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1 Motivation

The use of deep neural networks (DNN) revolutionized machine learning tasks
like image classification and segmentation [6]. However, DNNs are black box
models developed with the aim to generalize a given training set and thus to
process unknown data. Due to the high amount of model parameters, it is yet
impossible to fully understand the decision making process. The identification
of parameters with poor generalization is hard and manual improvement is
impossible. Thus, robustness is subject of consideration.

So called adversarial attacks evaluate robustness of trained DNNs by modi-
fying data examples to enforce misclassification [2, 5]. In image classification,
the required changes prove to be very subtle and original and modified exam-
ples differ only in minimal noise, which would be easily ignored by the human
eye [9]. This leads to the question of the robustness of DNN architectures
against modifications like noise or blur. Dodge et al. [1] evaluated modificati-
ons of the test images. However, the influence of modifications in the training
samples remains unclear.

In this contribution we investigate the influence of modifications in the training
samples to small DNN architectures with respect to their robustness against
modifications in test samples. Furthermore, by introducing three different ar-
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Figure 1: Five CIFAR-10 example images. Classes from left to right: plane, car, frog, horse and
plane

chitectures inspired by the popular architectures ResNet [3], Inception-v3 [8]
and ResNeXt [10], we investigate the influence of these architectures to their
ability to generalize well against modifications. Furthermore, by modification
of the training data we investigate the influence of noise and blur in the training
process to the robustness of the trained model.

2 Methods

2.1 Data Set

For training and evaluation the CIFAR-10? data set is used [4]. It consists
of 60.000 color (RGB) images with a resolution of 32 x 32 pixel and a pixel
depth of 24 bit (8 bit per color). The data set comprises 10 classes: airplane,
automobile, bird, cat, deer, dog, frog, horse, ship, and truck. The images are
evenly distributed over the classes and a split of 50.000 images is used for
training and 10.000 for validation. Figure 1 shows five example images of the
data set.

2.2 Network Structures

Many different network architectures and modules have been proposed over the
last years. Most of these architectures consist of multiple stacked modules with
small variations. A module describes a combination of different layers such as

*https://www.cs.toronto.edu/ kriz/cifar.html
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Figure 2: Modules for network architectures: Left: ResNet, middle: Inception, right: ResNeXt.
The second line defines the number of feature maps produced by the module.
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convolutional, activation, pooling and batch normalization layers. Modules
vary in their parameters as well as in the arrangement of layers. Here, we com-
pare three modules based on the popular architectures ResNet [3], Inception-
v3 [8] and ResNeXt [10].

To allow a comparison of these modules, we use the same pre- and post-
processing and the same amount of modules. The pre-processing consists of
two subsequent convolution modules (with a convolutional layer, a rectified li-
near unit activation function and a batch normalization). After these modules,
three stacked modules of the proposed architectures follow. All modules use
a residual connection [3] and are followed by a max pooling for downsam-
pling [3]. The post-processing consists of another convolution module, a dense
layer with ten output neurons, one for each class of the CIFAR-10 data set and
a softmax function. All architectures are trained with the stochastic gradient
descent algorithm based on a categorical cross entropy loss of for 90 epochs.

The first module is the ResNet module, which is also called bottleneck mo-
dule [3]. It downsamples the number of feature maps with a 1 x 1 convolution
module, followed by a 3 x 3 convolution module for feature extraction and an
upsampling of the feature maps by a 1 x 1 convolution module. An example
can be seen in Figure 2, left. This module has shown to perform at least similar
to a 3 x 3 convolution module while using less parameters. The given example
in Figure 2, left uses 64 x 256 parameters for the first, 64 x (3 x 3 x 64) pa-
rameters for the second and 256 x 64 for the third module, resulting in a total
of 69.632 trained parameters. In contrast, a single 3 x 3 convolution requires
256 x (3 x 3 x 256) = 589.824 parameters.
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The Inception module is the eponym of the Inception network. This module ex-
ists in several versions which can be combined to several versions of an Incep-
tion network. For simplicity we only investigated the module of the Inception-
v3 network [8]. The module is visualized in Figure 2, middle and consists of
four parallel paths with convolution modules of size 1 x 1,3 x3 and 5 x5 as
well as a max pooling layer. The idea behind the concept is that all paths can
focus on features of a certain size and all results are concatenated at the output
of the module. Since all of these paths work on the complete input, also the
parameter count for such a module is higher. The shown module in the middle
of Figure 2 contains 192.512 parameters.

The ResNeXt module is based on the ResNet module and introduces parallel
paths. Instead of a single bottleneck, multiple bottlenecks with decreased depth
are used. In the example shown in Figure 2 right, a total of 32 parallel paths are
shown, each consisting of 256 x 4, 4 x (3 x 3 x 4) and 256 x 4 parameters. This
results in a total of 70.144 trainable parameters. The idea behind this module
is that each bottleneck can focus on different features and each bottleneck can
become an expert for different tasks.

2.3 Evaluation

To evaluate robustness against adversarial attacks, six models with noisy and
six models for blurry inputs are trained for all three architectures. All models
are evaluated in terms of accuracy and in terms of the minimal change in pixels
to enforce a wrong classification of an image.

For the noisy input, a model without noise and six models with a noise level
of 0 ={0.01, 0.05, 0.1, 0.5, 1, 5}. o specifies additive Gaussian noise for
each pixel originating from a normal distribution with zero mean and the given
6. The noise is added to the normalized image with a range of [—1,1]. Thus,
also small changes are kept in the image and not discarded due to rounding.
An example of two original images and the same images with noise are shown
in Figure 3.

For the blurry input, the parameters are exactly the same. Here, the image is
blurred with a Gaussian filter with standard deviation sigma.
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Figure 3: On the left: a frog and a truck from the original data set. On the right: the same frog and
truck with added noise (¢ = 1).

3 Results

In order to evaluate the influence of noise and blur to the training data, each
trained model is evaluated either with all levels of noise or blur. Furthermore,
for each model an adversarial attack is computed for 128 images of the original
data set. This attack computes a minimal change of an image given a model by
applying the backpropagation algorithm to modify the input image and not the
model. Based on these gradients a minimal change to the image can be applied
to enforce a wrong classification.

The results for the noisy inputs can be seen in Figure 4. The x-axis shows the
noise level of the training set and is labeled by the ¢ of the models’ training
data. The plotted lines show the accuracy on the evaluation sets, where each
model is evaluated with all noise levels.

For all architectures, the accuracy and their behavior for the different noise
levels are similar. The data set with a noise level of ¢ = 0.01 behaves like the
data set without noise for the training as well as the evaluation. Starting with a
model trained on the noise level o = 0.1, the evaluation set with the same noise
level provides the best accuracy and the overall accuracy of the model starts to
drop. Thus, the noise levels of the evaluation sets provide the best accuracy
if the model is trained with a similar noise level. These observations are true
for all architectures, i.e., none of the architectures generalizes particularly well
against noise. Given these results, a small level of noise has no impact to noise-
free images but the accuracy for a small level of noise increases. Furthermore,
the results indicate that the model should be trained at least with the amount of
noise that is expected in the application data.
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Figure 4: Evaluation of the influence of different noise levels for training (x-axis) on the
performance of different noise levels for evaluation data sets (lines). The number
behind the evaluation data sets is the o. Three architectures are shown, the top one is
based on ResNet, the middle one on Inception and the bottom one on ResNeXt.

134 Proc. 28. Workshop Computational Intelligence, Dortmund, 29.-30.11.2018



Adversarial Attack

—©— ResNet
— % — ResNext
- Inception

Pixel Delta Average
N

0 0.01 0.05 0.1 0.5 1 5
Training Nosie Sigma

Figure 5: The average amount of required change in pixels to create an adversarial image for
different architectures. The x-axis shows the noise level of the used training set.

The evaluation of the adversarial attacks in Figure 5 shows the noise level of
the models’ training set on the x-axis and the average delta in pixels required
to change the classification of an example image on the y-axis. This means
that on average every pixel of an image has to be modified by the given delta
to change the predicted class of that image. Again, the architectures behave
similar and all architectures can be tricked by adversarial attacks with a similar
change in pixel values.

It is notable that models trained with noisy data are slightly more robust against
adversarial attacks, since the average change in pixels must be higher. For mo-
dels with a very high level of noise like 0 = 1 or 0 =5 the required amount of
change in the pixels starts to drop. However, these models also have a signifi-
cantly lower accuracy and do not generalize well to new examples.

Overall, a small level of noise increases the robustness against adversarial at-
tacks and the performance for noise in the evaluation data. Thus, in this case a
training with o = 0.1 seems to be beneficial for the model.

To put the results on adversarial attacks in perspective, even a change of 2.5
of the pixel value is only a change of 1% in the 8 bit images. Thus, all of the
models and architectures are easily tricked by adversarial examples and none
of the architectures generalizes well against such attacks.
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Figure 6: Evaluation of the influence of different blur levels for training (x-axis) on the
performance of different noise level for evaluation. The figure shows the results for the
Inception architecture, the results for ResNet and ResNeXt are similar (data not shown).
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Figure 7: The average amount of required change in pixels to create an adversarial image for
different architectures. The x-axis shows the blur level of the used training set.

The setup for the evaluation of blurry images is similar to the setup with noise
(o defines the size of a Gaussian kernel and thus the extend of blur introduced
in the images). Since the results for the different architectures are similar,
Figure 6 only shows the results of the best performing models, the Inception
models. Up to a blur level of ¢ = 0.5 the models accuracy remains unchanged
and starts to drop with an increase in blur.

Figure 7 shows the evaluation of adversarial attacks on models with different
blur levels. The results show that training with blurry images has no effect on
the amount of change that must be introduced to the pixels to create an adver-
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sarial example and again all architectures behave similar. For high blur levels
of 0 =1 and o =5 the required change even starts to drop, indicating that
models with low accuracy are more easily tricked. Overall, the training with
blurry images does not have an effect for small blur levels and on adversarial
attacks. Thus, it is not beneficial for this use-case.

4 Conclusions

This work investigated the influence of noise and blur to the accuracy and ro-
bustness of convolutional neural networks against adversarial attacks. For the
training and evaluation the CIFAR-10 image data set was used and modules
from three popular architectures are compared. To allow an easy comparison,
the pre- and post-processing of the architectures used here are the same and
only the intermediate layers are designed according to the proposed modules
in the ResNet, Inception and ResNeXt architectures.

All models were trained several times with different levels of noise and blur.
In the evaluation, the accuracy for different levels of noise and blur were eva-
luated as well as the amount of change in the pixels to create an example for an
adversarial attack, meaning how much the pixels had to be changed on average
to enforce a wrong classification.

The results show that training with a small noise level can increase the robus-
tness against adversarial attacks and is beneficial for the performance of the
model on noisy data. The introduction of blur however, has no beneficial effect
on adversarial attacks up to a point where the models performance decreases
significantly. Regarding the performance of the proposed modules no signifi-
cant performance difference was observed.

Since augmentations of the training set are known to improve the model per-
formance [7], also other augmentations like rotations and other transformations
can be investigated regarding their effects on the robustness.
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