
Best Practices in Deep Learning-Based
Segmentation of Microscopy Images

Tim Scherr1, Andreas Bartschat1, Markus Reischl1,
Johannes Stegmaier2, Ralf Mikut1

1 Institute for Automation and Applied Informatics,
Karlsruhe Institute of Technology, Karlsruhe, Germany

2 Institute of Imaging and Computer Vision,
RWTH Aachen University, Aachen, Germany

E-Mail: tim.scherr@kit.edu

1 Introduction

Deep neural networks are state-of-the-art methods in image classification [1,
2, 3, 4, 5], single-object localization [1, 2, 3], object detection [2, 4, 6], seman-
tic segmentation [7, 8], combined object detection and instance segmentation
[6], and segmentation of 2D/3D biological and medical microscopy images
[9, 10, 11]. Common convolutional neural networks consist of fully-connected
layers, convolutional layers with fewer, shared weights operating locally, and
pooling layers for downsampling [12]. Challenges in image segmentation are,
for instance, inherent variation present within and among different data sets,
class imbalance [13], a lack of task-specific training data [14], imperfect seg-
mentation labels [15], and clustered and overlapping objects.

Image segmentation challenges have shown that, besides an adapted network
architecture, further improvements such as task-specific data augmentation, cu-
stomized loss functions, and specialized post-processing is needed, e.g., [16].
For the design of a deep learning-based segmentation, the developer has to
choose the network architecture and the training process settings [17], inclu-
ding regularization [18], activation and loss functions, gradient descend optimi-
zation algorithms [19, 20, 21], batch normalization [22], and the corresponding
hyperparameters. In contrast to shallow networks, deeper networks are able to

Proc. 28. Workshop Computational Intelligence, Dortmund, 29.-30.11.2018 175

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197484037?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


use far fewer parameters per layer to fit the training set and often generalize to
the test set, but are also harder to optimize [17]. Task-specific ideal network
architectures must be found experimentally, guided by the validation set error
[17].

Despite the great success of deep learning in image segmentation tasks, there
are only a few software tools for non-specialists, e.g., CellProfiler 3.0 [23].
This is due to the many possible combinations of network architectures, de-
mands on the segmentation (binary, semantic, instance), fields of applications
(e.g., biology, medicine), data formats (e.g., gray scale, RGB, 2D, 3D), and
training process settings.

In this contribution we show how to start segmenting 2D microscopy images
using a selected deep learning framework and architecture. We give recom-
mendations to support developers in the selection of the architecture and trai-
ning process settings, and show how the segmentation can be improved on the
basis of the already finished Kaggle 2018 Data Science Bowl segmentation
challenge [16]. This contribution is limited to 2D data, but the outcome of 2D
data is useful for 3D or 3D+t data as well.

2 Network Architectures for 2D Image Segmentation

Neural networks for image segmentation are often inspired by image classi-
fication and object detection networks. Figure 1 shows the tasks of image
classification (a), object localization (a), object detection (b), and of the image
segmentation subclasses semantic (c) and instance (d) segmentation. In image
classification, an image is assigned to one single class. The image should ide-
ally contain only one object. Localization predicts a bounding box of the ob-
ject. If there are multiple objects, the task is called object detection. Semantic
segmentation partitions an image pixel-wise. Touching objects of the same
class cannot be distinguished. In contrast, in instance segmentation different
instances of the same class have separate labels and touching objects should be
distinguished. Usually, two-stage networks with object proposals are used for
instance segmentation. Common to all tasks is the requirement to find class-
specific features.

176 Proc. 28. Workshop Computational Intelligence, Dortmund, 29.-30.11.2018



(a) Classification w.
Localization

(b) Object Detection (c) Semantic
Segmentation

(d) Instance
Segmentation

Figure 1: Tasks of classification with localization (a), object detection (b), and semantic (c) and
instance (d) segmentation. Modified from [24].

Convolutional Encoder-Decoder

Pooling IndicesInput Output

Softmax
Convolution + Batch Normalization + Rectified Linear Unit
Max Pooling Upsampling

0

0 0

0 0

0

0

0 0
0

00

Max Pooling
Indices

a

a b
c d

d
b

c

Upsampling

Figure 2: SegNet is a fully convolutional network for semantic segmentation [8]. The pooling
indices (right) are used for the upsampling. Modified from [8].

In the following, three popular state-of-the-art architectures for image segmen-
tation are shortly described:

SegNet is an encoder-decoder architecture commonly used for semantic seg-
mentation [8]. Figure 2 shows that the encoder is topologically equivalent to
the convolutional layers in the VGG16 network for image classification [1].
A novelty was the decoder which upsamples the low resolution input feature
maps to full input resolution feature maps using pooling indices computed in
the pooling step of the corresponding encoder [8]. Thus, there is no need for le-
arning to upsample. SegNet uses the pre-trained weights of the VGG16 part.

U-Net is an encoder-decoder network that was initially developed for biologi-
cal and medical image data [9]. In contrast to SegNet, corresponding encoder
and decoder feature maps are concatenated. This allows successive convoluti-
onal layers to assemble a more precise output than without [9]. Figure 3 shows
a slightly modified U-Net with batch normalization to fix the means and the
variances of the layer inputs [22], and learnable transposed convolutions for
the upsampling. If zero padding is used in the convolutional layers, there is

Proc. 28. Workshop Computational Intelligence, Dortmund, 29.-30.11.2018 177



3x3 Convolution + Rectified Linear Unit + Batch Normalization (BN) 2x2 Max Pooling

1x1 Convolution + Activation Transposed Convolution + BN
Copy + Concatenate

W
H
C

W
H
F

W/2
H/2
2xF

W/8
H/8
8xF

W/4
H/4
4xF

W/4
H/4
4xF

W/2
H/2
2xF

W
H
F

W
H
C outin

Input
Output

W/H/C/F: Width/Height/Channels/Feature Maps

Figure 3: U-Net architecture for image segmentation. The shown network is named 3-block
U-Net, as three pooling layers are used in total. Modified from [25].

no need for cropping the feature maps before concatenating as in the original
architecture.

Mask R-CNN combines object detection and segmentation enabling instance
segmentation [6]. It is a two-stage architecture. In contrast to ResNet und U-
Net, the architecture is more complex due to its different branches: a branch
for predicting segmentation masks on each region of interest in parallel with
a branch for classification and bounding box regression. Recently, Mask R-
CNN has also been used for the instance segmentation of nuclei in biological
microscopy images [26].

3 Getting Started with Microscopy
Image Segmentation

This section covers basic information for the segmentation of roundish objects
in microscopy images using Python and a deep learning framework. Deep
learning frameworks provide efficient implementations and GPU support for
highly parallelized computations. Popular frameworks are PyTorch and Ten-
sorFlow. The high-level API Keras is capable to run on top of TensorFlow and
is designed for easy and fast prototyping. This allows easy realization of con-
cepts and enables a fast implementation, e.g., for challenges [27]. Thus, we
recommend to start with a high-level API.

178 Proc. 28. Workshop Computational Intelligence, Dortmund, 29.-30.11.2018



Table 1: Freely available training data sets for microscopy image segmentation.

Data Set Description

Broad Bioimage Benchmark
Collection (BBBC)1

Biological image data sets with various labels
(counts, outlines, masks).

ISBI Cell Tracking Challenge2 2D and 3D data sets covering a wide range of
biological cell types and image quality.

Masaryk University Cell Image
Collection3

3D synthetic benchmark data sets generated using a
virtual microscope.

Benchmarks for Embryomics [28] Semi-synthetic benchmark generator.
1 https://data.broadinstitute.org/bbbc/image_sets.html
2 http://www.celltrackingchallenge.net/datasets.html.
3 https://cbia.fi.muni.cz/datasets/

Figure 4: BBBC038v1 data set [29]. The shown images are cropped to 256×256px.

3.1 Data Sets for Microscopy Image Segmentation

In general, larger training data sets tend to prevent the network from overfit-
ting, but labeling images is time-consuming. Common approaches to enlarge
the training set are the use of additional free data sets, e.g., those listed in Ta-
ble 1, and of data augmentation (data generation using artificially transformed
versions of the original data) [17]. Using 3D data slice by slice can also be
useful to train a network for 2D segmentation.

Proc. 28. Workshop Computational Intelligence, Dortmund, 29.-30.11.2018 179

https://data.broadinstitute.org/bbbc/image_sets.html
http://www.celltrackingchallenge.net/datasets.html
https://cbia.fi.muni.cz/datasets/


In the following, the BBBC038v1 image set is used, which was part of the Kag-
gle 2018 Data Science Bowl segmentation challenge [29, 16]. The diversity of
cell types and density in combination with a low abundance of some cell types,
heavy varying image resolutions, and the rather small size of the data set, are
challenges of this data set. Figure 4 shows some exemplary images.

3.2 Network Architecture

We start with a U-Net as shown in Figure 3. It is easy to implement, trainable
from scratch, and expandable, e.g., using stacking and residual connections
[30] or specialized encoders [31]. In [32], a U-Net model trained on only two
images outperformed an advanced CellProfiler pipeline.

The strides for the convolutional, transposed convolutional and max pooling
layers are set to 1, 2 and 2 respectively. Additionally, zero padding is used in
these layers. The input image size of the network is fixed to 256×256px since
this is the smallest image size in the used data set. Another possibility is the use
of zero padding for non-supported image sizes (due to the pooling/upsampling)
and a non-fixed input image size. Using a 4-block U-Net allows the training
on an Nvidia Quadro P4000 GPU using F=64 feature maps in the first layer as
mentioned in [9].

3.3 Loss Functions

Choosing the loss function is important for an accurate segmentation, espe-
cially for unbalanced data sets adapted weights or loss functions are needed.
Using an inadequate loss function for those data sets can result in a high false
positive or high false negative rate, e.g., in background prediction for all pixels
if the training data contains almost only background. Table 2 gives an overview
of various loss functions for microscopy image segmentation.

3.4 Training Process Settings

A common approach is to divide the data set into a training, a validation, and
a test set [17]. The training set is used to learn the parameters. The validation

180 Proc. 28. Workshop Computational Intelligence, Dortmund, 29.-30.11.2018



Table 2: Loss functions for microscopy image segmentation.

Loss function Description

Binary/categorical cross entropy
(Bce/Cce)

Measure for dissimilarity between prediction and label.
Predictions may be a bit fuzzy.

Weighted Bce/Cce Using weights to deal with class imbalance.

Dice/F1 loss [33] Harmonic mean of precision and recall. No fuzzy
predictions but problem of probabilities close to 0 or 1
even for wrong pixels [31].

Generalized Dice loss [13] Generalized Dice loss for unbalanced data using weights
based on the label area to reduce the correlation between
region size and Dice score.

BceDice/CceDice loss Idea: overcome the limitations of pure Bce/Cce or Dice
loss [31]. Also a weighted sum can be used.

set is used to estimate the generalization error during the training and to guide
the selection of the hyperparameters. The test set held back during training
can then be used to estimate the generalization error after training. Since there
are no labels for the provided BBBC038v1 test set, the last 120 of the 670
training images are used as test set. Before a training process starts, 20% of the
remaining 550 training images are selected randomly as validation set. Small
unnatural holes in the label images of the training, the validation and the test
set are filled using a morphological closing.

We use the adaptive Adam optimizer [21] in the AMSGrad [34] variant (pa-
rameters: learning rate lr = 1×10−4, β1 = 0.9, β2 = 0.99, decay = 0) and a
batch size of 8. Without AMSGrad, a higher learning rate is needed. The use
of callbacks enables to stop the training process after a fixed number of epochs
without validation loss decrease and to save model checkpoints and intermedi-
ate results, e.g., loss and validation loss.

3.5 Data Pre-Processing

Images larger than the network input size of 256× 256px are cropped into
subimages. After the training an overlap between subimages enables the com-
bination of the predictions without boundary effects. Subimages with less than
two objects are excluded from the training process to avoid a bias towards false

Proc. 28. Workshop Computational Intelligence, Dortmund, 29.-30.11.2018 181



(a) Test image (b) Label image (c) Binary prediction

(d) Boundary method (e) Border method (f) Post-processed

Figure 5: First results using the 4-block U-Net. The predictions (c)-(e) of the test image show
merged objects. The misclassification of two pixels in the border (white) in (e) causes
the merging of the objects (gray). Shown are 64×64px crops. The label and the
post-processed image are color-coded.

negatives. Every single 8-bit color image A is converted to single precision and
normalized according to:

A′ =
A

127.5
−1 . (1)

3.6 First Results

Figure 5c shows first results using the 4-block U-Net and one output channel.
If the data analysis demands no instance segmentation, such an approach may
be fine. The sum of the Bce and the Dice loss was used (BceDice) and the
sigmoid activation function. In tests, no clear trend towards better predictions
than with pure Bce or Dice loss is visible. However, sometimes small impro-
vements on single objects are possible. To get the final binary segmentation a
simple thresholding post-processing can be applied. Selecting a fixed threshold
on an exemplary prediction is fine most of the time.

182 Proc. 28. Workshop Computational Intelligence, Dortmund, 29.-30.11.2018



If the data analysis demands instance segmentation, weight maps can be used
to force the network to learn small separation borders introduced between tou-
ching objects as in [9]. Problems occur if a predicted separation border is not
perfect.

Another idea is to generate boundaries from the training labels (cf. [32]), and
train a network with three one-hot-encoded output classes: background, in-
terior, boundaries. Challenges arise from missing and non-closed boundaries
between the touching objects as in Figure 5d. This results in merged objects
after post-processing. The reason is that a nearly closed border is quite a good
result for this class. As loss function, the sum of the Cce loss for every class
and of the channel-wise Dice losses for the object class and the boundary class
was used (CceDice). The activation function was the softmax function.

In [31], it is suggested to use the output classes: background, object, border
between touching objects. Thus, the network is enforced to learn the border,
where it is useful. Figure 5e shows an exemplary erroneous result using the
CceDice loss and the softmax activation. Now there is a border in between the
two objects, but it is not closed. This again can result in merged objects after
post-processing. However, the idea of the border method seems to offer an
elegant way to train the network and to tweak its output to a desired direction.
The training borders can be generated from the provided label images.

For the instance segmentation in Figure 5h, a marker-controlled watershed
post-processing was used on the border method result (Figure 5e). The thres-
holded (th = 0.3), inverted background channel was used as input image and a
thresholded (th = 0.6) with the border channel B processed object channel O
as markers:

o′i j = oi j ∗ (1−bi j) . (2)

4 Improving the Segmentation of
Microscopy Images

In the previous section, it was shown how to start segmenting microscopy ima-
ges using standard architectures, methods and loss functions. If the demands
on the segmentation accuracy are not fulfilled yet, there is need for modificati-

Proc. 28. Workshop Computational Intelligence, Dortmund, 29.-30.11.2018 183



(a) Test image (b) Label image (c) Border method

(d) Two-network approach (e) Two-network approach
with TTA

(f) Prediction (e)
post-processed

Figure 6: Improving the results of the 4-block U-Net using a two-network approach. The
approach improves the borders (white) and the prediction. Shown are 64×64 px crops.
The images (b) and (f) are color-coded. TTA: test-time augmentation (see section 4.2).

ons of the architecture, the training process, and the post-processing. A good
source of information besides publications are forums of segmentation compe-
titions, e.g., [31] a post of the Kaggle Data Science Bowl 2018 winner.

4.1 Two-Network Approach

The border method in Figure 5e shows a reasonably good prediction but the
border is not closed. A simple but powerful trick can overcome this limita-
tion in many cases: train the network on morphologically dilated borders and
eroded objects. Figure 6d shows that this simple trick provides much better
seeds for the watershed post-processing. Now, borders are closed, thick and
wide enough. Additionally, even on regions where borders are not necessarily
needed, the network predicts borders. Advantages of this approach, in contrast
to a centroid prediction as marker, are less wrongly predicted seeds and split
objects since the markers are nearly as big as the real object.

184 Proc. 28. Workshop Computational Intelligence, Dortmund, 29.-30.11.2018



Since morphological erosion is used for the training of the network, the use
of the inverted background channel for the watershed post-processing would
result in too small predicted objects. Thus, a second network with a one chan-
nel output trained on the original labels is needed to obtain a post-processed
result with realistic object size. The thresholded (th = 0.3) output of this net-
work can then be used for the post-processing. Figure 6f shows the final result
combining the network used for the prediction in Figure 5c with that for the
predictions in Figure 6d and Figure 6e.

4.2 Ensembling

Following the idea in the last section of using more than one network to im-
prove the post-processing, the averaged output of multiple networks can be
used to improve the final prediction. This results in an increase of training and
prediction time. A simpler approach is the so-called test-time augmentation
(TTA). In TTA, one single network is trained, but multiple outputs are estima-
ted, e.g., by flipping the test image, making a prediction, and flip the prediction
back. The back-flipped prediction should be nearly the same as the original
prediction, but may provide additional information about borders or prediction
errors. The resulting object channel O and the boundary channel B are then
the pixelwise mean or maximum respectively of the corresponding ensemble
channels.

For the prediction in Figure 6e flipping (up-down, left-right) and a 90◦-rotation
were used. The TTA prediction shows more clear borders. In cases, where
the border is not closed, TTA offers a simple but powerful tool for corrections
and better markers (cf. Figure 7). In some special cases, it may worsen the
prediction, e.g., if two shifted borders are predicted instead of one big border,
resulting in two markers and wrongly split objects. However, this should not
occur with the two-network approach.

4.3 Evaluation Metrics

When the obvious segmentation errors are identified and minimized, it is be-
neficial to have some measure for the segmentation accuracy. This measure is

Proc. 28. Workshop Computational Intelligence, Dortmund, 29.-30.11.2018 185



(a) Test image (b) Label image (c) Without TTA (d) With TTA

Figure 7: Improving predictions using test-time augmentation (TTA). With TTA the border
(white) is complete and the objects (gray) can be separated.

called a metric. However, a look onto the raw predictions is still useful since
error sources such as too short boundaries cannot be identified in the metric
score. A metric is applied to a final, post-processed result. Thus, it cannot
represent the potential of a model.

Common metrics are recall, precision and F-Score. In the Kaggle segmentation
challenge [16], the mean average precision at different intersection over union
(IoU) thresholds is used. The thresholds t range from 0.5 to 0.95 with a step
size of 0.05. A true positive is counted when a single predicted object matches
a ground truth object with an IoU above the threshold. The mean average
precision PIoU is then calculated as [16]:

PIoU =
1
Nt

∑t
T P(t)

T P(t)+FP(t)+FN(t)
, (3)

with the true positives T P, the false positives FP, the false negatives FN, and
the number of thresholds Nt . The final score PIoU is the mean taken over the
individual average precisions of each test image.

In [15], a critical analysis about challenges as standard validation for biomedi-
cal image analysis methods is provided. It is shown that in challenges the rank
of an algorithm is generally not robust to the test data, the ranking scheme,
and the observers making the reference labels. For segmentation, rankings can
change a lot by using another metric. Additionally, different annotators may
produce different winners. Figure 8 shows some examples for label errors in
the test set.

186 Proc. 28. Workshop Computational Intelligence, Dortmund, 29.-30.11.2018



(a) Possibly merged (b) Possibly artifacts (c) Possibly split

Figure 8: Possible label errors (arrows) in the used test set. The shown label images are
color-coded which enables to distinguish touching objects.

4.4 Improving the Training Process

Data augmentation is a common method to increase the training set and to
improve the robustness of a model [35]. Obvious augmentations are rotation
and flipping of images since characteristic image properties are preserved. Ot-
her augmentations are, for instance, blurring, contrast changes, noise adding
and affine transformations. In [31], it is suggested to copy and paste nuclei
within an image to introduce more borders to the training process. Anyway,
augmentations can also result in unnatural images and it is not clear whether
the robustness will improve or not.

Tuning the hyperparameters of the training process can improve the segmenta-
tion accuracy as well. To tune the learning rate, schedulers can be used, which
set the learning rate after a specified number of epochs to a decreased value.
The reduction of the learning rate on a validation loss plateau may improve the
segmentation accuracy as well. Keras provides various callbacks to modify the
learning rate during training. Instead of Adam, e.g., stochastic gradient descent
[20] can be used. Additionally, some regularization can be added, e.g., spatial
dropout [36].

4.5 Architecture Adaption

If the segmentation accuracy is still not high enough, architecture changes may
be needed. A reason for choosing the U-Net architecture was the number of
existing modifications. Another promising approach is the exchange of the
encoder with a pre-trained specialized image classification network and using
end-to-end training as suggested in [31]. Anyway, for that also the hardware

Proc. 28. Workshop Computational Intelligence, Dortmund, 29.-30.11.2018 187



Table 3: Overview of the trained networks used in Figure 9. The BceDice loss and the sigmoid
activation were used to train the networks B, and the CceDice loss and the softmax
activation for the networks M. In a two-network approach, the networks B provide the
needed thresholded binary (B) images and the networks M the markers (M). The training
process is stopped after 10 epochs without validation loss improvement.

Network Blocks, F Classes lr Augment. Erosion/Dilation

B1 4, 64 1 1e-4 - -
B2 4, 64 1 1e-4 ×a -
B3 4, 64 1 1e-4 ×b -
B4 4, 64 1 2e-4∗ ×b -
B5 5, 32 1 2e-4∗ ×b -
M1 4, 64 3 (boundary) 1e-4 - -
M2 4, 64 3 (border) 1e-4 - -
M3 4, 64 3 (border) 1e-4 - ×
M4 4, 64 3 (border) 1e-4 ×a ×
M5 4, 64 3 (border) 1e-4 ×b ×
M6 4, 64 3 (border) 2e-4∗ ×b ×
M7 5, 32 3 (border) 2e-4∗ ×b ×
a flipping (left-right), flipping (up-down), 90◦-rotation, noise, scale, blur.
b flipping (left-right), flipping (up-down), 90◦-rotation.
∗ learning rate is quartered on a validation loss plateau (5 epochs without improvement).

has to be available. Finding the optimal cut-off layer in transfer learning may
also be useful [37].

4.6 Evaluation of the Segmentation Accuracy

Figure 9 shows the averaged test set precision score PIoU of the networks in
Table 3 which were initialized and trained only once. As expected, the two-
network approach M3B1 using the networks M3 and B1 outperforms the sim-
ple border method M2 and the boundary method M1. TTA improves the pre-
cision for every network. A comprehensive study of training augmentation
types with multiple initializations is planned for future work. To validate the
improvement of a higher learning rate that is reduced on a plateau, more initia-
lizations are needed too. The Kaggle Data Science Bowl winner [31] reached a
score of 0.631 on the official test set which includes new cell types. However,
since no labels are provided for that data, a comparison is not possible. Trai-
ning a similar model as used in [31] is also planned but demands a GPU with
more memory than the used Nvidia Quadro P4000.

188 Proc. 28. Workshop Computational Intelligence, Dortmund, 29.-30.11.2018



M1 M2
M3
B1

M4
B2

M5
B3

M6
B4

M7
B5

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

𝑃 I
oU

without TTA
with TTA

Figure 9: Mean average precision on the test set of the trained networks in Table 3. The
combination of two networks B and M means that the two-network approach was used.

The training time on a single cropped training image is between about 0.1 s (4-
block U-Net) and 0.05 s (5-block U-Net) on the used Nvidia GPU. The number
of needed epochs ranges from 40 to 100 for every network. The use of a 5-
block U-Net with reduced feature maps (M7B5) reduces the mean training and
prediction times without losing accuracy.

Figure 10 and Figure 11 show some exemplary segmentations of test images.
The network M6B4 with the highest mean averaged precision shows a better
generalization to the test set as the first result M2. However, errors still occur.
Further improvements may be possible with more training data similar to Fi-
gure 11a.

The use of a-priori information about the object sizes, may improve the post-
processing and segmentation accuracy. However, in this data set the false ne-
gative rate may increase due to artifacts like in Figure 8.

5 Towards Segmentation of 3D Microscopy Images

One approach for the segmentation of 3D or 3D+t microscopy data is to ap-
ply 2D segmentation slice by slice and to fuse the segments afterwards. Using

Proc. 28. Workshop Computational Intelligence, Dortmund, 29.-30.11.2018 189



(a) Test image (b) Label image

(c) First result: M2 (d) Improved result: M6B4

Figure 10: Exemplary segmentation of a test image. This image type is frequent in the training
set. Shown are 256×256px crops and the labeled images are color-coded which
enables to distinguish touching objects. In contrast to the first result (c), the improved
result (d) shows no merged objects.

3D convolutional layers such as in [10] or [33], segment fusion can be omit-
ted. Instead of border lines in 2D segmentation, border areas may provide a
powerful tool for instance segmentation. Furthermore, a combination of three
2D-U-Nets for the xy-, xz-, and yz-slices of the 3D volume can boost memory
efficiency [38]. Weight sharing of these 2D-U-Nets is possible and may reduce
the training time.

A comparison of the possible ways towards 3D segmentation with a classical
segmentation algorithm, e.g., [39], is planned. If for 3D or 3D+t data the use
of additional information, e.g., the structure tensor which can also be used for
segmentation [40], can improve the training process is an open question we
also want to investigate.

190 Proc. 28. Workshop Computational Intelligence, Dortmund, 29.-30.11.2018



(a) Test image (b) Label image

(c) First result: M2 (d) Improved result: M6B4

Figure 11: Exemplary segmentation of a test image. Objects similar to the big cells are not
present in the training data. Shown are 180×210px crops and the labeled images are
color-coded which enables to distinguish touching objects. The improved result (d)
shows a better generalization than (c).

6 Conclusion

In this contribution, we showed a possible workflow for starting and improving
the segmentation of roundish objects in microscopy images. The hereby gained
expertise should also help readers in 3D segmentation tasks and in segmenta-
tion of arbitrarily shaped objects. Summarized, our suggestions are:

1. Start with a one channel output U-Net to get a feeling how challenging
the data are and if there are difficulties with specific objects.

2. Be aware of class imbalance.
3. Use borders instead of boundaries for instance segmentation.
4. Try erosion and dilation to get better markers for the watershed post-

processing. Consider the two-network approach in this case.
5. Do not use training data augmentation naively. Some augmentations may

worsen the accuracy.
6. Try to boost performance with test-time augmentation.

Proc. 28. Workshop Computational Intelligence, Dortmund, 29.-30.11.2018 191



7. Use metrics but do not rely on them solely. Look at your data to find
bottlenecks and difficulties.

8. Look for additional training data sets. This may improve the generaliza-
tion of the network to the test set.

9. Adjust your training process hyperparameters.
10. Use a-priori information, e.g., about the object sizes, to improve the post-

processing.
11. Modify your architecture and try other encoders if the accuracy is not

high enough and if the required hardware is available.

A future goal is to improve the segmentation quality in such a way that in
sophisticated medical and biological analyses, e.g., of biological zebrafish data
using EmbryoMiner [41], no more manual corrections are needed.

References

[1] K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for Large-
Scale Image Recognition. In Proc. International Conference on Learning Repre-
sentations, 2014. arXiv: 1409.1556v6.

[2] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, ..., L. Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International Journal of
Computer Vision, 115(3):211–252, 2015.

[3] K. He, X. Zhang, S. Ren, and J. Sun. Delving Deep into Rectifiers: Surpassing
Human-Level Performance on ImageNet Classification. In 2015 IEEE Internati-
onal Conference on Computer Vision (ICCV), pages 1026–1034, 2015.

[4] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recog-
nition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778, 2016.

[5] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi. Inception-v4, Inception-ResNet
and the Impact of Residual Connections on Learning. In AAAI Conference on
Artificial Intelligence, pages 4278–4284, 2017.

[6] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask R-CNN. In 2017 IEEE
International Conference on Computer Vision (ICCV), pages 2980–2988, 2017.

192 Proc. 28. Workshop Computational Intelligence, Dortmund, 29.-30.11.2018



[7] J. Long, E. Shelhamer, and T. Darrell. Fully Convolutional Networks for Semantic
Segmentation. In 2015 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 3431–3440, 2015.

[8] V. Badrinarayanan, A. Kendall, and R. Cipolla. SegNet: A Deep Convolutional
Encoder-Decoder Architecture for Image Segmentation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 39(12):2481–2495, 2017.

[9] O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolutional Networks for
Biomedical Image Segmentation. In Medical Image Computing and Computer-
Assisted Intervention – MICCAI 2015, pages 234–241. Springer International Pu-
blishing, 2015.

[10] Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger. 3D
U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. In
Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016,
pages 424–432. Springer International Publishing, 2016.

[11] V. Ulman, M. Maška, K. EG Magnusson, O. Ronneberger, C. Haubold, N. Har-
der, ..., C. Ortiz-de-Solorzano. An Objective Comparison of Cell-Tracking Algo-
rithms. Nature Methods, 14(12):1141–1152, 2017.

[12] Y. LeCun, Y. Bengio, and G. Hinton. Deep Learning. Nature, 521:436–444, 2015.

[13] C. H. Sudre, W. Li, T. Vercauteren, S. Ourselin, and M. J. Cardoso. Generalised
Dice Overlap as a Deep Learning Loss Function for Highly Unbalanced Segmen-
tations. In Deep Learning in Medical Image Analysis and Multimodal Learning
for Clinical Decision Support, pages 240–248. Springer, 2017.

[14] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian,
J. A. W. M. van der Laak, B. van Ginneken, and C. I. Sánchez. A Survey on Deep
Learning in Medical Image Analysis. Medical Image Analysis, 42:60–88, 2017.

[15] L. Maier-Hein, M. Eisenmann, A. Reinke, S. Onogur, M. Stankovic, P. Scholz,
..., A. Kopp-Schneider. Is the Winner Really the Best? A Critical Analysis of
Common Research Practice in Biomedical Image Analysis Competitions, 2018.
arXiv: 1806.02051v1.

[16] Kaggle. 2018 Data Science Bowl, 2018. https://www.kaggle.com/c/

data-science-bowl-2018.

[17] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

Proc. 28. Workshop Computational Intelligence, Dortmund, 29.-30.11.2018 193

https://www.kaggle.com/c/data-science-bowl-2018
https://www.kaggle.com/c/data-science-bowl-2018
http://www.deeplearningbook.org


[18] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dro-
pout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of
Machine Learning Research, 15:1929–1958, 2014.

[19] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller. Efficient BackProp, pages 9–50.
Springer Berlin Heidelberg, 1998.

[20] L. Bottou. Stochastic Gradient Descent Tricks, pages 421–436. Springer Berlin
Heidelberg, 2012.

[21] D. Kingma and J. Ba. Adam: A Method for Stochastic Optimization, 2014. arXiv:
1412.6980v9.

[22] S. Ioffe and C. Szegedy. Batch Normalization: Accelerating Deep Network Trai-
ning by Reducing Internal Covariate Shift. In Proceedings of the 32nd Internatio-
nal Conference on Machine Learning, volume 37, pages 448–456. PMLR, 2015.

[23] C. McQuin, A. Goodman, V. Chernyshev, L. Kamentsky, B. A. Cimini, K. W.
Karhohs, ..., A. E. Carpenter. Cellprofiler 3.0: Next-Generation Image Processing
for Biology. PLOS Biology, 16(7):1–17, 2018.

[24] F.-F. Li, J. Johnson, and S. Yeung. CS231n: Convolutional Neural Net-
works for Visual Recognition. Lecture 11: Detection and Segmentation, 2018.
http://cs231n.stanford.edu/syllabus.html.

[25] X.-Y. Zhou, C. Riga, S.-L. Lee, and G.-Z. Yang. Towards Automatic 3D
Shape Instantiation for Deployed Stent Grafts: 2D Multiple-Class and Class-
Imbalance Marker Segmentation with Equally-Weighted Focal U-Net, 2018.
arXiv: 1711.01506v4.

[26] J. W. Johnson. Adapting Mask-RCNN for Automatic Nucleus Segmentation,
2018. arXiv: 1805.00500v1.

[27] F. Chollet et al. Why Has Keras Been So Successful Lately
at Kaggle Competitions?, 2016-08. https://www.quora.com/

Why-has-Keras-been-so-successful-lately-at-Kaggle-competitions.

[28] J. Stegmaier, J. Arz, B. Schott, J. C. Otte, A. Kobitski, G. U. Nienhaus, ..., R. Mi-
kut. Generating Semi-Synthetic Validation Benchmarks for Embryomics. In 2016
IEEE 13th International Symposium on Biomedical Imaging (ISBI), pages 684–
688, 2016.

[29] V. Ljosa, K. L. Sokolnicki, and A. E. Carpenter. Annotated High-Throughput
Microscopy Image Sets for Validation. Nature Methods, 9(7):637, 2012.

194 Proc. 28. Workshop Computational Intelligence, Dortmund, 29.-30.11.2018

http://cs231n.stanford.edu/syllabus.html
https://www.quora.com/Why-has-Keras-been-so-successful-lately-at-Kaggle-competitions
https://www.quora.com/Why-has-Keras-been-so-successful-lately-at-Kaggle-competitions


[30] A. Sevastopolsky, S. Drapak, K. Kiselev, B. M. Snyder, and A. Georgievskaya.
Stack-U-Net: Refinement Network for Image Segmentation on the Example of
Optic Disc and Cup, 2018. arXiv: 1804.11294v1.

[31] S. Seferbekov. [ods.ai] Topcoders, 1st Place Solution, 2018-04. Win-
ner of Kaggle 2018 Data Science Bowl. https://www.kaggle.com/c/

data-science-bowl-2018/discussion/54741.

[32] J. C. Caicedo, J. Roth, A. Goodman, T. Becker, K. W Karhohs, C. McQuin, ...,
A. E. Carpenter. Evaluation of Deep Learning Strategies for Nucleus Segmenta-
tion in Fluorescence Images. bioRxiv, 2018.

[33] F. Milletari, N. Navab, and S. A. Ahmadi. V-Net: Fully Convolutional Neural Net-
works for Volumetric Medical Image Segmentation. In 2016 Fourth International
Conference on 3D Vision (3DV), pages 565–571, 2016.

[34] S. J. Reddi, S. Kale, and S. Kumar. On The Convergence of Adam and Beyond.
In International Conference on Learning Representations, 2018.

[35] A. Bartschat, T. Unger, T. Scherr, J. Stegmaier, R. Mikut, and M. Reischl. Robus-
tness of Deep Learning Architectures with Respect to Training Data Variation. In
Proc., 28. Workshop Computational Intelligence, Dortmund, 2018.

[36] J. Tompson, R. Goroshin, A. Jain, Y. LeCun, and C. Bregler. Efficient Object Lo-
calization Using Convolutional Networks. In 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 648–656, 2015.

[37] N. Prodanova, J. Stegmaier, S. Allgeier, S. Bohn, O. Stachs, B. Köhler, ..., A. Bart-
schat. Transfer Learning with Human Corneal Tissues: An Analysis of Optimal
Cut-Off Layer, 2018. arXiv: arXiv:1806.07073v2.

[38] J. Wasserthal, P. Neher, and K. H. Maier-Hein. TractSeg - Fast and Accurate White
Matter Tract Segmentation. NeuroImage, 183:239–253, 2018.

[39] J. Stegmaier, J. C. Otte, A. Kobitski, A. Bartschat, A. Garcia, G. U. Nienhaus, ...
R. Mikut. Fast Segmentation of Stained Nuclei in Terabyte-Scale, Time Resolved
3D Microscopy Image Stacks. PLOS ONE, 9(2):1–11, 2014.

[40] B. Jähne. Digital Image Processing. Springer, 6th ed., 2005.

[41] B. Schott, M. Traub, C. Schlagenhauf, M. Takamiya, T. Antritter, A. Bartschat,
..., J. Stegmaier. EmbryoMiner: A New Framework for Interactive Knowledge
Discovery in Large-Scale Cell Tracking Data of Developing Embryos. PLOS
Computational Biology, 14(4):1–18, 2018.

Proc. 28. Workshop Computational Intelligence, Dortmund, 29.-30.11.2018 195

https://www.kaggle.com/c/data-science-bowl-2018/discussion/54741
https://www.kaggle.com/c/data-science-bowl-2018/discussion/54741

	C. Dengler, B. Lohmann
	H. Schulte, N. Goldschmidt
	M. Gringard, A. Kroll
	F. Wittich, M. Gringard, M. Kahl, A. Kroll, W.Zinn, T. Niendorf
	A. Cavaterra, S. Lambeck
	T. Voigt, M. Kohlhase
	T. J. Peter, O. Nelles
	A. Bartschat, T. Unger, T. Scherr, R. Mikut, M. Reischl
	Th. A. Runkler, Ch. Chen, R. John
	M. Schmidt, M. Oeljeklaus, C. Lienke, F. Hoffmann, M. Krüger, T. Nattermann, M. Mohamed, T. Bertram
	T. Scherr, A. Bartschat, M. Reischl, J. Stegmaier, R. Mikut
	F. Albers, C. De la Parra, J. Braun, F. Hoffmann, T. Bertram
	A. Dockhorn, R. Kruse
	T. Decker, O. Nelles
	S. Bagheri, W. Konen, T. Bäck
	N. Zobel, S. Kolomiichuk, A. Herzog, A. Lehwald
	A. Pfeifer, V. Lohweg



