins with
a subclinical pathophysiologic process, followed by subtle cognitive decline, MCI due to
AD, and finally to AD dementia which is now considered end stage AD.15-17 The core
feature of AD is memory loss. Memory is the recording, storage, and retrieval of
information and accounts for all behavioral changes based on prior experience from single
cell organisms to complex human behaviors. There are many forms of memory. The clinical
hallmark of AD is progressive loss of episodic memory, the explicit recall of the times,
places, and associated contextual characteristics that comprise the autobiography of one’s
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life. However, all cognitive abilities are eventually affected, and in many cases, multiple
cognitive abilities are affected early in the disease process. The pace of cognitive decline
varies widely and can range from a year to two decades. Although defined by its effect on
cognition, AD affects a wide range of other abilities including gait, physical frailty and other
motor abilities, smell, and sleep, and can be accompanied by depression, delusions and
hallucinations.18-22

About 5 million people in the US are affected by AD dementia.23-25 While the CDC
reported fewer than 90,000 deaths based on death certificates in 2010, a recent study
estimated that more than 500,000 excess deaths were associated with AD in 2010, putting it
on a par with cancer and heart disease.2 If MCI due to AD was included in these estimates
based on the new consensus criteria both numbers would be higher.27-28

Pathologic features of AD

The neuropathologic hallmarks of AD are the extracellular deposition of a 40-42 amino acid
amyloid-f protein in the form of plaques and the phosphorylation of intracellular
microtubule associated tau proteins in the form of neurofibrillary tangles.2? In line with the
recently accepted chronic disease model of AD, the pathologic indicators can be present in
people without cognitive impairment, in addition to those with MCI due to AD and AD
dementia.2%-30 Further, there is good evidence that the deposition of amyloid-f precedes the
accumulation of tangles and that both develop pathologies accumulate prior to the onset of
overt cognitive impairment.31-32 Further, using positron emission tomography, amyloid is
seen in persons at genetic risk years prior to their estimated disease onset.33 There are a
variety of other ancillary changes in the brain such as degeneration of the cholinergic basal
forebrain and other subcortical and brainstem nuclei, inflammation, and oxidative
stress.34-40

Mixed disease and AD dementia and MCI

AD is among the most common chronic diseases of aging and its occurrence is strikingly
related to age. Thus, it often is accompanied by co-morbid conditions, including other
diseases that cause dementia. These conditions include CVD, LBD, HS, and more recently,
TDP-43.41-44 The vast majority of data suggest that these pathologies have an additive
effect on the odds of dementia, although one study reported that AD and CVD had a
multiplicative effect on the odds of dementia.*>~4 The result is that mixed diseases are the
most common cause of dementia, including AD dementia.59-51 Thus, it may be best to
categorize the contribution of AD and other conditions to dementia. For example, the term
vascular dementia is no longer preferred and has been replaced by vascular cognitive
impairment.>2 Further, although the five conditions listed above appear to account for nearly
all cases of dementia, it turns out that they only account for about half of the variability of
cognitive decline.>3 These observations have profound implications for how we interpret
studies of risk factors for AD. Specifically, it means that some risk factors for AD may be
related to a co-morbid disease such as diabetes with cerebrovascular disease.>-5° By
contrast, other risk factors for AD may be unrelated to any extant pathology such as early
and late cognitive activity.55-57 These observations are equally important when considering
genomic and epigenomic risk factors as will be discussed below.
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HERITABILITY OF AD

Evidence of the heritability of AD comes from both family studies and twin studies.

Family studies

Familial aggregation in AD has been recognized for many years with persons with a first
degree relative with AD having a two- to four-fold risk of AD.%8-61 Interestingly, because
AD is so common in older persons and genomic risk factors tend to have variable
penetrance, AD risk among first degree relatives varies by age such that the risk is highest
among relatives of probands with earlier ages of onset compared to relatives of probands
with later ages of onset.%2 Further, AD endophenotypes such as impairment of episodic
memory and plasma amyloid-f levels have also been shown to be heritable.63-64 Finally, in
rare and primarily early onset cases, the disease has been found to run in families in an
autosomal dominant fashion.85-67

Twin Studies

Numerous twin studies also demonstrate the heritability of AD.%8-71 However, the
concordance rate varies widely and is substantially less than 100%, suggesting that factors
other than genomic sequence influence disease occurrence.

GENETICS OF AD

Genetic linkage studies employed in the 1990°’s successfully yielded the identification of
mutations in three genes that contribute to autosomal dominant early onset AD, and two
common polymorphisms associated with late-onset AD. Following the sequencing of the
human genome and the development of genome-wide association studies (GWAS), many
additional polymorphisms were identified in the past five years.

Mutations and cytogenetic alterations

It has long been known that adults with trisomy 21 (Down’s syndrome) develop the clinical
and pathologic features of AD in mid life.”2=78 This led to an intensive search for a mutation
on chromosome 21.7% A mutation in the gene that encodes the amyloid precursor protein
(APP) was eventually identified.89-82 This was followed by linkage to chromosome 14, and
the eventual discovery of a mutation in PSEN1 that codes for the protein presenilin-1.83-87
The third gene, PSEN2 which codes for the protein presenilin-2, was identified after linkage
to chromosome 1.88-90

Polymorphisms

Linkage to chromosome 19 resulted in the identification of two polymorphisms in the
apolipoprotein E gene associated with AD: the APOE ¢4 haplotype is associated with an
increased risk of AD, and the APOE €2 haplotype is associated with decreased risk.91-94
Over the past five years, the GWAS era has yielded a number of additional polymorphisms.
There are now nine loci containing susceptibility alleles that are considered confirmed
including (ABCA7, BIN1, CD33, CLU, CR1, CD2AP, EPHA1, MSAAGA-MHAAAE and
PICALM that have been confirmed by a number of different studies.?>-190 The most recent
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GWAS with nearly 75,000 subjects identified these, as well as SORL1 (which had
previously been suggested to be a susceptibility locus), and 11 novel loci including HLA-
DRB5/HLA-DRB1, PTK2B, SLC24A4-RIN3, DSG2, MEF2C, INPP5D, NMES8, ZCWPW1,
CELF1, FERMT2, and CAS4.101

Biologic mechanisms linking genomic risk factors to AD

Mutations in APP, PSEN1 and PSEN2 played a crucial role in advancing our understanding
of AD. APP is a transmembrane protein that, when cleaved, yields the amyloid-p 1-42
peptide that represents an essential pathologic hallmark of AD. APP cleavage is
accomplished by a set of three secretases, a, f, and y.102-106 B_secretase is the protein
BACE-1.107-108 Cleavage with this secretase is a prerequisite for generating the amyloid-p
peptide. a-secretase cleaves within the amyloid-p 1-42 peptide sequence preventing the
generation of the amyloid- protein. By contrast, y-secretase cleaves elsewhere and leaves
the amyloid-p fragment intact allowing the generation of the amyloid-§ peptide. Presenilin-1
and -2 are both components of y-secretase and lead to the development of AD. Mutations in
BACE are not known to cause AD.

There is extensive evidence that APOE is somehow involved in amyloid deposition most
likely via clearance of amyloid-.10%-113 |t is likely, however, that two or more mechanisms
are involved. Despite the fact that APOE €4 is sufficiently common to make it a practical
genotype-specific target for drug development and more than two decades of research,
APOE &4 remains a research tool and has very limited clinical utility.}14 Identifying and
validating therapeutic targets in the pathway(s) linking these genomic variants to AD is
among the most urgent issues in the field.

The relation of the other genetic risk factors to classic AD pathology has only recently been
the subject of investigation. Approaches include associations with neuropathologic traits at
autopsy or with imaging or biofluid biomarkers. The data to date suggest that some but not
all of the newly discovered genomic variants are related to classic AD pathology such as
amyloid and that the effect sizes tend to be small, as one might suspect in view of the
strength of associations in the GWAS. The results are variable but include CR1, ABCA7,
CD2AP, CD33, PICALM and SORL1,115-121

EPIGENETICS OF AD

The highly variable and relatively low concordance rates for AD among identical twins
clearly indicate that factors in addition to sequence variation must play an important role in
AD susceptibility, raising the possibility of a role for epigenetics. In the only study of a pair
of monozygotic twins discordant for AD, a lower global 5-methylcytosine fluorescence
intensity was seen in the temporal neocortex of the affected twin providing further support
for a role of epigenetics (Table 2, reference 146). Further, there is evidence supporting age-
related differences in human blood and brain methylation in advanced age (see below).

Nearly all epigenomic studies of AD to date are relatively small, targeted, and limited to one
epigenomic mark. There are a few custom microarrays and data from first generation DNA
methylation chip technology, e.g., lllumina Infinium HumanMethylation27 BeadArray that
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interrogates a very small and non-random fraction of the methylome. Thus, the landscape is
either biased or sparse and resembles the early days of genomics prior to the large GWAS
studies. Most candidate SNP studies were simply not replicated, and it took large unbiased
studies to identify the common genetic variants other than APOE £4. However, the
epigenome is much more complicated with a relatively large number of epigenomic marks.
We also have limited knowledge regarding their correlation structure, their cell type
specificity, and the potential for reverse causality (where the trait of interest such as AD
influences the epigenome). So, the complexities of interrogating the epigenome relative to
GWAS are compounded many fold. These issues make it impossible to draw any definitive
conclusions regarding the relation of the epigenome to AD at this time. Below, we briefly
discuss studies published to date and then share some descriptive work relating to different
approaches of measuring epigenomic profiles in brain and to assessing data from a large
number of human brains profiled with the Illumina Infinium HumanMethylation450K
BeadArray, the one platform capable of high-throughput work. There is as yet no published
data of such large-scale studies. Thus, while this field holds great promise, it is nascent, and
the first generation of large studies are beginning to define the key parameters needed to
perform epigenomic epidemiology studies.

DNA methylation

Cytosine-guanine (CG) dinucleotides are prominent sites for DNA methylation and are
variably distributed across the genome. There are an estimated 23 million CG sites in the
human genome, which can be interrogated by a variety of approaches. Interrogating the
whole methylome remains labor intensive and expensive and is not yet amenable to high
throughput.

We found 20 studies from 1999 to date on the relation of DNA methylation to age (Table
1).122-141 Of these, six were of brain and the rest of peripheral biospecimens. Of the brain
studies, only three had sample sizes greater than 100. One of these studies was a targeted
study of 50 CG sites using PCR.124 The other two studies used the Illumina Infinium
HumanMethylation27 BeadArray.139:133 All three studies showed relatively robust positive
correlations between methylation and age.

We also found 28 studies from 1995 to date on the relation of DNA methylation to AD
(Table 2).124.142-168 Of these,20 were of brain and the remainder of peripheral tissues. Only
one of the studies of brain had a sample size exceeding 100.161 Only one study of brain used
the Illumina HumanMethylation27 BeadArray, and the remainder interrogated far fewer CG
sites.15% The study of 12 cases and 12 matched controls using the Illumina platform reported
that the AD brains were slightly hypomethylated. The remaining studies were quite variable
with some suggesting hypermethylation, others hypomethylation, and some without obvious
differences.

Histone acetylation

We found only a single 2012 study of histone marks, H3K18/K23 acetylation in persons
with and without AD (Table 3).169 The study employed selective reaction monitoring liquid
chromatography-mass spectrometry (SRM LC-MS) to quantify histone acetylation in 11 AD
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and 4 control brains and found down-regulation of these marks in AD brains. One study
found that protein level of histone deacetylase 2 (HDAC2) was elevated in AD brains.170

We identified 18 AD studies of microRNA (miR) from 2008 to present (Table 4).171-188 Of
these all but two were in human brain.183.186 None of the studies had a sample size in excess
of 100. Further, only one of the studies of human brain interrogated more than one or a few
targeted miR’s.186 Qverall, the results of studies of brain tissue were highly variable with
some miR’s up-regulated and others down-regulated.

Overall, it is clear that the study of epigenomics in AD is a nascent field, without robust
results at this time. The studies of aging-related changes in the brain’s epigenome do appear
to have returned reasonable evidence supporting that many CG sites throughout the
methylome are more highly methylated with advancing age. However, it is not yet clear how
this relates to brain function or addresses the relevance of these changes to the local
chromatin architecture at specific sites.

EXPERIENCE WITH HIGH TRHOUGHPUT APPROACHES TO THE
EPIGENOME IN HUMAN BRAIN

The review of the literature to date suggests that there is very little published epigenomic
data from the currently available high throughput approaches to the epigenome from large
numbers of human brains. Over the past few years, we have generated DNA methylation
data from several hundred human brains using the Illumina Infinium HumanMethylation450
BeadArray and genome wide histone acetylation data using chromatin immunoprecipitation-
sequencing (ChlP-Seq). Here we describe our experience and share some basic descriptive
information with the reader. The data are intended to inform future researchers regarding
what they can expect from these approaches in order to better design and power studies of
the brain methylome.

Brain DNA methylation using Infinium Humanmethylation450k Beadchip

We are unaware of any published studies of human brain using the IHlumina Infinium
HumanMethylation450 BeadArray, which is the current platform of choice for high
throughput methylation studies. Here, we describe the basic characteristics of DNA
methylation profiles from 740 postmortem human brains from participants in two ongoing
longitudinal clinical pathologic studies of aging and dementia, the Religious Orders Study
and the Rush Memory and Aging Project.189-190 AJ| participants signed an informed
consent and an anatomical gift act for organ donation. Both studies were approved by the
Institutional Review Board of Rush University Medical Center and conform to ethical
guidelines for human research. While very little of these data have been published in peer-
reviewed journals, additional data presented at national and international meetings are also
in the public domain,191-197

Their average age was 88 (SD=6.7, range 66-108), 36% (N=269) were males, and 330 had
AD or other dementia, 175 mild cognitive impairment, and 235 were without cognitive
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impairment proximate to death. DNA was extracted from frozen dorsolateral prefrontal
cortex (DLPFC) tissue. Methylation data was generated using the lllumina Infinium
HumanMethylation450K BeadArray. For each brain sample, our dataset, after quality
control, consists of methylation measures of a total of 420,132 autosomal CGs which are
distributed across the entire genome.

First, we observe that DNA methylation at these 420,132 CG sites features a distinct
bimodal distribution such that approximately a third of CGs are extremely hyper-methylated
(i.e., mean methylation > 0.8) and another third are extremely hypo-methylated (i.e., mean
methylation < 0.2) (Figure 1). This bimodal pattern is preserved in all 22 autosomes (Figure
2). Since the coverage offered by the Illumina chip is targeting methylation sites primarily at
CG islands and genic regions, we examine the distribution of CGs and methylation pattern
by CG islands as well as surrounding shelves and shores. A total of 135,303 (32.2%) CGs
are located in CG islands, 98,653 (23.5%) in CG shores, 39,141 (9.3%) in CG shelves and
the remaining 147,035 (35.0%) in regions not related to CG islands. Interestingly, the
distribution of mean methylation varies across the regions, as shown in figure 3. For
example, in the case of CG island related features, only the CGs sites in the north and south
shores (regions flanking a CG island) show a bimodal pattern of methylation levels, while
the distributions in the CG island proper and the more distal north and south shelves are
more polarized. Specifically, the majority of CGs (82.9%) in shelves are hypermethylated
(i.e. mean methylation 20.5). By contrast, 83.8% of CGs in CG islands are hypo-methylated,
among which 75.7% are extremely hypo-methylated. Notably, the mean methylation level in
CG islands is much lower when compared with non-CG island regions (0.20+0.29 vs.
0.62+0.30; p<0.0001).

DNA methylation is an attractive epigenomic mark to study because it is relatively simple to
extract from tissue and because the Illumina platform offers an option for automated high-
throughput data generation, which minimizes technical variation in the data. However, the
platform only samples a small fraction of the epigenome and does not differentiate between
cytosine methylation and hydroxymethylation. These marks are distinct, and their relative
role is just beginning to be explored. Thus, while DNA methylation provides a reasonable
platform for the first generation of epigenomic studies, it is not sufficient, and alternative
strategies are needed.

Histone acetylation data and other chromatin MARKS with ChiP-Seq

In contrast to methylation, profiled on DNA which is easily extracted from human tissues,
profiling histone marks requires the capture of chromatin fragments that bear the mark of
interest using immunoprecipitation. This process is time-consuming and not currently
automated for high throughput. Its success is very dependent on the antibody clone and
batch selected for the experiment, and use of the appropriate tissue type. Below, we illustrate
our evaluation of different human brain-derived starting material, i.e., fresh frozen vs.
paraformaldehyde fixed human brain. We also describe the experimental pipeline for
chromatin immunoprecipitation followed by sequencing (ChlIP-Seq) that yields genome-
wide data on the location of a target chromatin mark, in this case H3K9Ac. Again, the data
presented here are intended to inform future researchers regarding what they can expect
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from these methods in order to better design and power studies of human brain histone
marks. While very little of these data have been published in peer-reviewed journals,
additional data presented at national and international meetings are also in the public
domain,198-199

To generate ChiP-Seq data from the brain samples that were used in the DNA methylation
experiment described above, we first identified the Millipore anti-H3K9ac mAb (catalog #
06-942, lot: 31636) as a robust monoclonal antibody for ChlP experiments out of four
different antibodies tested and used a single batch of this antibody for all experiments that
explore the pattern of H3K9Ac in the human dorsolateral prefrontal cortex. This particular
mark was selected given evidence suggesting that (1) histone deacetylases may have an
effect on AD pathology,290 and (2) this mark accumulates in sharply defined, discrete areas
at the transcription start site of actively transcribed genes as well as enhancers of such genes.
For our pilot study, we explored the utility of using fresh vs. fixed brain tissue.
Approximately 500mg of fixed tissue and 50mg of frozen tissue were needed to generate
similar DNA yields of about 50 ug per sample (Supplementary Table 1). The larger fixed
tissue requirement suggests that longer periods of fixation reduce the ability to completely
reverse cross-linking within a sample fixed at autopsy.

Starting from a well-described ChIP-Seq protocol, 201 we first optimized DNA
fragmentation, a key step in constructing libraries following enrichment by ChiP of target
sequences. We did not observe the expected increase in the targeted 150-700 bp DNA
fragments with increasing sonication in fixed tissue specimens but did document this trend
in the frozen tissue specimens (Supplementary Figure 1). Neither the post mortem interval
nor the fixation interval strongly influenced the performance of the fixed material in this
respect; Supplementary Table 2 reports these parameters for all tested samples. The
optimum fragment size range is the length of 1-3 nucleosomes, or 150-700bp. As illustrated
in Supplementary Figure 1B, a sonication time of 4-6 minutes appears to be optimal to
enhance the proportion of DNA fragments in the target range while avoiding an increase in
the <150 bp fragment that enhance the background. Further, we tested two methods of tissue
homogenization and find a 10% increase in the target range of fragment size, with a
corresponding 10% decrease in the >700 bp fragment range and no change in the low size
range when using the Tissue Lyser Il approach compared to the standard Dounce
homogenizer. There is no decrease in total DNA yields using the Tissue Lyser Il approach
(Supplementary Figure 1 B). Libraries produced from fixed and frozen tissue were
sequenced.

Sequencing data from fresh vs. fixed tissue

Sequencing data were produced using the Illumina Genome Analyzer Il platform. Libraries
were not multiplexed. Supplementary Table 3 reports the summary statistics of sequencing
output in terms of total reads produced, reads which passed Illumina quality filter, its
percentage and number of filtered reads with percentage, which were successfully aligned to
the human reference genome and number of duplicate reads from each sample. Given rapid
improvements in sequencing technology, the number of output reads per lane increased from
our pilot 1 study to our pilot 2 study for which data were generated 3 months apart.
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As shown in Supplementary Table 3, sequence data were of high quality, with, on average,
more than ~80% of reads from the sequencing passing the lllumina quality filter. 97% of
these filtered reads were uniquely mapped to the human reference genome. Using the Picard
pipeline, we also assessed the quality of sequencing by looking at the quality score
distribution and sequencing coverage in different regions of genome based on GC-content.
The normalized coverage of mapped sequence reads to genomic regions with varying GC-
content is reported in Supplementary Figure 2 (A, B and C). The control sample without
immunoprecipitation provides an estimate of the un-enriched genome-wide baseline
distribution of sequences; it has the expected slight bias against GC-content that reflects the
genome-wide skew in GC content found in the sequenced human genome (Supplementary
Figure 2A). Given that H3K9Ac, our target epigenomic mark, is enriched near the
transcription start site of genes that are, on average, GC-rich relative to the genome-wide
average, we expect an enrichment for GC content in sequences selected by ChIP. While the
library generated from a fixed tissue sample (Supplementary Figure 2B) shows a slight
enrichment in GC content, we see the expected very substantial skew towards greater GC
content in the frozen sample (Supplementary Figure 2C) that suggests successful enrichment
by ChIP. Supplementary Figure 2D illustrates the much better enrichment in target sequence
that is achieved when using frozen rather than fixed tissue sample as a target for ChiP.

To visualize the ChIP enrichment and further assess the quality of our data production
pipeline, we generated a read tag density distribution plot using the Integrated Genomic
Viewer (IGV; http://www.broadinstitute.org/igv/) (Supplementary Figure 3). Here, we see
that samples from fixed brain tissue have a similar sequence read distribution as the control
sample without ChIP, consistent with the lack of significant enrichment in GC content
documented in Figure 2B. On the other hand, frozen samples show very clear and distinct
peaks of H3K9Ac that are similar across samples from different individuals.

Overall, this pilot study illustrates the finding that fresh-frozen autopsy tissue is the
preferred substrate for ChlP-seq data generation: fixed material failed to generate data in our
pilot study. While the protocol based on fixed material can doubtlessly be improved and
optimized, it is clearly not as easy to use as frozen material; nonetheless, optimization is
indicated in circumstances where tissue availability is limited to fixed material.

Reference Chromatin maps

Through a collaboration with the NIH’s Epigenomic Roadmap, we next generated ChiP-Seq
data for six chromatin marks in two subjects who were cognitively non-impaired at the time
of death and displayed minimal burden of age-related neuropathologies at the time of death.
Six different chromatin marks were targeted, including three marks associated with
condensed, transcriptionally repressed chromatin (H3K36me3, H3K9me3, and H3K27me3)
and three marks associated with transcriptionally active regions (H3K4me3, H3K9ac, and
H3K4mel). For each mark, we therefore have genome-wide data regarding the location
where each of these chromatin modifications was found. This information can be collapsed
by assessing each 200 bp segment of the genome and annotating the extent to which each of
these marks is found in each segment and using the resulting pattern to estimate the state of
the chromatin found in that particular segment. Each state reflects the extent to which a
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segment of DNA is accessible for transcription and what function it may exert. For example,
the ChromHMM software can be used to derive such a chromatin map of profiled tissues,
and we can bin the segments into different states. We employed an 11-state profile.
However, the number is increasing and is now a 15-state model and is likely to increase
soon. Seven maps were generated in the Roadmap effort: the targeted regions include the
angular gyrus, anterior caudate, cingulate gyrus, dorsolateral prefrontal cortex, inferior
temporal cortex, mid-hippocampus and substantia nigra. Thus, we have a sampling of the
state of chromatin in the gray matter of different cortical and subcortical regions. Further,
Figure 4 illustrates that the proportions of CG sites with different mean methylation varies
by chromatin state. A majority (more than 60%) of CG sites in weak and transcription
regions are extremely hyper-methylated, while more than 90% of CG sites in strong
promoters are extremely hypo-methylated. Thus, information can be integrated across
different types of epigenomic data to interpret the association of given regions of the
genome with SNPs, RNA expression and ultimately a trait of interest such as clinical or
pathologic AD. Overall, these chromatin states and methylation patterns, and the extent to
which they vary across individuals, will rapidly enrich our understanding of the basic
organization of the epigenome.

FUTURE DIRECTIONS

Technological improvements will soon allow better interrogation of the epigenome by
increasing the proportion of the genome that can be sampled effectively in a high-throughput
manner. This advance will enable the execution of studies on the large scale that is needed
for disease-related studies. Studies to date suggest that many loci may be associated with
AD, and the better coverage will therefore provide both (1) better resolution of the
association within each locus and (2) a comprehensive assessment of the genome. On the
other hand, improvements in our understanding of the correlation structure between different
epigenomic features will enable us to more efficiently interrogate the methylome and
structure of chromatin and to understand how these features relate to another. This
information will also be leveraged to inform the design of the molecular networks that drive
AD pathology: mapping the epigenomic features that relate to AD identifies regions of the
genome in which transcriptional potential is altered in disease. A key challenge remains
whether these epigenomic changes are a cause or an effect of the pathologic process, and
therefore, it is essential to study subjects at risk of developing dementia as well as subjects
with dementia. We have already demonstrated that subjects who are not impaired at the time
of death but have AD pathology exhibit epigenomic changes seen in demented subjects,
suggesting that these changes are not a feature of terminal dementia.2%2 To assess whether
these changes predate early evidence of Alzheimer pathology (such as amyloid pathology),
we need to evaluate their relation to other risk factors such as genetic and experiential
factors. However, early analyses suggest that genetic factors appear to have largely
independent effects in relation to epigenomic factors. An evaluation of younger subjects
without amyloid pathology but with life experiences such as depression that contribute to
dementia risk will also be necessary to investigate the role of non-genetic factors. These
critical data derived from human samples will need to be supplemented by careful dissection
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of the causal chain events using in vitro models such as neuronal cells differentiated from
induced pluripotent stem cells and murine and other models of AD.

The methylation data and reference chromatin map derived from different cortical and
subcortical tissues are an excellent initial evaluation of epigenetic changes in different
regions of the aging brain. However, the profiles are based on cortical tissue, and we cannot
resolve cell-autonomous effects at this point. Initial efforts to estimate the neuronal burden
within a brain sample have been published,29% but we need a better set of reference
epigenomic profiles for different cell types. Such resources will be essential to begin to
identify the cells which are affected by a given epigenomic feature discovered to be
associated with AD in profiles of CNS tissues that are performed today. Such data will begin
to address important questions relating to the observation that the differences in methylation
relating to AD may be modest (1% difference in methylation levels, on average): is this
difference is due to a small proportion of cells of a common cell type that are changing? Is a
rare cell population is changing en bloc? Or, do these small changes represent the presence
of infiltrating inflammatory cells?

In coming years, larger studies using better technologies will enhance the data that we can
analyze to understand how chromatin structure influences the role of susceptibility variants
and whether it may mediate some of the experiential risk factors associated with AD
susceptibility. DNA methylation is likely to remain the mark of choice, but the study of
histone protein modifications will be necessary to understand the fine architecture of loci
implicated in AD. This will be supplemented by ChIP-Seq studies targeting pertinent
transcription factors that regulate gene expression within susceptibility loci. All of these
results will inform the identification and refinement of the molecular networks that lead to
AD and are influenced by AD pathology. Despite its many challenges, epigenomic studies
of AD will play an important role in the research community’s efforts to delineate the
sequence of events leading from health to dementia.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Distribution of mean methylation of CGs in HumanMethylation450K.
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Distribution of mean methylation of CGs in HumanMethylation450K by Autosomes.
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