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Introduction 
In this workshop the topic of Proximity Perception and its community was brought 

into a spotlight. The goal of the workshop was to establish networks and a vivid community 
in Proximity Perception and open the topic to the wider robotics community, as we expect 
that Proximity Perception technologies will play an essential role for service and industrial 
robotics as well as for safe human-robot collaboration and compliant robotics applications 
in the near future.  

These proceedings contain the papers accepted and presented during the poster session 
of the workshop. 

Talks held at the workshop: 

A unified Sensor for Pre-Touch, Touch and Post-Touch Forse Measurement 
Joshua R. Smith, University of Washington 

Making the Best of Pretouch 
Gordon Cheng, Technical University of Munich 

Biomimetic Tactile Sensing and Haptics 
Nathan Lepora, University of Bristol 

Reactive Control for High-Speed Grasping using Optical Proximity Sensors 
Keisuke Koyama, The University of Tokyo 

Tactile Servoing Algorithms for Manipulation and Object Exploration 
Robert Haschke, Bielefeld University 

Ultra Short Range Radar for Human Machine Interaction 
Matthias Brandl, Infineon Technologies 

Near Field Tomography in Proximity Perception 
Hubert Zangl, Alpen-Adria-Universität 

Sensor Technology and Algorithms for Flexible Proximity and Tactile Perception 
Björn Hein, Karlsruhe Institute of Technology 
 

 
 

  
 
 

  

For more information, 
please visit the 
workshop website. 
proxelsandtaxels.org 

http://www.proxelsandtaxels.org/


Versatile distance measurement between robot and human key points
using RGB-D sensors for safe HRI

Petr Švarný, Zdenek Straka, and Matej Hoffmann1

Abstract— The safety of collaborative robots’ and human
interaction can be guaranteed in two main ways: (i) power
and force limiting and (ii) speed and separation monitoring.
We present a framework that realises separation distance
monitoring between a robot and a human operator based on key
point pair-wise evaluation. We show preliminary results using
a setup with a Nao humanoid robot and a RealSense RGB-
D sensor and employing OpenPose human skeleton estimation
algorithm, and work in progress on a KUKA LBR iiwa
platform.

I. INTRODUCTION

Collaborative robots (cobots) need to dynamically adapt
to interactions with people to guarantee safety at every
moment. The technical specification [1] introduces Speed
and Separation Monitoring (SSM) as a requirement to ensure
safety. SSM demands that a protective separation distance,
Sp, needs to be maintained at all times between the operator
and robot. When the distance decreases below Sp, the robot
stops [2]. When Sp is approached, the robot can lower its
speed to be able to stop in the case of intrusion. The industry
standard is to use different levels of safety zones guarded by
light curtains or safety-rated scanners.

We present an SSM approach that combines transparency
and versatility. The separation distance is assessed pair-wise
for all key points on the robot and the human body and
can be selectively modified to account for various interaction
scenarios.

II. RELATED WORK

The safety standards related to cobots are [1], [2] and a
survey of the aspects of physical Human-Robot interaction
(pHRI) can be found in [3]. An analysis of appropriate
metrics to measure SSM is in [4]. A functional solution
for safe pHRI according to SSM requirements involves (i)
sensing of the human operators’ as well as robot’s positions
and speeds, (ii) a suitable representation of the corresponding
separation distances and (iii) appropriate responses of the
machine.

Zone scanners as used in industry are safe but very
inflexible and prevent most collaborative activities, since

*This work was supported in part by the Czech Science Foundation under
Project GA17-15697Y and by the Czech Technical University in Prague,
grant No. SGS18/138/OHK3/2T/13.
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their resolution is essentially only binary (for every zone):
either a human entered the zone or not. Progress in this area
may be facilitated by (i) compact and affordable RGB-D
sensors (like Kinect) and (ii) convolutional neural networks
for human key point extraction from camera images [5],
[6]—that together provide a more detailed picture about the
human’s activities in the robot’s proximity.

Relative distances between human and robot key points
need to be evaluated (see Flacco et al. [7] for a comparison
of approaches). The approach is often “robot-centred” in the
sense that the collision primitives are centred on the robot
body and possibly dynamically shaped based on the current
robot velocity [8], [9], [10], [11]. Even the biologically
inspired approach to “peripersonal space” representation
[12], [13] is robot-centred. Liu and Tomizuka [14] present
a comprehensive framework that includes avoidance maneu-
vres of the robot and task execution while preserving safety
constraints. However, it is not clear whether this framework
could pass a risk assessment according to [1], [2].

We propose an SSM framework to enhance the safety of
pHRI. It treats robot and human key points equally and uses
Euclidean distance in Cartesian space to evaluate all safety
thresholds. Velocities, reaction and stopping times, and un-
certainties can all be made part of our framework following
[2]. Unique to our approach, the representation is maximally
transparent as it does not contain any black-box component.
However, at the same time, additional features—like the
different sensitivity of human body parts or tools modifying
the robot’s safety—can be easily incorporated. Also, the use
of key points instead of other representations supports the
transparency and interpretability of the framework.

III. MATERIALS AND METHODS

The framework uses extracted human and robot key points.
The relative distances are assessed and fed into the robot
controller to generate the appropriate response.

A. Human key point estimation

We used a currently commercially available RGB-D cam-
era RealSense SR300 that provides a Colour Image Aligned
to the Depth image Stream (CADS) and a point cloud stream
(PCS), also depth image aligned. We use PyRealSense to
combine these streams. The CADS image is processed by
PyOpenPose [5] to calculate the estimated human key point
coordinates. Their 3D location is obtained through pairing
with the PCS. All our image operations use OpenCV3 [15].
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The key points are transformed into the robot’s frame of
reference by affine transforms with parameters from a pre-
experiment calibration.

B. Robot key points

A Nao humanoid robot (V3+) was used in the preliminary
experiments. Its key points were on the left end-effector,
forearm, and elbow. We used forward kinematics with current
joint encoder values as input to get the 3D position of these
key points. A Kuka LBR iiwa is the goal platform for the
experiment.

C. Separation distance representation

The protective separation distance Sp [2] needs to be
maintained between any human and robot part, such that the
human will never collide with a moving machine. Its value is
given as a sum of different contributors like reaction times,
detection uncertainties etc. For more detail, see Section
5.5.4.2.2 of [2]. With Sp as a baseline, we extend it with
additional terms.

First, we want to account for “modulation” on the part
of the human to grant larger distance from specific body
parts (e.g. head) and on the part of the robot-like when
carrying a sharp tool. Adding these distance offsets rs, hs

gives rise to a guaranteed minimal separation distance Sg .
The methodology for determining the exact values of these
offsets is currently in development.

Second, as only distances between key points will be
evaluated, but separation distance between any body parts
needs to be maintained, we add compensation coefficients,
hcompen and rcompen (see Section III-D below), giving the
key point separation distance Sd—the quantity that will be
monitored between any key point pairs.

Therefore Sd is in the form of a matrix of Si,j
d between

two given key points i, j (see Section IV).

D. Key point compensation coefficients

Using a discrete distribution of key points does not take
the full volume of the bodies into account. The compensation
coefficients hcompen and rcompen allow us to guarantee Sg

even with a discrete key point distribution.
Every part of the body is assigned to its nearest key point.

The maximal distance over all of its assigned volume is
selected as the compensation coefficient for the given key
point—thereby always guaranteeing Sg . See Fig. 3. The
current autonomous finding of these coefficients uses the
robots URDF model to approximate the maximal distances
between the key point and the assigned volume.

E. Robot control

We used PyNaoqi to control the Nao robot and ROS and
the FRI interface to control the KUKA LBR iiwa robot.
The robot was moving his end-effector periodically back and
forth on a fixed path when undisturbed. The robot stopped
when the Si,j

d threshold was exceeded. The robot resumed

Fig. 1: Separation distance calculation between robot and
human key points.

operation upon “obstruction” removal. Also, we defined a
reduced speed distance: when Si,j

d(reduced) for any key point
pair was exceeded, the robot reduced its speed to half.

F. HRI setup

The robot was in a fixed position to the camera that cap-
tured the robot’s workspace. The threshold Sp is determined
based on [2] for the KUKA or chosen arbitrarily in the case
of the non-harmful NAO.

The compensation values accounting for key point density
(Section III-D) were determined by measuring the distances
between key points. Only upper body key points were taken
into consideration for the human operator. We call the human
head the set of key points of the nose, neck, eyes and ears.
In both, human and robot case, the compensation coefficient
values were sagittal symmetric, and thus we list key points
pairs only once.

IV. EXPERIMENTAL VALIDATION

We tested the framework with an SSM scenario between
the NAO robot and a human with specific separation values
for the head of the human. Distances between all human
and robot key points were evaluated simultaneously online.
However, for clarity, we present only the interaction of the
robot end-effector with two human key points (the right wrist
and the nose) in the plots below.

The baseline protective separation distance was set to
Sp = 0.05m and the one that brings the robot to reduced
speed regime Sp(reduced) = 0.20m. The hs for the head key
points was enlarged by 0.15m. This lead to the robot’s higher
sensitivity to situations when the human operator approached
the robot with his head, as shown in Fig. 2.

We see the reaction of the robot to the wrist key point.
Later, we see that the robot reacts to the proximity of the nose
key point already at a greater distance. Notice the different
reactions of the robot (shown by the different shading) for
similar distances of the two key points.
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Fig. 2: Head and body discrimination: A higher separation
threshold for the human head region w.r.t. Nao robot’s end-
effector. Yellow areas mark the robot’s slower movement and
red areas mark when he stopped.

Sd(reduced)

Robot \ Human Nose Wrist
End effector 0.51m 0.41m

Sd

Robot \ Human Nose Wrist
End effector 0.36m 0.26m

TABLE I: Head and body discrimination: Separation matrix
for key point pairs from Fig. 2.

V. CURRENT WORK AND OUTLOOK

The presented framework is general enough to be applied
to any collaborative scenario. We currently modify the rep-
resentation to fit the KUKA LBR iiwa robot (Fig. 3). As
opposed to the NAO robot, this platform is “collaborative”,
but its dimensions and maximum speed make appropriate
risk assessment necessary.

VI. DISCUSSION AND CONCLUSION

We presented a framework that realises speed and separa-
tion monitoring between a robot and a human operator in a
versatile and transparent fashion.

OpenPose provides confidence values with every key point
estimated. Confidence values would allow to alleviate prob-
lems with possible misdetections and make the framework
more robust. After validating the framework on an industrial
robot, this is our next goal.

Currently, there are no commercially available safety-
rated RGB-D sensors suitable for such a framework. If our
framework is used in industrial settings, safety-rated devices
similar to those for zone monitoring that would provide at
least 3D object coordinates would be needed.
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A New Capacitive Proximity Sensor for Detecting
Ground-Isolated Objects

Yitao Ding1 and Ulrike Thomas1

Abstract— In this work, we provide a new measurement
method for detecting ground-isolated objects with capacitive
sensors. Capacitive sensors find use in sensor skins for safety
applications in robotics, where they serve as proximity sensors
for proximity servoing. The sensors measure the electric current
caused by the capacitive coupling and changing electric field
between the sensor electrode and the target. However, these
sensors require a return path for the current back to the sensor
in order to provide a reference potential, otherwise the targets
are electrically floating and not detectable. Our approach allows
us to avoid this return path by creating a virtual reference
potential in the target with differential signals. We provide
experimental results to show the effectiveness of our method
compared to state-of-the-art measurement methods.

I. INTRODUCTION AND APPROACH

Proximity servoing is a growing field of research involving
perception, motion planning and sensor technology. The
technology, with the capability of near field monitoring,
offers new possibilities in terms of flexibility and safety
of robots [1]. It enables the exploration of the robot’s
environment from the robot’s point of view with proximity
sensors attached on the robot’s surface. Compared to ex-
ternal camera-based solutions, these sensor signals are not
restricted by occlusion and can be incorporated directly into
the motion controller to avoid obstacles [2].

In terms of sensor technology, capacitive sensors find
use in sensor skins for proximity sensing [3]. In this
paper, we present a new capacitive sensing method for
detecting ground-isolated objects [4]. Capacitive proximity
sensors measure the projected capacitance formed between
the sensor’s electrode and the target. Common measurement
methods are either based on self capacitance (Fig. 1a) or
mutual capacitance (Fig. 1b). Both methods require a return
path of the current for a correct reference potential. The
self capacitance method relies on the coupling between the
target and the environment ground. However, the coupling
to the environment is often unknown and is subject to
many variables. The return path can be either affected by
impedance through the target Z ′

O, and therefore also the
contact point of the return path, the size of the object (capac-
itive coupling), and whether an object is actively grounded
(e.g. by wire connection). With the self capacitance method,
an isolated object without return path is electrically floating

1All authors are with the Lab of Robotics and Human-
Machine-Interaction, Chemnitz University of Technology,
09126 Chemnitz, Germany. Emails: {yitao.ding,
ulrike.thomas}@etit.tu-chemnitz.de
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Fig. 1: Projected capacitance measurement methods: 1a) self
capacitance, 1b) mutual capacitance.

and is undetectable for the sensor. The mutual capacitance
measurement method provides a solution with a second
ground electrode as a return path. By this, floating targets
are detectable but currents through other paths (leakage cur-
rent) are still affecting the measurement with less influence
compared to the self capacitance method. The authors in
[5] provide an estimation approach for the leakage current
from data gained from consecutively measuring in self and
mutual capacitance mode. The leakage current information
is relevant for electrical capacitance tomography. But still
the leakage current depends heavily on the materials in the
return path and does not allow a precise measurement of the
target’s material impedance in a spatial limited area.

Our solution (Fig. 2) cancels out the leakage current by
actively driving the ground electrode of the mutual capaci-
tance method with a differential signal from the measurement
electrode. This allows local capacitive measurements that are
unaffected by leakage currents. The leakage current infor-
mation is lost, with a gain in robustness and reliability for
proximity detection while signal aquisition and processing
times are reduced. This method is easily implementable in
already existing system designs based on mutual capacitance
measurement by adding an inverting opamp to the system.
Our approach assumes that both electrode stages are equal
and requires a symmetric design of both stages with respect
to components and electrode area. When these requirements
are satisfied, then a virtual ground is created within the target
independent of the targets actual ground state.

II. SYSTEM DESCRIPTION

This section describes our sensor design, which is based
on the mutual capacitance sensor presented in [6] with a
modification of the ground electrode.

The sensors are (40 mm×40 mm) in size. As presented
in Fig 2, we use an unbiased sine signal ue as source
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with a frequency range of 10 kHz to 300 kHz. An inverting
amplifier creates a differential signal −ue, which is referred
as negative stage in this paper. This amplifier has high
bandwidth to keep phase-shifting at minimum and both
stages symmetric. Since we measure the electrode current
with the measurement resistor Rpm an equal resistor Rnm is
added to the negative stage also for symmetry. Both stages
are then connected to equally dimensioned (17 mm×40 mm)
electrodes with shielding electrodes on the backside. A mi-
crocontroller samples the electrode current through Rpm with
an instrumentation amplifier, and the transmission voltage ue.

Zpa

Zno

ie

ue '-ue
Zna

Zpo'

VGNDRnm

Sn
En

Sp
Ep

Rpm

-1

1

1

µC
ADC

ADC
5

Inst. Ampli�ier
AD82209MHz

9MHz

Opamp
TLV4376

Fig. 2: Schematic of the analog front-end. Creation of a
virtual ground within the target with a second differential
signal.

III. EXPERIMENTAL RESULTS

In this section we perform six different measurements
by comparing the self capacitance, mutual capacitance, and
our proposed differential method with and without a return
path (RP). The target is a highly conductive aluminum plate
placed on a thick isolating wooden plate. The measurement
frequency is 100 kHz with a Vpp of 2.5 V. We calculate
the absolute impedance Z (antiproportional to the capacity)
from the sensor’s absolute excitation voltage ûe and absolute
electrode current îe at distances ranging from 0.2 mm to
10 mm. As shown in [6], these values can be calculated with
ûe =

√
2 · 〈ue, ue〉 and îe =

√
2 · 〈ie, ie〉.

The measurements in Fig. 3 show that the self capacitance
and the mutual capacitance method perform similarly at
targets with return path (solid green/blue lines). The lower
impedance in the mutual capacitance method is caused by the
stronger parasitic capacitance of the second ground electrode
on the sensor. However, targets that are isolated from the
sensor disturb the signal with an increase of impedance
(dotted green/blue lines). The target can still be detected due
to the capacitive coupling to the environment. The mutual
capacitance method is less affected at close range, because
the target acts as permittivity between the measurement
electrode and the ground electrode. With increasing ranges
the capacitive coupling between both electrodes decreases
which results in a similar disturbed impedance as the self
capacitance method.

Finally, isolated targets do not disturb measurements from
the proposed differential method (red lines). Both lines are

2 4 6 8 10
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·104
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Z
in

Ω

Impedance vs Distance

Diff. w/ RP
Diff. w/o RP
Mutual w/ RP
Mutual w/o RP
Self w/ RP
Self w/o RP

Fig. 3: Measurement of impedance at distances ranging from
0.2 mm to 10 mm. Dotted lines represent an isolated target
without return path, whereas solid lines represent targets with
return path.

similar, which is the goal of our approach. The second differ-
ential electrode causes an overall decrease of the impedance
with its stronger parasitic capacitive effect, which can be
compensated through calibration as shown in [6].

IV. CONCLUSIONS

Our proposed differential measurement method for capac-
itive sensors shows promising results of detecting targets
that are ground-isolated and which do not provide a return
path for the current. With this in mind, sensors can be
designed completely isolated from the environmental ground,
e.g. with battery operation. Further external disturbances,
such as 50/60 Hz mains noise, can be surpressed. Our
method also provides an important contribution towards safe
human-robot collaboration applications based on capacitive
proximity skins, where a reliable detection of obstacles is
essential.
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