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Abstract. Information flow control (IFC) is a category of techniques
for enforcing information flow properties. In this paper we present the
Combined Approach, a novel IFC technique that combines a scalable
system-dependence-graph-based (SDG-based) approach with a precise
logic-based approach based on a theorem prover. The Combined Ap-
proach has an increased precision compared with the SDG-based ap-
proach on its own, without sacrificing its scalability. For every potential
illegal information flow reported by the SDG-based approach, the Com-
bined Approach automatically generates proof obligations that, if valid,
prove that there is no program path for which the reported informa-
tion flow can happen. These proof obligations are then relayed to the
logic-based approach.

We also show how the SDG-based approach can provide additional infor-
mation to the theorem prover that helps decrease the verification effort.
Moreover, we present a prototypical implementation of the Combined
Approach that uses the tools JOANA and KeY as the SDG-based and
logic-based approach respectively.

Keywords: information flow control, noninterference, system depen-
dence graph, deductive verification.

1 Introduction

When sensitive information leaks to unauthorized parties, it is often the result
of bugs and errors introduced into the system during software development. An
effective measure to reveal potential sources for such leakages are formal meth-
ods, which can provably detect any program instruction that may lead to such
a violation of confidentiality. Whereas formal methods already experience suc-
cessful applications for verifying functional properties, their adoption to security
properties in larger programs still either lacks precision or scalability.

Noninterference. An established property guaranteeing confidentiality on code
level is noninterference. Noninterference holds if no information flow from a se-
cret input (of high security) to a public output (of low security) of the system



is possible, i.e., if and only if no secret input of a program may influence its
public output. Research on secure information flow dates back to the works of
Denning and Denning [5,6] and later Goguen and Meseguer [8]. In the following,
we formally define the noninterference property that we want to prove using the
approach described within this work. We distinguish high variables containing
secret data, which should be protected, from low variables, which are publicly
readable, and introduce the low-equivalence relation (~) to characterize pro-
gram states that are indistinguishable for any potential attacker. A program
state s is an assignment of values to program variables and program locations.
We assume that the input of a program is included in the program’s initial state
and that the output of a program is included its final state. Two states, s and
s', are low-equivalent iff all low variables in s have the same value as in s’.

Definition 1 (Noninterference). A program P is noninterferent iff, for any
initial states s1 and so, the statement

S1 ~[ 82:>S/1 ~r SIQ

holds, where s} and sy are final program states after executing P in the initial
states s1 and sz, respectively.

This means that two program executions starting in two low-equivalent states
must terminate in two low-equivalent states. This guarantees that low outputs
are not influenced by high inputs. Note that we restrict ourselves to terminating
programs. In the rest of this work, we will refer to noninterference with respect
to a given high input and a given low output simply as noninterference.

Existing approaches. There exist various approaches and tools for checking the
noninterference property of a program. In what follows, we describe the types of
approaches, which we will combine in our approach.

Approaches that are based on System Dependence Graphs (SDGs) syntac-
tically compute the dependences between program statements and check whether
any low output syntactically depends on high input (see, for example, the JOANA
tool [10]). Whereas this scales very well, such approaches over-approximate the
actual dependences in the program, which may result in false alarms, since the
analysis only works on the syntactical level of the program. For example, in a
program such as “1=1+h; 1=1-h;” a syntactical approach will identify a depen-
dence between the variables 1 and h, even though there is in fact no (semantical)
dependence between them.

Logic-based approaches (e.g., using dynamic logic for Java [3]), on the other
hand, have a higher precision, i.e., they produce less false alarms, because they
also consider the semantics of program statements. However, those approaches
have a lower scalability. Using a logical proof calculus, the logic-based approaches’
proof obligation is to show that the terminating states of two program execu-
tions are low-equivalent, assuming their two initial states are low-equivalent.
False alarms only occur when the system fails to find a proof in the allotted
time even though the proof obligation is valid. Proving noninterference using



this approach involves simultaneously checking all execution paths for two pro-
gram executions. This makes the noninterference proof harder than proving a
functional property as the number of execution paths to be checked is quadratic.

Our Contribution. In this paper we present the Combined Approach, a novel IFC
technique that combines an SDG-based approach with a logic-based approach,
and in consequence achieves a higher precision than the solely SDG-based ap-
proach. The Combined Approach analyzes the dependences from security viola-
tions reported by the SDG-based approach and proves the absence of these de-
pendences (given the program actually is noninterferent) using a theorem prover.
While the deduction steps in the theorem prover may require user interaction,
we automatically generate its proof obligations from the reported dependences.

Furthermore, we reduce the verification effort by enriching the generated
proof obligations with information obtained from the SDG-based approach. The
information relayed to the theorem prover consists of information flow contracts
for the called methods, (partial) loop invariants for loops inside the verified code,
and preconditions generated by a points-to analysis.

Structure of the paper We organize the paper as follows. Sections 2 and 3 define
the SDG-based and logic-based information flow analysis techniques, respec-
tively, used by the Combined Approach. Section 4 presents the Combined Ap-
proach. A prototypical implementation of the Combined Approach is presented
in Section 5. Related work is discussed in Section 6. Finally, Section 7 concludes.

2 SDG-based Information Flow Control

SDG-based information flow analyses are purely syntactic, highly scalable, and
sound. However, some of the reported noninterference violations may be false
alarms. While Program Dependence Graphs (PDGs) [7] and System Dependence
Graphs (SDGs) [15] have been developed during the eighties, their usefulness in
the context of information-flow security has been first noticed by Snelting [24]
in the nineties. Decades of research in this area have resulted in JOANA, a tool
that statically analyzes Java programs of up to 100k lines of code for integrity
and confidentiality [9,13]. We have used JOANA for a prototype implementation
of our approach.

Without loss of generality, we use the JOANA tool as an example to explain
the functionality of SDG-based information-flow analysis, but our approach ap-
plies to other SDG-based analysis tools as well. The following explanation is
partially based on [14], where SDG-based analysis is also used as a preprocessing
step (see Section 6). We define SDGs for deterministic inter-procedural programs
with variable assignments, branchings, loops, and function calls. Moreover, we
assume that a control-flow graph (CFG) for such programs exists.

The desired noninterference property is specified by annotating which pro-
gram parts correspond to sensitive (high) information and the parts where public
(low) output occurs. Given these annotations, JOANA automatically builds an



SDG for the program. An SDG is a directed graph consisting of interconnected
Program Dependence Graphs (PDGs), where a PDG represents a single program
procedure as a directed graph. More details on SDGs can be found in [15].

Nodes in the SDG represent program statements, conditions, or input param-
eters, and edges represent dependences between the nodes, i.e., an edge between
two nodes exists if and only if the value or execution of one node may depend
on the outcome of the other node. Whether an edge exists between two nodes in
the SDG is determined syntactically by analyzing the control-flow graph of the
analyzed program. There are roughly three types of edges in an SDG: (1) data
dependence edges, representing possible direct dependences, (2) control depen-
dences, which represent possible indirect dependences, and (3) interprocedu-
ral dependences, which represent dependences between nodes of different PDGs
(other dependences have been introduced to support object orientation and mul-
tithreading, see [11]). Formal definitions for the three types of dependences can
be found in [11, Chapter 2]. In the following, we give informal definitions.

A node n’ is data-dependent on n if there is a program variable v that is used
in n’ and defined in n, and there is a path from n to n’ in the CFG such that
v is not redefined on any node between n and n’ on that path. The standard
definition of a control dependence between two nodes states that a node n’ is
control-dependent on a node n if the choice of the outgoing edge from n in the
CFG determines whether node n’ is reached. Note that it is undecidable whether
a CFG path represents an actual execution path of the program, i.e., some
paths in the CFG may represent executions that cannot actually take place. The
CFG is thus an over-approximation of the actual program behavior. Since the
dependences are defined using CFG paths, they too are an over-approximation
of the actual (semantical) dependences in the program. In the rest of the paper,
we refer to the program execution described by a CFG path as execution path.
Note that an SDG path may also represent one or more actual execution paths.

Method calls are represented by special formal-in and formal-out nodes in the
SDG. Formal-in nodes represent direct inputs that influence the method execu-
tion. These are the input parameters, used fields, and other classes called during
execution and the class in which the method is executed. Moreover, formal-out
nodes represent the influence of the method. In most cases, a formal-out node
represents the method’s return value. Other possibilities are that the method in-
fluences global variables, fields in other classes, or terminates with an exception.

int f(int x, int y) { return x; } void caller() { ... f(a,b); ...}
Listing 1: Method call

As example, for function f in Listing 1, we have two formal-in nodes for x
and y, and one formal-out node for the return value of f. At each method
call site, there are actual-in nodes representing the arguments and actual-out
nodes representing the return values. For a given method site, each actual-in
node corresponds to a formal-in node of the callee and vice versa; the same
holds for actual-out and formal-out nodes. Interprocedural dependences connect



actual-in nodes to the corresponding formal-in nodes, and formal-out nodes to
the corresponding actual-out nodes. For the call in Listing 1, there are actual-in
nodes for a and b, corresponding to £’s formal-in nodes for x and y, respectively.
The actual-out node representing the return value of f corresponds to the single
formal-out node of f. For every method call we also have so-called summary
edges in the SDG from any actual-in to any actual-out node of the method
whenever the tool finds a flow from the formal-in to the formal-out node of the
called method. In Listing 1, we have a flow in £ from x to the return value,
thus a summary edge is inserted at call site, namely from a’s actual-in to the
single actual-out node. For a method involving many objects, there can be a
huge number of actual-in and actual-out nodes and an even greater number of
summary edges.

SDG-based information-flow analysis approaches, such as the one implemented
by JOANA, detect illegal information flows through graph analysis, using a
special form of conditional reachability analysis — slicing and chopping — at the
SDG level. A forward slice of a node s consists of all nodes in SDG paths starting
in s. Conversely, a backward slice of a node s consists of all nodes in SDG paths
ending in s. A chop from a node s to a node t consists of all nodes on paths from
s to t in the SDG and is commonly computed by calculating the backward slice
for ¢, and then computing the forward slice for s within the subgraph induced
by it. When the slicer or chopper encounters a method call site, it descends
into the called method without ascending back up. However, this cannot miss
any potential information flow, since for every flow through that method, a
summary edge was inserted at the call site, which can be taken as a shortcut.
JOANA reports a security violation whenever there exists a path from a node
in the SDG that is annotated as high to a node annotated as low, i.e., when
the chop of these two nodes is not empty. It has been proven that this approach
may not miss any potential information flow, i.e., that JOANA is sound, and
that any illegal information flow in the program can occur only in the execution
paths determined by an SDG path from a high node to a low node [27]. Since the
dependences in the SDG are over-approximations of actual dependences in the
program, if no SDG path for the illegal flow is found, the program is guaranteed
to be noninterferent. However, whenever there is an SDG path between a high
input and a low output, the program may still be noninterferent.

3 Logic-Based Information Flow Control

Logic-based information flow analysis takes the semantics of the program lan-
guage into account. The semantics of modern program languages provide a high
degree of expressiveness, which must be considered when sources of illegal infor-
mation leaks may be exploiting features of the program semantics. Logic provides
a means for abstraction and can capture such features and moreover, using logi-
cal calculi, enables reasoning about their —direct or indirect, explicit or implicit—
effects on any low program variables or locations. However, this requires a log-
ical representation of the program together with the precise property we want



to prove. Using dynamic logic [4] together with symbolic values, we can express
the functional property of partial correctness of a program P for a precondition
¢ and a postcondition v by the following formula:

¢ — [Pl

This means that ¢ holds in all possible states in which P terminates. Since we
analyze only deterministic programs, this means that either P terminates and v
holds afterwards, or the program never terminates. Since we restrict ourselves to
terminating programs, we only need to prove partial correctness in the follow-
ing. Applying a logical calculus with a deductive theorem prover, we can hence
symbolically execute P and attempt to prove the formula.

On this basis, we state the noninterference property based on value independence
for a high variable h, a low variable [ and a program P in the following way:

Definition 2 (Noninterference as value independence). When starting P
with arbitrary values 1, then the value v of 1 — after executing P — is independent
of the choice of h (note the order of the quantifiers).

Vi3rvh[P|r=1

However, instantiating existential quantifiers hinders automation and requires
user interaction. As a mitigation, [2] established a noninterference formalization
based on self-composition, effectively reducing it to a safety property. Using self-
composition, the noninterference property of a program P translates to a safety
property of a new program which consists of P composed with a renaming of P.
Furthermore, we need to introduce the concept of state updates [1], which cap-
ture the effects of symbolically executing program statements. We denote up-
dates by variable assignments enclosed by curly braces, which are applied to
logical terms and formulae, and thus change the program state.

We can now, based on the low-equivalence in Definition 1 from Section 1, extend
our formalization of noninterference in Definition 3.

Definition 3 (Noninterference as self-composition with state updates).

Ving Ving, Vini Yout; Yout? {1 := ing}(
{h :=in} }[Plout] =1

A {h = ini}[Plout? =1

)

— outll = outl2

Therein, we have two executions of P, one where the (high) program variable
h is renamed to inj, and another one where it is renamed to in}. The (low)
output variable [ is captured in the variable outl1 after the first execution and in
variable outl2 after the second one. Finally, we need to prove that both outputs
out} and out? are equivalent in the final state and assume equivalent low inputs
via the variable in;. The self-composition formula can hence be enclosed with



purely universal quantifiers over the renaming variables for input and output.
When trying to prove noninterference for a program P, theorem provers can now
skolemize these variables and greatly reduce the necessary user interaction.
Now, when dealing with object-orientation, it is sometimes too strict to require
all (low) variables and locations in the final state to be equivalent. For this
matter, [23] developed a variation of noninterference using a different semantics
of low-equivalence based on an object isomorphism as defined in Definition 4.
Therein, for any two states s; and sg, and two isomorphisms 71 and 72, m1(0) =
m2(0) holds if o is observable in both states s; and ss.

Definition 4 (Low-equivalence with isomorphism). Two states s,s’ are
low-equivalent iff they assign the same values to low variables (with L denoting
the set of all low variables in state s).

’

s~ s & VvelL(n(®)=0")

The techniques described above together with this semantics are defined and
implemented in the deductive program verification tool KeY for Java [1]. It
furthermore allows for more efficient noninterference proofs using modulariza-
tion via the design-by-contract concept with an extension of the Java Modeling
Language (JML) [18]. Such a contract specifies the low program variables and
locations for the initial and the final state of the specified program part. The
proof obligation hence requires the low elements in the final state to depend
at most on the low elements in the initial state. When using the semantics for
object isomorphisms, these contracts may also contain a list of fresh objects to
be included in the isomorphism.

In general, the problem is undecidable and verification sometimes requires some
user interaction. KeY is capable of verifying noninterference for Java programs
and covers a wide range of Java features. With this toolkit, powerful specification
elements are given for proving noninterference, also allowing for declassification.

4 The Combined Approach

In the following, we describe our Combined Approach on the example of proving
noninterference for a given program P. The first step of the Combined Approach
consists of running the SDG-based analysis to check the noninterference property
for P. If there is no illegal information flow for P, we need no further action as
noninterference is guaranteed to hold. If — however — the automatic SDG-based
approach detects an illegal information flow, we apply the second step of the
Combined Approach in order to check whether this information flow is a false
positive or a genuine leak. Since the SDG-based analysis is performed as the first
step, the results provided by our approach are at least as good as those of the
SDG-based analysis.

The SDG-based analysis creates an SDG that models the syntactic dependences
between the program parts of P. However, as explained in Section 2, these de-
pendences represent an over-approximation of the actual program dependences.



The goal of the Combined Approach is to use a logic-based IFC approach to
prove that certain syntactic dependences in the SDG do not represent real de-
pendences. If all syntactic dependences between the high inputs and the low
outputs reported by the SDG-based analysis are proven, using the logic-based
approach, to not exist semantically, then the analyzed noninterference property
is proven to hold for P. We assume that the SDG-nodes corresponding to high
inputs and low outputs are annotated as high and low respectively. Let N, de-
note the set of all nodes annotated as high, and Ny the set of all nodes annotated
as low.

The SDG-based approach then returns a set of violations. A violation is a pair
(np,ne) of a high node n, € Np, and a low node ny € Ny such that there is a
path from ny, to ny in the SDG of P. We then call the set of all nodes lying on a
path from nj to n, the violation chop c¢(ng,ny,). To keep the notation simple, we
will also use ¢(np,n¢) for the subgraph induced by those nodes. If the set of all
violation chops, denoted by Cy, is empty, the SDG-based approach guarantees
noninterference. If — however — there is a false positive, Cy contains at least
one chop. The idea of the Combined Approach is then to validate each violation
chop ¢(np,ne) € Cy and attempt to prove that the chop does not exist on the
semantic level in program P. We prove this by showing that each violation chop
is interrupted (see Definition 5) with the help of a logic-based approach.

Definition 5 (Unnecessary summary edge, Interrupted violation
chop). A summary edge e = (a;,a,) is called unnecessary if there is no infor-
mation flow from the formal-in node f; to the formal-out node f, corresponding
to a; and a,, respectively.

A wiolation chop is interrupted, if we find a non-empty set S of unnecessary
summary edges on this chop, such that after deleting the edges in S from the
SDG, no path exists between the source and the sink of the violation chop.

In order to show that a summary edge e = (a;, a,) is unnecessary, a proof obliga-
tion is generated for the theorem prover of the logic-based approach. This proof
obligation states that there is no information flow from the formal-in node f; to
the formal-out node f, corresponding to the summary edge e (Section 5.1 con-
tains a more precise description of the proof obligation). The proof is done for all
possible contexts of the called method. If the proof is successful, we have proven
that the summary edge was only inserted as a result of the over-approximation,
and we can soundly delete this edge.

Note that for checking whether a violation chop is interrupted, we rely on
the way the chopper works on method call sites: When deleting a summary
edge, the chopper still finds the corresponding information flow in the called
method because no dependence edges have been deleted there. However, since
it does not ascend back to the caller and relies on the (now deleted) summary
edge, the chopper proceeds in the caller as if it did not find that corresponding
information flow.

Our approach, shown in Algorithm 1, attempts to interrupt each violation chop
in Cy . For each violation chop a summary edge is taken, the appropriate infor-



Data: Set of violation chops S
Result: Noninterference guarantee or failed verification attempt
foreach Violation chop Cyv € S do
Build queue @ of summary edges in Cy, ordered by heuristics;
while Cy not interrupted and Q not empty do

Pop summary edge e from Q;

Generate proof obligation PO for proving that e is unnecessary;

if PO proved with theorem prover then

| Delete e from Cy;

end

end

end
Algorithm 1: The Combined Approach

mation flow proof obligation is generated for the method corresponding to the
summary edge, and a proof attempt is made using the theorem prover. If the
proof is successful, the summary edge can then be deleted from the SDG, based
on Definition 5. The order in which the summary edges are checked is established
by a heuristic which is explained towards the end of this section. Note that we
only need to consider summary edges that belong to a chop between high and
low. Thus, it is sufficient to regard only a smaller subset of all summary edges.
We then check whether this violation chop is interrupted. In this case we can
proceed to analyze the remaining violation chops until all of them are inter-
rupted. In case the violation chop is still not interrupted, or the proof attempt
is not successful, another summary edge from the violation chop is chosen. If
we are able to interrupt every violation chop by deleting unnecessary edges, our
approach guarantees noninterference.

Theorem 1 (Noninterference Combined Approach). The Combined Ap-
proach guarantees noninterference.

Proof. Let S be the set of unnecessary summary edges that interrupt a violation
chop ¢(np,ny) € Cy. Using the logic-based approach, we have shown for each
summary edge e = (a;,a,) € S that the actual-out node a, does not depend
on the actual-in node a; of that summary edge. Since each path from nj, to
ng contains one such summary edge we have in fact shown that the potential
dependences from ny to ng, represented by the violation chop, do not represent
real dependences. The soundness of the SDG-based approach guarantees that
there are no other potential dependences from nj, to ny, than the ones in the chop.
Thus, proving all violation chops to be interrupted proves that the program is
noninterferent. a

Note that each violation chop is guaranteed to contain at least one summary
edge, namely the one corresponding to the main method. Generating a proof
obligation for the main method — however — is equivalent to verifying the entire
program with the theorem prover. In practice, however, programs are inter-
procedural and thus there are plenty of summary edges for our approach to
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check. Nevertheless, the verification of the main method with the theorem prover
is still the worst case of our approach and can occur in case not enough summary
edges of inner method calls can be proved to be unnecessary.

public int test(int high, int low) { public int identity(int h, int 1) {
int result = identity(high, low); =1+ kL
return result; l=1-1h;

} return I;

}

Listing 2: Example program

For the example in Listing 2, when trying to show that there is no information
flow from the parameter high to the return value of the method test, the SDG-
based approach reports an illegal information flow, because the return value of
the method identity is data-dependent on the parameter h of the same method.
This is, however, a mere syntactic dependence and the reported violation is a
false alarm. The reported violation chop contains only one path which contains
the actual-in SDG-node representing parameter h and the actual-out SDG-node
representing the return value of identity, connected by a summary edge as
explained in Section 2. The Combined Approach automatically generates a proof
obligation for the logic-based approach which states that the return value of
identity does not depend on parameter h. By proving this, we also prove that
the return value of the method test does not depend on the parameter high
and thus show the noninterference of test. This simple example showcases a
major advantage of our approach: the logic-based approach does not need to
analyze the entire program, but only those parts that cannot be handled with
the SDG-based approach.

Proofs with the theorem prover are often performed fully automatically, but
may sometimes need auxiliary specification and user interaction. Therefore, we
want to minimize the theorem prover usage as much as possible. The order in
which the summary edges of the violation chops are checked has a major impact
on the performance of the Combined Approach. Ideally we want to avoid proof
attempts of methods that do have an information flow or of very large methods
that would overwhelm the theorem prover (for example the main method). In
order to achieve these goals, we developed several heuristics for establishing the
order in which we check the summary edges with the logic-based approach. A
first category of heuristics searches the code for code patterns that are likely to
cause false positives by the SDG-based approach. Such patterns include code
that contains array handling, arithmetic operations, or code that can throw
runtime exceptions. SDG-based approaches are particularly prone to report false
positives for such code, because they neither distinguish between the different
array fields nor do they take the values of variables and semantics of operators
into account. The second category of heuristics attempts to identify the methods
that are likely to run through the theorem prover automatically. Earlier, we
mentioned that it is difficult to create precise loop-invariants and thus methods
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without loops are assigned a higher priority. Additionally, depending on the tools
used, we can exclude methods that contain programming language features that
are not supported by the logic-based approach, or library methods from the
analysis. A third category of heuristics tries to identify the methods that, if
proven noninterferent, would bring the greatest benefit to the goal of proving
the entire program noninterferent. We assign a high priority to summary edges
which are bridges in the SDG, i.e., an edge whose removal from the SDG would
result in two unconnected graphs. In case no bridge exists within the SDG, we
prefer the method with the highest number of connections, i.e., the most often
called method.

Due to its low scalability, the logic-based approach is more likely to handle
methods that are deeper in the call graph (i.e., that call few other methods) than
methods which are high in the call graph. However, the parts of the program
that can disprove a reported security violation may be present in a high level
method. In order to still be able to handle such cases, we automatically generate
information flow contracts for the method calls occurring inside the analyzed
method based on the results of the SDG-based analysis. These method calls
have actual-in and actual-out SDG-nodes connected by summary edges. The
generated information flow contracts state that the program parts corresponding
to the actual nodes of the method call site depend at most on the actual-out
nodes of the respective method call site. Due to the soundness of the SDG-
based analysis, this information flow contract is also sound. However, the over-
approximation done by the SDG-based analysis is also present in the contracts
generated this way. Thus, using such contracts does not guarantee that the logic-
based approach will successfully disprove the reported security violation, but it
allows for an analysis of higher-level methods.

5 Implementation

We implemented! the Combined Approach using JOANA as the dependence-
graph analysis tool and KeY as the theorem prover. In this section, we show how
we generate the proof obligations for KeY in the form of specified Java code and
also present the results of running the Combined Approach on a collection of
examples that cannot be handled by JOANA alone.

5.1 Specification Generation

For the method corresponding to the summary edge selected by the heuristics, we
generate an information flow method contract such that a successful proof would
show that there is in fact no dependence from the formal-in to the formal-out
node of the summary edge.

Thus, in order to show that a summary edge se(a;, a,) is unnecessary, we prove
that there is no information flow between the corresponding formal-in node f;

! Code available at https://git.scc.kit.edu/py8074/keyjoana
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and formal-out node f,. In order to achieve this, we generate a JML specification
for the appropriate method stating that f, is determined by all formal-in nodes
other than f;, as explained in Definition 6. Note that the determines clause used
in Definitions 7 and 8 is not part of the JML standard, and is only supported
by KeY. The clause requires the expressions before the by keyword, evaluated
in the post-state, to depend at most on the expressions after the by keyword,
evaluated in the pre-state.

Definition 6 (Generation of the determines clause). Let se(a;,a,) be the
summary edge to be checked, and let f; and f, be the formal nodes corresponding
to the actual nodes a; and a,. Let L; be a list of all formal-in nodes f other than
fi of the method belonging to the call site of a; and a,. The following determines
clause is added to the method contract: determines f, \by L;.

Should the proof of this property succeed then it would show that f, does not
depend on f; and therefore a, does not depend on actual-in parameter a;. Since
there is no dependence between a; and a, the summary edge can be safely deleted
from the violation chop.

To increase its precision, JOANA uses a points-to analysis which keeps track of
the objects a reference o may point to (the points-to set of 0). This information is
useful, since it may show that two references cannot be aliased. We use the results
of the points-to analysis to generate preconditions for the method contracts, as
shown in Definition 7, thus transferring information about the context from
JOANA to KeY and increasing the likelihood of a successful proof.

Definition 7 (Generation of preconditions). Let o be a reference and P,

its points-to set. We generate the following precondition: \/o’ePD o=20

The method contracts generated this way are necessary for proving a summary
edge is unnecessary, however in the general case they are not sufficient for a
successful proof. If the method contains loops of any kind, the theorem prover
needs loop-invariants. The automatic generation of loop-invariants is an active
research field, see for example [16,21]. These approaches focus on functional
loop-invariants and do not consider information flow loop-invariants.

The determines clause generated for method contracts, can be used to specify
the allowed information flows of a loop. The determines clause generated for a
loop invariant is similar to the one for method contracts. Because the variables
from the formal-in and formal-out nodes may not directly occur in the loop
some adjustments are necessary. Definition 8 shows what determines clauses are
generated for loop invariants:

Definition 8 (Generation of the determines clause for loop invariants).

Let se(a;, a,) be the summary edge to be checked, and let f; and f, be the formal
nodes corresponding to the actual nodes a; and a,. Let L; be a list of all formal-
in nodes f! other than f; of the method belonging to the call site of a; and a,.
Let V; be the set of all variables in the loop and let I; be a list of variables in the
method that influence f,. The following determines clause is added to the loop
invariant: determines f,,V; \by L;, I;.
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Note that the sets V; and I; can be constructed by analyzing the SDG.

5.2 Evaluation

We considered eleven examples, which cover different program structures and
reasons for false positives. Each of these examples is not solvable by automated
graph based approaches like JOANA. In Table 1 we have listed the eleven exam-
ples. The evaluation is split into automatic mode and interactive mode. In the
automatic mode, an attempt is made to prove the generated proof obligations
automatically. In the interactive mode, the theorem prover is called for all proof
obligations in interactive mode. In this mode, the user can perform automatic
or interactive steps and can add auxiliary specification. The column KeY Calls
represents the number of times KeYwas called to show that a summary edge is
unnecessary. As can be seen in the table, in interactive mode sometimes fewer
calls to KeY are necessary, as the user can better recognize which summary edges
are more likely to be successfully proven as unnecessary.

The eleven examples are again divided into two groups. First, there are individual
methods that cause false positives. In the method Identity, the high value is
added and subtracted to the low variable such that the low value remains the
same. There is a dependence from high to low on a syntactical level, but in reality
there is none. In the method Precondition there is an if-condition that can never
be true and the method Excluding Statements contains if-statements that can
not both be true at the same program execution. The example Loop Override
contains a loop which overrides the low value in the last loop execution. For this
example the noninterference loop-invariant was not enough for an automated
proof and further functional information had to be given by the user. The last
simple method Array Access contains array handling code. The second group
consists of programs that include these problems in different program structures.
Based on the possible SDG, we regard simple flows, branching, nested summary
edges and a combination of all.

The example programs are in the range of 5 to 30 lines of code. They show that
the combined approach can prove programs automatically for which JOANA
would generate false positives.

6 Related Work

There exist many different approaches for proving noninterference. A survey on
approaches for IFC is found in [22]. In what follows, we describe some approaches
that are similar to ours.

The Hybrid Approach [17] also aims to combine automatic dependence-graph
analysis and theorem proving. The user first attempts to show noninterference
using JOANA. If the user suspects the reported violation to be a false alarm, he
must identify the cause of the alarm and extend the program such that the low
output is overwritten with a value that does not depend on the high input. The
extended program is rechecked by JOANA, and if deemed noninterferent, KeY
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Table 1: List of examples

Automatic Mode [ Interactive Mode

[ Program [Provable[KeY Calls[Time[Provable[KeY Calls
Individual Methods

Identity Yes 1|5sec. |Yes 1
Precondition Yes 1|5sec. |Yes 1
Excluding Statements|Yes 1|5sec. |Yes 1
Loop Override No 1|7sec. |Yes 1
Array Access Yes 1|6sec. |Yes 1
Whole Programs

KeY example Yes 1|7sec. |Yes 1
Single Flow Yes 1|6sec. |Yes 1
Branching Yes 2|10sec.|Yes 2
Nested Methods Yes 2|10 sec.|Yes 2
Mixture Yes 4|19 sec.|Yes 3
Mixture with Loops |No 7|20 sec.|Yes 5

is used to show that the extended program computes the same low output as the
original. This approach improves the precision provided by JOANA. However,
there is no assistance in finding the causes of the false alarms, and the program
extension must be done manually.

SDG-based approaches can also be used to identify program statements that do
not contribute to a potential information flow or program execution paths that
are guaranteed to not lead to an illegal information flow. This is done in [14],
where the SDG-based approach is used to generate a simplified program that
can then be more easily verified or tested. The approach is orthogonal to the
Combined Approach presented in this paper, and the two approaches can be
combined by using the approach in [14] to simplify the program for which we
attempt to show that a summary edge is unnecessary.

Another combination of SDG-based approaches and theorem provers is by check-
ing the satisfiability of the path conditions for the execution paths determined
by the reported security violation [25,12]. If a path condition is unsatisfiable,
then that execution path cannot lead to an illegal information flow.

Another class of approaches for information flow control are based on type sys-
tems [26,19]. They can have the same scalability and precision as SDG-based
approaches [20], though most type systems have higher scalability but lower pre-
cision. They enforce secure information flow by assigning a security type (e.g.,
high or low) to the program variables and then checking whether the expressions
in the program conform to the type system.

7 Conclusion

In this work, we introduced a new combined approach to prove noninterference
with less user interaction while keeping the same precision. Our approach com-
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bines an automated SDG-based technique with a deductive theorem prover. We
demonstrated that the noninterference properties guaranteed by the two tools
are compatible and, thus, that our approach is sound. The Combined Approach
has been developed tool-independently, but implemented and evaluated on a se-
lection of examples as well as a small case study. Although the programs covered
in our evaluation do not exceed 100 lines of code and could — as such — also be
proven without the help of SDG-based IFC, they could — however — also be em-
bedded in much bigger programs, which — as such — may be clearly too big for
the analysis with a theorem prover.
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