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Abstract 

The vast majority of production processes in chemical industry is based on catalysts, 

providing energetically favorable mechanisms with high activity and selectivity towards 

the desired products. Besides their commercial relevance for efficient production and 

economic profit, catalysts are of vital importance for a more environmentally friendly, 

sustainable economy (green technology), for example by preventing the production of 

hazardous byproducts, transforming toxic reaction products into less harmful compounds 

(e.g. in exhaust gas catalysis) or by transforming energy from renewable sources into 

chemical energy.  

The design of nanoparticles has played an important role in improving the performance of 

catalysts. A high fraction of atoms in these systems are located at the interfaces or on the 

particle surfaces leading to high surface to volume ratios. Due to the large surface areas and 

interfaces, these structures are out of equilibrium and considered thermodynamically 

unstable. Compared to bulk materials, nanoparticles exhibit unique chemical, physical, 

magnetic and electronic properties, opening new windows to the world of materials 

engineering, which is essential for achieving superior performance in many applications, 

for example in gas sensing and especially in catalysis. Within this regard, understanding 

the kinetics and mechanisms of nucleation and growth of monodisperse nanoparticles 

during formation is crucial to optimize their morphology and structure, and for obtaining 

unique tailored properties. Advanced characterization techniques, especially spectroscopic 

methods, are powerful tools to explore such phenomena.  

This thesis reports on a series of studies using a novel home-built microfluidic setup 

providing high and pulsation-free flow rates of reactants to synthesize advanced 

nanostructured materials and study their formation in a continuous turbulent flow 

(Reynolds number of about 2400). A microfluidic chip designed for this purpose consists 

of three cyclone micromixers allowing for homogeneous mixing of the reactants in a very 

short time (< 2 ms at flow rate 2.6 L h-1) for fast reduction reactions, followed by a 

meandering channel. The setup enables X-ray based in situ characterization of the particles 

during flow synthesis, giving access to information about the kinetics and mechanisms of 

the reactions. The microfluidic reactor provides plug flow conditions for precise correlation 

of reaction time and X-ray beam position along the microchannel to enhance time 

resolution. In this context, the cyclone micromixers play an essential role by reducing the 
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dead time, i.e. the time required for homogeneous mixing of reactants, to approximately 2 

ms. Thus, the combination of advanced micro-process engineering and spectroscopic cell 

design gives the opportunity to observe the reduction reaction kinetics at previously 

unavailable time resolution. As a case study within this thesis, the early reaction stages (2-

20 ms) of ultrasmall Au nanoparticle formation from Au (III) in the presence of a strong 

reducing agent (NaBH4) and surfactant (polyvinylpyrrolidone) were monitored in situ by 

synchrotron based X-ray absorption spectroscopy (XAS) at high flow rates of reactants 

approaching turbulent mixing conditions. 

Ultrasmall gold, palladium and homogeneous AuPd alloy nanoparticles with ~ 1 nm 

average diameter and a very narrow size distribution were synthesized using NaBH4 as 

reducing agent and polyvinylpyrrolidone (PVP) as surfactant. These nanoparticles in 

colloidal solutions, and also supported on titania, were characterized by various bulk and 

surface-sensitive characterization techniques including UV-vis spectroscopy, electron 

microscopy, energy-dispersive X-ray spectroscopy (EDX), X-ray-absorption near edge 

spectroscopy (XANES), extended X-ray absorption fine structure (EXAFS), X-ray 

diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and ultra-high vacuum Fourier 

transform infrared spectroscopy (UHV-FTIR). The results revealed a remarkable influence 

of the molar Au:Pd ratio on the crystallographic and electronic structures of AuPd 

nanoalloys. The size of the particles increased during immobilization. Nevertheless, the 

produced nanomaterials which were tested in catalytic (CO oxidation) and gas sensing 

applications show high potential both in sensing and catalysis. 

The potential of the microfluidic reactor was finally evaluated in a co-precipitation reaction. 

CuO/ZnO/Al2O3 catalysts synthesized in the microfluidic reactor and in a batch reactor 

were compared. The preparation in the microreactor resulted in CuO/ZnO/Al2O3 NPs with 

smaller nanoparticle sizes, thus higher surface-to-volume ratio and more uniform 

distribution of Cu/Zn in the nanoparticles compared to the material synthesized using a 

conventional stirred batch reactor. In the future, the microreactor can be used to investigate 

precipitation reactions using X-ray techniques such as XAS, small angle X-ray scattering 

and XRD.  
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Kurzfassung 

Der weitaus überwiegende Teil der Produktionsprozesse in der chemischen Industrie läuft 

in Gegenwart von Katalysatoren ab, die Geschwindigkeiten und Selektivität der beteiligten 

Reaktionen erheblich beeinflussen. Neben ihrer großen Bedeutung für Produktionseffi-

zienz und ökonomischen Profit spielen Katalysatoren eine entscheidende Rolle beim 

Übergang zu einer umweltfreundlicheren, nachhaltigeren Wirtschaft, indem sie z. B. die 

Freisetzung gesundheits- und umweltschädlicher Nebenprodukte vermindern, die 

Umwandlung giftiger Substanzen in weniger gefährliche Verbindungen vorantreiben (z.B. 

in der Abgaskatalyse) oder die Speicherung elektrischer Energie aus erneuerbaren Quellen 

in Form von chemischer Energie ermöglichen.   

Nanopartikel und deren Präparation spielen in vielen heterogen-katalysierten Prozessen 

eine Schlüsselrolle. Ein großer Anteil der Atome in diesen Systemen befindet sich an 

Grenzflächen oder auf Oberflächen, entsprechend hoch ist das Oberflächen-Volumen-

Verhältnis. Aufgrund der großen Oberflächen und ausgeprägten Grenzflächen (z.B. 

Nanopartikel/Support) befinden sich diese Strukturen nicht im Gleichgewichtszustand und 

gelten als thermodynamisch instabil. Ihre Eigenschaften unterscheiden sich signifikant von 

denen der Bulkmaterialien. Nanopartikel zeigen einzigartige chemische, physikalische, 

magnetische und elektronische Eigenschaften, die im Bereich der Materialforschung neue 

Perspektiven eröffnen und zu bemerkenswerten Fortschritten beim Design von 

Funktionsmaterialien für diverse Anwendungen beitragen, neben Katalyse z. B. auch in der 

chemischen Sensorik. In diesem Zusammenhang ist ein tiefgreifendes Verständnis der für 

Keimbildung und Wachstum monodisperser Nanopartikel maßgeblichen Kinetik und 

Reaktionsmechanismen von entscheidender Bedeutung für eine Optimierung von 

Morphologie und Struktur und maßgeschneiderte Eigenschaften. Moderne Charakteri-

sierungsmethoden, insbesondere spektroskopische Techniken, leisten dazu entscheidende 

Beiträge. 

Für die im Rahmen dieser Dissertation durchgeführten experimentellen Studien wurde eine 

Mikrofluidik-Apparatur aufgebaut, die speziell auf kolloidale Synthese nanostrukturierter 

Materialien bei pulsationsfreier Dosierung von Reaktanden und hohen Durchflussraten in 

kontinuierlicher turbulenter Strömung (Reynolds-Zahl von etwa 2400) ausgelegt ist. Drei 

in den Mikrofluidik-Chip integrierte Zyklonmischer ermöglichen homogenes Mischen der 

Reaktanden in kurzer Zeit (< 2 ms bei einem Durchfluss von 2.6 L h-1) für schnelle 
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Reduktionsprozesse, gefolgt von einem Mäanderkanal. Der Mikrofluidik-Aufbau ermög-

licht darüber hinaus eine Röntgen-basierte Charakterisierung der Partikel während der 

Synthese und damit unmittelbaren Zugang zu Informationen bzgl. der maßgeblichen 

Reaktionsmechanismen und Kinetik. Im Mikrofluidikreaktor herrscht eine ideale Strömung 

vor, um die seit Beginn der Reaktion verstrichene Zeit mit der Position des Röntgenstrahls 

entlang des Mikrokanals mit hoher zeitlicher Auflösung direkt korrelieren zu können. Die 

Zyklonmischer im Mikrofluidik-Chip reduzieren hierbei die Totzeit, d.h. die für 

homogenes Mischen der Reaktanden erforderliche Zeit, auf 2 ms. Das Zusammenwirken 

von Mikroverfahrenstechnik und In-Situ-XAS-Messzellendesign ermöglicht so eine 

Untersuchung der Reaktionskinetik mit bislang nicht verfügbarer zeitlicher Auflösung. Als 

Fallstudie im Rahmen dieser Arbeit wurden frühe Reaktionsstadien (2 -20 ms) der Bildung 

von Gold-Nanopartikeln aus Au(III) in Gegenwart eines starken Reduktionsmittels 

(NaBH4) und einer oberflächenaktiven Komponente (PVP als Surfactant) in situ mittels 

Röntgenabsorptionsspektroskopie mit Synchrotronlicht bei hohem Reaktandendurchfluss 

im Bereich turbulenter Mischbedingungen verfolgt. 

Gold-, Palladium- und homogene Gold-Palladium-Legierungs-Nanopartikel mit mittleren 

Durchmessern von ca. 1 nm und schmalen Größenverteilungen wurden in diesem 

Mikroreaktor mit NaBH4 als Reduktionsmittel und Polyvinylpyrrolidone (PVP) als 

oberflächenaktiver Komponente (Surfactant) synthetisiert. Die Struktur dieser 

Nanopartikel, sowohl in Kolloidlösung als auch geträgert auf Titanoxid, wurde mittels 

verschiedener volumen- und oberflächenempfindlicher Charakterisierungstechniken wie 

UV/Vis-Spektroskopie, Elektronenmikroskopie, Energiedispersiver Röntgenspektroskopie 

(EDX), Röntgenabsorptionsspektroskopie (XAS), Röntgendiffraktion (XRD), Röntgen-

photoelektronenspektroskopie (XPS) und Ultrahochvakuum-Fourier-Transform-Infrarot-

spektrometrie (UHV-FTIR) analysiert. Die Ergebnisse dieser Untersuchungen weisen auf 

einen bemerkenswerten Einfluss des molaren Au:Pd-Verhältnisses auf die kristallo-

graphische und elektronische Struktur der Gold-Palladium-Legierungs-Nanopartikel hin. 

Die Größe der Partikel nahm während der Aufbringung auf das Trägermaterial zu. 

Gleichwohl zeigten die hergestellten Nanomaterialien bei Aktivitätsmessungen ein hohes 

Potential als Katalysatoren für die CO-Oxidation und im Hinblick auf Anwendungen in der 

chemischen Sensorik.  

Der Mikrofluidikreaktor konnte auch erfolgreich für eine Cofällungsreaktion genutzt 

werden. Ein Vergleich von mikrofluidisch und in einem diskontinuierlichen Rührreaktor 
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(Batch-Reaktor) synthetisierten CuO/ZnO/Al2O3–Katalysatoren zeigte, dass die im 

Mikrofluidikreaktor hergestellten Materialien kleinere mittlere Partikeldurchmesser, 

entsprechend größere spezifische Oberflächen und eine gleichmäßigere Verteilung von Cu 

und Zn in den Partikeln aufwiesen. Zukünftig kann der Mikrofluidikreaktor auch zur 

Untersuchung von Präzipitationsreaktionen mittels röntgenbasierter Methoden wie XAS, 

Röntgenkleinwinkelstreuung und Röntgendiffraktion genutzt werden. 
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1. Introduction 

1.1. Nanoparticles for Catalysis 

Catalysts are essential in the production of bulk/fine chemicals, fuels and for chemical 

transformations in the industry as well as in automotive and stationary exhaust gas after 

treatment systems to decrease emission of pollutants. In the chemical industry catalytic 

processes are responsible for about 85-90% of the products. Catalysts accelerate chemical 

reactions (in some cases make them even possible) by providing energetically favorable 

alternative reaction pathways with significantly lower activation energy compared to 

uncatalyzed reactions. Catalysis research is a vast and highly multi-disciplinary field, 

challenging scientists and engineers1.    

For highly efficient catalysts, a high number of active sites and for heterogeneous catalysts 

a large surface area are beneficial. This can be achieved by using nanoparticles (NPs) which 

exhibit unique physical and chemical properties different from the corresponding bulk 

materials due to lower coordinated atoms on the surface with altered physical and electronic 

properties and due to quantum confinement effects. In this context, heterogeneous catalysis 

offers unprecedented opportunities to improve the catalytic activity and selectivity 

compared to (quasi-)homogeneous catalysis, especially considering the fact that the 

recovery of metal NPs after heterogeneous catalytic tests is possible and agglomeration can 

be drastically reduced. For catalytic applications, metal NPs are immobilized on a solid 

support and/or isolated by using porous support materials. The latter can potentially reduce 

or prevent sintering of the NPs at high temperatures. For preparation of supported NPs 

various techniques such as impregnation, co-precipitation, deposition-precipitation, 

adsorption of colloids, sol immobilization and physical vapor deposition have been used1-

7. In some cases supported nanoparticles showed activity and selectivity for specific 

reactions for which the corresponding unsupported NPs were not considered active before, 

e.g. for a long time, gold was considered the noblest metal and not anticipated to exhibit 

significant catalytic activity8-11. However, in the early 1990s Haruta et al.2, 12, 13 

demonstrated that supported Au nanoparticles (1-5 nm) are active for low temperature CO 

oxidation (role of metal support interface and small metal NP size) and also for propene 

oxidation from propene, oxygen and hydrogen. Since then, application of gold 

nanoparticles in catalysis has been a hot topic with respect to many reactions such as water-

gas shift (WGS), reduction of nitrogen oxides, oxidation of alcohols, H2O2 synthesis, 
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selective hydrogenation of alkenes, etc9, 14-17. Therefore, the optimization of NP preparation 

and adsorption on supports are a promising approach.  

A greater variety of catalytic properties can be achieved by mixing different metals to create 

intermetallic compounds and nanoalloys. In many cases synergistic effects lead to 

improved performance of the catalysts upon alloying, and the multitude of possible alloys 

with different compositions, structures and properties provides many degrees of freedom 

to tailor bimetallic or trimetallic catalysts for specific applications. The homogeneity of the 

alloyed structure or the degree of segregation depends very much on the synthesis method, 

and conditions applied e.g. precursor, temperature, pressure, etc and also the nanoalloy 

composition. In principle, various mixing patterns are possible such as core-shell, 

segregated subcluster, mixed and multi shell structures (more details in chapter 4 and 5)18. 

Colloidal chemistry is an interdisciplinary field, allowing synthesis of NPs with specific 

physical and chemical properties deriving from the particle size (1-100 nm) and shape. The 

colloidal approach allows synthesis of ‘Ultrasmall NPs’ which is a widely used term in the 

materials science community, referring to NPs with 1-3 nm core size, bridging the gap 

between single molecules and classical larger sized NPs, with 70% of the atoms located on 

the surface and physiochemical properties uniquely differing from the corresponding bulk 

materials19-21.  

There are two main approaches to synthesize metal NPs: physical or “top down” methods 

by mechanically crushing metallic aggregates in the bulk state to smaller particles, and 

chemical or “bottom up” methods via nucleation and successive growth of NPs from the 

precursors and individual molecules in which a chemical or biological reduction occurs. 

However, the top down method is limited regarding the control of particle size, shape and 

further functionalization of the surface and therefore leads to poor synthesis reproducibility. 

Such drawbacks are compensated in the case of the bottom up method5, 22. The main 

chemical routes are (1) chemical reduction; (2) thermal, photochemical, or sonochemical 

decomposition; (3) ligand reduction and displacement from organometallics; (4) metal 

vapor synthesis and (5) electrochemical reduction5. The most common method among these 

techniques is chemical reduction, resulting in narrow size distributions, higher production 

yield (multigram) and reproducibility23, 24. This method is described in more detail in 

chapter 3 of this thesis. After the reduction of metal ions the formed nuclei join together to 

form clusters which, after reaching a critical amount, can grow due to the autocatalytic 
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reaction occurring on their surfaces until all free atoms/nuclei in the solution are consumed. 

Some nuclei can still dissolve and join the already existing NPs resulting in larger particles 

and broader size distributions (Ostwald ripening). The Brownian motion and Van der Waals 

forces trigger growth processes and further coagulation25. Hence, colloidal metal NPs 

should be kept well dispersed in water (hydrosols) or organic solvents (organosols) to 

prevent agglomeration23. This can be achieved by using protecting shells or stabilizers. 

There are four main mechanisms to stabilize colloidal NPs in the dispersion media and 

prevent agglomeration: (1) electrostatic stabilization; (2) steric stabilization; (3) 

electrosteric stabilization; and (4) stabilization by ligand or solvent5, 25. In the case of 

electrostatic stabilization, the stabilizing compounds and their counterions are adsorbed on 

the metal surface. The double electric layer around the NPs causes the Coulombic forces 

repelling the particles from each other. This process can occur in halides, carboxylates or 

polyoxoanions in e.g. Au and Pd colloids synthesized using sodium citrate26, 27. During 

steric stabilization the NPs are covered by bulky layers of materials such as polymers or 

surfactants. Electrosteric stabilization is a combination of both mechanisms (1) and (2), 

while stabilization by ligand or solvent introduces stabilization of colloidal transition metal 

NPs by coordination, using traditional ligands e.g. phosphines, thiols, amines, etc5. Some 

common stabilizers are linear polymers, dendrimers, surfactants, micelles, ligands etc. 

Polyvinylpyrrolidone (PVP) is one of the most popular polymer stabilizers since it allows 

to a high degree control of noble metal NP size. A higher PVP concentration leads to better 

stabilization and smaller NPs28, 29. Moreover, the morphology of particles can be tailored 

by key parameters such as pH, reducing agent, stabilizers, concentrations of reactants, 

temperature, etc. For example, Au NPs stabilized with PVP are active in aerobic oxidation 

of benzylic alcohols in such a way that smaller Au NPs show higher catalytic activity30. 

Co-precipitation of two or more metal salts simultaneously from a solution is another 

popular chemical approach to synthesize catalytically active materials (the support 

materials can also precipitate during this procedure). In this process, which is described in 

more detail in chapter 6, hydroxides precipitate in presence of precipitation agents such as 

NaOH, Na2CO3 or NaHCO3 under specific reaction conditions to form a homogeneous 

mixture, which in the next step is separated, washed and subjected to post-treatments such 

as drying and calcination1, 24, 31. One popular example for co-precipitated products in 

industry is Cu/ZnO/Al2O3 (Cu:Zn:Al ~ 60:30:10 composition) for methanol synthesis, 

containing active Cu NPs dispersed by ZnO and stabilized by Al2O3 (nitrates of Cu, Zn and 
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Al as metal precursors and alkali bicarbonates or alkali carbonates as precipitating agents), 

where the co-precipitation process results in the formation of various hydroxy carbonates 

such as aurichalcite, zincian malachite, etc32-35. The phase, structure and catalytic properties 

of the products strongly rely on the synthesis parameters such as the precipitation 

temperature, the composition of the metal components, pH, ageing time and temperature, 

stirring rate, etc. Afterwards, calcination of the products leads to nano-structuring and high 

dispersion of the metal oxide phases33, 36, 37. The most efficient catalysts applied for 

methanol synthesis were reported to be produced under constant pH (6 or 7) with Na2CO3 

as precipitating agent and at temperatures around 60-70 °C33, 38. The ageing time ranged 

from 30 min to several hours while the calcination procedure was applied at about 326-426 

°C31. However, it should be noted that the co-precipitation via traditional batch reactors is 

difficult to control, i.e. good immediate mixing, maintaining a constant pH throughout the 

solution and achieving a homogeneous crystallization of the two components to precipitate 

simultaneously are both essential and challenging1.       

Besides conventional stirred batch reactor techniques, microfluidic reactors have attracted 

attention in recent years as promising tools to synthesize NPs in a highly controlled way in 

order to tailor particle sizes and achieve narrow size distributions for the desired catalytic 

properties39-41. The size, distribution and shape of NPs and supports play an important role 

in increasing the surface area and the contact between catalytic sites and reactants, which 

can lead to tunable physical and chemical properties and hence to high performance 

catalytic materials1, 3, 4, 42.  

Moreover, the effects of different NP synthesis methods (e.g. different reduction and co-

precipitation reactions in batch reactors or different flow conditions in microfluidic 

reactors) on nanomaterial properties resulting from their structure, phase, morphology, size 

distribution and interparticle interactions should be closely investigated. Within this regard, 

understanding and controlling the intermediate processes occurring during synthesis is 

highly important. This highlights the necessity for in situ and operando studies and the 

combination of different spectroscopic or scattering characterization techniques. Suitable 

in situ reaction cells are an essential prerequisite to observe intermediate compounds on-

line and investigate the kinetics of the reactions at their early stages with high spatial and 

time resolution43-47.  In this context, modified batch reactors combined with peristaltic 

pumps and stopped-flow reactors have been used to study slow reactions (second to minute 

range) in situ by spectroscopic techniques such as UV-visible spectroscopy, X-ray 
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absorption spectroscopy (XAS) and small/wide angle X-ray scattering (SAXS/WAXS), 

while faster reactions (millisecond regime down to 100 ms) were investigated in stopped-

flow46-48 as well as continuous-flow apparatus45, 49. Yao et al. determined the initial kinetics 

of nucleation of Au nanocrystals (NCs) with citric acid as reducing agent and PVP as 

surfactant by pumping the reactants from a flask into an in situ XAS cell in a continuous 

flow and then back again to the flask (20-60 min) to investigate the complexes formed 

during the Au reduction in a slow reaction49. Abécassis et al. studied nucleation and growth 

of Au NPs in the presence of different ligands (alkanoic acid and alkylamine) in situ by 

synchrotron SAXS/WAXS and UV-visible spectroscopy and found out that ligands affect 

the nucleation rate significantly47. 

In the following, the principles of NP synthesis in batch and microfluidic reactors are 

explained in detail. The fluid mechanical factors relevant for the synthesis as well as 

different flow types are shortly described. Moreover, selected case studies of recent 

microfluidic reactors from literature are discussed to show the various designs and 

capabilities of microfluidic reactors. Since X-ray absorption spectroscopy is one of the 

main advanced characterization techniques used in this thesis work, the principles of this 

powerful analytic tool are explained in more detail in section 1.5. 

1.2. Microfluidic Reactor vs. Batch Reactor  

Due to unique physical and chemical properties, metal NPs have attracted considerable 

attention for various applications, in which the preparation method play a main role in 

product properties.  From the synthesis method point of view, the production of metal NPs 

can be categorized into two different methods: the traditional batch reactor and in 

microfluidic reactor. The disadvantages of using batch reactors are heterogeneous flow and 

non-efficient mixing conditions, which results in reactants concentration gradient and 

random nucleation and growth of NPs. Finally, this effect leads to polydispersity in size 

and shape of NPs and deviations from desired physical and chemical properties. 

Additionally, batch reactor provides limited control over temperature profiles during 

synthesis (Fig. 1a)50, 51. 
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Fig.  1 Materials synthesis technique a) in a conventional batch reactor and b) in a microfluidic reactor 

(reprinted with permission from reference50). 

On the other hand, microfluidic is the science and technology of manipulating and 

controlling fluids with a small volumes (10-9-10-18 L) flowing in networks of channels with 

tens to hundreds micron range dimensions52. Production of NPs in such a continuous flow 

microreactor is a promising method, offering several benefits such as easier process 

handling, better mixing, higher mass and heat transport and process parameters within a 

wide range of operating conditions as well as a significant decrease in reagent consumption. 

Compared to conventional batch processes, this can lead to a narrower size distribution of 

NPs with a desired particle size and fine-tuning the desired properties (Fig. 1b)41, 50, 53-55.  

1.3. Microfluidic Synthesis of Materials  

The flow type and microchannel dimensions also have an effect on properties of NPs. 

Microfluidic synthesis can be divided into two major groups: 

(a) Single phase microfluidic synthesis, i.e. a continuous flow consists of only one phase 

(Fig. 2a). This type of flow can be laminar or turbulent. In the case of a laminar flow, 

there is a limited mixing across the channel by diffusion mechanism. Therefore, it is 

suggested to achieve convective mixing by using micromixers50. 

(b) Multiphase microfluidic synthesis in which the flow is segmented using different 

phases. The first phase is usually a liquid of miscible reactants. The other phase can 

consist either of gas/bubbles or liquid which is immiscible with the first phase (Fig. 
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2b). The reaction might happen inside the phase or at the interface of two phases. The 

advantages of this system in comparison with single phase flow are effective mixing 

and fast heat and mass transfer. Moreover, axial dispersion can be decreased or 

completely eliminated50. Furthermore, direct contact of liquid with channel walls can 

be avoided which leads to no or less clogging of microchannels56. 

(c)  

 

Fig.  2 Microfluidic synthesis of polymer and inorganic particles using a) single-phase and b) multiphase 

methods, c) in droplets, d) in continuous-phase-separating droplets and e) at the interphase between the two 

phases (reprinted with permission from reference50). 

 

Microfluids are affected by gravitational, interfacial, inertia and viscous forces. The 

combination of these forces determines the instabilities, dynamics and fluid phase 

distributions. Under static conditions (when the flow conditions are steady and gravitational 

acceleration (g) and temperature gradients are insignificant), and in the case of 

homogeneous pressure distribution in both phases, but with different capillary pressures56, 

therefore according to Young-Laplace equation: 

∆pcap = γ k                                                                                                                              

Where γ is the interfacial tension and k is the local mean curvature at the interface. Such a 

static fluid interface shows two behaviors with respect to the channel walls; it either makes 

a contact line between two fluid phases (phase 1, 2 here) and the solid wall (phase s) which 

is given by (Fig. 3a) or it forms a film which inhibits the contact between one of the fluid 

phases and the wall (Fig. 3b). In the first situation, the contact angle θ defined according to 

Young’s equation depends on wettability of the matters: 

γ12 cosθ = γ1s – γ2s          
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Fig.  3 a) Positive or negative curvature of the air–liquid interface causes positive and negative differences 

between the capillary pressure (Pcap) and ambient pressure (P); b) Local configuration in a three phase region: 

Top: a contact line between two fluid phases and the solid wall with angle θ, bottom: the fluid phases are 

separated by an adsorbed film (adapted from reference56).  

 

Fluids with small contact angle (near 0°) can wet the surface and are called “wetting 

liquids” whereas fluids with larger contact angle (near 180°) are called “non wetting 

liquids”. Chemical modification of the surface properties or differences in surface 

roughness on the micro or nanoscale, can lead to changes in wetting characteristics. To 

understand the relations between interfacial and gravitational forces, the Bond number was 

defined as: 

𝐵𝐵0 =
(∆ρ) g dh2

σ
                                                                                                                                 

Where, ∆ρ is the density difference between the two phases (gas-liquid or liquid-liquid), σ 

the surface tension measured against a gas phase, and dh the characteristic channel 

dimension or the channel hydraulic diameter: 

𝑑𝑑ℎ =
4A
τ

                                                                                                                                            

 

In the latter equation, A is the channel cross sectional area and τ is the wetted perimeter. It 

is mentioned in the literature that interfacial forces prevail the gravitational forces on the 

microscale in most cases (B0 << 1). Addition of surfactants or an increase in temperature 

shifts the band towards higher B0 values56.  
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On the other hand, under flow conditions (dynamic conditions), the characteristic velocity 

of the dispersed phase Ud needs to be taken into account (Fig. 4). As mentioned before, 

different flow patterns and phase distributions can be created by the interactions between 

interfacial, gravitational, viscous and inertia forces in a flowing system, which makes it 

complicated. Here other parameters in fluid mechanics are defined, which help to 

understand and predict the flow behavior in microchannel systems. The capillary number 

(Ca) is defined as the ratio of viscous to surface forces and as the ratio of fluid viscosities:  

𝐶𝐶𝐶𝐶 =
µ𝑈𝑈𝑑𝑑
𝜎𝜎

 ,
µ
µ�

                                                                                                                                        

 

Where, µ and µ� are the viscosities of the continuous and dispersed phases, respectively. 

The Weber number is the ratio of inertia to surface forces: 

𝑊𝑊𝑊𝑊 =
ρ Ud

2dh
σ

                                                                                                                                    

In the case of single phase flows, if We and Ca numbers are known, another parameter the 

so-called Reynolds number which is related to viscous and inertial forces, can be 

determined56.  

Re = We / Ca                                                      

 

Fig.  4 Effect of inertia, viscous and gravity forces with respect to interfacial forces in multiphase microfluidic 

systems declared by We, Ca and B0 numbers. In yellow plane all the forces are in balance, i.e. We = Ca = B0 

= 1 (reprinted with permission from reference56). 
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1.4. A Glance at Microfluidic Reactors for Metallic NP Synthesis 

Gold NP synthesis in a microfluidic reactor was pioneered by Wagner et al. in 200440. The 

microfluidic chip was made of Pyrex glass by wet etching and consisted of two micromixers 

and a serpentine channel for synthesizing Au NPs using with or without preformed seeds, 

using different reducing agents (ascorbic acid, sodium borohydride and sodium citrate) and 

applying different flow rates, pH and concentration ratios of Au precursor to reducing 

agents40, 57, 58. During several studies, the microfluidic chip designs were optimized for 

different reactions to produce narrow size distributed materials such as metal NPs, polymer 

particles, semiconductor NPs and core/shell structures with static chip micromixers based 

on the mechanism of splitting-and-recombination units50, 58-60. A schematic drawing of one 

such microfluidic chip is shown in Fig. 5.  

 

Fig.  5 Optical image and schematic of the static chip micromixer with eight splitting-and-recombination 

units (reprinted with permission from reference58). 

 

For synthesis of Au/Ag core/shell structures, the microfluidic chip was modified with an 

additional residence loop and a T-junction (Fig. 6 - left). In the first step Au NPs were 

synthesized with ascorbic acid in a continuous flow and in the next step, the reduction of 

Ag in the presence of Au NPs was achieved after a specific time using a residence loop 

attached to the outlet of the chip. It is known that the reduction of Ag ions to form Ag NPs 

in liquid phase can be catalyzed by noble metal cores which makes the gold NPs a good 

candidate for synthesizing bimetallic and core-shell structures in microreactors. Moreover, 

it was shown that the optical and catalytic properties of the colloidal solution strongly 

depend on the mixing order and flow rate which determines the residence time between 

mixing units59. 
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Fig. 6 (right) schematically shows a microfluidic device operating in a segmented flow. 

First the aqueous solution of a reducing agent is injected into the stream of an inert carrier 

liquid (tetradecane) which is immiscible in water. The second injector brings gold precursor 

solution in contact with the prior reducing agent and then both are well mixed using the 

shear forces and the induced segment internal convection through the tube coil mixer. 

Finally, the third injector adds the second metal precursor solution to the produced gold 

NPs and again mixing is achieved by a tube coil mixer. The same process is repeated for 

adding the third metal solution in order to prepare double shell compositions like 

Au/Ag/Au. This method is applied in such a way that all microsegmented volumes of liquid 

experience equal residence time by a plug flow mechanism in a liquid/liquid two phase 

system.  The flow rate in the range of 5 µL min-1 – 5 mL min-1 leads to a mean residence 

time of 12 s and 15 ms in such systems59.  

The Au/Ag core/shell and Au/Ag/Au double shell structures synthesized in such 

microfluidic setups had average diameters of 20 nm and 46 nm with distribution half widths 

of 3.8 nm and 7.4 nm, respectively. These NPs showed a narrower size distribution and 

smaller average NP diameters compared to those synthesized in batch, which is a proof of 

superiority of microfluidic synthesis to batch techniques60.  

 

 

Fig.  6 microfluidic device for NP synthesis: (Left) A two-step mixer, a residence loop and a third mixing 

unit built by a T-junction (2+1) are used to produce Au/Ag core/shell composition in a continuous flow, 

(right) modular design of PTFE T-junctions and residence loop for use in a segmented flow regime (reprinted 

with permission from reference59). 

 

A special class of NPs is “ultrasmall NPs” with diameters between 1 and 3 nm, i.e. sizes 

ranging between free molecules and larger-sized NPs which show unique characteristic 

properties suitable for various applications. In the case of gold NPs, such nanoclusters with 
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diameters of ca. 1 nm diameter have attracted growing attention especially from a catalytic 

point of view. In order to study such ultrasmall metal clusters, achieving narrow size 

distributions is of paramount importance20, 51. Tsunoyama et al. used a SIMM-V2 

micromixer to synthesize narrow size distributed ultrasmall gold nanoclusters with 

diameters of 1 nm which are highly active as catalysts in numerous organic reactions. 

Sodium borohydride was used as a strong reducing agent and polyvinylpyrrolidone (PVP) 

for NP stabilization. The microreactor (Fig. 7) consists of 32 parallel channels: 16 

substream channels for the NaBH4/PVP solution and 16 for the HAuCl4/PVP solution with 

thickness of <100 µm laminated in an interdigital arrangement (zone I). Afterwards, the 

multilamellar flow is compressed into a narrower stream (zone II), and finally Au NPs are 

collected at the outlet to be stirred for 1 h in an ice bath29.  

The results show that higher flow rates and higher concentration of AuCl4- and BH4- lead 

to production of smaller particles. The TEM images showed that the Au NPs synthesized 

in micromixer had narrower size distribution compared to those produced in a batch reactor. 

Furthermore, the authors speculated that the microbubbles released during the 

decomposition of sodium borohydride had influence on the mass transport by promoting 

the breaking of lamellar configurations into smaller fragments29. 

 

 

Fig.  7 SIMM-V2 micromixer made of Hastelloy C-22 for synthesis of ultrasmall PVP-stabilized Au NPs. 

The mechanism of the microreactor was based on multilamination and mixing of reactants (reprinted with 

permission from reference29). 

 
One important challenge to be overcome in Au NP synthesis using microfluidic reactors is 

precipitation of Au NPs on the channel walls and finally fouling of the channel. Several 
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approaches has been suggested in literature to reduce/inhibit fouling of the microreactor 

channel, some of which are summarized below for devices made of Si-based materials and 

using aqueous solutions40, 51, 55: 

1) Increasing pH value of the fluid inside the microreactor (pH 10), 

2) pKa of the channel surface OH group, 

3) reducing the wetting ability of the channel walls (hydrophobic surfaces) e.g. 

by silanization of the walls with perfluorosilane, 

4) using capping agents with appropriate charges e.g. PVP or citrate ions, 

5) increasing the flow rate, 

6) operating in segmented flow (described below). 

 

Another class of microfluidic reactors is based on the multiphase flow mechanism. This 

method overcomes the drawbacks of single phase synthesis: first, in a laminar flow axial 

diffusion occurs, leading to a wide residence time distribution resulting in uncontrollable 

mixing and polydispersity of products and byproducts. Second, in continuous laminar flow, 

mixing and diffusion can be improved by generating a convective flux which requires 

lithographic techniques to incorporate additional structural elements e.g. splitting-and-

recombination units (discussed earlier). Third, the deposited Au NPs on the channel occur 

in continuous flow acts as nucleation sites reducing the efficiency of the desired products. 

Moreover, after long experiments, the channel will finally be blocked. Introducing a second 

immiscible phase in the multiphase flows, the long diffusion time and dispersion limitations 

can be overcome. The mixing improves via transverse convection by inducing a 

recirculation motion in the liquid slug (Fig. 8). Additionally, the segmented flow inhibits 

contact between the slug containing Au NPs and the channel walls thereby preventing Au 

deposition on the walls and clogging of the channel51, 61. 
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Fig.  8 Comparison of continuous laminar flow (one phase flow) with segmented flow (multiphase flow) 

considering the residence time distribution (reprinted with permission from reference51, 61). 

 

1.5. X-ray Absorption Spectroscopy (XAS) 

Synchrotron radiation is emitted by relativistic electrons circulating in storage rings. 

Compared to radiation provided by conventional light sources (e.g. X-ray tubes) 

synchrotron radiation exhibits several unique properties beneficial for scientific 

applications such as spectroscopic, diffraction and imaging techniques in a broad variety 

of research fields, e.g. materials science and biology. These properties include: High 

intensity, a high degree of collimation and polarization, continuous smooth photon flux 

distribution over a wide range of photon energies reaching from the infrared to the hard X-

ray regime and a well defined pulsed time structure62. One specific synchrotron based 

method which has evolved into a powerful tool in materials science and nanotechnology 

and has become a well-established technique is X-ray absorption spectroscopy (XAS). 

XAS has several advantages with respect to the studies described in this thesis: XAS is a 

non-destructive, local probing technique and therefore unlike other characterization 

techniques not restricted to (crystalline) materials with long range order but also applicable 

to the analysis of amorphous systems, small nanoparticles63-66 as well as samples in liquid 

or gas phase. Furthermore, the penetration depth of X-rays allow for in situ characterization 

of materials in catalytic reactors under working conditions or during synthesis in 
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microreactor channels (with X-ray transparent windows). XAS beamlines are available at 

the vast majority of synchrotron light sources around the world. Synchrotron beamlines 

branch off the storage ring and guide the synchrotron beam to the end stations where the 

samples are mounted for characterization. One essential optical element of an XAS 

beamline is the (mostly double crystal) monochromator which based on Bragg reflection 

(and higher harmonic rejection by a mirror or crystal detuned out of the parallel 

arrangement) slices a narrow photon energy band out of the broad synchrotron spectrum. 

The absorption coefficient of the sample at a specific photon energy is then determined by 

measuring the incoming monochromatic intensity and the monochromatic intensity 

transmitted through the sample. According to Lambert Beer´s law the absorption is 

proportional to the logarithmic ratio of these two intensities. For these transmission mode 

measurements in most cases ionization chambers are used. Alternatively, XAS can be 

collected in the fluorescence mode (Fig. 9). In this case, the absorption is correlated to the 

ratio of the intensity of a specific X-ray emission line from the chemical element under 

investigation (e.g. Kα), measured using a fluorescence detector (e.g. LN2 cooled Ge 

detector), and the incoming intensity. X-ray absorption spectra, showing the absorption 

behavior of the sample as a function of the photon energy, are then recorded by scanning 

the monochromator (i.e. by stepwise or continuously varying the Bragg angle). Once the 

photon energy is sufficiently high to eject electrons from atoms in the sample material, an 

abrupt increase in absorption, a so-called absorption edge, is observed in the XAS spectra. 

Since the energetic positions of these absorption edges are characteristic for a specific 

chemical element in the sample, and since absorption edges of different chemical elements 

in most cases do not significantly overlap, XAS is an element specific method. The fine 

structure in XAS spectra is extremely sensitive to the atomic environment of the absorbing 

atoms. Commonly two energy regions are distinguished:  The X-ray absorption near edge 

structure (XANES, region approx. ± 50 eV relative to the absorption edge) and the extended 

X-ray absorption fine structure (EXAFS, up to approx. 1000 eV beyond the edge). XANES 

features originate from electronic transitions into unoccupied orbitals and multiscattering 

processes of the ejected photoelectrons. They contain information about coordination 

geometry and oxidation state of the absorber atoms. The EXAFS oscillations at higher 

energies arise from interference effects of outgoing photoelectron waves and those 

backscattered by the neighbors of the absorber atoms. From EXAFS data information about 

coordination numbers, bond lengths as well as the degree of structural and statistical 

disorder in the sample material can be extracted67.  
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Fig.  9 Principle setup of an XAS experiment at a synchrotron light source. The incoming and transmitted 

intensities of the monochromatic X-ray beam are measured with ionization chambers. Alternatively, the 

intensity of a specific fluorescence line is monitored with a florescence detector. In parallel transmission data 

of a reference sample (e.g. metal foil) is acquired. 

 

1.6. Motivation and Aim of the Thesis 

The focus of this PhD work was laid on establishing a novel microfluidic setup, based on a 

reactor prototype68 designed in a collaboration of TU Dresden, GeSiM, KIT-IMVT and 

KIT-ITCP (Grunwaldt group), for X-ray based in situ characterization by spectroscopic and 

scattering techniques in order to investigate the early stages of particle formation for 

catalysis. As a first case study, Au NP formation - a fast reduction reaction requiring a high 

time resolution (down to 2-20 ms) - was selected. The cyclone micromixers in the 

microfluidic chip are ideal for homogeneous mixing of the reactants within 2 ms at a flow 

rate of 2.6 L h-1. In this device a continuous turbulent flow of reactants can be realized. This 

allows not only synthesizing advanced materials with specific properties, i.e. ultrasmall Au 

and Pd as well as homogeneous alloyed AuxPdy NPs with narrow size distributions, but 

especially pushing the time resolution limits for XAS analysis of Au NP formation in fast 

reactions. In this thesis, the application of the microfluidic setup for in situ XAS studies, 

preparation of monometallic Au/Pd and bimetallic AuPd nanoparticles as well as their in-

depth characterization are reported. Finally, the potential of the microreactor in the field of 

precipitation reactions is investigated. The course of the thesis is as follows:  

In chapter 2 (Experimental) the novel microfluidic setup specifically developed and built 

for this PhD work is explained in detail. XAS is a powerful characterization tool to 

determine the oxidation state and coordination environment of metal atoms in 

nanoparticles, especially since as a local technique it is not restricted to systems with long 

range order, but also applicable to X-ray amorphous materials. Since XAS was extensively 
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utilized for this thesis, the potential of this technique is explained in greater detail in section 

1.5.  

Chapters 3-6 show how the microfluidic setup can be employed to synthesize and to study 

high-quality NPs, which were afterwards characterized by various techniques. Each of 

these chapters feature specific introductions to the different synthesized materials and 

corresponding preparation pathways. Chapter 3 highlights an experimental study during 

which the microfluidic reactor was successfully used for synchrotron based in situ X-ray 

absorption spectroscopic measurements to investigate early stage kinetics of fast reactions 

at previously unavailable time resolution. Moreover, the NPs were tested as catalysts for 

CO oxidation (chapter 3-5) and as potential sensors. A Cu/ZnO/Al2O3 system for methanol 

synthesis was produced by co-precipitation in the microreactor and characterized by 

various methods (chapter 6).  
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2. Experimental 

2.1. Microfluidic Setup 

A novel microfluidic setup was built based on a previous prototype68 in a collaboration of 

TU Dresden (Prof. Bartha), GeSiM, KIT-IMVT (Dr. G. Rinke, Prof. R. Dittmeyer and co-

workers) and KIT-ITCP (Dr. G. Hofmann and Prof. J. -D. Grunwaldt) with infrastructure 

providing pulsation-free flow at high flow rates for the synthesis of NPs (Fig. 10). The 

reactants stored in ca. 4 L stainless steel corrosion-resistant vessels (polyethylene inner 

surface for gold vessel) were pressurized by N2 and delivered to the microfluidic chip. All 

chemicals involved were handled in a closed system and pumped from the vessels through 

the microreactor to the exhaust container in a controlled way. Separate flowmeters were 

used for gold precursor and reducing agent solution (ENDRESS+HAUSER promag H with 

polyvinylidene fluoride inert parts and promass A models) to avoid decomposition of the 

precursors prior to entering the microreactor. Needle valves (IDEX and Swagelok) allowed 

for precise adjustment of each reactant flow individually. For safety, a fast shut down 

control system was installed and the entire setup housed in poly (methyl methacrylate) 

(PMMA).  

 

Fig.  10 Schematic of microfluidic setup for fast continuous flow synthesis of PVP-stabilized Au NPs (P: 

pressure transducer, T: temperature sensor)39. 
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The microfluidic reactor was fabricated in collaboration with GeSiM GmbH and the 

Institute of Semiconductors and Microsystems at Technische Universität Dresden (TUD-

IHM). It is made of Si-bonded glass with inlet and outlet ports produced by laser drilling 

in the glass part. This technique was also used for carving the cylinders for the cyclone 

micromixers in the Si chip. The microfluidic chip was specifically designed for X-ray based 

in situ characterization of NPs using spectroscopic and scattering techniques. It consists of 

3 cyclone micromixers (based on a concept developed in collaboration between KIT-ITCP 

and KIT-IMVT69) followed by a meandering microchannel (300 × 300 μm2) serving as the 

observation line. In the observation area, the thickness of the chip was reduced to 800 µm 

by Si etching (300 µm Si, 300 µm fluid channel and 200 µm glass) for X-ray-based 

experiments. The microfluidic chip and the supporting frame are shown in Fig. 11. 

 

 

Fig.  11 a) Microfluidic chip, b) assembled in the supporting frame. 

 

According to computational fluid dynamics (CFD) calculations by Achim Wenka (KIT-

IMVT), three cyclone micromixers are required to achieve efficient mixing by applying a 

total reactant flow rate of 2.0 L h-1 resulting in a residence time of 2.9 ms and a pressure 

drop of 1.92 bar in the mixing region (Fig. 12). By using 13 bar pressure of N2 gas to deliver 

the reactants at 2.6 L h-1 total flow rate (each reactant with 1.3 L h-1 flow rate) to the 

micromixers, a dead time below 2 ms can be achieved, which is essential for homogeneous 

mixing of the reactants to approach turbulent mixing conditions with a Reynolds number 

of about 2400. This provides efficient mixing in a sufficiently short time for fast reduction 

reactions (such as NaBH4 in this case). The total residence time in the microfluidic device 

is 20 ms under the above mentioned conditions. The fluid mechanics (e.g. pressure drop 

and the flow environment) inside the microchannel are shown in Fig. 13, Table 1 and Table 

2. 
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Prior to NP synthesis experiments, the microreactor channel walls were coated with 

Ombrello, which was injected by syringe tubing into the inlets of the microfluidic chip after 

it was treated in an oxygen plasma chamber70 (50% power, 0.2 mbar and 2 min). In the next 

step, the chip was baked at 65 °C for 20 min. This well-established method was performed 

to minimize Au deposition by electrostatically repelling the PVP-stabilized Au NPs from 

the hydrophobic channel surfaces71. 

 

Fig.  12 CFD calculations for the three cyclone micromixers; (left) mass fraction and (right) residence time 

in seconds for total flow rate of 2.0 L h-1. The diameters of the cyclones (a, b, c) are 500, 700 and 700 µm 

with 1500 µm height. The connecting channels (d, e) are 300 µm high and 300 µm wide (reprinted with 

permission from reference72). 

 

 
Fig.  13 Schematic of the microfluidic chip with labeled zones referring to pressure drop calculations shown 

in Table 1. 



Experimental 

22 
 

Table 1 Pressure drop of the reactant flow inside the microfluidic chip at different positions (cf. Fig. 13) 
estimated with water as the medium, 20°C temperature, 2.6 L h-1 flow rate and 13 bar pressure. 

Zone Description Dimensions 
(mm) 

Pressure drop 
(bar) 

  W H L  
I Micromixers with connections - - - 4.1a 
II Rectangular tubes 0.3 0.3 138 7.5b 
III U-turns 0.3 0.3 7 0.8b 
IV Rectangular tubes 1 1 12 0 

Total pressure drop     12.4 
a) obtained from CFD calculations conducted at KIT-IMVT, b) calculated using the program “Druckverlust 
Online-Rechner”, http://www.druckverlust.de/OnlineRechner/) 
 
 
Table 2 Fluid mechanical conditions inside the microfluidic chip. 

Parameters Values 
Medium Water 
Density 998.2 kg m-3 

Dynamic viscosity (20 °C) 1.00 mPas 
Flow rate  2.6 L h-1  

Flow velocity 8.04 m s-1 

Reynolds number 2400 
Flow type Transitional region from laminar to turbulent flow 

Pressure drop 12.4 bar 
 

2.2. Characterization of Nanoparticles and Solid Materials 

2.2.1 UV-Vis Spectroscopy 

UV-vis absorption spectra of colloidal Au, Pd and AuxPdy solutions were recorded with a 

PerkinElmer- Lambda 650 UV-vis spectrometer with deuterium and tungsten halogen light 

sources (in the range of 200-800 nm wavelength, switching between the lamps at about 319 

nm). Deionized water was used as a reference to calculate the absolute absorption of the 

samples. All measurements were performed ex situ in absorption mode using UV cuvettes 

under ambient conditions immediately after the synthesis of colloidal NPs to observe the 

behavior of the gold surface plasmon resonance (SPR) band in order to estimate particle 

sizes as well as the presence of palladium chloride (precursor) after the reduction reaction.  

2.2.2 Transmission Electron Microscopy (TEM) 

The catalyts powder samples were directly dispersed on Cu grids covered with holey carbon 

film. For colloidal samples, 5 μl of the diluted colloidal solution was dropped on a holey 

carbon Cu grid covered by 2 nm carbon film and then dried at room temperature. 

Morphology and microstructure of the catalysts were characterized by high angle annular 

dark-field (HAADF) scanning transmission electron microscopy (STEM) and high 
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resolution transmission electron microscopy (HRTEM), and their composition was 

analyzed by energy dispersive X-ray analysis (EDX) using an EDAX S-UTW EDX 

detector in a FEI Titan 80-300 microscope operating at 300 kV. Analysis of STEM-EDX 

mapping was carried out by using the TEM Image & Analysis (TIA 4.7 SP3 version) 

software. Particle size statistics of the specimens were performed on HAADF-STEM 

images by using the ImageJ 1.49v software73.  

2.2.3 X-Ray Absorption Spectroscopy (XAS) 

In situ X-ray absorption near edge spectra (XANES) at the Au L3-edge (11.919 keV), 

shown in chapter 3, were recorded at room temperature in fluorescence mode at SuperXAS 

beamline74 of the Swiss Light Source (SLS) synchrotron radiation source (electron energy 

2.4 GeV) using a Si (111) double-crystal monochromator (focused beamsize: 150 × 100 

µm2) and a 5 element SDD detector (SGX Sensortech). A single spectrum was acquired 

from 11.81 to 12.08 keV every 4 min. The data were analyzed using the Athena interface 

of the IFEFFIT software package75.  

The XANES and EXAFS spectra of Pd/TiO2 and AuxPdy/TiO2 pellets at the Pd K-edge 

(24.350 keV) presented in chapter 4 were recorded at room temperature in transmission 

mode at the P65 beamline of the PETRA III synchrotron radiation source (DESY, 

Hamburg) using undulator radiation (11 period undulator, flux ca. 1011 photons s-1) and a 

Si (311) double crystal monochromator (beam size 1.2 × 0.5 mm2). Higher harmonics were 

rejected by a pair of Pt-coated plane mirrors installed in front of the monochromator. Au 

L3-edge (11.919 keV) XANES and EXAFS spectra of Au/TiO2 and AuxPdy/TiO2 pellets 

were recorded at room temperature in transmission mode with ionization chambers and in 

fluorescence mode (using a PIPS diode) at the undulator beamline P64 (60 period tapered 

undulator, flux ca. 1012 photons s-1) at PETRA III using a Si (111) double crystal 

monochromator (beam size of 2 × 1 mm2). Higher harmonics were rejected by a pair of Rh-

coated plane mirrors in front of the monochromator.  

Pd K-edge (24.350 keV) XANES and EXAFS spectra of Pd/TiO2 and AuxPdy/TiO2 pellets 

(chapter 5) were recorded at room temperature in transmission mode with ionization 

chambers at the recently installed wiggler beamline CAT-ACT at ANKA using a Si (311) 

double crystal monochromator (beam size of 1 × 1 mm2). Higher harmonics were rejected 

by a Rh-coated mirror downstream from the monochromator. XANES spectra of the 

powder samples were recorded in situ (100-200 µm sieve fraction of sample diluted 1:1 
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with TiO2 in a quartz capillary with 2 mm outer diameter and 0.02 mm wall thickness) in a 

N2 flow (33 ml min-1 flow rate) while heating up to 400 °C at 5 °C min-1. For data analysis 

the Athena and Artemis interfaces of the IFEFFIT software package were used75.  

2.2.4 X-Ray Photoemission Spectroscopy (XPS) 

For XPS studies, a drop of produced colloidal Au:PVP NPs was placed on a Si wafer 

immediately after synthesis (unwashed) and dried in air for XPS studies. The washed and 

dried Au/TiO2 powder samples were analogously investigated. The Au/TiO2 powder 

samples were grafted on standard Prevac sample holder and sticked on designated carbon 

stripe. The XPS measurements were carried out under ultra-high vacuum conditions with a 

base pressure in 10-10 mbar range. Core-level spectra were recorded under normal emission 

with a VG Scienta R4000 electron analyzer using Al-Kα radiation (nonmonochromatic, 

1486.6 eV). Prior to the elemental scans, a survey scan was measured for all the samples in 

order to detect all the elements present. The applied pass energies (Epass) for survey and 

close-up scans were 100 eV and 50 eV, respectively. The energy resolution was better than 

1 eV. The observed charging effects were compensated by calibrating spectra on C 1s line. 

In the case of colloidal PVP-stabilized Au NPs, the C 1s line from PVP was deconvoluted 

into three peaks with methylene carbon as most intense peak at 284.5 eV29, 76. For THPC-

stabilized Au NPs, the C 1s line at 284.8 eV was used (chapter 3). To eliminate the surface 

charging for calcined AuxPdy/TiO2 catalysts investigated in chapter 5, the binding energies 

were shifted to the C1s line at 285.00 eV. The XP spectra were deconvoluted using the 

Casa XPS program77 with a Gaussian-Lorentzian mix function and Shirley background 

subtraction.  

2.2.5 X-Ray Diffraction (XRD) 

X-ray diffraction patterns of the catalysts were recorded using a D8 Advance 

Diffractometer by Bruker. The measurements were performed ex situ under ambient 

conditions in a 2θ range of 10°–80° (2 s/step, step size 0.016°) using Cu-Kα radiation 

(λ=0.15406 nm), a nickel filter and a graphite monochromator. 

2.2.6 UHV-Fourier-Transform Infrared Spectroscopy (UHV-FTIR) 

The IR measurements were performed with a state-of-the-art ultra-high vacuum (UHV) 

apparatus, combing a FTIR spectrometer (Bruker Vertex 80v) and a multi-chamber UHV 

system (Prevac). This innovative and dedicated design not only allows to perform infrared 
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reflection-absorption spectroscopy (IRRAS) measurements at grazing incidence on well-

defined model oxide surfaces, but also enables to record IR spectra in transmission mode 

on polycrystalline oxide powders78. 200 mg AuxPdy/TiO2 (x:y = 1:0, 7:3, 1:1, 3:7, 0:1) 

sample was pressed into an inert metal mesh and mounted on a sample holder, which was 

specially designed for the transmission FTIR measurements. The samples were treated by 

annealing at 400 °C for 1 h at UHV conditions. Exposure to CO at selected temperatures, 

typically at 110 K, was achieved by using a leak-valve-based directional doser connected 

to a tube (2 mm, inner diameter) that terminated 3 cm from the sample surface and 50 cm 

from the hot-cathode ionization gauge. IR data were accumulated by recording typically 

1024 scans with a resolution of 4 cm-1. Prior to each exposure, a spectrum of a clean sample 

was recorded as a background reference. After CO exposure at 110 K, the samples were 

heated to higher temperatures and the in situ IR spectra were recorded continually. Peak 

fittings on the IR spectra of CO adsorbed at different sites were conducted, and the 

normalized peak areas were shown as a function of temperature.  

2.2.7 Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) 

For the measurements described in chapter 3, the amount of Au in the samples was 

determined by inductively coupled plasma-optical emission spectrometry (ICP-OES, 

OPTIMA 4300 DV from PerkinElmer). About 10–20 mg of the samples (weighing 

accuracy ± 0.01 mg) was dissolved in 4 mL hydrochloric acid and 40 mL sulfuric acid at 

241 °C for 12 hours in a stainless steel pressure vessel DAB-2 from Berghof. Elemental 

analysis was accomplished with four different calibration solutions and an internal standard 

(Sc). Three wavelengths of the elements have been used for calculation. 

For the experiments reported in chapter 4, the elemental composition of the samples with 

respect to Pd and Au was determined by ICP-OES spectroscopy (iCAP 7600, Thermo 

Fisher Scientific).10 mg of each sample were dissolved in 4 mL nitric acid and 4 mL 

sulfuric acid at 513 K for 10 h in a pressure digestion vessel (DAB-2 Berghof). Analysis of 

the elemental composition was carried out using four different calibration solutions and an 

internal standard (Y) based on three characteristic Au and Pd emission lines. 

For the measurements described in chapter 6, the weight percentage of Al, Cu and Zn was 

determined by ICP-OES spectroscopy (Optima 4300 DV, PerkinElmer). 10 mg of the 

samples (accuracy ± 0.01 mg) was dissolved in 4 ml hydrochloric acid and 4 ml sulfuric 

acid at 513 K for 6 h in the pressure digestion vessel DAB-2 (Berghof). Elemental analysis 
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was carried out with four different calibration solutions and an internal standard (Sc). Three 

wavelengths of the elements were used for calculation.  

2.2.8 Chemisorption 

For chemisorption analysis, a Micromeritics AutoChem 2950 HP equipped with a thermal 

conductivity detector (TCD) and a MKS Cirrus 2 mass spectrometer (MS) was used. 160 

mg of sample were placed in a U-shaped quartz glass sample cell. Fine quartz wool was 

placed in front and behind the sample bed to keep it at a constant axial position and to 

ensure plug flow conditions. The sample was dried under an Ar flow of 30 mLN min-1 in 

situ by heating it from room temperature to 250 °C at 5 °C min-1 and holding the 

temperature at 250 °C for 2 h. 

Afterwards, the sample was cooled down to 50 °C and temperature-programmed reduction 

(TPR) at ambient pressure in a flow of 30 mLN min-1 of 5% v/v H2 in Ar through the sample 

was started, increasing the temperature at a rate of 1 °C min-1 up to 250 °C and holding the 

sample at this temperature for 30 min. The effluent gas from the cell was passed through a 

cooling trap at 0 °C to condense any water formed. The dry gas was then analyzed by a 

TCD and MS in series. The H2 signal of the MS (m/z = 2) was calibrated with a known 

concentration of 5% v/v H2 in Ar before and after each measurement and used for 

quantification of the overall H2 consumption during reduction. 

Subsequently, N2O pulse chemisorption was conducted. The sample was cooled to room 

temperature and flushed with 30 mLN min-1 He for 30 min.  Afterwards, 40 pulses with 

0.32 mLSTP of 30% v/v N2O in He were dosed onto the sample. The effluent gas from the 

sample was passed through a cooling trap at -196 °C to separate any N2O not converted to 

N2. The N2 formed by partial oxidation was then analyzed with a TCD and MS in series. 

The TCD data was used to determine the metallic Cu surface area and Cu dispersion (Cu 

atomic area 0.068 nm², stoichiometry factor 2.0). 

2.2.9 Procedure for CO Oxidation Tests 

The catalytic tests described in chapter 3 were carried out in a fixed-bed quartz flow reactor 

(inner diameter 8 mm) in a temperature programmed mode from 40 to 175 °C at a ramp 

rate of 1 °C min-1. 400 mg of catalyst (sieve fraction 125–250 μm) was placed between 

glass wool plugs in the quartz tube. The bed length was about 10 mm and the gas flow 300 

mL min-1 (gas hourly space velocity (GHSV): 36000 h−1 and CO feed rate: 5.1 × 10-7 mol 

s-1 g-1cat). The gas mixture contained 1000 ppm CO and 1000 ppm O2 diluted with nitrogen 
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and dried by a cold trap (dry ice/isopropanol). Reaction products were analyzed using a 

URAS 26 CO/CO2 analyzer. Prior to the testing, catalysts were dried in N2 flow for 2 h to 

remove water. CO conversion was calculated using the following equation:  

         

where CCOinlet , CCOoutlet and CCO2outlet denote CO and CO2 concentrations at the inlet and 

outlet of the reactor. 

CO oxidation was chosen as a relatively well-understood test reaction to investigate the 

catalytic properties of the metal NPs (chapter 4). The tests were carried out in a fixed-bed 

quartz flow reactor (quartz tube, inner diameter 8 mm) in a temperature programmed mode 

from 30 °C to 250 °C at a ramp rate of 1 °C min-1. 300 mg of 1 wt.% Au/TiO2, Pd/TiO2 and 

AuxPdy/TiO2 catalyst (sieve fraction 125–250 μm) were placed between glass wool plugs 

in the quartz tube. The catalyst bed length was ~10 mm, and the gas flow 600 ml min-1 

(GHSV: 72000 h−1). The gas mixture contained 1000 ppm CO and 10% O2 in nitrogen (CO 

feed rate: 13.3 × 10-7 mol s-1 g-1cat). Before reaching the reactor the gas feed passed through 

a Messer Hydrosorb® cartridge to remove traces of water. Reaction products were analyzed 

using an URAS 26 NDIR CO/CO2 analyzer. Prior to the testing, catalysts were dried in N2 

flow for 2 h to remove residual water and then pre-treated in 5% H2 in N2 at 250 °C for 1 

h. Each heating and cooling cycle was performed twice. The results from the second cycle 

are reported in this work. Turnover frequencies (TOFs) were determined in the region of 

CO conversion below 20% (for Au/TiO2 below 25%) and on the assumption that the 

reaction rate (r) was independent of the CO concentration. Metal dispersion for TOF 

calculation was obtained from the average particle size (determined by STEM) assuming 

spherical particles. 

Chapter 5 describes how CO oxidation was applied as a complementary test reaction to 

UHV-FTIR measurements in order to investigate the catalytic properties of the metal NPs 

supported on TiO2. For this purpose, CO oxidation experiments were carried out two times 

after pretreatments under different conditions once in N2 up to 400 °C for 1 h and under H2 

pretreatment in 5% H2 in N2 up to 250 °C for 1 h to reduce the metal NPs. The tests were 

performed in a fixed-bed quartz flow reactor (quartz tube, inner diameter 8 mm) in a 

temperature programmed mode from 30 °C to 250 °C at a ramp rate of 1 °C min-1. 70 mg 

of 2.4 wt.% Au/TiO2, Pd/TiO2 and AuxPdy/TiO2 catalysts (sieve fraction 125–250 μm) were 
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mixed with 930 mg SiO2 and then placed between glass wool plugs in the quartz tube. The 

catalyst bed length was ~15 mm, and the gas flow 600 ml min-1 (GHSV: 48000 h−1). The 

gas mixture contained 1000 ppm CO and 10% oxygen in N2 (CO feed rate: 5.8 × 10-6 mol 

s-1 g-1cat). The gas feed passed through a Messer Hydrosorb® cartridge to remove traces of 

water before reaching the reactor. Reaction products were analyzed using a URAS 10E 

NDIR CO/CO2 analyzer. Each heating and cooling cycle was performed twice. The results 

from the second cycle are reported here. TOFs were determined in the region between 3-

17% CO conversion (for Au/TiO2 below 40%) and based on the assumption that the 

reaction rate was independent of the CO concentration. Metal dispersion for TOF 

calculation was obtained from the average particle size (determined by STEM). 
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3. Formation of Ultrasmall Au Nanoparticles1

In the previous chapter, the establishment of a novel microfluidic setup for in situ 

characterization of colloidal nanoparticles during synthesis was described. The following 

chapter demonstrates how the microfluidic setup was successfully used to synthesize 

ultrasmall Au nanoparticles with narrow size distribution and to study their formation with 

high time resolution using synchrotron based in situ X-ray absorption spectroscopy. 

Finally, the produced particles were subjected to CO oxidation as model reaction for 

catalytic performance.  

3.1. Introduction 

Colloidal Au NPs are regarded as promising candidates for various applications in the fields 

of catalysis, sensing, bio-imaging, medical and analytical sciences, optics, nanoelectronics 

etc40, 51, 54, 79-85. For these applications, Au NPs have been produced by different techniques 

such as electrochemical, photochemical and chemical methods. One of the most common 

routes is the chemical reduction, in which the Au ions obtained from a precursor are reduced 

to Au atoms in oxidation state zero, which in the next step, join together to form nuclei. 

Further coalescence of nuclei results in nanoparticle formation25, 45, 54 (Fig. 14).  

Fig.  14 The mechanism of gold nanoparticle formation using NaBH4 as reducing agent (reprinted with 

permission from reference45). 

Identification of the most important operation parameters for gold nanoparticle formation 

has been subject of intensive research. One important factor is the effect of different 

reducing agents and their reduction powers varying from weak reducing substances like 

1 Part of this chapter has been published in Reaction Chemistry & Engineering39. 
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ascorbic acid25, 55, citric acid49 and sodium citrate25, 27, 79, 86 to strong reducers such as 

sodium borohydride25, 87, 88, hydrogen27, hydrazine89 and Tetrakis (hydroxymethyl) 

phosphonium chloride (THPC)3, 90, 91. The shape, size and polydispersity of nanoparticles 

are strongly affected by reducing agents applied22. 

Tsubota et al.12 reported in early publications that gold NPs smaller than 3 nm were the 

most active for CO oxidation compared to NPs with larger diameters. According to 

Grunwaldt et al.3, 2 nm large particles prepared by THPC in an alkaline solution can be 

deposited on titania or zirconia and exhibit high activity for the same catalytic reaction. 

Thus, simple methods for the synthesis of ultrasmall Au NPs are of wide interest in the 

field of gold catalysis. ‘Ultrasmall NPs’ is a widely used term in the materials science 

community, referring to NPs with 1-3 nm core size, bridging the gap between single 

molecules and classical larger sized NPs, with 70% of the atoms located on the surface and 

physiochemical properties uniquely differing from the corresponding bulk materials19-21.  

For a rational design of nanostructured functional materials, it is crucial to separate 

nucleation and growth processes from each other in order to control diffusive growth, and 

to tailor particle sizes and shapes as well as physical and chemical properties50, 51. 

Compared to conventional stirred batch reactors, synthesis of NPs in a continuous flow 

using microfluidic reactors has evolved as a promising method with several benefits, e.g. 

fast mixing, easy process handling, high mass and heat transport and process parameters 

within a wide range of operating conditions52, 53, 56. Furthermore, microfluidic reactors can 

be designed in a way that spectroscopic or diffraction measurements are possible during 

synthesis. This allows deeper insights into different stages of NP formation and to control 

intermediate processes occurring during synthesis46, 47, 49, 92, 93. These advantages have 

motivated growing competition in the field of fabrication technology of microfluidic chips, 

e.g. with respect to development of chip materials (e.g. silicon, glass and plastic), precise

fabrication of channel structures and surfaces as well as improvement of time and cost

efficiency and mass production58, 94-96.

For optimized NP synthesis in microfluidic reactors, the influence of several parameters 

(e.g. flow rate, concentration ratio of precursors and reducing agents, pH, etc.) on 

nanomaterial properties resulting from structure, particle size and size distribution, 

morphology and interparticle interactions should be investigated in detail20, 29, 41, 55, 97. In 

this context in situ and operando studies and the combination of complementary 
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characterization techniques are crucial46, 49, 92, 93. In a recent study, in situ transmission 

electron microscopy (TEM) was used to investigate the dynamics of the nucleation of Au 

nanoclusters from supersaturated aqueous solutions. During those experiments Au3+ ions 

were reduced to Au0 by the high-energy electron beam instead of using a reducing agent. 

This technique revealed that spinodal decomposition of the homogeneous Au solution 

(starting point at 3 s) resulted in a mixture of gold-rich and a gold-poor liquid phase at 9.2 

s, which at 11.3 s turned into amorphous Au nanoclusters and finally into crystalline gold 

nuclei (at 15.4 s)98.  

The state-of-the-art in time-resolved studies of Au NP nucleation and growth using 

reducing agents is structural characterization of the produced NPs by small angle X-ray 

scattering (SAXS) and X-ray absorption near edge structure (XANES) in a reaction time 

window down to 100 ms after mixing the reactants, as demonstrated by Abécassis et al.46, 

47 and Polte et al.45 in a stopped-flow and continuous flow, respectively. Abécassis et al. 

studied for the first time the formation of Au NPs in situ using SAXS and XANES at 100 

ms time resolution. The Au NPs were produced during reduction of AuCl3 with 

tetrabutylammonium borohydride (TBAB) and didodecyldimethylammonium bromide 

(DDAB) as surfactant in toluene, with turbulent mixing and a stopped-flow setup. The X-

ray absorption data indicated the presence of Au(I) 104 ms after mixing which was 

gradually reduced to Au(0). Furthermore, these experiments revealed a strong influence of 

ligands and temperature on the kinetics of the reduction reaction46. Polte et al.45 showed 

that reduction of the Au(III) precursor by sodium borohydride was complete at some point 

below 200 ms in a continuous flow by using a static mixer and recording SAXS data in an 

observation window from 100 ms to 136 s and XANES spectra 200 ms after mixing the 

reactants. These studies highlight the necessity of experiments at even higher time 

resolution, which not only require faster data acquisition but also efficient mixing on such 

short time scales. This requires to combine expertise from microfluidics, chemical 

engineering and spectroscopic techniques.  

This chapter describes experiments using a novel microfluidic device39, 68 with efficient 

micromixers for small mixing times (< 2 ms), which was specially designed for preparation 

of small colloidal noble metal particles and simultaneous in situ X-ray absorption 

spectroscopic investigations of the early stages (2 to 20 ms) of fast reduction reactions. In 

this case NaBH4 was used to synthesize ultrasmall Au NPs (1.0 ± 0.4 nm) stabilized with 

polyvinylpyrrolidone (PVP) under flow conditions approaching turbulent mixing and plug 
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flow. The produced NPs were further characterized by various techniques, and their 

catalytic activity with respect to CO oxidation was tested in order to demonstrate potential 

applications in catalysis. 

3.2. Colloidal Synthesis Procedure and Catalyst Preparation 

3.2.1 Materials 

Tetrachloroauric acid (HAuCl4·3H2O; ≥99.9% purity), sodium borohydride (NaBH4; 

99.99% purity), polyvinylpyrrolidone (PVP; (C6H9ON)x with an average molecular weight 

of 40 kDa), tetrakis(hydroxymethyl)phosphonium chloride (THPC; 80% in H2O), sodium 

hydroxide (NaOH) and sulphuric acid (H2SO4; 95% solution) were received from Sigma-

Aldrich and used without further purification. High surface area titania (CristalACTIVTM, 

commercially available G5, anatase; >99% purity; 370 m2 g-1 surface area) was used as 

support. The microchannel walls were coated with Ombrello, a commercially available 

water repellent received from Autoteilemann GmbH. 

3.2.2 Microfluidic Synthesis of Au:PVP NPs Reduced by NaBH4 

The preparation procedure of reactant solutions was adopted from Tsunoyama et al.29, 

however, the concentration of reactant solutions was optimized for this specific 

microreactor with defined flow rates. 1.8 g Au precursor and 0.85 g NaBH4 were dissolved 

separately each in 750 mL deionized water. To each of these two solutions 10 g PVP was 

added as stabilizer. Gold precursor and reducing agent solutions were poured into separate 

vessels (Fig. 10). Nitrogen pressure of ca. 13 bar was used to push the reactant solutions in 

the channels to achieve a total flow rate of 2.6 L h-1. The products were collected in a stirred 

round-bottom flask, which was placed in an ice/water bath. The microfluidic chip was 

flushed first with aqua regia and then with water before each synthesis. 

3.2.3 Batch Synthesis of Au NPs Reduced by NaBH4 

The same ratio of Au:NaBH4 used for the microfluidic synthesis of NPs was applied for 

batch synthesis, i.e. 59.3 mg gold precursor and 333.3 mg PVP were dissolved in 120 mL 

deionized water. 28.3 mg NaBH4 and 333.3 mg PVP were dissolved in 30 mL deionized 

water and added to gold precursor solution being stirred rapidly at room temperature. The 

fast reduction reaction was observed through a color change from light yellow to dark 

brown.  
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3.2.4 Batch Synthesis of Au NPs Reduced by THPC/NaOH 

As a second method, a procedure was adopted from Duff et al91. The reducing agent THPC 

is a short-chain compound which acts both as a reductant and an ionic stabilizer in aqueous 

solutions99. First 1.5 mL of sodium hydroxide (0.2 M) was added to 46 mL of deionized 

water, while mixing in a round-bottom flask on top of a magnetic stirrer running at 500 

rpm. 1.2 mL of 80% THPC was diluted in deionized water to 100 mL. Then 1.0 mL of this 

diluted THPC was added to the NaOH solution. After 2 min of stirring, 1.2 mL of 43 mM 

gold precursor was added to the solution and a fast reaction was observed through a color 

change from light yellow to dark brown. 

3.2.5 Immobilization of Au NPs on TiO2 

For immobilizing the Au NPs on titania support, the PVP-stabilized Au NP solution 

produced in the microreactor was added to a suspension of 1 g titania in 80 mL water 

acidified with 6 mL H2SO4 solution (0.2 M) while stirring at room temperature. After 

adsorption of the gold colloids on the support, the suspension was centrifuged three times 

(4500 rpm, 10 min each) and washed with water. Subsequently, the material was dried at 

70 °C overnight. A sample of this material was calcined at 300 °C for 90 min, while the 

remaining material was directly characterized and used for CO oxidation tests (uncalcined 

samples). This method was used to prepare catalytic materials with different Au loading 

(0.7 and 1.7 wt.%) on TiO2. 

3.3. Early Reaction Stages of Au Nanoparticle Formation 

For obtaining pulsation-free flow at high flow rates for the synthesis of NPs the novel 

microfluidic setup describe in section 2.1. was used (Fig. 10). The reactants in the vessels 

were pressurized by N2 and injected into the cyclone micromixers in the microfluidic chip. 

High flow rates through the small channels (300 × 300 μm2) were fine adjusted with needle 

valves. This setup allows precise correlation of reaction time and X-ray beam position along 

the microchannel with high time resolution and thereby to accurately determine the 

residence time of Au NPs in the reaction channel (further fluid mechanical properties are 

summarized in Section 2.1. Fig. 12 and 13, Table 1 and 2). The setup and operating 

parameters were optimized for a total flow rate of 2.6 L h-1 (1.3 L h-1 for each reactant 

flow), a Reynolds number of 2400 approaching turbulent flow conditions68, 100, 101, a 

pressure drop of ca. 9 bar inside the microchannel, a deadtime below 2 ms in the 

micromixers and residence time of ca. 20 ms in the microchannel. The flow conditions were 
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simulated by computational fluid dynamics (CFD) in order to optimize homogeneous 

mixing of the reactants in the cyclone micromixers (Fig 12). 

The microfluidic chip was installed in a stainless steel support frame with access to two 

reactant inlets, one product outlet and an X-ray transparent Si/glass observation window. 

Afterwards, the chip was attached to a motorized sample stage which allowed to illuminate 

different positions along the microchannel downstream from the micromixers (Fig. 15) 

with the focused X-ray beam. The reduction reaction of Au NPs formed during the first 20 

ms of the reaction was monitored by mapping the oxidation states of Au in solution in the 

microfluidic device by XAS with the microfocused beam. First, only Au precursor solution 

was injected into the microchannel in order to precisely locate the channel by Au-L3 

fluorescence mapping and to choose measurement positions. For NP synthesis the total 

flow rate of reactants (HAuCl4/PVP and NaBH4/PVP solutions) was adjusted to ca. 2.6 L 

h-1 in order to achieve turbulent lateral mixing; thus, lateral concentration gradients could

be minimized and a plug flow behavior was reached. In situ XAS was used to follow the

reaction progress in this continuous rapid flow by recording absorption spectra at different

positions along the channel to probe the oxidation states of Au during reduction. The

XANES spectra in Fig. 16 clearly indicate a significant contribution of oxidized Au after

the first 6 ms of the reaction, whereas after ca. 10 ms reduction of Au was complete. The

mixing of the reactants prior to the observation channel was optimized for monitoring such

fast reactions. Accordingly, these results show that the reduction of Au3+ by NaBH4 in the

presence of PVP proceeds within a short time frame of 10 ms.

This is the first study of Au NP formation in a microfluidic device within such a narrow 

time window. Polte et al.45 acquired SAXS and XANES data of Au NPs 100 ms and 200 

ms after the start of the reaction, respectively. They concluded that reduction of Au3+ with 

NaBH4 was complete at some earlier time, and focused on the nucleation and growth 

processes occurring at a later stage. Abécassis et al.46 investigated the synthesis of Au NPs 

during reduction of AuCl3 in an organic solvent (toluene) by a milder reducing agent 

(TBAB) in situ using SAXS and XANES with 100 ms time resolution. At 104 ms after 

mixing they observed Au+ which was gradually reduced to Au0. Our setup allows 

investigation of early stages of such fast reactions and thereby a new insight into reduction 

and nucleation during NP formation in a microfluidic device.  
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Fig.  15 Spatial-temporal points in the microchannel selected for XAS measurements (Positions A, B and C 

with corresponding reaction times of 6 ms, 10 ms and 18 ms). 

Fig.  16 a) Microfluidic chip, positions along the channel where in situ XAS data were acquired are marked, 

inset: schematic of the inlets and micromixers in the chip to achieve homogeneous mixing; b) reference 

spectra of Au3+ precursor and Au0 foil compared to absorption data acquired at position A (top) and XANES 

spectra recorded at different positions correlated to reaction times (bottom)39. 
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3.4. Comparison of Au NPs Produced from the Microfluidic and Batch 
Reactor 

The Au:PVP NPs synthesized in the microfluidic reactor were characterized by UV-vis 

spectroscopy and compared with Au NPs produced in the batch reactor. The NPs produced 

in the batch reactor were prepared using the same Au:PVP:NaBH4 ratio as for microfluidic 

synthesis, and THPC/NaOH, respectively. Compared to the Au NPs prepared in batch 

reactor, in the spectrum of Au:PVP NPs produced in the microfluidic reactor a stronger 

suppression of the surface plasmon resonance (SPR) band was observed (Fig. 17a), which 

indicates formation of smaller NPs. In previous publications a strong suppression of the 

SPR was reported for ultrasmall Au NPs with diameters below 3 nm, in which surface 

scattering is the dominant factor3, 29, 79. These results illustrate the benefits of microfluidic 

synthesis compared to batch synthesis, indicating that homogeneous mixing of the reactants 

is already been achieved before the rapid reduction occurrs. 

The hydrophobic wall surfaces efficiently inhibited Au deposition in the channels. 

However, in order to investigate the effect of the Ombrello-coated channel walls on the 

synthesis, the Au NPs produced in uncoated and coated channels were compared by UV-

vis. The results indicate Au NPs with smaller diameters compared to the particles formed 

in the uncoated channel (Fig. 17b). Fig. 18 clearly shows deposition of Au NPs on the 

uncoated channels and blocking of the channel, which in the case of the Ombrello-coated 

channel is prohibited. 

Fig.  17 a) UV-vis spectra of: (I) diluted Au:PVP NPs synthesized in microreactor using NaBH4, (II) Au:PVP 

NPs synthesized in batch reactor using NaBH4 and (III) Au NPs reduced by THPC/NaOH in batch reactor. 

b) Influence of hydrophobic channel coating on UV-vis spectra of Au:PVP NPs produced in the microreactor; 

(IV) Au:PVP NPs produced in uncoated and (V) Au:PVP NPs produced in Ombrello-coated microchannel39.
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Fig.  18 The microfluidic chip after the Au NP synthesis in the a) uncoated microchannel and b) Ombrello-

coated microchannel. 

The three colloidal samples discussed above were analyzed by UV-vis spectroscopy once 

more about 3 months later to study their stability over time with respect to aggregation via 

their SPR behavior. Compared to fresh samples (shown in Fig.17a), the UV-vis spectra in 

Fig. 19 clearly indicate a change in NP size distribution which was also visible as a color 

change from brown to red/violet. However, particle aggregation over time was much more 

drastic in the case of Au NPs produced in batch reactor using PVP/NaBH4 and 

THPC/NaOH. In the case of Au/THPC, which is a short-chain compound, the size 

distribution was much broader compared to Au/PVP/NaBH4 indicating of higher stability 

of Au:PVP NPs. Interestingly, among the Au/PVP/NaBH4 samples, the NPs produced in 

the microfluidic reactor turned out to be more stable (although they also showed NP growth 

compared to the fresh sample) than those from the batch reactor, indicating homogeneous 

mixing of reactants and the surfactant, and effective preservation of NPs against 

aggregation due to presence of PVP in the microreactor. 

Fig.  19 UV-vis spectra of ca. 3 months old samples: (VI) Au:PVP NPs synthesized in the microreactor using 

NaBH4, (VII) Au:PVP NPs synthesized in the batch reactor using NaBH4 and (VIII) Au NPs reduced by 

THPC/NaOH in the batch reactor. 
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STEM images of all samples show NPs with spherical shape. Particle size distributions 

were determined by measuring diameters of hundreds of Au NPs (histograms in Fig. 20). 

The Au:PVP NPs produced in the microfluidic reactor show ultrasmall particle size with 

1.0 nm average diameter, whereas the average size of Au:PVP NPs produced in batch 

reactor using NaBH4 increased to 1.9 nm. Au:PVP NPs produced in the batch reactor 

exhibit a slightly broader particle size distribution. These results are comparable to those 

published in earlier works. Tsunoyama et al.29, 102, 103 produced NPs in a microreactor with 

an average NP size of 1.3 nm and a slightly narrower size distribution compared to those 

produced in batch. Au NPs synthesized in batch by THPC/NaOH show the broadest size 

distribution with an average diameter of 2.8 nm compared to the previous two samples. 

However, it was also reported that thorough cleaning of the beakers (pre-washed with aqua 

regia) and freshly dissolved reactants leads to smaller NP sizes (<2.5 nm) and narrower size 

distributions3, 90. 

Fig.  20 STEM images and size distributions of 500 NPs of a) Au:PVP NPs produced in the microreactor, b) 

Au:PVP NPs produced in batch reactor using NaBH4 and c) Au NPs reduced with THPC/NaOH in batch 

reactor39. 
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3.5. Characterization of Supported Au NPs Produced by Microfluidics 

The Au:PVP NPs from the microfluidic synthesis were deposited on TiO2 with 0.7 and 1.7 

wt.% Au loading for catalytic activity tests. The morphology and distribution of Au NPs 

on the TiO2 support after drying at 80 °C were characterized by STEM and are shown in 

Fig. 21. The diameters of ca. 600 particles were measured to obtain size distributions 

revealing an average particle size of around 7.5 nm. The Au NPs were homogeneously 

distributed on the support and according to the corresponding histograms both catalysts 

exhibit similar particle size distributions. Deposition of the NPs on titania obviously leads 

to a significant increase in particle size. It is known that pretreatment of the TiO2 under 

different conditions, the deposition method and post-synthetic treatment conditions such as 

drying and calcination result in different metal-support interactions. In the case of Au/TiO2, 

it is proposed that a weak interaction increased the mobility of Au NPs, leading to some 

extent to aggregation42. 

Fig.  21 STEM images of uncalcined a) 0.7 and b) 1.7 wt.% Au:PVP NPs on TiO2 and size distribution39. 

In order to understand the electronic structures of Au NPs synthesized using different 

reducing agents/stabilizers the uncalcined NPs were characterized by XPS. The close up 

XPS spectra of the Au 4f doublets in Fig. 22a show a peak shift to lower binding energies 

for Au:PVP NPs and also for Au:PVP/TiO2 samples, but not for Au NPs reduced by THPC. 

Since for both samples the TiO2 support and mean Au NP size are comparable, this shift 

between Au:PVP/TiO2 and Au:THPC/TiO2 can be related to the electron transfer between 

the ligand and gold. The Au 4f5/2 and Au 4f7/2 orbitals in bulk state appear at 87.7 and 84 

eV, respectively. However, in Au:PVP NPs these peaks appeared at 86.3 and 82.6 eV, 

respectively. These results indicate that the surfaces of the Au NPs are negatively charged. 

According to literature103, this effect is attributed to the electron donating nature of PVP to 



 Formation of Ultrasmall Au Nanoparticles

40 

gold surfaces. In the case of Au:PVP/TiO2 samples this shift to lower binding energies was 

smaller compared to unsupported Au:PVP. Fig. 22b shows the C1s core level for the 

samples which was used for XPS data calibration (c. f. section 2.2.4.). 

Fig.  22 XPS spectra of the a) Au 4f levels of Au:PVP NPs synthesized in the microfluidic reactor before and 

after being supported on TiO2 compared to Au NPs synthesized in a batch reactor (reduced and stabilized by 

THPC) and b) C 1s level of Au:PVP NPs and Au:THPC NPs supported on titania39.  

The 0.7 wt.% Au:PVP/TiO2 and 1.7 wt.% Au:PVP/TiO2 catalysts showed high CO 

oxidation activity in calcined and uncalcined states considering their rather large Au 

particle size and the presence of organic surfactants on the catalyst surface (Fig. 23). The 

catalysts exhibited higher activity after calcination; the uncalcined 0.7 wt.% Au:PVP/TiO2 

sample reached 50% (T1/2) and full CO conversion at 98 °C and 166 °C respectively, while 

after calcination at 300 °C these temperatures shifted to 73 °C and 121 °C for the first 

reaction cycle. For the uncalcined 1.7 wt.% Au:PVP/TiO2 sample, 50% and full CO 

conversion were achieved at 102 °C and 175 °C respectively, while after calcination these 

temperatures shifted to 91 °C and 140 °C for the first reaction cycle. Accordingly, lower 

Au loading (0.7 wt.%) and calcined catalysts show the highest activity among these 

samples. Removal of PVP from Au NPs and sintering, both resulting from calcination, 

could to some extent play different and competitive roles in the activity of the catalysts. 

Calcination temperature, particle size, moisture and also the strength of Au-TiO2 

interaction, which depends on the deposition method, are key parameters with respect to 

catalytic activity. Strong Au-TiO2 interaction leads to a high number of effective active 

sites in the perimeter interface of Au and TiO2 resulting in higher activity in CO oxidation4, 
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9, 12. In the present work, the mechanical mixing applied to adsorb colloidal Au on the 

support resulted in well-distributed Au NPs on the titania surfaces but also in aggregation 

of NPs compared to the colloid. Nevertheless, under conditions such as low Au loading 

(0.7 and 1.7 wt.%), 7.5 nm mean particle size on titania and presence of PVP, the catalytic 

activity of the samples in CO oxidation is considerable. Table 3 summarizes the particle 

sizes of the colloidal Au NPs as well as particle sizes, surface areas and catalytic properties 

of the Au/TiO2 catalysts.  

Fig.  23 First cycle (red) and second cycle (blue) of CO oxidation catalyzed by PVP-stabilized Au/TiO2: 

uncalcined (a,c) and calcined (b,d); different Au loading of 0.7 wt.% (a,b) and 1.7 wt.% (c,d); Conditions: 

400 mg catalyst, 300 mL min-1 total flow rate, 1000 ppm CO and 1000 ppm O2 diluted in nitrogen39. 

Table 3 Characterization of Au NPs 

Sample State Synthesis 
method 

dAu (nm) 
STEM 

SA (m2 g-1) 
BET 

T1/2 (°C) 
1st 

cycle 
2nd 

cycle 
Au:PVP NPs colloid µ-reactor 1.8±0.5 
Au:PVP NPs colloid Batch reactor 1.9±0.6 

Au:THPC NPs colloid Batch reactor 2.8±1.4 
0.7wt.%Au:PVP/TiO2 uncalcined Au –µ-reactor 7.9±3.9 317 98 125 

calcined Au –µ-reactor 73 53 
1.7wt.%Au:PVP/TiO2 uncalcined Au –µ-reactor 7.3±3.0 317 102 143 

calcined Au –µ-reactor 91 55 
TiO2 uncalcined 329 

calcined 208 
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Before and after calcination and CO oxidation tests the catalysts were characterized by 

XRD. The diffractograms confirm the presence of an anatase phase of titania.  In the XRD 

data of uncalcined 0.7 and 1.7 wt.% Au:PVP/TiO2 catalysts gold reflections3, 104 were not 

observed. Nevertheless, after calcination the gold reflections clearly appeared in the 

diffractogram of the 1.7 wt.% Au:PVP/TiO2 catalyst (Fig. 24), probably caused by sintering 

due to higher gold concentration in this sample. This could explain the lower CO oxidation 

activity of the 1.7 wt.% Au:PVP/TiO2 catalyst after calcination compared to 0.7 wt.% 

Au:PVP/TiO2. 

Fig.  24 XRD patterns of catalysts before and after calcination and CO oxidation; a) pure TiO2, b) uncalcined 

0.7 wt.% Au:PVP/TiO2, c) calcined 0.7 wt.% Au:PVP/TiO2, d) uncalcined 1.7 wt.% Au:PVP/TiO2 and e) 

calcined 1.7 wt.% Au:PVP/TiO2
39. 
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3.6. Conclusion 

A novel microfluidic setup was built for advanced synthesis of ultrasmall nanoparticles 

with narrow size distribution in fast continuous flow at Reynolds numbers up to 2400 and 

for in situ spatially and time resolved studies of early stage kinetics of fast reactions. Three 

cyclone micromixers integrated in the chip allow achieving mixing times down to 2 ms. 

This setup was used to study Au NP formation using in situ XAS during Au3+ reduction to 

Au0 by NaBH4 in the presence of PVP.  In the future the apparatus may also be used for 

other spectroscopic and scattering techniques. The reaction progress under continuous flow 

was monitored by recording XAS spectra at different positions along the microchannel with 

a focused X-ray beam. The results revealed that up to 6 ms there is still a significant 

contribution of oxidized Au. The reduction to Au0 was complete within the first 10 ms of 

this fast reduction reaction and remained unchanged at 18 ms.  

Au:PVP NPs synthesized in the microfluidic chip were characterized by complementary 

techniques (UV-vis, TEM, XPS and XRD) and compared to Au:PVP NPs and Au/THPC 

NPs synthesized in batch reactor. The average size of Au:PVP NPs from microfluidic 

synthesis was 1.0 ± 0.4 nm with a narrower size distribution. These NPs also showed a 

stronger suppression of the SPR band in UV-vis spectra. In accordance with earlier works, 

the addition of PVP as stabilizer transferred negative electric charges to the Au surfaces, 

leading to a decrease in Au 4f binding energies in XPS spectra. 

Au:PVP NPs produced using the microfluidic setup were also deposited on titania. The 

catalysts thus obtained were quite active in CO oxidation. Under the same conditions the 

calcined 0.7 wt.% Au:PVP/TiO2 sample was more active compared to the corresponding 

uncalcined catalysts with higher Au loading. According to XRD data, in the 1.7 wt.% 

Au:PVP/TiO2 sample calcined at 300 °C sintering of NPs occurred. The results of these 

experiments indicate that the supported Au NPs produced from this microfluidic setup are 

not only suitable for in situ studies of NP formation but may also be attractive for catalytic 

and sensing applications. 

The next chapter describes how the microfluidic synthesis of ultrasmall NPs was expanded 

to produce monometallic Pd and homogeneous alloys of AuPd NPs, which were 

characterized by various techniques and tested for CO oxidation.  
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4. Ultrasmall and Homogeneous AuPd Nanoalloys2

Chapter 3 demonstrated the successful application of a novel microfluidic reactor in the 

synthesis of ultrasmall Au NPs and kinetic studies of early stages of a fast reduction 

reaction during formation of these monometallic NPs, which were also catalytically tested 

with respect to CO oxidation. The following chapter describes how the microfluidic setup 

proved to be of high value for synthesis of bimetallic systems, in this case ultrasmall AuPd 

alloyed NPs.  

4.1. Introduction 

Small and highly dispersed NPs of transition metals have received growing attention in the 

context of nanoscience and nanotechnology in catalysis17, 31, 102, 105-107, sensing108-110, 

electronics and optics111-113, imaging and biology114-116, due to their high surface area and 

size dependent properties. Introducing bimetallic systems for such applications provides 

new opportunities to improve the performance of the materials by combining both metals´ 

properties and, in some cases, achieving synergistic effects. These improvements originate 

from tunable electronic interactions and geometric structures of NPs and also metal-support 

interactions in the case of supported catalysts17, 117, 118. The reasons for catalytic synergistic 

effects are hard to be explained based on literature comparison due to the differences in 

synthesis methods and its applied conditions, surface composition of the NPs, 

inhomogeneous NP size distribution and the insufficient in-depth structural 

characterization of the bimetallic NPs.  

The formation of colloidal metal NPs via chemical reduction reactions, which is one of the 

most straightforward methods, proceeds in the four following steps: (1) mixing and 

diffusion of metal precursors and reducing agents, (2) reduction of metal ions to atoms, (3) 

nucleation and (4) growth of NPs45, 117. In conventional stirred batch reactors, inefficient 

mixing conditions lead to concentration gradients of reactants in the medium and poor 

control over the reaction conditions, resulting in polydisperse NPs with properties deviating 

from the desired ones. Controlling this issue gets even more complicated in case of 

bimetallics (especially solid-solution alloys) having two metals with different redox 

potentials (successive reduction)17, 60, 119. 

2 Part of this chapter has been published in Journal of Physical Chemistry C132. 



 Ultrasmall and Homogeneous AuPd Nanoalloys

46 

The reaction conditions can be controlled microscopically using microfluidic reactors, 

allowing spatially and temporarily homogeneous mixing of metal precursors and reducing 

agents on a very short time scale (ms) and separating the nucleation and growth steps from 

each other, leading to narrow NP size distributions29, 39, 53, 56. Moreover, this technology 

allows a precisely controlled temperature profile over different steps of the reaction, e.g. 

warming up the microchannels at the beginning of the reaction to facilitate the nucleation, 

and cooling down the products after the microfluidic device to control the growth of NPs, 

ending up with highly monodisperse bimetallic nanoclusters (Hayashi et al.117). Recently, 

in situ spectroscopic and scattering studies during the formation of NPs in microfluidic 

channels have added up to the advantages of microfluidic technology. The latter case shows 

the importance of understanding the intermediates involved in during synthesis and 

optimization of the reactions to obtain high quality nanomaterials46, 47, 49. 

Bimetallic AuPd systems have attracted growing attention with respect to catalytic 

applications such as direct synthesis of hydrogen peroxide120-122, alcohol and glucose 

oxidation123-125, oxidation of primary C-H bonds126 and CO oxidation127-129. Literature 

shows an improvement in catalytic activity, selectivity and durability of Pd when alloyed 

with Au17. Furthermore, since Au and Pd are miscible in all composition ratios, it is possible 

to tune the interatomic distances in AuPd in order to adjust the distances between the 

adsorption sites to the benefit of catalytic performance in structure-sensitive reactions130, 

131. This highlights the necessity of establishing a synthesis technique with high control

over the production quality and minimized random nucleation and growth, therefore

yielding uniform alloyed compositions of bimetallic NPs.

For this study, the microfluidic device was used to synthesize highly monodispersed 

ultrasmall (1-2 nm) AuPd NPs with homogeneously mixed alloy structures stabilized with 

polyvinylpyrrolidone (PVP) under flow conditions approaching turbulent mixing and plug 

flow. The presence of homogeneously mixed nanoalloys was confirmed by various 

complementary characterization techniques such as X-ray absorption spectroscopy (XAS) 

in terms of X-ray absorption near edge structures (XANES) and extended X-ray absorption 

fine structures (EXAFS), high resolution transmission electron microscopy (HRTEM), 

energy-dispersive X-ray spectroscopy (EDX), UV-visible spectroscopy (UV-vis) and 

inductively coupled plasma-optical emission spectroscopy (ICP-OES). The NPs were 

supported on TiO2 and the resulting Au/TiO2, Pd/TiO2 and AuxPdy/TiO2 catalysts were 

tested for CO oxidation to demonstrate their potential application in catalysis. 
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4.2. Colloidal Synthesis Procedure and Catalyst Preparation 

4.2.1 Materials 

Tetrachloroauric (III) acid (HAuCl4·3H2O, Roth, 99.5% purity), potassium tetrachloro 

palladate (II) (K2PdCl4, Alfa Aesar, 99.99% purity), polyvinylpyrrolidone (PVP, 

(C6H9ON)x, Sigma-Aldrich, average molecular weight 40 kDa), sodium borohydride 

(NaBH4, Sigma-Aldrich, 99.99% purity), sulphuric acid (H2SO4, Sigma-Aldrich, 95% 

solution) and high surface area titania (TiO2, CristalACTIVTM, >99% purity, anatase, 370 

m2 g-1 surface area) were used without further purification. 

4.2.2 Microfluidic Synthesis of Au, Pd and AuxPdy NPs Reduced by NaBH4 

In order to synthesize highly monodisperse monometallic and bimetallic NPs via fast 

reduction reactions, the microfluidic setup capable of generating a continuous and 

pulsation-free flow of reactants at high flow rates was used (Fig. 25 and more details cf. 

Section 2.1.). The vessels of fluid delivery rack were pressurized by 13 bar N2 gas to deliver 

the reactants at 2.6 L h-1 total flow rate to three cyclone micromixers integrated in a 

microfluidic chip for fast (2 ms) and homogeneous mixing. For each reactant, a flow rate 

of 1.3 L h-1 (total flow rate 2.6 L h-1) was required to achieve Reynolds number exceeding 

2400 in order to approach turbulent mixing within 2 ms, which is necessary for fast 

reduction reactions. The total residence time of the reactants in the microchannel was about 

20 ms. 

Table 4 summarizes the preparation conditions of the reactant solutions for synthesis of Au, 

Pd and AuxPdy NPs (x, y: molar ratio of Au and Pd with x + y = 10). Aqueous solutions of 

HAuCl4 and K2PdCl4 precursors were prepared with a constant total metal precursor 

concentration (7.5 mM) for all samples. An aqueous solution of NaBH4 (37.5 mM) was 

prepared in a separate flask. Afterwards, 666 mg PVP was added to each of these two 

solutions as stabilizer, a procedure adopted from Hayashi et al117. Prior to the microfluidic 

synthesis, the microchannel was flushed with aqua regia, and then several times purged 

with deionized water to remove impurities. The metal precursor and NaBH4 solutions were 

filled into the vessels of the fluid delivery rack (Fig. 25). N2 gas was applied to drive the 

reactants through the inlet channels at a total flow rate of 2.6 L h-1 in order to achieve 

turbulent flow conditions in the micromixers for efficient mixing of the reactants. The 

products were collected and stirred for 1 h in a round-bottom flask placed in an ice/water 

bath. 
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Fig.  25 Schematic of the microfluidic setup employed for synthesis of PVP-stabilized monometallic and 

bimetallic NPs in continuous flow (P, T: pressure transducer and temperature sensor), inset: schematic of the 

inlets and micromixers in the chip to achieve homogeneous mixing132. 

Table 4 Microfluidic synthesis conditions for Au, Pd and AuxPdy:PVP colloids. 

Sample Solution Aa Solution Bb 
HAuCl4 (mg) K2PdCl4 (mg) NaBH4 (mg) 

Au 236.4 0.0 114 
Au7Pd3 165.5 58.7 114 
Au5Pd5 118.2 97.9 114 
Au3Pd7 71 137 114 

Pd 0.0 200 114 
a)7.5 mM aqueous solution with 666 mg PVP, b)37.5 mM aqueous solution with 666 mg PVP

4.2.3 Batch Synthesis of AuPd:PVP NPs Reduced by NaBH4 

The same molar metal:NaBH4 ratio used for the microfluidic synthesis of NPs was applied 

in batch synthesis of Au7Pd3 and Au3Pd7 NPs to compare their size distributions with those 

of the materials produced in the microfluidic reactor (summarized in Table 5). The gold 

and palladium precursors and 166.6 mg PVP were dissolved in 60 mL deionized water. 

28.5 mg NaBH4 and 166.6 mg PVP were dissolved in 15 mL deionized water and added to 

gold precursor solution stirred rapidly at room temperature. The fast reduction reaction was 

observed through a color change. 
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Table 5 Conventional batch synthesis conditions for selected AuxPdy:PVP colloids. 

Sample Solution Aa Solution Bb 
HAuCl4 (mg) K2PdCl4 (mg) NaBH4 (mg) 

Au7Pd3 41.4 14.7 28.5 
Au3Pd7 17.7 34.2 28.5 

a)2.5 mM aqueous solution with 166.6 mg PVP, b)50.2 mM aqueous solution with 166.6 mg PVP

4.2.4 Preparation of Au/TiO2, Pd/TiO2 and AuxPdy/TiO2 Catalysts 

The PVP-stabilized AuxPdy colloidal solutions synthesized in the microfluidic reactor were 

added to 1 g TiO2 suspended in 80 mL deionized water in an ultrasonic bath at room 

temperature and stirred for one hour. Prior to the impregnation of TiO2 with NPs, the titania 

support was acidified with 8 mL H2SO4 solution (0.2 M), decreasing the suspension pH to 

2. After 1 h of stirring, the suspension was centrifuged four times (4500 rpm, 5 min each)

and washed with water in between. Eventually, the catalysts were dried at 80 °C overnight

and calcined at 380 °C for 3 h. This method was applied for preparing 1.0 and 2.4 wt.%

AuxPdy/TiO2 as well as monometallic Au and Pd NPs on TiO2.

4.3. Characterization of Colloidal Au, Pd and AuPd NPs 

STEM images of monometallic Au, Pd and bimetallic AuxPdy colloids in Fig. 26 prove the 

formation of spherical ultrasmall NPs (average diameter ~ 1 nm). The corresponding 

histograms clearly show that highly monodisperse metal NPs were produced by mixing the 

metal precursors, PVP and NaBH4 in the microfluidic reactor. STEM images of two 

selected bimetallics of Au7Pd3 and Au3Pd7 produced in conventional batch reactor (Fig. 27) 

clearly show broader size distributions with average particle sizes of 1.4 nm and 1.6 nm, 

respectively. These results are comparable to those reported by Hayashi et al.117, who also 

showed that microfluidic synthesis is superior to batch reactor synthesis in terms of 

achieving a controlled size and narrow size distribution of AuxPdy NPs. These benefits 

originate from fast mixing of the reactants and controlling the initial states of nucleation 

and growth in the microfluidic reactors. According to literature50, 51, 117, 133, the reduction 

process of metal ions in the microfluidic reactors equipped with micromixers is more 

homogeneous in shorter time intervals, and liberation of metal atoms with oxidation state 

zero is much faster compared to synthesis in conventional stirred batch reactors. This is due 

to the fast molecular diffusion processes occurring in the microfluidic reactor compared to 

batch reactors which first require dissociation of the reactant solutions into tiny fractions 

and subsequent domination of the molecular diffusion mechanism. Therefore, in the batch 
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reactors the initially-formed NPs consume the available metal atoms in the solution to 

grow, and the newly-formed NPs remain small due to the absence or low concentration of 

metal atoms which finally results in broader size distributions. 

The HRTEM images of AuxPdy NPs in Fig. 28 show a crystal-like structure and the absence 

of other structures such as core-shell or segregated subcluter. The measured lattice spacings 

(red marks in Fig. 28) for AuxPdy NPs ranged between 2.35 Å (Au (111)) and 2.24 Å (Pd 

(111))134, 135. This indicates that a uniform distribution/mixing of Au/Pd precursors and 

reducing agent was achieved by approaching turbulent mixing conditions using the cyclone 

micromixers, resulting in the formation of colloidal AuxPdy nanoalloy structures. 

According to HRTEM analysis of about 10-20 particles, the lattice parameters change upon 

changes in composition in agreement with Vegard’s law. The average unit cell parameters 

for Au3Pd7, Au5Pd5 and Au7Pd3 were 4.015 Å, 4.020 Å and 4.041 Å, respectively. This 

trend indicates that homogeneous alloys are formed following Vegard’s law. 

Fig. 29 shows STEM images of PVP-stabilized Au7Pd3, Au5Pd5 and Au3Pd7 colloids and 

the composition maps obtained from STEM-EDX spectrum imaging within a single NP. 

According to the composition maps, Au and Pd are uniformly distributed in the investigated 

representative particle for all three bimetallic AuxPdy colloids. HRTEM analysis and the 

composition maps demonstrate that Au-Pd alloy NPs were formed in the three bimetallic 

AuxPdy colloids produced in the microfluidic reactor. 
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Fig.  26 STEM images and size distributions of PVP-stabilized a) Au7Pd3, b) Au5Pd5, c) Au3Pd7, d) Au and 

e) Pd NPs produced in the microfluidic reactor (330 particles analyzed for each size distribution)132.
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Fig.  27 STEM images and size distributions of PVP-stabilized a) Au7Pd3 and b) Au3Pd7 NPs produced in the 

batch reactor (ca. 400 particle diameters analyzed for each size distribution)132. 

Fig.  28 HRTEM images of PVP-stabilized a) Au7Pd3, b) Au5Pd5 and c) Au3Pd7 NPs produced in the 

microfluidic reactor. The d-spacing is marked by red lines132. 
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Fig.  29 STEM images of PVP-stabilized a) Au7Pd3, b) Au5Pd5 and c) Au3Pd7 colloids and the corresponding 

element maps obtained from STEM-EDX spectrum imaging in the areas marked by orange boxes132. 

The formation of ultrasmall Au, Pd and AuxPdy colloidal NPs was also confirmed by UV-

vis spectroscopy (Fig. 30). The measured spectra indicate a strong suppression of surface 

plasmon resonance (SPR) of gold highlighting dominance of surface scattering from NPs 

with diameters below 3 nm3, 29, 79. Furthermore, since the total concentrations of metal 

atoms in all samples were almost equal, the absorption behavior changes with different 

Au:Pd molar ratio. At higher wavelengths (above 500 nm), the absorption increases with 

increasing Pd content in the NPs presumably due to overlapping 4d → 5sp and 5sp → 5sp 

transitions which typically occur in pure Pd, and intraband 6sp → 6sp transitions in pure 

gold (wavelengths above 400 nm)117, 136. Moreover, the absence of the absorption peak of 

palladium chloride at 425 nm suggests full reduction of the Pd precursor to metallic Pd137. 

At lower wavelengths (below 500 nm) the absorption increases with increasing Au amount 

in the NPs, indicating interband 5d → 6sp transitions in pure gold117, 138-140. These results 

indicate different electronic structures of NPs with changing Au:Pd molar ratios.  
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Fig.  30 UV-vis spectra and image of monometallic Au and Pd and bimetallic AuxPdy NP colloids produced 

in the microfluidic reactor132. The abrupt increase in the spectra at 319 nm is related to switching between 

deuterium and tungsten lamps. 

4.4. Homogeneity of AuₓPdᵧ Nanoalloys Supported on TiO₂ 

The colloidal NPs produced in the microreactor were deposited on TiO2 powder with 1 

wt.% total metal (Au+Pd) loading for CO oxidation tests and 2.4 wt.% total metal loading 

as pellets for XAS measurements to investigate the structure and homogeneity of AuPd 

nanoalloys. The elemental compositions of selected AuxPdy/TiO2 catalysts obtained from 

ICP-OES are given in Table 6. These values are in good agreement with the target Au:Pd 

molar ratios during colloidal synthesis and the desired metal loadings of the supported 

catalysts for CO oxidation and ex situ XAS.   

The particle morphology and size distribution of the nanoalloys after calcination at 380 °C 

were studied by STEM (Fig. 31). Size distributions were determined by measuring the 

diameters of hundreds of particles giving an average diameter of ca. 5.3, 4.9 and 7.3 nm for 

Au7Pd3, Au5Pd5 and Au3Pd7, respectively. Obviously, deposition on TiO2 and calcination 

leads to a significant increase in NP size. Different phases, surface area and pretreatment 

of the support, deposition method and applied conditions as well as post-treatments such as 

calcination have been known to play an important role in NP aggregation and to cause 

different interaction between the metal NPs and the ceramic supports, which can influence 

the catalytic performance42. 
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Table 6 ICP-OES results for AuxPdy/TiO2 catalysts 

1* wt.% Au3Pd7/TiO2 
(wt.%) 

3* wt.% Au3Pd7/TiO2 
(wt.%) 

3* wt.% Au5Pd5/TiO2 
(wt.%) 

Au 0.41 1.04 1.34 
Pd 0.55 1.41 0.94 
Total metal loading 0.96 2.45 2.28 
Au:Pd molar ratio 2:5 2:5 5:6 

*: nominal value 

Fig.  31 STEM images of calcined a) Au7Pd3/TiO2, b) Au5Pd5/TiO2 and c) Au3Pd7/TiO2
132. 

Fig. 32 shows k3-weighted and Fourier-transformed (FT) Au L3 EXAFS data of the 2.4 

wt.% AuxPdy and Au NPs deposited on TiO2 along with the corresponding XANES spectra. 

The EXAFS oscillations of AuxPdy NPs differ significantly from those of Au foil indicating 

the presence of an alloy phase. This observation leads to the conclusion that decreasing Au 

(i.e. increasing Pd) concentration in the bimetallic NPs leads to an increase in the average 

number of Pd neighboring atoms surrounding the Au absorber atoms, i.e. an increase in 

Au–Pd bonds. The FT data also follow the same trend in which the AuxPdy NPs show 

intense peaks, at 2.0–2.2 Å and 2.6–2.9 Å. These peaks both correspond to the first shell 

metal–metal contribution118. The splitting of the first shell peak arises from interference 

between Au–Au and Au–Pd backscattering, with different phase shift and amplitude118, 131. 

With decreasing Au content, the intensity of the lower-R peak increases indicating a 

growing number of Au-Pd bonds. Furthermore, the peak shift toward shorter distances with 

the decreasing amount of Au in the alloyed compositions suggests that more gold atoms 

are now coordinated to palladium, which is in accordance with the linear dependence of 

lattice parameters on the ratio of the two metals in bimetallic alloys (Vegard’s law)131, 141. 

The structural parameters obtained from fitting EXAFS data of the bimetallic AuxPdy NPs 

at the Au L3-edge are presented in Table 7. 
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Fig.  32 XAS measurements at the Au L3-edge on Au/TiO2 and AuxPdy/TiO2: a) k3-weighted EXAFS 

oscillations, b) magnitude of the Fourier-transformed EXAFS data in R-space, and c) XANES spectra (inset: 

magnified image of the white line region)132.   
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Table 7 EXAFS fitting results obtained from Au L3-edge absorption spectra of Au/TiO2 and AuxPdy/TiO2; 
(N: Coordination number, R: Distance (Å), σ2: Debye–Waller factor (Å2), ΔE0: Inner core correction, S0

2 = 
0.72 ± 0.03: amplitude reduction factor) 

Sample NAu-Au R (Å) σ2 
(10-3 Å2) 

NAu-Pd R (Å) σ2 
(10-3 Å2) 

∆E0(eV) NTotal 

Au foil 12 2.85±0.03 7.7±0.3 - - - -4.3±0.0 12 
Au/TiO2 12.9±1.1 2.85±0.03 8.6±0.5 - - - -5.7±0.7 12.9 
Au7Pd3/TiO2 9.4±1.0 2.81±0.07 8.5±0.7 3.3±0.7 2.78±0.03 7.4±1.1 4.1±0.7 12.7 
Au5Pd5/TiO2 7.2±1.3 2.81±0.07 8.5±0.7f 5.0±1.5 2.79±0.03 6.3±1.6 4.5±1.4 12.2 
Au3Pd7/TiO2 5.7±0.8 2.79±0.10 8.5±0.7f 6.5±0.9 2.77±0.01 6.5±0.8 4.5±0.7 12.2 

f: fixed during fitting 

The coordination number (N) in bulk fcc metals (e.g. Au and Pd) is 12. In case of bimetallic 

AuxPdy NPs, two types of coordination numbers are obtained from the Au L3-EXAFS data: 

NAu–Au and NAu– Pd. For AuxPdy NPs with homogeneous mixed alloy structure, the ratio of 

NAu–Au to NAu– Pd should be close to the molar ratio of Au:Pd in the NPs, whereas, NAu–Au to 

NAu– Pd ratios smaller than the Au:Pd molar ratios indicate inhomogeneous alloying 

mixture118. Moreover, the value of NTotal (i.e., NAu–Au + NAu–Pd) can also provide information 

about the structure of the bimetallic NPs. 

Based on this discussion, the alloy structure of AuxPdy NPs can be explained. From the 

values of coordination numbers (N) reported in Table 7, it can be concluded that 

homogeneous mixed nanoalloys were formed for all the bimetallic AuxPdy NPs as for the 

three AuxPdy samples the NAu–Au / NAu–Pd ratios are comparable to the corresponding Au:Pd 

molar ratios. The NAu–Au / NAu–Pd ratios are 2.3, 1.4 and 0.87 and the corresponding molar 

ratios are 2.5, 1 and 0.42 for Au7Pd3, Au5Pd5 and Au3Pd7, respectively. Hence the core of 

the particles is slightly enriched in Au. 

NAu–Au decreases from 9.4 for Au7Pd3 to 7.2 for Au5Pd5 and then finally to 5.7 for Au3Pd7. 

A reverse trend was observed for NAu– Pd, as it increases from 3.3 for Au7Pd3 to 5.0 for 

Au5Pd5 and then finally 6.5 for Au3Pd7. NTotal is close to 12 for all samples indicating that 

there is no significant contribution of surface Au atoms to the EXAFS signal. The Au–Au 

distance also decreases from 2.81 Å (in Au7Pd3) to 2.79 (in Au3Pd7) showing that the 

influence of the shorter Pd-Pd length grows stronger with increasing Pd content. 

Fig. 32c shows XANES spectra of the Au/TiO2 and AuxPdy/TiO2 catalysts at Au L3-edge. 

The first strong resonance in the spectra (white line)142, 143 is due to the electronic transition 

2p → 5d. The intensity of the white line increases if there are more unoccupied 5d states 

(d-holes). In bulk Au 5d electrons are transferred to s–p states due to s–p–d hybridization, 
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while in case of Au NPs, decrease in NP size leads to narrower 5d bands and less s–p–d 

hybridization131. In Fig. 32c-inset, the white line intensities of bulk Au, monometallic Au 

NPs and the three bimetallic AuxPdy NPs supported on TiO2 are compared. The white line 

intensity decreases in the order of bulk Au > Au NPs > Au7Pd3 NPs > Au5Pd5 NPs > Au3Pd7 

NPs, which shows that the number of d-holes decreases with decreasing particle size and 

concentration of Au (i.e. increasing Pd concentration).  

For bimetallic AuxPdy NPs, Liu et al.118 have discussed the effect of size and alloying on 

the white line intensity at the Au L3-edge. Using FEFF 8 simulations of Au L3-edge XANES 

spectra, they showed that the white line intensities decreases in the order of bulk Au > Au55 

> Au55@Pd. Based on the obtained results, it has been proposed that the Au–Pd alloying

effect has a stronger influence on the decrease in white line intensity compared to the size

effect. In the present AuxPdy samples also the white line intensity decreases with increasing

percentage of Pd which corresponds to a higher degree of alloying between Au and Pd.

This result can be further augmented from EXAFS analysis where the rise in NAu-Pd with

increasing Pd content indicates a higher degree of alloying.

The Pd K-edge EXAFS spectra of AuxPdy/TiO2 along with spectra of Pd/TiO2 and a Pd 

reference foil are shown in Fig. 33a-c. The amplitude of the EXAFS oscillations decreases 

in the order of Pd foil > Pd/TiO2 > Au3Pd7/TiO2 > Au5Pd5/TiO2 > Au7Pd3/TiO2. The 

amplitude and shape of the EXAFS oscillations in AuxPdy/TiO2 clearly differ from those in 

bulk Pd and Pd/TiO2. 

The structural parameters obtained from fitting the first coordination shell for these samples 

are given in Table 8. For Pd/TiO2 the value of NPd-Pd is 8.3, which indicates formation of 

small size Pd entities on TiO2. In the case of Au3Pd7, NPd-Pd strongly decreased to 4.0 and 

NPd-Au was 4.1, while NTotal (8.1) is still close to 8. The lower value of NTotal compared to 

the bulk material suggests that some Pd atoms are present at the surface and hence not 

completely surrounded by neighboring Pd/Au atoms. For Au5Pd5, NPd-Pd decreases to 2.8 

and NPd-Au increases to 6.0 showing that Au atoms have replaced almost 70% of the Pd 

atoms in the sample. The value of NTotal slightly increases to 8.8, indicating that more Pd 

atoms are now coordinated to neighboring Au/Pd atoms. In the Au7Pd3 sample, the content 

of Pd is too low which only gives a weak rise to EXAFS oscillations; Therefore, NPd-Pd and 

NAu-Au determined for this sample show large error margins, however, still a further 

decrease in NPd-Pd was observed with lower Pd content. For the AuxPdy samples, Pd-Pd 
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distance slightly increases with increasing gold content compared to the bulk Pd, indicating 

lattice expansion. Furthermore, in all samples Pd is in a reduced state (Fig. 33d).   

In the case of the Au L3-edge EXAFS results, the value of NTotal is always close to 12, 

indicating that most Au absorber atoms are completely surrounded by Au/Pd atoms. 

However, the value of NTotal obtained from Pd K-edge EXAFS fitting was ca. 8 as compared 

to 12 in the bulk material. Thus, in the present Au-Pd system synthesized in the microfluidic 

reactor, the Au atoms are mixed homogeneously with Pd atoms in the core of the NPs, but 

Pd is presumably the dominating element in the surface composition of the nanoalloys. 

Gibson et al.144 used in situ XAS and DRIFTS to study structural changes in AuPd NPs 

(2.5 wt.% of each metal, synthesized via sol-immobilization in a batch reactor) supported 

on γ-Al2O3 during CO oxidation and concluded from the measured data that during reaction 

the particles are restructured resulting in a core-shell like structure with a gold core and a 

Pd shell. However, in the present case it is also possible that some Pd is segregated from 

the alloyed particles. 

Fig.  33 XAS measurements at the Pd K-edge: a,b) k3-weighted EXAFS oscillations and magnitude of the 

Fourier transformed EXAFS data of Pd/TiO2 and AuxPdy/TiO2 in R-space, c) magnitude of the Fourier-

transformed EXAFS of AuxPdy/TiO2 in R-space and d) comparison of the XANES spectra of the produced 

NPs with Pd foil absorption data132. 
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Table 8 EXAFS fit results for Pd/TiO2 and AuxPdy/TiO2 (Pd K-edge), S0
2 = 0.82 ± 0.11. 

Sample NPd-Pd R (Å) σ2 
(10-3 Å2) 

NAu-Pd R (Å) σ2 
(10-3 Å2) 

∆E0(eV) NTotal 

Pd foil 12 2.74±0.00 5.6±0.3 - - - -2.2±0.5 12 
Pd/TiO2 8.3±0.9 2.73±0.02 6.8±0.5 - - - -2.1±1.0 8.3 
Au3Pd7/TiO2 4.1±0.5 2.75±0.00 6.8±0.5f 4.1±0.9 2.76±0.00 7.4±1.1f -2.3±2.0 8.1
Au5Pd5/TiO2 2.8±0.5 2.76±0.01 6.8±0.5f 6.0±0.9 2.77±0.01 7.4±1.1f -2.5±2.0 8.8
Au7Pd3/TiO2 2.3±1.1 2.79±0.05 6.8±0.5f 5.7±1.9 2.80±0.04 7.4±1.1f -1.5±3.7 8.0

f : fixed during fitting 

4.5. CO Oxidation Test on Au/TiO₂, Pd/TiO₂ and AuₓPdᵧ/TiO₂ 

Fig. 34a shows conversion of CO over the TiO2 supported catalysts obtained during heating 

and Fig. 34b shows the corresponding Arrhenius plots. The CO conversion profiles show 

the typical behavior of Au catalysts4, 129, 145 with Au/TiO2 converting 20% of CO already at 

room temperature and a moderate light-off curve reaching full conversion at 120 °C. 

Increasing the Pd content in AuxPdy/TiO2 catalysts results in lower activity at room 

temperature and a steeper light-off. The monometallic Pd/TiO2 catalyst shows the lowest 

activity among the tested samples. The turnover frequencies (TOFs) measured over the 

Au/TiO2 catalyst (Table 9) appears to be in the same range as TOF over Au/TiO2 catalysts 

measured by Tsubota et al12. The TOFs reveal a gradual increase in CO oxidation activity 

with increasing Au content in the order of Pd/TiO2 < Au5Pd5/TiO2 ≤ Au3Pd7/TiO2 < 

Au7Pd3/TiO2 < Au/TiO2, which agrees well with the series previously published by Xu et 

al.129 and allows the conclusion that the CO oxidation activity of homogeneous mixed 

nanoalloys of AuxPdy in CO oxidation can be described as a sum of activities of the 

individual Au and Pd components127 without revealing synergistic effects. 

Apparent activation energy decreases in the order of Pd/TiO2 > Au3Pd7/TiO2 > 

Au5Pd5/TiO2 > Au7Pd3/TiO2 > Au/TiO2. Monometallics of Au and Pd catalysts display 

similar Ea to those published by Xu et al.129 and follow the same qualitative trend reported 

for Au (100) and Pd (110) surfaces146. However, unlike the work of Xu et al.129, the 

bimetallic catalysts prepared for this study exhibit Ea values in between those values for the 

monometallic samples which rules out noticeable synergistic effects. 
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Fig.  34 a) CO conversion and b) corresponding Arrhenius plots obtained during CO oxidation. Conditions: 

1000 ppm CO, 10% O2 in N2, 300 mg of catalyst, 600 mL min-1 flow and 1 °C min-1 temperature ramp rate132. 

Table 9 Apparent activation energies for CO oxidation and turnover frequencies obtained over calcined pure 

TiO2, Au/TiO2, Pd/TiO2 and AuxPdy/TiO2 catalysts. 

Catalyst Ea 
(kJ mol-1) 

TOF273 K 

(s-1) 
TOF313 K 

(s-1) 
Surface areab 

(m2 g-1) 
Au/TiO2 27 1.9 x 10-2a 8.9 x 10-2a 178 

Au7Pd3/TiO2 36 6.0 x 10-3 4.5 x 10-2 178 
Au5Pd5/TiO2 49 1.2 x 10-3 1.9 x 10-2 194 
Au3Pd7/TiO2 53 1.8 x 10-3 3.5 x 10-2 162 

Pd/TiO2 55 4.4 x 10-4a 9.7 x 10-3a 189 
TiO2 - - - 154 

a: Assuming comparable NP diameter as bimetallic catalysts and b: from Brunauer–Emmett–Teller (BET) 
measurements.  
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4.6. Conclusion 

In this chapter, the application of the microfluidic reactor (cf. section 2.1) to synthesize 

AuPd nanoalloys in a precisely controlled continuous microflow was shown. The 

microfluidic chip features three cyclone micromixers located immediately after the inlets 

for the reactants, necessary to achieve homogeneous turbulent mixing of the reactants in a 

very short time regime (2 ms) at 2.6 L h-1 flow rate and a Reynolds number of ca. 2400. By 

spatially and temporarily homogeneous mixing of the solutions in the micromixers 

followed by flowing through the microchannel (for 20 ms), highly monodispersed 

ultrasmall Au, Pd and AuPd colloids were produced using fast reduction reactions (NaBH4 

as reducing agent and PVP as surfactant). 

The STEM images proved formation of NPs with 1-2 nm diameters. HRTEM investigations 

of the AuPd bimetallic samples indicate the presence of a crystal-like structure in a single 

NP with lattice spacings between of those of pure Au and pure Pd, whereas EDX mapping 

shows a uniform distribution of Au and Pd in one selected particle. The strong suppression 

of SPR of gold in the UV-vis spectra showed the formation of ultrasmall Au and AuPd NPs 

and also the full reduction of Pd2+ to metallic Pd0. The produced colloidal NPs aggregated 

after deposition on titania and calcination to about 5-7 nm.  

XANES and EXAFS spectra of Au/TiO2 and AuxPdy/TiO2 catalysts in the form of pellets 

showed variation in white line intensity at the Au L3-edge correlated to the extent of 

alloying between Au and Pd in these NPs which leads to the conclusion that Au–Pd alloying 

causes a decrease in white line intensity. The structure and amplitude of EXAFS 

oscillations at the Au L3- and Pd K-edge varied with increasing concentration of the second 

metal. The peaks in the FT data were shifted for bimetallic NPs indicating a change in the 

lattice constant due to alloy formation. The ratio of the Au-Au and Au-Pd coordination 

numbers obtained from Au L3 EXAFS data point towards formation of a homogeneous 

alloy. Furthermore, coordination numbers extracted from Pd K-EXAFS data revealed the 

formation of a homogeneous mixture of Au and Pd in these alloyed NPs with either Pd 

dominating at the NP surface or being segregated as smaller monometallic particles. Since 

XAS is basically a bulk sensitive technique, the next chapter will shine a light on the surface 

properties of the NPs based on characterization by surface sensitive methods, i.e. XPS and 

particularly UHV-FTIR.  
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CO oxidation was chosen as a test reaction to demonstrate the catalytic activity of the 

produced catalysts along with the monometallic samples, revealing Au as the most active 

catalyst, Pd as the least active one and AuPd in between useful for fine-tuning of the 

catalytic results but without noticeable synergistic effects. 

The next chapter introduces UHV-FTIR as an additional, surface sensitive characterization 

method which was used with CO as probe molecule to investigate microfluidically 

synthesized Au, Pd and AuxPdy NPs on TiO2 by identifying the different Au/Pd entities on 

the catalyst surface.    



64 
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5. Surface Analysis of AuₓPdᵧ/TiO₂ by CO as a Probe
Molecule and Sensing Applications3

Previous chapters reported on the microfluidic synthesis and characterization of Au, Pd and 

alloyed AuPd nanoparticles (in colloidal solution and supported on TiO2) as well as 

catalytic tests. While so far, mainly the overall composition and structure of the particles 

were investigated, the focus in this chapter will be laid on specifically surface sensitive 

characterization. In order to include an additional facet of potential applications, the 

produced Au, Pd and AuPd alloyed NPs were supported on SnO2 and tested as gas sensors. 

5.1. Introduction 

Small particle sizes trigger two key parameters in increasing the catalytic activity of 

supported Au NPs: a higher number of low-coordination sites and an increase in the total 

length of perimeter sites at the metal-support interfaces. It is difficult to separate the effects 

of these factors from each other, and therefore hard to understand their individual roles in 

the synergistic performance. Additionally, the quantum size effect and the strain effect add 

up to this open debate9, 147, 148.  

In the case of large Au NPs and bulk gold, the CO oxidation reaction (CO + ½ O2 → CO2) 

cannot proceed since the gold surface (stepped or polycrystalline) is not able to dissociate 

O2 to form oxygen adatoms (Oads) at temperatures between 200 and 500 K, and there is no 

evidence for significant adsorption of CO. In a Langmuir-Hinshelwood-type reaction, 

simultaneous adsorption of CO and active oxygen is necessary for CO oxidation149-151. 

Interestingly, on gold films with only two-atom layer thickness likewise CO oxidation 

occurs (not on thinner and thicker films) and also the surfaces of gold single crystals show 

CO oxidation activity even at liquid N2 temperature (ca. 73 K) if the surface is pre-dosed 

with atomic oxygen152. Therefore, the oxygen adatoms should either be injected onto the 

gold surface, or provided by a second element on the catalytic surface which is able to 

dissociate oxygen molecules. In this case, spill over of the as-formed Oads onto Au active 

sites (which already adsorbed CO) might occur, which then triggers the CO oxidation 

reaction. One such second element could be palladium to form a AuPd alloy, since Pd is 

capable of dissociating O2 even at 150 K. Under steady-state conditions, pure Pd is active 

for CO oxidation at higher temperature (above 400 K). Therefore, the low temperature CO 

3 Parts of this chapter will be submitted to scientific journals for publication. 
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oxidation reaction should take place under a less demanding conditions on supported AuPd 

nanoalloy particles compared to supported Au NPs149, 153, 154.    

In this chapter, the effect of alloying on titania-supported AuxPdy NPs with respect to the 

structure, morphology and surface properties is investigated. Using a novel UHV-FTIR 

apparatus at KIT-IFG (project leader Dr. Y. Wang), a systematic study on the adsorption 

of CO molecules on different entities (Ti4+, Au0, Pd2+, atop Pd0 and bridge Pd0) of Au/TiO2, 

Pd/TiO2, and AuxPdy/TiO2 at different temperatures was performed in order to gain a 

comprehensive understanding of CO oxidation reactions on alloy surfaces.  

5.2. Nanoparticles Synthesis and Catalyst Preparation Procedure 

5.2.1. Materials 

HAuCl4·3H2O (Roth, 99.5% purity), K2PdCl4 (Alfa Aesar, 99.99% purity), PVP (Sigma-

Aldrich, average molecular weight 40 kDa), NaBH4 (Sigma-Aldrich, 99.99% purity), 

H2SO4 (Sigma-Aldrich, 95% purity) and TiO2 (Evonik, commercially available Aeroxide 

P-25, anatase:rutile phase ratio of 80:20, surface area 50 m2 g-1) were used without further

purification.

5.2.2. Microfluidic Synthesis of Colloidal Au, Pd and AuxPdy NPs 

Parameters for NP synthesis following the colloidal route for preparation of ultrasmall Au, 

Pd and AuxPdy NPs in the microfluidic reactor were adopted from section 4.2.2. The 

nominal molar Au:Pd ratios were 1:0, 7:3, 5:5, 3:7 and 0:1.  

5.2.3. Preparation of Au, Pd and AuxPdy on TiO2 

After dispersing 1 g TiO2 in 80 mL deionized water in an ultrasonic bath, the obtained 

colloidal NPs synthesized in the microfluidic reactor were added to the suspension at room 

temperature and stirred for 1 h. Prior to the impregnation with NPs, the TiO2 support was 

acidified with 0.1 mL pure H2SO4 solution (suspension pH: 2). Afterwards, the suspension 

was centrifuged 4 times at 4500 rpm for 5 min and washed with water in between. Finally, 

the catalysts were dried at 80 °C overnight and calcined at 400 °C for 3 h in static air. This 

method was applied for preparing 2.4 wt.% Au/TiO2, Pd/TiO2 and AuxPdy/TiO2. 
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5.3. Characterization of Au/TiO₂, Pd/TiO₂ and AuₓPdᵧ/TiO₂ 

5.3.1 STEM and EDX 

Earlier in section 4.3., it was shown that the colloidal synthesis of ultrasmall Au and Pd as 

well as AuxPdy NPs with a homogeneous alloy structure was achieved using a microfluidic 

reactor. Fig. 26 shows a STEM image of highly monodispersed spherical NPs with average 

diameters of ca. 1 nm stabilized by PVP. In this chapter, the same colloidal samples were 

produced and deposited on a frequently studied TiO2 (AEROXIDE P-25) support in order 

to investigate the influence of alloying on the mechanism of CO oxidation on the surface 

of Au/TiO2, Pd/TiO2 and AuxPdy/TiO2.    

The particle morphology and size distribution of the produced NPs deposited on TiO2 after 

calcination at 400 °C are shown in Fig. 35. From these STEM images and the corresponding 

histograms, it can be concluded that the size of the NPs increased after deposition and 

calcination. However, the alloyed AuxPdy NPs, especially the Au-rich alloys (Au7Pd3 and 

Au5Pd5) show significantly smaller particle sizes and narrower size distributions compared 

to Au/TiO2. This could be attributed to the effect of alloying with Pd which apparently 

prevented the aggregation of NPs to larger sizes. Interestingly, the images of pure Pd/TiO2 

do not clearly show the Pd NPs on the support, probably due to the oxidized state of Pd 

after calcination resulting in a lower contrast with the titanium oxide, as supported by the 

IR results shown below. In the case of Pd-rich Au3Pd7 alloy, it is difficult to precisely 

determine NP sizes since there is a segregated contiguous surface layer around the NPs on 

the support. EDX mapping (Fig. 36) indicated the presence of Pd in this contiguous surface 

layer. Accordingly, some Pd is segregated out of the NPs, although, Pd is also present 

together with Au in the NP core. In the Au-rich alloys, Au and Pd atoms are distributed 

uniformly, and located only at the NP positions. The combination of STEM and EDX 

mapping indicates that alloying decreases NP agglomeration compared to monometallic 

Au NPs under the applied preparation condition, and additionally it keeps Pd close to Au 

atoms in the NP structure, which eventually influences the performance of the catalysts. 

Additionally, in order to differentiate between the effects of calcination and 

deposition/drying on the sintering of the NPs, one uncalcined sample (Au7Pd3/TiO2) was 

selected for STEM analysis in order to compare the size distribution histograms before and 

after calcination. Comparison of the results (Fig. 37) clearly shows that the mean NP size 

increased from 1.3 nm in colloidal form to 4.1 nm after deposition and drying, and further 
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to 5.2 nm after calcination. Moreover, the NP size distribution was broadened after 

calcination.  

Fig.  35 STEM images and size distributions of calcined a) Au7Pd3, b) Au5Pd5, c) Au3Pd7, d) Au and e) Pd 

NPs supported on titania. 
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Fig.  36 STEM-EDX mapping of calcined a) Au7Pd3, b) Au5Pd5 and c) Au3Pd7 NPs supported on TiO2.

Fig.  37 STEM image of uncalcined Au7Pd3/TiO2 and its size distribution comparison with colloidal Au7Pd3 

NPs (Fig. 26a) and calcined Au7Pd3/TiO2 (Fig. 35a).
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5.3.2 In situ XANES Spectroscopy 

In order to identify the initial oxidation state of Pd in calcined Pd/TiO2 and AuPd/TiO2 

catalysts and to investigate whether it changes during the annealing treatment (UHV, 

heating up to 400 °C for 1 h followed by cooling down to room temperature) before the 

UHV-FTIR experiments, the samples were characterized in situ by XANES spectroscopy 

under inert conditions (N2 gas flow), while heating up to 400 °C and afterwards cooling 

down to room temperature. Selected spectra recorded during heating up cycles shown as 

examples in Fig. 38. They indicate a dominance of oxidized palladium in both samples at 

all temperatures applied. A very similar behavior was observed during the cooling cycles. 

For better comparison with the metallic state (i.e. oxidation state zero) spectra of a Pd foil 

were measured as a reference and included in Fig. 38. They clearly differ from the spectra 

of the NPs, which accordingly are dominated by oxidized species. 

Fig.  38 In situ XANES spectra of a) Pd/TiO2 and b) Au5Pd5/TiO2 in quartz capillaries recorded during heating 

to 400 °C at a ramp rate of 5 °C min-1 in a N2 flow (33 ml min-1).   
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5.3.3 X-Ray Photoelectron Spectroscopy 

Figure 39 shows the Au 4f and Pd 3d XP spectra of various AuxPdy/TiO2 samples pretreated 

by annealing at 400 °C for 1h under UHV conditions. In the Au 4f region (Fig. 39a), two 

spin−orbit components at 84 and 87.7 eV are observed for all Au-containing samples, 

which are characteristic for metallic Au0 species. The Pd 3d peaks in the XP spectra are 

dominated by two spin−orbit components of Pd 3d5/2 and Pd 3d3/2 (Figure 39b). For the pure 

Pd and Pd-rich (70%) AuPd alloy NPs, after deconvolution, two doublets are clearly 

resolved at 335.3 and 340.6 eV as well as at 337.1 and 342.4 eV, which are assigned to 

metallic Pd0 and Pd2+ species, respectively155-157. On the basis of quantitative analysis, the 

concentration of Pd2+ on the surface was estimated to be about 14.4% in the case of 

monometallic Pd/TiO2 sample, and about 9.9% for Au3Pd7/TiO2. These results reveal the 

presence of oxidized Pd2+ species at the surface of pure Pd and segregated contiguous Pd 

NPs in Au3Pd7/TiO2 as shown by STEM-EDX (Fig. 36). The surface Pd2+ species are likely 

formed via the activation of dioxygen at the active Pd sites. Interestingly, for other 

bimetallic samples, where the Pd atoms exist only in the form of alloy, the Pd2+ species was 

not observed. This finding indicates a strong interaction between Au and Pd. The Pd 3d5/2 

core-level overlaps with the relatively broad Au 4d5/2 peak at 335.2 eV, which is resolved 

for the gold-rich (Au5Pd5 and Au7Pd3) alloys. 

Fig.  39 Deconvoluted XP spectra of AuxPdy/TiO2 samples (x:y = 1:0, 7:3, 1:1, 3:7, 0:1): a) Au 4f region and 

b) Pd 3d region.
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5.3.4 UHV-FTIR Spectroscopy with CO as Probe Molecule 

A fundamental study on the adsorption of CO on the TiO2  supported Au, Pd and AuPd NPs 

was performed using a novel UHV-FTIR apparatus78, 158 at KIT-IFG in order to investigate 

the effect of alloying on CO adsorption based on high-quality temperature-dependent FTIR 

spectra. In the following section, the obtained results will be presented for each sample 

separately in detail, and then compared in order to address the effects of alloying in AuPd 

catalysts. Different surface adsorption sites such as Ti4+, Au0, Pd2+, atop Pd0 and bridge Pd0 

on Au/TiO2, Au3Pd7/TiO2, Au5Pd5/TiO2, Au7Pd3/TiO2 and Pd/TiO2 were investigated after 

exposure to 2 × 10-3 mbar CO at different temperatures. Stretching bands of CO adsorbed 

on monometallic Au or Pd NPs above 2000 cm-1 can be assigned to linearly adsorbed CO 

and bands below 2000 cm-1 to CO adsorbed in a bridged configuration159-162. 

UHV-FTIR spectra of Au/TiO2 powder were recorded at different temperatures. In Fig. 40, 

the peak centered at 2187 cm-1 in the spectrum recorded at 105 K is attributed to CO 

adsorbed on Ti4+. Based on the temperature-dependent IR data, the binding energy of CO 

was estimated to be about 40 kJ mol-1, which indicates a rather weak interaction between 

CO and Ti4+. Its intensity decreased rapidly with increasing temperature and also slightly 

shifted to higher wavenumbers, due to reduced adsorbate-adsorbate interactions158.  

Moreover, with increasing temperature from 105 K to ca. 190 K, the amount of CO 

absorbed on Au sites increased (υCO at 2118-2129 cm-1) due to restructuring of the CO 

adlayer from a non-uniform distribution at low temperatures to a more homogeneous 

molecular environment and thereby an increase in order, and also a thermal diffusion of 

CO adsorbed at Ti4+ sites to more stable Au sites163, and then again decreased. This was 

accompanied by a slight blue-shift in frequency from 2118 to 2129 cm-1, until it completely 

vanished at 260 K. It is known that the typical frequency of CO adsorbed on neutral Au0 

sites is located at ~2100-2110 cm-1 wavenumber148, 164-167. The observed blue-shift for CO 

on Au/TiO2 reveals an electronic modification of surface Au species via strong interactions 

between Au and the TiO2 support at the interfacial sites. CO preferentially adsorbs 

chemically on the low-coordinated Au sites at Au/TiO2 interfaces and completely desorbs 

only after heating to 260 K, in a accordance with the literature148. Interestingly, in the 

corresponding XPS data only metallic Au0 species were detected. These findings suggest a 

strong interaction between Au and TiO2 support at the interfacial sites. 
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Fig.  40 UHV-FTIR spectra recorded during CO adsorption on the Au/TiO2 catalyst after exposure to 2×10-3 

mbar CO at different temperatures. 
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As the next sample, the Pd/TiO2 powder catalyst was investigated by UHV-FTIR 

spectroscopy under the same conditions to study the behavior of pure Pd (Fig. 41). 

Noticeably, a strong contribution of a υCO signal from adsorption to Pd2+ sites (2152-2163 

cm-1) was observed in wide temperature range (105-430 K). Upon increasing the

temperature to 200 K, the 2161 cm-1 band becomes more intense due to desorption of CO

on Ti4+ for the same reasons as discussed for Au/TiO2. It is known that CO molecules bound

to specific surface Pd0 sites exhibit different vibrational frequencies: typically 2110-2070

cm-1 for linearly (on-top) bonded CO, 2000-1900 cm-1 for 2-fold bridging CO, and 1900-

1800 cm-1 for CO adsorbed on 3-fold hollow sites146, 159, 168. Interestingly, the decrease in

the intensity of the band corresponding to CO on Pd2+ started around 260 K, which is clearly

correlated to the rise in the intensity of the band corresponding to CO on Pd0. This results

indicate surface Pd2+ reduction to metallic Pd0 via CO oxidation with Pd-bonded oxygen

species. Worth mentioning, the presence of oxidized Pd in the sample was confirmed earlier

by in situ XAS and XPS data. In the spectra of this sample, the atop CO on Pd0 was observed

at around 2097-2109 cm-1, i.e. compared to Au/TiO2 at higher temperatures with a

maximum band intensity at 425 K, which decreased with increasing temperature again until

it disappeared at 500 K.

After studying the behavior of monometallic Au and Pd NPs supported on TiO2 with respect 

to adsorption of CO probe molecules, UHV-FTIR spectroscopy was applied to the more 

complicated samples, i.e. the AuPd alloys. In the case of Au3Pd7/TiO2, as shown in Fig. 42, 

there is a large amount of CO adsorbed to Pd2+ sites (band at 2152-2161 cm-1) similarly to 

pure Pd/TiO2 in the same temperature range; i.e. with increasing temperature from 110 K 

to 210 K the intensity of the band attributed to CO on Pd2+ increased and afterwards 

decreased to zero at ca. 380 K. Moreover, a red-shift in this peak position during heating 

was observed. The υCO at 2092-2099 cm-1 was attributed to CO adsorbed on atop Pd0, 

similar to the Pd/TiO2 sample. However, the most pronounced difference between the 

spectra of this alloy and the monometallic Pd/TiO2 was the significant bridging CO on Pd0

peak in Au3Pd7/TiO2, which indicates segregated contiguous Pd sites. This observation is 

in agreement with STEM and EDX mapping which clearly indicated the presence of a Pd 

layer surrounding the alloy NPs. This peak at 1950 cm-1 began to grow from 110 K on, 

reached its maximum intensity at ca. 240 K and then decreased gradually with increasing 

temperature until it vanished at 430 K. Moreover, the peak at 2092-2105 cm-1 corresponds 
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to atop CO on Au0 and Pd0 sites, which is red-shifted compared to the pure Au/TiO2 catalyst 

presumably due to the chemical modification of gold sites in the alloys.  

Fig.  41 UHV-FTIR spectra recorded during CO adsorption on the Pd/TiO2 catalyst after exposure to 2×10-3 

mbar CO at different temperatures. 
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Fig.  42 UHV-FTIR spectra recorded during CO adsorption on the Au3Pd7/TiO2 catalyst after exposure to 

2×10-3 mbar CO at different temperatures. 
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The catalytic experiments (cf. Section 5.3.5) prove that the Pd-rich Au3Pd7/TiO2 sample 

showed superior performance in CO oxidation compared to the other AuxPdy/TiO2 

catalysts. This could be related to a synergistic effect, where the Pd-enriched (contiguous) 

sites activate O2 while CO chemisorbs on both bimetallic Au and Pd sites. CO binds weaker 

to Au sites of the bimetallic structure compared to Pd, which should facilitate the low-

temperature CO oxidation by diminishing self-poisoning. 

The spectra of the Au5Pd5/TiO2 catalyst (Fig. 43) show a significantly higher band intensity 

of CO adsorbed on Pd bridge sites, rising at 1950 cm-1 at 110 K and gradually shifting to 

1921 cm-1 with increasing temperature up to 380 K. In this case, in contrast to the pure Pd 

and Pd-rich alloy NPs, CO tends to adsorb mostly on atop Pd0, Au0 (around 2109 cm-1) and 

bridge with Pd0 atoms, while the CO-Pd2+ was observed only as minority species (suggested 

also by XPS). Moreover, such bridging of CO to Pd0 indicates Pd segregation at the NP 

surface, where CO preferentially binds in a bridging configuration with a higher binding 

energy.  

Fig. 44 shows spectra of the Au7Pd3/TiO2 catalyst with high intensities of CO adsorption 

on Au sites reaching a maximum at around 200-210 K. The feature at 2110 cm-1 at 110 K 

was split into two peaks with increasing temperature: one part of it was blue-shifted to 2121 

cm-1 with increasing temperature up to 260 K which was assigned to CO bound to Au0 next

to Pd in on-top configuration, while the other part was slightly red-shifted to 2102 cm-1 at

300 K and attributed to CO bound to Au0-enriched (contiguous) sites. In this case, CO

absorbed on Pd2+ was not observed. However, a strong contribution of CO on atop Pd0 in

a wide temperature range was observed. In this case, the shoulder at 2086 cm-1 at 110 K

(assigned to CO atop Pd0) grew in intensity and slightly red-shifted to ca. 2083 with

increasing temperature up to 250 K, and then decreased in intensity until it disappeared at

400 K indicating that CO is bound stronger to Pd atoms than to Au. In addition, this band

exhibits a red-shift in frequency to 2072 cm-1 with rising temperature. This coverage-

dependent frequency shift is primarily caused by the adsorbate dipole-dipole coupling

interactions, which are typical for CO adsorption on metal surfaces169, 170. There was also a

a small contribution of bridging CO adsorbed on Pd0, which indicates small amount of Pd

patches at some positions on the surface. This weak bridging CO band at 1940-1950 cm-1

reached maximum adsorption at 220 K. The IR data demonstrates that the Au7Pd3/TiO2

surface was dominated by bimetallic Pd0 and Au0 atoms whereas no CO-Pd2+ species was

detected. As discussed in the XPS section, according to Pauling’s electronegativity scale a
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net Pd to Au charge transfer is expected upon alloying. However, this intermetallic charge 

transfer is partially compensated by the enrichment of Pd d-electrons and the depletion of 

Au d-electrons171-173. The IR data provided insights into the electronic structure changes of 

the bimetallic Au and Pd components. A decrease in the Au d charge weakens the electron 

back-donation from Au into the CO 2π* orbital and consequently strengthens the C−O 

vibration. In contrast, a red-shift of the CO-Pd0 band occurs as a result of the charge transfer 

into the d bands of Pd. In fact, at 2086-2072 cm-1 the IR band of CO adsorbed on-top of 

bimetallic Pd sites was observed, which is shifted clearly to lower frequencies compared to 

CO bound to monometallic Pd atop sites (2100 cm-1). For bimetallic Au-bonded CO (~2120 

cm-1) a blue-shift with respect to CO adsorbed at Au-enriched sites (2102 cm-1) was

observed.

A summary of the IR frequencies and binding energies of CO adsorbed on different sites 

of Au, Pd and AuPd supported on TiO2 is shown in Fig. 45. For monometallic Au and Pd 

NPs, the Au0 and Pd2+ cations were identified as majority of species, while for bimetallic 

AuPd NPs, Au0, atop Pd0 and bridge Pd0 become the dominating species. This implies a 

strong electronic interaction between Au and Pd in the AuPd nanoalloys in which the 

electrons transferred from Au to Pd keep surface Pd mostly in a metallic state. Interestingly, 

in Au3Pd7 both Pd2+ and Pd0 species were detected by UHV-FTIR. In this case, segregated 

Pd could to a considerable extent be responsible for the presence of Pd2+ in this sample, in 

accordance with the results of STEM/EDX mapping, while Pd0 species are due to alloying 

with gold. This confirms the proposed effect of alloying on CO adsorption. The population 

of different entities (Ti4+, Auδ+, Au0, Pd2+, atop Pd0 and bridge Pd0) depends on the ratio of 

Au to Pd, e.g. bimetallic AuPd NPs show a gradual increase in bridge CO-Pd0 with 

increasing Pd concentration. According to the literature, the IRRAS features of CO 

adsorbed on a single crystal AuPd (100) surface were observed at 2060-2085 cm-1 for atop 

CO on isolated Pd and at 1900-2000 cm-1 for bridging CO on contiguous Pd sites, 

respectively. The υCO peaks above 2100 cm-1 correspond to atop CO on Au129, 149. These 

findings are comparable with the present study, considering the fact that investigation of 

supported NPs involves random crystallographic planes and phase segregations.   
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Fig.  43 UHV-FTIR spectra recorded during CO adsorption on the Au5Pd5/TiO2 catalyst after exposure to 

2×10-3 mbar CO at different temperatures. 
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Fig.  44 UHV-FTIR spectra recorded during CO adsorption on the Au7Pd3/TiO2 catalyst after exposure to 

2×10-3 mbar CO at different temperatures. 
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Fig.  45 Summary of IR frequencies and binding energies of CO adsorbed on different sites of Au/TiO2, 

Au3Pd7/TiO2, Au5Pd5/TiO2, Au7Pd3/TiO2 and Pd/TiO2 after exposure to 2×10-3 mbar CO at different 

temperatures. 

5.3.5 CO Oxidation with and without H2 Reductive Pretreatment 

Au/TiO2, Pd/TiO2 and AuxPdy/TiO2 were tested for CO oxidation in order to assess their 

performance and to investigate whether annealing in inert atmosphere, as done prior to the 

UHV-FTIR measurements results in a more active catalyst. For this purpose, CO oxidation 

tests also on the catalysts were applied first after pretreatment in N2 flow up to 400 °C for 

1 h, and without any reduction process. Afterwards, the tests were repeated under the same 

conditions after reduction in H2 at 250 °C for 1 h to reduce the oxidized metal NPs. Fig. 46 

shows the CO oxidation tests after both pretreatments and their corresponding reaction rate 

(r). While Pd/TiO2 and AuxPdy/TiO2 started to show significant activity above 100 °C, 

Au/TiO2 exhibited ca. 30% CO conversion at this temperature. With a gentle light-off 

curve, Au/TiO2 reached full conversion at ca. 227 °C. On the other hand, CO conversion 

by Pd/TiO2 and AuxPdy/TiO2 catalysts steeply rose in such a way that between 147-177 °C 

full conversion was achieved (at lower temperature compared to Au/TiO2). Although, 
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different pretreatments did not alter the results drastically, the H2 pretreatment definitely 

increased the activity of the samples. Among the bimetallic samples, Au3Pd7/TiO2 showed 

the best performance, which was more obvious in the case of pretreatment with only N2. 

The higher catalytic performance of Au3Pd7/TiO2 could be attributed to the coexistence of 

isolated and alloying Pd NPs as imaged in STEM-EDX (Fig. 36). The isolated Pd NPs are 

more active in the dissociation of dioxygen forming atomic O species. This could be 

followed by oxygen spillover to the interfacial sites between AuPd and TiO2, where the O 

reacts with activated CO to yield CO2. Reduction of oxidized metal NPs with H2 improved 

the activities of Au5Pd5/TiO2, Au7Pd3/TiO2 and also Pd/TiO2 more clearly compared to 

Au3Pd7/TiO2.  

Kinetic parameters extracted from the conversion curves are shown in Table 10. The rates 

in terms of TOF gradually increase in the order of Au5Pd5/TiO2 < Pd/TiO2 ≤ Au7Pd3/TiO2 

< Au3Pd7/TiO2 < Au/TiO2. Apparent activation energies decrease in the order of 

Au5Pd5/TiO2 > Au3Pd7/TiO2 ≥ Pd/TiO2 ≥ Au7Pd3/TiO2 > Au/TiO2. Reductive pretreatment 

enhanced the CO oxidation rate and lowered the activation energy Ea. This may be due to 

O vacancies (Ov) generated in the reducible TiO2 support. Ov can have a twofold effect: 

They facilitate dissociative adsorption of O2, and can stronger bind adsorbed CO. It is 

known that oxidation of CO to CO2 on metallic clusters is determined by adsorption and 

dissociation of molecular oxygen and the binding strength of carbon monoxide. Since the 

activation energy of CO oxidation over Au5Pd5/TiO2 and Au7Pd3/TiO2 decreased after 

reductive pretreatment, it is assumed that CO poisoning also decreased (which would 

contradict stronger adsorption of CO on Ov of TiO2). Thus, in this case dissociation of O2 

is rate limiting, similar to the pathway proposed for Au/CeO2. The strongest synergetic 

effect of Au and Pd is shown by the PdO containing catalyst. PdO is highly active in 

dissociative adsorption of O2, and metallic AuPd sites adsorb CO without being poisoned. 

The fact that Ea and TOF over Au3Pd7/TiO2 virtually do not change after reductive 

activation indicates that O2 activation is passed on from Ov in the TiO2 support to PdO 

(reductive pretreatment leads to Pd0 which is known to quickly reoxidize at intermediate 

temperatures in the presence of O2, i.e. the reductive activation does not stabilize Pd0 in the 

oxidizing feed).  

These results indicate that the bimetallic catalysts show synergistic effects at higher 

temperatures, with Au3Pd7/TiO2 revealing the highest activity in CO oxidation due to AuPd 

alloyed NPs responsible for adsorption of CO without being poisoned and Pd2+ component 
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activating molecular O2. These findings confirm the anticipation based on UHV-FTIR data 

regarding the catalytic performance of such samples. 

Fig.  46 CO conversion over Au/TiO2, Au3Pd7/TiO2, Au5Pd5/TiO2, Au7Pd3/TiO2 and Pd/TiO2 catalysts after 

(a) N2 and (c) H2 pretreatment and their corresponding Arrhenius plots (b and d), respectively. Conditions:

1000 ppm CO, 10% O2 in N2, GHSV: 48000 h-1 and 1 °C min-1 ramp rate.

Table 10 Apparent activation energies, TOFs and temperatures of 50% CO conversion (T1/2) for CO oxidation 

tests. 

Sample After N2 pretreatment After H2 pretreatment

Ea

kJ mol-1 
TOF313 K 

s
-1

TOF393 K 

s
-1

T1/2 
K 

Ea

kJ mol-1 
TOF313 K 

s
-1

TOF393 K 

s
-1

T1/2 
K 

Au/TiO2 29 1.1 10.3 415 24 1.3 8.5 391 
Au7Pd3/TiO2 44 6.2×10-3 1.9×10-1 435 38 1.5×10-2 3.0×10-1 417 
Au5Pd5/TiO2 77 3.0×10-4 1.1×10-1 428 56 3.5×10-3 2.8×10-1 408 
Au3Pd7/TiO2 50 8.7×10-3 4.3×10-1 412 50 1.2×10-2 6.2×10-1 402 

Pd/TiO2 47 6.1×10-3 2.5×10-1 428 39 1.7×10-2 3.7×10-1 413 
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5.4. Conclusion 

Ultrasmall AuxPdy (x:y = 1:0, 7:3, 5:5, 3:7 and 0:1) NPs were synthesized in a continuous 

flow using the microfluidic reactor presented in this thesis. A flow rate of 1.3 L h-1 was 

chosen for each reactant line (line 1: Au and Pd precursor and line 2: NaBH4 as reducing 

agent.) PVP was used as surfactant in both lines. The ultrasmall colloidal NPs with particle 

sizes of ca. 1 nm were deposited on a TiO2-P25 support. STEM images showed the 

sintering/aggregation of NPs on the support after deposition, drying and calcination 

treatments. Among these samples, AuxPdy/TiO2 (especially the Au-rich alloys) showed to 

a lower extent particle growth (ca. 5 nm). In the case of Pd/TiO2, it was difficult to observe 

Pd NPs by STEM presumably because they were covered by an oxidized Pd layer. 

Combined STEM and EDX mapping demonstrated that there was a Pd segregated 

contiguous layer around the NPs in the Pd-rich alloy (Au3Pd7/TiO2). Interestingly, this 

sample showed some synergistic effect in CO oxidation tests compared to the other 

samples. Au/TiO2 reached full conversion at about 227 °C with a mild light-off curve. 

However, Pd/TiO2 and AuxPdy/TiO2 catalysts showed a steep rise in their activities in such 

a way that full conversions were obtained at lower temperature than Au/TiO2 (between 147-

177 °C). Pd containing catalysts showed higher CO oxidation activity after reduction with 

H2. The effect of this reduction was not significant in the results of Au3Pd7/TiO2, which 

performed better than the other samples. 

XAS spectra of the Pd/TiO2 and AuPd/TiO2 recorded in situ, proved the presence of 

oxidized Pd in the temperature range between 25 and 400 °C under inert conditions. This 

information is necessary to find out whether the oxidation state of palladium changes during 

pretreatment for UHV-FTIR measurements. The Pd2+ species were also detected for pure 

Pd and Pd-rich alloy NPs in the corresponding XPS data. Importantly, XPS results showed 

also the presence of metallic Pd0 as major species, revealing that only the surface Pd was 

oxidized by oxygen. Different surface species (Ti4+, Au0, Pd2+, atop Pd0 and bridge Pd0) 

were identified by in situ IR studies using CO as probe molecule at specific temperatures. 

Within this regards, the behavior of bimetallics differed from the monometallics. This 

means that in the case of monometallic Au and Pd NPs, Au0 and Pd2+ cations were identified 

as majority of species, while for bimetallic AuxPdy NPs, Au0, atop Pd0 and bridge Pd0 

become dominant. The population of these entities altered also with the Au:Pd ratio, e.g. 

bimetallic AuPd NPs show a gradual increase of bridge Pd0 with increasing Pd 
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concentration. These IR results indicated a strong electronic interaction between Au and 

Pd. 

In order to add a new facet to the potential applications, Au, Pd and AuPd NPs prepared in 

the microfluidic reactor were deposited on SnO2 supports with different surface areas. The 

performance of the resulting nanomaterials in gas sensing, specifically detection of CO, 

CH4 and volatile organic compound (VOCs) such as toluene and ethanol, and the influence 

of different metal loadings is discussed in the following section. 
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5.5. Au, Pd and AuPd NPs in Gas Sensing Applications 

Metal oxide semiconductors (MOSs) have motivated research efforts in scientific 

communities with respect to a variety of applications including gas sensors for the detection 

of flammable and toxic gases such as carbon monoxide, hydrogen, methane etc109, 110, 175,

176. One such MOS is tin dioxide (SnO2), an n-type semiconductor with a wide energy gap.

SnO2 has been considered for other applications such as catalysis, rechargeable Li batteries

and optical-electronic devices177, 178. In recent studies, noble metal nanoparticles (e.g. Pd,

Pt and Au) have been doped to SnO2 surfaces as sensitizers in order to alter its electronic

structure, which eventually leads to modification of its chemical and physical properties.

This increases the sensor signal to noise ratio (SNR), stability and sensitivity against

perturbing effects caused e.g. by interfering gases and humidity. With regard to the

performance of such sensors, many characteristic features related to nanoparticles play

influential roles such as particle size and size distribution as well as shape, structure and

metal-support interaction which all depend on the preparation method and further treatment

e.g. calcination temperatures109, 179-184. Operando XAS has emerged as a powerful

technique to gain a deeper understanding of the mechanisms involved in the improvement

of sensing properties upon addition of such sensitizers. In this context, Koziej et al.185

characterized a Pd/SnO2 sample with low metal loading (0.2 wt.%) and observed finely

dispersed Pd in atomic state (or as very small clusters) on the SnO2 surface which

presumably binded to the surface lattice oxygen (in contrast to a 3 wt.% Pd/SnO2 sample

which formed larger Pd clusters). This material improved the sensor signal by well-

dispersed Pd, and not via a spill-over or Fermi-level control mechanism. In this sample Pd

remained oxidized during the operando studies which explains the high performance, since

oxidized Pd shows better sensing properties compared to Pd in metallic state186. Operando

XANES investigations on Au/SnO2 sensor materials by Degler et al.110 indicated a spill-

over mechanism in which oxygen adsorbed on the Au surface was transferred to tin dioxide.

The negatively charged ionic oxygen species were responsible for interaction with the

target gases, hence increasing the sensor performance in presence of Au sensitizers.

In this chapter, the performance of Au, Pd and AuPd NPs doped on two different SnO2 

supports (with different specific surface area) in sensing application is reported in order to 

demonstrate the high potential of the NPs produced in the microfluidic reactor (explained 

in detail in chapter 4). Furthermore, Au/SnO2 samples with different metal were 

investigated to address the effect of metal loading and possible sintering of NPs. In the 
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latter case, the Au NPs were produced in a batch reactor. The sensing tests were performed 

within a collaboration with the University of Tübingen (project leader Dr. N. Barsan).  

5.6. Synthesis and Preparation 

5.6.1. SnO2 Synthesis 

Tin dioxide was provided by the University of Tübingen. The synthesis method was 

aqueous sol-gel, in which SnCl4 (Merck, purified by distillation) was used as precursor. 

The precipitated solid material was filtered and washed several times and dried at 120 °C. 

Afterwards, it was divided into two samples, one calcined at 450 °C and the other at 1000 

°C for 8 h under air. This led to the formation of SnO2 with two different specific surface 

areas; (32.7 m2 g-1 and 3.6 m2 g-1), which in this work will be called as SnO2-HS and SnO2-

LS, respectively. The powders were finally milled before use.  

5.6.2. Microfluidic Synthesis of Colloidal Au, Pd and AuPd NPs and 
Immobilization on SnO2 

The colloidal route for synthesis of ultrasmall Au, Pd and AuPd NPs using a microfluidic 

reactor are described in section 4.2.2. The nominal molar Au:Pd ratios were 1:0, 1:1 and 

0:1. The metal NP solution produced in the microreactor was added to a suspension of 1 g 

SnO2 in 80 mL water acidified with 10 mL H2SO4 solution (0.58 M) while stirring at room 

temperature for 1 h. After adsorption of the metal colloids on the support, the suspension 

was centrifuged three times (4500 rpm, 5 min each) and washed with water until pH 5-6 

was achieved. Subsequently, the material was dried at 80 °C overnight. Afterwards, the 

samples were calcined at 380 °C for 60 min. This method was used to prepare sensor 

materials with different Au, Pd and AuPd loading on SnO2-HS and SnO2-LS. 

5.6.3. Batch Synthesis of Colloidal Au NPs Reduced by THPC/NaOH and 
Immobilization on SnO2 

The colloidal route for synthesis of Au NPs in the batch reactor are described in section 

3.2.4. For immobilizing the Au NPs on the SnO2 support, the metal NP solution produced 

in the batch reactor was added to a suspension of 1 g SnO2 in 114 mL water acidified with 

6 mL H2SO4 solution (0.2 M) while stirring at room temperature. After adsorption of the 

metal colloids on the support, the suspension was filtered and washed 3 times with 

deionized water. Subsequently, the material was dried at 130 °C overnight. Afterwards, the 

samples were calcined at 400 °C for 60 min. This method was used to prepare sensor 

materials with different Au loading (0.25 and 1.0 wt.%) on SnO2-HS and SnO2-LS. 
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5.6.4. Gas Sensor Preparation 

Gas sensors were made by screen printing a paste, made from undoped or metal-doped 

SnO2 powders and an organic binder (propandiol), on alumina substrates equipped with 

interdigitated Pt-electrodes and a backside heating meander (Pt)187. 

Gases were mixed using home-made gas dosing units with mass flow controllers, addition 

the diluted analyte gas to the carrier gas stream (synthetic air, 20.5% vol O2) with a total 

flow of 250 sccm. Humidity levels were dosed by using evaporators filled with deionized 

water. All gases were supplied by Westfalen AG Münster. 

The sensors were heated by applying a specific voltage and current to the backside heaters 

using a DC-powder supply (Agilent E3614A) and adjusting the exact values according to 

the sensor's temperature calibration. All experiments were conducted at 300 °C. The sensor 

response (resistance R) was measured using a digital multimeter (Agilent 34410A). All 

experiments were performed by measuring one sensor at a time to avoid downstream 

effects. 

The sensor signal was calculated based on the following equations: 

- For reducing gases (R0>Rgas; CO, acetone, ethanol, H2O):

𝑆𝑆 =
𝑅𝑅0
𝑅𝑅𝑔𝑔𝑔𝑔𝑔𝑔

- For oxidizing gases (Rgas>R0; NO2):

𝑆𝑆 =
𝑅𝑅𝑔𝑔𝑔𝑔𝑔𝑔
𝑅𝑅0

5.7. Sensing Results 

The strategy was to compensate the effects of different specific surface areas of SnO2 by 

different loadings of Au, Pd and AuPd NPs synthesized in the microfluidic reactor, i.e. by 

depositing 0.1 wt.% metal on SnO2-LS and 1.0 wt.% metal on SnO2-HS, since the specific 

surface areas of SnO2-LS and SnO2-HS differ by one order of magnitude. The results shown 

in Fig. 47 lead to the following observations for this series of samples: 
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Doping SnO2 with monometallic of Au and Pd NPs improved the CH4 sensing signal in 

humid air, in the case of SnO2-LS even in dry air. AuPd had no effect (SnO2-LS) or a 

negative effect (SnO2-HS) on the CH4 sensing signal.  

Au strongly enhanced the CO sensing signal. A positive effect of Pd on CO sensing was 

only observed in the case of SnO2-LS in humid air. With respect to CO sensing, AuPd had 

no beneficial effect on SnO2-HS and worked only for SnO2-LS in humid air. 

Regarding volatile organic compound (VOC) sensings, qualitatively, similar effects of the 

loadings on both SnO2 materials are observed, however in the case of SnO2-LS the effects 

were much stronger. One could highlight the good VOC sensor signals of Au-loaded SnO2-

LS for toluene. 

While Pd and especially Au improved the sensor signals, the AuPd alloy had no such effect, 

except for CH4 sensing in dry air (but not significantly) and CO sensing with SnO2-LS in 

humid air. For all other tested gases/conditions, the signals did not exceed those from 

undoped SnO2 and were in many cases lower. 

Taking the Au doped samples as an example (0.1 wt.% Au/SnO2-LS performed the best), 

one could conclude that the surface concentration is a dominating factor compared to the 

properties of the SnO2 base materials (in most cases undoped SnO2-HS performed better 

than undoped SnO2-LS). In the case of Au/SnO2, there are qualitatively strong differences 

between SnO2 materials, (in the case of AuPd alloy the differences are weaker). However, 

with respect to Pd loading, one could still see the differences comparing the toluene and 

ethanol sensing in dry and humid air, thus there is also an influence of the SnO2 material 

on the sensing performance. 
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Fig.  47 Sensing performance of supported Au, Pd and AuPd on SnO2-LS (1000) and SnO2-HS (450). 

In the case of Au NPs produced in the batch reactor with 0.25 and 1.0 wt.% loading on 

SnO2-HS and SnO2-LS, the following results were obtained (Fig. 48): 

Au NPs enhanced the CO sensing for both SnO2 materials and suppressed the performance 

of both SnO2 materials in NO2 sensing. In the case of VOCs, a distinct role of the SnO2 

material was observed: For SnO2-HS, Au enhanced the signals of ethanol and acetone 

sensing, whereas for SnO2-LS, Au had no positive impact on acetone sensing (decreased in 

dry air, similar in humid air). For SnO2-LS, Au enhanced the ethanol signals in humid air, 

but had no significant effect on sensing in dry air. 

Generally, it can be stated, that there is a difference between the based materials, either due 

to (1) different properties originating from surface termination by hydroxyl groups or 

oxygen vacancy concentration and (2) different specific surface areas leading to a different 

Au concentration per surface area unit of the samples.  
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Fig.  48 Gas sensing performance of undoped and Au-doped SnO2 Materials (SnO2-LS (1000) and SnO2-HS 

(450)). 

5.8. Conclusion and Outlook 

Au, Pd and AuPd NPs synthesized using a microfluidic reactor were (cf. previous chapters) 

deposited on SnO2 (with two different specific surface areas 32.7 and 3.6 m2 g-1) as potential 

gas sensor materials for detection of CO, CH4 and VOCs such as toluene and ethanol. The 

testing conditions were performed in humid and dry air at 300 °C. Compared to undoped 

SnO2, Au and Pd NPs increased the sensor signal. However, the AuPd alloy was not 

successful in the sensor signal enhancement.  

During another series of measurements, Au/SnO2 with different gold loading (0.25 and 1.0 

wt.%) and two different specific surface areas of the base SnO2 materials were tested for 

CO, NO2, acetone and ethanol sensing. In most cases, the sensing performance of SnO2 

was improved by doping gold, except for NO2 detection.  

In all the cases above, clearly the composition of the material, metal loading, the test 

conditions (humid or dry air) and the specific surface area of SnO2 played important roles 
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in the performance of the sensors. Overall, doping with monometallic NPs and lower metal 

loading (0.1 wt.%) on SnO2-LS provided better results.   

In a next step, it would be interesting to investigate the catalytic activity of the same 

samples used in CO sensing also in CO oxidation and to combine such experiments with in 

situ high-energy-resolution fluorescence detected XAS (HERFD-XAS)110, 188 in order to 

identify a mechanism for a deeper interpretation of the sensing data. Moreover, an in-depth 

study on the particle size and the structure of the samples would be beneficial to draw final 

conclusions.       
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6. Microfluidic Synthesis of Cu/ZnO/(Al₂O₃) NPs in a Co-
precipitation Reaction4

The previous chapters were focused on the microfluidic synthesis of noble metal NPs upon 

chemical reduction. In this chapter, co-precipitation is introduced as an additional type of 

reaction to further assess the versatility of the microfluidic chip for synthesis of non-noble 

based catalysts and, in more general, precipitation reactions. Cu/ZnO/Al2O3 nanoparticles, 

which are especially important for methanol synthesis, were prepared microfluidically and, 

for comparison, in a conventional way in a batch reactor. The resulting materials were 

compared with respect to their structural properties.   

6.1. Introduction 

Methanol (MeOH) is an important industrial bulk chemical which can be used as fuel 

additive or precursor for clean fuels. Due to its high energy density MeOH is attractive for 

chemical energy and hydrogen storage. Methanol synthesis has also attracted considerable 

attention in the context of fuel-cell applications. One important catalyst which has been 

used extensively for this purpose in the industry is Cu/ZnO/(Al2O3)32, 189-195. Many studies 

have been carried out to improve the catalytic activity of these catalysts by a rational design 

via the preparation method. One standard synthesis technique for the preparation of 

Cu/ZnO/(Al2O3) is co-precipitation of mixed copper, zinc and aluminum hydroxycarbonate 

(HC) precursor, i.e. introducing a solution containing Cu2+, Zn2+ and Al3+ salts to a 

precipitating agent such as sodium carbonate (Na2CO3)36.  

Specific synthesis parameters such as pH, temperature, ageing time and mixing conditions 

play key roles in the resulting catalytic performance. Fundamental studies in this topic 

conducted by Behrens et al.36 show that temperatures between 60 °C and 70 °C and pH 

values between 6-7 are essential to obtain optimum conditions for synthesis of 

Cu/ZnO/(Al2O3) via co-precipitation. Moreover, ageing of the initial precipitate between 

30 min to 3 h is beneficial due to meso-structuring of the precipitate. These parameters have 

a direct influence on the phase formation of zincian malachite (Cu, Zn)2(OH)2CO3 which 

is known to be a high-performance catalyst. Calcination at relatively mild temperatures 

(326 °C – 426 °C) promotes nano-structuring of the precipitate31, 36. 

4 Part of this chapter will be submitted to a scientific journal for publication. 
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Furthermore, high catalytic activity of Cu/ZnO/(Al2O3) strongly depends on the surface 

area of copper (SACu) and the amount of reactive interfaces with ZnO in a nanoparticulate 

and a porous structure196. It is worth mentioning that metallic Cu clusters represent the most 

active sites for methanol synthesis, however, the role of ZnO in this system is not limited 

to stabilization and distribution of Cu, but also responsible for synergistic effects31, 197. 

Al2O3 on the other hand acts as a structural promoter and prevents or slows down thermal 

sintering of Cu nanoparticles, thereby improving the catalytic activity and stability of the 

Cu/ZnO active sites198. An efficient and homogeneous mixing of metal HC precursor and 

precipitating agent is crucial to distribute cations uniformly in the primary mixed solution, 

i.e. a fast micromixing is required which is very difficult to achieve in conventional stirred

batch reactors due to imperfect mixing conditions and low mass transfer; e.g. in the case of

fast reactions, the reaction process could proceed or be completed before homogeneous

mixing of reactants is achieved. Moreover, by applying a dropwise precipitation method in

a traditional stirred batch reactor the chemical potential of the reactants cannot be controlled

spatially or temporally, i.e. every single drop of reactants is added to a reactor containing a

mixture of precipitates and dissolved/unreacted ions with different concentration during the

entire process time. During ageing, washing and drying of the catalyst precursor, a variety

of different processes such as redissolution, reprecipitation and ion exchange (particularly

between the anions e.g. carbonate/hydroxide and hydroxide/nitrate) is possible resulting in

deviations of the produced materials’ properties from the desired ones. Therefore, co-

precipitation in a continuous microflow with short mixing time is essential. In this case, the

precipitates are formed in a small volume of solution flowing in a microchannel, and are

then collected and post-treated by conventional methods regarding ageing, drying etc. This

leads to higher reproducibility of specific properties of the produced catalysts. Advanced

micromixing devices such as microfluidic reactors, T-mixers and confined impinging jets

reactors have compensated the disadvantages of batch reactors in the recent few years. In

order to achieve fast and homogeneous mixing of the reactants, the design of such setups

is aimed at obtaining the required high mass transfer and short residence time198-200.

However, in most reported studies on NP synthesis in microchannel reactors, the 

concentrations of the metal ions are kept low (< 0.2 mol L-1) in order to avoid severe fouling 

issues occurring during particle precipitation in the microchannel. Moreover, fabrication of 

microreactors with complicated features are difficult and expensive198.  
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There are only a few published studies on using microfluidic reactors for co-precipitation 

reactions. The experiments described in this chapter were carried out in order to investigate 

the performance of the microfluidic chip used in this PhD work with respect to co-

precipitation reactions in Cu/ZnO/Al2O3 synthesis. However, in this case study syringe 

pumps were used instead of the fluid delivery rack (section 2) to inject two streams of the 

reactants separately into the micromixers integrated in the microfluidic chip. For 

comparison, Cu/ZnO and Cu/ZnO/Al2O3 were also produced in a conventional batch 

reactor under optimum conditions adopted from the literature.  

6.2. Microfluidic and Batch Synthesis Procedure 

6.2.1. Materials 

Copper (II) nitrate trihydrate (Cu(NO3)2·3H2O, Sigma-Aldrich, >99% purity), zinc nitrate 

hexahydrate (Zn(NO3)·6H2O, Alfa Aesar, 99.99% purity), zinc oxide (ZnO, Fluka, >99% 

purity), aluminum nitrate nonahydrate (Al(NO3)3·9H2O, Sigma-Aldrich, >98% purity), 

sodium carbonate (Na2CO3, Sigma-Aldrich, >99.95% purity) and nitric acid (HNO3, 

Merck, 65% solution) were used without further purification. 

6.2.2. Batch Synthesis of Cu/ZnO and Cu/ZnO/Al2O3 

Nitrate-derived Cu/ZnO and Cu/ZnO/Al2O3 catalysts were synthesized using a co-

precipitation process in a batch reactor (Fig. 49). This method adopted from Behrens et al.36 

was applied at constant pH. For the metal nitrate solution 21.6 mmol Cu(NO3)2·3H2O, 9.6 

mmol ZnO and 4.4 mmol were dissolved in 38 mL deionized water using 2.5 mL of 

concentrated nitric acid. The overall concentration [Cu2++Zn2++Al3+] was about 1 M. As 

precipitating agent 23 mL of 1.6 M aqueous solution of Na2CO3 was used. The two 

solutions were injected dropwise into the batch rector using a syringe pump. The batch 

reactor is a round-bottom flask containing 100 mL deionized water stirring at ca. 65 °C. 

The flow rates for injecting metal precursor and precipitating agent solutions were 1 and 

0.56 mL min-1, respectively.  The pH of the precipitate was kept constant at 6-7. Afterwards, 

the precipitate was aged for 3 h and filtered and washed several times. This process was 

followed by drying overnight at 70 °C and calcining at 330 °C for 3 h. One synthesis 

resulted in 2 g catalyst (in the case of Cu/ZnO the same procedure was applied, more details 

cf. Table 11).  



 Microfluidic Synthesis of Cu/ZnO/(Al₂O₃) NPs in a Co-precipitation Reaction

96 

Fig.  49 a) Batch synthesis of Cu/ZnO/Al2O3 via co-precipitation at constant pH, b-d) color change during 

precipitation (the starting time of the reactant injection at 10:10).  

6.2.3. Microfluidic Synthesis of Cu/ZnO/Al2O3  

Nitrate-derived ternary Cu/ZnO/Al2O3 catalysts were prepared by co-precipitation of 

aqueous metal nitrates with Na2CO3 using the microfluidic chip (Fig. 50). A metal nitrate 

solution with a Cu:Zn:Al molar ratio of 60:30:10 was prepared by dissolving the precursors 

in 40 ml deionized water (total metal ion concentration 0.3 M). 1 ml concentrated nitric 

acid was added to the solution yielding pH 1. The sodium carbonate concentration was 0.36 

M. Both reactant solutions (each 40 mL) were loaded in to separate syringes and then

injected each at a flow rate of 22 mL min-1 into the microfluidic chip. The precipitate was

then filled into a flask containing 100 mL deionized water stirring at 66 °C. After about 15

min, a color change from blue to green was observed (as seen during reactions in the batch

reactor). The pH of the precipitate was constant at 6-7, and the same ageing, washing,

drying and calcination conditions as in section 6.2.2 were applied. One synthesis resulted

in 0.8 g catalyst.
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Fig.  50 a) Microfluidic synthesis of Cu/ZnO/Al2O3 via co-precipitation at constant pH and a flow rate of 44 

mL min-1, b-e) color change during precipitation (the starting time of the reactant injection at 13:20).  

Table 11 Preparation of the reactants for co-precipitation of Cu/ZnO/(Al2O3) 

Catalyst  Synthesis Technique Metal precursor 
(mmol) 

Na2CO3 (mmol) 

Cu2+ Zn2+ Al3+ 
Cu/ZnO Batch reactor 21.6 9.6 - 36.8

Cu/ZnO/Al2O3 Batch reactor 21.6 9.6 4.4 36.8 
Cu/ZnO/Al2O3 Microfluidic reactor 7.2 3.6 1.2 14.4 

The amount of deionized water for dissolving the metal precursors and precipitating agent for batch 
reactor synthesis was 38 and 23 mL, and for microfluidic synthesis 40 and 40 mL, respectively. 

6.3. Comparison of Cu/ZnO/(Al₂O₃) Produced in the Microfluidic and 
Batch Reactor 

Hydrocarbonate precursors of ternary CuZnAl co-precipitated at constant pH in the 

magnetically stirred-batch reactor and the microfluidic reactor were analyzed by XRD after 

ageing in mother liquor, washing and drying (i.e. uncalcined). The resulting XRD patterns 

(Fig. 51) clearly show reflections of zincian malachite in both cases, however in the XRD 

data of the CuZnAl precipitates prepared in the batch reactor reflections of gerhardtite 
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[Cu2(OH)3NO3] was also observed36. In the XRD patterns of precipitates from microfluidic 

synthesis, the presence of rosasite with poor crystallinity was also detected198. The 

formation of different phases in batch and microreactor could be related to the micromixing 

effect (homogeneous mixing in short time) and the spatially controlled nucleation of the 

primary precipitates in small volumes flowing in the microchannel.    

Fig.  51 XRD patterns of the uncalcined ternary CuZnAl precipitates prepared by different methods indicating 

formation of malachite/rosasite and malachite/gerhardtite phases in precipitates synthesized in microfluidic 

and batch reactor, respectively.

According to literature31, 36, 198, the formation of phases during precursor co-precipitation is 

quite dynamic and during precipitation or even at the end of it other processes such as 

partial dissolution and reprecipitation reaction can occur. It was reported earlier that such 

exchange reactions between malachite [Cu2(OH)2CO3] and hydrozincite [Zn5(OH)6(CO3)2] 

result in formation of rosasite [(Cu,Zn)2(OH)2CO3] and aurichalcite 

[(Cu,Zn)5(OH)6(CO3)2]31, 201-203. The main reactions occurring during the precipitation 

process are the following: 

2Cu2+ + CO32- + 2OH- → Cu2 (CO3) (OH)2 

5Zn2+ + 2CO32- +6OH- → Zn5 (CO3)2 (OH)6 

2Cu2+ + NO3- + 3OH- → Cu2 (NO3) (OH)3
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During the ageing process, the following main reactions of exchange reactions, dissolution 

and reprecipitation proceed: 

Cu2 (NO3) (OH)3 + CO32- → Cu2 (CO3) (OH)2 + NO3- + OH-

Cu2 (CO3) (OH)2 + xZn2+ → (Cu2-x,Znx) (CO3) (OH)2 + xCu2+ 

Zn5 (CO3)2 (OH)6 + xCu2+ → (Zn5-x,Cux) (CO3)2 (OH)6 + xZn2+ 

During post-thermal treatment, rosasite and aurichalcite can decompose into materials with 

uniform distribution of Cu and Zn hydroxycarbonates and higher catalytic activity. Zhang 

et al.190 produced different hydroxycarbonate precipitates containing rosasite and/or 

aurichalcite with various phase structures during co-precipitation using microimpinging 

stream reactors (MISR), which showed broader diffraction peaks of malachite or rosasite 

compared to samples produced in stirred batch reactors. Moreover, in the case of MISR-

produced samples the reflection at 2θ = 31.7° was slightly shifted to higher angles 

indicating contributions of higher amounts of Zn2+ to the malachite structure to form 

rosasite. In other studies it was reported that ZnO nanoparticles act as a stabilizing 

geometrical spacer between copper particles which inhibiting sintering of Cu particles 

which are the main catalytic active sites. This works fruitfully if the majority of the Zn 

atoms were contributing to the zincian malachite precursor phase36.  

In the next step, the ternary CuZnAl precipitates were calcined at 330 °C and investigated 

again with XRD. Additionally, the calcined Cu/ZnO material produced in the batch reactor 

was also analyzed. Reflections of Al2O3 (at 2θ = 19° and 45°) were not observed due to its 

amorphous structure35, 204. The results in Fig. 52 shows the dominant CuO and ZnO phases 

in all three samples. In the case of the microfluidically synthesized catalyst, overall the 

reflections were broader and less intense. The CuO reflection at 2θ = 38.8° in the XRD 

patterns of CuO/ZnO/Al2O3 produced in the microreactor was weaker compared to the 

sample from the batch reactor indicating smaller CuO crystallites according to the Scherrer 

equation. In the literature, it was repeatedly reported that small particle sizes and well-

distributed copper clusters were important for the catalytic performance (activity and 

selectivity) in methanol synthesis via hydrogenation of CO/CO2. Thus, better catalytic 

performance was expected from CuO/ZnO/Al2O3 produced in the microreactor. 
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Fig.  52 XRD patterns of the calcined a) CuO/ZnO/Al2O3 produced in the microfluidic reactor, b) 

CuO/ZnO/Al2O3 and c) CuO/ZnO produced in a conventional stirred batch reactor. 

Table 12 summarizes the main characteristics of the CuO/ZnO/(Al2O3) samples prepared 

by different methods obtained from ICP-OES, BET and chemisorption measurements. 

Based on the ICP-OES results, the molar Cu:Zn:Al ratios in CuO/ZnO/Al2O3 catalysts 

produced in the microfluidic and batch reactors are similar (77:6:17 and 76:8:16, 

respectively). This facilitates to compare their catalytic performance directly. In the case of 

CuO/ZnO catalyst produced from the batch reactor a molar Cu:Zn ratio of 77:23 was 

obtained.    

The BET surface areas of CuO/ZnO/Al2O3 synthesized in the batch reactor and the 

microreactor were 36 m2 g-1 and 49 m2 g-1, respectively. Moreover, CuO/ZnO produced in 

batch reactor had the lowest BET surface area (29 m2 g-1), which could be due to the 

absence of alumina.  

Temperature programmed reduction (TPR) was applied at KIT-IKFT to study the reduction 

of copper entities in the three calcined catalysts (CuO/ZnO/Al2O3 produced in the 

microfluidic reactor, CuO/ZnO/Al2O3 and CuO/ZnO produced in batch reactor). For this 

purpose, reduction of the catalysts in N2O gas, which does not reduce ZnO and Al2O3 at 

the applied temperatures was investigated. As shown in Fig. 53 and 54, in the case of 
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CuO/ZnO/Al2O3 catalyst obtained from the batch reactor, the reduction peak (convolution 

of two peaks at 202 °C and 223 °C) is slightly broader and at higher temperature compared 

to CuO/ZnO/Al2O3 catalyst obtained from the microreactor (convolution of two peaks at 

196 °C and 215 °C). This indicates a narrower size distribution of CuO particles synthesized 

in the microreactor. Moreover, in the TPR data of the batch synthesized CuO/ZnO and 

CuO/ZnO/Al2O3 a strong shoulder at 136 °C and 164 °C, respectively, suggests various 

entities of CuO. The reduction temperatures and profiles are similar to those of Cu/Zn/Al 

systems reported in literature198. Table 12 also shows a smaller active particle diameter, 

higher metallic surface area and higher metal dispersion for CuO/ZnO/Al2O3 produced in 

the microreactor.  

Fig.  53 TPR profiles of the calcined catalysts prepared in the batch and microfluidic reactor. 
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Fig.  54 TPR profiles including curve fittings for of the calcined a) CuO/ZnO and b) CuO/ZnO/Al2O3 catalysts 

produced in conventional stirred batch reactor and c) CuO/ZnO/Al2O3 produced in the microfluidic reactor. 

Table 12 Characterization of calcined CuO/ZnO and CuO/ZnO/Al2O3 produced in the batch and 

microreactor. 

Catalyst  Synthesis 
technique 

ICP-OES 
(wt.%) 

BET 
(m2g-1) 

TPR – N2O gas 

Cu Zn Al Metal 
dispersion 

(%) 

SACu 
(m2g-1)* 

Active 
particle 

diameter 
(nm) 

Cu/ZnO Batch reactor 58.9 18.6 - 29 1.6 10.3 65 
Cu/ZnO/Al2O3 Batch reactor 59.0 6.5 5.2 36 1.5 9.5 71 
Cu/ZnO/Al2O3 Microreactor 59.2 4.5 5.2 49 2.6 17.0 39.5 

*: per gram metal 
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Finally, the samples were studied by electron microscopy combined with EDX mapping 

(performed at KIT-INT). Fig. 55 shows STEM and TEM images of calcined CuO/ZnO 

produced in the batch reactor. TEM measurements combined with EDX mapping (Fig. 56 

and Table 13) on several NPs indicated variations in the Cu:Zn ratio in the NPs and a non-

uniform CuO and ZnO in the sample.   

Fig.  55 STEM images (top) and TEM images (bottom) of calcined CuO/ZnO NPs produced in the batch 

reactor.

Fig.  56 STEM images and the corresponding elemental maps obtained from STEM-EDX spectrum imaging 

in the areas marked by the orange box of calcined CuO/ZnO NPs produced in the batch reactor.
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Table 13 Quantified EDX results from different regions of the CuO/ZnO catalyst produced in the batch 

reactor. 

Particle No. O (at.%) Cu (at.%) Zn (at.%) Cu:Zn ratio 
1 41.5 47.1 11.4 4.1 
2 56.9 23.6 19.4 1.2 
3 59.8 22.2 17.9 1.2 
4 43.9 33.1 22.9 1.4 
5 58.5 30.2 11.3 2.7 
6 49.0 37.7 13.3 2.8 

The morphology of CuO/ZnO/Al2O3 produced in the batch reactor is shown in Fig. 57, 

while the quantified EDX results of different regions and EDX mappings of single 

CuO/ZnO/Al2O3 NPs produced in the batch reactor showed similar distributions of O, Cu 

and Zn in NPs of this catalyst, and the Cu:Zn ratio was also similar (Fig.58 and Table 14). 

The more uniform distribution of metals in this sample could be related to the presence of 

alumina preventing random sintering of NPs.  

Fig.  57 Images obtained from electron microscopy of calcined CuO/ZnO/Al2O3 NPs produced in the batch 

reactor. 

Table 14 Quantified EDX results from different regions of the CuO/ZnO/Al2O3 catalyst produced in the batch 

reactor. 

No. O (at.%) Al (at.%) Cu (at.%) Zn (at.%) Cu:Zn ratio 
1 61.4 1.4 34.9 2.2 15.9 
2 58.3 1.0 39.2 1.6 24.5 
3 54.3 0.6 43.2 1.8 24.0 
4 53.1 0.8 43.9 2.2 20.0 
5 57.9 1.4 39.6 2.0 19.8 
6 58.6 2.2 36.9 2.2 16.8 
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Fig.  58 STEM images and the corresponding elemental maps obtained from STEM-EDX spectrum imaging 

in the areas marked by orange box of calcined CuO/ZnO/Al2O3 NPs produced in the batch reactor.

Fig. 59 shows the morphology of the calcined CuO/ZnO/Al2O3 produced in the 

microfluidic reactor, which seems rather more uniform and fine structured compared to 

NPs produced in the batch reactor. From the quantified EDX results of different regions 

and EDX mappings across a single nanoparticle of this sample (Fig. 60 and Table 15), O, 

Cu and Zn were similarly distributed in the NPs and the Cu:Zn ratio was also similar, but 

different to the ratio in CuO/ZnO/Al2O3 produced in the batch reactor, i.e. the sample 

produced from microfluidic reactor showed a higher amount of Zn and a lower amount of 

Cu respectively to those produced in batch reactor. This is slightly different from ICP-OES 

results, which showed almost the same Cu:Zn ratio in both samples.  
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Fig.  59 Images obtained from electron microscopy of calcined CuO/ZnO/Al2O3 NPs produced in the 

microfluidic reactor.

Fig.  60 STEM images and the corresponding elemental maps obtained from STEM-EDX spectrum imaging 

in the area marked by the orange box of calcined CuO/ZnO/Al2O3 NPs produced in the microfluidic reactor.

Table 15 Quantified EDX results from different regions of the CuO/ZnO/Al2O3 catalyst produced in the 

microfluidic reactor. 

No. O (at.%) Al (at.%) Cu (at.%) Zn (at.%) Cu:Zn ratio 
1 67.2 1.7 28.0 3.1 9.0 
2 57.8 2.4 36.7 3.2 11.5 
3 62.1 9.4 23.9 4.6 5.2 
4 52.3 5.9 36.5 5.4 6.8 
5 59.3 1.1 35.2 4.4 8.0 
6 59.3 3.2 33.6 3.8 8.8 
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6.4. Conclusion and Outlook 

In this study, nitrate-derived CuO/ZnO/(Al2O3) catalysts were synthesized using a co-

precipitation process in a conventional stirred batch reactor and in a continuously operated 

microreactor. XRD measurements revealed that, in both materials zincian malachite was 

the main phase of the precipitated precursor. However, gerhardtite and rosasite phases were 

also observed in CuO/ZnO/Al2O3 synthesized in the batch reactor and microreactor, 

respectively. After calcination, the sample made in the microreactor showed broader XRD 

reflections with lower intensity e.g. the reflection of CuO at 2θ = 38.8° was weaker 

compared to the XRD patterns of the sample from batch reactor indicating smaller CuO 

crystallites according to the Scherrer equation. 

To avoid the heavy deposition of precipitates in the channel and clogging, the precursors 

were diluted. However, the metal ratio was kept at the same level as for batch synthesis. 

ICP-OES results indicated similar Cu:Zn:Al ratios for both CuO/ZnO/Al2O3 samples, 

making it easier to compare the results of the catalytic tests directly. TPR studies suggested 

lower active particle size and higher metal dispersion in the case of the sample produced 

by microreactor. In this case, the reduction peak was also narrower and showed a maximum 

at lower temperatures compared to CuO/ZnO/Al2O3 produced in the batch reactor. 

According to standard BET measurements CuO/ZnO/Al2O3 produced in the microreactor 

showed the largest surface area. 

Electron microscopy showed a uniform and fine structured morphology for the calcined 

CuO/ZnO/Al2O3 NPs produced in the microfluidic reactor compared to those produced in 

the batch reactor. EDX mapping and quantified results for the Cu:Zn ratio in the samples 

showed a homogeneous distribution of metals when Al2O3 was present in the samples, and 

this effect was even more obvious in the case of CuO/ZnO/Al2O3 produced in the 

microfluidic reactor. 

As an outlook based on these results, it is also beneficial to study the catalysts by in situ 

XAS during TPR in order to record dynamic reduction/oxidation behaviors of Cu and Zn. 

Finally, it is planned for the near future to test the catalysts with respect to methanol 

synthesis to investigate their catalytic performance. 
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7. Final Remarks – Summary and Outlook 

The objective of this work was to explore the potential of a novel microfluidic reactor for 

advanced synthesis of highly monodisperse nanoparticles (NPs) in a continuous plug-flow 

at high flow rates, while simultaneously characterizing the particles during formation by in 

situ x-ray absorption spectroscopy. A fluid delivery rack injected the reactants into a 

microfluidic chip with three integrated cyclone micromixers for efficient mixing of the 

reactants within a short time (<2 ms), followed by a meandering microchannel. The total 

residence time of the flow in the microchannel was about 20 ms. In this process, Au and 

Pd as well as alloyed AuxPdy NPs were produced via a fast reduction reaction using NaBH4 

in the presence of PVP. A unique feature of the microfluidic setup lies in its suitability for 

in situ spatially and time resolved studies of early stage kinetics of Au NP formation in fast 

reduction reactions. In situ XAS was used to explore NP formation during Au3+ reduction 

to Au0 by NaBH4 in the presence of PVP.  The reaction progress under continuous flow 

conditions was monitored by recording XAS spectra at different positions along the 

microchannel with a focused X-ray beam. The results revealed that up to 6 ms there was 

still a significant contribution of oxidized Au. The reduction to Au0 was complete within 

the first 10 ms of this fast reduction reaction and remained unchanged at 18 ms. The role 

of PVP was to protect the NPs against further growth, and to increase the electrostatic 

repulsion between metal NPs and the silicon-based channel walls in order to avoid blockage 

of the channel. Moreover, the channel walls were coated with Ombrello, a commercially 

available hydrophobic material in order to repel the PVP-stabilized metal particles. The 

structural and physical properties of the materials thus obtained were compared with NPs 

produced from the same reactants and surfactant in a conventional stirred batch reactor.  

STEM images showed the formation of ultrasmall Au, Pd and AuxPdy NPs with average 

diameters of ca. 1 nm and very narrow size distributions. In the case of NPs produced in 

the batch reactor, the size distribution was broader. UV-vis spectra showed a strong 

suppression of the surface resonance band of Au nanoparticles. In the case of Pd containing 

nanoalloys a Pd chloride peak, indicating unreacted Pd in the reduction process, did not 

appear in the spectra. XPS data of PVP-stabilized NPs indicated negatively charged Au 

NPs due to electron transfer from PVP to Au surfaces. High resolution TEM investigations 

of the AuPd bimetallic samples showed the presence of a single crystal structure in a single 

AuxPdy NP with lattice spacings between those of pure Au and pure Pd, whereas EDX 
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mapping showed a uniform distribution of Au and Pd in one selected particle, i.e. evidence 

of AuPd nanoalloys. 

As a next step, ultrasmall Au, Pd and AuxPdy NPs were deposited on TiO2 supports with 

high (370 m2 g-1/TiO2-G5) and low (50 m2 g-1/TiO2-P25) surface areas for further 

investigation. It was observed that after deposition on TiO2 and calcination the colloidal 

NPs aggregated. Among these samples, Au-rich AuPd alloys on TiO2 exhibited smaller 

average nanoparticle sizes (ca. 5 nm) with a narrower size distribution compared to 

monometallic Au NPs on TiO2. Obviously alloying with Pd prevents aggregation. In the 

case of Pd/TiO2, it was difficult to observe NPs by STEM presumably because they were 

oxidized during calcination. Furthermore, in the Pd-rich alloy (Au3Pd7/TiO2) a segregated 

contiguous Pd layer around the NPs was detected by combined STEM and EDX mapping.  

Au L3-edge XANES and EXAFS data obtained from Au/TiO2 and AuxPdy/TiO2 pellet 

samples exhibited variations in the white line intensity which could be correlated to the 

degree of alloying between Au and Pd in these NPs. Apparently, Au–Pd alloying caused a 

decrease in white line intensity. The shape and amplitude of the EXAFS oscillations in Au 

L3- and Pd K-edge XAS spectra varied with increasing concentration of the second metal. 

In the case of bimetallic NPs, the peaks in the Fourier-transformed EXAFS data were 

shifted, indicating a change in the lattice constant due to alloy formation. The ratio of the 

Au-Au and Au-Pd coordination numbers extracted from Au L3 EXAFS spectra indicated 

formation of a homogeneous alloy. Moreover, coordination numbers obtained from Pd K-

EXAFS data analysis revealed the formation of a homogeneous mixture of Au and Pd in 

these AuPd NPs with either Pd dominating at the NP surface or segregated on the titania 

support. 

In situ XAS data of the calcined Pd/TiO2 and AuPd/TiO2 proved the presence of oxidized 

Pd in a temperature range between 25-400 °C under inert conditions. By employing a novel 

UHV-FTIR apparatus, the surface of the materials was analyzed using CO as probe 

molecule at specific temperatures in order to identify different surface entities such as Ti4+, 

Au0, Pd2+, atop Pd0 and bridge Pd0 (in alloyed or monometallic structures). In the case of 

monometallic Au and Pd NPs, Au0 and Pd2+ cations were identified as most abundant 

species. Bimetallic AuxPdy NPs however behaved differently compared to the 

monometallic particles. In bimetallic AuxPdy NPs, Au0, atop Pd0 and bridge Pd0 dominated, 

depending on the Au:Pd ratio. Moreover, a shift in the CO stretching frequencies indicated 
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a charge transfer from Au to Pd2+ and reduction to Pd0 on the catalyst surface. In the case 

of Au3Pd7, also some Pd2+ was observed which could be related to the lower amount of Au 

in the NPs or attributed to the segregated Pd layer around the nanoparticles on the support.  

Catalytic tests of the samples with respect to CO oxidation showed that Au/TiO2 was the 

most active catalyst, especially at room temperature. Pd/TiO2 as the least active catalyst 

and AuxPdy/TiO2 in between, showing some synergistic effects at higher temperatures 

(Au3Pd7/TiO2 exhibited the highest catalytic activity for CO oxidation and synergistic 

effects). Nevertheless, these results could be beneficial for fine-tuning the catalytic of these 

materials.   

Furthemore microfluidically synthesized Au, Pd and AuPd alloy NPs were supported on 

SnO2 for potential application in sensing CO, CH4 and VOCs such as toluene and ethanol. 

The sensing behavior was affected by the metal loading, the surface area of the support, the 

NP material and humidity. Compared to undoped SnO2, Au and Pd NPs increased the 

sensor signal. However, unlike the monometallics, the AuPd alloy could not enhance the 

sensor signal. Overall, doping SnO2 with monometallic NPs, lower metal loading (0.1 

wt.%) and low surface area (3.6 m2 g-1) provided better results.   

Synthesis of CuO/ZnO/Al2O3 in the microfluidic chip (with syringe pumps) demonstrated 

efficient mixing of the reactants in this device in a co-precipitation process. In parallel, 

CuO/ZnO/(Al2O3) materials were prepared in a conventional batch reactor without  

micromixers. XRD measurements revealed that in the materials obtained from both the 

batch and the microreactor, the main phase of the precipitated precursor was zincian 

malachite. However, gerhardtite and rosasite phases were also observed. After calcination, 

the sample prepared in the microreactor showed broader XRD reflections with lower 

intensity compared to the XRD patterns of the sample from the batch reactor, indicating 

smaller CuO crystallites. TPR studies suggested smaller active particle size and higher 

metal dispersion in the case of the sample produced in the microreactor. STEM images 

combined with EDX showed a uniform morphology and a homogeneous distribution of 

Cu/Zn/Al in the calcined CuO/ZnO/Al2O3 NPs produced in the microfluidic reactor 

compared to those obtained from the batch reactor.  

As a final conclusion, the microfluidic setup developed for this study was successfully used 

to produce small NPs with uniform structure and narrow size distribution in reduction and 

co-precipitation reactions, and also contributed to a mechanistic understanding of the 
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nanoparticle formation in reduction reactions allowing for future optimization of advanced 

microfluidically synthesized materials. Furthermore, this study shows the high potential of 

synchrotron-based techniques, providing unique insights into materials at work in the field 

of chemistry, physics, materials science and engineering. The reported experimental 

procedures allow obtaining new data on the advanced materials technologies and chemical 

reactions and are not only limited to heterogeneous catalysis. The results of this work are 

of high relevance for research at the interface of chemistry and engineering. 

The experimental results reported here provide a solid basis for further studies which can 

be highly beneficial in nanomaterials research. As a first step, the nanoparticles produced 

so far in the microfluidic reactor could be tested with respect to diverse applications, e.g. 

AuPd/TiO2 for direct H2O2 synthesis, AuPd/SnO2 as sensing materials and Cu/ZnO2/Al2O3 

for synthesis of methanol and dimethylether (DME). These activity and performance 

studies would provide valuable information, especially in combination with in situ and 

operando X-ray absorption spectroscopic studies to derive further information about the 

influence of the preparation parameters. An important prerequisite in the case of small 

noble metal nanoparticles is their fixation on supports without further aggregation.   

The versatility of the microfluidic setup used for this dissertation allows variations of 

different synthesis parameters such as reactant concentrations and flow rates, pH values 

and the use of different surfactants. The potential of this setup could be further exploited 

by preparing a variety of metallic nanoparticles with different chemical compositions and 

structures, including e.g. core-shell catalysts. Furthermore, apart from the first in situ XAS 

measurements reported in this thesis, a more detailed EXAFS investigation, small angle X-

ray scattering measurements and related characterization studies would be helpful to gain 

an insight into the different stages of particle growth. 

As a future upgrade of the microfluidic apparatus the integration of a heating element in 

the microfluidic chip would be a highly interesting option opening new perspectives for 

experiments using this unique device.  
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