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Abstract

Conventional elastohydrodynamic (EHD) contact models usually approximate deformation
using half-space theory while neglecting structural inertia effects. The conventional modeling
approach yields good results for compact bodies. However, it is not suitable for more complex
bodies where structural inertia effects influence the contact behavior. This work proposes an
efficient solution procedure which considers structural inertia effects and is applicable to arbitrary
geometries, thus, providing a superior solution to the EHD contact problem.

The contact bodies are modeled by specially adapted reduced finite element models. Singly
diagonal implicit Runge-Kutta (SDIRK) methods are used for adaptive time integration. A
fluid-structure coupling is presented to combine the structural model and the nonlinear Reynolds
Equation using a monolithic coupling approach. Finally, a reduced order model of the complete
nonlinear coupled problem is constructed.

The solution procedure is studied on the basis of familiar example problems from EHD literature,
namely the shock loading of an EHD contact and the lubricated impact problem. To investigate
the extended structural model, the impact of a valve-like geometry is examined for both a dry
contact and a lubricated contact. The proposed solution procedure is able to capture effects in the
contact behavior not captured by the conventional modeling approach needing little additional
computational cost.
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Kurzfassung

Bei derModellierung von elastohydrodynamischen (EHD) Kontakten wird die Verformung häufig
mittels der Halbraumtheorie approximiert und das dynamische Verhalten der Kontaktkörper
oftmals vernachlässigt. Dieser konventionelle Modellierungsansatz liefert gute Ergebnisse
für kompakte Körper, ist jedoch nicht für komplexere Geometrien geeignet, bei welchen
das Kontaktverhalten durch Trägheitseffekte beeinflusst wird. In dieser Arbeit wird ein
effizientes Lösungsverfahren vorgestellt, welches das dynamische Verhalten der Kontaktkörper
berücksichtigt und auf beliebige Geometrien anwendbar ist. Die verbesserte Modellierung
ermöglicht die Verwendbarkeit bei komplexeren Problemstellungen.

Die Kontaktkörper werden durch speziell angepasste, reduzierte Finite-Elemente-Modelle
dargestellt. Zur adaptiven Zeitintegration werden einfach diagonal implizite Runge-Kutta
Verfahren verwendet. Mittels einer Fluid-Struktur-Kopplung wird das erweiterte Strukturmodell
mit der nichtlinearen Reynolds-Gleichung gekoppelt. Das monolithisch gekoppelte Problem wird
mit dem Newton-Verfahren gelöst. Darüber hinaus wird ein reduziertes Modell des gesamten
nichtlinearen Problems erstellt.

Das entwickelte Lösungsverfahren wird anhand bekannter Beispiele aus der EHD Literatur
untersucht. Dabei wird die schlagartige Belastung eines EHD-Kontakts sowie das Stoßproblem
betrachtet. Weiterhin wird das erweiterte Strukturmodell anhand einer ventilähnlichen Geometrie
sowohl für einen trockenen als auch für einen geschmierten Kontakt untersucht. Das erweiterte
EHD-Kontaktmodell kann Effekte im Kontaktverhalten mit geringem zusätzlichem Rechenauf-
wand abbilden, die mittels des konventionellen Modellierungsansatzes nicht abbildbar sind.

v





Contents

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Objective and outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1 Fluid model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Reynolds Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Lubricant properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.3 Nondimensionalization . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.4 Discretization of Reynolds Equation . . . . . . . . . . . . . . . . . . 16

2.2 Structural model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 Elasticity relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Finite element method . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.3 Gap height . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Model order reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.1 Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.2 Application to a structural model . . . . . . . . . . . . . . . . . . . . 23
2.3.3 Modal truncation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.4 Static condensation and Guyan reduction . . . . . . . . . . . . . . . . 25
2.3.5 Component mode synthesis . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Time integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.1 Singly diagonal implicit Runge-Kutta method . . . . . . . . . . . . . . 31
2.4.2 Adaptive step size selection . . . . . . . . . . . . . . . . . . . . . . . 32

3 Solution procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1 Set-up of the reduced structural model . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Uncoupled equations of motion . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 Reducing spurious oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4 Time integration of the structural model . . . . . . . . . . . . . . . . . . . . . 40
3.5 Coupling procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

vii



Contents

3.5.1 Definition of the computational grid . . . . . . . . . . . . . . . . . . . 42
3.5.2 Construction of coupling matrices . . . . . . . . . . . . . . . . . . . . 43
3.5.3 Interpolation onto the computational grid . . . . . . . . . . . . . . . . 49
3.5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.6 Solution of the nonlinear system of equations . . . . . . . . . . . . . . . . . . 52
3.7 Model order reduction of the nonlinear system . . . . . . . . . . . . . . . . . 54

4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.1 Shock loading of a lubricated contact . . . . . . . . . . . . . . . . . . . . . . 61

4.1.1 Example problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.1.2 Comparison of time integration schemes . . . . . . . . . . . . . . . . 64
4.1.3 Study of the adaptive time stepping scheme . . . . . . . . . . . . . . . 66

4.2 Dry contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2.1 Example problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2.2 Construction of the structural reduced order model . . . . . . . . . . . 74
4.2.3 Study of artificial frequencies . . . . . . . . . . . . . . . . . . . . . . 78
4.2.4 Time integration of the structural dynamics model . . . . . . . . . . . 85

4.3 The lubricated impact problem . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.3.1 The impact of a sphere on a lubricated plate . . . . . . . . . . . . . . 90
4.3.2 The impact of a valve-like geometry on a lubricated plate . . . . . . . 95
4.3.3 Remarks on the solution procedure . . . . . . . . . . . . . . . . . . . . 97
4.3.4 Efficient computation of multiple impacts . . . . . . . . . . . . . . . . 99

5 Summary and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Appendix A Computation of absolute and relative deviations . . . . . . . . . . . . 111

Appendix B Conventional EHD contact models . . . . . . . . . . . . . . . . . . . . 113
B.1 EHD line contact model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
B.2 Conventional structural model . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Appendix C Time integration of boundary conditions and parameters . . . . . . . 117

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

List of student works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

viii



Nomenclature

Remarks on the notation

To improve the understanding of relations between different quantities, scalars, geometrical
vectors, column matrices and matrices are visualized as follows:

• Scalars a,

• Geometrical vectors �a,

• Column matrices a, A, and

• Matrices A.

To identify selective rows and columns of a matrix, a programming-like notation is used. For
example, a submatrix, consisting of the first nB rows and the first mB columns of the matrix
A ∈ RnA×mA , will be denoted as

B = A (1 : nB, 1 : mB) =
⎡⎢⎢⎢⎢⎢⎣

a11 · · · a1mB
...

. . .
...

anB1 · · · anBmB

⎤⎥⎥⎥⎥⎥⎦ ∈ RnB×mB,

where ai j is the element in the i-th row and j-th column of the matrix A.

Scalars

αη Pressure-viscosity-coefficient

βη Pressure-viscosity-index

γpen Penalty factor

δ Gap displacement

δ̄ Dimensionless gap displacement

εa, εr Absolute and relative tolerance of the step size controller

ix



Nomenclature

ζ Damping ratio

η Viscosity

η̄ Dimensionless viscosity

η0 Viscosity at ambient pressure

ν Poisson’s ratio

ξ Local coordinate

ξiQ Local coordinate of a quadrature point

ρ Density

ρ̄ Dimensionless density

ρ0 Density at ambient pressure

χe Transformation from local to global coordinates

ω(m) Under-relaxation factor for the m-th Newton-Raphson iteration

b̂k Weight coefficient of an embedded Runge-Kutta method

akl , bk , ck Weight coefficient of a Runge-Kutta method

b Hertzian half-width

E Young’s modulus

E ′ Effective Young’s modulus

errmax Maximum absolute deviation, see Eq. (A.3)

fc Cut-off frequency

Fc Central force, Fc = F(t, X ≈ 0)

fmin, fmax Parameters of the time step size controller

fsafety Stabilization parameter of the time step size controller

g Acceleration of gravity

x



Nomenclature

h Gap height

H Dimensionless gap height

h0 Initial height

hc Central gap height, hc = h(t, X ≈ 0)

hmin Minimum gap height, hmin(t) = min
X∈ΩF

(h(t, X))

iGR Grid ratio

l Loss of information

lmax Maximum tolerable loss of information

m0 Mass

Ñp Number of points for the nonlinear function evaluation

N̂p Number of points for the state variable evaluation

ncm Number of constraint modes

ñδ Number of basis functions for the gap displacement

nen Number of nodes per element

nF Number of fluid nodes

nnm Number of normal modes

np Number of unknown pressures

ñp Number of basis functions for the pressure

nQ Number of quadrature points

nq Number of degrees of freedom in modal space

ns Number of snapshots

nS Number of structure nodes

nt Number of time steps

xi



Nomenclature

nu Number of displacement degrees of freedom

ñu Number of basis functions for the displacement

ny Number of state variables in the state-space representation

nz Number of unknowns in the full system

ñz Number of basis functions of the reduced system

p Pressure

P Dimensionless pressure

p, p̂ Order of a Runge-Kutta method

pc Central pressure, pc = p(t, X ≈ 0)

pH Hertzian pressure

R Radius of curvature

Rred Reduced radius of curvature

relerr Relative deviation over time, see Eq. (A.4)

relerrmax Maximum relative deviation, see Eq. (A.5)

relerrmean Mean relative deviation, see Eq. (A.2)

t Time

T Dimensionless time

Δtj Time step size of the j-th time step

ΔTj Dimensionless time step size of the j-th time step

t0 Initial time

v0 Initial impact velocity

w Load

w̄ Dimensionless load
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Nomenclature

wiQ Weight coefficient of Gauss quadrature

x, y, z Spatial coordinates

ΔxF Size of a fluid element

ΔxS Size of a structure element

X Dimensionless spatial coordinate

Vectors and matrices

ϕ Eigenvector

Φ̄ Modal matrix

ϕ̂ Mass normalized eigenvectors

Φcm Constraint mode matrix

Φnm Normal mode matrix

δ Gap displacement vector

δ̄ Dimensionless gap displacement vector

A, B, C, D Matrices of the state-space representation

D Modal damping matrix

F Force vector

f Discrete system function

F̃ Reduced force vector

GFQ Interpolation matrix—from fluid grid to quadrature point

Gint Pressure integration matrix

GQS Integration matrix—from quadrature point to structure grid

GSF Interpolation matrix—from structure to fluid grid

h Gap height vector
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Nomenclature

H Dimensionless gap height vector

J f Jacobian matrix of the system function

K Stiffness matrix

K̃ Reduced stiffness matrix

K Reduced stiffness matrix in modal space

M Mass matrix

M̃ Reduced mass matrix

M Reduced mass matrix in modal space

N Matrix of shape functions

p Pressure vector

P Dimensionless pressure vector

q Generalized coordinates

S jk Starting vector of a Runge-Kutta method

u Displacement vector

U Dimensionless displacement vector

ũ Reduced displacements

u F Displacements on the fluid grid

uS Displacements on the structure grid

Vδ Projection matrix for the gap displacement

Vp Projection matrix for the pressure

Vu Projection matrix for the displacement

Vz Projection matrix for the full system

xF Fluid grid point coordinates
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Nomenclature

xS Structure grid point coordinates

y State variable

Y jk Stage value of a Runge-Kutta method

z State vector of the full system

z̃ State vector of the reduced system
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1 Introduction

The demands on modern machine elements are continuously increasing. While machine elements
are to become cheaper, smaller and lighter, the expectations towards functionality and durability
are not to be compromised. In addition to satisfying basic requirements, other desired aspects,
e.g., good acoustic performance, play an essential role. In order to meet all these requirements,
a precise understanding of the machine elements and the interaction of the components is
necessary. Numerical studies are increasingly used in the product development process in order
to gain a broader and deeper understanding of interrelationships. The focus of recent studies is
to take into account more and more physical effects in the simulation models, often resulting
in coupled problems. The numerical solution of the coupled problems, however, can quickly
become time-consuming. For this reason, simulation techniques are continuously developed and
improved to enable a fast and stable numerical solution of the models.

The elastohydrodynamic (EHD) contact problem is a coupled problem that typically occurs in
non-conformal lubricated contacts. Such contacts exist, for example, in ball bearings or gears.
The EHD contact problem is characterized by very high viscosities and elastic deformations that
are greater than the gap height. To predict the behavior of an EHD contact, the solid’s behavior
and the fluid’s behavior must be considered at the same time. In EHD contacts the fluid flow is
typically modeled using the nonlinear Reynolds Equation. The fluid’s behavior is modeled by
viscosity and compressibility relations, while the solid’s deformation is commonly modeled
using the half-space approach. The structural dynamic behavior of the bodies is generally not
considered in the conventional EHD contact model.

In some applications, e.g., valve-seat/valve-needle contacts, the conventional EHD model does
not suffice to meet the above requirements. Such applications have more complex geometries
and boundary conditions that influence the contact behavior and must be considered in the
investigations. To meet the demands of these applications, model extensions are necessary.
However, model extensions are often accompanied by an extension of the computational time.
Hence, efficient solution procedures are needed to keep the additional computational cost low.

This work aims to extend the structural modeling of the transient EHD contact model using
modern numerical methods. The resulting model shall be applicable to a wide range of machine
elements while keeping the computational time low. The solution of the lubricated impact
problem is an interdisciplinary problem. To this end, a brief survey of relevant literature is
presented in the following.

1



1 Introduction

1.1 Literature review

The study of lubricated contact problems is a multi-disciplinary field with application in various
domains. In this work, the focus lies on efficient solution procedures for non-steady-state EHD
contact problems. To this end, first, a short historical review of the EHD contact problem
is given. Next, developments of numerical solution procedures in this field are summarized.
This work focuses on the lubricated impact problem, a review of this problem concludes the
literature review.

Historical developments of the EHD contact problem

Following the experimental studies of Petrov and Tower on railway axle bearings, Osborne
Reynolds [110] laid the foundation for the calculation of lubricated contacts in 1886 by deriving
a partial differential equation to describe the flow of Newtonian fluids in narrow gaps. This
equation is referred to as Reynolds Equation. The improved theoretical understanding resulting
from Reynolds’ studies helped in the development of plain bearing technology. However, in the
study of gears, results obtained solely with Reynolds Equation yield very small gap heights,
which were not in agreement with the experimentally observed longevity of gears. It became clear
that the observed behavior was related to an increase in viscosity and local elastic deformations,
which resulted from high local pressures in the contact of gear teeth. However, theoretical
investigations remained inconclusive. A breakthrough was finally achieved by Ertel [41], whose
work was published by Grubin [51] in 1949. Ertel and Grubin managed to incorporate both
the increase in viscosity and the local elastic deformations in one theory. The results of these
investigations provided significantly larger gap heights than previous studies. Consequently, the
longevity of gears could finally be explained theoretically. The findings by Ertel and Grubin
mark the cornerstone of the elastohydrodynamic (EHD) contact theory.

A detailed overview of the historical developments of the EHD contact problem can be found
in [33, 36, 90, 117].

Developments of the numerical solution procedure of EHD contact problems

First numerical solutions of an EHD contact problem were presented by Petrusevich [104] in
1951. Petrusevich’s solutions simultaneously satisfied Reynolds Equation and the elasticity
relations. His solutions were the first to show characteristic EHD contact features, such as the
pressure peak, which forms at the outlet of the contact. This narrow peak is also referred to as
the Petrusevich spike. Further remarkable results were published by Dowson and Higginson
[34] in 1959. They presented numerical solutions for a broader range of parameters and derived
empirical regression equations from the solutions. The resulting equations could express the

2



1.1 Literature review

line contact problem in terms of three dimensionless groups. These groups were often used in
the following years to gain an understanding of EHD contact behavior.

Dowson and Higginson [34] used the inverse method to compute their numerical solutions. The
inverse method uses an inverted and integrated Reynolds Equation to compute a gap height
profile from a given pressure distribution. The same pressure distribution is then used to compute
a second gap height profile from the elasticity relations. In multiple iterations, the pressure
distribution is manually modified until the two gap height solutions coincide. Two disadvantages
of this approach are that an accurate initial estimation of the pressure distribution is needed,
which is often available only for highly loaded contacts, and that the modifications of the pressure
distribution are carried out by hand, which requires skill and insight into the contact behavior.
Nonetheless, the inverse method was successfully adapted to compute solutions for the point
contact problem by Evans and Snidle [43] in 1982.

Another solution approach is the direct method. The direct method uses Reynolds Equation
to compute a pressure distribution from a given gap height profile. The resulting pressure
distribution is then used to compute a new gap height profile from the elasticity relations. This
procedure is repeated until convergence is reached. It was first applied to the line contact problem
by Stephenson and Osterle [119] in 1962 and to the point contact problem by Ranger et al. [107]
in 1975. Using this approach, the iterations were usually performed using Gauss-Seidel method
[20, 64, 65]. Disadvantages are the bad convergence for highly loaded cases, as well as a large
number of required iterations. Hence, long computational times were needed and convergence
was rarely archived for highly loaded cases.

There have been two main approaches to overcome these problems. One approach is to strengthen
the coupling between Reynolds Equation and the elasticity relations, i.e., a monolithic coupling
approach. Another approach is to keep the partitioned coupling and solve the problem using
multigrid methods. The multigrid method, which is based on the Gauss-Seidel method, was first
introduced to the EHD contact problem by Lubrecht [87–89] in 1986. The multigrid method
makes use of the difference in convergence velocity of errors on different grid refinement
levels. The computation of the elastic deformations dominated the computational time of the
original method. The multilevel multi-integration approach [11] improved the efficiency of the
computation of the elastic deformations. Venner [126] introduced further improvements in 1991.
His distributive relaxation schemes improved the stability of the procedure. Venner and Lubrecht
outlined the implementation of multigrid methods in lubricated contact problems in their book
[128] in 2000. The ready availability of the method, paired with its computational efficiency and
stability for highly loaded cases, make this method a popular choice for the solution of EHD
contact problems until today.

A stronger coupling results from solving the problem as one system of equations, resulting in
the simultaneous computation of one set of solutions for the pressure and the gap height. This
approach was applied to EHD contact problems by Okamura [101] in 1982 and later by Oh
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1 Introduction

[100] and Houpert and Hamrock [74]. The coupling improves the stability of the numerical
procedures, which allows the computation of highly loaded cases. The resulting system of
equations is commonly solved using the Newton-Raphson method, which requires an inversion
of the Jacobian matrix in every iteration. Unfortunately, the Jacobian matrix relating to the elastic
terms is fully populated. The inversion of a fully populated matrix of size n × n has complexity
O(n3). Therefore, the computational effort of this approach becomes high for a large number of
grid points. To overcome this problem, Evans and Hughes [42] and Hughes et al. [75] proposed
the differential deflection method. This method enables the construction of a banded matrix
relating the pressure to the deformation by making use of the fast decay of the second differential
of the deformation with pressure. The method was further extended by Holmes et al. [72, 73]
and applied to transient problems. However, the combination of the complex implementation
with remaining computational drawbacks for point contact problems has likely hindered the
spreading of the monolithic coupling approach in the context of EHD contact problems. More
recently, Habchi et al. [55, 60, 61] proposed the usage of the finite element method to solve
Reynolds Equation as well as the elasticity relations. Discretization using finite elements yields a
sparse matrix, thus, overcoming the issue of the densely populated matrix, which was an obstacle
in half-space approach based methods. Additionally, they proposed using the penalty method for
the treatment of the free boundary cavitation problem [137], which eases the implementation of
a monolithic coupling approach. Using finite elements for the discretization of the solids creates
a new challenge. Namely, that many degrees of freedom, which have no direct influence on the
behavior in the contact region, are introduced into the system of equations. Nevertheless, Habchi
et al. showed that the computational complexity of their proposed procedure is comparable to
existing solvers which use the multigrid method. The improved computational efficiency results
from the faster convergence of the monolithic coupling approach.

In recent years efforts have been made to decrease further the computational time of EHD contact
problems using model order reduction techniques. First successful attempts were presented by
Habchi and Issa [57, 58] and by Habchi et al. [56]. They applied their so-called EHD-basis
technique to reduce the linear part of the EHD contact model, i.e., the elasticity relations. As
reduction basis, they used elastic deflections, which were computed in advance using the full
EHD contact model. Therefore, this reduction approach requires an offline phase, i.e., a phase
were training solutions are computed in advance using the full model. Maier [93] reduced the
EHD contact problem using two different model order reduction approaches. One approach is
based on the proper orthogonal decomposition method and a subsequent system approximation
[95]. A second approach is based on the trajectory piece-wise linear method [94, 108, 109].
The second approach, however, can only be applied to transient problems. Maier et al. showed
tremendous decreases of the online computational time resulting from these approaches. On the
other hand, these approaches also require an upfront offline phase in which the reduced order
models are constructed based on solutions of the full model. Furthermore, the functionality of
the reduced order models is then only given in the parameter space for which the reduced order
model has been constructed, thus, limiting the area of application of the reduced order model.
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1.1 Literature review

A very recent study in the context of model order reduction techniques applied to EHD contact
problems was presented by Habchi and Issa [59] in 2017. As in their previous approaches,
Habchi and Issa only reduced the linear part of the model. However, different from previous
approaches, they reduced the elasticity relations using static condensation. Static condensation
is often referred to as the Guyan reduction [54]. This method consists only of matrix operations
and is therefore exact for static problems. However, this approach is not suitable for structural
dynamics problems [106]. The method has the advantage that it depends solely on the stiffness
matrix. Hence, no computations using the full model are required for the construction of the
reduced order model.

Out of the many works focusing on the development of efficient numerical techniques to solve
the EHD contact problem few have focused on the time integration procedure. The temporal
term of Reynolds Equation is commonly discretized in time by the Backward Euler method
[38, 48, 85, 100, 126, 127] or the second-order finite difference method [94, 124, 134]. Venner
et al. [124] and Wijnant [134] pointed out that the damping introduced by the Backward Euler
method noticeably changes the contact behavior and proposed the usage of the second-order finite
difference method. The second-order finite difference method is widely used today. Regarding
the time step size the first solutions of the EHD contact problem using adaptive time stepping
were presented by Goodyer [47] in 2001. Another approach was presented by Watremetz et al.
[132]. Nonetheless, the use of a fixed time step size remains a typical choice until today [129].

Developments of the lubricated impact problem

The first studies of the EHD contact problem mostly neglected the pressure resulting from the
squeeze term, i.e., the temporal term of Reynolds Equation was neglected. One of the first
theoretical researches of EHD contacts under impact motion was carried out by Christensen
[21] in 1962. He presented theoretical and experimental results for two normally approaching
cylinders separated by a lubricant. His numerical analysis considered an incompressible lubricant
with exponentially varying viscosity and an elastically deforming solid. However, he neglected
the contribution of the elastic deformations to the temporal term of Reynolds Equation. He
presented two important observations. Namely, that the maximum pressure in the lubricated
case is larger than in the dry contact case. Moreover, that in the lubricated case the minimum
film thickness does not occur at the center of the contact. His experimental results showed
larger plastic deformations in the contact region for the lubricated contact case than for the dry
contact case. These observations validate his theoretical results and are in agreement with the
observations of Bowden and Tabor [10]. Direct evidence of the formation of a central dimple
was presented in 1967 by Dowson and Jones [37]. They studied the deformation of the solids
around the highly viscous lubricant using optical interferometry.

In 1970, Christensen [22] published another paper on the normal approach. In this paper, he
studied an axisymmetrically modeled spherical body. The results confirmed his observations
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for the line contact problem from his first paper [21]. However, he did not adequately consider
the elastic deformations in the temporal term of Reynolds Equation in either approach. In the
same year, further theoretical studies of the normal approach of two cylinders separated by a
lubricant were presented by Herrebrugh [69]. Following Christensen, he assumed a constant
approach velocity of the surfaces and did not consider elastic deformations in the temporal
term of Reynolds Equation. He notes however that this effect should be considered for small
gap heights.

In 1973, Lee and Cheng [86] extended the previous modeling approaches by considering the
elastic deformations in the temporal term of Reynolds Equation. They were able to reach
convergence for smaller gap heights and noted the relevance of the local elastic deformations.
Similar to previous studies, they assumed the cylinders to be weightless, thus, not solving the
equation of motion. Conway and Lee [24], on the other hand, considered the equation of motion
but neglected the elastic deformations. They highlighted the role of the piezoviscosity in the
formation of the central dimple.

Interesting results of the lubricated impact problem were presented by Safa and Gohar [114]
in 1986. Safa and Gohar dropped a steel sphere on a lubricated glass plate. They measured
the pressure-time trace in the contact region using manganin pressure transducers. Their
experimental results showed a secondary pressure peak in the contact center at the end of the
impact-rebound process. Besides the observation of the secondary pressure peak, they noted that
even without replenishment of the oil droplet no noticeable changes in the pressure profile occur
for the case of multiple impacts. This observation indicates that the pressure buildup begins at
very small gap heights.

The first transient solutions of a sphere dropping on a lubricated plate were presented by Yang and
Wen [138] in 1991. They considered the mass of the sphere as well as the elastic deformations in
the temporal term of Reynolds Equation. The equation of motion was solved using the explicit
Euler method and Reynolds Equation was solved using the Backward Euler method. Results for
the first part of the impact process were presented, leaving the question about the secondary
pressure peak unanswered. They highlighted the significance of the squeeze effect only for small
gap heights, thus, confirming the observations of Safa and Gohar in this regard.

The first numerical results of the complete impact and rebound of an elastic sphere on a lubricated
plate were presented at the 6th Nordic Symposium by Dowson and Wang [38] and by Larsson
and Höglund [85]. Both studies showed the secondary pressure peak, which was experimentally
observed by Safa and Gohar [114].

Further studies investigating EHD contacts with rapid normal motion followed. Particular interest
was given to the effects of loading speed and/or initial gap height. In this context, the occurrence
of noncentral dimples was observed experimentally by Sakamoto et al. [115]. Numerical results
were presented by Guo et al. [52] and by Kaneta et al. [80, 82] and Nishikawa et al. [98].

6



1.2 Objective and outline

In further studies, Kaneta et al. [81] investigated the influence of surface features while Wang et
al. [130, 131] studied the influence of thermal effects. Efforts were made by Wang, Venner and
Lubrecht to obtain simple equations for the prediction of transient EHD contact behavior for
line contacts [129] and for point contacts [125]. While these relations are helpful to gain an
understanding of the problem, they do not give information about the spatial resolution and
transient behavior of the pressure and film thickness.

In the studies listed above, the numerical solution procedure and the mathematical model of the
EHD contact problem have remained mostly unchanged. For the solution of the coupled problem,
the multigrid procedure as given by [128] was used. Hence, equations were coupled using a
partitioned coupling approach and Reynolds Equation was discretized using finite differences on
an equidistant grid in space and time. The mathematical model describing the behavior of the
solids have remained unchanged to that used in the early 1990s, i.e., the elastic deformations are
approximated using the half-space approach and the inertia of the solids is considered by the
equation of motion of a point mass.

1.2 Objective and outline

From the review of previous research, it becomes clear that the multigrid procedure remains
the most popular solution procedure until today. Similarly, the elastic half-space approach has
almost without exception been used for the approximation of the elastic deformations in EHD
contact problems. Structural inertia is, if at all, considered by the equation of motion of a point
mass. This modeling approach does not account for the dynamic behavior of elastic bodies with
complex geometries. In certain machine elements, the dynamic behavior of the contact bodies
influences the contact behavior. Hence, the application of conventional EHD contact models for
such applications can lead to unsatisfactory results. To overcome this drawback, efforts have
been made to construct viscous force-damper elements from EHD contact simulations and
to consider these in the context of a structural dynamic simulation. However, to the author’s
knowledge, no modeling approach exists which computes the structural behavior and the fluid
contact behavior in one fully coupled system of equations.

The objective of this work is to develop an efficient numerical solution procedure for the
lubricated impact problem, incorporating the dynamic behavior of the contact bodies. To this
end, the conventional modeling of the EHD contact problem is extended with respect to the
structural model. The additional computational effort to solve the extended model shall be low.
To this end, modern numerical techniques are applied, such that the computational time of the
EHD contact problem using the extended modeling approach is comparable to the computational
time of the less complex conventional EHD contact model.
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Outline

The second chapter illustrates the modeling of the lubricated impact problem and outlines
numerical methods used to solve the resulting model. First, the fluid model, as it can be found in
the EHD literature, is presented. The case of the line contact and the axisymmetric point contact
is shown. Then, the nondimensionalization and discretization of Reynolds Equation using finite
differences is presented. Next, the structural model is presented. It is based on the finite element
formulation and coupled with the fluid model via the gap height. Section 2.3 summarizes the
model order reduction procedures used to reduce the dimensions of the finite element model.
Starting from a projection onto a lower dimensional subspace via modal truncation and static
condensation, the method of component mode synthesis is motivated. Finally, Section 2.4
presents the adaptive time integration using singly diagonal implicit Runge-Kutta method. Here,
the used time integration scheme, the basic algorithm of the time integration method, and the
time step size control is shown.

Based on the equations and methods of Chapter 2, Chapter 3 describes the developed solution
procedure of the coupled problem. The first part of the chapter focuses on the construction
of the structural model and its coupling into the lubricated impact problem. In this context,
the reduced structural model is decoupled through a modal transformation. Next, methods to
minimize spurious oscillations are presented, which can be observed in the context of reduced
order models. An efficient procedure for the coupling of the two bodies with the fluid is presented
subsequently. Due to the used procedures, the resulting equation system has the same size as the
equation system of conventional EHD models. The fully coupled equation system is solved in
a monolithic approach using the Newton-Raphson method. Finally, Section 3.7 presents the
model order reduction of the entire nonlinear system. To this end, the coupled problem is first
projected onto a subspace, before, in a second step, the size of the reduced system functions is
further reduced by a system approximation.

In Chapter 4 the presented solution procedure is applied to example problems. Three different
problems are considered, which allows for the separate investigation of different parts of the
solution procedure. The first example problem is the shock loading of a lubricated contact. For
this problem, a conventional EHD model is used. Based on this problem, the proposed time
integration procedure is studied. Additionally, an extension of the time step size control based
on the monitoring of parameter changes is presented.

The second example problem is the dry contact of a valve-like geometry. Using this example
problem, the extended structural model and the methods for dealing with spurious oscillations in
reduced structural models are investigated.

The third example problem is the lubricated impact problem. For this example problem, the
entire extended EHD model is used. To validate the model, a comparison with results from
literature is made. Moreover, the influence of the extended EHD model is illustrated by varying
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the material parameters of a valve-like geometry. The numerical aspects of the model are briefly
examined. Finally, the application of multiple impacts is examined. Such problems can occur,
for example, in the calculation of wear processes. This study allows the investigation of the
model order reduction of the entire system. The proposed procedure automatically creates local
reduced order models to decrease the computational effort of problems with recurrent processes.

Chapter 5 concludes this thesis and motivates further work.
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This chapter summarizes the equations used to model the lubricated contact problem and
describes numerical methods to solve this problem. First, the fluid model is presented. The line
contact and the axisymmetric point contact model are shown. Next, Section 2.2 outlines the
structural model. In contrast to conventional approaches, the structural bodies are discretized
using finite elements. The resulting finite element model is reduced using model order reduction
procedures. Section 2.3 presents model order reduction techniques with an emphasis on structural
dynamics. Finally, Section 2.4 outlines the adaptive time integration procedure using singly
diagonal implicit Runge-Kutta (SDIRK) methods.

2.1 Fluidmodel

Based on simplified Navier-Stokes equations, Osborne Reynolds derived in 1886 an equation to
describe slow viscous flow in narrow gaps [110]. In this context, he assumed—among other
things—that viscous terms are predominant and inertial and volume forces are negligible in
comparison. Furthermore, the pressure is assumed to be constant in the film thickness direction
and the fluid to behave Newtonian. These assumptions significantly reduce the complexity of the
full Navier-Stokes equations, while yielding good results for lubricated contact applications,
which makes the Reynolds Equation a popular choice to model the fluid flow in lubricated
contact problems.

The following subsections summarize the fluid model of the pure impact EHD contact problem.
The mathematical model for the rolling/sliding EHD contact problem is summarized in
Appendix B.

The theory presented in the following is based on the works [5, 66, 123, 125, 128, 129], which
provide a more detailed overview.
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2.1.1 Reynolds Equation

The isothermal Reynolds Equation for pure impact conditions can be written as

∂

∂x

(
a
ρh3

12η
∂p
∂x

)
− a
∂ρh
∂t
= 0, (2.1)

with the pressure p (t, x), the density ρ(p), the viscosity η(p), and the gap height h (t, x), where
t denotes the time and x is the spatial coordinate. The factor a is introduced to express a single
equation for the line contact problem and for the axisymmetric point contact problem.1 It is
defined as

a =

{
1, for a line contact, and
x, for an axisymmetric point contact.

(2.2)

The first term of the Reynolds Equation describes the pressure induced flow and is commonly
referred to as the Poiseuille flow term. The second term is commonly referred to as the
squeeze term.

To solve the above initial-boundary value problem, boundary and initial conditions need to be
prescribed. Pressure boundary conditions are prescribed on the boundary enclosing the spatial
domainΩF � [xL, xR]. Initial conditions are prescribed at the initial time instant t0 for the entire
spatial domain ΩF. For the line contact problem, pressure boundary conditions are applied on
both sides of the domain, i.e.,

p(xL, t) = pL, ∀t ≥ t0, and

p(xR, t) = pR, ∀t ≥ t0.
(2.3)

For the axisymmetric point contact problem, the pressure gradient is prescribed to vanish at the
axis of symmetry. Here, the axis of symmetry is xL = 0, i.e.,

∂p(x, t)
∂x

����
x=xL

= 0, ∀t ≥ t0. (2.4)

The boundary condition at the outer boundary of the domain remains as given in Eq. (2.3).
Please note that a vanishing pressure gradient can also be prescribed for the line contact problem
if the geometry is symmetric and the pressure boundary conditions are equal.

For the initial time instant t0, the initial pressure distribution p0(x) is prescribed

p(x, t0) = p0(x), ∀x ∈ ΩF. (2.5)

1Please note that for the axisymmetric point contact problem the spatial coordinate x is the radial coordinate with
origin at the center of the contact, i.e., x = 0.
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Cavitation condition

The Reynolds Equation is derived under the assumption of a fully-filled fluid gap. Physically,
this assumption does not necessarily hold true throughout the whole spatial and temporal
domain. Hence, for a temporally and spatially diverging gap, i.e., ∂h/∂t > 0 and ∂h/∂x > 0,
the Reynolds Equation may predict negative pressure values. In reality, fluids cannot sustain
considerable tension and the fluid would cavitate, preventing the pressure to drop significantly
under the cavitation pressure pcav. To prevent the Reynolds Equation from yielding unphysical
results, additional constraints need to be introduced.

It is difficult to describe the phenomenon of cavitation precisely. Numerous research has been
carried out to gain a better understanding of the related phenomena. In the field of thin film
lubrication Swift-Stieber [120, 122] (also called Reynolds conditions) and Jakobsson-Floberg-
Olsson (JFO) [78, 102] conditions are most commonly used. Swift-Stieber conditions aim to
predict the location of film rupture, whereas JFO conditions also try to predict the location of
film reformation. Thus, JFO conditions aim to enforce mass-conservation.

The review paper by Braun [12] gives a more detailed overview of the topic.

In this work, Swift-Stieber conditions are used. These conditions can be written as

p(x, t) ≥ pcav, ∀t ≥ t0 and ∀x ∈ ΩF,

∂p(x, t)
∂x

����
x=xcav

= 0, ∀t ≥ t0,
(2.6)

where xcav denotes the location of film rupture. Due to the high pressures in the contact region,
pcav = 0 Pa is usually assumed. These conditions can be enforced by adding a penalty term to
the right side of the Reynolds Equation [137]

∂

∂x

(
a
ρh3

12η
∂p
∂x

)
− a
∂ρh
∂t
= γpen min (p, 0) . (2.7)

The penalty factor γpen should be chosen as large as possible to enforce the condition properly.
However, attention needs to be paid as a very large penalty factor increases the numerical
stiffness of the problem, which may cause numerical issues.

2.1.2 Lubricant properties

The lubricant properties—especially the viscosity—vary significantly with pressure. In the
lubricated impact problem, the pressure variation in space and time is significant. Therefore, the
pressure induced variation of lubricant properties needs to be considered.
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Viscosity

A widely used viscosity model was presented by Barus [6] in 1893

η(p) = η0 exp
(
αη p

)
, (2.8)

with the pressure-viscosity-coefficient αη and viscosity η0 at ambient pressure. The exponential
approach of Barus can lead to an overestimation of the viscosity for very large pressures. This
disadvantage is improved by Roelands’ model [111]

η(p) = η0 exp
((

ln
( η0
Pa·s

)
+ 9.67

) (
−1 +

(
1 +

p
1.96 · 10 8 Pa

)βη ))
, (2.9)

with the pressure-viscosity-index

βη =
αη

ln
( η0

Pa·s
)
+ 9.67

1.96 · 10 8 Pa.

Roelands’ model is commonly used in EHD contact problems where high pressures occur.

Density

Even though fluids are typically modeled as incompressible, here, the high pressure compresses
the fluid, which leads to an increase in density. This behavior is described by the model of
Dowson and Higginson [35]

ρ(p) = ρ0
5.9 · 10 8 Pa + 1.34p

5.9 · 10 8 Pa + p
, (2.10)

with density ρ0 at ambient pressure.

2.1.3 Nondimensionalization

Very large pressures and very small gap heights are characteristics of the EHD contact problem.
The differences in the order of magnitude of the quantities can lead to a poor condition of the
numerical problem. To improve the condition number and to reduce the number of parameters, a
nondimensionalization is introduced.

The solutions of the highly loaded EHD contact problem are similar to those of the Hertzian
contact problem [70]. The characteristic parameters of the Hertzian contact problem are therefore
often used for the nondimensionalization.
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2.1 Fluid model

The nondimensionalization for the lubricated impact problem in this work is based on parameter
sets by Wang et al. [129] for the line contact and Venner et al. [125] for the point contact. Both
parameter sets are motivated by a dry contact analysis by Johnson [79]. In this context, the
Hertzian pressure pH and the Hertzian half-width b, are based on the maximum load wmax,
which is estimated to occur during the impact-rebound process. The parameters are computed as

pH =
2wmax

π b
, b =

√
8wmaxRred

E ′π
, for a line contact, and (2.11)

pH =
3wmax

2π b2 , b =
(
3wmax

2 E ′

)1/3
, for a point contact. (2.12)

Where the maximum load is given as

wmax =k δmax, for a line contact, and (2.13)

wmax =k δ3/2max, for a point contact. (2.14)

The maximum deformation is computed as

δmax =

√
m0

k
v0, with k =

E ′

1.52
, for a line contact, and (2.15)

δmax =

(
5 m0v

2
0

4 k

)2/5
, with k =

4
3
√

RredE ′, for a point contact, (2.16)

with the initial impact velocity v0, the mass m0, the effective Young’s modulus E ′,

E ′ = 2

(
1 − ν21

E1
+

1 − ν22
E2

)−1

, (2.17)

and the reduced radius Rred,

Rred =

(
1
R1
+

1
R2

)−1
. (2.18)

With the above relations and the defined parameters, the dimensionless framework is given as

x = bX, a = bA, t =
δmax

v0
T, h =

b2H
Rred
, p = pHP, ρ = ρ0 ρ̄, η = η0η̄. (2.19)

Applying relations (2.19) to Reynolds Equation (2.1) gives the dimensionless Reynolds Equation

∂

∂X

(
A
ρ̄H3

λη̄

∂P
∂X

)
− A
∂ρ̄H
∂T

− γ̄pen min (P, 0) = 0, (2.20)
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with λ =
(
12v0η0R2

red
) /(b2pHδmax

)
. In the following, the coefficient ξ =

(
Aρ̄H3) /(λη̄) is used

to improve the readability.

2.1.4 Discretization of Reynolds Equation

The Reynolds Equation is approximated spatially at the grid points Xi using finite differences
according to [128] and is approximated temporally at the time instances tj using SDIRK methods
according to Section 2.4. The discretized Reynolds Equation at grid point Xi and time instance
tj can be expressed as

fp

����tj
Xi

= λ
∂

∂X

(
ξ
∂P
∂X

)�����tj
Xi

− A
∂ρH
∂T

�����tj
Xi

− γ̄pen min (P, 0)
�����tj
Xi

= 0. (2.21)

The Poiseuille term is discretized using second-order accurate central differences

∂

∂X

(
ξ
∂P
∂X

)����tj
Xi

≈
ξ
jk
i− P jk

i−1 −
(
ξ
jk
i− + ξ

jk
i+

)
P jk
i + ξ

jk
i+

P jk
i+1

ΔX2 , (2.22)

with ξ jk
i± =

(
ξ
jk
i±1 + ξ

jk
i

)
/2. In the discretized equations the subscript i denotes the approximated

value of the quantity at the i-th fluid node and, analogously, the superscript j k denotes the
approximated value of the quantity at the k−th stage of the j−th time step.

The temporal derivatives are integrated using SDIRK methods, which are described in Section 2.4.

Boundary conditions are prescribed on the boundary of the dimensionless domain ∂Ω̄F �{
X1, XnF

}
as described in Eqs. (2.3) and (2.4). In the case of symmetry the vanishing pressure

gradient at X = X1, i.e.,
∂P
∂X

����tj
X1

= 0, (2.23)

is enforced by the second-order finite differences approximation of the pressure gradient as

fp

����tj
X1

≈ −3P jk
1 + 4P jk

2 − P jk
3 = 0 (2.24)

at X = X1 for all stages k of all time steps j. For high pressure-viscosity-coefficients, the
convergence could be improved by a first-order approximation of the pressure boundary condition.

Ambient pressure in the entire domain is set as the initial condition for the lubricated
impact problem.
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2.2 Structural model

2.2 Structuralmodel

The fluid pressure leads to a deformation of the contacting bodies. In EHD contact problems the
contact region is usually small compared to the spatial extension of the bodies. Therefore, the
bodies are typically modeled as elastic half-spaces. Modeling the bodies as half-spaces, however,
neither considers structural inertia effects nor does it allow for pressure boundary conditions
and complex geometries. Additionally, it can be difficult to accurately describe the motion of
the rigid body because the bodies’ mutual approach is non-trivial to compute [133]. Different
from conventional approaches, in this work, the elastic behavior is approximated using the finite
element method, which removes the aforementioned drawbacks.

The theory presented in the following is based on the works [7, 68, 76, 142], which provide a
more detailed overview.

2.2.1 Elasticity relations

Continuum mechanics provides a foundation to describe the dynamics of a deformable body by
a macroscopic model. In the following the equations to describe linear elastic material behavior
are presented. The problem is defined by kinematic relations, equilibrium equations, and the
constitutive model.

In a fixed reference system the position of a material point �x(t) is given in a Cartesian coordinate
system with coordinates x, y, and z and base vectors �ex , �ey , and �ez as

�x(t) = x (t) �ex + y (t) �ey + z (t) �ez . (2.25)

The displacement of a material point can be described by the displacement vector �u (t, �x) as

�u (t, �x) = ux (t, �x) �ex + uy (t, �x) �ey + uz (t, �x) �ez,

with the corresponding displacement components ux , uy , and uz , respectively.

For small deformations, the strains at a given position can be described by the strain tensor

E (t, �x) = 1
2

[
grad �u (t, �x) + grad

ᵀ �u (t, �x)
]
, (2.26)
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with its components⎡⎢⎢⎢⎢⎢⎢⎢⎣
∂ux

∂x
1
2

(
∂ux

∂y +
∂uy

∂x

)
1
2

(
∂ux

∂z +
∂uz
∂x

)
1
2

(
∂uy

∂x +
∂ux

∂y

)
∂uy

∂y
1
2

(
∂uy

∂z +
∂uz
∂y

)
1
2

(
∂uz
∂x +

∂ux

∂z

)
1
2

(
∂uz
∂y +

∂uy

∂z

)
∂uz
∂z

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
εxx εxy εxz
εxy εyy εyz
εxz εyz εzz

⎤⎥⎥⎥⎥⎦ . (2.27)

The strain tensor is symmetric and thus contains six different strain components, three normal
strain components εii and three shear strain components εi j .

The equilibrium conditions are given as

divT (t, �x) + ρ (�x) �k = ρ (�x) ��u (t, �x) , (2.28)

with the stress tensor T, the density ρ, and the external force per mass �k. Similar to the strain
tensor E, the stress tensor T is symmetric and contains three normal components σii and three
shear components τi j .

The relations above can describe small deformations of any material. The material model
provides a relation between strain and stress.

According to the Voigt notation, displacement, strain, and stress are transformed into column
matrix form,

u =
[
ux uy uz

]ᵀ
,

E =
[
εxx εyy εzz 2εyz 2εxz 2εxy

]ᵀ
, and

T =
[
σxx σyy σzz τyz τxz τxy

]ᵀ
.

(2.29)

The differential operator matrix D ∈ R6×3 gives the relation between strain vector E ∈ R6 and
displacement vector u ∈ R3,

E = D u, with D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂
∂x 0 0
0 ∂

∂y 0
0 0 ∂

∂z

0 ∂
∂z

∂
∂y

∂
∂z 0 ∂

∂x
∂
∂y

∂
∂x 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.30)
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Using the stress and strain vector, linear elastic material behavior of the continuum can be
modeled through

T = CE, (2.31)

with the symmetric elasticity matrix C ∈ R6×6. The elasticity matrix relates strain and stress
in a continuum. Written as E = C−1 T , it is commonly referred to as generalized Hooke’s law
[50, 106]. For isotropic material behavior, the inverse of the elasticity matrix is given as

C−1 =
1
E

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 2(1 + ν) 0 0
0 0 0 0 2(1 + ν) 0
0 0 0 0 0 2(1 + ν)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.32)

Hence, isotropic linear elastic material behavior is described by only two parameters, namely
Young’s modulus E and Poisson’s ratio ν.

Using the above relations and suitable initial and boundary conditions the behavior of a linear
elastically deforming body can be described. The above description assumes a three-dimensional
problem. For two-dimensional problems, the relations are slightly different, as shown in [142].

2.2.2 Finite element method

For complex geometries, the linear elasticity relations presented above generally cannot be
solved analytically. Therefore, the solution is approximated using the finite element method. The
following derivation outlines the concept and will help in understanding the concepts of model
order reduction and fluid-structure coupling in Subsection 2.3.2 and Section 3.5, respectively.

The starting point of the derivation is the weak form of Eq. (2.28) given by∫
V

δ�u · ρ ��u dV +
∫
V

δE · T dV −
∫
V

δ�u · ρ�k dV −
∫
A

δ�u · �t dA = 0, (2.33)

with the virtual displacement δ�u, the virtual strain δE = 1
2 (gradδ�u + gradT δ�u), surface load

density �t := T �n, and the surface normal vector �n. To approximate this equation on an arbitrarily
shaped domain, the domain is approximated by small, simply shaped elements. This means
that the three-dimensional domain V is approximated by the discrete domain ΩS, made up of
subdomains Ωe. Analogously, the surface A is approximated by Γ. The column matrix x ∈ R3

contains the coordinates of a point in the discrete three-dimensional domain.
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Shape functions are used to interpolate the displacement within the discrete domain.2 The
shape functions can be organized in a matrix Ne(x) ∈ R3×nen . This matrix contains the value of
the shape functions evaluated at x ∈ R3 for all nodes nen of an element e. The displacements
uh ∈ R3 in the discrete domain are given as

uh(t, x) = Ne(x) ue(t), (2.34)

where the superscript h indicates the discretized domain. The element displacement vector
ue ∈ R3·nen contains the three displacement components of all nodes of an element. The
approximated displacements uh are inserted into Eq. (2.30) to approximate the strains

E h(x) = DNe(x) ue = Be(x) ue, (2.35)

with the strain-displacement matrix Be(x) ∈ R6×3·nen . The approximation is also applied to the
accelerations �uh , the virtual displacements δuh and the virtual strains δEh .

Using the approximated variables and the constitutive relation (2.30), the weak form (2.33) can
be written for each element e as

δu
ᵀ
e

{∫
Ωe

Nᵀe(x)ρNe(x) dΩ �ue(t) +
∫
Ωe

Bᵀe(x)CBe(x) dΩ ue(t)

−
∫
Ωe

Nᵀe(x)ρk dΩ −
∫
Γe

Nᵀe(x)t(x, t)dΓ
}
= 0 (2.36)

The virtual displacements are arbitrary, thus, the expression inside the parenthesis must vanish
to fulfill Eq. (2.36). The relations for the element mass matrix, the element stiffness matrix, and
the element force vector are given as

Me =

∫
Ωe

Nᵀe(x) ρNe(x) dΩ, (2.37)

Ke =

∫
Ωe

Bᵀe(x)CBe(x) dΩ, and (2.38)

Fe =

∫
Ωe

Nᵀe(x) ρ k dΩ +
∫
Γe

Nᵀe(x) t(x) dΓ, (2.39)

respectively.

2The finite element method and shape functions are relevant for the fluid-structure coupling which is presented in
Section 3.5. Hence, Section 3.5 discusses shape functions in further detail. Figure 3.2 shows the shape functions of a
quadratic element.
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2.2 Structural model

For each element, a coordinate transformation is carried out and the integrals are approximated
using Gauss quadrature. The resulting element matrices are merged to a global matrix. Simplified,
the assembly process can be illustrated as follows

M = · · · +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 · · · 0

0 Me1 0
...

... 0 . .
. ...

0 · · · · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 · · · · · · 0
... . .

.
0

...
... 0 Me2 0
0 · · · 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ · · · ,

whereMe1 andMe2 are element mass matrices of two different elements. The assembly operator⋃
indicates this process

M =
nel⋃
e=1
Me, K =

nel⋃
e=1
Ke, F =

nel⋃
e=1

Fe, (2.40)

where nel is the number of elements andM ∈ Rnu×nu ,K ∈ Rnu×nu , F ∈ Rnu are the global mass
matrix, global stiffness matrix, and global force vector, respectively. The element displacement
vectors ue ∈ Rnen and element acceleration vectors �ue ∈ Rnen are also assembled to a global
displacement vector u ∈ Rnu and a global acceleration vector �u ∈ Rnu , where nu denotes the
displacement degrees of freedom. With the assembled matrices (2.40), the behavior of the
discretized body can be described by a set of ordinary differential equations

M �u +K u = F . (2.41)

2.2.3 Gap height

In lubricated contacts, the distance between the contacting surfaces is needed for the computation
of the fluid pressure. The distance between the surfaces is referred to as the gap height h(t, x).
The gap height is computed as

h(t, x) = hgeo(x) + δ(t, x), (2.42)

with the undeformed gap height hgeo and the gap displacement δ(t, x). In this work, the line
contact problem and the axisymmetric point contact problem are investigated. In both cases, the
position is given by the scalar x. Figure 2.1 shows exemplarily the two deformed bodies and the
resulting gap height.
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The gap displacement is computed as

δ(t, x) = uz,[1](t, x) + uz,[2](t, x), (2.43)

with thedisplacement in the contact region of the lowerandupperbody,uz,[1] anduz,[2], respectively.

The undeformed gap height is computed as

hgeo(x) = zgeo,[1](x) + zgeo,[2](x), (2.44)

with the coordinates of the undeformed lower and upper body, zgeo,[1] and zgeo,[2], respectively.

x

z

δ

hhgeo
x

z

uz,[2]

zgeo,[2]

zgeo,[1]

uz,[1]

Figure 2.1: The displacements of the lower and upper body, i.e., uz,[1] and uz,[2], are combined via Eq. (2.43) to
give the gap displacement δ. Analogously, the undeformed geometries of the lower and upper bodies, i.e., zgeo,[1] and
zgeo,[2], are combined to give the undeformed gap height hgeo using Eq. (2.44). The sum of both quantities gives the
deformed gap height h.

2.3 Model order reduction

Model order reduction techniques are generally applied to reduce the computational cost
of a model. The idea of most model order reduction techniques is to find a transformation
which projects the solution space of the full system onto a lower dimensional space. The
lower dimensional space should be as small as possible, while still allowing for a sufficient
approximation of the full solution.

The first part of this section outlines the concept of projection onto a lower dimensional
subspace. Subsequently, in Subsection 2.3.2, this concept is applied to the structural model. The
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2.3 Model order reduction

Subsections 2.3.3 through 2.3.5 aim to illustrate the construction of a projection matrix for the
use in structural dynamics.

The theory presented in the following is based on the works [3, 26, 27, 106], which provide a
more detailed overview.

2.3.1 Projection

The projection of the full system onto a lower dimensional space is carried out via a projection
matrix Vz ∈ Rnz×ñz . The model defined on the lower dimensional space is called the reduced
order model. Its state is given by the reduced state vector z̃ ∈ Rñz . The reduced state vector is
related to the full state vector z ∈ Rnz via

z ≈ Vz z̃, (2.45)

where nz is the dimension of the full system and ñz the dimension of the reduced system. For
the projection to be worthwhile, ñz � nz should hold.

Inserting projection (2.45) into the full system

f (z) = 0, (2.46)

with the differentiable function f ∈ Rnz yields

f (Vz z̃) = r, (2.47)

where r is the residuum resulting from the approximation. An additional constraint is needed
to obtain a unique solution of the over-determined system of equations (2.47). To this end, a
so-called test spaceWz ∈ Rnz×ñz is introduced. The test-space is required to be orthogonal to
the residuum

Wᵀz r
!
= 0. (2.48)

In this work,Wz = Vz is chosen, which is referred to as a Galerkin projection. Thus, the reduced
order model can be expressed as

Vᵀz f (Vz z̃) = 0. (2.49)

2.3.2 Application to a structural model

The discretization of complex geometries often requires many elements. This leads to a high
number of degrees of freedom, which have to be solved for in every time step of a transient
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analysis. For specific applications, the number of degrees of freedom can be reduced using
model order reduction procedures. For lubricated contacts, the behavior of the bodies in the
contact area is of interest. Figure 2.2 illustrates a reduced order model which expresses the
solid’s behavior at the degrees of freedom in the contact region.

MOR

Figure 2.2: Model order reduction (MOR) techniques aim to express the behavior of a high-dimensional model (left)
by a reduced order model (right). The reduced order model shall consist of a much lower number of degrees of
freedom. This is exemplarily shown for a structural finite element model, where only the behavior of the highlighted
nodes is of interest. Hence, the MOR procedure aims to express the behavior in this region with as few degrees of
freedom as possible.

The body’s displacement is approximatedby the equation ofmotion of the undamped system (2.41)

M �u +K u = F . (2.50)

As in Eq. (2.45) a projection is applied, i.e.,

u ≈ Vu ũ. (2.51)

Via the projection matrix Vu ∈ Rnu×ñu , the displacements of the reduced order model ũ ∈ Rñu
approximate the displacements of the full model u ∈ Rnu . Using a Galerkin projection, the full
system (2.50) is projected onto the reduced space as

Vᵀu MVu
�̃u + Vᵀu KVu ũ = Vᵀu F, (2.52)

where ñu gives the size of the reduced space. Using the substitution in Eq. (2.52), the reduced
order model can be expressed as

M̃ �̃u + K̃ ũ = F̃, (2.53)

with the reduced mass matrix M̃ ∈ Rñu×ñu , reduced stiffness matrix K̃ ∈ Rñu×ñu , and reduced
force vector F̃ ∈ Rñu .

Now, a suitable projection matrix for the structural model has to be constructed. The following
shows different approaches for constructing a projection matrix for structural dynamics problems.
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2.3 Model order reduction

2.3.3 Modal truncation

Discretization using FEM yields a set of coupled differential equations, see Eq. (2.50). Solving
the eigenvalue problem (

K − ω2
iM

)
ϕi = 0, with i = 1, 2, 3, ..., nnm, (2.54)

yields the natural eigenfrequency ωi and the corresponding eigenvector ϕi ∈ Rnu for nnm modes.
The model’s transient behavior can be approximated using modal superposition. To this end,
only a small number of modes nnm is kept and the rest is neglected, where usually nnm � nu
holds. This procedure is generally known as modal truncation. The modes are normalized with
respect to the mass matrix and collected in the normal mode matrix

Φnm =
[
ϕ1 ϕ2 . . . ϕnnm

]
. (2.55)

The resulting modes are called normal modes and have the properties

ϕᵀ iM ϕ j = δi j, and (2.56)

ϕᵀ i K ϕ j = ω
2
i δi j, (2.57)

where δi j is the Kronecker delta. In modal truncation, the normal mode matrixΦnm ∈ Rnu×nnm is
used as projection matrix Vu = Φnm. Applying the projection matrix to the equation of motion
(2.50) yields the equation of motion in modal space

�̃u + Λ ũ = Vᵀu F, (2.58)

with the spectral matrix Λ = diag
(
ω2

1, ω
2
2, . . . , ω

2
nnm

) ∈ Rnnm×nnm . The spectral matrix is a
diagonal matrix containing the squared eigenfrequencies as diagonal elements. The equation of
motion in modal space is uncoupled. This property can speed up the computation significantly.
However, the reduced order model is only valid in the close-range of the state around which it
was constructed. The limited validity makes the approach rather unsuitable for problems where
the boundary conditions change significantly, e.g., contact problems.

For more information on mode shapes and modal truncation, see [44] and the literature
cited therein.

2.3.4 Static condensation and Guyan reduction

Static condensation is helpful to understand an essential idea in model order reduction of
structural mechanics. It is the concept of separating the model’s degrees of freedom into master
and slave degrees of freedom. This method can be useful when only small regions of the body are
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of interest, as exemplarily shown in Fig. 2.2. The nodes in the region of interest are referred to
as master nodes. Their displacements are summarized in the vector um ∈ Rnm, with the number
of master degrees of freedom nm. The goal is to obtain the displacements of the master nodes
without having to solve all degrees of freedom of the complete model.

Partitioning the static equations of equilibrium into master (subscript m) and slave (subscript s)
degrees of freedom gives [

Kmm Kms
Ksm Kss

] {
um
us

}
=

{
Fm
Fs

}
. (2.59)

The slave degrees of freedom are to be expressed in terms of master degrees of freedom. Matrix
operations can achieve this objective. When there are no forces at the slave degrees of freedom,
i.e., Fs = 0, the following relation holds

us = −K−1
ss Ksm um. (2.60)

Using this relation, the constraint mode matrix is created as

Φcm =

[
I

−K−1
ss Ksm

]
. (2.61)

The columns of matrixΦcm ∈ Rnu×nm are commonly referred to as constraint modes, see [27].3

In static condensation, the constraint mode matrix is used as the projection matrix, i.e.,Vu = Φcm.
This MOR technique is referred to as static condensation. Since only matrix operations on the
stiffness matrix are carried out, the static condensation is exact for static problems.

Natural mode analysis of large finite element models can take up a significant amount of time.
Therefore, it is also desirable to reduce the degrees of freedom for natural mode analysis. With
this motivation, Guyan [54] used the same projection matrix as in static condensation to reduce
the mass matrix. Applying the constraint mode matrix to the mass matrix yields

M̃ =
[
I −KᵀsmK−ᵀ

ss
] [
Mmm Mms
Msm Mss

] [
I

−K−1
ss Ksm

]
, (2.62)

with the reduced mass matrix M̃ ∈ Rñu×ñu . For this reduction technique, ñu = nm holds.

However, the constraint mode matrix (2.61) is derived from static equilibrium (2.59). Applying
the same transformation to the dynamic equilibrium is inconsistent and yields a reduced mass

3Constraint modes can also be constructed by prescribing a unit displacement to one master degree of freedom and
fixing the other master degrees of freedom. The resulting displacement vector of the full model would be equivalent
to one column of Φcm.
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matrix with mixed stiffness and mass components, see Eq. (2.62). As a consequence, this
approach may yield erroneous results for dynamic analyses. This limitation was also observed
by Guyan in his original paper [54] and other authors after that, e.g., [19].

While this technique can be helpful in some problems, the dynamic properties of the reduced
model are strongly dependent on the number and location of the chosen master degrees of
freedom as well as the stiffness and mass distribution of the body, see [106]. Generally, this
approach yields acceptable results in the low frequency range but is not suitable for higher
frequencies. The approximation quality with respect to natural mode analysis increases as more,
spatially distributed, master degrees of freedom are chosen.

2.3.5 Component mode synthesis

As in the Guyan reduction, the concept of component mode synthesis (CMS) is to approximate
the behavior of the slave degrees of freedom with as few unknowns as possible. Component
mode synthesis combines the beneficial properties of the aforementioned methods: Modal
truncation and Guyan reduction.

The Guyan reduction uses constraint modes to approximate the dynamic behavior. Constraint
modes may yield bad results for dynamic problems. However, the static displacement is
approximated well by constraint modes.

Modal truncation uses normal modes, which approximate the unconstrained and not externally
excited dynamic behavior well. However, they yield bad results for problems with changing
boundary conditions, e.g., contact problems.

Component mode synthesis aims to improve upon the drawbacks of both methods by combining
different types of modes. Here, normal modesΦnm are used to approximate the dynamics of the
structure and constraint modes Φcm are introduced to better approximate the static and overall
behavior. In CMS, the projection matrix is generally given as

VCMS =
[
Φnm Φcm

]
. (2.63)

Component mode synthesis methods can be classified according to the boundary conditions
prescribed to the master degrees of freedom—also referred to as interface nodes—during
normal mode extraction. They are classified into fixed-interface methods, free-interface methods
or hybrid methods, see [25]. The various options to create and combine modes result in a
variety of CMS methods. The Craig-Bampton method [4] is a popular CMS method. It is a
simplification of Hurty’s method [77] and is based on fixed-interface modes. Also widely used
are the free-interface methods by Craig-Chang [25], MacNeal [92] and Rubin [113]. The review
papers [26, 28] give an overview of the most common approaches.
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In this work, two methods are used: the Craig-Bampton method and an adapted Craig-Chang
method.4 Both methods utilize constraint modes and normal modes. The Craig-Bampton method
uses fixed-interface normal modes. The fixed-interface normal modes are created by constraining
the master degrees of freedom during the eigenvalue computation. Therefore, they result from
the eigenvalue problem of the slave structure, i.e.,

(Kss − ω2
i Mss)ϕi = 0, with i = 1, 2, ..., nnm, (2.64)

where nnm denotes the number of normal modes. After normalization with respect to mass
according to Eq. (2.56), the kept modes are assembled in the fixed-interface normal mode matrix

Φfixed =

[
0

ϕ1 ϕ2 . . . ϕnnm

]
. (2.65)

The resulting projection matrix for the Craig-Bampton method is

Vfixed =
[
Φfixed Φcm

]
, (2.66)

with the constraint mode matrixΦcm ∈ Rnu×ncm according to Eq. (2.61), plus rigid body modes,
if existing. The number of constraint modes ncm is equal to the number of master degrees of
freedom plus rigid body degrees of freedom. The projection matrix is of size Vfixed ∈ Rnu×ñu
with ñu = ncm + nnm.

The adapted Craig-Chang method uses free-interface normal modes. The free-interface normal
modes are obtained by solving the eigenvalue problem of the full structure

(K − ω2
iM)ϕi = 0, for i = 1, 2, . . . , nnm. (2.67)

However, since the master degrees of freedom are unconstrained during mode extraction, their
values may be nonzero, which makes the displacement computation more difficult. Additionally,
the free-interface modes and the constraint modes might be linearly dependent. Therefore, the
free-interface normal modes are transformed according to [9, 83] into the “fixed-interface form”

Φfree =

[
Φs

free (1 : ncm, :) −Φcm (1 : ncm, :) Φs
free (1 : ncm, :)

Φs
free (ncm + 1 : nu, :) −Φcm (ncm + 1 : nu, :) Φs

free (1 : ncm, :)
]
.

4The adapted Craig-Chang method is a free-interface method, which uses constraint modes, see [9, 30, 31]. It is an
adapted version of the Craig-Chang method [25]. The adapted Craig-Chang method is used in the commercial finite
element software Abaqus. The solution procedure in this work aims to be compatible with Abaqus.
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Due to the structure of the constraint mode matrixΦcm, see Eq. (2.61), the modified free-interface
normal modes become

Φfree =

[
0

Φs
free (ncm + 1 : nu, :) −Φcm (ncm + 1 : nu, :) Φs

free (1 : ncm, :)
]
,

where Φs
free ∈ Rnu×nnm contains nnm unchanged free-interface normal modes. This operation

does not change the subspace spanned by the projection matrix [9, 83].

After orthogonalization and normalization, the modified free-interface normal modes are included
in the projection matrix for the Craig-Chang method. The projection matrix is given as

Vfree =
[
Φfree Φcm

]
, (2.68)

where Vfree ∈ Rnu×ñu with ñu = ncm + nnm.

The main difference between the two methods arise from the state of the boundary conditions of
the master nodes during modal analysis, i.e., fixed-interface normal modes versus free-interface
normal modes.

2.4 Time integration

Spatial discretization of the fluid and structural equations yields a system of ordinary differential
equations.5 In the following, this system equations is integrated in time. This work proposes the
use of singly diagonal implicit Runge-Kutta methods (SDIRK) for time integration. This class
of methods is well suited for stiff problems, such as the coupled problem at hand. Additionally,
they allow for higher-order time integration and for an efficient adaptive time stepping scheme
based on embedded methods.

The first part of this section outlines the solution procedure of an initial value problem using
SDIRK methods. The second part of this section focuses on the adaptive time step size control.
Table 2.1 summarizes the steps of the procedure and helps to understand different variables.

The theory presented in the following is based on the works [1, 62, 63, 67] , which provide a
more detailed overview.

5Depending on the set of equations, spatial discretization may yield a system of differential-algebraic equations. The
implications of this case are studied in [39, 40, 67].
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Table 2.1: Overview of the implementation of the time integration scheme.

Initialize initial values (y0, t0) and time integration method, see Tab. 2.3

Loop over time steps: j = j + 1 until t( j) = tend

Loop over stages: k = 1, . . . , s

Compute starting vector, see Eq. (2.72) � S jk

S jk = y j + Δtj
∑k−1
l=1 akl 	Y jl

Solve system of equations � Y jl

see Section 3.6

Compute stage derivatives, see Eq. (2.73) � 	Y jl

	Y jl = Y j l−S jk

Δtj akk
,

Compute stage value, see Eq. (2.74) � Y jk

Y jk = S jk + Δtj akk 	Y jk

Compute next time step, see Eq. (2.70) � y j+1

y j+1 = y j + Δtj
∑s

k=1 bk 	Y jk

Step size control

Estimate local integration error, see Eq. (2.77) � ŷerr
j

ŷerr
j
= Δtj

∑s
k=1

(
b̂k − bk

)
	Y jk

Compute time step size for next time step � Δtj+1

Two approaches are given via Eqs. (2.79) and (2.80)

Accept solution? � tj+1 = tj + Δtj

According to the estimated local integration error the solution

may be rejected and recomputed with a smaller time step size.
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2.4 Time integration

2.4.1 Singly diagonal implicit Runge-Kutta method

The initial value problem

	y = f (t, y(t)), y(t0) = y0, (2.69)

with initial conditions y0 ∈ Rny and t0 is solved in the time interval t0 ≤ t ≤ tend. Within the
interval, the solution of (2.69) is approximated at time instances tj . The integer j = 0, 1, . . . , nt
indicates the current time step. Starting from the initial conditions y0 = y(t0), the solution is
approximated at the next time instance tj+1 by

y
(
tj+1

) ≈ y j+1 = y j + Δtj
s∑

k=1
bk f

(
Tjk, Y

jk
)
, (2.70)

with the time step size Δtj = tj+1 − tj , the number of stages s, the weighting factors bk , the
stage time Tjk = tj + ckΔtj and the stage values Y jk ∈ Rny .

The stage values are computed as

Y jk = y j + Δtj
k∑
l=1

akl 	Y jl, (2.71)

with the weights akl for each stage k = 1, 2, . . . , s. The auxiliary variable l = 1, 2, . . . , k
counts up until the current stage. In diagonally implicit Runge-Kutta methods the entries in the
Butcher tableau above the diagonal are zero, i.e., akl = 0 if l > k. This helpful property allows
the computation of stage values one after the other. In this context, it is useful to introduce the
starting vector S jk ∈ Rny

S jk = y j + Δtj
k−1∑
l=1

akl 	Y jl, (2.72)

which is made up of the solutions of the previous stages. Thus, the starting vector is known at
the beginning of each stage value computation - analogous to the initial values.

The stage derivatives 	Y jl ∈ Rny can be expressed as

	Y jl =
Y jl − S jk

Δtj akk
. (2.73)

Generally, the stage derivatives 	Y jl are substituted into the nonlinear system of equations and
then the system is solved for the stage values Y jl , see Section 3.6. From the stage values the
stage derivatives can be computed using Eq. (2.73). The stage derivatives can also be computed
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from the initial value problem. However, attention needs to be paid to evaluate the problem at
the proper stage time and stage value, i.e., 	Y jk = f (Tjk, Y

jk).
Combining Eq. (2.72) and Eq. (2.71) yields the stage value

Y jk = S jk + Δtj akk 	Y jk, (2.74)

In SDIRK methods, the following relations hold akl = 0 if l > k and asl = bl , see Tab. 2.2.
Therefore, the stage values at the final stage s are identical to the approximation of the solution
at the next time step, i.e., y j+1 = Y js .

The methods are defined by weighting factors akl , bk , and ck . The weights are given in a Butcher
tableau, see Tab. 2.2. Table 2.3 gives the Butcher tableaus of the methods used in this work.

Table 2.2: The weights defining a Runge-Kutta method are summarized in a Butcher tableau.

c1 a11 a12 · · · a1s
c2 a21 a22 · · · a2s
...

...
...

. . .
...

cs as1 as2 · · · ass
b1 b2 · · · bs
b̂1 b̂2 · · · b̂s

(a) Butcher tableau of a general
Runge–Kutta method.

c1 a11 0 · · · 0

c2 a21 a22
. . .

...
...

...
. . . 0

cs b1 b2 · · · bs
b1 b2 · · · bs
b̂1 b̂2 · · · b̂s

(b) Butcher tableau of an SDIRK
method.

2.4.2 Adaptive step size selection

The choice of the time step size Δtj influences the quality of the approximation of the solution
and the computational cost of the problem. A too large time step size might yield unusable
results, whereas a too small time step size is computationally inefficient. The choice of a suitable
constant time step size becomes even more difficult when the velocity of the dynamic processes
changes during the solution process. Hence, it is desirable to use an algorithm that adjusts the
time step size automatically for a given problem. Such algorithms depend on an indicator on the
basis of which the size of the time step can be selected. The local integration error of a time step
can be used as an indicator. However, the cost of computing the indicator should be low.

For SDIRK methods embedded schemes can be derived. Embedded schemes allow for an
approximation of the local integration error at hardly any additional cost. Based on the methods
of Alexander [1], Ellsiepen [39] proposed an embedded first-order method. The Butcher tableau
of this method is given in Tab. 2.3.
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2.4 Time integration

The local integration error gives the difference between the exact solution and the numerical
solution, i.e.,

yerr(tj) = y(tj) − y j . (2.75)

With the solution of an embedded method ŷ j ∈ Rny , an error estimator of the form

ŷerr
j = ŷ j − y j (2.76)

can be easily computed, where y j ∈ Rny and ŷ j ∈ Rny are approximated solutions, obtained with
an SDIRK method of order p and the corresponding embedded method of order p̂, respectively,
with p̂ < p. The embedded methods are designed such that the weights akl and ck are the same
as in the full order method, only the weights bk differ. Therefore, the error estimator (2.76) can
be computed at hardly any extra cost as

ŷerr
j = Δtj

s∑
k=1

(
b̂k − bk

)
f

(
T jk, Y jk

)
. (2.77)

Time step size control

An error measure erry is computed as

erry = rms

(
ŷerr
j

εr
$$ ŷ j$$ + εa

)
. (2.78)

Here, the error measure is based on the root mean square, which is computed via Eq. (A.1). The
error measure relates the approximated local integration error ŷerr

j to the relative tolerance εr and
the absolute tolerance εa. In multi-field problems, the order of magnitude of the field variables
may differ. In such cases, it can be helpful to compute an error measure for each quantity [32]. In
this work, error measures are computed for pressure, errp , displacement, erru , and generalized
coordinates, errq . The maximum of these error measures errm = max(errp, erru, errq) is used
to find a new time step size.

One approach of obtaining a new time step size is given by

Δtj+1 = Δtj

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
fmin for errm > 1,
1 for 0.1 ≤ errm ≤ 1,
fmax for errm < 0.1.

(2.79)

In the range 0.1 ≤ errm ≤ 1, the time step size is kept constant, and for larger or smaller values,
it is reduced or increased by the factor fmin or fmax, respectively. In this approach, the factors by
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2 Theory

which the time step size is adjusted are constant throughout the computation and independent of
the order of the time integration scheme.

Another approach is to adapt the time step size such that the local integration error stays as close
as possible to the prescribed tolerances. An adaptation of this so-called “standard time step size
controller”, see [62, p.124], is given by [67] as

Δtj+1 = Δtj

⎧⎪⎪⎨⎪⎪⎩
max

(
fmin, fsafety err−1/(p̂+1)

m

)
for errm > 1,

min
(

fmax, fsafety err−1/(p̂+1)
m

)
for errm ≤ 1.

(2.80)

The parameters fmin, fmax, and fsafety are prescribed to avoid oscillations or large changes of
the time step size. If errm > 1, the time step is rejected and recomputed. Else, the time step is
accepted and the next time step computed. In both cases, the time step size Δtj+1 is used, which
is computed using Eq. (2.80). Further time step size control approaches are discussed in [116].

Table 2.3: Butcher tableaus of the SDIRK methods used in this work. The methods are of order p and have s stages.
The embedded methods are of order p̂.

Alexander’s second-order method with Ellsiepen’s embedded scheme [1, 39]
(p = 2, p̂ = 1, s = 2)

α α

1 1 − α α α = 1 − √
2/2

1 − α α α̂ = 2 − 5
√

2/2
1 − α̂ α̂

Hairer and Wanner’s forth-order method [62, p. 100]
(p = 4, p̂ = 3, s = 5)

1/4 1/4
3/4 1/2 1/4

11/20 15/20 −1/25 1/4
1/2 371/1360 −137/2720 15/544 1/4
1 25/24 −49/48 125/16 −85/12 1/4

25/24 −49/48 125/16 −85/12 1/4
59/48 −17/96 225/32 −85/12 0
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3 Solutionprocedure

The objective of this work is to develop an efficient numerical solution procedure for the lubricated
impact problem incorporating the dynamic behavior of complex elastic bodies. This chapter
presents the developed solution procedure. Sections 3.1 through 3.3 explain the build-up of the
extended structural model, which considers structural inertia effects. The resulting structural
model shall be coupled with the fluid model in order to solve the EHD contact problem. To this
end, a coupling procedure is developed. Section 3.4 describes a preparation step to increase
the efficiency of the coupled problem. Subsequently, the coupling procedure is explained in
Section 3.5. The monolithic coupling approach yields a fully coupled problem, which is solved
in Section 3.6. Finally, Section 3.7 introduces a step to further reduce the computational time
via model order reduction of the complete nonlinear system of equations.

3.1 Set-up of the reduced structuralmodel

The proposed workflow starts with creating geometric bodies in a CAE software and subsequently
discretizing them using finite elements. According to Subsection 2.2.2, this process yields a
global mass matrixM ∈ Rnu×nu and a global stiffness matrix K ∈ Rnu×nu , where nu gives the
displacement degrees of freedom. Based on the forces F ∈ Rnu , the unknown displacements
u ∈ Rnu can be computed via the equation of motion of the discretized body

M �u +Ku = F . (3.1)

In the case of lubricated contacts, the displacements in the contact region are of interest. The
discretized body introduces many degrees of freedom outside the contact region. In an attempt
to minimize the number of degrees of freedom of the problem, a reduced order model of the
finite element model is constructed. Section 2.3 gives an overview of reduction procedures for
structural bodies used within this work. In this step, component mode synthesis is applied to
construct the reduced order model, see Subsection 2.3.5. The reduced order model is defined
by the reduced mass matrix M̃ ∈ Rñu×ñu , the reduced stiffness matrix K̃ ∈ Rñu×ñu , and the
reduced force vector F̃ ∈ Rñu , where ñu gives the number of the reduced degrees of freedom.
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3 Solution procedure

Using the reduced matrices, the behavior of the structural body can be approximated by the
reduced order model

M̃ Ü̃u + K̃ũ = F̃, (3.2)

with the reduced displacements ũ ∈ Rñu .

3.2 Uncoupled equations ofmotion

In the previous step, the body’s geometry was created and a reduced order model was constructed.
In this step, the resulting system of equations (3.2) is uncoupled via transformation into the modal
space. This change of basis is effectively the same procedure as described in Subsection 2.3.3
on modal truncation. However, different from modal truncation, all modes are kept. Solving
the eigenvalue problem (2.54) with the reduced mass and stiffness matrix, M̃ and K̃, yields the
modal matrix

Φ̄ =
[
ϕ̂1 ϕ̂2 . . . ϕ̂nq

]
, (3.3)

which consists of the mass normalized eigenvectors ϕ̂i ∈ R
nq , ordered corresponding to their

eigenvalue ωi in an ascending manner. The modal matrix Φ̄ ∈ Rnq×nq is used as the projection
matrix according to Eq. (2.52). It transforms the equation of motion (3.2) into the modal space.
The reduced mass matrix and the reduced stiffness matrix are diagonalized by the system’s
eigenvectors and become

Φ̄
ᵀ
M̃Φ̄ = I and Φ̄

ᵀ
K̃Φ̄ = Λ. (3.4)

The reduced stiffness matrix in modal space K ∈ Rnq×nq is the spectral matrix
Λ =diag

(
ω2

1, ω
2
2, . . . , ω

2
nq

)
∈ Rnq×nq , containing the squared eigenvalues of the system

as diagonal elements, and the reduced mass matrix in modal space M ∈ Rnq×nq is the
identity matrix.

Consequently, the resulting equations of motion in modal space can be written as

Üq +K q = Φ̄
ᵀ
F̃,

ũ = Φ̄ q,
(3.5)

with the generalized coordinates q ∈ Rnq . No modes are truncated in this step. Hence, the
transformation of the equations of motion into the modal space does not reduce the number of
degrees of freedom, i.e., ñu = nq . Within the framework of this work, the transformation into
the modal space primarily brings the following advantages:
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3.3 Reducing spurious oscillations

• The uncoupled representation can significantly reduce the computational effort to solve the
system of equations. This reduction becomes especially relevant when the matrices are not
sparse, which is the case for the reduced order model at hand. It needs to be considered that
a modal analysis must be carried out, which may require significant computational time.
However, the modal analysis only needs to be carried out once in the solution procedure.

• Resulting from the constraint modes, artificial frequencies are introduced into the model,
which need to be treated as covered in Section 3.3, to improve the solution quality. The
uncoupling of the equations is a prerequisite for this step.

Besides these, there are more advantages and disadvantages of mode-based linear dynamic
analyses, which are further discussed in [7, 44].

3.3 Reducing spurious oscillations

The previous section concluded with a reduced order model in modal space. Especially in
highly dynamic problems, reduced order models containing constraint modes can show spurious
high-frequency oscillations, see Subsection 4.2.3. These spurious modes are numerical artifacts
that are introduced into the model by the constraint modes, i.e., the dynamic contribution of
the constraint modes may yield spurious oscillations. However, the static contribution of the
constraint modes is needed to approximate the local deformation. Therefore, it is desirable to
consider their static contribution while limiting their dynamic contribution. This section outlines
approaches to minimize the dynamic contribution of the constraint modes in order to reduce
spurious oscillations.

Separating the modes

The modal matrix Φ̄ ∈ Rnq×nq is divided into two parts. These parts will be referred to as
dynamically considered modes Φ̄dc ∈ Rnq×ndc and statically considered modes Φ̄sc ∈ Rnq×nsc ,
with Φ̄ �

[
Φ̄dc Φ̄sc

]
. The division of the modes has a decisive influence on the quality of

the solution. If too many modes are considered dynamically, unwanted oscillations occur, if too
few are considered, the system loses part of its dynamic properties. Here, ndc gives the number of
dynamically considered modes. The dynamically considered modes Φ̄dc are defined as the first
ndc columns of the modal matrix, Φ̄dc �

[
Φ̄ (:, 1 : ndc)

]
. Consequently, the statically considered

modes are defined as the remaining columns of the modal matrix Φ̄sc �
[
Φ̄

(
:, ndc + 1 : nq

) ]
.

The number of statically considered modes is given as nsc = nq − ndc.
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3 Solution procedure

Accordingly, the generalized coordinates are divided into two parts

q =

{
qdc
qsc

}
,

where qdc ∈ Rndc are the generalized coordinates of the dynamically considered modes and
qsc ∈ Rnsc corresponds to the statically considered modes. Applying the same procedure to Eq.
(3.5) and introducing the modal damping matrix D yields

{ �qdc
�qsc

}
+

[
Ddc 0
0 Dsc

] { 	qdc
	qsc

}
+

[
Kdc 0
0 Ksc

] {
qdc
qsc

}
= Φ̄

ᵀ
F̃, (3.6a)

ũ = Φ̄

{
qdc
qsc

}
. (3.6b)

The modal damping matrix is constructed as

D = diag (2ζiωi) with i = 1, 2, . . . , nq, (3.7)

with the damping ratio ζi and the eigenfrequency ωi of the i-th mode. Modal damping allows
damping each mode independently. This property is helpful for the next step.

Treating the different parts of the modal matrix

In the following, two approaches to minimize the spurious oscillations are outlined:

• The damping approach aims to reduce the oscillations by introducing damping into the
system. This procedure has been applied to a single node contact problem with one
artificial frequency in [84].

• The feedthrough approach takes advantage of the division of the modal matrix. This
approach only considers the statically considered modes during time integration. It was
motivated by [140, 141].

The damping approach

An intuitive approach in dealing with the spurious oscillations is to introduce damping into the
model. In the damping approach, modal damping, see Eq. (3.7), with a large damping ratio ζsc is
prescribed to the statically considered modes Φ̄sc. The large damping ratio significantly limits
the dynamic influence of the statically considered modes.
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3.3 Reducing spurious oscillations

The feedthrough approach

In the feedthrough approach, dynamic effects resulting from the statically considered modes Φ̄sc
are considered as negligible, i.e., �qsc = 	qsc = 0. This assumption transforms Eq. (3.6b) to

�qdc + Ddc 	qdc +Kdc qdc = Φ̄
ᵀ
dc F̃, (3.8)

Ksc qsc = Φ̄
ᵀ
sc F̃, (3.9)

ũ = Φ̄

{
qdc
qsc

}
, (3.10)

which can be written as

�qdc + Ddc 	qdc +Kdc qdc = Φ̄
ᵀ
dc F̃, (3.11a)

ũ = Φ̄dc qdc + Φ̄scK
−1
sc Φ̄

ᵀ
sc F̃ . (3.11b)

This formulation can reduce the computational time considerably. The reduced computational
effort results from the smaller size of system (3.11a).

Transforming the system into the state-space representation

The resulting structural model is given as a system of ordinary second-order differential equations,
see Eq. (3.6) or Eq. (3.11). In the next step, the system is transformed into the state-space
representation. The transformation into the state-space representation allows the application
of general solution procedures, such as the time integration schemes presented in Section 2.4.
Additionally, it will prove to be useful for the efficient solution procedure of the coupled problem,
see Section 3.4.

Substituting the generalized coordinates as

y1 = q, (3.12)

y2 = 	y1 = 	q, (3.13)

a state-space representation can be written as[ 	y1
	y2

]
=

[
A11 A12
A21 A22

] [
y1
y2

]
+

[
B1
B2

]
F̃, (3.14a)

ũ = C y1 + D F̃, (3.14b)

with the state vector

y =

{
y1
y2

}
∈ Rny .
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3 Solution procedure

and matrices A ∈ Rny×ny , B ∈ Rny×nq , C ∈ Rnq×ny/2, and D ∈ Rnq×nq , where ny denotes
the dimensions of the state-space representation. Note that, the matrices depend on the
treatment approach.

For the damping approach, the matrices are given as

A =
[
0 I
−K −D

]
, with A ∈ Rny×ny ,

B =
[
0
Φ̄
ᵀ

]
, with B ∈ Rny×ncm,

(3.15)

and

ũ = Φ̄ y1, (3.16)

with the dimensions of the state-space representation ny = 2 · (ndc + nsc).
For the feedthrough approach, the matrices become

A =
[

0 I
−Kdc −Ddc

]
, with A ∈ Rny×ny ,

B =
[
0
Φ̄
ᵀ
dc

]
, with B ∈ Rny×ncm,

(3.17)

and

ũ = Φ̄sc y1 + Φ̄scK−1
sc Φ̄

ᵀ
sc F̃, (3.18)

with the dimension of the state-space representation ny = 2 · ndc.

The above approaches illustrate two options to cope with the spurious oscillations. Their
characteristics are further studied in Section 4.2.

3.4 Time integration of the structuralmodel

The structural model is coupled into the EHD contact model using a monolithic coupling
approach. In other words, all equations are combined in a fully coupled system of equations.
The straightforward embedding of the reduced order models of both bodies into the system of
equations would result in a large system of equations. The solution of a large system of equations
generally requires high numerical costs. For this reason, this section makes use of the linearity
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3.4 Time integration of the structural model

of the structural model to combine the structural models of both bodies and thereby keep the
size of the entire system low.1

The previous section concluded with a reduced order model in state-space representation. The
formulation as a first-order differential equation allows for the application of SDIRK methods,
see Section 2.4. The stage value Y jk ∈ Rny is given by

Y jk = S jk + Δtj aii
(
AY jk + B F̃ jk

)
, (3.19)

with the starting vector S jk ∈ Rny and the force vector F̃ jk = F̃
(
Tjk

)
at time Tjk .2 The indices

refer to stage k of time step j.

The matrices A and B can be split up into components as

A =
[
A11 A12
A21 A22

]
, B =

[
B1
B2

]
, (3.20)

whereA12 = I,A11 = 0, andB1 = 0 hold for all treatment approaches. Inserting these components
into Eq. (3.19) gives

− 1
Δtj aii

Y
jk

1 + Y
jk

2 = − 1
Δtj aii

S
jk
1 , (3.21)

A21Y
jk

1 +

(
A22 − 1

Δtj aii
I
)
Y

jk
2 = − 1

Δtj aii
S
jk
2 − B2 F̃

jk . (3.22)

Combining (3.21) and (3.22) and solving for Y jk
1 yields

Y
jk

1 =

(
A21 +

1
Δtj aii

(
A22 − 1

Δtj aii
I
))−1

(
1

Δtj aii

(
A22 − 1

Δtj aii
I
)
S
jk
1 − 1

Δtj aii
S
jk
2 − B2 F̃

jk

)
,

(3.23)

in which Y
jk

2 can be computed as

Y
jk

2 =
1

Δtj aii

(
Y

jk
1 − S

jk
1

)
. (3.24)

1Parts of this approach have been presented in a similar form in the student work [S3].
2To avoid order reductions of the time integration scheme, nonlinear boundary conditions should be integrated,
see [112].
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3 Solution procedure

From relations (3.23) and (3.24), the state vector Y jk is known. With the state vector Y jk , the
displacements can be computed using Eq. (3.14b), which is given in discretized form as

ũ jk = CY
jk

1 + D F̃ jk . (3.25)

Expressions (3.23) through (3.25) give the final form of the structuralmodel,which is later inserted
into the coupled problem, see Section 3.6. This formulation of the structural model expresses the
displacements as a function of the contact force. After interpolation, the displacements of both
bodies can be summed up to give the gap displacements. Finally, only the gap displacements are
included in the coupled system. This approach will keep the overall system size low.

Note that, although the displacements can be expressed explicitly from the forces, the entire
system is implicit. The reason for this is that the contact forces result from the integration of the
fluid pressure and these, in turn, depend on the displacements.

The following sections discuss the procedure for the coupling of the fluid model with the
structural model.

3.5 Coupling procedure

Previous sections discussed the construction of the extended structural model. The developed
structural model shall be incorporated into the lubricated contact problem. To this end, the
structural model must be coupled with the fluid model, i.e., the field variables must be known
on the structure as well as on the fluid domain. A suitable coupling procedure needs to meet
specific demands since the EHD contact problem is very sensitive to changes in the gap height h
and the structural model requires a force vector, which depends on the elements used in the finite
element method. A coupling method that meets these requirements is developed and described
in this section.

First, a computational grid is defined, then the construction of coupling matrices is presented.

3.5.1 Definition of the computational grid

The structural model and the fluid model are discretized on different grids. There may exist up
to three different grids: the fluid grid, the structure grid of the lower body and that of the upper
body. The fluid grid is defined by the grid ratio iGR and the smallest structure element in the
contact region as

ΔxF = iGR min
(
ΔxS

[1],min, ΔxS
[2],min

)
, (3.26)
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3.5 Coupling procedure

where ΔxS
[1],min and ΔxS

[2],min are the smallest elements of the lower and upper structure grid,
respectively, and ΔxF is the length of a fluid element. The fluid grid points are given by
xiF = xL + (iF − 1)ΔxF with iF = 1, 2, . . . , nF. They are summarized in the vector xF ∈ RnF .
The grid points of the structure grid are summarized in vector xS ∈ RnS , where nS denotes the
number of structure nodes.3

In order to solve the coupled problem, a grid, on which all variables are known, must be defined.
This grid will be called the computational grid. The fluid grid is equidistant and finer than
the structure grids. Hence, it is used as the computational grid. In the following, interpolation
matrices are constructed, which interpolate the variables from the respective structure grid onto
the computational grid, i.e., the fluid grid.

3.5.2 Construction of coupling matrices

The coupling procedure should allow an efficient and accurate solution of the coupled problem.
To this end, the following aspects need to be taken into account:

• The Reynolds Equation is discretized using second-order finite differences, see Subsection
2.1.4. Furthermore,quadratic shape functions will be used in the context of the finite element
discretization. Hence, the coupling procedure should maintain the spatial convergence
order of the discretization schemes.

• The additional computational effort introduced by the coupling procedure should be
low. Hence, the coupling procedure should not need to be recomputed in each time step
or iteration.

• The EHD contact problem is very sensitive to variations in the gap height profile.
Consequently, an inaccurate coupling quickly destabilizes the solution procedure. Hence,
the coupling should not introduce artificial variations in the gap height profile.

The proposed procedure is inspired by the interpolation and integration approaches of the finite
element method, i.e., the use of shape functions for the interpolation of quantities and the use of
the Gauss quadrature for the integration of the pressure. Matrices are constructed to interpolate
and integrate the quantities between the different grids. Figure 3.1 shows the different grids and
indicates how they are connected via the interpolation and integration matrices. The interpolation
matrix GSF interpolates the displacements from the structure grid to the fluid grid. The pressure
integration matrix Gint integrates the pressure from the fluid grid points to nodal forces at the
structure grid points. The build-up of the needed matrices is summarized in the following.4

3In the following, indices denoting lower and upper body, as well as the superscript jk, indicating the current stage of
the time integration, are omitted for ease of notation. All coupling matrices are created for both bodies.

4Parts of this section have been presented in a similar form in [S6].
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uS

uF

GSF

uQ

Gint
GFQ

GQS

Figure 3.1: Schematic sketch of fluid grid (lower), structure grid (upper) and quadrature points on structure grid
(middle). The interpolation- and integration-matrices connect the different grids.

Interpolation matrix GSF

The geometry and displacement are given on the structure grid xS ∈ RnS , whereas the pressure
is computed on the fluid grid xF ∈ RnF . Local shape functions are used for the interpolation
of the quantities between grid points. Shape functions for one element can be built from the
Lagrange-polynomial

Nr (x) =
nen∏
s=1
s�r

x − xs
xr − xs

, (3.27)

with the nodal coordinates xr and xs of node r and s and nen gives the number of nodes
per element.

The shape functions of a quadratic three node element are given by

Ne
1 (x) =

x − xe2
xe1 − xe2

x − xe3
xe1 − xe3

, if x ∈ [xe1, xe2 ] else Ne
1 (x) = 0,

Ne
2 (x) =

x − xe1
xe2 − xe1

x − xe3
xe2 − xe3

, if x ∈ [xe1, xe2 ] else Ne
2 (x) = 0, and

Ne
3 (x) =

x − xe1
xe3 − xe1

x − xe2
xe3 − xe2

, if x ∈ [xe1, xe2 ] else Ne
3 (x) = 0,

(3.28)

with the coordinates xe1 , xe2 , and xe3 of the left, right, and middle node, respectively.
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Figure 3.2: Quadratic shape functions of a one-dimensional structure element, which consists of three structure nodes.
The shape functions are evaluated at the fluid node xF

iF
. The values of the shape functions at the fluid node give the

weights for the interpolation matrix GSF, see Eq. (3.29).

Figure 3.2 exemplifies the evaluation of the shape functions of a structure element for one fluid
node. This evaluation is carried out for each fluid node xF

iF
with iF = 1, 2, . . . , nF, using the

resulting values the interpolation matrix GSF ∈ RnF×nS is constructed as

GSF =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

NS
1 (xF

1 ) NS
2 (xF

1 ) · · · NS
nS
(xF

1 )
NS

1 (xF
2 )

... · · · NS
nS
(xF

2 )
...

... NS
iS
(xF

iF
) ...

NS
1 (xF

nF ) NS
2 (xF

nF ) · · · NS
nS
(xF

nF )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.29)

The shape function NS
iS

(
xF
iF

)
belongs to the iS-th node of a structure element and is evaluated at

the iF-th fluid node.

The resulting matrix GSF interpolates the displacement uS ∈ RnS from the structure grid onto
the fluid grid5

u F = GSF u
S. (3.30)

For a given fluid-structure grid combination, the interpolation matrix is constant. The interpolation
matrix needs to be recomputed when the relative position of the points on each grid changes.

5This interpolation matrix is also used for the interpolation of the geometry from the structure grid onto the fluid grid.
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Pressure integration matrix Gint

The integration of the fluid pressures, which are given at the fluid grid points, to forces, which
are given at the structure grid points, is particularly critical. For one thing, the integration of the
pressure must harmonize with the interpolation of the gap height, since the pressure reacts very
sensitively to gap height changes. In addition, the pressure integration must result in a force
vector corresponding to the finite element method.

In the finite element method, the content of the mass and the stiffness matrix, as well as the force
vector, depend on the shape functions, see Subsection 2.2.2. Furthermore, the dimension of the
force vector depends on the type of contact. The force vector has the dimension force per length
for the line contact and the dimension force for the point contact. Based on Eq. (2.39) the force
vector at the structure nodes F ∈ RnS can be computed as

F =

{∫ xnS
x0

N
ᵀ(x) p(x) dx, for a line contact, and∫ xnS

x0
N
ᵀ(x) p(x) 2π x dx, for an axisymmetric point contact,

(3.31)

with the shape function vector N (x) ∈ R1×nS , and the pressure p(x) at position x.6 The structure
domain [x0, xnS ] is split into small elements and the global coordinates x are transformed
into local coordinates ξ. The local coordinates in an element are ξ ∈ [−1, 1]. This allows for
the solution of the integral using Gauss quadrature. To approximate the integral of a function
using Gauss quadrature, the function is evaluated at unequally distributed quadrature points. A
polynomial of order at most

(
2 nQ − 1

)
can be integrated exactly using nQ quadrature points.

In local coordinates the quadratic shape functions, given via Eq. (3.28), simplify to

n1(ξ) = −ξ
2
(1 − ξ),

n2(ξ) = ξ2 (1 + ξ), and

n3(ξ) = 1 − ξ2,

(3.32)

where the index 1, 2, and 3 indicate the left, right, and middle node, respectively. For a
one-dimensional quadratic element, they can be expressed in matrix form as

N e(ξ) =
[

n1(ξ) n2(ξ) n3(ξ)
]
. (3.33)

Figure 3.2 shows the quadratic shape functions of a one-dimensional element.

6For the axisymmetric point contact problem the spatial coordinate x is the radial coordinate with origin at the center
of the contact, i.e., x = 0.
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The coordinate transformation from local to global coordinates is defined by

x = χe(ξ) =
nen∑
iS=1

niS (ξ) xeiS, (3.34)

where xeiS is the position of the iS−th node of structure element e and nen the number of
nodes per element. The differential length dx in Eq. (3.31) needs to be transformed into local
coordinates. Here, one-dimensional quadratic elements with three nodes are used, i.e., nen = 3.
The corresponding relation becomes

dx =
dχe(ξ)

dξ
dξ =

(
dn1(ξ)

dξ
xe1 +

dn2(ξ)
dξ

xe2 +
dn3(ξ)

dξ
xe3

)
︸������������������������������������������︷︷������������������������������������������︸

Je (ξ)

dξ. (3.35)

For ease of notation, the derivative of the coordinate transformation will be abbreviated as Je(ξ)
in the following.7 Making use of relations (3.34) and (3.35) the integral in Eq. (3.31) can be
written for each structure element e as

Fe =

{∫ 1
−1 N e

ᵀ(ξ) p(χe(ξ)) Je(ξ) dξ, for a line contact, and∫ 1
−1 N e

ᵀ(ξ) p(χe(ξ)) 2π χe(ξ) Je(ξ) dξ, for an axisymmetric point contact,
(3.36)

where the local shape functions (3.32) are summarized in the vector Ne ∈ R1×3 and Fe ∈ RnS
en .

Applying Gauss quadrature to the integral in Eq. (3.36) yields

Fe =

⎧⎪⎪⎨⎪⎪⎩
∑nQ

iQ=1 wiQ N e
ᵀ(ξiQ ) p(χe(ξiQ )) Je(ξiQ ), for a line contact, and∑nQ

iQ=1 wiQ N e
ᵀ(ξiQ ) p(χe(ξiQ )) 2π χe

(
ξiQ

)
Je(ξiQ ), for an axisym. point contact,

(3.37)

with the weights wiQ , the quadrature points ξiQ , and iQ = 1, 2, ..., nQ. The global force vector
is constructed by applying this procedure to each structure element and subsequent assembly.
A more detailed description of the construction of finite element force vectors can be found
in [7, 67, 76].

The pressure integration is carried out using a precomputed matrix. The shape functions are
evaluated at the quadrature points N e

ᵀ(ξiQ ), the derivative of the coordinate transformation
Je(ξiQ ), and the weights wiQ are known for a given structure grid. However, the pressure at the
quadrature points depends on the pressure distribution on the fluid grid. Hence, the pressure needs

7The abbreviation “Je” is chosen in analogy to the Jacobian matrix of the coordinate transformation, which is
commonly used in the context of the finite element method.
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to be interpolated from the fluid grid onto the quadrature points. To this end, an interpolation
matrix, similar to the interpolation matrixGSF, see Eq. (3.29), is constructed. However, different
from GSF, in this matrix, the shape functions are based on the fluid elements. The interpolation
matrix is given by

Ge
FQ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
NF

1 (χe(ξ1)) NF
2 (χe(ξ1)) · · · NF

nF (χe(ξ1))
NF

1 (χe(ξ2)) NF
2 (χe(ξ2)) · · · NF

nF (χe(ξ2))
...

... NF
i (χe(ξiQ ))

...

NF
1 (χe(ξnQ )) NF

2 (χe(ξnQ )) · · · NF
nF (χe(ξnQ ))

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (3.38)

with dimensions Ge
FQ ∈ RnQ×nF . The shape function NF

iF
(χe(ξiQ )) is based on a fluid element,

it belongs to the iF−th fluid node and is evaluated at the iQ−th quadrature point in the e−th
structure element.

The pre-evaluated quantities of the Gauss quadrature are summarized in quadrature matrix
Ge

QS ∈ RnS
en×nQ , for a line contact as

Ge
QS =

⎡⎢⎢⎢⎢⎣
w1n1(ξ1) Je(ξ1) w2n1(ξ2) Je(ξ2) w3n1(ξ3) Je(ξ3)
w1n2(ξ1) Je(ξ1) w2n2(ξ2) Je(ξ2) w3n2(ξ3) Je(ξ3)
w1n3(ξ1) Je(ξ1) w2n3(ξ2) Je(ξ2) w3n3(ξ3) Je(ξ3)

⎤⎥⎥⎥⎥⎦ (3.39)

and for an axisymmetric point contact as

Ge
QS = 2π

⎡⎢⎢⎢⎢⎣
w1n1(ξ1) χe (ξ1) Je(ξ1) w2n1(ξ2) χe (ξ2) Je(ξ2) w3n1(ξ3) χe (ξ3) Je(ξ3)
w1n2(ξ1) χe (ξ1) Je(ξ1) w2n2(ξ2) χe (ξ2) Je(ξ2) w3n2(ξ3) χe (ξ3) Je(ξ3)
w1n3(ξ1) χe (ξ1) Je(ξ1) w2n3(ξ2) χe (ξ2) Je(ξ2) w3n3(ξ3) χe (ξ3) Je(ξ3)

⎤⎥⎥⎥⎥⎦ .
(3.40)

The locations of the quadrature points are given as ξ1 = −
√
(3/5), ξ2 = 0, and ξ3 =

√
(3/5).

The corresponding weights are w1 = 5/9, w2 = 8/9, and w3 = 5/9, respectively. Weights and
locations for various numbers of quadrature points can be found in finite element textbooks such
as [7].

Combining the pressure interpolation matrix Ge
FQ with the quadrature matrix Ge

QS gives the
element pressure integration matrix

Ge
int = G

e
QSG

e
FQ, (3.41)

with which the element force vector can be computed as

Fe = Ge
int p, (3.42)
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where p ∈ RnF contains the pressure values at all fluid nodes. The pressure integration matrix
Gint ∈ RnS×nF is constructed by looping over all structure elements. The pressure integration
matrix is constant for a given fluid-structure grid combination. It needs to be recomputed when
the relative position of the grids changes.

3.5.3 Interpolation onto the computational grid

The coupling matrices map the field variables of the coupled problem onto the computational
grid xF, see Fig. 3.1. The pressure integration matrixGint ∈ RnS×nF , see Eq. (3.41), integrates the
pressures p ∈ RnF from the fluid grid to forces F ∈ RnS on the structure grid, using the relation

F = Gint p. (3.43)

With Eqs. (3.23) and (3.25) the displacements u ∈ RnS are computed on the structure grid.
Using the interpolation matrix GSF ∈ RnF×nS , see Eq. (3.29), the displacements are interpolated
onto the fluid grid.

The gap displacements δ ∈ RnF are computed as the sum of both bodies’ displacements, i.e.,

δ = GSF [1] u[1] + GSF [2] u[2], (3.44)

where the subscripts [1] and [2] indicate the lower and the upper body, respectively.

The deformed gap height is computed as

h = hgeo + δ, (3.45)

where the undeformed gap height is given via

hgeo = GSF [1] zgeo,[1] + GSF [2] zgeo,[2], (3.46)

with the coordinates of the undeformed geometry zgeo ∈ RnS . The deformed gap height is
nondimensionalized using relations (2.19) to give

H = Hgeo + δ̄. (3.47)

Now all field variables are given on the computational grid xF.
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3.5.4 Summary

The presented fluid-structure coupling concludes the first part of this chapter, which outlined the
construction of the structural model and its coupling. Table 3.1 summarizes the steps taken.
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Table 3.1: This table summarizes the preparation process of the structural model, as outlined in the first sections of
this chapter. It shows the output of each step. Thereby, it illustrates the reduction steps of the structural model and the
preparation of the coupling.

Finite element model, see Subsection 2.2.2

The bodies are created in a CAE software and discretized using finite elements. The system is of size nu .

M �u +Ku = F (3.1)

Reduced order model, see Section 2.3

From the finite element model, a reduced order model is created using component mode synthesis. The
system is of size ñu whereby usually ñu � nu holds.

M̃ �̃u + K̃ũ = F̃ (3.2)

Transformation into the modal space, see Section 3.2

Transformation into the modal space speeds up the computation and allows for damping individual
modes. The system size remains unchanged, i.e., nq = ñu .

�q +K q = Φ̄
ᵀ
F̃

ũ = Φ̄ q
(3.5)

Modified state-space representation, see Sections 3.3 and 3.4

The modified state-space representation reduces the system size and explicitly expresses the displacements
as a function of the force. The matrices depend on the treatment approach.

Y
jk
1 =

(
A21 +

1
Δtj aii

(
A22 − 1

Δtj aii
I
))−1

(
1

Δtj aii

(
A22 − 1

Δtj aii
I
)
S
jk
1 − 1

Δtj aii
S
jk
2 − B2 F̃

jk

) (3.23)

ũ jk = CY
jk
1 + D F̃ jk (3.25)

Transformation to the computational grid, see Section 3.5

• Equations (3.23) and (3.25) give the body’s displacement as a function of the force. The force
and the displacement are given on the structure grid xS ∈ RnS .

• The interpolation matrixGSF ∈ RnF×nS interpolates the structural displacements to displacements
on the computational grid via

u F = GSF uS. (3.30)

• The pressure integration matrix Gint ∈ RnS×nF integrates the fluid pressures to the structural
forces via

F = Gint p. (3.43)
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3.6 Solution of the nonlinear system of equations

Based on the extended structural model and the presented fluid-structure coupling, this section
shows the solution process of the resulting coupled problem. It outlines the build-up of the
system of equations and the iterative solution procedure.

Setting up the system of equations

The problem is coupled using a monolithic coupling approach. The nonlinear system of equations
describing the coupled problem is given as

f
(
P jk, δ̄ jk

)
=

{
fp

(
P jk, δ̄ jk

)
fδ

(
P jk, δ̄ jk

) }
= 0, (3.48)

with the differentiable function f ∈ Rnz and the size of the system nz = np + nF, where np is
the number of unknown pressures and nF the dimension of the computational grid. The problem
is made up of two parts: the nonlinear fluid model and the linear structural model.

The fluid model is introduced into the coupled problem through the discretized Reynolds
Equation (2.21). The Reynolds Equation is evaluated at each grid point where the pressure is
unknown. The results are collected in the vector fp

(
P jk, δ̄ jk

) ∈ Rnp . The vectors P jk ∈ RnF

and δ̄ jk ∈ RnF contain the dimensionless pressures and gap displacements, respectively.8

The structural model is implicitly introduced into the system of equations through the gap
displacements. The gap displacements can be expressed in nondimensionalized and discrete
form as

fδ = δ̄ − (
GSF [1] U[1] + GSF [2] U[2]

)
= 0, (3.49)

with the differentiable function fδ ∈ RnF , the interpolation matrix GSF ∈ RnF×nS , see (3.29),
and the dimensionless structural displacements U ∈ Rns . The latter two are computed for the
lower body and for the upper body, denoted in Eq. (3.49) by index [1] and [2], respectively.

Here, the linearity of the structural model utilized. The linearity allows expressing the
dimensionless structural displacements U ∈ RnF as a function of the dimensionless pressures
P jk ∈ RnF . The displacements are computed via Eqs. (3.23) and (3.25) on the structure grid and
interpolated after that to give the gap displacement on the computational grid. This approach
yields two significant advantages:

8The superscript jk indicates the current stage of the time integration. For ease of notation, it is omitted in
the following.
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• The displacements of both bodies are introduced into the system of equations via the
gap displacements δ̄ rather than via the displacement vector of each body. This approach
reduces the system’s dimension, which results in reduced computational costs for the
solution of the system of equations.

• The computations related to the structural model are carried out on the lower dimensional
structural grid.

Solving the coupled problem

A solution of the nonlinear system of equations (3.48) is approximated iteratively using the
Newton-Raphson method. To this end, the system of equations (3.48) is linearized at z(m) ∈ Rnz ,
where the vector

z(m) =
{
P(m)

δ̄(m)

}
(3.50)

contains the unknowns and the superscript m denotes the m−th iteration of the Newton-Raphson
method. The linearized function is set to be zero and the incrementΔz(m) = z− z(m) is introduced

0 !
= f

(
z(m)

)
− J f

(
z(m)

)
Δz(m), (3.51)

where J f
(
z(m)) = ∂f

∂z

���
z(m)

is the Jacobian matrix of the nonlinear function. With the increment

Δz(m) = −
(
J f

(
z(m)

))−1
f

(
z(m)

)
, (3.52)

and the under-relaxation factor ω(m) a new approximation of the solution is computed

z(m+1) = z(m) + ω(m) Δz(m). (3.53)

This process is repeated until a predefined convergence criterion is fulfilled, such as
| | f (z(m))| | < tol, where tol is an arbitrarily small number.

The under-relaxation factor ω(m) is introduced to stabilize the numerical method. However, a
too small choice of ω(m) slows down convergence. Hence, different methods exist to choose
ω(m) depending on the phase of the solution adaptively. In this work, Aitken-method is used to
determine an under-relaxation factor, see [97, 112].

To speed up the solution of the linear system (3.51), it is worthwhile to study the matrix
population of the Jacobian matrix. In a straightforward approach an inversion of the Jacobian
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matrix, which is of size nz , would be necessary to solve the linear system. However, the Jacobian
is a block matrix consisting of four blocks

J f =
[
Jpp Jpd
Jdp Jdd

]
, (3.54)

where Jpp = ∂ fp/∂P and Jpd = ∂ fp/∂δ̄ are sparse matrices, Jdp = ∂ fδ/∂P is fully populated
and Jdd = ∂ fδ/∂δ̄ = I is the identity matrix.

The structure of the Jacobian matrix indicates that the application of the Schur complement to
solve the linear system of equations is particularly helpful.9 Writing the system of equations
(3.51) block-wise yields

Jpp ΔP + Jpd Δδ̄ = fp, and (3.55a)

Jdp ΔP + Jdd Δδ̄ = fδ . (3.55b)

Multiplication of Eq. (3.55b) with Jpd J−1
dd

and substraction from Eq. (3.55a) gives(
Jpp − Jpd J−1

dd Jdp
)
ΔP = fp − Jpd J−1

dd fδ, (3.56)

which can be solved for ΔP, which can after that be inserted into Eq. (3.55b) to solve for Δδ̄.
This approach is particularly useful since Jdd is the identity matrix and no inversion is necessary,
as Jdd = J−1

dd
= I. Using this approach, only an inversion of a matrix of size np is necessary to

solve the linear system, which can save significant computational time because np ≈ nz/2 .

The convergence behavior of the Newton-Raphson method depends on the accuracy of the
Jacobian matrix and on the proximity of the starting value to the solution. Therefore, the
Jacobian matrix is calculated based on analytical derivatives and recomputed in every iteration.
Furthermore, the starting value of each stage is based on a linear extrapolation of the previous stage.

3.7 Model order reduction of the nonlinear system

Sections 3.1 through 3.6 provide a framework to solve the EHD contact problem with an extended
structural model. This section outlines the application of model order reduction (MOR) to the
complete extended EHD contact model. This procedure is used to construct a reduced order
model (ROM), which can significantly reduce the computational effort.

9Further applications of the Schur complement can be found, for example, in [139].
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While the solution steps in Sections 3.1 through 3.6 are needed to compute a solution for the
coupled problem, this method aims to further reduce the computational effort. However, the
application of MOR is not useful in all applications. Whether the use of MOR makes sense
depends to a large extent on the application. If the similarity of the solutions within the solution
space is high and many solutions within the solution space have to be computed, the application
of MOR usually makes sense.

The procedure described below is based on [93]. It uses Proper Orthogonal Decomposition
(POD) to construct a projection and then further reduces the size of the system using a
system approximation.

Reducing the system size by projection

Subsection 2.3.1 outlines the concept of MOR by projection. The aim is to approximate the
behavior of the full system’s behavior using a lower dimensional space. The solution given
on the lower dimensional space is the solution of the reduced order model (ROM). The ROM
shall approximate the essential input-output behavior of the original model with a much smaller
number of degrees of freedom, i.e., ñz � nz , where ñz is the number of unknowns of the ROM
and nz is the number of unknowns of the full model. To project the full system onto the reduced
space, a projection basis Vz ∈ Rnz×ñz needs to be constructed. The projection basis of the full
system Vz is constructed from the individual projection bases of the different field variables.
Here, projection bases are constructed for the fluid part, i.e., the pressure P ∈ Rnp , and for the
structural part, i.e., the gap displacement δ̄ ∈ Rnδ , where np and nδ are the number of unknown
pressures and gap displacements, respectively, with nδ = nF . Subsequently, the projection basis
of the full system is constructed as

Vz = diag
(
Vp, Vδ

) ∈ Rnz×ñz , (3.57)

with nz = np + nδ and ñz = ñp + ñδ analogously.

In the following, the procedure to construct a projection basis is described exemplarily for the
field variable pressure.

Constructing the projection basis

The projection basis is derived using so-called trainings. The trainings are typically solutions of
the full system (3.48) for certain parameters and boundary conditions. The training solutions are
collected column-wise in the snapshot matrix S ∈ Rnp×ns , with the number of snapshots ns. In
transient problems all time steps of the transient solutions for the chosen parameter combinations
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are saved in the snapshot matrix.10 The choice of trainings has a great impact on the range of
parameters and boundary conditions, which the ROM will be able to approximate.

The Proper Orthogonal Decomposition (POD) method is used to create the projection basis
based on the snapshot matrix.11 To this end, a singular value decomposition (SVD) of the
snapshot matrix is carried out. The SVD of S yields

S = UΣWᵀ, (3.58)

with the left singular matrix U and the right singular matrix W. The diagonal ma-
trix Σ contains the singular values σi sorted in decreasing order of magnitude, with
i = 1, 2, . . . , min

(
np, ns

)
. All three matrices are orthogonal matrices.

The basis for the solution space of the ROM is given by the vectors of the left singular matrix U

Vp ⊆ U (3.59)

with Vp ∈ Rnp×ñp . The number of considered vectors ñp is defined with help of the singular
values σi . They are used as an indicator of the information content of a given singular vector,
which is given as the i-th column of the singular matrix U(:, i). To this end, information loss
values are computed as

l(k) = 1 −
∑k

i=1 σi∑min(np,ns)
i=1 σi

. (3.60)

The loss values indicate how much relative information is lost by neglecting all singular vectors
U(:, i) for which i > k holds. Since the singular values are sorted in descending order, the loss
values l(k) are monotonically decreasing. Therefore, for a given loss value lmax the first

ñp � argmin
j∈N

(l( j) ≤ lmax) (3.61)

singular vectors are used to construct the projection basis

Vp = U(:, 1 : ñp) ∈ Rnp×ñp . (3.62)

The solution of the full model can be approximated as P ≈ Vp P̃ with vector P̃ ∈ Rñp .

10In the case of SDIRK methods, all stage values are saved in the snapshot matrix, see Eq. (2.74).
11For further detail on POD see, for example, [15] and [16].
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Above, the procedure is outlined exemplarily for the pressure P ∈ Rnp . The same procedure is
carried out for the gap displacement δ̄ ∈ Rnδ . Subsequently, a projection basis of the full system
is constructed according to Eq. (3.57).

Projecting the full system onto the reduced space

According to Eqs. (2.45) through (2.49) the full system (3.48) is projected onto the lower
dimensional space with the global projection matrix Vz . The nonlinear function (3.48) and its
Jacobian matrix become

f̃ (Vz z̃) =
{
Vᵀp fp (Vz z̃)
Vᵀδ fδ (Vz z̃)

}
, and (3.63)

J̃ f (Vz z̃) =
[
Vᵀp J fp Vz

Vᵀδ J fδ Vz

]
, (3.64)

with f̃ ∈ Rñz and J̃ f ∈ Rñz×ñz .

Consequently, the formula for the Newton-Raphson method, see Eq. (3.51), becomes

0 !
= Vᵀz f (Vz z̃ ) + Vᵀz J f (Vz z̃)Vz Δ z̃, (3.65)

where the increment in the reduced space is computed as

Δ z̃ = − (
J̃ f (Vz z̃)

)−1
f̃ (Vz z̃) . (3.66)

This projection reduces the size of the matrix that needs to be inverted in each iteration of the
Newton-Raphson method from nz to ñz . Depending on the difference between ñz and nz , this
reduction can significantly decrease the computational effort of the solution procedure.

Reducing the number of state variables

The projection onto the lower dimensional space reduces the size of the nonlinear system from
nz to ñz . However, the nonlinear function f ∈ Rnz and its Jacobian matrix J f ∈ Rnz×nz still
need to be computed on the full system level, which is of size nz , see Eqs. (3.63) and (3.64). The
computation of the functions on full system level takes a significant amount of time. To bypass
this, Chaturantabut and Sorensen [17, 18] proposed a method to evaluate only certain points of
the nonlinear function and interpolate between these points. A drastic reduction of the number of
evaluation points without a significant decrease in solution quality was shown. Carlberg [13, 14]
extended the method by introducing different interpolations for both the system function and its
Jacobian matrix. Maier [95] extended and applied this method to the EHD contact problem.
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The goal is to reduce the cost of the evalutation of the system functions. The majority of the
cost stems from the construction of the fluid part, i.e., Reynolds Equation fp ∈ Rnp and its
Jacobian matrix J fp ∈ Rnp×nz . The idea is to identify Ñp evaluation points which are sufficient
to characterize the state of the nonlinear system, such that the system functions only need to
be computed at the evaluation points. The indices of the evaluation points are summarized in
the set I.

Similar to the construction of the projection basis, snapshot matrices are created. The snapshot
matrices S f and SJ contain the nonlinear function f (m)

p and its weighted Jacobian J(m)
fp

z(m) of
each Newton-Raphson iteration of all time steps and all parameter combinations, respectively.12

The SVD of the snapshot matrices yield

S f = U f Σ f W
ᵀ
f , and (3.67)

SJ = UJ ΣJW
ᵀ
J, (3.68)

with the left singular matrix U, the right singular matrix W and the diagonal matrix Σ,
analogously to Eq. (3.58). Based on the prescribed number of evaluation points Ñp , the matrices
Φ f ∈ Rnp×Ñp , and ΦJ ∈ Rnp×Ñp are created from the first Ñp columns of the left singular
matrices U f and UJ , respectively,

Φ f = U f

(
:, 1 : Ñp

)
∈ Rnp×Ñp , and (3.69)

ΦJ = UJ

(
:, 1 : Ñp

)
∈ Rnp×Ñp . (3.70)

Using matrices Φ f and ΦJ and the number of evaluation points Ñp , the set I can be computed.
Figure 3.3 outlines the algorithm to do so.

To compute fp and J fp at the evaluation points given by the set I, also some neighboring points
need to be known.

Due to the discretization, the values of the Reynolds Equation at the points of set I are
dependent on the values at their neighboring grid points. For this reason the additional set J is
introduced. Set J contains all points needed to compute fp and J fp at the evaluation points. Set
J is defined as

J � {
j ∈ {1, . . . , nz} : ∃l ∈ I with J fp (l, j) � 0

}
, (3.71)

where N̂p = |J | gives the number of elements of the set J , i.e., the number of evaluation
points needed.

12Note that this procedure is only carried out for the Reynolds Equation. The structural equations are linear and can
thus be obtained with little numerical cost.
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Input: Φ f , ΦJ , Ñp

Output: I
i = argmax

j=1, 2, ..., np

[ (
Φ f ( j, 1))2

+ (ΦJ ( j, 1))2
]

I = {i}
for k = 2 : Ñp

a f = argmin
a f ∈Rk−1

$$Φ f (I, 1 : k − 1) a f −Φ f (I, k)
$$
2

aJ = argmin
aJ ∈Rk−1

‖ΦJ (I, 1 : k − 1) aJ −ΦJ (I, k)‖2

ϕ f = Φ f (:, k) −Φ f (:, 1 : k − 1) a f
ϕJ = ΦJ (:, k) −ΦJ (:, 1 : k − 1) aJ
i = argmax

j=1, 2, ..., np\I

[ (
ϕ f ( j))2

+ (ϕJ ( j))2
]

I = I ∪ {i}
end

Figure 3.3: Algorithm to determine I, adapted from [95]. The set I contains the evaluation points.

The nonlinear function and its Jacobian matrix are now constructed only at the evaluation points,
hence, fp (I) ∈ RÑp and J fp (I,J) ∈ RÑp×N̂p . The system functions of the ROM can be
expressed as

f̂ (Vz z̃) =
{ (
Vp (I, :)

)ᵀ
fp (Vz (I, :) z̃)

Vᵀδ fδ (Vz z̃)

}
, and (3.72)

Ĵ f (Vz z̃) =
[ (
Vp (I, :)

)ᵀ
J fp (I,J) Vz (J, :)
Vᵀδ J fδ Vz

]
. (3.73)

The system approximation only reduces the points at which the nonlinear function f and its
Jacobian matrix J f need to be evaluated on full system level. The projection matrix Vz remains
unchanged. Therefore, the size of the reduced system also remains unchanged, i.e., f̂ ∈ Rñz and
Ĵ f ∈ Rñz×ñz . However, after the system approximation, during computation with the ROM, no
operations need to be performed on the full system level. The reduced number of full system
evaluation speeds up the overall procedure.

59





4 Results

This chapter investigates the developed solution procedure for the extended EHD contact model.
Different example problems are studied, in order to examine individual aspects of the procedure.

The shock loading of an EHD line contact is used to investigate the proposed time integration
procedure and to draw a comparison with conventional procedures.

The dry impact problem of a plane valve-like geometry is used to investigate the extended
structural model. Aspects of the reduction procedure and the occurrence of spurious oscillations
in reduced order models are discussed.

Various problems based on the axisymmetric lubricated impact problem are studied to examine
the complete extended EHD contact model. The first problem studied is the impact of a sphere on
a lubricated plate. Based on this problem, the model’s overall behavior is validated by comparison
with literature results. The second problem investigates an application where structural inertia
effects influence the contact behavior, i.e., the lubricated impact of a valve-like geometry. The last
problem of Section 4.3 explores an efficient solution approach for multiple successive impacts.
Here, the model order reduction of the complete nonlinear coupled problem is shown.

4.1 Shock loading of a lubricated contact

EHD contact solvers commonly use the Backward Euler method or the second-order finite
difference method for time integration, see, e.g., [47, 48] or [93, 128, 134–136], respectively.
Different from the conventional approaches, this work uses SDIRK methods for time integration.
These methods provide a stable and efficient solution procedure for stiff problems. However, they
have hardly been explored in the EHD context. Therefore, this section examines their suitability
for EHD contact problems. The following study investigates the temporal characteristics of the
fluid part of the coupled problem in isolation. Hence, for this problem, the conventional EHD
line contact model, which is widely used for EHD contact problems, is selected. In this model,
structural inertia is neglected and the solid’s deformation is modeled via the half-space approach.
Hence, only the Reynolds Equation has time-dependent terms.

The problem of shock loading and unloading for a highly loaded contact is used as an example
problem. This problem was used by Goodyer [47, 48] to study the temporal characteristics of
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the EHD contact and is also used here, however, to study a different time integration approach.
The problem is particularly suitable since it consists of highly dynamic phases of rapid load
change and also of phases of steady-state operation.

The first subsection states the example problem. Subsection 4.1.2 compares the proposed time
integration method with conventionally used methods. Subsection 4.1.3 studies the adaptive
time stepping approach and, furthermore, extends it in order to consider rapid load changes
during time step size selection.

w(T)

um

(a) Schematic setup of the EHD line contact under
combined entraining and squeeze motion.

(b)The loading path is given by the nondimensional
load w̄ over time T .

Figure 4.1: Schematic setup of the shock loading and unloading problem. Initially, the lubricated contact operates in
steady-state conditions. Then the load is rapidly increased and, after some time, rapidly decreased.

4.1.1 Example problem

Initially, the lubricated contact operates in steady-state conditions. At nondimensional time
T1 = 0.5 the load increases rapidly. Thereafter, the load is kept constant to allow the contact to
reach steady-state conditions again. At T2 = 5 the load decreases rapidly.

Figure 4.1b shows the loading path. The loading path is defined by

w̄(T) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
3 for T < 0.5,
2
3 +

1
3 · T−0.5

0.5 for 0.5 ≤ T ≤ 1,
1 for 1 < T < 5,
1 − 1

3 · T−0.5
0.5 for 5 ≤ T ≤ 5.5,

2
3 for 5.5 < T .

(4.1)

The dimensional load is computed as w(T) = wref · w̄(T).

62



4.1 Shock loading of a lubricated contact

Table 4.1: Parameters of the shock loading problem.

parameter R um wref E ′ η0 α

unit mm m/s N/mm GPa Pa·s 1/GPa
value 22.5 5.0365 546.11 287.8 0.01 22

The conventional EHD line contact model is used, see Appendix B. The lubricant is modeled as
compressible, see Eq. (2.10), and the viscosity variation is approximated using Barus’ model,
see Eq. (2.8). Table 4.1 summarizes the problem’s parameters. Figure 4.1 shows the setup of the
example problem. The computational domain is defined as −4 ≤ X ≤ 2 with the equidistant
grid length ΔX = 0.006. The size of the domain is chosen such that it can adequately consider
all relevant effects.

Figure 4.2 shows the spatially resolved pressure (thick line) and gap height (thin line) at different
time instances. Figure 4.3 shows the temporal evolution of the central pressure pc = p (t, X ≈ 0)
and central gap height hc = h (t, X ≈ 0). The upper row of plots in Fig. 4.2 shows the loading
phase while the lower row shows the unloading phase.

T = 0.5 T = 1 T = 1.5 T = 2 T = 2.5

T = 5 T = 5.5 T = 6 T = 6.5 T = 7

Figure 4.2: The plots show the pressure (thick line) and the gap height (thin line) spatially resolved at different time
instances. The upper row shows the loading phase and the lower row shows the unloading phase.

As the external load increases, the pressure increases in order to balance the load. Since the
viscosity in the high pressure zone is very high, the gap height hardly decreases in the contact’s
center, but it decreases in the outer contact region, where the viscosity is lower. The squeeze
term generates pressure in the outer contact region and thereby hinders the reduction of the gap
height. Therefore, for a short time, the gap height entering the contact is larger than it would be
in steady-state conditions. The resulting local variation in the gap height and the local pressure
peak are transported through the contact region by the entraining motion, as the Poiseuille term
in Reynolds Equation vanishes in the high pressure zone. Since no inertial effects are considered,
no vibrations occur and the contact reaches steady-state conditions once these local fluctuations
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have left the contact area after approximately two nondimensional time units. These effects can
be observed in Figs. 4.2 and 4.3, furthermore, Wijnant [134] discusses them in further detail.

0 2 4 6 8
1.45

2.2

T

p c
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G
Pa

(a)

0 2 4 6 8
0.25

0.5

T

h c
in

μ
m

(b) The dotted line shows the initial gap height.

Figure 4.3: Central pressure pc (a) and central gap height hc (b) over nondimensional time T . The changes in the
pressure and the gap height shortly after the load change are particularly visible in this representation.

4.1.2 Comparison of time integration schemes

The Backward Euler method and the second-order finite difference method are commonly used in
EHD contact problems. This work proposes the use of SDIRK methods, specifically Alexander’s
second-order method. This subsection compares the three time integration methods.

In the following, the example problem is solved with each method using the fixed dimensionless
time step size ΔT = 0.01. The reference solution is computed with second-order finite difference
method and the fixed dimensionless step size ΔT = 1 · 10−4. The results of the different methods
are compared with a reference solution. Thereafter, the convergence behavior is examined.

Figure 4.4 shows the trace of the central gap height hc and the minimum gap height
hmin(t) = min

X∈ΩF
(h(t, X)) for the unloading and loading phase. The Backward Euler method (BE1)

shows significant deviations from the reference solution. It is not able to capture the dynamics
of the problem and the induced damping is visible. For the second-order finite difference
method (FD2), a deviation from the reference solution can be observed as well. However, the
dynamics are captured more adequately. The solution computed with Alexander’s second-order
method (A2) lies close to the reference solution, although it only requires a hundredth of the
number of steps. This comparison shows a superior behavior for A2.
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4.1 Shock loading of a lubricated contact

0.5 2 3.5
0.32

0.48

hc

hmin

T

h
in

μ
m

BE1
FD2
A2

(a)

5 6.5 8
0.26

0.4
hc

hmin

T

h
in

μ
m

BE1
FD2
A2

(b)

Figure 4.4: Central gap height hc and minimum gap height hmin during the loading phase (a) and unloading phase
(b) over nondimensional time T . The results are computed using Backward Euler method (BE1), second-order finite
difference method (FD2) and Alexander’s second-order method (A2) with the nondimensional step size ΔT = 0.01.
The dashed line is the reference solution. It is computed using FD2 with ΔT = 1 · 10−4.

A study of the convergence order gives further insights into the behavior of a time integration
method. It gives information about the functioning of the method for a given problem. This
information can be helpful in the context of adaptive time step selection since the used algorithm
is based on the convergence order of the method, see Subsection 2.4.2. Additionally, it gives
information about the approximate size of the deviation from a reference solution for different
time step sizes. This information can be helpful in selecting a suitable time step size for a
particular problem.

To carry out an order investigation, the problem is solved with different time step sizes
and the deviation from a reference solution is computed. Here, the backward Euler method
(BE1), the second-order finite difference method (FD2), and Alexander’s second-order method
(A2) are investigated. The problem is solved with fixed dimensionless time step sizes ΔT =
{0.01, 0.008, 0.006, 0.004, 0.002, 0.001}. Since no analytical solution exists for the example
problem, the reference solution is computed with FD2 and fixed dimensionless time step size
ΔT = 1 · 10−4. The deviation errmax of the studied solution from the reference solution is
computed using Eq. (A.3).

Figure 4.5 shows the results of the convergence order study for the central pressure pc and
central gap height hc. The Backward Euler method (BE1) does not reach the first order. The
reduced order results from its step size dependent numerical damping. Hence, BE1 is not suitable
for highly dynamic EHD contact problems. The second-order finite difference method (FD2)
reaches second order for smaller step sizes. However, FD2 shows an order reduction for larger
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step sizes. Alexander’s second-order method (A2) yields good results, especially for larger step
sizes. For smaller time step sizes, the convergence order decreases slightly. Due to the superior
behavior of A2 for larger time step sizes, the deviation from the solution is smaller for A2 than
for FD2 in the studied range of time step sizes. The results of the order investigation are in
agreement with the results of Fig. 4.4. For more information regarding order reductions, the
reader might refer to [99, 105].

In the studies above, Alexander’s second-order method shows superior results compared
to the other methods. These results show the suitability of the method for dynamic EHD
contact problems. Hence, the method is used in the following for the time integration of the
Reynolds Equation.
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Figure 4.5: Order investigation for the central pressure pc (a) and for the central gap height hc (b). The slope of the
dashed line indicates the theoretical convergence order of the respective method.

4.1.3 Study of the adaptive time stepping scheme

To ensure computational stability and efficiency as well as a good approximation of the solution,
different time step sizes Δtj must be chosen for different problems. When using a fixed step size,
the step size must be selected taking into account the highest possible dynamics of the problem.
The resulting small step size may be only necessary for a small part of the problem and, for
the most part, a significantly larger step size would be sufficient. As a result, the computational
time increases unnecessarily. To this end, a time step size control algorithm should be used to
automatically adapt the time step size throughout the temporal path of the problem.

66



4.1 Shock loading of a lubricated contact

The first part of this subsection aims to compare the adaptive step size control algorithm from
Subsection 2.4.2 with procedures from EHD literature. In the second part of this subsection,
a procedure to cope with rapid changes of boundary conditions and parameter functions
is presented.

Step size control

Time step size control algorithms rely on an indicator which is used to approximate a suitable
time step size. Commonly, an approximation of the local integration error of the time integration
scheme serves as an indicator. One possibility is the approximation based on a linear extrapolation
of the previous time step’s solutions. This approach has been used in the field of lubricated
contacts by [94] and [47]. Alternatively, for SDIRK methods, it is possible to approximate the
local integration error based on embedded methods efficiently. This approach is outlined in
Subsection 2.4.2. The following study compares the two approaches. Therefore, the following
two variants are introduced:

• Variant FD2-CA1 corresponds to the time integration approach used in some EHD contact
problem solvers, such as [94]. Time integration is carried out using second-order finite
difference method (FD2). The local integration error is approximated by comparing the
previous time step’s linear extrapolation to the current time step’s result. The approximated
error is then used within the time step size control approach CA1, given by Eq. (2.79).
This control approach is an adaptation of the algorithm used by [47] and was used in the
context of EHD contact computations by [94]. The basic idea of this control approach is
to keep the time step size constant while the approximated local integration error is within
a predefined range and to change the time step size according to a constant factor, as soon
as the approximated error lies outside the range.

• Variant A2-CA2 employs Alexander’s second-order method (A2) and approximates the
local integration error based on an embedded scheme, see Subsection 2.4.2, and uses time
step size control approach CA2, given by Eq. (2.80). The time step size control approach
is an adaptation of the “standard step size controller”, see [62, p.124]. It aims to keep the
integration error as close as possible to the prescribed tolerance and adjusts the time step
size in each time step accordingly.
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Table 4.2: Overview of the cases studied and their results. The first two cases aim to obtain an approximate relative
deviation of relerr

pc
max ≈ 3 % and the third and fourth case aim to obtain an approximate relative deviation of

relerr
pc
max ≈ 1 %. The absolute tolerance εa for adaptive time integration is adjusted accordingly. The other time

integration parameters are kept constant, i.e., εr = 0, fmin = 0.5, fmax = 1.5 and fsafety = 0.6. The relative deviation
relerr

pc
max is computed with Eq. (A.5). It gives the deviation from the reference solution, which is computed with the

fixed dimensionless time step size ΔT0 = 1 · 10−4 and FD2 time integration.

case ID variant εa steps (rejected) relerrpc
max rel. comp. time

FD2-CA1-3% FD2-CA1 2.5 · 10−3 543 (12) 2.5 % 1
A2-CA2-3% A2-CA2 5 · 10−4 258 (14) 2.8 % 0.947
FD2-CA1-1% FD2-CA1 2.5 · 10−4 2064 (37) 1.1 % 1
A2-CA2-1% A2-CA2 5 · 10−5 786 (75) 0.6 % 0.828

Table 4.2 compares both variants concerning the time steps needed and rejected, relative deviation
from a reference solution and relative computational time.1 The reference solution is computed
with fixed dimensionless time step size ΔT0 = 1 · 10−4 and FD2 time integration. Two different
target accuracies are studied. Case 1 and 2 aim to obtain an approximate relative deviation of
relerrpc

max ≈ 3 % and case 3 and 4 aim for an approximate relative deviation of relerrpc
max ≈ 1 %.

A comparison of the number of time steps required shows that FD2-CA1 requires significantly
more time steps than A2-CA2 in order to achieve the same accuracy. This is coherent with the
observations in the previous subsection, where A2 yields smaller errors than FD2 for the same
time step size, see Fig. 4.5.

Comparing the relative computational time of the variants shows that the reduction of time
steps needed does not result in a proportionally substantial reduction in computational time.
This effect can be explained by the stage values, which need to be computed in higher order
implicit Runge-Kutta methods for each time step, see Section 2.4. The computation of stage
values requires recomputations of the Jacobian matrix, see Eq. (3.54), and evaluations of the
nonlinear system, see Eq. (3.48).

Figure 4.6 shows the time step size ΔTj over time T for both target accuracies. It shows that step
size control works for both variants, as the time step size in the stationary phases is increased
and the load changes in the environment are significantly reduced. Furthermore, this figure
exemplifies the differences of the two control approaches CA1 and CA2, given by Eq. (2.79) and
Eq. (2.80), respectively.

The control approach CA1 keeps the time step size constant while the approximated local
integration error is within a predefined range. If the approximated error leaves that range, the

1There is no direct relation between the prescribed tolerance εa and the relative deviation relerr
p
max. The tolerance

εa is compared to the root mean square of all field variables, see Eq. (2.78), whereas relerr pmax gives the relative
deviation of the central pressure pc according to Eq. (A.5).
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4.1 Shock loading of a lubricated contact

time step size is adjusted according to a constant factor. This approach leads to a step-wise path
of the time step size and minimizes the number of time step size changes.

The control approach CA2 adjusts the time step size such that the approximated local integration
error is as close as possible to the predefined tolerance. This procedure gives a smooth path of
the time step size and yields a large number of time step size changes. The increased number
of time step size changes also increases the likelihood of a rejected time step, as can be seen
in Tab. 4.2.

Rejected time steps are expensive because a solution of the whole nonlinear system must be
computed and then discarded. In this example problem, long steady state phases are followed by
rapid load changes. The rapid load changes require a rapid decrease of the time step size, which
leads to rejected time steps in both variants. In the following, a procedure of how to deal with
rapid load changes is introduced.
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Figure 4.6: Time step size ΔTj over time T for desired approximate relative deviation of relerr pc
max ≈ 3 % (a) and

relerr
pc
max ≈ 1 % (b). Table 4.2 summarizes the characteristics of the different cases.

Considering the integration error of prescribed functions in time step size selection

The example problem consists of phases with constant load and highly dynamic phases in which
the load changes rapidly. In order to take these very rapid load changes and the subsequent
dynamics into account, the step size must be reduced rapidly. However, rapid changes in boundary
conditions and parameters might not be efficiently captured by a standard step size control
algorithms. Hence, the rapid reduction of the step size may cause several rejected step sizes. To
this end, an extension to the time-stepping algorithm from Subsection 2.4.2 is proposed here.
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With the extensions, the local integration error of predefined functions describing boundary
conditions and parameters is considered for the selection of the time step size.

Figure 4.6 shows a substantial increase of the time step size ΔTj starting from T ≈ 3 until right
before the rapid load decrease at T = 5. During this steady-state phase, the field variables are
constant and their integration error vanishes. Consequently, the time step size increases. The
time step size becomes so large that it skips over the unloading phase from T = 5 to T = 5.5.
This causes the solution procedure to diverge and as a consequence, the time step is rejected. A
new computation with a smaller time step size will likely be discarded again, since very small
time step sizes are needed to capture the rapid change in the prescribed load properly. The time
step size will be reduced iteratively. For each attempt, several Newton-Raphson iterations of the
full system are carried out, which results in computational work.

In an attempt to reduce the number of rejected steps during the rapid change of the prescribed
load, more advanced approaches based on control theory, as given in [53, 116], are tried. They
do not yield a significant improvement for the studied problem and are not further investigated
within the scope of this work. However, a procedure to reduce the number of rejected time steps
is proposed in the following.

The procedure adjusts the time step size such that the local integration error of the predefined
load function stays below a certain threshold εw . This procedure can be applied to any predefined
functions, e.g., parameter or boundary condition functions. The flowchart in Fig. 4.7 outlines this
procedure. It ensures that time-dependent boundary conditions and parameters are considered by
the adaptive step size selection method. Thereby, it reduces the risk that time steps are rejected
due to rapid changes of a predefined function. It allows for using larger time integration tolerances
throughout the complete simulation while making sure rapid changes in boundary conditions
are still considered in detail. The advantage of this approach compared to the conventional
approach, i.e., to consider only the field variables, is that the evaluation of a predefined function
generally requires considerably less effort than the computation of several iterations of the
complete system.

To study the procedure described above, the same cases as above are recomputed, see Tab. 4.2.
However, the local integration error of the load function is considered in step size selection using
the procedure above with a predefined threshold of εw = 1 · 10−3.

Table 4.3 summarizes the results. In all cases, the number of rejected steps and the computational
time decreases. The reduction is specially useful for higher tolerances εa, see cases 1 and 2. Due
to the larger tolerances, the overall time step size is larger. The larger time step size increases the
risk of skipping over rapid parameter changes, which leads to rejected time steps. For case 3 and
4 this effect is less pronounced. However, the procedure still yields a reduction in computational
time. The procedure yields better results for variant A2-CA2.
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4.1 Shock loading of a lubricated contact

Start

Current time step info

Compute local integration er-
ror for predefined function

Predefined function
approximated

sufficiently well, if
werr < εw

Reduce time step size

Accept time step size

Stop

No

Yes

Figure 4.7: This procedure considers the local integration error for a predefined function during the selection of the
time step size. In this problem, the predefined function describes the temporal evolution of the load, see Eq. (4.1).
For each time step, the local integration error of the function is computed. The aim is to reduce the number of
rejected time steps and thereby to reduce the computational effort to solve the problem. Hence, the computation
of the local integration error should not be computationally costly. Appendix C outlines the procedure to compute
the local integration error. The following steps describe the general procedure to approximate the local integration
error: 1. Compute the temporal derivative of the function using complex step differentiation. 2. Use numerical time
integration to compute the approximate function value. 3. Compute the deviation of the approximated function value
from the exact function value. This comparison gives the approximation of the local integration error. If the error is
above the prescribed threshold εw , the time step size is successively reduced until the error is below the threshold.
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Table 4.3: Overview of results with the consideration of the local integration error of the load function w(T ). All
cases are computed with the same parameters as in Tab. 4.2. The threshold for the local integration error of the load
function is chosen to be εw = 1 · 10−3. The relative computational time is computed relative to the respective case
without monitoring the load function. As above, the reference solution is computed with fixed dimensionless time step
size ΔT0 = 1 · 10−4 and FD2 time integration.

case ID variant εa steps (rejected) relerrpmax rel. comp. time
FD2-CA1-3% FD2-CA1 2.5 · 10−3 561 (0) 2.7 % 0.870
A2-CA2-3% A2-CA2 5 · 10−4 263 (3) 2.8 % 0.877
FD2-CA1-1% FD2-CA1 2.5 · 10−4 2112 (36) 1.5 % 0.975
A2-CA2-1% A2-CA2 5 · 10−5 781 (58) 0.6 % 0.933

The results indicate that Alexander’s second-order method with the control approach given by
Eq. (2.80) and monitoring of prescribed functions yields good results in EHD contact problems.
Thus, this method is used for time integration in the following.

4.2 Dry contact

Conventional EHD contact models consider the solid’s dynamic behavior in terms of rigid
body motion and its deformation via an elastic half-space, see [128, 133, 134]. This modeling
approach is limited as it does not account for the structural dynamic behavior of complex
geometries. This work proposes to extend the structural dynamics model of EHD contacts, using
a reduced order modeling approach. However, the reduced order models need to be adjusted in a
specific manner in order to yield accurate and stable results. This section examines the proposed
procedure and discusses the model’s suitability for dynamic contact problems.

While the previous section focused on the fluid part of the coupled problem, this section focuses
on the structural dynamics part. To isolate the structural dynamics component, other physical
effects, such as the behavior of the lubricant, shall not be considered in this investigation. Hence,
a dry contact problem is examined. The low-velocity impact of a plane T-shaped elastic body
on a rigid plate is used as an example problem, see Fig. 4.8. The shape of the upper body is
motivated by the shape of valve needles as they can be found in injectors. The geometry and the
mass distribution of this body introduce structural dynamic effects, which shall be captured by
the extended structural model.

The first subsection describes the example problem. Subsection 4.2.2 discusses the construction
of a reduced order model suitable for the problem using the concepts introduced in Section 2.3.
The results of this subsection show the occurrence of spurious oscillations. Subsection 4.2.3
examines two different approaches to minimize these oscillations. At the end of this subsection, a
suitable structural dynamic model is given. While the first subsections focus on the construction
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4.2 Dry contact

v0

Figure 4.8: Schematic of the example problem setup. The elastic T-geometry moves with the initial velocity v0
towards the rigid plate. It impacts the plate and rebounds from it. After the rebound it impacts the plate again because
of the geometrical shape of the body and its elastic deformation.

4.2.1 Example problem

Figure 4.8 shows the example problem setup. The upper body moves with the prescribed initial
velocity v0 = 10 m/s towards the rigid plate. The initial displacement is zero, i.e., the undeformed
upper body is touching the lower body.

The T-geometry is modeled to behave linear-elastically under plane-strain condition with
E = 100 GPa and ν = 0.3. It’s mass is m0 = 5.513 kg/m. The body is discretized using finite
elements with quadratic shape functions. The lower body is modeled as a rigid plate.

The contact between the bodies is assumed frictionless. The contact conditions are enforced by
the penalty contact formulation

fp,i = P − γpen min(Hi, 0)2 = 0, (4.2)

with the penalty factor γpen.2 Using this expression, the dimensionless contact pressure Pi is
found such that the dimensionless gap height Hi at each node i = 1, 2, . . . , nu

n does not become
negative. It was found that using the squared gap height in Eq. (4.2) improves the convergence of
the Newton-Raphson method, because this way Hi occurs in the derivative of fp,i with respect
to Hi and thus increases the information content of the Jacobian matrix. Evaluating Eq. (4.2) for
all contact nodes gives the vector fp ∈ Rnu

n , which is inserted instead of the Reynolds Equation

2The penalty parameter should be chosen as high as possible to enforce contact conditions properly. However, high
penalty parameters might yield numerical problems. In such cases, it should be reduced. In this section, the penalty
parameter is chosen to be γpen = 1 · 10 10.
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For comparison and validation purposes, reference solutions are computed with the com-
mercial finite element software Abaqus. In Subsections 4.2.2 and 4.2.3 these results
are computed using Hilber-Hughes-Taylor time integration method with the parameters
α = −0.05, β = 0.275625, and γ = 0.55. These parameters are recommended for elastodynamic
contact problems by [29, 30]. The method with these parameters will be referred to as HHT-TF
in the following.

4.2.2 Construction of the structural reduced order model

The structural dynamics model is given as a reduced order model. The reduced order model is
constructed using component mode synthesis. Depending on the application, different properties
of a reduced order model are relevant. The properties of a reduced order model can be significantly
influenced by three factors: the reduction method, the cut-off frequency fc, and the number and
location of the master nodes. These factors should be chosen such that the resulting reduced
order model is well suited for the application at hand. The following study examines the influence
of these factors so they can be selected appropriately.

Subsection 2.3.5 introduces two component mode synthesis methods: Craig-Bampton method
and an adapted Craig-Chang method. These two methods, as well as the cut-off frequency fc
and the number and location of the master nodes, will be compared in the following. To this
end, six different models are created. Three models are created for each reduction method.
The three models vary in cut-off frequency and master node configurations. The master node
configurations are shown in Fig. 4.9. In the CN-configuration, see Fig. 4.9a, the nodes in the
contact region are selected as master nodes. In the AN-configuration, see Fig. 4.9b, additional
nodes outside of the contact region are selected. Table 4.4 gives an overview of the reduced
order models.

Table 4.4: Overview of the studied reduced order models. The models are referred to by their model ID in the
following.

model ID reduction method cut-off frequency fc master node configuration
CC-150-CN Craig-Chang method 150 kHz as in Fig. 4.9a
CC-150-AN Craig-Chang method 150 kHz as in Fig. 4.9b
CC-450-CN Craig-Chang method 450 kHz as in Fig. 4.9a
CB-150-CN Craig-Bampton method 150 kHz as in Fig. 4.9a
CB-150-AN Craig-Bampton method 150 kHz as in Fig. 4.9b
CB-450-CN Craig-Bampton method 450 kHz as in Fig. 4.9a
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4.2 Dry contact

(a) Only the nodes in the contact region (high-
lighted black) are selected as master nodes. The
corresponding reduced order model is referred to
as CN, short for contact nodes.

(b) Besides to the nodes in the contact region
(highlighted black) additional nodes (highlighted
gray) outside of the contact region are selected
as master nodes. The corresponding reduced order
model is referred to as AN, short for additional
nodes.

Figure 4.9: The highlighted nodes represent the master nodes selected in the CN-configuration (a) and the
AN-configuration (b).

A corresponding reference solution is computed with the commercial finite element software
Abaqus using HHT-TF time integration with fixed time step size Δt = 6 ns. The reference
solution is referred to as the full model. The solutions of the reduced order models are computed
with the Matlab implementation using Alexander’s second-order method (A2) and fixed time
step size Δt = 12 ns.

Figure 4.10a shows the central force Fc = F (t, X ≈ 0), which is the force at the node closest
to the contact’s center, and the central gap height hc over time t for the Craig-Chang method
based reduced order models. The solution of the full model is also shown as a reference. Model
CC-150-CN uses the CN-configuration as master nodes and the cut-off frequency is set as
fc = 150 kHz. It yields strong contact force oscillations. The force oscillations are so strong
that the central node briefly leaves the contact at around 17 μs. Increasing the cut-off frequency
from fc = 150 kHz to fc = 450 kHz, as done for model CC-450-CN, reduces the oscillations
significantly and increases the overall accordance with the reference solution. However, the
contact time remains underestimated and the rebound height remains overestimated. For model
CC-150-AN additional master nodes are selected as per the AN-configuration and the cut-off
frequency is set to fc = 150 kHz. This model shows the best results of the three studied
variants. However, for all models constructed with Craig-Chang method the contact time is
underestimated and the rebound height is overestimated. All reduced order models studied show
spurious oscillations.
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Figure 4.10: Central force Fc (upper subfigure) and central gap height hc (lower subfigure) over time t . The results
are computed with Craig-Chang method based reduced order models (a) and Craig-Bampton method based reduced
order models (b). The results of the full model are plotted for comparison. The characteristics of the reduced order
models are summarized in Tab. 4.4.
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The Craig-Bampton method based models behave differently. Figure 4.10b shows the results of
reduced order models constructed using Craig-Bampton method. The contact force oscillations
of CB-150-CN are much less pronounced as compared to the respective Craig-Chang method
based model, see CC-150-CN in Fig. 4.10a. Increasing the cut-off frequency from fc = 150 kHz
to fc = 450 kHz, as done for model CB-450-CN, reduces the spurious oscillations and improves
the overall accordance with the reference solution. Introducing additional master nodes as per
the AN-configuration, while keeping the cut-off frequency at fc = 150 kHz, as done for model
CB-150-AN, reduces the accordance of the reduced order model with the full model. The
deteriorated accordance can be seen in the gap height during the flight phase. The accordance of
the results regarding contact time and rebound height is good for the Craig-Bampton method
based models. As for the Craig-Chang method based models, all reduced order models studied
show spurious oscillations, which decrease with increasing cut-off frequency.

Above observations show that increasing the cut-off frequency fc improves the model in both
reduction methods. This can be explained by the fact that the increase of the cut-off frequency fc
increases the information content of the normal mode matrix Φnm. The information content of
the constraint mode matrix Φcm remains unchanged. The increased number of normal modes
improves the approximation of the model’s dynamics and reduces the influence of the artificial
frequencies. Independent of the reduction method, increasing the cut-off frequency increases the
information content of the model and thereby improves the quality of the reduced order model.

Including additional master nodes increases the information content of the constraint mode
matrix Φcm. However, depending on the reduction method, including additional master nodes
has different implications on the normal mode matrix Φnm and on the overall result.

With the Craig-Chang method, the master nodes are unconstrained, i.e., free. Hence, the choice
of master nodes does not influence the normal modes. However, it increases the information
content of the constraint modes. Hence, for the Craig-Chang method, choosing additional master
nodes increases the overall information content of the reduced order model and thereby increases
its quality.

With the Craig-Bampton method the master nodes are fixed during normal mode extraction.
Therefore, the choice of master nodes influences the normal modes. For the given example
problem, additional master nodes are located on the horizontal bar of the T-geometry. These
additional nodes limit the dynamics of the geometry during modal analysis. As a result, less
information about the geometry’s dynamic behavior is captured by the normal modes. The
additional master nodes increase the information content of the constraint modes. However, for
the given example problem, the increased dynamics information content of the constraint modes
does not make up for the reduced dynamics information content of the normal modes. Hence,
the accordance of the results decreases for this example problem.

The choice of master nodes must be carried out with greater care for the Craig-Bampton method.
It must be considered what mode shapes are expected and what master nodes will be constrained

77



4 Results

or will come into contact during the application of the reduced order model. Hence, additional
knowledge of the problem is needed. Taking this into account, improved reduced order models
could be created with both methods by considering additional master nodes. Also, hybrid
methods could be developed where only a part of the master nodes is fixed for modal analysis.
However, these studies are out of the scope of this work.

The influence of an increased cut-off frequency or additional master nodes can also be seen in the
eigenfrequencies of the reduced order model. Figure 4.11 shows the eigenfrequencies of the full
model and the reduced order models. Figure 4.11a shows the results for Craig-Chang method
whereas Fig. 4.11b shows the results for Craig-Bampton method. Fewer differences between the
two reduction methods are observable concerning the eigenfrequencies. The eigenfrequencies of
the reduced order models are in good accordance with the full model until close to the respective
cut-off frequency. The eigenfrequencies diverge quickly for frequencies larger than the respective
cut-off frequency. In the AN-configuration, i.e., when additional master nodes are selected, the
eigenfrequencies diverge more slowly than in the CN-configuration. However, in all cases, the
accordance of the eigenfrequencies is bad for frequencies above the cut-off frequency.

In summary, the Craig-Bampton method based models yield superior results to the Craig-Chang
method based models. Especially, the contact time and the flight phase are better approximated by
Craig-Bampton method based models. This behavior can be explained by the better approximation
of the contact conditions by the fixed boundary conditions on the contact nodes. Hence, the
following studies are carried out with Craig-Bampton method based models.

Independent of the method, all reduced order models show spurious oscillations. The following
subsection investigates approaches to reduce these oscillations.

4.2.3 Study of artificial frequencies

The previous subsection investigates two different structural reduction methods. It concludes
that the Craig-Bampton method based models with master nodes selected according to the
CN-configuration shows good results for the given problem and will thus be used in the following.
However, spurious oscillations occur independently of the reduction method. The spurious
oscillations are introduced into the model by the constraint mode matrixΦcm. The constraint
modes are needed to approximate the static displacements in the contact region. The improved
modeling in the contact region, however, is accompanied by spurious oscillations in the temporal
domain, which are visible in the force curve, see Fig. 4.10. The spurious oscillations are caused
by artificial frequencies, which can be seen by the substantial rise of the eigenfrequencies above
the cut-off frequency, see Fig. 4.11. In order to obtain good results, the spurious oscillations
need to be reduced.
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Figure 4.11: Eigenfrequencies of the reduced order models constructed with Craig-Chang method (a) and constructed
with Craig-Bampton method (b) are compared with the eigenfrequencies of the full model. Until close to the respective
cut-off frequency, the eigenfrequencies of all cases are almost identical. The eigenfrequencies of the reduced order
models diverge quickly from the eigenfrequencies of the full model for frequencies above the respective cut-off
frequencies. From the divergence, the artificial frequencies are visible for both reduction approaches.

Section 3.3 discusses different approaches to reduce spurious oscillations. These approaches are
referred to as the damping approach and as the feedthrough approach.

• In the damping approach, the statically considered modes are damped to reduce their
dynamic influence. Here, modal damping is used. In this approach, the number of
dynamically considered modes ndc and the damping ratio ζ must be specified. These two
parameters must be carefully selected as they strongly influence the quality of the solution.

• In the feedthrough approach, the statically considered modes are not taken into account
in time integration. Their contribution is only considered statically in the displacement
computation, see Eq. (3.11). In this approach, no damping ratio needs to be prescribed.
This approach only depends on the number of dynamically considered modes ndc, which
strongly influences the quality of the results.

The following study examines the two approaches. In the first part of the study, the influence of
the approaches on the quality of the solution is examined. For this purpose, with the damping
approach, the number of dynamically considered modes ndc and the damping ratio ζ are varied.
With the feedthrough approach, only the number of dynamically considered modes ndc is varied.
In the second part of the study, the approaches are investigated concerning computational time.
Finally, two models with different cut-off frequencies fc are compared.

The first part of the study examines eight different cases. Six cases are using the damping approach
and two cases are using the feedthrough approach. The number of dynamically considered modes
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ndc is varied for both approaches. Since the constraint modes cause the spurious oscillations,
it stands to reason not to consider them dynamically. This means the number of dynamically
considered modes is given as the number of all modes nq minus the number of constraint modes
ncm, i.e., ndc = nq − ncm. For model CB-150-CN, this number is ndc = 13, see Tab. 4.4. For the
damping approach, the damping ratio ζ is varied as well. The spurious oscillations are more
pronounced for models with lower cut-off frequencies. Hence, in order to make the examined
effects more visible, this part of the study uses a model with cut-off frequency fc = 150 kHz,
i.e., CB-150-CN. Table 4.5 gives an overview of the cases studied.

The solutions of the reduced order models are computed with the Matlab implementation using
Alexander’s second-order method (A2) and fixed time step size Δt = 12 ns. The reference
solution is computed with the commercial finite element software Abaqus using HHT-TF time
integration with fixed time step size Δt = 6 ns.

Table 4.5: Overview of cases used to study the different approaches to reduce spurious oscillations. The models
referred to by the model ID are listed in Tab. 4.4. In the following figures the different cases are referred to by their
case ID.

case ID approach ζ ndc ncm nq model ID
D-0.5-13 damping 0.5 13 482 495 CB-150-CN
D-0.5-15 damping 0.5 15 482 495 CB-150-CN
D-0.5-20 damping 0.5 20 482 495 CB-150-CN

D-0.1-115 damping 0.1 15 482 495 CB-150-CN
D-0.5-15 damping 0.5 15 482 495 CB-150-CN
D-1.0-15 damping 1.0 15 482 495 CB-150-CN

FT-13 feedthrough N/A 13 482 495 CB-150-CN
FT-15 feedthrough N/A 15 482 495 CB-150-CN

FT-77 feedthrough N/A 77 482 559 CB-450-CN

Damping approach

Figures 4.12 and 4.13 show the results of the cases using the damping approach. Figure 4.12
shows the central force Fc (a) and central gap height hc (b) for various numbers of dynamically
considered modes ndc and a fixed damping ratio of ζ = 0.5. Likewise, Fig. 4.13 shows the
respective results for various damping ratios ζ and ndc = 15. In all cases, the results of the full
model are shown for comparison. The relative deviation relerr of the results of the reduced
order models from the full model is shown in the lower sub-plot. The relative deviation relerr
is computed using Eq. (A.4).
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Figure 4.12: Results of the damping approach for various numbers of dynamically considered modes ndc and a fixed
damping ratio of ζ = 0.5. The upper plots show the central force Fc (a) and central gap height hc (b) over time t and
the lower plots show the respective relative deviation of the reduced order model from the full model relerr Fc (a)
and relerr hc (b) over time t.

Varying the number of damped modes and the damping ratio yields the following behavior:

• Figure 4.12 shows the results for the variation of the number of dynamically considered
modes ndc. For a lower number of dynamically considered modes, see case D-0.5-13,
the accordance with the solution of the full model is not good. While the spurious
oscillations are reduced, the flight time as well as the rebound height are underestimated.
The underestimation of the flight time and rebound height results from a loss of energy
due to damping. This observation indicates that too many modes are damped with a too
large damping ratio. Increasing the number of dynamically considered modes to ndc = 15
improves the approximation of the dynamics of the system, see case D-0.5-15. However,
some oscillations in the central force Fc are introduced. These oscillations are damped
quickly by the large damping ratio. Increasing the number of considered modes further,
see case D-0.5-20, introduces further spurious oscillations and reduces the accordance.
With an increasing number of dynamically considered modes, the solution converges
towards the untreated solution. For model CB-150-CN, ndc = 15 yields the best results.

• Figure 4.13 shows the results for the variation of the damping ratio ζ . A damping ratio
of ζ = 0.1 introduces too little damping to reduce the spurious oscillations effectively,
see case D-0.1-15. Increasing the damping ratio to ζ = 0.5 reduces the oscillations
significantly and improves the accordance with the solution of the full model. A further
increase of the damping ratio to ζ = 1.0 yields no significant effect.
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Overall, the damping approach significantly decreases the spurious oscillations. The approach
yields better results when few additional modes corresponding to the constraint modes are
considered dynamically, i.e., ndc > nq − ncm. This observation can be explained by the fact
that the artificial modes are relevant to approximate the deformation in the contact zone. If
these modes are damped too much, the deformation speed is reduced strongly, which results in
nonphysical results, i.e., the observed underestimation of the flight time and the rebound height.
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Figure 4.13: Results of the damping approach for various damping ratios ζ and ndc = 15. The upper plots show the
central force Fc (a) and central gap height hc (b) over time t . The lower plots show the respective relative deviation
of the reduced order model from the full model relerr Fc (a) and relerr hc (b) over time t.

Feedthrough approach

Figure 4.14 shows the results obtained with the feedthrough approach. For case FT-13, good
accordance with the full model is observed. The contact time, as well as the rebound height,
are well approximated with ndc = 13. This observation can be explained by the fact that the
artificial modes are not damped in the feedthrough approach. The artificial modes are simply not
considered dynamically. However, their static influence is taken into account.

For an increased number of dynamically considered modes, i.e., ndc = 15, strong oscillations
occur, see FT-15. These oscillations are observable for both the central force Fc and the central
gap height hc, see Fig. 4.14. The amplitude of the oscillations remains almost constant over
the entire contact time. This behavior is expected because no damping is prescribed to the
system. It can be seen that considering artificial modes dynamically without damping leads to
strong oscillations.
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The feedthrough approach yields better results when no artificial modes are considered
dynamically. Therefore, no parameter selection is necessary for the feedthrough approach. The
number of dynamically considered modes can be selected according to the formula ndc = nq−ncm.
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Figure 4.14: Results of the feedthrough approach. The upper plots show the central force Fc (a) and central gap
height hc (b) over time t . The lower plots show the respective relative deviation of the reduced order model from the
full model relerr Fc (a) and relerr hc (b) over time t.

Computational time

The study above focuses on aspects regarding solution quality. Another advantage of the
feedthrough approach results from the reduced number of the state equations involved in time
integration, see Eq. (3.11b). In the feedthrough approach, only ndc variables are considered
during time integration, which reduces the number of states from nq to ndc. This reduction
of states reduces the computational time of the linear structural model. Especially for linear
systems, the time savings are significant.3

Here, for the nonlinear coupled problem, most of the computational time is used to solve the
nonlinear system of equations. Therefore the time savings of the feedthrough approach for the
given problem are moderate. For the example problem, the feedthrough approach needs about
83 % of the computational time of the damping approach.4 When focusing on the linear part
of the model, i.e., the structural model, the time savings are more pronounced. Relative to the

3The student work [S4] gives a more detailed analysis regarding the computational time in a linear system.
4The relative values are based on the average computational times of the models considered in this subsection.
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total computational time with the damping approach, the structural model requires 10 % of the
computational time with the damping approach and only 4 % with the feedthrough approach.

These savings do not only result from the faster solution of the linear structural model. Further
time savings of the feedthrough approach are based on the fact that the artificial high-frequency
modes are neglected dynamically. As a result, fewer oscillations occur and thus, fewer iterations
are required for convergence.

Overall, the feedthrough approach shows better computational characteristics.

Summary

An advantage of the damping approach is that it can be implemented relatively easy using modal
damping. However, it has the disadvantage that the artificial modes are considered dynamically.
Therefore, two parameters must be determined: ndc and ζ . For the choice of ndc, it has proven
itself helpful to consider some artificial modes dynamically, i.e., to choose ndc > nq − ncm. When
selecting the damping ratio, the choice of ζ = 0.5 proved to be sufficiently large.

The feedthrough approach has the advantage that the artificial modes are not considered
dynamically and no parameter selection is necessary. However, because the structure of the
system is not preserved, the implementation in commercial solvers is difficult.

The feedthrough approach has advantages over the damping approach in terms of computational
time. The lower computational time is due to the fact that fewer degrees of freedom and less
highly dynamic frequencies are taken into account in the time integration.

In summary, both approaches significantly reduce spurious oscillations compared to the untreated
model, see Fig. 4.10. The advantages of the feedthrough approach prevail for the given problem.

Independent of the approach, the higher frequency dynamics of the system are not well
approximated for the cases studied above, i.e., the cases with a cut-off frequency of fc = 150 kHz.
The inferior approximation results from a too low cut-off frequency fc of the model CB-150-CN.
Figure 4.15 shows the results of models CB-150-CN and CB-450-CN using the feedthrough
approach. The model with the higher cut-off frequency of fc = 450 kHz approximates the
dynamic behavior of the force better. A further increase in the cut-off frequency does not further
improve the accordance. Hence, in the following studies in this section, the model CB-450-CN
combined with the feedthrough approach is used.
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Figure 4.15: Results computed with the feedthrough approach for two reduced order models with different cut-off
frequencies fc = 150 kHz and fc = 450 kHz. Since the cut-off frequency is higher, also more modes are considered
dynamically, i.e., FT-13 and FT-77. The upper plots show the central force Fc (a) and central gap height hc (b)
over time t. The lower plots show the respective relative deviation of the reduced order model from the full model
relerr Fc (a) and relerr hc (b) over time t.

4.2.4 Time integration of the structural dynamics model

This work proposes the use of SDIRK methods for the fluid part as well as the structural part
of the coupled problem. Section 4.1 investigated different time integration methods for the
conventional EHD contact model and concluded that SDIRK methods are suitable to be used for
the conventional EHD contact problem. As the extended EHD contact model captures further
structural dynamic effects, it needs to be investigated whether the proposed time integration
methods are suitable for the extended EHD contact model as well.

First, a brief overview of typical time integration methods in the field of structural dynamics
is given, highlighting potential challenges. Thereafter, the application of SDIRK methods for
problems in structural dynamics is addressed.

Conventionally used time integration methods

The Newmark β-method with the parameters γ = 0.5 and β = 0.25 is a popular implicit time
integration method for structural dynamics problems. It is second-order accurate and does not
dissipate energy. However, for contact problems, spurious high-frequency oscillations can be
observed, see [29].
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To reduce these oscillations, numerical dissipation is introduced into the Newmark β-method by
setting γ > 0.5. The introduction of dissipation commonly results in the loss of second-order
accuracy. This loss of order motivated further research to identify and develop better suited time
integration methods for structural dynamics, see [8, 49]. In this field, the Hilber-Hughes-Taylor
method [71] and the generalized-α method [23] have evolved to become quite popular. These
methods require the choice of parameters to adjust their properties for a given problem. An
improper choice of parameters may result in divergence of the solution procedure.

Czekanski et al. [29] identified a set of optimal parameters for elastodynamic contact problems
for the generalized-α method, with the goal to avoid high-frequency modes without dissipating
energy. Based on these suggestions the parameters were adjusted to α = −0.05, β = 0.275625
and γ = 0.55 for use with the HHT method [30]. This combination will be referred to as HHT-TF
method throughout this work.

To illustrate the influence of time integration methods on the convergence behavior and solution
quality, the example problem is solved with three different time integration methods. The
methods compared are the Backward Euler method, the Newmark β-method with parameters
γ = 0.5 and β = 0.25 and the HHT-TF method as described above.

The same problem parameters as in Subsection 4.2.1 are selected. The initial speed is set to be
v0 = 1 m/s and a constant time increment of Δt = 60 ns is chosen. The problem is solved using
the commercial finite element software Abaqus.

Figure 4.16 shows the central force Fc (a) and central gap height hc (b) resulting from the
different time integration methods. The relative deviation relerr of the compared method from
the HHT-TF method is shown in the lower sub-plot. The relative deviation relerr is computed
using Eq. (A.4).

The NM method is unstable for the given problem, since oscillations occur that increase until
the algorithm no longer converges for t > 25 μs. The Backward Euler method (BE1) introduces
excessive damping, which is visible by the reduced rebound height. The HHT-TF method yields
good results. These results show the influence of the time integration method and highlight the
potential consequences of inappropriate parameter selections.

SDIRK methods for problems in structural dynamics

Owren and Simonsen [103] study the use of SDIRK methods for problems in structural dynamics.
Owren and Simonsen compare different SDIRK methods with the HHT method and conclude
that the presented SDIRK methods are comparable or superior with respect to stability properties,
relative period error and numerical cost. Additionally, they show better damping properties and
allow for higher order accuracy, even in the case of a variable time step size. A further advantage
is the possibility of error control through embedded methods, which is addressed in Section 2.4.
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The study by Owren and Simonsen [103] investigates the methods in detail. In the scope of this
work, only the convergence behavior is investigated, as it ensures the proper implementation
and functionality of the methods. First, SDIRK methods, see Tab. 2.3, are applied to solve
the equation of a simple harmonic oscillator. Thereafter, Alexander’s second-order method is
examined for the dry contact problem discussed above.
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Figure 4.16: Results of the example problem with different time integration methods: Backward Euler method (BE1),
the Newmark β-method (NM) and the Hilber-Hughes-Taylor method (HHT-TF). The upper plots show the central
force Fc (a) and central gap height hc (b) over time t. The lower plots show the respective relative deviation of the
reduced order model from the reference solution relerr Fc (a) and relerr hc (b) over time t.

Convergence order study: simple harmonic oscillator

The simple harmonic oscillator is a classical mechanics problem, for which analytical solutions
exist. Since an analytical solution exists, it is particularly suitable for the investigation of temporal
integration errors. The movement of a harmonic oscillator is described by

m �u (t) + ku (t) = 0, (4.3)

with the initial conditions u (0) = 1 m and 	u (0) = 0 m/s, the analytical solution is

uref (t) =A cos(ω0t), (4.4)

with the amplitude A = 1 m and the eigenfrequency ω0 =
√

k/m, where the stiffness k and the
mass m are chosen to yield ω0 = 2π 1/s.
Studying the convergence rate of a time integration method is helpful to see whether a method is
functioning correctly for a given problem. Additionally, it is helpful in the context of this work
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since the adaptive time stepping algorithm is based on the convergence order of the method, see
Subsection 2.4.2. For the convergence orderstudy,Eq. (4.3) is solvedwithdifferent time integration
schemes and different time step sizes. Subsequently, the maximum absolute deviation err u

max of
the results from the analytical reference solution is computed using Eq. (A.3). The following
study examines the backward Euler method (BE1), Alexander’s second-order method (A2) and
Hairer and Wanner’s fourth order scheme (HW4), which is described in Tab. 2.3. The problem
is solved for ten periods with fixed time step sizes Δt = {0.02 s, 0.01 s, 0.005 s, 0.0025 s}.
Figure 4.17a shows the deviation err u

max of each solution from the reference solution for the
respective time step size Δt. The slope of the dashed line gives the theoretical convergence
order of the respective method. The backward Euler method (BE1) does not reach its theoretical
first order of convergence. This order degeneration results from its time step size dependent
damping properties. However, A2 reaches its second order and HW4 reaches its fourth order.
These results indicate the proper implementation of the time integration methods and support
the results of [103] that SDIRK methods are suitable for structural dynamics problems.

Convergence order study: dry contact problem

The behavior of Alexander’s second-order method for the fluid part of the problem is investigated
in Section 4.1. In the following, the convergence behavior of the method for the structural
dynamics part is examined. To this end, the dry contact problem is integrated in time using two
different methods: the backward Euler method (BE1) and Alexander’s second-order method (A2).
The problem is solved with fixed time step sizes Δt = {240 ns, 120 ns, 60 ns, 24 ns}. No
analytical solution is given for this problem. Hence, a reference solution is computed numerically
with a higher order scheme and a small time step size. The reference solution is computed using
Hairer and Wanner’s fourth order scheme (HW4) and a fixed time step size of Δt = 6 ns. Hairer
and Wanner’s fourth order scheme is described in Tab. 2.3. As for the simple harmonic oscillator,
the maximum absolute deviation err h

max from the reference solution is computed using Eq. (A.3).
The problem parameters are given in Subsection 4.2.1. The initial impact velocity is set to
v0 = 1 m/s. The reduced order model CB-450-CN using the feedthrough approach is used as the
structural dynamics model, see Subsections 4.2.2 and 4.2.3.

Figure 4.17b shows the resulting deviation err h
max for each step size Δt. The slope of the

dashed line indicates the theoretical convergence order of the respective method. As above, the
damping of the Backward Euler method (BE1) leads to a degeneration of the convergence order.
Alexander’s second-order method (A2) reaches its theoretical second order. This result indicates
a proper implementation and functioning of Alexander’s second-order method for the given
problem. These findings combined with the results of the studies of [103] suggest the suitability
of SDIRK methods for the structural dynamics part of the EHD contact problem.
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Figure 4.17: For each time step size and time integration method the deviation errmax of the computed results
from the reference solution is plotted over the step size Δt. The slope of the dashed line indicates the theoretical
convergence order of the respective method.

4.3 The lubricated impact problem

When two bodies, which are separated by a lubricant, approach each other, high local fluid
pressures arise in the contact area. Christensen [21] was the first to present theoretical and
experimental studies of this problem in the field of lubricated contacts. His studies focused on
the pressure build up as the surfaces approach each other. A constant approach velocity was
assumed and the equation of motion was not solved. Dowson and Wang [38] and at around the
same time Larsson and Höglund [85] were the first to generate a numerical solution for the
impact and rebound of a sphere from a lubricated plate. These studies use the equation of motion
of a point mass to compute the position of the sphere. In further studies, various other effects
were investigated, see, e.g., [52, 82, 130]. However, to the author’s knowledge, no extensions of
the structural model have been proposed, which would enable the simulation of EHD contacts of
complex bodies.

While the previous two sections investigated the fluid and the structural model in an isolated
manner, this section investigates the completeextended EHD contact model. In this context,
the solution procedure is applied to different example problems—all being variations of the
axisymmetric lubricated impact problem.

First, a comparison against results from the literature is carried out to validate the extended
model. In the scope of this comparison, aspects of the lubricated impact problem are highlighted.
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The second subsection illustrates the influence of the solid’s dynamic effects on the contact
behavior. To this end, a valve-like geometry is examined. Through the variation of its material
properties, differences to the conventional EHD contact model are highlighted.

The third subsection examines numerical aspects of the solution procedure. It investigates
the influence of the coupling procedure on the spatial convergence order and discusses the
computational cost based on the example problem.

While the example problems in the first three subsections deal with a single impact-rebound
process, the final example problem studies the event of multiple successive impacts. To speed up
the computation of multiple impact-rebound processes, model order reduction techniques are
applied to the nonlinear coupled problem. In addition, techniques to reduce the effort involved in
creating the reduced order model are proposed.

4.3.1 The impact of a sphere on a lubricated plate

The impact of a sphere on a lubricated plate is a typical example problem in the field of lubricated
contacts. Experimental results by Safa and Gohar [114] as well as numerical results by Larsson
and Höglund [85] are available for this problem. The availability of literature results make this
problem setup suitable to be used for the validation of the extended EHD contact model.

In the following, the problem setup is outlined. Thereafter, the problem is solved with the
extended EHD contact model and the impact-rebound process is discussed. Finally, the proper
functioning of the extended EHD contact model is validated by comparison with literature results.

Table 4.6: Parameters of the axisymmetric lubricated impact problem based on the experimental setup of [114].

parameter Rred v0 h0 E ′ m0 η0 αη
unit mm m/s μm GPa kg Pa·s 1/GPa

value 12.7 0.313 30 112.8 0.066 0.48 20

Problem setup

The same parameters as in the experimental study by Safa and Gohar [114] are used here.
Figure 4.18 shows the problem setup. The steel sphere approaches the lubricated glass plate
with the initial velocity v0. It is accelerated by gravity with g = 9.81 m/s2, which, however,
has a negligible influence on the contact force. The lubricant is modeled as compressible,
see Eq. (2.10), and the pressure dependent viscosity variation is described by Roelands’ model,
see Eq. (2.9). Table 4.6 summarizes the parameters of the problem setup.

90



4.3 The lubricated impact problem

v0

Figure 4.18: Schematic of the axisymmetric lubricated impact problem. The sphere moves with initial velocity
v0 = 0.313 m/s from the initial height h0 = 30 μm towards the plate.

The sphere has a radius of R = 12.7 mm and its material properties are E2 = 210 GPa, ν2 = 0.3,
and ρ2 = 7692.1 kg/m3. The glass disk has a diameter of 150 mm and is 12.7 mm thick. The
material properties of the plate are E1 = 70 GPa, ν1 = 0.25, and ρ1 = 2500 kg/m3. The bodies
are modeled in the commercial finite element software Abaqus using quadratic axisymmetric
elements. The sphere is unconstrained and the plate is fixed at the bottom. Craig-Bampton
method is used to construct a reduced order model with a cut-off frequency of fc = 150 kHz and
301 nodes in the contact region (from 0 mm to 1.2 mm). The cut-off frequency of fc = 150 kHz
is sufficient in this case since the upper body is a sphere and the lower body a fixed plate. The
computational domain is defined as 0 ≤ X ≤ 3.1 and is divided into 502 intervals, using the grid
ratio iGR = 0.6, see Section 3.5. Alexander’s second-order method is used for time integration
with adaptive step size selection.5

The impact-rebound process

Figure 4.19 shows the pressure (thick line) and the gap height (thin line) in the contact region at
different time steps during the impact phase (upper row) and the rebound phase (lower row). As
the sphere moves towards the plate, the gap height decreases and the pressure increases due to
the squeeze term. The viscosity increases exponentially with increasing pressure. The viscosity
increases so much that it enters the piezoviscous regime and the lubricant hardly flows. While
the sphere continues to move towards the plate, the central gap height hc remains almost constant
and the sphere deforms around the solidified lubricant. A dimple forms and the minimum gap
height hmin shifts to the periphery of the contact area where the lubricant is still flowing. The

5The adaptive time stepping uses the step size control (2.80) with absolute and relative tolerances ε
p
a = 1 MPa,

εua = 0.1 nm, εqa = 0.01, and εr = 1 · 10−4, for pressure, displacement and rigid body modes, respectively.
Furthermore, the parameters fmin = 0.25, fmax = 2, and fsafety = 0.6 are used.
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deviation between minimum gap height hmin and central gap height hc is visible in Fig. 4.20b.
The central gap height hc remains almost constant for most of the impact-rebound process.

When the sphere starts to rebound from the plate, the pressure initially decreases in the outer
contact area and the high pressure area becomes smaller. Pressure peaks form in the outer
contact area and move towards the center. During this phase, the maximum pressure pmax is no
longer in the center of the contact, but in the outer contact area. As the sphere leaves the plate,
the outer pressure peaks merge at the contact’s center, forming a second central pressure peak,
see Fig. 4.20a.

Figure 4.19: Temporal evolution of the pressure (thick line) and the gap height (thin line) spatially resolved in the
contact region. The upper row shows the impact phase and the lower row shows the rebound phase.

The lubricated impact problem is strongly influenced by the transition of the lubricant into the
piezoviscous regime, i.e., the point when the lubricant solidifies and stops flowing. The transition
point is significantly influenced by the pressure-viscosity-coefficient αη and by the approach
velocity v0. Hence, these two parameters—among others—strongly influence the characteristics
of the lubricated impact problem. A variation of the pressure-viscosity-coefficient αη influences
the central gap height, the pressure distribution and the characteristics of the pressure peaks. A
larger pressure-viscosity-coefficient results in a larger central gap height and larger pressure
peaks. Similarly, an increase in the approach velocity v0 leads to a faster build-up of pressure
and thus to a faster solidification of the lubricant and consequently to a larger central gap
height. The understanding of these relations is vital to gain an understanding of the lubricated
impact problem. Summing up, the viscosity strongly influences the problem’s characteristics.
The works [52, 81, 125, 129, 130] give further insights into the lubricated impact problem.
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Figure 4.20: Gap height and pressure at discrete locations over time.

Comparison with literature results

The above results are computed with the extended EHD contact model. In addition, experimental
results from Safa and Gohar [114] and numerical results from Larsson and Höglund [85] exist.
To validate the proper functioning of the proposed solution procedure and model, the current
results are compared with literature results.
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Figure 4.21: Central pressure pc over time t . The results of the developed extended EHD contact model (S-70-210,
see Tab. 4.7) are compared with numerical results [85] and experimental results [114].
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Figure 4.21 shows three different central pressure traces. The overall accordance is good, which
validates the proper functioning of the extended EHD contact model. However, there is a slight
difference between all three results.

The deviation from the experimental results from Safa and Gohar is caused by multiple factors.
One part of the deviation results from the experimental and measurement setup while another
part results from an insufficient physical model of the EHD contact.

The deviation from the numerical results from Larsson and Höglund is likely due to two reasons:
the different numerical techniques and the different structural model, which are used in the
presented procedure.

The higher pressure peak in the current results can be explained by the smaller time step size
resulting from the adaptive time stepping scheme. Larsson and Höglund [85] use a fixed time
step size of Δt = 1 μs and Backward Euler time integration. Here, an adaptive time stepping
scheme is used. Figure 4.22 shows the step size Δtj over time t. The step size control reduces
the step size during the rebound, thus, approximating the pressure peak in greater detail.
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Figure 4.22: Time step size Δtj of the current model (S-70-210) and of [85]. During the early impact phase, a large
step size Δtj is sufficient to approximate the pressure build up and motion of the sphere. During the rebound phase,
pressure peaks move through the contact, see Fig. 4.19, and the step size is reduced significantly to capture these.
After the rebound (at around 236 μm), the sphere flies freely and the step size increases rapidly.

The extended structural model used in the extended EHD contact model also leads to differences.
Larsson and Höglund approximate the deformation with an elastic half-space approach and
dynamic effects are solely considered by multiplying the sphere’s mass with the acceleration
acting on its center of gravity. This structural model will be referred to as the conventional
structural model. It is summarized in Appendix B. It does not consider further structural inertia
effects of the bodies.
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Despite the neglection of dynamic effects, the results of the conventional structural model are in
good accordance with the experimental results. This good accordance can be explained by the
fact that the impacting body is a sphere with a large Young’s modulus. For such compact bodies,
a simple structural model is usually sufficient, see [46, 121]. However, the model is no longer
sufficient if complex geometries need to be considered.

4.3.2 The impact of a valve-like geometry on a lubricated plate

Problems with compact bodies can be studied adequately using the conventional EHD contact
model. For more complex non-compact geometries, however, the conventional model does
not yield useful results, since it neglects the structural dynamic behavior of the bodies. This
characteristic limits the applicability of the conventional EHD contact model.

The following study investigates the axisymmetric lubricated impact problem of a valve-like
geometry. To construct different setups, the material properties of the lower and upper body are
varied. However, the reduced material properties, i.e., E ′, Rred, and m0, are the same in all setups.
The behavior of the different setups is investigated using the extended EHD contact model.

v0

Figure 4.23: Exemplary drawing of the impact of the axisymmetric T-geometry on a lubricated plate. The T-geometry
moves with initial velocity v0 = 0.313 m/s from the initial height h0 = 30 μm towards the plate.

Problem setup

Figure 4.23 shows the problem setup. The geometry of the upper body is motivated by the shape
of a valve needle as it can be found in injectors. The T-geometry is designed such that it has the
same volume as the sphere in the example problem above, see Subsection 4.3.1. It is shaped
spherically in the contact area, such that the problem setup has the same reduced radius Rred,
see Eq. (2.18), as in the example problem above. Also, the plate has the same dimensions as
above. The density of both bodies is chosen as in the example problem above, such that the
upper body has the same mass m0. Finally, also the elastic material properties are chosen such
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that they give the same resulting Young’s modulus E ′, see Eq. (2.17), as in the example problem
above. However, the combination of the elastic material properties of the lower and upper body
is different.

Three additional setups are created in which the combination of the elastic material properties
of the lower and upper body is varied.6 The elastic material properties of the setups are given
in Tab. 4.7. The fluid parameters are the same as in the example problem above. Hence, all
parameters influencing the conventional EHD contact model are the same as in Subsection 4.3.1.
Only the shape and elastic material properties of the bodies differ. Note that, if the four setups
were computed with the conventional structural model, all setups would yield the same results
as for the sphere on plate example problem.

Table 4.7: Elastic properties of the different setups. E1 and ν1 refer to the lower body (plate) whereas E2 and ν2
refer to the upper body. In the first three setups the upper body is the T-geometry, therefore, the setup ID starts with T.
In the fourth setup the upper body is a sphere, hence, the setup ID starts with S. The fourth setup is the same setup
as in Subsection 4.3.1. Note that, the reduced material properties are the same in all setups, i.e., E′ = 112.8 GPa,
Rred = 12.7 mm, and m0 = 0.066 kg.

setup ID E1 ν1 E2 ν2
T-70-210 70 GPa 0.25 210 GPa 0.3
T-103-103 102.7 GPa 0.3 102.7 GPa 0.3
T-210-70 210 GPa 0.3 70 GPa 0.25
S-70-210 70 GPa 0.25 210 GPa 0.3

Results

Figure 4.24 shows the central pressure pc (a) and central gap height hc (b) over time t for the four
different setups, see Tab. 4.7. The results are computed using the extended EHD contact model.
All setups have the same reduced parameters, see Tab. 4.7. The figures show differences between
the results for the sphere (S-70-210) and the three T-geometry setups. The different behavior of
the T-geometry in the contact region results from its dynamic characteristics outside the contact
region. The deformations of the horizontal bar of the T-geometry influence the contact force
over time. With increasing flexibility of the body, this effect becomes more pronounced, i.e.,
with increasing flexibility of the T-geometry, the contact time increases. Additionally, small
oscillations can be observed. The oscillations result from the vibrations excited by the rapid
force increase during the deceleration. After the rebound, the T-geometry continues to vibrate,
which can be observed for setup T-70-210 in Fig. 4.24b.

Since the conventional structural model neither takes into account non-local deformations nor
oscillation behavior of the bodies, the conventional structural model gives the same result for all

6The setups are created in the finite element software Abaqus using the same approach as in Subsection 4.3.1.
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considered setups. The extended structural model, on the other hand, takes these effects into
account. Therefore, the extended structural model can also be used for applications with more
complex geometries, such as valves.
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Figure 4.24: Central pressure pc (a) and central gap height hc (b) over time t. Table 4.7 lists the elastic material
properties of the four setups.

4.3.3 Remarks on the solution procedure

The extended EHD contact model considers further effects compared to the conventional EHD
contact model. However, an extension of the modeling is usually accompanied by an increase in
the computational cost. Additionally, here, a fluid-structure coupling is introduced to connect the
domains. The solution procedure, developed throughout this work, aims to keep the additional
computational effort as low as possible. This procedure is explained in Chapter 3 and examined
throughout this chapter. In the following, two aspects of the solution procedure are highlighted:
the coupling procedure and the additional computational effort needed for the given problem.

Coupling procedure

To obtain the extended structural model, the elastic bodies are first discretized using finite
elements. Reduced order models are created from the finite element models. The reduced order
models approximate the body’s behavior at the nodes in the contact region. These nodes form the
structure grid. The fluid equations are solved on a different grid. These grids are not necessarily
equal, thus, three different grids may exist. The displacements of the bodies are given on the
structure grids and the pressures are given on the fluid grid. To solve the coupled problem,
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the physical quantities of the different domains must be connected. Section 3.5 explains the
coupling procedure.

Table 4.8: Studied grid combinations. nS [1] and nS [2] give the number of structure nodes of the lower and upper
body, respectively. nF gives the resulting number of fluid nodes, depending on the prescribed grid ratio iGR.

case ID nS [1] nS[2] nF (iGR = 1) nF (iGR = 0.6)
1 131 151 153 253
2 281 301 303 503
3 541 601 603 1005
4 801 801 - 1339

The coupling procedure is constructed in such a way that it supports elements with quadratic shape
functions. The fluid equations are discretized with second-order finite differences. This study
examines whether the spatial order of the discretization schemes is maintained after coupling.

To study the spatial convergence order of the coupled problem, finite element models with
different discretizations in the contact region are created. Based on the structure grids, the
respective fluid grid is constructed according to Eq. (3.26) using the grid ratio iGR. Table 4.8
lists the number of nodes in the contact region for the studied structure grids and the respective
fluid grid with iGR = 1 and iGR = 0.6. In all cases, the lubricated impact problem of the sphere
is solved using a constant time step size of Δt = 50 ns and Alexander’s second-order method for
time integration. The solution of case 4 is used as the reference.

The deviation errmax of the solution from the reference solution is computed for the impact
phase, i.e., t < 165 μs. Only the impact phase is investigated, since, during the rebound phase,
independent of the coupling, the second order is not achieved due to the grid dependent pressure
peaks. The deviation errmax is computed using Eq. (A.3).

Figure 4.25 shows the decreasing deviation errmax with increasing number of fluid nodes nF.
The dashed line indicates an error decay of second order. The computed deviations are in close
agreement with the theoretical error decay. It can be concluded that the error introduced by the
coupling procedure is small. Furthermore, it can be concluded that the coupling procedure can
maintain the order of the spatial discretization scheme.

Computational efficiency

Chapter 3 presents measures to keep the additional computational effort for the extended
model low. It is difficult to make a general statement regarding the required computational
cost, however, since it depends, among other things, on the discretization, number of modes,
number of iterations, the programming language and efficiency of the implementation. However,
in the following the computational cost of the extended EHD contact model for the sphere on
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lubricated plate example problem is examined. In this example problem, the system consists of
503 fluid nodes, 301 upper body nodes, 3 upper body modes, 281 lower body nodes, and 83
lower body modes. For comparison, the same problem with the same number of fluid nodes is
computed using the conventional structural model. The extended structural model needs about
8 % more computational effort compared to the conventional structural model.

This result shows, that the proposed solution procedure, as presented in Chapter 3 and studied
throughout this chapter, minimizes the additional effort introduced by the extended structural
model. Independent of the modeling approach, for some applications, a further reduction of the
whole coupled problem can be useful. The application of a further model order reduction to the
whole coupled problem is studied in the following.
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Figure 4.25: Investigation of the spatial convergence order after the coupling for the central pressure pc (a) and for
the central gap height hc (b).

4.3.4 Efficient computation of multiple impacts

Lubricated contact simulations can be used to estimate the wear of components. To this
end, similar processes are successively simulated multiple times. These simulations are often
time-consuming. Model order reduction (MOR) techniques can be applied in order to reduce the
computational effort needed to compute similar processes.

Maier [93] applied MOR techniques to the EHD contact problem for entraining motion contacts.
The whole system of equations was reduced, i.e., both the nonlinear fluid model and the linear
structural model. In the following, MOR techniques are applied to the extended EHD contact
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model in order to reduce the computational effort of the lubricated impact problem. Section 3.7
discusses the reduction procedure.

In this work, the fundamentals of the reduction procedure as given in [93] are used. However,
some extensions are made in order to improve efficiency:

• Adaptive ROM construction: To minimize the offline phase of the MOR procedure, the
ROMs are constructed during the solution process from already computed solutions.

• Local ROMs: Amsallem et al. [2] presented a MOR approach using local reduced bases.
In this work, a similar procedure is introduced to the lubricated impact problem using
the extended EHD contact model. To this end, different local ROMs are computed for
different parts of the transient solution.

The reduction procedure is applied to speed up the computation of multiple successive impacts.
The computations are carried out with the extended EHD contact model. The effectiveness of
the reduction procedure is examined on the basis of computational time and accuracy.

Adaptive reduced order model construction

To construct a ROM, computational effort is required. The construction process for nonlinear
models usually consists of two steps. First, training solutions are computed. It is essential to
choose the training solutions such that they contain enough information to cover the desired
parameter space. Frequently, for example, parameter variations are carried out in the desired
parameter room. Second, the ROM is constructed from the training solutions as outlined
in Section 3.7.

The time needed to compute the training solutions and to construct the ROM is referred to as
offline time. The time it takes to compute the problem with the ROM is called online time.
A prior investment of offline time is necessary to benefit later from the shorter online time.
Depending on the effort to compute the training solutions, this time investment can become large.
Therefore, before creating a ROM, it must be ensured that the application of MOR techniques is
helpful for the given problem.

Here, the problem of multiple lubricated impacts is studied. This problem motivates the idea to
use solutions that need to be computed in any case as training solutions for the ROM. Hence, a
procedure is proposed which automatically constructs a ROM from the solutions computed so
far and, if possible, uses the ROM in the further solution process.

To ensure a certain quality of the ROM solution, an error estimate is computed in each time step.
Here, the root mean square of the residuum of the nonlinear function, see Eq. (3.48), is used as
an error estimate, i.e., errROM = rms

(
fp

)
. If the error estimate errROM exceeds a predefined

tolerance tolROM, a full system solution is computed for that time step. This procedure ensures a
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certain solution quality while introducing little additional computational time. The flowchart in
Fig. 4.27 outlines this procedure.
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Figure 4.26: Temporal evolution of the pressure (thick line) and the gap height (thin line) in the contact region,
during the phases of the impact-rebound process. The similarity of pressure and gap height solution snapshots
throughout the entire process (a) is rather low. By dividing the process into a flight phase (b), impact phase (c), and
rebound phase (d), a greater similarity is visible.
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Figure 4.27: Outline of adaptive-local ROM computing procedure.

102



4.3 The lubricated impact problem

Local reduced order models

Commonly, MOR procedures use one global ROM for the entire solution process. The size
and quality of a ROM depend on the similarity of the solutions, which are used to construct
the ROM. Increasing the similarity of the solutions may yield a reduction of the dimension of
the ROM while maintaining the same accuracy. The similarity can be increased by identifying
resembling phases in the solution process and creating specific ROMs for these phases.

The temporal evolution of the lubricated impact problem can be split into three phases: the flight
phase, the impact phase, and the rebound phase. Figure 4.26 shows the solution traces of the
pressure and the gap height at different times during one impact-rebound process (Fig. 4.26a) and
during the three different phases, see Figs. 4.26b through 4.26d. The similarity of the solutions is
higher during the individual phases as compared to during the complete impact-rebound process.

The similarity of the solutions can also be examined by observing the decay of the loss value.
The loss value is used as an indicator of the information content of a ROM. It is computed
according to Eq. (3.60). A steep decay of the loss value indicates a similarity of the solutions. In
this case, few degrees of freedom of the ROM suffice to approximate the solution.
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Figure 4.28: Loss value l(k) over system size k for the pressure (a) and for the gap height (b). The different decay
rate of the loss value in the different phases indicates the difference in the similarity of the solutions in the different
phases. A steeper decay typically results in a smaller system size.

Figure 4.28 shows the loss value l(k) over the system size k for the complete impact-rebound
process and the different phases. For the impact phase and the flight phase, the loss value decays
rapidly. The rapid decay indicates a high similarity of the solutions. Hence, a ROM with only a
few degrees of freedom can cover this phase of the problem.
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The loss value of the rebound phase and that of the complete impact-rebound process decays
slowly. Hence, more degrees of freedom are needed to capture relevant information. The lower
similarity of solutions in this phase can be explained by the pressure spikes moving through the
contact region. Overall, the observations show that a small ROM would suffice to describe the
impact and flight phase and a large ROM is needed to describe the impact-rebound phase.

Generating a single ROM for the complete process would require a large system size. However,
most of the information content of such a ROM would only be required for the rebound phase.
The rebound phase accounts for less than half of the process. For this reason, local ROMs are
introduced here. The application of local ROMs enables the use of smaller ROMs for different
parts of the solution process.

Example problem

The problem of a sphere impacting a lubricated plate is investigated. The same problem setup as
in Subsection 4.3.1 is used. To accelerate the event of multiple impacts, the vertical acceleration
acting on the sphere is increased to av = 757.58 m/s2, which is equivalent to a load of 50 N
acting vertically on the sphere. Due to the short contact time and the large contact force, this
acceleration has a negligible influence on the contact behavior. However, since it acts on the
body during the flight phase, it accelerates the event of multiple impacts. The simulated time
interval is chosen to be 0 μs ≤ t ≤ 4000 μs. This interval is large enough to observe multiple
impacts. The ROMs are computed after tred = 250 μs, which is approximately the duration of
the first complete impact-rebound process. Two local ROMs are constructed: one for the flight
phase, i.e., max (P) ≤ 0.2, and one for the impact and rebound phase, i.e., max (P) > 0.2.7 The
maximum tolerable loss value is chosen to be lmax = 1 · 10−7. This value yields a system size
for the local ROM approach of ñz = 34 in the flight phase and of ñz = 319 in the impact and
rebound phase. The global ROM has a system size of ñz = 316 and the unreduced reference
model has a system size of nz = 1004. This clearly shows the lower number of degrees of
freedom resulting from the reduction procedure. The tolerance criterion is set to tolROM = 1.

Figure 4.29 compares the central pressure pc and central gap height hc obtained with the
adaptive-local ROM to the unreduced reference solution.

7Using three local ROMs was also investigated. However, at the transition point from the impact to rebound phase a
jump in the solution occurred due to the different information content of the local ROMs. This jump introduced
oscillations in the dynamic problem yielding more rejected solutions and a longer overall computational time
compared to using only two local ROMs.
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Figure 4.29: The upper plots show the central pressure pc (a) and central gap height hc (b) over the time t. The
lower plots show the respective absolute deviation of the reduced order model from the full model err pc

abs (a) and
err hc

abs (b) over the time t .

For the central pressure pc, the absolute deviation is computed as

err p
abs(t) = pref

c (t) − pROM
c (t) ,

and for the central gap height hc, the relative deviation is computed as

err p
rel(t) =

href
c (t) − hROM

c (t)
href

c (t) .
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Table 4.9: This table lists the relative computational time, system size ñz , and number of evaluation points Ñp of
the investigated models.

model rel. comp. time ñz ñz N̂p

impact/rebound flight
local ROM 0.51 319 34 290
global ROM 0.59 316 316 290

full 1 1004 1004 -

During the pressure build-up and around the pressure spike, a small deviation can be observed.
Overall, the deviation is minimal. Table 4.9 summarizes the system size and relative computational
time of the different models. The adaptive-global approach reduces the computational time
to 59 % of the full model’s computational time. Combining the adaptive approach with local
ROMs, yields a reduction to 51 % of the full model’s computational time.

The speedup resulting from MOR techniques depends strongly on the studied problem. Here, the
studied problem is nonlinear, which results in many evaluation points and a large system size.
The local ROM approach can reduce the system size in parts of the solution process. The reduced
system size yields a further reduction of the computational time. Summing up, the adaptive ROM
approach allows the application of MOR techniques to problems with recurring events, reducing
total computational time by about half while minimizing additional prior computational cost.
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The objective of this work is to develop an efficient numerical solution procedure for the
lubricated impact problem which captures structural dynamic effects of complex geometries.
For this purpose, the conventional EHD contact model is extended with respect to the structural
model. Numerical techniques, such as model order reduction and adaptive time integration, are
used to obtain a low computational time.

To consider the geometry of the bodies, the contact bodies are discretized using finite elements.
This modeling approach makes it possible to represent more complex shapes and takes structural
dynamic behavior into account. In order to decrease the number of resulting degrees of freedom,
the finite element models are reduced using model order reduction techniques. For the reduction
of the linear finite element models, component mode synthesis is used. Piezoviscous and
compressible fluid behavior is considered and fluid flow is approximated utilizing the nonlinear
Reynolds Equation. An efficient procedure for the coupling of the two bodies with the fluid
is presented, which yields stable results and allows to maintain the convergence order of the
spatial discretization schemes. Due to the procedures used, the resulting equation system has
the same size as the equation system of conventional EHD contact models. Time integration
of the system is carried out using singly diagonal implicit Runge-Kutta (SDIRK) methods.
These methods are particularly suitable for stiff problems and allow for efficient adaptive step
size control based on embedded schemes. The fully coupled system is solved in a monolithic
approach using the Newton-Raphson method. Finally, the Proper Orthogonal Decomposition
method in combination with a system approximation is used to reduce the size of the entire
nonlinear system. The proposed solution procedure is applied to different problems, which allow
for a separate investigation of different parts of the solution procedure.

The shock loading of a lubricated contact is the first example problem. This problem is used
to examine the proposed adaptive time integration procedure. In EHD contact problems the
Backward Euler method or the second-order finite difference method is typically used for
time integration. This work proposes the use of SDIRK methods, specifically Alexander’s
second-order method. The proposed method is compared with the conventionally applied
methods using the above example problem. Furthermore, the time step size control is examined.
The rapid load change in this problem is a challenge for the time step size control algorithm and
causes rejected time steps. An extension of the time step size control is proposed, to reduce the
number of rejected time steps. This extension takes into account the integration error of the
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parameter function in the step size selection. It requires almost no additional computational
effort while reducing the number of rejected steps and thus the computational time.

The second example problem is the impact of an elastic body on a rigid plate. The body’s shape
is motivated by that of a valve-needle in a magnet injector. The body’s geometry influences its
behavior in the contact region. Using this example problem, the extended structural model is
examined. The extended structural model is based on reduced order models that are constructed
using component mode synthesis. Component mode synthesis methods can be divided into two
main groups: fixed-interface and free-interface methods. The comparison of the two methods
shows that the fixed-interface method is better suited for the examined application. However,
without specific adaptations, spurious oscillations are observed independently of the method.
Two approaches to prevent these oscillations are investigated: the feedthrough approach and an
approach based on modal damping. The feedthrough approach yields better results. However, it
is more difficult to implement. If the implementation is not feasible, the spurious oscillations
can also be reduced using modal damping. Finally, the proposed time integration procedure is
briefly examined for structural dynamics and shows good results.

The third example problem concerns with the lubricated impact problem. Unlike the first and
second example problem, several sub-problems are studied for this one. For the study of the
lubricated impact, the entire solution procedure is applied. The first sub-problem concerns
with the impact of a sphere on a lubricated plate. This problem is used to validate the solution
procedure by comparing results from the proposed procedure with experimental and numerical
results from the literature. The results show good agreement. The second sub-problem concerns
with the impact of a valve-like body on a lubricated plate. In this study, the elastic material
properties of the contact bodies are varied. The material properties are varied in such a way that
a conventional EHD contact model would yield the same solution for all cases. The extended
EHD contact model, however, captures clear differences in the results of the different material
combinations. These results show the necessity of the extended structural model for more
complex geometries.

An extension of the modeling is usually accompanied by an increase of the computational
cost. For this reason, computational aspects are investigated. Generalized statements on the
computational efficiency of a procedure are difficult to make, since they strongly depend on
the problem type, the number of degrees of freedom and other aspects. However, for the given
problem, the extended EHD contact model requires only 8 % additional computational time
compared to the conventional EHD contact model.

The third and final sub-problem concerns with multiple successive impacts. Such computations
are used, for example, to estimate wear, which requires the repeated computation of a similar
problem. To save computational time, here, the use of model order reduction techniques is
suitable. Typically, the creation of reduced order models requires training computations in
advance. These training computations increase the effort of reduced order model creation and
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thus increase the threshold for the efficient usage of reduced order models. In order to keep
the effort for creating a reduced order model low, an adaptive reduced order model creation
procedure is proposed here. The first part of the solution is computed with the unreduced model
and a reduced order model is then built based on these results. This approach has the advantage
that little additional effort is required to create the reduced model since the computation of
the first part of the solution is necessary independently of the reduction. Furthermore, the use
of local reduced order models is proposed, i.e., using different local reduced order models for
different phases of the solution process. This approach allows for the use of smaller reduced
order models for phases of the solution process.

The presented solution procedure takes further physical effects into account and requires only
a small additional numerical effort. The use of model order reduction techniques allows a
further reduction of computational time and the creation of reduced order models that can be
used in system simulations. The flexible and accurate structure modeling coupled with the fast
numerical solution approach enables the usage of the presented solution procedure in a wide
range of applications.

Outlook

In the lubricated impact problem high pressures occur. These high pressures can cause plastic
deformation. In order to investigate these effects more closely, the material model could be
extended to take plastic material behavior into account. Furthermore,plastics are increasingly used
in lubricated contacts. To accurately model these, more complex material models are required.

Further efforts could also be made to consider thermal effects. The temperature has a significant
influence on the viscosity, which in turn greatly influences the lubricated contact behavior. Both
the fluid model and the structural model should be extended to include thermal effects. To
enhance the structural model to include thermal effects, model order reduction techniques, such
as those used in structural dynamics, could prove to be helpful.

As the gap height and impact velocity increase the consideration of inertial effects in the
fluid can become relevant. With this extension, the equation system would become more
complex. Hence, the suitability of other discretization methods should be investigated. As with
all model extensions, the additional computational effort should be weighed up against the
increased model quality.

In this work, only centric impacts are investigated. Non-centric impacts may influence wear and
noise related problems. In further works, the model could be extended to allow the computation
of non-centric impacts.

The solution procedure presented in this work is implemented in Matlab and represents a
proof of concept. There is still the potential to accelerate the solution procedure by applying
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and extending existing approaches. These approaches should be investigated in the context of
industrialization through implementation in other programming languages, such as C++. In the
current implementation, the complete Jacobian matrix is built up in every iteration. The build-up
of the Jacobian matrix takes much computational time. There are approaches to reduce this effort,
for example by using the same Jacobian matrix for multiple iterations. Furthermore, there exist
approaches to keep parts of the Jacobian matrix constant in combination with SDIRK methods.
Within the framework of the implementation of this solution procedure, the applicability of such
procedures should be examined.
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A Computationofabsolute
andrelativedeviations

The deviation between different quantities is computed in various ways throughout this work.
The relevant formulas are listed below.

The root mean square (rms) of the vector x ∈ Rn corresponds to a typical value of an element
in x

rms (x) =
√

1
n

(
x2

1 + x2
2 + · · · + x2

n

)
. (A.1)

The deviation between a variable vector x j at time instant tj and its reference xref
j is computed

using the following formulas,

relerr x
mean = rms

3445
$$$xref

j − x j

$$$$$$xref
j

$$$ 6778 · 100 % , and (A.2)

err x
max = max

j:tj ∈[t0, tend]

√
1
n

$$$xref
j − x j

$$$ . (A.3)

The deviation between a scalar xj at time instant tj and its reference xref
j is computed as

[relerr x]j =
xref
j − xj

max
j:tj ∈[t0, tend]

���xref
j

��� · 100 %, and (A.4)

relerr x
max = max

j:tj ∈[t0, tend]

34445
xref
j − xj

max
j:tj ∈[t0, tend]

���xref
j

��� · 100 %
67778 . (A.5)
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Conventional EHD contact models are used in different parts of this work to compute a reference
solution. In the following, these models are summarized.

The conventional EHD line contact model is summarized in Section B.1. It is used for the shock
loading example problem to study time integration procedures, see Section 4.1.

The conventional EHD axisymmetric point contact model is summarized in Section B.2. It
is used for the problem of the lubricated impact to allow comparison with the extended EHD
contact model, see Section 4.3.

B.1 EHD line contactmodel

The EHD contact model commonly consists of the Reynolds Equation to model fluid flow, the
elastic half-space approach to model elastic deformation and the load balance balancing the
contact force with the external load. The example problem in Section 4.1 uses this modeling
approach. Here, it is referred to as the conventional EHD contact model. Its derivation can be
found for example in [66, 128].

The Reynolds Equation considering entraining motion and squeeze motion has the following form

∂

∂x

(
ρh3

12η
∂p
∂x

)
− um

∂ρh
∂x

− ∂ρh
∂t

− γpen min(p, 0) = 0, (B.1)

with the pressure p, the density ρ, the viscosity η, the gap height h, the mean surface velocity
um, the spatial coordinate x, and time t. The penalty factor γpen is some arbitrarily large number.
Thereby, the last term "penalizes" a negative pressure and thus enforces the Swift-Stieber
conditions. The first term of Reynolds Equation is referred to as the Poiseuille term, the second
term is referred to as Couette term and the time-dependent term is referred to as the squeeze term.

For the line contact problem classically vanishing pressure boundary conditions are applied on
both sides of the domain, i.e.,

p(xL, t) = 0, ∀t ≥ t0, and

p(xR, t) = 0, ∀t ≥ t0.
(B.2)
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Additionally, an initial pressure distribution is prescribed as p(x, 0) = p0(x).
The deformed gap height is given by

h(t, x) = x2

2 Rred
+ δ(t, x) + h00(t), (B.3)

with the undeformed gap height, which is expressed as x2/(2 Rred), the gap displacement δ(t, x)
and the rigid body displacement h00(t). Different from the extended model in Chapter 3, in the
conventional method the deformation is approximated using the elastic half-space approach [45],

δ(t, x) = − 2
πE ′

∫
Ω

p(t, x ′) ln
(
(x − x ′)2

)
dx ′ + C(t). (B.4)

Since the rigid body motion is not taken into account in this model, the integration constant C(t)
is generally not explicitly determined. Hence, the final unknown, a combination of the rigid
body displacement h00 and the integration constant C(t), can be computed via the load balance

w(t) =
∫
Ω

p(t, x ′) dx. (B.5)

As in Subsection 2.1.3 the problem is transformed into the dimensionless form. For the entraining
motion contact, however, the Hertzian pressure pH and the Hertzian half-width b are computed
based on the reference force wref as

pH =
2wref

π b
and b =

√
8wrefRred

E ′π
. (B.6)

The reference force is used to describe the time-dependent force as

w(t) = wrefw̄(t). (B.7)

With the transformation relations (2.19), equations (B.1) through (B.5) are transformed into
dimensionless form

∂

∂X

(
ρ̄H3

η̄λ̄

∂P
∂X

)
− ∂ρ̄H
∂X

− ∂ρ̄H
∂T

− γ̄pen min(P, 0) = 0, (B.8)

Δ +
1

2π

∫
Ω

P(X ′, T) ln
(
(X − X ′)2

)
dX ′ = 0, and (B.9)∫

Ω

P(X, T) dX − π
2
w̄(T) = 0, (B.10)
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with λ =
(
12urefη0R2

red
) /(b3pH

)
and

H(T, X) = X2

2
+ δ(T, X) + H0(T). (B.11)

The Reynolds Equation is discretized in space using second order finite difference scheme
according to [128]. The temporal discretization is carried out using Alexander’s second-order
method, see Section 2.4. After discretization, the resulting system of equations is solved using
the Newton-Raphson method, see Section 3.6.

B.2 Conventional structuralmodel

In Section 4.3 the lubricated impact problem is investigated. In the scope of that investigation
comparisons of the extended EHD contact model with the conventional EHD contact model are
carried out. The conventional EHD contact model for the lubricated impact problem uses the
same fluid model and same nondimensionalization as given in Section 2.1. Hence, the main
difference between the extended EHD contact model and the conventional EHD contact model
is the structural model, which is used to compute the gap height h. The structural model used in
this context is referred to as the conventional structural model throughout this work.

In the conventional structural model, the deformation is approximated using the half-space
approach and the dynamic behavior is approximated as the motion of a mass point. In the
following, the structural model for the axisymmetric point contact is given. To this end, polar
coordinates are used. For the sake of consistency, however, the radial coordinate is called x.
Analogous to above, the deformed gap height is given as

h(t, x) = x2

2 Rred
+ δ(t, x) + h00(t), (B.12)

with the undeformed gap height x2/(2 Rred), the gap displacements δ and the rigid body
displacement h00. The rigid body displacement h00 can be computed from the equation of
motion of the sphere

∂2h00

∂t2 =
2π
m0

∫ ∞

0
p(t, x) x dx − g, (B.13)

with the mass of the sphere m0 and the acceleration acting on the sphere g.

The gap displacements are computed in dimensionless form. After spatial discretization, the
dimensionless gap displacements are listed in the vector δ̄ ∈ RnF , where nF is the number of
fluid grid points. In the conventional structural model the gap displacements are computed using
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the compliance matrix CHST ∈ RnF×nF . The coefficients of the compliance matrix are given
in [138]. However, if a finite element model is given, a constraint mode matrix can be used to
construct a compliance matrix, see Subsection 2.3.4. With the precomputed compliance matrix
the dimensionless gap displacements are computed as

δ̄ = CHSTP, (B.14)

where the vector P ∈ RnF contains the dimensionless pressures.
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conditionsandparameters

Typically, as the temporal behavior of the boundary conditions or parameters is known, they are
not considered in the time integration procedure. Hence, they are not considered in the step size
control approach. However, as discussed in Subsection 4.1.3, considering the temporal evolution
of boundary conditions and parameter functions during step size selection, can be advantageous.

The following describes a procedure for calculating the local integration error of a predefined
function. This procedure can be applied to functions of parameters and boundary conditions.1 In
the following, the procedure is applied to the load function of the example problem in Section 4.1.

The load function w̄(T) is given via Eq. (4.1). To compute the local integration error of the load
function, the following steps are taken:

1. Differentiate the analytical function numerically using second-order complex
step differentiation

∂w̄(T)
∂T

≈ Im (w̄ (T + ih))
h

, (C.1)

which evaluates the function at the imaginary argument T + ih, with the step size h.2

Different from finite difference based methods, complex step differentiation allows for
very small step sizes and is limited rather by errors due to underflow rather than due to
loss of significance, see [96]. Here, the machine epsilon for double precision is chosen as
the step size, i.e., h = ε = 2.2 · 10−16.

1The proper time integration of the boundary conditions is crucial for singly diagonal implicit Runge-Kutta methods.
Time-dependent boundary conditions should be integrated at the stage values. Prescribing the analytical value of the
boundary conditions at the stage values might cause order reductions, cf. [105, 112].

2The numerically cheapest and most accurate way to compute the derivative would be to calculate an analytical
derivative. However, this approach aims to be flexible to work with different functions. Therefore, the derivative is
approximated numerically. Complex step differentiation offers a numerically cheap and step size insensitive way
to obtain a high accuracy approximation of the derivative. The interested reader may refer to [91, 96, 118] for
more information. The error component introduced by the numerical differentiation, is considered negligible for
this application.
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2. Integrate the numerical derivative given by Eq. (C.1) numerically, using the same time
integration scheme as is used for the problem. The integration yields an approximated
value of the load function w̄j+1 at time Tj+1.

3. The local integration error for the load function can then be approximated as

w̄err (
Tj+1

)
=

$$w̄ (
Tj+1

) − w̄j+1
$$$$w̄ (

Tj+1
)$$ , (C.2)

where w̄
(
Tj+1

)
is the analytical value of the load function at time Tj+1.

The local integration error of the load function is computed in each time step. If the approximated
local integration error werr (

Tj+1
)

is higher than a prescribed threshold εw , the time step ΔTj is
decreased until werr (

Tj+1
)

falls below the threshold εw .
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Conventional elastohydrodynamic (EHD) contact 
models usually approximate deformation using 
half-space theory while neglecting structural iner-
tia effects. The conventional modeling approach 
yields good results for compact bodies. However, 
it is not suitable for more complex bodies where 
structural inertia effects infl uence the contact 
behavior. This work proposes an effi cient solu-
tion procedure which considers structural inertia 
effects and is applicable to arbitrary geometries, 
thus, providing a superior solution to the EHD con-
tact problem. 
The contact bodies are modeled by specially 
adapted reduced fi nite element models. Singly 
diagonal implicit Runge-Kutta (SDIRK) methods 
are used for adaptive time integration. A fl uid-
structure coupling is presented to combine the 
structural model and the nonlinear Reynolds 
Equation using a monolithic coupling approach. 
Finally, a reduced order model of the complete 
nonlinear coupled problem is constructed. 
The solution procedure is studied on the basis of 
familiar example problems from EHD literature, 
namely the shock loading of an EHD contact and 
the lubricated impact problem. To investigate 
the extended structural model, the impact of a 
valve-like geometry is examined for both a dry 
contact and a lubricated contact. The proposed 
solution procedure is able to capture effects in 
the contact behavior not captured by the conven-
tional modeling approach  needing little additional 
computational cost.
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