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Abstract

Alzheimer’s disease (AD) is a large and growing public health problem. It is characterized by the 

accumulation of amyloid-β peptides and abnormally phosphorylated tau proteins that are 

associated with cognitive decline and dementia. Much has been learned about the genomics of AD 

from linkage analyses and more recently, genome-wide association studies. Several but not all 

aspects of the genomic landscape are involved in amyloid-metabolism. The moderate concordance 

of disease among twins suggests other factors, potentially epigenomic factors, are related to AD. 

We are at the earliest stages of examining the relation of the epigenome to the clinical and 

pathologic phenotypes that characterize AD. Our literature review suggests that there is some 

evidence of age-related changes in human brain methylation. Unfortunately, studies of AD have 

been relatively small with limited coverage of methylation sites and microRNA, let alone other 

epigenomic marks. We are in the midst of two large studies of human brains including coverage of 

more than 420,000 autosomal cytosine-guanine dinucleotides (CGs) with the Illumina Infinium 

HumanMethylation 450K BeadArray, and histone acetylation with chromatin 

immunoprecipitation-sequencing. We present descriptive data to help inform other researchers 

what to expect from these approaches in order to better design and power their studies. We then 

discuss future directions to inform on the epigenomic architecture of AD.
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AGING AND DEMENTIA

Persons over the age of 65 are the most rapidly growing segment of the population 

throughout the developed world as a result of increasing life expectancy and declining 

fertility over the past century. This demographic trend will continue throughout the 21st 

century, and similar trends are forecast for developing countries in the latter half of this 

century. Thus, the world’s population is aging rapidly making common chronic conditions 

of aging an urgent and growing public health problem. Looming large on this landscape is 

age-related cognitive decline, which can progress to mild cognitive impairment (MCI), i.e., 

obvious cognitive impairment in which most activities of daily living remain intact, 

followed by dementia, i.e., cognitive impairment contributing to impaired activities of daily 

living. The incidence and prevalence of dementia increase markedly with age. There are 

numerous causes of dementia. The most common cause is Alzheimer’s disease (AD); 

however, cerebrovascular disease (CVD), Lewy body disease (LBD), and hippocampal 

sclerosis (HS) are also well-recognized causes. More recently, TAR DNA-binding protein 

43 (TDP-43), originally thought to be a relatively rare pathology, has been shown to be quite 

common and also associated with dementia in aging populations. Thus, while Alzheimer’s 

disease may play a large role in dementia, many other processes contribute to aging-related 

cognitive decline.

The projected impact of dementia in general and AD in particular on both health care costs 

and pension plan has recently captured the attention of economists, politicians and other 

policy makers.1–5 This is of particular concern in Western European countries with 

publically funded health and pension systems. Thus, the USA and many European countries 

now have or are developing “National Plans.”6–12 France was the first country with a 

National Dementia Plan, launched in 2001. The Netherlands launched their National 

Dementia Plan in 2008, followed by the UK in 2009, Denmark in 2010, and others have 

followed suit. The US Congress unanimously passed the National Alzheimer’s Project Act 

(NAPA; P.L. 111-375) in 2010 and the initial plan was unveiled in 2012. British Prime 

Minister David Cameron, G8 president in 2013, announced at a G8 Dementia Summit, that 

the G8 would lead a global plan to address AD.13–14

CLINICAL AND NEUROPATHOLOGIC FEATURES OF ALZHEIMER’S 

DISEASE

Clinical manifestations

AD is the most common cause of dementia in old age. However, progress over the past 

quarter century has led to new conceptualization of AD as a chronic disease that begins with 

a subclinical pathophysiologic process, followed by subtle cognitive decline, MCI due to 

AD, and finally to AD dementia which is now considered end stage AD.15–17 The core 

feature of AD is memory loss. Memory is the recording, storage, and retrieval of 

information and accounts for all behavioral changes based on prior experience from single 

cell organisms to complex human behaviors. There are many forms of memory. The clinical 

hallmark of AD is progressive loss of episodic memory, the explicit recall of the times, 

places, and associated contextual characteristics that comprise the autobiography of one’s 
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life. However, all cognitive abilities are eventually affected, and in many cases, multiple 

cognitive abilities are affected early in the disease process. The pace of cognitive decline 

varies widely and can range from a year to two decades. Although defined by its effect on 

cognition, AD affects a wide range of other abilities including gait, physical frailty and other 

motor abilities, smell, and sleep, and can be accompanied by depression, delusions and 

hallucinations.18–22

About 5 million people in the US are affected by AD dementia.23–25 While the CDC 

reported fewer than 90,000 deaths based on death certificates in 2010, a recent study 

estimated that more than 500,000 excess deaths were associated with AD in 2010, putting it 

on a par with cancer and heart disease.26 If MCI due to AD was included in these estimates 

based on the new consensus criteria both numbers would be higher.27–28

Pathologic features of AD

The neuropathologic hallmarks of AD are the extracellular deposition of a 40-42 amino acid 

amyloid-β protein in the form of plaques and the phosphorylation of intracellular 

microtubule associated tau proteins in the form of neurofibrillary tangles.29 In line with the 

recently accepted chronic disease model of AD, the pathologic indicators can be present in 

people without cognitive impairment, in addition to those with MCI due to AD and AD 

dementia.29–30 Further, there is good evidence that the deposition of amyloid-β precedes the 

accumulation of tangles and that both develop pathologies accumulate prior to the onset of 

overt cognitive impairment.31–32 Further, using positron emission tomography, amyloid is 

seen in persons at genetic risk years prior to their estimated disease onset.33 There are a 

variety of other ancillary changes in the brain such as degeneration of the cholinergic basal 

forebrain and other subcortical and brainstem nuclei, inflammation, and oxidative 

stress.34–40

Mixed disease and AD dementia and MCI

AD is among the most common chronic diseases of aging and its occurrence is strikingly 

related to age. Thus, it often is accompanied by co-morbid conditions, including other 

diseases that cause dementia. These conditions include CVD, LBD, HS, and more recently, 

TDP-43.41–44 The vast majority of data suggest that these pathologies have an additive 

effect on the odds of dementia, although one study reported that AD and CVD had a 

multiplicative effect on the odds of dementia.45–49 The result is that mixed diseases are the 

most common cause of dementia, including AD dementia.50–51 Thus, it may be best to 

categorize the contribution of AD and other conditions to dementia. For example, the term 

vascular dementia is no longer preferred and has been replaced by vascular cognitive 

impairment.52 Further, although the five conditions listed above appear to account for nearly 

all cases of dementia, it turns out that they only account for about half of the variability of 

cognitive decline.53 These observations have profound implications for how we interpret 

studies of risk factors for AD. Specifically, it means that some risk factors for AD may be 

related to a co-morbid disease such as diabetes with cerebrovascular disease.54–55 By 

contrast, other risk factors for AD may be unrelated to any extant pathology such as early 

and late cognitive activity.56–57 These observations are equally important when considering 

genomic and epigenomic risk factors as will be discussed below.
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HERITABILITY OF AD

Evidence of the heritability of AD comes from both family studies and twin studies.

Family studies

Familial aggregation in AD has been recognized for many years with persons with a first 

degree relative with AD having a two- to four-fold risk of AD.58–61 Interestingly, because 

AD is so common in older persons and genomic risk factors tend to have variable 

penetrance, AD risk among first degree relatives varies by age such that the risk is highest 

among relatives of probands with earlier ages of onset compared to relatives of probands 

with later ages of onset.62 Further, AD endophenotypes such as impairment of episodic 

memory and plasma amyloid-β levels have also been shown to be heritable.63–64 Finally, in 

rare and primarily early onset cases, the disease has been found to run in families in an 

autosomal dominant fashion.65–67

Twin Studies

Numerous twin studies also demonstrate the heritability of AD.68–71 However, the 

concordance rate varies widely and is substantially less than 100%, suggesting that factors 

other than genomic sequence influence disease occurrence.

GENETICS OF AD

Genetic linkage studies employed in the 1990’s successfully yielded the identification of 

mutations in three genes that contribute to autosomal dominant early onset AD, and two 

common polymorphisms associated with late-onset AD. Following the sequencing of the 

human genome and the development of genome-wide association studies (GWAS), many 

additional polymorphisms were identified in the past five years.

Mutations and cytogenetic alterations

It has long been known that adults with trisomy 21 (Down’s syndrome) develop the clinical 

and pathologic features of AD in mid life.72–78 This led to an intensive search for a mutation 

on chromosome 21.79 A mutation in the gene that encodes the amyloid precursor protein 

(APP) was eventually identified.80–82 This was followed by linkage to chromosome 14, and 

the eventual discovery of a mutation in PSEN1 that codes for the protein presenilin-1.83–87 

The third gene, PSEN2 which codes for the protein presenilin-2, was identified after linkage 

to chromosome 1.88–90

Polymorphisms

Linkage to chromosome 19 resulted in the identification of two polymorphisms in the 

apolipoprotein E gene associated with AD: the APOE ε4 haplotype is associated with an 

increased risk of AD, and the APOE ε2 haplotype is associated with decreased risk.91–94 

Over the past five years, the GWAS era has yielded a number of additional polymorphisms. 

There are now nine loci containing susceptibility alleles that are considered confirmed 

including (ABCA7, BIN1, CD33, CLU, CR1, CD2AP, EPHA1, MS4A6A-MS4A4E and 

PICALM that have been confirmed by a number of different studies.95–100 The most recent 
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GWAS with nearly 75,000 subjects identified these, as well as SORL1 (which had 

previously been suggested to be a susceptibility locus), and 11 novel loci including HLA-

DRB5/HLA-DRB1, PTK2B, SLC24A4-RIN3, DSG2, MEF2C, INPP5D, NME8, ZCWPW1, 

CELF1, FERMT2, and CASS4.101

Biologic mechanisms linking genomic risk factors to AD

Mutations in APP, PSEN1 and PSEN2 played a crucial role in advancing our understanding 

of AD. APP is a transmembrane protein that, when cleaved, yields the amyloid-β 1-42 

peptide that represents an essential pathologic hallmark of AD. APP cleavage is 

accomplished by a set of three secretases, α, β, and γ.102–106 β-secretase is the protein 

BACE-1.107–108 Cleavage with this secretase is a prerequisite for generating the amyloid-β 

peptide. α-secretase cleaves within the amyloid-β 1-42 peptide sequence preventing the 

generation of the amyloid-β protein. By contrast, γ-secretase cleaves elsewhere and leaves 

the amyloid-β fragment intact allowing the generation of the amyloid-β peptide. Presenilin-1 

and -2 are both components of γ-secretase and lead to the development of AD. Mutations in 

BACE are not known to cause AD.

There is extensive evidence that APOE is somehow involved in amyloid deposition most 

likely via clearance of amyloid-β.109–113 It is likely, however, that two or more mechanisms 

are involved. Despite the fact that APOE ε4 is sufficiently common to make it a practical 

genotype-specific target for drug development and more than two decades of research, 

APOE ε4 remains a research tool and has very limited clinical utility.114 Identifying and 

validating therapeutic targets in the pathway(s) linking these genomic variants to AD is 

among the most urgent issues in the field.

The relation of the other genetic risk factors to classic AD pathology has only recently been 

the subject of investigation. Approaches include associations with neuropathologic traits at 

autopsy or with imaging or biofluid biomarkers. The data to date suggest that some but not 

all of the newly discovered genomic variants are related to classic AD pathology such as 

amyloid and that the effect sizes tend to be small, as one might suspect in view of the 

strength of associations in the GWAS. The results are variable but include CR1, ABCA7, 

CD2AP, CD33, PICALM and SORL1.115–121

EPIGENETICS OF AD

The highly variable and relatively low concordance rates for AD among identical twins 

clearly indicate that factors in addition to sequence variation must play an important role in 

AD susceptibility, raising the possibility of a role for epigenetics. In the only study of a pair 

of monozygotic twins discordant for AD, a lower global 5-methylcytosine fluorescence 

intensity was seen in the temporal neocortex of the affected twin providing further support 

for a role of epigenetics (Table 2, reference 146). Further, there is evidence supporting age-

related differences in human blood and brain methylation in advanced age (see below).

Nearly all epigenomic studies of AD to date are relatively small, targeted, and limited to one 

epigenomic mark. There are a few custom microarrays and data from first generation DNA 

methylation chip technology, e.g., Illumina Infinium HumanMethylation27 BeadArray that 
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interrogates a very small and non-random fraction of the methylome. Thus, the landscape is 

either biased or sparse and resembles the early days of genomics prior to the large GWAS 

studies. Most candidate SNP studies were simply not replicated, and it took large unbiased 

studies to identify the common genetic variants other than APOE ε4. However, the 

epigenome is much more complicated with a relatively large number of epigenomic marks. 

We also have limited knowledge regarding their correlation structure, their cell type 

specificity, and the potential for reverse causality (where the trait of interest such as AD 

influences the epigenome). So, the complexities of interrogating the epigenome relative to 

GWAS are compounded many fold. These issues make it impossible to draw any definitive 

conclusions regarding the relation of the epigenome to AD at this time. Below, we briefly 

discuss studies published to date and then share some descriptive work relating to different 

approaches of measuring epigenomic profiles in brain and to assessing data from a large 

number of human brains profiled with the Illumina Infinium HumanMethylation450K 

BeadArray, the one platform capable of high-throughput work. There is as yet no published 

data of such large-scale studies. Thus, while this field holds great promise, it is nascent, and 

the first generation of large studies are beginning to define the key parameters needed to 

perform epigenomic epidemiology studies.

DNA methylation

Cytosine-guanine (CG) dinucleotides are prominent sites for DNA methylation and are 

variably distributed across the genome. There are an estimated 23 million CG sites in the 

human genome, which can be interrogated by a variety of approaches. Interrogating the 

whole methylome remains labor intensive and expensive and is not yet amenable to high 

throughput.

We found 20 studies from 1999 to date on the relation of DNA methylation to age (Table 

1).122–141 Of these, six were of brain and the rest of peripheral biospecimens. Of the brain 

studies, only three had sample sizes greater than 100. One of these studies was a targeted 

study of 50 CG sites using PCR.124 The other two studies used the Illumina Infinium 

HumanMethylation27 BeadArray.130,133 All three studies showed relatively robust positive 

correlations between methylation and age.

We also found 28 studies from 1995 to date on the relation of DNA methylation to AD 

(Table 2).124,142–168 Of these,20 were of brain and the remainder of peripheral tissues. Only 

one of the studies of brain had a sample size exceeding 100.161 Only one study of brain used 

the Illumina HumanMethylation27 BeadArray, and the remainder interrogated far fewer CG 

sites.155 The study of 12 cases and 12 matched controls using the Illumina platform reported 

that the AD brains were slightly hypomethylated. The remaining studies were quite variable 

with some suggesting hypermethylation, others hypomethylation, and some without obvious 

differences.

Histone acetylation

We found only a single 2012 study of histone marks, H3K18/K23 acetylation in persons 

with and without AD (Table 3).169 The study employed selective reaction monitoring liquid 

chromatography-mass spectrometry (SRM LC-MS) to quantify histone acetylation in 11 AD 
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and 4 control brains and found down-regulation of these marks in AD brains. One study 

found that protein level of histone deacetylase 2 (HDAC2) was elevated in AD brains.170

microRNA

We identified 18 AD studies of microRNA (miR) from 2008 to present (Table 4).171–188 Of 

these all but two were in human brain.183,186 None of the studies had a sample size in excess 

of 100. Further, only one of the studies of human brain interrogated more than one or a few 

targeted miR’s.186 Overall, the results of studies of brain tissue were highly variable with 

some miR’s up-regulated and others down-regulated.

Overall, it is clear that the study of epigenomics in AD is a nascent field, without robust 

results at this time. The studies of aging-related changes in the brain’s epigenome do appear 

to have returned reasonable evidence supporting that many CG sites throughout the 

methylome are more highly methylated with advancing age. However, it is not yet clear how 

this relates to brain function or addresses the relevance of these changes to the local 

chromatin architecture at specific sites.

EXPERIENCE WITH HIGH TRHOUGHPUT APPROACHES TO THE 

EPIGENOME IN HUMAN BRAIN

The review of the literature to date suggests that there is very little published epigenomic 

data from the currently available high throughput approaches to the epigenome from large 

numbers of human brains. Over the past few years, we have generated DNA methylation 

data from several hundred human brains using the Illumina Infinium HumanMethylation450 

BeadArray and genome wide histone acetylation data using chromatin immunoprecipitation-

sequencing (ChIP-Seq). Here we describe our experience and share some basic descriptive 

information with the reader. The data are intended to inform future researchers regarding 

what they can expect from these approaches in order to better design and power studies of 

the brain methylome.

Brain DNA methylation using Infinium Humanmethylation450k Beadchip

We are unaware of any published studies of human brain using the Illumina Infinium 

HumanMethylation450 BeadArray, which is the current platform of choice for high 

throughput methylation studies. Here, we describe the basic characteristics of DNA 

methylation profiles from 740 postmortem human brains from participants in two ongoing 

longitudinal clinical pathologic studies of aging and dementia, the Religious Orders Study 

and the Rush Memory and Aging Project.189–190 All participants signed an informed 

consent and an anatomical gift act for organ donation. Both studies were approved by the 

Institutional Review Board of Rush University Medical Center and conform to ethical 

guidelines for human research. While very little of these data have been published in peer-

reviewed journals, additional data presented at national and international meetings are also 

in the public domain.191–197

Their average age was 88 (SD=6.7, range 66–108), 36% (N=269) were males, and 330 had 

AD or other dementia, 175 mild cognitive impairment, and 235 were without cognitive 
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impairment proximate to death. DNA was extracted from frozen dorsolateral prefrontal 

cortex (DLPFC) tissue. Methylation data was generated using the Illumina Infinium 

HumanMethylation450K BeadArray. For each brain sample, our dataset, after quality 

control, consists of methylation measures of a total of 420,132 autosomal CGs which are 

distributed across the entire genome.

First, we observe that DNA methylation at these 420,132 CG sites features a distinct 

bimodal distribution such that approximately a third of CGs are extremely hyper-methylated 

(i.e., mean methylation > 0.8) and another third are extremely hypo-methylated (i.e., mean 

methylation ≤ 0.2) (Figure 1). This bimodal pattern is preserved in all 22 autosomes (Figure 

2). Since the coverage offered by the Illumina chip is targeting methylation sites primarily at 

CG islands and genic regions, we examine the distribution of CGs and methylation pattern 

by CG islands as well as surrounding shelves and shores. A total of 135,303 (32.2%) CGs 

are located in CG islands, 98,653 (23.5%) in CG shores, 39,141 (9.3%) in CG shelves and 

the remaining 147,035 (35.0%) in regions not related to CG islands. Interestingly, the 

distribution of mean methylation varies across the regions, as shown in figure 3. For 

example, in the case of CG island related features, only the CGs sites in the north and south 

shores (regions flanking a CG island) show a bimodal pattern of methylation levels, while 

the distributions in the CG island proper and the more distal north and south shelves are 

more polarized. Specifically, the majority of CGs (82.9%) in shelves are hypermethylated 

(i.e. mean methylation ≥0.5). By contrast, 83.8% of CGs in CG islands are hypo-methylated, 

among which 75.7% are extremely hypo-methylated. Notably, the mean methylation level in 

CG islands is much lower when compared with non-CG island regions (0.20±0.29 vs. 

0.62±0.30; p<0.0001).

DNA methylation is an attractive epigenomic mark to study because it is relatively simple to 

extract from tissue and because the Illumina platform offers an option for automated high-

throughput data generation, which minimizes technical variation in the data. However, the 

platform only samples a small fraction of the epigenome and does not differentiate between 

cytosine methylation and hydroxymethylation. These marks are distinct, and their relative 

role is just beginning to be explored. Thus, while DNA methylation provides a reasonable 

platform for the first generation of epigenomic studies, it is not sufficient, and alternative 

strategies are needed.

Histone acetylation data and other chromatin MARKS with ChIP-Seq

In contrast to methylation, profiled on DNA which is easily extracted from human tissues, 

profiling histone marks requires the capture of chromatin fragments that bear the mark of 

interest using immunoprecipitation. This process is time-consuming and not currently 

automated for high throughput. Its success is very dependent on the antibody clone and 

batch selected for the experiment, and use of the appropriate tissue type. Below, we illustrate 

our evaluation of different human brain-derived starting material, i.e., fresh frozen vs. 

paraformaldehyde fixed human brain. We also describe the experimental pipeline for 

chromatin immunoprecipitation followed by sequencing (ChIP-Seq) that yields genome-

wide data on the location of a target chromatin mark, in this case H3K9Ac. Again, the data 

presented here are intended to inform future researchers regarding what they can expect 
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from these methods in order to better design and power studies of human brain histone 

marks. While very little of these data have been published in peer-reviewed journals, 

additional data presented at national and international meetings are also in the public 

domain.198–199

To generate ChiP-Seq data from the brain samples that were used in the DNA methylation 

experiment described above, we first identified the Millipore anti-H3K9ac mAb (catalog # 

06-942, lot: 31636) as a robust monoclonal antibody for ChIP experiments out of four 

different antibodies tested and used a single batch of this antibody for all experiments that 

explore the pattern of H3K9Ac in the human dorsolateral prefrontal cortex. This particular 

mark was selected given evidence suggesting that (1) histone deacetylases may have an 

effect on AD pathology,200 and (2) this mark accumulates in sharply defined, discrete areas 

at the transcription start site of actively transcribed genes as well as enhancers of such genes. 

For our pilot study, we explored the utility of using fresh vs. fixed brain tissue. 

Approximately 500mg of fixed tissue and 50mg of frozen tissue were needed to generate 

similar DNA yields of about 50 ug per sample (Supplementary Table 1). The larger fixed 

tissue requirement suggests that longer periods of fixation reduce the ability to completely 

reverse cross-linking within a sample fixed at autopsy.

Starting from a well-described ChIP-Seq protocol,201 we first optimized DNA 

fragmentation, a key step in constructing libraries following enrichment by ChIP of target 

sequences. We did not observe the expected increase in the targeted 150–700 bp DNA 

fragments with increasing sonication in fixed tissue specimens but did document this trend 

in the frozen tissue specimens (Supplementary Figure 1). Neither the post mortem interval 

nor the fixation interval strongly influenced the performance of the fixed material in this 

respect; Supplementary Table 2 reports these parameters for all tested samples. The 

optimum fragment size range is the length of 1–3 nucleosomes, or 150–700bp. As illustrated 

in Supplementary Figure 1B, a sonication time of 4–6 minutes appears to be optimal to 

enhance the proportion of DNA fragments in the target range while avoiding an increase in 

the <150 bp fragment that enhance the background. Further, we tested two methods of tissue 

homogenization and find a 10% increase in the target range of fragment size, with a 

corresponding 10% decrease in the >700 bp fragment range and no change in the low size 

range when using the Tissue Lyser II approach compared to the standard Dounce 

homogenizer. There is no decrease in total DNA yields using the Tissue Lyser II approach 

(Supplementary Figure 1 B). Libraries produced from fixed and frozen tissue were 

sequenced.

Sequencing data from fresh vs. fixed tissue

Sequencing data were produced using the Illumina Genome Analyzer II platform. Libraries 

were not multiplexed. Supplementary Table 3 reports the summary statistics of sequencing 

output in terms of total reads produced, reads which passed Illumina quality filter, its 

percentage and number of filtered reads with percentage, which were successfully aligned to 

the human reference genome and number of duplicate reads from each sample. Given rapid 

improvements in sequencing technology, the number of output reads per lane increased from 

our pilot 1 study to our pilot 2 study for which data were generated 3 months apart.

Bennett et al. Page 9

Transl Res. Author manuscript; available in PMC 2016 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



As shown in Supplementary Table 3, sequence data were of high quality, with, on average, 

more than ~80% of reads from the sequencing passing the Illumina quality filter. 97% of 

these filtered reads were uniquely mapped to the human reference genome. Using the Picard 

pipeline, we also assessed the quality of sequencing by looking at the quality score 

distribution and sequencing coverage in different regions of genome based on GC-content. 

The normalized coverage of mapped sequence reads to genomic regions with varying GC-

content is reported in Supplementary Figure 2 (A, B and C). The control sample without 

immunoprecipitation provides an estimate of the un-enriched genome-wide baseline 

distribution of sequences; it has the expected slight bias against GC-content that reflects the 

genome-wide skew in GC content found in the sequenced human genome (Supplementary 

Figure 2A). Given that H3K9Ac, our target epigenomic mark, is enriched near the 

transcription start site of genes that are, on average, GC-rich relative to the genome-wide 

average, we expect an enrichment for GC content in sequences selected by ChIP. While the 

library generated from a fixed tissue sample (Supplementary Figure 2B) shows a slight 

enrichment in GC content, we see the expected very substantial skew towards greater GC 

content in the frozen sample (Supplementary Figure 2C) that suggests successful enrichment 

by ChIP. Supplementary Figure 2D illustrates the much better enrichment in target sequence 

that is achieved when using frozen rather than fixed tissue sample as a target for ChIP.

To visualize the ChIP enrichment and further assess the quality of our data production 

pipeline, we generated a read tag density distribution plot using the Integrated Genomic 

Viewer (IGV; http://www.broadinstitute.org/igv/) (Supplementary Figure 3). Here, we see 

that samples from fixed brain tissue have a similar sequence read distribution as the control 

sample without ChIP, consistent with the lack of significant enrichment in GC content 

documented in Figure 2B. On the other hand, frozen samples show very clear and distinct 

peaks of H3K9Ac that are similar across samples from different individuals.

Overall, this pilot study illustrates the finding that fresh-frozen autopsy tissue is the 

preferred substrate for ChIP-seq data generation: fixed material failed to generate data in our 

pilot study. While the protocol based on fixed material can doubtlessly be improved and 

optimized, it is clearly not as easy to use as frozen material; nonetheless, optimization is 

indicated in circumstances where tissue availability is limited to fixed material.

Reference Chromatin maps

Through a collaboration with the NIH’s Epigenomic Roadmap, we next generated ChiP-Seq 

data for six chromatin marks in two subjects who were cognitively non-impaired at the time 

of death and displayed minimal burden of age-related neuropathologies at the time of death. 

Six different chromatin marks were targeted, including three marks associated with 

condensed, transcriptionally repressed chromatin (H3K36me3, H3K9me3, and H3K27me3) 

and three marks associated with transcriptionally active regions (H3K4me3, H3K9ac, and 

H3K4me1). For each mark, we therefore have genome-wide data regarding the location 

where each of these chromatin modifications was found. This information can be collapsed 

by assessing each 200 bp segment of the genome and annotating the extent to which each of 

these marks is found in each segment and using the resulting pattern to estimate the state of 

the chromatin found in that particular segment. Each state reflects the extent to which a 
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segment of DNA is accessible for transcription and what function it may exert. For example, 

the ChromHMM software can be used to derive such a chromatin map of profiled tissues, 

and we can bin the segments into different states. We employed an 11-state profile. 

However, the number is increasing and is now a 15-state model and is likely to increase 

soon. Seven maps were generated in the Roadmap effort: the targeted regions include the 

angular gyrus, anterior caudate, cingulate gyrus, dorsolateral prefrontal cortex, inferior 

temporal cortex, mid-hippocampus and substantia nigra. Thus, we have a sampling of the 

state of chromatin in the gray matter of different cortical and subcortical regions. Further, 

Figure 4 illustrates that the proportions of CG sites with different mean methylation varies 

by chromatin state. A majority (more than 60%) of CG sites in weak and transcription 

regions are extremely hyper-methylated, while more than 90% of CG sites in strong 

promoters are extremely hypo-methylated. Thus, information can be integrated across 

different types of epigenomic data to interpret the association of given regions of the 

genome with SNPs, RNA expression and ultimately a trait of interest such as clinical or 

pathologic AD. Overall, these chromatin states and methylation patterns, and the extent to 

which they vary across individuals, will rapidly enrich our understanding of the basic 

organization of the epigenome.

FUTURE DIRECTIONS

Technological improvements will soon allow better interrogation of the epigenome by 

increasing the proportion of the genome that can be sampled effectively in a high-throughput 

manner. This advance will enable the execution of studies on the large scale that is needed 

for disease-related studies. Studies to date suggest that many loci may be associated with 

AD, and the better coverage will therefore provide both (1) better resolution of the 

association within each locus and (2) a comprehensive assessment of the genome. On the 

other hand, improvements in our understanding of the correlation structure between different 

epigenomic features will enable us to more efficiently interrogate the methylome and 

structure of chromatin and to understand how these features relate to another. This 

information will also be leveraged to inform the design of the molecular networks that drive 

AD pathology: mapping the epigenomic features that relate to AD identifies regions of the 

genome in which transcriptional potential is altered in disease. A key challenge remains 

whether these epigenomic changes are a cause or an effect of the pathologic process, and 

therefore, it is essential to study subjects at risk of developing dementia as well as subjects 

with dementia. We have already demonstrated that subjects who are not impaired at the time 

of death but have AD pathology exhibit epigenomic changes seen in demented subjects, 

suggesting that these changes are not a feature of terminal dementia.202 To assess whether 

these changes predate early evidence of Alzheimer pathology (such as amyloid pathology), 

we need to evaluate their relation to other risk factors such as genetic and experiential 

factors. However, early analyses suggest that genetic factors appear to have largely 

independent effects in relation to epigenomic factors. An evaluation of younger subjects 

without amyloid pathology but with life experiences such as depression that contribute to 

dementia risk will also be necessary to investigate the role of non-genetic factors. These 

critical data derived from human samples will need to be supplemented by careful dissection 
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of the causal chain events using in vitro models such as neuronal cells differentiated from 

induced pluripotent stem cells and murine and other models of AD.

The methylation data and reference chromatin map derived from different cortical and 

subcortical tissues are an excellent initial evaluation of epigenetic changes in different 

regions of the aging brain. However, the profiles are based on cortical tissue, and we cannot 

resolve cell-autonomous effects at this point. Initial efforts to estimate the neuronal burden 

within a brain sample have been published,203 but we need a better set of reference 

epigenomic profiles for different cell types. Such resources will be essential to begin to 

identify the cells which are affected by a given epigenomic feature discovered to be 

associated with AD in profiles of CNS tissues that are performed today. Such data will begin 

to address important questions relating to the observation that the differences in methylation 

relating to AD may be modest (1% difference in methylation levels, on average): is this 

difference is due to a small proportion of cells of a common cell type that are changing? Is a 

rare cell population is changing en bloc? Or, do these small changes represent the presence 

of infiltrating inflammatory cells?

In coming years, larger studies using better technologies will enhance the data that we can 

analyze to understand how chromatin structure influences the role of susceptibility variants 

and whether it may mediate some of the experiential risk factors associated with AD 

susceptibility. DNA methylation is likely to remain the mark of choice, but the study of 

histone protein modifications will be necessary to understand the fine architecture of loci 

implicated in AD. This will be supplemented by ChIP-Seq studies targeting pertinent 

transcription factors that regulate gene expression within susceptibility loci. All of these 

results will inform the identification and refinement of the molecular networks that lead to 

AD and are influenced by AD pathology. Despite its many challenges, epigenomic studies 

of AD will play an important role in the research community’s efforts to delineate the 

sequence of events leading from health to dementia.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Distribution of mean methylation of CGs in HumanMethylation450K.
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Figure 2. 
Distribution of mean methylation of CGs in HumanMethylation450K by Autosomes.
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Figure 3. Distribution of mean methylation level (across 740 samples) of CpG sites located at 
different genomic features
(Left) Genic features; (Right) Island features.
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Figure 4. 
Proportions of CG sites with different mean methylation by chromatin
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