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LOCAL WELLPOSEDNESS OF QUASILINEAR MAXWELL

EQUATIONS WITH ABSORBING BOUNDARY CONDITIONS

ROLAND SCHNAUBELT AND MARTIN SPITZ

Abstract. In this article we provide a local wellposedness theory for quasi-
linear Maxwell equations with absorbing boundary conditions in Hm for
m ≥ 3. The Maxwell equations are equipped with instantaneous nonlinear
material laws leading to a quasilinear symmetric hyperbolic first order sys-
tem. We consider both linear and nonlinear absorbing boundary conditions.
We show existence and uniqueness of a local solution, provide a blow-up
criterion in the Lipschitz norm, and prove the continuous dependence on
the data. In the case of nonlinear boundary conditions we need a smallness
assumption on the tangential trace of the solution. The proof is based on
detailed apriori estimates and the regularity theory for the corresponding
linear problem which we also develop here.

1. Introduction

The Maxwell system is the foundation of electromagnetism and thus one of
the core partial differential equations in physics. For nonlinear instantaneous
material laws, it can be written as a symmetric hyperbolic system under nat-
ural assumptions. On the full space Rd, for such systems a satisfactory local
wellposedness theory in Hs(Rd) for s > 1 + d

2 is provided by Kato’s work [12].

On domains G ( R3 the Maxwell system is characteristic, and with its standard
boundary conditions it does not fit into the classes of hyperbolic problems for
which one has a local wellposedness theory in H3. The available results are
stated in Sobolev spaces of much higher order and with weights encoding a loss
of derivatives in normal direction, see [10] or [20]. In the very recent papers
[22] and [23] by one of the authors, an encompassing local wellposedness theory
in Hm with m ≥ 3 was derived for the Maxwell system endowed with perfectly
conducting boundaries, and it has been extended to interface problems in [19].

In this paper we treat the quasilinear Maxwell system (1.1) with absorbing
boundary conditions which occur if one has a finite, strictly positive conductiv-
ity at the boundary, see [9]. We establish a comprehensive local wellposedness
theory in Hm with m ≥ 3 for linear boundary conditions and also treat nonlin-
ear ones under a smallness condition (which automatically holds in the linear
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case). Our result provides the framework to show global existence and expo-
nential decay of the solutions if the initial data are small, see the companion
paper [16] co-authored by one of us.

For such boundary conditions, local solutions in H3 were already constructed
in [15] under a similar smallness assumption. However, neither uniqueness,
nor blow-up criteria, nor the continuous dependence on data were addressed
in this paper. These results (and ours below) rely on a regularity theory for
the linearized non-autonomous problem. It seems to us that the corresponding
estimates in [15] were not precise enough to show uniqueness of the nonlinear
problem and to treat its wellposedness theory. The crucial problem in this
respect is to derive differentiability in normal direction to the boundary, whereas
tangential regularity can be shown in much greater generality, see [18]. In [3]
and [14] this difficulty was solved on the linear level by transforming the system
in a non-characteristic one, but the resulting estimates do not fit to the fixed
point argument for the nonlinear system, as already observed in [15] concerning
[14]. We note that [14] deals with a far more general situation.

In this work we study the Maxwell system

∂tθe(E,H) = curlH − σe(E,H)E − J0, x ∈ G, t ≥ t0,
∂tθm(E,H) = − curlE, x ∈ G, t ≥ t0,

H × ν = ν × (ζ(E × ν)E × ν) + g, x ∈ Σ, t ≥ t0,
E(t0) = E0, H(t0) = H0, x ∈ G,

(1.1)

for an initial time t0 ∈ R, an open subset G of R3 with a smooth compact
boundary Σ, and the unit outward normal ν. We look for the electric and
magnetic fields (E(t, x), H(t, x)) ∈ U , where U ⊆ R6 is a fixed open convex set.

The material laws θ = (θe, θm) : G × U → R6 are differentiable and their
derivative ∂(E,H)θ is Cm for some m ∈ N with m ≥ 3, and it is assumed to be
symmetric and positive definite. The latter is a standard assumption already in
the linear case and was also imposed in [15], for instance. It is true for isotropic
nonlinearities and large classes of constitutive relations arising in optics, see
e.g. Example 2.1 in [13]. We refer to [2] and [9] for further background. The
conductivities σe and ζ are also of class Cm, and ζ is symmetric and positive
definite. The given current densities J0 and g and the initial fields E0 and H0

are supposed to belong to Hm.
Guided by the basic energy estimate (3.1), we look for solutions

u = (E,H) ∈
⋂m

j=0
Cj(J,Hm−j(G)6)

having tangential traces in Hm(J × Σ), where J = (t0, T ) for some T > t0.
The space of these functions is called GmΣ . For such a solution the data and
coefficients have to satisfy the compatibility conditions (2.21). Assuming them,
in our main Theorem 6.4 we show that

(1) the system (1.1) has a unique maximal solution in GmΣ with m ≥ 3,
(2) blow-up can be characterized in the Lipschitz-norm,
(3) the solution depends continuously on the data in Hm.
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In the case of nonlinear boundary conditions we have to add a smallness
assumption on the product κ |∂Eζ(·, E × ν)| for fields with |E × ν| ≤ κ. So,
either the boundary condition is close to be linear or the solution has to be
uniformly small (as in [15]). We also deal with non-autonomous linear boundary
conditions, see (2.4). The smallness condition is enforced by the basic energy
estimate (3.1) which allows us to bound the tangential traces of the solution in
L2(J ×Σ) by the boundary data in the same norm, but with a constant which
cannot be made small. This behavior reappears on higher regularity levels and
spoils the fixed point argument if the boundary condition is nonlinear. Still the
situation is much better than for perfectly conducting boundaries where one
may lose a derivative at the boundary, cf. [7].

For linear material laws one can treat nonlinear boundary conditions with
bounded ζ even on an L2–level without a smallness condition, see e.g. [8].
These results are based on the theory of monotone operators and semigroups.
In our setting this seems to be impossible, also in view of blow-up examples in
H(curl), see [5].

We follow the strategy of [22] and [23]. One freezes the solutions in the nonlin-
earities of the system and solves the resulting non-autonomous linear problems
via localization, duality and regularization with precise apriori estimates. Then
local solutions are constructed via a contraction argument. Similar ideas had
been used in [15], though there core parts (like the regularization procedure)
were not worked out. The improved blow-up condition and the continuous
dependence on data require additional significant efforts.

We first rewrite the system (1.1) in the equivalent form of a standard hy-
perbolic system in Section 2, where we also collect our notation. Moreover,
we describe the localization procedure. It is crucial for our arguments that in
various steps we can partly decouple the normal direction from the time and
tangential ones. To achieve this, in the localization one has to keep the form
of the boundary condition and the constant coefficients in front of ∂3. For
perfectly conducting boundaries and interfaces this has been discussed in [21]
respectively [19], so that we can focus below on the new boundary conditions.
The compatibility conditions for the linear and nonlinear problems are derived
in (2.20) and (2.21). They differ from those in [22] and [23] in several respects.

In Section 3 we first solve the non-autonomous linear problem in G0
Σ with

L2–data and Lipschitz coefficients and derive the basic L2–estimate in Proposi-
tion 3.1. This result is known, see e.g. [3], but it is hard to find complete proofs
and we need more precise information about the constants than given in e.g.
[3]. So we give a sketch and also obtain a rather general uniqueness statement.
The apriori estimates in GmΣ are then proven inductively by combining bounds
for normal derivatives and for those in tangential and time directions. Here and
later on we can use the results in normal direction from [22] and [23] since they
do not involve boundary conditions. (And so we can omit a few very lenghty
and intricate proofs.) However, the tangential bounds lead to new terms which
have to be estimated carefully, since the nonlinear boundary conditions lead to
coefficients at the boundary with less integrability than those in the interior.
This fact causes the smallness condition mentioned above.
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In Section 4 we then derive the main linear regularity Theorem 4.6 needed for
the nonlinear theory. We again follow the procedure from [22] and employ dif-
ferent regularization procedures in normal, tangential and time directions which
have to be intertwined in a careful induction. We again have to deal with new
terms at the boundaries, but also various additional difficulties arise because
of the more complicated compatibility conditions due to the time-dependent
boundary coefficient on the linear level.

Based on the linear theory, we can then perform the core fixed point argu-
ment in Theorem 5.3. Relying on the reasoning from [23], we can focus on the
smallness conditions needed to deal with the semilinear boundary conditions.
They allow us to absorb error terms in the crucial estimates. In the last section
we derive our main local wellposedness Theorem 6.4. It is based on auxiliary re-
sults preparing the improved blow-up condition and the continuous dependence
on data. Compared to [23], we have to deal again with additional boundary
terms, the new compatibility conditions and the needed smallness assumptions.

2. Auxiliary results and notation

Let m ∈ N and G ⊆ R3 be either an open set with a compact boundary
Σ := ∂G of class Cm+2 or G = R3

+ = {x ∈ R3 |x3 > 0}. Its outer unit normal
is ν. We write c and C for generic positive constants, as well as c(a, b, . . . ) or
C(a, b, . . . ) if they depend on a, b, . . . . The range of a map v is denoted by
ran(v), and B(x, r) or BM (x, r) is the closed ball in a metric space M with
center x and radius r. Let t0 ∈ R be the initial time, where we often take
t0 = 0 in view of time invariance. To control constants, we partly fix a time
T ′ > t0 and let T ∈ (t0, T

′). For J = (t0, T ), we set Ω = J × R3
+, and

Γ = J × (R2 × {0}) ∼= J × R2. Sometimes J also denotes other open intervals.
We often use the same symbols for spaces of scalar, vector or matrix valued

functions. Sobolev spaces are designated by W s,p with W s,2 = Hs. Spaces on
Σ are equipped with the surface measure, written as dx. For γ ≥ 0 and t ∈ R
we set e−γ(t) = e−γt. We employ time-weighted norms such as

‖f‖2Hmγ (Ω) =
∑
|α|≤m

‖e−γ∂αf‖2L2(Ω),

and denote the respective spaces by the subscript γ.
Let v : G → R3 be sufficiently regular. We write trn v for the trace of the

normal component v · ν on Γ, and trt v for the tangential trace v × ν on Γ.
We further employ its rotated variant trτ v = ν× (trt v) which is the tangential
component tr v−(trn v)ν of the full trace tr v. Note that the Euclidean norms of
trt v and trτ v coincide. For vector fields u = (u1, u2) : G→ R6 and k ∈ {t, τ, n}
we further set trk u = (trk u

1, trk u
2). It is well known that the mappings

trn : H(div)→ H−1/2(Σ) and trt : H(curl)→ H−1/2(Σ)3

are continuous, where their maximal domains H(curl) and H(div) in L2(G)3

are endowed with the respective graph norm, see Theorems IX.1.1+2 in [6]. For
sufficiently regular functions w : J ×G→ Rl with l ∈ {3, 6} we set (trk w)(t) =
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trk(w(t)), see also the remarks at the beginning of Section 3. We introduce

Gm = Gm(J ×G) =
⋂m

j=0
Cj(J,Hm−j(G)6) and

G̃m = G̃m(J ×G) =
⋂m

j=0
W j,∞(J,Hm−j(G)6).

Our solutions have extra trace regularity expressed by the space

GmΣ = GmΣ (J ×G) = {u ∈ Gm(J ×G) | trτ u ∈ Hm(J × Σ)6},

which is equipped with its canonical norm. In the fixed point argument we also
need the slightly larger one

G̃mΣ = G̃mΣ (J ×G) = {u ∈ G̃m(J ×G) | trτ u ∈ Hm(J × Σ)6}.

We also use the subscript Σ if G = R3
+.

To reformulate (1.1) as a standard first order system, we write u = (E,H) =
(u1, u2) for the unknowns and introduce the matrices and maps

J1 =

0 0 0
0 0 −1
0 1 0

 , J2 =

 0 0 1
0 0 0
−1 0 0

 , J3 =

0 −1 0
1 0 0
0 0 0

 , f =

(
−J0

0

)
,

Aco
j =

(
0 −Jj
Jj 0

)
, θ = (θe, θm), χ = ∂uθ, σ =

(
σe 0
0 0

)
, (2.1)

B1 =
(
trt 0

)
, B2 =

(
0 trt

)
, B(u) = B2 − ν × ζ(B1u)B1

for j ∈ {1, 2, 3}. Observe that curl = J1∂1 + J2∂2 + J3∂3. With this notation
the Maxwell system (1.1) becomes

χ(u(t))∂tu(t) +
3∑
j=1

Aco
j ∂ju(t) + σ(u(t))u(t) = f(t), x ∈ G, t ≥ t0,

B(u(t))u(t) = g(t), x ∈ Σ, t ≥ t0,
u(t0) = u0 x ∈ G,

(2.2)

where u0 := (E0, H0). A solution u on an interval J (with t0 ∈ J) to this
system belongs to GmΣ (J ′ × G) for every compact interval J ′ ⊆ J , u(t) takes
values in a closed subset of U for each t ∈ J , and u satisfies (2.2) for t ∈ J .

Let m̃ = max{m, 3} and U ⊆ R6 be an open convex set. We write V b U
for open subsets V of U with a compact closure V ⊆ U . We assume that the
coefficient θ belongs to Cm̃(G× U ,R6×6) and that

χ = ∂uθ ∈ Cm̃(G× U ,R6×6
sym), σ ∈ Cm̃(G× U ,R6×6), ζ ∈ Cm̃τ (TUΣ,R3×3

sym),

∀ V b U , α ∈ N9
0, |α| ≤ m̃ : sup

G×V
(|∂αχ|+ |∂ασ|) <∞, sup

Σ×V
|∂αζ| <∞,

χ, ζ ≥ ηI > 0, (2.3)

for some number η > 0, where TUΣ = {(x, v) |x ∈ Σ, v ∈ B1(x)U}. Mainly to
unify notation, here we allow for a larger class of ‘conductivities’ than in (1.1).
The subscript τ means that ζ is tangential in the sense that ζν⊥ ⊆ ν⊥. Actually
we only need uniform positive definiteness on each set G×V , respectively Σ×V ,
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but we impose the above condition to simplify the presentation a bit. Below
we also state a variant of these assumptions for linear boundary conditions.

Let û ∈ G̃mΣ with m ≥ 3. We freeze the coefficients in the nonlinearities
setting b = ζ(B1û), A0 = χ(û), D = σ(û), and

B(t) = B2 − ν × b(t)B1

for t ∈ J . Such coefficients belong to the function spaces

Fm = Fm(J ×G) = {A ∈W 1,∞(J ×G)k×k | ∀ α ∈ N4
0 with 1 ≤ |α| ≤ m :

∂αA ∈ L∞(J, L2(G))},

Fm,0 = Fm,0(G) = {A∈L∞(G)k×k | ∀α∈N3
0 with 1 ≤ |α| ≤ m : ∂αA ∈ L2(G)},

which are endowed with their natural norms. The corresponding spaces for the
domains Ω, R3

+, J ×Σ, Σ, ∂R3
+, and Γ are denoted analogously. For b we need

the space
FmH = FmH (J × Σ) = Fm−1

τ (J × Σ) ∩Hm(J × Σ)k

whose norm is given by

‖b‖2FmH (J×Σ) = ‖b‖2Fm−1(J×Σ) + [b]2Hm(J×Σ) with

[b]2Hm(J×Σ) =
∑

α∈N4
0,|α|=m

‖∂αb‖2L2(J×Σ),

Here, k ∈ N usually is 1, 3, or 6. If we drop J in Fm, we refer to the subspace
of maps being constant in time. The subscript η > 0 in any of these or other
spaces means that the functions take values in symmetric matrices with lower
bound η > 0; whereas cp indicates that the maps are constant outside a compact
subset of J ×G, respectively G. (For bounded G the latter subspace is equal
to Fm or Fm,0.) In Lemma 2.1 and Corollary 2.2 of [23] one can find detailed
results concerning the mapping properties of χ and σ in these spaces. Several
variants of the product rules in G̃m, Fm and Hm are shown in Lemma 2.1 of [22]
for G, which easily extend to the boundary. (See also [21] for a more detailed
presentation.) In the context of FmH (J × Σ) new issues arise for the terms of
highest order, which are discussed in the relevant parts of the proofs.

We also look at the case of linear non-autonomous boundary conditions as-
suming that

χ ∈ Cm̃η (G× U ,R6×6
sym), σ ∈ Cm̃(G× U ,R6×6), ζ = b ∈ F m̃η,τ (R+ × Σ),

∀ V b U , α ∈ N9
0, |α| ≤ m̃ : supG×V (|∂αχ|+ |∂ασ|) <∞, (2.4)

for some number η > 0.
Let A0 ∈ Fmη (J × G), D ∈ Fm(J × G), b ∈ FmH,η(J × Σ), f ∈ Hm(J × G),

g ∈ Hm(J × Σ) with g · ν = 0, and v0 ∈ Hm(G). We then look for a solution
v ∈ GmΣ (J ×G) of the linearized problem

A0(t)∂tv(t) +

3∑
j=1

Aco
j ∂jv(t) +D(t)v(t) = f(t), x ∈ G, t ≥ t0,

B(t)v(t) = g(t), x ∈ Σ, t ≥ t0,
v(t0) = v0, x ∈ G.

(2.5)
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We solve the system (2.5) via localization, proceeding as in [19], [21] and
[22]. To this aim, we cover G with connected open sets U0, U1, . . . , UN where
U0 ⊆ G and Σ ⊆ U1 ∪ · · · ∪ UN . For each i ∈ {1, . . . , N} we fix a Cm+2–
diffeomorphism ϕi from Ui onto an open subset Vi of B(0, 1) which maps Σ∩Ui
onto {y ∈ Vi | y3 = 0} and G ∩ Ui onto {y ∈ Vi | y3 > 0} ⊆ R3

+. The resulting
composition operators are denoted by

Φi : L2(Ui)→ L2(Vi); v 7→ v ◦ ϕ−1
i , Φ−1

i : L2(Vi)→ L2(Ui); v 7→ v ◦ ϕi.

We use the same notation for the induced maps on Sobolev spaces, and also for
the spaces on the domains J ×Ui or J × Vi. The extension by 0 or restrictions
of a function v are also denoted by v.

Let {θi | i ∈ {0, 1, . . . , N}} be a smooth partition of unity subordinate to the
sets Ui, and σi (resp. ωi) be test functions in Ui (resp. Vi) which are equal to 1
on supp θi (resp. on Ki := ϕi(suppσi)). We can find a constant τ ∈ (0, 1) and
an index z(i) ∈ {1, 2, 3} with |∂z(i)ϕi,3| ≥ τ for each i, see e.g. Lemma 5.1 of
[21], where ϕi,3 is the third component of ϕi. We assume that z(i) = 3. The
other cases are treated analogously, cf. Section 5 of [21] and Section 3 of [19].
Let i ∈ {1, . . . , N}.

The usual localization procedure leads to a first order system on R3
+ with

variable coefficient matrices, see e.g. (2.5) in [22]. For our analysis it is impor-
tant to keep the constant matrix Aco

3 and the form of the boundary condition.
To this aim, we set

βi = ωiΦi(∂3ϕi,3) + (1− ωi)
∂3ϕi,3
|∂3ϕi,3|

(ϕ−1
i (yi))

for a fixed point yi ∈ Vi. The second summand is not important since we mostly
work on Ki where we have βi = Φi∂3ϕi,3. It is easy to check the lower bound
|βi| ≥ τ . We assume that βi ≥ τ as the other sign is handled in the same way,
cf. Section 5 of [21] and Section 3 of [19]. We then set

R̂i = β
−1/2
i

 1 0 0
0 1 0

ωiΦi(∂1ϕi,3) ωiΦi(∂2ϕi,3) −βi

 , Ri =

(
R̂i 0

0 R̂i

)
,

and define the ‘localized’ coefficients

Ai0 = Ri
(
ωiΦiA0 + (1− ωi)ηI

)
RTi ,

Aij = Ri

(
ωiΦi

(∑3

k=1
Aco
k ∂kϕi,j

)
+ (1− ωi)

∂3ϕi,3
|∂3ϕi,3|

(ϕ−1
i (yi))A

co
3

)
RTi ,

Ai3 = Aco
3 , (2.6)

Di = ωiRiΦiDR
T
i −

∑3

j=1
Aij∂j(R

T
i )−1RTi

for j ∈ {1, 2} on R3
+ as in Section 3 of [19] or Section 2 of [22], where partly a

different notation was used. We note that Ai0 belongs to Fmη,cp(J × G) and Di

to Fmcp(J ×G), and that their norms in these spaces are bounded by a constant

times the analogous norms of A0 and D. The maps Ai1 and Ai2 are contained
7



in the space

Fmcf (R3
+) =

{
A ∈ Fmcp(R3

+)
∣∣∣∃ µj ∈ Fmcp(R3

+,R) : A =
∑3

j=1
Aco
j µj

}
,

and they are dominated in the norm of Fm by a constant only depending on
G, the charts, and ωi. We stress that the functions µj are scalar.

To deal with the boundary condition, we set κi = −∇ϕi,3 ·ν ∈ Cm+1(Σ∩Ui).
Observe that ∇ϕi,3 = −κiν since ∇ϕi,3 is normal to Σ and that κi > 0 on
Σ ∩ Ui by the properties of ϕi,3. We further define

B0 =

 0 ν3 −ν2

−ν3 0 ν1

ν2 −ν1 0

 , Bco
0 =

0 −1 0
1 0 0
0 0 0

 = J3,

Bco
1 =

(
Bco

0 0
)
, Bco

2 =
(
0 Bco

0

)
,

cf. (2.1). Abusing notation, we identify B0 with trt at Σ and Bco
0 with trt at

∂R3
+ (where ν = −e3). As in (3.12) of [19] or Section 2 of [22], we then compute

Bco
0 = R̂i

(
ωiΦi(κiB0) + (1− ωi)

∂3ϕi,3
|∂3ϕi,3|

(ϕ−1
i (yi))B

co
0

)
R̂Ti

on R2 × {0}. For the transformed coefficients, we take further cut-offs ω̃i ∈
C∞c (Vi) which are equal to 1 on suppωi and define the auxiliary maps

b̃i(t) = ω̃iΦi(κ
−1
i b(t)) + (1− ω̃i)ηI,

Ci(t) = Bco
0 b̃i(t)Φi(κiB1) + Φi(κiB0)b̃i(t)B

co
1 ,

Ωi =

(
ωiI 0
0 I

)
.

We now introduce the localized boundary operators and coefficients

Bi(t) = R̂i

[
ωiΦi(κiB(t))Ωi + (1− ωi)

∂3ϕi,3
|∂3ϕi,3|

(ϕ−1
i (yi))B

co
2 (2.7)

+ ωi(1− ωi)
∂3ϕi,3
|∂3ϕi,3|

(ϕ−1
i (yi))Ci(t) + (1− ωi)2Bco

0 b̃i(t)B
co
1

]
RTi ,

bi(t) = (R̂Ti )−1b̃i(t)R̂
−1
i ,

on R2 × {0}. One can then derive the identity

Bi(t) = Bco
2 +Bco

0 bi(t)B
co
1 . (2.8)

For the reconstruction of the original boundary condition on Σ from the local-
ized ones it is crucial to note that Bi(t) = R̂iΦi(κiB(t))RTi on ω−1

i ({1}). Re-
defining η if necessary, we obtain that bi is contained in FmH,η,cp(Γ) and bounded

in this norm by a constant times the norm of b in FmH,η(J × Σ).

Let h ∈ Hm(J ×G) and v ∈ Gm(J ×G). We introduce the transformed data

vi0 = (RTi )−1Φi(θiv0), gi = R̂iΦi(θiκig), (2.9)

f i = f i(h, v) = Ri

(
Φi(θih) + Φi

(∑3

j=1
Aco
j ∂jθiv

))
.
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These functions belong to Hm(R3
+), Hm(Γ), and Hm(Ω), with norms bounded

by a constant times the corresponding norms of v0, g, h, and v, respectively.
(In the existence proof one has to construct a suitable map h for a given f .)
Instead of (2.5), we are now looking at the linear system

Ai0(t)∂tv(t) +
3∑
j=1

Aij∂jv(t) +Di(t)v(t) = f i(t), x ∈ R3
+ t ≥ t0,

Bi(t)v(t) = gi(t), x ∈ ∂R3
+ t ≥ t0,

v(t0) = vi0 x ∈ R3
+,

(2.10)

for i ∈ {1, . . . , N} with the operators and maps from (2.6), (2.8), and (2.9).
Once we have established apriori estimates and the regularity theory for (2.10),
we obtain the corresponding assertions on G by proceeding as in Section 5
of [21] respectively Section 3 of [19]. To that purpose, we also need the case
i = 0 which leads to a much simpler full space problem already treated in [22],
for instance. We put ∂0 = ∂t and define the hyperbolic operators

L(w) = χ(w)∂t +
∑3

j=1
Aco
j ∂j + σ(w) on J ×G,

Lco(A0, D) = Lco = A0∂t +
∑3

j=1
Aco
j ∂j +D on J ×G,

Li(A0, A1, A2, A
co
3 , D) = Li =

∑3

j=0
Aij∂j +Di on Ω. (2.11)

In the last operator and in (2.10) we often omit the superscript i.
If u or v in Gm solves one of the above linear or nonlinear Maxwell systems,

we can differentiate the evolution equation and the boundary condition m− 1
times and then take the time trace at t = t0 ∈ J . The resulting compatibility
conditions on {t0}×Σ are thus a necessary property for any sufficiently regular
solution. From (2.1) of [22] and (2.9) of [23] we first recall several important
formulas relating time and space derivatives of solutions, where we assume
conditions (2.4), respectively (2.3) for the nonlinear boundary condition.

Take a time t0 ∈ J , an inhomogeneity f ∈ Hm(Ω), and initial values u0, v0 ∈
Hm(R3

+). Let p ∈ {0, . . . ,m}. Assume that v ∈ Gm(Ω) solves (2.10) without
the boundary condition. Differentiating the evolution equation in time and
dropping the superscript i, we deduce that this function satisfies

∂pt v(t0) = Sm,p,Aj ,D(t0, v(t0), f), (2.12)

for all p ∈ {0, . . . ,m}, where the term Slin
m,p = Sm,p,Aj ,D(t0, u0, f) is defined by

Slin
m,0 = u0,

Slin
m,p = A0(t0)−1

[
∂p−1
t f(t0)−

3∑
j=1

Aj∂jS
lin
m,p−1 −

p−1∑
l=1

(
p− 1

l

)
∂ltA0(t0)Slin

m,p−l

−
p−1∑
l=0

(
p− 1

l

)
∂ltD(t0)Slin

m,p−1−l

]
, p ≥ 1. (2.13)
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An analogous formula is true on G if v fulfills (2.5) and we replace Aj by Aco
j

for j ∈ {1, 2, 3}.
Next, let u ∈ Gm(J ×G) satisfy (2.2). We then obtain

∂pt u(t0) = Sm,p,χ,σ(t0, u(t0), f) (2.14)

for all p ∈ {0, . . . ,m}. Here we inductively define the maps Snl
m,p =

Sm,p,χ,σ(t0, u0, f) by

Snl
m,0 = u0,

Snl
m,p = χ(u0)−1

[
∂p−1
t f(t0)−

3∑
j=1

Aco
j ∂jS

nl
m,p−1 −

p−1∑
l=1

(
p− 1

l

)
M l

1S
nl
m,p−l

−
p−1∑
l=0

(
p− 1

l

)
M l

2S
nl
m,p−1−l

]
, (2.15)

Mp
k :=

∑
1≤j≤p

∑
γ1,...,γj∈N∑

γi=p

6∑
l1,...,lj=1

C(p, γ)(∂ylj . . . ∂yl1θk)(u0)

j∏
i=1

(Snl
m,γi)li ,

where p ≥ 1, k ∈ {1, 2}, θ1 = χ, θ2 = σ, M0
2 = σ(u0), and C(p, γ) =

C((p, 0, 0, 0), γ1, . . . , γj) is the constant from Lemma 2.1 of [23].
We have to estimate these maps. Lemma 2.3 of [22] shows the inequality

‖Sm,p,Aj ,D(t0, u0, f)‖Hm−p(G) (2.16)

≤ c(r0, η,m, p)
( p−1∑
j=0

‖∂jt f(t0)‖Hm−1−j(G) + ‖u0‖Hm(G)

)
,

provided that A0 ∈ F m̃η (J ×G), A1, A2, A3 ∈ F m̃(G) and D ∈ F m̃(J ×G) and
that the quantities

‖Ak(t0)‖F m̃−1,0(G), ‖D(t0)‖F m̃−1,0(G), ‖∂
j
tA0(t0)‖Hm̃−1−j(G), ‖∂

j
tD(t0)‖Hm̃−1−j(G)

are bounded by r0 for k ∈ {0, 1, 2, 3} and j ∈ {1, . . . ,m − 1}. Here one can
replace G by R3

+. Similarly, Lemma 2.4 of [23] says that

‖Sm,p,χ,σ(t0, u0, f)‖Hm−p(G) (2.17)

≤ c(r0, η, V,m, p)
( p−1∑
j=0

‖∂jt f(t0)‖Hm−1−j(G) + ‖u0‖Hm(G)

)
,

if χ and σ fulfill (2.3), the range of u0 is contained in V b U and the number
in parentheses is less or equal r0. Lemma 2.4 of [23] also provides an analogous

Lipschitz estimate for arguments (u0, f) and (ũ0, f̃).
On the other hand, for g ∈ Hm(J × Σ) and v ∈ GmΣ (J × G) solving (2.5)

we can differentiate the boundary condition in (2.5) up to m− 1 times in time
arriving at

B(t0)∂pt v(t0) = ∂pt g(t0) + ν ×
p∑

k=1

(
p

k

)
∂kt b(t0)B1∂

p−k
t v(t0) (2.18)
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on Σ for all p ∈ {1, . . . ,m− 1}. Replacing B1 by Bco
1 the same equation is true

on ∂R3
+ and a function v ∈ GmΣ (Ω) fulfilling (2.10). Analogously, each solution

u ∈ GmΣ (J ×G) of (2.2) satisfies

B(u(t0))∂pt u(t0) = ∂pt g(t0) + ν ×
p∑

k=1

(
p

k

)
∂kt ζ(B1u)(t0)B1∂

p−k
t u(t0) (2.19)

on Σ for all p ∈ {1, . . . ,m−1}. To express the factors ∂kt ζ(B1u)(t0), as in (2.15)
we set

Mp
3 =

∑
1≤j≤p

∑
γ1,...,γj∈N∑

γi=p

2∑
l1,...,lj=1

C(p, γ)(∂ylj . . . ∂yl1 ζ)(B1u0)

j∏
i=1

(B1S
nl
m,γi)li

for p ≥ 1. Taking into account (2.12) and (2.14), formulas (2.18) and (2.19)
lead to the equations

B(t0)Slin
m,p = ∂pt g(t0) + ν ×

p∑
k=1

(
p

k

)
∂kt b(t0)B1S

lin
m,p−k, (2.20)

B(u(t0))Snl
m,p = ∂pt g(t0) + ν ×

p∑
k=1

(
p

k

)
Mk

3B1S
nl
m,p−k, (2.21)

on Σ for all p ∈ {0, . . . ,m − 1} respectively, which are called the compatibility
conditions of order m for the systems (2.5), (2.10), respectively (2.2). (For
p = 0 the sums are omitted.)

3. Linear apriori estimates

We first state the basic well-posedness result of the localized linear problem
(2.10) on the regularity level m = 0. In particular, the data f , g and u0

belong to L2. If we have a solution u ∈ L2(Ω), the evolution equation implies
that u is contained in H1(J,H−1(R3

+)). The initial condition thus makes sense
in H−1(R3

+). Moreover, the tangential trace can be extended from regular
functions on Ω to those u ∈ L2(Ω) with Lu ∈ L2(Ω) yielding a distribution

trτ u in H−1/2(Γ), see e.g. Remark 2.14 of [21]. The boundary condition can

thus be understood as an equation in H−1/2(Γ). We put DivA =
∑3

j=0 ∂jAj .

Proposition 3.1. Let t0 = 0, Aj = ATj ∈ W 1,∞(Ω)6×6, A0 ≥ ηI, A3 =

Aco
3 , D ∈ L∞(Ω)6×6, b = bT ∈ L∞τ (Γ)3×3 with A0, b ≥ ηI, u0 ∈ L2(R3

+)6,
f ∈ L2(Ω)6, and g ∈ L2(Γ)3 with g · ν = 0. Then there is a unique solution
u ∈ L2(Ω)6 of (2.10). Moreover, u belongs to C(J, L2(R3

+)6), trτ u to L2(Γ)6,
and they satisfy equation (3.2) and the estimate

e−2γT ‖u(T )‖2L2(R3
+) + γ ‖u‖2L2

γ(Ω) + ‖ trτ u‖2L2
γ(Γ) (3.1)

≤ c
(
‖A0(0)‖L∞(R3

+) ‖u0‖2L2(R3
+) + 1

γ ‖f‖
2
L2
γ(Ω) + ‖g‖2L2

γ(Γ)

)
for constants c = c(η, ‖b‖∞) ≥ 0 and γ0(η, r) ≥ 1 and all γ ≥ γ0(η, r) with
r := ‖D −DivA/2‖∞.
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This result is essentially known, see e.g. Proposition 2.1 of [3], so that we only
indicate the main steps of the proof. Since the precise form of the constants
is crucial for us, we fully show the estimate (3.1) for a solution u ∈ G0 such
that also ∂ju for j ∈ {0, 1, 2} and Aco

3 ∂3v belong to L2(Ω). Set v = e−γu. The
equation Lu = f yields∫

Ω
Lv · v dx dt =

∫
Ω

(e−γf · v − γA0v · v) dx dt.

Using the symmetry of Aj , we next compute∫
Ω
Lv · v dx dt =

1

2

3∑
j=0

∫
Ω
∂j(Ajv · v) dx dt+

∫
Ω

(D − 1
2 DivA)v · v dx dt.

The first term on the right-hand side is equal to

1

2

∫
R3

+

(A0(T )v(T ) · v(T )−A0(0)u0 · u0) dx− 1

2

∫
Γ
Aco

3 v · v dx dt.

Basic vector algebra and the boundary condition in (2.10) then lead to

−1

2

∫
Γ
Aco

3 v · v dx dt =
1

2

∫
Γ
e−2γ (u1 · trt u2 − u2 · trt u1) dx dt

=

∫
Γ
e−2γ u

1 · trt u2 dx dt

=

∫
Γ
e−2γ u

1 · (g − (b trt u
1)× ν) dx dt

=

∫
Γ
e−2γ (g · trτ u1 + (b trt u

1) · trt u1) dx dt.

The assumptions now imply the basic estimate

e−2γT η
2 ‖u(T )‖2L2(R3

+) + γη ‖u‖2L2
γ(Ω) + η ‖ trτ u

1‖2L2
γ(Γ)

≤ 1
2‖A0(0)‖L∞(R3

+) ‖u0‖2L2(R3
+) + r ‖u‖2L2

γ(Ω) + ‖f ·u‖L1
2γ(Ω) + ‖g ·trτ u1‖L1

2γ(Γ).

By means of the Cauchy-Schwarz inequality and choosing γ ≥ 4r/η, one easily
deduces (3.1) with trτ u

1 instead of trτ u. The remaining summand can be
recovered from the boundary condition trt u

2 = g− (b trt u
1)× ν. We note that

for γ = 0 we also obtain the equality∫
R3

+

1
2A0(T )u(T ) · u(T ) dx+

∫
Γ
(b trt u

1) · trt u1 d(t, x) (3.2)

=

∫
R3

+

1
2A0(0)u0 · u0 dx+

∫
Ω

(
(1

2 DivA−D)u · u+ u · f
)

d(t, x)

−
∫

Γ
g · trτ u1 d(t, x).

The other steps follow a standard procedure going back (at least) to [17],
see also [1] or [4]. Estimate (3.1) and a duality argument yield a solution u of
(2.10) in L2(Ω). One can also show a variant of (3.1) for the interval J = R
without the terms at times t = T and t = 0, assuming analogous regularity

12



assumptions. One thus obtains a solution u in L2
γ(Ω) of (2.10) on J = R

without an initial condition. Mollifiers in (t, x1, x2) yield aproximate solutions
un, where Aco

3 ∂3un belongs to L2
γ(Ω) because of the evolution equation. Using

the variant of (3.1) on J = R for un, we see that this estimate is also valid for
solutions in L2

γ(R× R3
+) and that trτ u is an element of L2

γ(Γ).
As in Theorem 6.11 of [4] one next shows that the solution vanishes on

(−∞, 0) if the same is true for f and g. For u0 = 0, again by mollifica-
tion one can now construct a unique solution u ∈ L2

γ(Ω) of (2.10) satisfying

u ∈ C(J, L2(R3
+)6), trτ u ∈ L2(Γ)6, (3.1), and (3.2). This fact also leads to

the uniqueness statement in Proposition 3.1. It thus remains to show that
for f = g = 0 the solution u is contained in C(J, L2(R3

+)6) and fullfills
trτ u ∈ L2(Γ)6, (3.1), and (3.2). In view of the estimate one only has to consider
compactly supported u0. In this case, the available full space result and the
finite speed of propagation imply that u is continuous in L2(R3

+) for small times
t ≥ 0. The result then follows by mollification.

We next establish higher order apriori estimates for solutions u ∈ Gm of
(3.1), extending the approach of [22]. In the first step we treat the ‘tangential’
derivatives ∂αu with α ∈ N4

0 and α3 = 0. We use the space Hmta(Ω) containing
those functions u ∈ L2(Ω) such that all such derivatives with |α| ≤ m belong to
L2(Ω), which is equipped with its natural norm. The space Hmta(R3

+) is defined
analogously. The number γ0 is taken from Proposition 3.1, whereas δm>2 is
equal to 1 if m ∈ {3, 4, . . . } and zero if m ∈ {1, 2}.

Lemma 3.2. Let t0 = 0, T ∈ (0, T ′), ρ, η > 0, r ≥ r0 > 0, m ∈ N, and
m̃ = max{m, 3}. Take coefficients A0 ∈ F m̃η (Ω), A1, A2 ∈ F m̃cf (R3

+), A3 = Aco
3 ,

D ∈ F m̃(Ω), and b ∈ F m̃H,η(Γ) satisfying

‖Ai‖F m̃(Ω) ≤ r, ‖D‖F m̃(Ω) ≤ r, ‖b‖F m̃−1(Γ) ≤ r, [b]Hm̃(Γ) ≤ ρ,

max{‖Ai(0)‖F m̃−1,0(R3
+), max

1≤j≤m−1
‖∂jtA0(0)‖Hm̃−1−j(R3

+)} ≤ r0,

max{‖D(0)‖F m̃−1,0(R3
+), max

1≤j≤m−1
‖∂jtD(0)‖Hm̃−1−j(R3

+)} ≤ r0

for all i ∈ {0, 1, 2}. Choose data u0 ∈ Hm(R3
+), f ∈ Hmta(Ω), and g ∈ Hm(Γ)

with g · ν = 0. Assume that the solution u of (2.10) belongs to Gm(Ω). Then it
is also contained in GmΣ (Ω) and we have∑
|α|≤m
α3=0

‖∂αu‖2G0
γ(Ω) + γ ‖u‖2Hmta,γ(Ω) + ‖ trτ u‖2Hmγ (Γ) (3.3)

≤ Cta
m,0

[m−1∑
j=0

‖∂jt f(0)‖2Hm−1−j(R3
+) + ‖u0‖2Hm(R3

+) + δm>2ρ
2 ‖B1u‖2L∞γ (Γ)

]
+ c ‖g‖2Hmγ (Γ) +

Cta
m

γ

(
‖f‖2Hmta,γ(R3

+) + ‖u‖2Gmγ (Ω)

)
for all γ ≥ γ0, where Cta

m = Cta
m (η, r, T ′), Cta

m,0 = Cta
m,0(η, r0, ‖b‖∞), and c =

c(η,m, ‖b‖∞). If b even belongs to b ∈ F m̃η (Γ)3×3 with norm less or equal r,
then one can set ρ = 0 in the above inequality.
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Proof. Let α ∈ N4
0 with |α| ≤ m and α3 = 0. We use the differential oper-

ator L = Li(A0, A1, A2, A
co
3 , D) from (2.11). Let j ∈ {0, 1, 2}. Exactly as in

Lemma 3.2 of [22] we derive the equations

L∂αu = fα, x ∈ R3
+, t ∈ J,

∂αu(0) = u0,α, x ∈ R3
+,

for the functions

fα = ∂αf −
2∑
j=0

∑
0<β≤α

(
α

β

)
∂βAj∂

α−β∂ju−
∑

0<β≤α

(
α

β

)
∂βD∂α−βu,

u0,α = ∂αu(0) = ∂(0,α1,α2,0)Sm,α0,Ak,D(0, u0, f),

where we used A3 = Aco
3 . Moreover, fα is an element of Hm−|α|(Ω) and u0,α of

Hm−|α|(R3
+) satisfying

‖fα‖L2
γ(Ω) ≤ ‖f‖Hmta,γ (Ω) + c(m, r, T ′) ‖u‖Gm(Ω), (3.4)

‖u0,α‖Hm−|α|(R3
+) ≤ c(η,m, r0)

(m−1∑
k=0

‖∂kt f(0)‖Hm−1−k(R3
+) + ‖u0‖Hm(R3

+)

)
.

In particular, ∂αu has a tangential trace in H−1/2(Γ). On the other hand, we
can apply ∂j to trt ∂

α−eju = (−∂α−eju2, ∂
α−eju1, 0,−∂α−eju5, ∂

α−eju4, 0) in

H−1/2(Γ) and obtain ∂j trt ∂
α−eju = trt ∂

αu for j ∈ {0, 1, 2}. The boundary
condition in (2.10) thus leads to the equation

B∂αu = gα := ∂αg + ν ×
∑

0<β≤α

(
α

β

)
∂βb trt ∂

α−βu1

on Γ. We bound the terms of this sum in L2(Γ), at first for b ∈ F m̃H,η(Γ). We
use the trace theorem in the form

‖ tr v‖2
H1/2(∂R3

+)
≤ κ ‖v‖2H1

ta(R3
+) + cκ−1 ‖∂3v‖2L2(R3

+) (3.5)

for any κ > 0, which can easily be derived using the Fourier transform.
Let 2 ≤ |β| ≤ m̃−1. Then the norm of ∂βb in L∞(J, L2(∂R3

+)) is less or equal

‖b‖F m̃−1 , whereas v := e−γ trt ∂
α−βu1 can be estimated in L2(J,H3/2(∂R3

+)) ↪→
L2(J, L∞(∂R3

+)) and thus, after taking squares, by

εγ ‖u‖2Hmta,γ(Ω) + c(εγ)−1 ‖u‖2Hmγ (Ω) ≤ εγ ‖u‖
2
Hmta,γ(Ω) + cT ′(εγ)−1 ‖u‖2Gmγ (Ω),

using (3.5) with κ = εγ and any ε > 0. If |β| = 1 we argue similarly, invoking
the spaces L∞(J,H1(∂R3

+)) ↪→ L∞(J, L4(∂R3
+)) for b and L2(J,H1(R3

+)) for v.
The cases m ∈ {1, 2} are thus settled. It remains to consider the case m ≥ 3

and α = β. We can now only use the L2-norm of ∂βb and bound v by its
sup-norm which is dominated by ‖u‖L∞γ (J,H2(R3

+)). We conclude

‖gα‖2L2
γ(Γ) (3.6)

≤ ‖g‖2Hmγ (Γ)+c(m, r)
[
εγ‖u‖2Hmta,γ(Ω)+T ′(εγ)−1‖u‖2Gmγ (Ω)

]
+c(m)ρ2‖ trtu

1‖2L∞γ (Γ).

The last term disappears if m ∈ {1, 2}.
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Since gα · ν = 0, Proposition 3.1 shows that trτ ∂
αu ∈ L2(Γ) and that

‖∂αu‖2G0
Σ(Ω) + γ ‖∂αu‖2L2(Ω) ≤ c

(
c(r0) ‖u0,α‖2L2(R3

+) + 1
γ ‖fα‖

2
L2
γ(Ω) + ‖gα‖2L2

γ(Γ)

)
for a constant c = c(η, ‖b‖∞) and all γ ≥ γ0(η, r). We now insert estimates
(3.4) and (3.6). Fixing a small number ε = ε(η,m, r) > 0, one can absorb the
second term in the right-hand side in (3.6) by the above left-hand side. The
assertion follows.

If b belongs to F m̃η,cp(Γ), then we can always estimate ∂βb in L∞(J, L2(∂R3
+)),

so that (3.6) is true without the last term and we can proceed as above. �

The normal derivatives can be treated by means of Proposition 3.3 of [22]
which is independent of the boundary condition. The full apriori estimate now
follows by an induction argument.

Theorem 3.3. Let t0 = 0, T ∈ (0, T ′), ρ, η > 0, r ≥ r0 > 0, and m ∈ N.
Take coefficients A0 ∈ F m̃η (Ω), A1, A2 ∈ F m̃cf (R3

+), A3 = Aco
3 , D ∈ F m̃(Ω), and

b ∈ F m̃H,η(Γ) satisfying

‖Ai‖F m̃(Ω) ≤ r, ‖D‖F m̃(Ω) ≤ r, ‖b‖F m̃−1(Γ) ≤ r, [b]Hm̃(Γ) ≤ ρ,

max{‖Ai(0)‖F m̃−1,0(R3
+), max

1≤j≤m−1
‖∂jtA0(0)‖Hm̃−1−j(R3

+)} ≤ r0,

max{‖D(0)‖F m̃−1,0(R3
+), max

1≤j≤m−1
‖∂jtD(0)‖Hm̃−1−j(R3

+)} ≤ r0

for all i ∈ {0, 1, 2}. Choose data u0 ∈ Hm(R3
+)6, f ∈ Hm(Ω)6, and g ∈ Hm(Γ)3

with g · ν = 0. Assume that the solution u of (2.10) belongs to Gm(Ω). Then it
is also contained in GmΣ (Ω) and there is a number γm = γm(η, r, T ′) ≥ γ0 with

‖u‖2Gmγ (Ω) + γ ‖u‖2Hmta,γ(Ω) + ‖ trτ u‖2Hm(Γ) (3.7)

≤ (Cm,0 + TCm)emC1T
(m−1∑
j=0

‖∂jt f(0)‖2Hm−1−j(R3
+) + ‖u0‖2Hm(R3

+) + ‖g‖2Hmγ (Γ)

+ δm>2ρ
2 ‖B1u‖2L∞γ (Γ)

)
+
Cm
γ
‖f‖2Hmγ (Ω)

for all γ ≥ γm, where Cm = Cm(η, r, T ′) ≥ 1, Cm,0 = Cm,0(η, r0, ‖b‖∞) ≥ 1,
and C1 = C1(η, r, T ′) does not depend on m. If b even belongs to b ∈ F m̃η (Γ)3×3

with norm less or equal r, then one can set ρ = 0 in the above inequality.

Proof. For m = 1 the result follows from Proposition 3.3 of [22], Proposition 3.1
and Lemma 3.2, after choosing γ1(η, r, T ′) ≥ γ0 large enough. We now assume
that m ≥ 2 and that the assertion has been shown for m − 1, keeping the
assumptions on the coefficients.

Following the proof of Theorem 3.4 of [22], we apply the derivative ∂p with
p ∈ {0, 1, 2} to (2.10). The function ∂pu then satisfies

L(Aj , D)∂pu = fp := ∂pf −
2∑
i=0

∂pAi∂iu− ∂pDu on Ω,

B∂pu = gp := ∂pg + ν × (∂pb trt u
1) on Γ, (3.8)
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∂pu(0) = u0,p := ∂pu0 on R3
+,

where ∂0u0 = Sm,1,Aj ,D(0, u0, f). The functions fp and u0,p belong to Hm−1 as
shown in the proof of Theorem 3.4 of [22]. As in (3.6) we infer

‖gp‖2Hm−1
γ (Γ)

(3.9)

≤ ‖g‖2Hmγ (Γ)+c(m, r)
[
εγ‖u‖2Hmta,γ(Ω)+T ′(εγ)−1‖u‖2Gmγ (Ω)

]
+c(m)ρ2‖ trtu

1‖2L∞γ (Γ),

where the last term vanishes if m = 2 or if b ∈ F m̃η (Γ). We apply the induction
hypothesis to (3.8) and insert (3.9) as well as Lemma 2.3 and estimates (3.36)
and (3.37) of [22]. It follows

‖u‖2
Gm−1
γ (Ω)

+ γ ‖u‖2Hmta,γ(Ω) + ‖ trτ u‖2Hm(Γ) +
2∑
p=0

‖∂pu‖2Gm−1
γ (Ω)

(3.10)

≤ (C ′m,0+TC ′m)e(m−1)C1T
[m−1∑
j=0

‖∂jt f(0)‖2Hm−1−j(R3
+) + ‖u0‖2Hm(R3

+) + ‖g‖2Hmγ (Γ)

+ δm>2ρ
2 ‖B1u‖2L∞γ (Γ)

]
+
C ′m
γ

(‖f‖2Hmγ (Ω) + ‖u‖2Gmγ (Ω)),

where we already have absorbed the term c(m, r)εγ ‖u‖2Hmta,γ(Ω) by the left-hand

side fixing a small ε = ε(m, η, r) > 0. Exactly as in (3.42) of [22], we can bound
the remaining derivative by

‖∂m3 u‖2G0
γ(Ω) ≤ (C ′m,0 + TC ′m)eC1T

( 2∑
p=0

‖∂pu‖2Gm−1
γ (Ω)

+ ‖f(0)‖2Hm−1(R3
+)

+ ‖u0‖2Hm(R3
+)

)
+
C ′m
γ

(‖f‖2Hmγ (Ω) + ‖u‖2Gmγ (Ω)). (3.11)

For γ ≥ γm and a sufficiently large γm = γm(η, r, T ′), the inequalities (3.10)
and (3.11) imply (3.7). �

Using the trace theorem and the estimate (3.7) for m = 2, we can get rid of
the extra term in this inequality.

Corollary 3.4. Let the assumptions of Theorem 3.3 be true with m ≥ 3 and
r ≥ ρ. Using the notation of this theorem, we obtain

‖u‖2Gmγ (Ω) + γ ‖u‖2Hmta,γ(Ω) + ‖ trτ u‖2Hm(Γ) (3.12)

≤ (Cm,0 + TCm)emC1T
(m−1∑
j=0

‖∂jt f(0)‖2Hm−1−j(R3
+) + ‖u0‖2Hm(R3

+) + ‖g‖2Hmγ (Γ)

)
+ Cme(m+2)C1T

[
‖u0‖2H2(R3

+) + ‖f(0)‖2H1(R3
+) + ‖∂tf(0)‖2L2(R3

+) + ‖g‖2H2
γ(Γ)

]
+
Cm
γ
‖f‖2Hmγ (Ω).

Unfortunately, the estimate (3.12) does not fit to the nonlinear fixed point
argument since the constants in front of the data in [. . . ] depend on r and thus
on the size of functions inserted in the fixed point operator, see (5.20).
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4. Linear regularity results

We still have to construct solutions of the linear problem (2.5) in the class
GmΣ . In view of the localization procedure, we can focus on the halfspace case
(2.10). We start with the L2-solution from Proposition 3.1 and regularize it
in normal, tangential, and time directions differently. The apriori estimates
from the previous section then allow us to pass to the limit and derive the
required smoothness. Again we follow the procedure of the paper [22]. We can
directly use its results concerning normal regularity, namely Lemma 4.1 and
Corollary 4.2, since they do not involve boundary conditions.

To regularize in spatial tangential variables, we make use of the norms

‖v‖2Hkta(R3
+)

=

∫
R+

∫
R2

(1 + |ξ|2)k|(F2v)(ξ, x3)|2 dξ dx3,

‖v‖2Hkta,δ(R3
+)

=

∫
R+

∫
R2

(1 + |ξ|2)k+1(1 + |δξ|2)−1|(F2v)(ξ, x3)|2 dξ dx3

for k ∈ Z, δ > 0, and functions v ∈ S ′(R3
+) whose Fourier transform F2v in

(x1, x2) belongs to L2
loc(R3

+). The space Hkta(R3
+) consists of those v with finite

norm ‖v‖Hkta(R3
+). For k ∈ N0 we obtain the standard tangential Sobolev spaces

as defined before. (See Sections 1.7 and 2.4 in [11].) The norm of Hk+1
ta (R3

+)

dominates that of Hkta,δ(R3
+). Conversely, if ‖v‖Hkta,δ(R3

+) is bounded as δ → 0,

then v is contained in Hk+1
ta (R3

+), see (2.4.4) in [11].
To construct mollifiers, we take a map χ ∈ C∞c (R2) such that F2χ(ξ) =

O(|ξ|m+1) as ξ → 0 and F2χ(tξ) = 0 for all t ∈ R implies ξ = 0. Set χε(x) =
ε−2χ(ε−1x) for all x ∈ R2 and ε > 0. The convolution in spatial tangential
variables (x1, x2) by χε is called Jε. We collect the properties of Jε in the
above norms which follow from Theorems 2.4.5 and 2.4.6 in [11]. There it was
assumed that the coefficient A belongs to Schwartz’ class. An inspection of the
proofs in [11] shows that it suffices to require the regularity stated below.

Lemma 4.1. Let k ∈ {0, . . . ,m}, δ ∈ (0, 1), v ∈ Hk−1
ta (R3

+), and A ∈ Fm(R3
+)

with ∂αA ∈ L2(R3
+) for all α ∈ N3

0. Then there are constants c, C > 0 not
depending on δ and v such that

c ‖v‖2Hk−1
ta,δ (R3

+)
≤ ‖v‖2Hk−1

ta (R3
+)

+

∫ 1

0
‖Jεv‖2L2(R3

+) ε
−2k−1

(
1 +

δ2

ε2

)−1
dε

≤ C ‖v‖2Hk−1
ta,δ (R3

+)
,∫ 1

0
‖AJεv − Jε(Av)‖2L2(R3

+) ε
−2k−1

(
1 +

δ2

ε2

)−1
dε ≤ C ‖v‖2Hk−2

ta,δ (R3
+)
.

We also use the analogous results on R2 ∼= ∂R3
+ (dropping the subscript

ta) which are taken from Theorems 2.4.1 and 2.4.2 of [11]. Because of the
above lemma, for some time we have to work with smooth coefficients whose
derivatives of arbitrary order belong to L2. An approximation argument will
bring us back to limited regularity of the coefficients later. The next result
provides tangential regularity.
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Lemma 4.2. Let η > 0 and m ∈ N. Take A0 ∈ F m̃η (Ω), A1, A2 ∈ F m̃cf (R3
+),

A3 = Aco
3 , D ∈ F m̃(Ω), and b ∈ F m̃H,η(Γ). We further assume that ∂αAi, ∂

αD ∈
L2(Ω) and ∂βb ∈ L2(Γ) for all α ∈ N4

0, β ∈ N3
0, and i ∈ {0, 1, 2}. Choose

data u0 ∈ Hm(R3
+), f ∈ Hmta(Ω), and g ∈ Hm(Γ) with g · ν = 0. Let u

be the solution of (2.10) from Proposition 3.1. Suppose that u belongs to⋂m
j=1C

j(J,Hm−j(R3
+)) and trτ u to

⋂m
j=1Hj(J,Hm−j(∂R3

+)). Then u is an

element of C(J,Hmta(R3
+)) and trτ u of L2(J,Hm(∂R3

+)).

Proof. 1) We first show that u belongs to L∞(J,Hmta(R3
+)) and trτ u to

L2(J,Hm(∂R3
+)). Let ε, δ ∈ (0, 1) and γ > 0. The generic constants below

do not depend on δ or γ. We let t0 = 0 for simplicity.
Applying the operators L = L(A0, A1, A2, A

co
3 , D) and B = Bco

2 − ν × bBco
1

to Jεu, we obtain

LJεu = Jεf +
2∑
j=0

[Aj , Jε]∂ju+ [D,Jε]u on Ω,

BJεu = Jεg − ν × [b, Jε]B
co
1 u on Γ,

(4.1)

where [Aj , Jε] = AjJε−JεAj etc. Lemma 4.1 implies the commutator estimate∫
J
e−2γt

∫ 1

0
‖[Aj , Jε]∂ju(t)‖2L2(R3

+) ε
−2m−1

(
1 +

δ2

ε2

)−1
dεdt (4.2)

≤ c
(
‖u‖2

L2
γ(J,Hm−1

ta,δ (R3
+))

+ ‖∂tu‖2Hm−1
γ (Ω)

)
for all j ∈ {0, 1, 2}. The other commutators are treated analogously. In partic-
ular, LJεu is an element of L2(Ω), Jεu0 of L2(R3

+), and BJεu of L2(Γ). Hence,
the apriori estimate from Proposition 3.1 can be applied to Jεu. We first use
Lemma 4.1 to derive

Sδ := sup
t∈J

e−2γt‖u(t)‖2Hm−1
ta,δ (R3

+)
+

∫ T

0
e−2γt‖ trτ u(t)‖2Hm−1

δ (R2)
dt (4.3)

≤ c sup
t∈J

e−2γt
(
‖u(t)‖2Hm−1

ta (R3
+)

+

∫ 1

0
‖Jεu(t)‖2L2(R3

+) ε
−2m−1

(
1 +

δ2

ε2

)−1
dε
)

+ c

∫ T

0
e−2γt‖ trτ u(t)‖2Hm−1(R2) dt

+ c

∫ 1

0

∫ T

0
e−2γt‖ trτ Jεu(t)‖2L2(R2) dt ε−2m−1

(
1 +

δ2

ε2

)−1
dε

≤ c
(
‖u‖2

Gm−1
γ (Ω)

+ ‖ trτ u‖2Hm−1
γ (Γ)

+

∫ 1

0
[‖Jεu‖2G0

γ(Ω) + ‖Jε trτ u‖2L2
γ(Γ)]

· ε−2m−1
(

1 +
δ2

ε2

)−1
dε
)
.

By Proposition 3.1 and (4.1) there are constants C0, γ0 > 0 such that the term
in brackets [. . . ] is bounded by C0 times

‖Jεu0‖2L2(R3
+) +

∫ T

0
e−2γt

(
‖Jεg(t)‖2L2(R2) + ‖[b, Jε]Bco

1 u(t)‖2L2(R2)

)
dt
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+
1

γ

∫ T

0
e−2γt

[
‖Jεf(t)‖2L2(R3

+)+‖[D,Jε]u(t)‖2L2(R3
+)+

2∑
j=0

‖[Aj ,Jε]∂ju(t)‖2L2(R3
+)

]
dt

for all γ ≥ γ0. We insert these quantities in (4.3) and interchange dt and dε.
Combined with Lemma 4.1 and (4.2), it follows

Sδ ≤ c
[
‖u‖2

Gm−1
γ (Ω)

+ ‖ trτ u‖2Hm−1
γ (Γ)

+ ‖u0‖2Hm(R3
+) + γ−1

(
‖f‖2Hmγ (Ω) (4.4)

+ ‖u‖2
L2
γ(J,Hm−1

ta,δ (R3
+))

+ ‖∂tu‖2Hm−1
γ (Ω)

)
+ ‖g‖2Hmγ (Γ)+ ‖ trτ u‖2L2

γ(J,Hm−2
δ (R2))

]
.

The last summand is bounded by ‖ trτ u‖2Hm−1
γ (Γ)

. We can absorb the term with

u in the regularized norm by the left-hand side choosing a sufficiently large γ,
depending on T ′. As a result, the quantity Sδ is bounded uniformly in δ ∈ (0, 1).
We conclude that u belongs to L∞(J,Hmta(R3

+)). Fatou’s lemma further yields

‖ trτ u‖2L2
γ(J,Hm(R2)) =

∫ T

0
e−2γt

∫
R2

(1 + |ξ|2)m |F2(trτ u)(t, ξ)|2 dξ dt

≤ lim inf
δ→0

∫ T

0
e−2γt

∫
R2

(1 + |ξ|2)m(1 + |δξ|2)−1 |F2(trτ u)(t, ξ)|2 dξ dt

= lim inf
δ→0

‖ trτ u‖2L2
γ(J,Hm−1

δ (R2))
.

The right-hand side is finite because of estimate (4.4), and so trτ u belongs to
L2
γ(J,Hm(∂R3

+)).

2) Step 1) and Corollary 4.2 of [22] imply that u is an element of Hm(Ω). To
show u ∈ C(J,Hmta(R3

+)), we fix α ∈ N4
0 with |α| = m and α0 = α3 = 0. Using

that u ∈ Hm(Ω) solves (2.10) and that trτ u ∈ Hm(Γ), we derive

L∂αu = ∂αf −
2∑
j=0

∑
0<β≤α

(
α

β

)
∂βAj ∂

α−β∂ju−
∑

0<β≤α

(
α

β

)
∂βD∂α−βu =: fα,

B∂αu = ∂αg + ν ×
∑

0<β≤α

(
α

β

)
∂βb trt ∂

α−βu1 =: gα,

∂αu(0) = ∂αu0.

The function fα belongs to L2(Ω), gα to L2(Γ), and ∂αu0 to L2(R3
+), cf. (3.4)

and (3.6). Proposition 3.1 then shows that ∂αu is contained in G0(Ω), as
required. �

The next lemma allows us to gain one derivative in time. In the proof one
constructs a solution v to the initial boundary value problem which ∂tu formally
satisfies. One then checks that the time integral of v coincides with u. Here
and in the next proposition the compatibility conditions enter in a crucial way.

Lemma 4.3. Let η > 0 and J = (t0, T ). Take coefficients A0 ∈ F 3
η (Ω),

A1, A2 ∈ F 3
cf(R3

+), A3 = Aco
3 , D ∈ F 3(Ω), and b ∈ F 3

H,η(Γ). Choose data

u0 ∈ H1(R3
+), f ∈ H1(Ω), and g ∈ H1(Γ) with g · ν = 0. Assume that the tu-

ple (t0, A0, A1, A2, A3, D, b, u0, f, g) fulfills the compatibility conditions (2.20) of
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order 1. Let u be the solution of (2.10) from Proposition 3.1. Assume that u be-
longs to G1

Σ(J ′×R3
+) whenever u ∈ C1(J ′, L2(R3

+)) and trτ u ∈ H1(J ′, L2(∂R3
+))

for every open interval J ′ ⊆ J . Then u is contained in G1
Σ(Ω).

Proof. 1) Without loss of generality we assume J = (0, T ). Take r > 0 with

‖Ai‖F 3(Ω) ≤ r, ‖D‖F 3(Ω) ≤ r, ‖b‖F 3
H(Ω) ≤ r,

max{‖Ai(t)‖F 2,0(R3
+), max

j∈{1,2}
‖∂jtA0(t)‖H2−j(R3

+)} ≤ r,

max{‖D(t)‖F 2,0(R3
+), max

j∈{1,2}
‖∂jtD(t)‖H2−j(R3

+)} ≤ r

for all i ∈ {0, 1, 2} and t ∈ J . Let γ = γ1(η, r, T ) ≥ 1 be defined by Theorem 3.3.
We further choose a number C0 = C0(η, r, T ) ≥ 1 dominating the constants
in (2.16), Proposition 3.1, and Theorem 3.3. We finally set

R1 = e2γTC0(‖f‖2G0
γ(Ω) + ‖f‖2H1

γ(Ω) + ‖g‖2H1
γ(Γ) + ‖u0‖2H1(R3

+)).

2) Take an initial time t0 ∈ J and assume that u(t0) belongs to H1(R3
+) with

‖u(t0)‖2H1(R3
+)
≤ R1. Choose a time step

0 < Ts ≤ min{1, (6C0r
2)−1}.

Following the proof of Lemma 4.5 of [22], we want to construct a function v in
C([t0, T

′
s], L

2(R3
+)) satisfying

L̃v = ∂tf − ∂tD
(∫ t

t0

v(s) ds+ u(t0)
)

on Ω′,

Bv = ∂tg + ν × ∂tb
(∫ t

t0

Bco
1 v(s) ds+Bco

1 u(t0)
)

on Γ′, (4.5)

v(t0) = S1,1,Aj ,D(t0, f, u(t0)) =: v0 on R3
+.

Here we define T ′s = min{t0 +Ts, T}, J ′ = (t0, T
′
s), Ω′ = J ′×R3

+, Γ′ = J ′×∂R3
+,

and L̃ = L(A0, A1, A2, A3, ∂tA0 +D). To solve (4.5), we set

R = (4C2
0 (1 + C0) + 6 + 6C0(1 + c2

tr)r
2)R1 ≥ R1,

where ctr is the norm of the trace operator from H1(R3
+) to L2(∂R3

+). Let E

be the closed ball in G0
Σ,γ(Ω′) with radius R1/2 and center 0. Take w ∈ E. We

look at the problem

L̃v = ∂tf − ∂tD
(∫ t

t0

w(s) ds+ u(t0)
)

=: fw on Ω′,

Bv = ∂tg + ν × ∂tb
(∫ t

t0

Bco
1 w(s) ds+Bco

1 u(t0)
)

=: gw on Γ′, (4.6)

v(t0) = v0 on R3
+.

Note that the data in the above problem fulfill the assumptions of Proposi-
tion 3.1. (Use Lemma 2.3 of [22] for the initial value.) This proposition thus
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provides a unique solution Φ(w) ∈ G0
Σ,γ(Ω′) of (4.6). As in step I in the proof

of Lemma 4.5 of [22], Proposition 3.1 and (2.16) imply that

‖Φ(w)‖2G0
Σ,γ(Ω′) ≤ C0

(
‖v0‖2L2(R3

+) + ‖fw‖2L2
γ(Ω′) + ‖gw‖2L2

γ(Γ′)

)
≤ 2C3

0 (‖f(0)‖2L2(R3
+) + ‖u(t0)‖2H1(R3

+)) + 3C0 (‖∂tf‖2L2
γ(Ω′) + ‖∂tg‖2L2

γ(Γ′))

+ 3C0r
2

∫ T ′s

t0

e−2γt
[
Ts

∫ t

t0

(
‖w(s)‖2L2(R3

+) + ‖ trτ w(s)‖2L2(∂R3
+)

)
ds

+ ‖u(t0)‖2L2(R3
+) + ‖ trτ u(t0)‖2L2(∂R3

+)

]
dt

≤ 2C2
0 (1 + C0)R1 + 3R1 + 3C0(1 + c2

tr)r
2R1Ts + 3C0r

2Ts ‖w‖2G0
Σ,γ(Ω′) ≤ R.

Hence, Φ maps E into itself. In a similar way we estimate

‖Φ(w)− Φ(ŵ)‖2G0
Σ,γ(Ω′) ≤ C0 (‖fw − fŵ‖2L2

γ(Ω′) + ‖gw − gŵ‖2L2
γ(Γ′))

≤ r2C0Ts ‖w − ŵ‖2G0
Σ,γ(Ω′) ≤

1
6 ‖w − ŵ‖

2
G0

Σ,γ(Ω′)

for all w, ŵ ∈ E. The contraction mapping principle thus gives a unique function
v ∈ E solving (4.5).

3) In this step we assume that u(t0) belongs to H1(R3
+) with ‖u(t0)‖2H1(R3

+)
≤

R1 and that the tuple (t0, A0, A1, A2, A3, D, b, f, g, u(t0)) fulfills the compatibil-
ity conditions (2.20) of order one; i.e., B(t0)u(t0) = g(t0) on ∂R3

+. We use the
solution v ∈ G0

Σ(Ω′) of (4.5) on the time interval J ′ from part 2) and define

w(t) = u(t0) +

∫ t

t0

v(s) ds

for t ∈ J ′. Step II) of the proof of Lemma 4.5 of [22] shows that L(Aj , D)w = f
on Ω′ and w(t0) = u(t0). Using also (4.5), we compute

B(t)w(t) = B(t0)u(t0) + (B(t)−B(t0))u(t0) +

∫ t

t0

Bco
2 v(s) ds

+ (b(t)Bco
1 (w(t)− u(t0))× ν

= g(t0) + (b(t)− b(t0))Bco
1 u(t0)× ν + (b(t)Bco

1 (w(t)− u(t0))× ν

+

∫ t

t0

∂tg(s) ds−
∫ t

t0

(∂tb(s)B
co
1 w(s) + b(s)Bco

1 ∂tw(s))× ν ds

= g(t)

for t ∈ J ′. The uniqueness statement in Proposition 3.1 thus yields that u = w
on J ′ (where we use the obvious variant of this result with initial time t0). We
conclude that u ∈ C1(J ′, L2(R3

+)) and trτ u ∈ H1(J ′, L2(∂R3
+)) as trτ commutes

with integration in time, and hence u belongs to G1
Σ(Ω′) by the assumption.

The assertion now follows by an iteration argument as in Step III) of the
proof in Lemma 4.5 of [22]. (Here the exponential factor in the definition of R1

comes into play.) �

For smooth coefficients we now obtain the desired regularity properties on R3
+.
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Proposition 4.4. Let η > 0 and m ∈ N. Take A0 ∈ F m̃η (Ω) with ∂tA0 ∈
F

max{m−1,3}
η (Ω), A1, A2 ∈ F m̃cf (R3

+), A3 = Aco
3 , D ∈ F m̃(Ω), and b ∈ F m̃H,η(Γ).

We assume that ∂αAi, ∂
αD ∈ L2(Ω) and ∂βb ∈ L2(Γ) for all α ∈ N4

0, β ∈ N3
0,

and i ∈ {0, 1, 2}. Choose data u0 ∈ Hm(R3
+)6, f ∈ Hm(Ω)6, and g ∈ Hm(Γ)3

with g · ν = 0 such that the tuple (t0, Aj , D, b, u0, f, g) fulfills the compatibility
conditions (2.20) of order m. Then the solution u of (2.10) from Proposition 3.1
belongs to GmΣ (Ω).

Proof. We proceed as in the proof of Proposition 4.7 of [22], letting t0 = 0 for
simplicity. The result for m = 1 is a consequence of the two previous lemmas
and Lemma 4.1 of [22]. We assume that we have shown the assertion for some
m ∈ N and that the assumptions are satisfied for m+ 1. Hence the solution u
of (2.10) belongs to GmΣ (Ω). With the notation of the proof of Lemma 4.3, we
see that the function v = ∂tu fulfills

L̃v = ∂tf − ∂tDu =: fu on Ω′,

Bv = ∂tg + ν × ∂tbBco
1 u =: gu on Γ′, (4.7)

v(0) = Sm+1,1,Aj ,D(0, u0, f) =: v0 on R3
+.

As in the proof of Proposition 4.7 of [22] one can check that the coefficients and
data in (4.7) satisfy the regularity assumptions of the induction hypothesis. For
the compatibility conditions, we note that Lemma 4.6 of [22] yields

Sm,p,Aj ,D̃(0, v0, fu) = Sm+1,p+1,Aj ,D(0, u0, f)

for all p ∈ {0, 1, . . . ,m − 1} and D̃ := ∂tA0 + D. Equations (2.12) and (2.20)
thus imply

B(0)Sm,p,Aj ,D̃(0, v0, fu) = B(0)Sm+1,p+1,Aj ,D(0, u0, f) (4.8)

= ∂p+1
t g(0) + ν ×

p+1∑
k=1

(
p+ 1

k

)
∂kt b(0)Bco

1 ∂
p+1−k
t u(0).

On the other hand, by means of v = ∂tu we calculate

∂pt gu(0)+ ν ×
p∑

k=1

(
p

k

)
∂kt b(0)Bco

1 ∂
p−k
t v(0)

= ∂p+1
t g(0) + ν ×

p∑
k=0

(
p

k

)
∂k+1
t b(0)Bco

1 ∂
p−k
t u(0)

+ ν ×
p∑

k=1

(
p

k

)
∂kt b(0)Bco

1 ∂
p−k+1
t u(0)

= ∂p+1
t g(0) + ν ×

p+1∑
k=1

(
p+ 1

k

)
∂kt b(0)Bco

1 ∂
p+1−k
t u(0).

Combined with (4.8), we have established the compatibility condition (2.20) of
order m for (4.7).

22



The induction hypothesis now shows that ∂tu belongs to GmΣ (Ω). By
Lemma 4.1 of [22], Lemma 4.2, and the fact that trτ commutes with differ-
entiation in time, the map u is thus contained in Gm+1

Σ (Ω). �

Above we have assumed extra smoothness of the coefficients. This assumption
can be removed by an approximation argument. Take A0 ∈ F m̃η (Ω), A1, A2 ∈
F m̃cf (R3

+), A3 = Aco
3 , D ∈ F m̃(Ω), and b ∈ F m̃H,η(Γ). Using standard methods,

one constructs functions A0,ε ∈ F m̃η (Ω), A1,ε, A2,ε ∈ F m̃cf (R3
+), Dε ∈ F m̃(Ω), and

bε ∈ F m̃H,η(Γ) for ε > 0, which are uniformly bounded in the respective F–space
and tend uniformly to A0, A1, A2, D and b, respectively, as ε → 0. Moreover,
all their partial derivatives are contained in the respective F–space and thus
in L2. The analogous results are true for A0,ε(0) and Dε(0) with m̃ replaced by
m̃− 1. (Compare Lemma 2.2 of [22].)

We again choose data u0 ∈ Hm(R3
+), f ∈ Hm(Ω), and g ∈ Hm(Γ) with g ·ν =

0 such that the tuple (0, A0, A1, A2, A3, D, b, u0, f, g) fulfills the compatibility
conditions (2.20) of order m. To use the approximating coefficients, one has to
modify the initial value in such a way that (2.20) is still satisfied.

Lemma 4.5. Under the above assumptions, there is a number ε0 > 0 and func-
tions u0,ε in Hm(R3

+) for ε ∈ (0, ε0] such that the compatibility conditions (2.20)
of order m are satisfied by the tuple (0, A0,ε, A1,ε, A2,ε, A3, Dε, bε, u0,ε, f, g).
Moreover, the new initial values u0,ε tend to u0 in Hm(R3

+) as ε→ 0.

Proof. Slightly modifiying the notation in (2.12), (2.13) and (2.20), we set

Slin
m,p(u0) = Sm,p,Aj ,D(0, u0, f) = ∂pt u(0)

for p ∈ {0, . . . ,m− 1} as t0 = 0 and f remain fixed. We further define

B =
(
−I Bco

0 b(0)
)

and Bε =
(
−I Bco

0 bε(0)
)
.

The compatibility conditions (2.20) can be rewritten as

BAco
3 S

lin
m,p(u0) = ∂pt g(0) + ν ×

p∑
k=1

(
p

k

)
∂kt b(0)Bco

1 S
lin
m,p−k(u0), (4.9)

BAco
3

[
Slin
m,p(u0) +

(
0,

p∑
k=1

(
p

k

)
∂kt b(0)Bco

1 S
lin
m,p−k(u0)

)T ]
= ∂pt g(0)

on ∂R3
+. Here and below, sums from 1 to 0 or from 0 to −1 are defined as

zero. Here we understand Bco
1 just as matrix and not as a trace operator. Since

∂kt b(0) ∈ Hm̃−k−1/2(R2) for all k ∈ {0, . . . , m̃− 1}, Theorem 2.5.7 in [11] yields

a function b̃ ∈ Hm̃(R3
+) such that tr∂R3

+
∂k3 b̃ = ∂kt b(0) for all k ∈ {0, . . . , m̃− 1}.

In particular, we can extend ∂kt b(0) by ∂k3 b̃ to a function in Hm̃−k(R3
+). We

write S̃lin
m,p(u0) for the term [. . . ] in (4.9), where we extend it to a function on

R3
+ as described above. Following (4.35) of [22], this term is expanded as

S̃lin
m,p(u0) = Ap∂p3u0 +

p−1∑
j=0

C̃p,p−j∂
j
3u0 + B̃pf, (4.10)
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where A := −A0(0)−1A3, the tangential differential operators C̃p,p−j belong

to B(Hm−j(R3
+),Hm−p(R3

+)) and B̃p is an element of B(Hm(Ω),Hm−p(R3
+)).

These mapping properties can be shown using Lemma 2.1 and (4.35) of [22]

and the regularity of ∂k3 b̃.

By Bε, S̃lin
m,p,ε, Aε and C̃p,p−j,ε we denote the variants of the above operators

for Aj,ε, Dε and b̃ε, where we obtain b̃ε as b̃ above. As in the previous paragraph,

one sees that the functions C̃p,p−j,ε are bounded in B(Hm−j(R3
+),Hm−p(R3

+))
uniformly in ε > 0 by the properties of the coefficients. We further note that
∂kt bε(0) converges to ∂kt b(0) as ε → 0, since bε tends to b in Hm̃(Γ). The

construction of b̃ε respectively b̃ in [11] thus yields that b̃ε converges to b̃ in

Hm̃(R3
+) as ε→ 0. One can thus show that in Hm−p(R3

+) the maps S̃lin
m,p,ε(u0)

tend to S̃lin
m,p(u0) and (b̃− b̃ε)B1S̃

lin
m,p(u0) to 0 as ε→ 0.

We are looking for functions u0,ε ∈ Hm(R3
+) satisfying

BεAco
3 S̃

lin
m,p,ε(u0,ε) = ∂pt g(0) = BAco

3 S̃
lin
m,p(u0) on ∂R3

+.

Let u0,ε = u0 + h for some h ∈ Hm(R3
+). The ε–variant of (4.10) yields

S̃lin
m,p,ε(u0 + h) = S̃lin

m,p,ε(u0) +Apε∂
p
3h+

p−1∑
j=0

C̃p,p−j,ε∂
j
3h.

We thus have to find a map h ∈ Hm(R3
+) solving

BεAco
3 Apε∂

p
3h = BεAco

3

[
S̃lin
m,p(u0)− S̃lin

m,p,ε(u0)−
p−1∑
j=0

C̃p,p−j,ε∂
j
3h
]

+ (B − Bε)Aco
3 S̃

lin
m,p(u0)

= BεAco
3

[
S̃lin
m,p(u0)− S̃lin

m,p,ε(u0)−
p−1∑
j=0

C̃p,p−j,ε∂
j
3h (4.11)

+
(
0, (b̃− b̃ε)Bco

1 S̃
lin
m,p(u0)

)T ]
.

Similar as in the proof of Lemma 4.8 in [22], we first construct functions
apε ∈ Hm−p(R3

+) for p ∈ {0, . . . ,m−1}, ε ∈ (0, ε0) and some ε0 > 0, which satisfy

the variant of (4.11) where we drop Bε and replace ∂j3h by ajε ∈ Hm−j(R3
+).

Moreover, the functions apε tend to 0 in Hm−p(R3
+) as ε→ 0.

This is done via induction over p. For p = 0, set a0
ε = (0, (b̃ − b̃ε)Bco

1 u0)T

in Hm(R3
+). Let the functions akε be constructed for 0 ≤ k ≤ p − 1 < m − 1.

The right-hand side of (4.11) without Bε is equal to Aco
3 vε for maps vε, which

tend to 0 in Hm−p(R3
+) as ε→ 0 by the above observations. Lemma 4.9 of [22]

now yields functions apε for ε ∈ (0, ε0] and some ε0 > 0 such that apε → 0 in
Hm−p(R3

+) as ε→ 0 and Aco
3 A

p
εa
p
ε = Aco

3 vε. So the maps apε exist.
Again by Theorem 2.5.7 in [11], we can find functions hε ∈ Hm(R3

+) satisfying
tr∂R3

+
∂p3hε = tr∂R3

+
apε for p ∈ {0, . . . ,m − 1}. Moreover, hε converges to 0 in

Hm(R3
+) as ε → 0. The maps hε thus satisfy (4.11) and u0,ε = u0 + hε fulfills

the variant of (4.9) for the approximating coefficients. �
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Based on the results established so far, we can now derive the desired regu-
larity result. Recall that we allow for G = R3

+.

Theorem 4.6. Let T ∈ (0, T ′), ρ, η > 0, r ≥ r0 > 0, and m ∈ N. Take
coefficients A0 ∈ F m̃η (J ×G), D ∈ F m̃(J ×G), A3 = Aco

3 , and b ∈ F m̃H,η(J ×Σ).

If G = R3
+, pick A1, A2 ∈ F m̃cf (R3

+). Otherwise, let A1 = Aco
1 and A2 = Aco

2 .
Assume that the coefficients satisfy

‖Ai‖F m̃(J×G) ≤ r, ‖D‖F m̃(J×G) ≤ r, ‖b‖F m̃−1(J×Σ) ≤ r, [b]Hm̃(J×Σ) ≤ ρ,

max{‖Ai(0)‖F m̃−1,0(J×G), max
j∈{1,...,m−1}

‖∂jtA0(0)‖Hm̃−1−j(G)} ≤ r0,

max{‖D(0)‖F m̃−1,0(J×G), max
j∈{1,...,m−1}

‖∂jtD(0)‖Hm̃−1−j(G)} ≤ r0,

for i ∈ {0, 1, 2}. Choose data u0 ∈ Hm(G)6, f ∈ Hm(J × G)6, and g ∈
Hm(J × Σ)3 with g · ν = 0 such that the tuple (0, A0, A1, A2, A3, D, b, u0, f, g)
fulfills the compatibility conditions (2.20) of order m.

Then there is a unique solution u ∈ GmΣ (J×G) of (2.5) and there is a number
γm = γm(η, r, T ′) ≥ 1 such that

‖u‖2Gmγ (J×G) + ‖ trτ u‖2Hm(J×Σ) (4.12)

≤ (Cm,0 + TCm)emC1T
(m−1∑
j=0

‖∂jt f(0)‖2Hm−1−j(G) + ‖u0‖2Hm(G) + ‖g‖2Hmγ (J×Σ)

+ δm>2ρ
2 ‖B1u‖2L∞γ (J×Σ)

)
+
Cm
γ
‖f‖2Hmγ (J×G)

for all γ ≥ γm and with constants Ci = Ci(η, r, T
′) ≥ 1 for i ∈ {1,m} and

Cm,0 = Cm,0(η, r0, ‖b‖∞) ≥ 1. If b even belongs to F m̃η,τ (J × Σ)3×3 with norm
less or equal r, then one can set ρ = 0 in the above inequality. For m ≥ 3 and
r ≥ ρ we further have the estimate

‖u‖2Gmγ (J×G) + ‖ trτ u‖2Hm(J×Σ) (4.13)

≤ (Cm,0 + TCm)emC1T
(m−1∑
j=0

‖∂jt f(0)‖2Hm−1−j(G) + ‖u0‖2Hm(G) + ‖g‖2Hmγ (J×Σ)

)
+ Cme(m+2)C1T

(
‖u0‖2H2(G) + ‖f(0)‖2H1(G) + ‖∂tf(0)‖2L2(G) + ‖g‖2H2

γ(J×Σ)

)
+
Cm
γ
‖f‖2Hmγ (J×G).

Proof. We only sketch the proof since it is very similar to those of Theorems 4.10
and 1.1 of [22]. We first treat the localized problem (2.10) on R3

+. We take

approximating data as in Lemma 4.5 for ε = 1
n . Proposition 4.4 then provides

solutions un ∈ GmΣ (Ω) which are uniformly bounded in this space due to (3.7)
and (3.12). From Banach-Alaoglu we thus obtain a weak∗ accumulation point

u of (un) which belongs to G̃mΣ (Ω). We apply (3.1) with the given coefficients to
the difference un − u. By means of the uniform convergence of the coefficients,
it follows that the maps un tend to u in G0

Σ(Ω). Using this fact, one sees that
u satisfies (2.10).
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To show that u ∈ GmΣ (Ω), one first applies ∂m−1
t to the system (2.10). The

resulting data satisfy the compatibility conditions (2.20) of order 1 as the given

data fulfill them up to order m. Since ∂m−1
t u ∈ G̃1

Σ(Ω), as in step 2) of the

proof of Lemma 4.2 we can deduce that ∂m−1
t u belongs to C(J,H1

ta(R3
+)). By

Lemma 4.1 of [22], the function ∂m−1
t u is an element of G1(J ′ × R3

+) provided

that ∂m−1
t u ∈ C1(J ′, L2(R3

+)) for any open interval J ′ ⊆ J . Our Lemma 4.3

then shows that ∂m−1
t u is contained in G1

Σ(Ω). As in the proof of Theorem 4.10
in [22], one now inductively infers that u belongs to GmΣ (Ω).

Finally, one passes to the domain G 6= R3
+ by a localization argument. See

steps IV–VI of the proof of Theorem 5.6 in [21] or of Theorem 3.1 in [19]. �

If G is unbounded, the above result imposes decay of the derivatives of A0

and D as x → ∞. Actually, if these derivatives are bounded one obtains the
same results much easier. As in [22], we have thus focused on the case treated
in the theorem and describe the easy extension in the next result.

Remark 4.7. Let G be unbounded. As in Remark 1.2 of [22] we can weaken
the regularity assumptions in Theorem 4.6 to A0, D ∈W 1,∞(J ×G) and

∀ α ∈ N4
0 with 1 ≤ |α| ≤ m : ∂αA0, ∂

αD ∈ L∞(J, L2(G))+L∞(J×G). (4.14)

One further has to assume that the corresponding norms of A0 and D are less
or equal r, and ∂αA0(0) and ∂αD(0) are bounded in L2(G) + L∞(G) by r0 for
all |α| ≤ m−1. Here one can also replace G by R3

+. The conditions on b remain
unchanged. Throughout, in new terms involving bounded parts of ∂αA0 and
∂αD these derivatives can easily be estimated by their sup-norms. ♦

5. Local existence and uniqueness

The apriori estimate of Theorem 4.6 does not allow us to treat the nonlinear
absorbing boundary conditions as described in (2.2) and (2.3) in full generality.
The problem arises in the terms with highest derivatives of b = ζ(B1û) for

a function û ∈ G̃mΣ (J × G) with range in U . For simplicity we first look at
the problem on Γ, the case J × Σ then follows by the localization procedure
described in Section 2 and in [21]. Lemma 2.1 in [23] yields the formula

∂αζ(B1û) =
∑

β,γ∈N3
0,β0=0

β+γ=α

∑
1≤j≤|γ|

∑
γ1,...,γj∈N3

0\{0}∑
γi=γ

2∑
l1,...,lj=1

C(α, γ1, . . . , γj) (5.1)

· (∂ylj · · · ∂yl1∂
(β1,β2)
x ζ)(B1û)

j∏
i=1

∂γi(B1û)li ,

for α ∈ N3
0 with |α| ≤ m. We take m ≥ 3. This expression can be written

as a sum Smain of the terms with α = γ and j = 1 plus the sum Srem of the
other terms. The summands in Srem can be estimated by the norm in H1(R3

+)

of the product
∏j
i=1 ∂

γi(B1û)li using the trace theorem. The product rules in
Lemma 2.1 in [22] (and localization) lead to the inequality

‖Srem‖2L2(J×Σ) ≤ T ‖Srem‖2L∞(J,L2(Σ)) ≤ cT (1 + ‖û‖2mGm(J×G)) = C̃(R)T, (5.2)
26



where ‖û‖GmΣ (J×G) ≤ R. If |α| < m, one can estimate the full function ∂αζ(B1û)
in this way.

To treat the term Smain = ∂ξζ(B1û)∂α(B1û) in the case |α| = m, we define
the quantities

z0(κ) = max
x∈Σ,|ξ|≤κ

|∂ξζ(x, ξ)|, z(κ) = z0(κ)κ (5.3)

for κ ≥ 0. Let ‖B1û(0)‖L∞(J×Σ) ≤ κ. Assuming also that ‖û‖GmΣ (J×G) ≤ R, we
estimate

‖∂ξζ(B1û)‖L∞(J×Σ) ≤ ‖∂ξζ(B1û(0))‖L∞(Σ) + T‖∂2
ξ ζ(B1û)B1∂tû‖L∞(J×Σ)

≤ z0(κ) + C̃(R)T‖û‖G3(J×G) ≤ z0(κ) + C̃(R)T.

We derive

‖Smain‖2L2(J×Σ) ≤ c(z0(κ)2 + C̃(R)T 2) ‖B1û‖2Hm(J×Σ).

It thus follows ∑
|α|=m

‖∂αζ(B1û)‖2L2(J×Σ) ≤ C(T + z0(κ)2). (5.4)

We further take functions v̂ and v with ranges in U , ‖B1v̂(0)‖L∞(J×Σ) ≤ κ,
‖v̂‖GmΣ (J×G) ≤ R, and analogously for v. In a similar way we estimate

‖(ζ(B1û)− ζ(B1v̂))B1v‖2Hm−1
γ (J×Σ)

≤ C(T + z(κ)2) ‖û− v̂‖2
Gm−1

Σ,γ
. (5.5)

The constant C depends on R, ζ, and a time T ′ > T . In the fixed point
argument, one part of the resulting right-hand sides can be made small choosing
a small time interval (0, T ) depending on the radius R. For the other one we
will have to assume that z(κ) is small, which either means that we are close to a
linear boundary condition or that we deal with electric fields having uniformly
small tangential traces initially. In the linear case, where ζ does not depend
on the state u, the number z(κ) is even 0. Here we actually allow for time
depending coefficients b = ζ in F m̃η,τ (J×Σ), see (2.4). Inequalities like (5.4) and
(5.5) are used several times below.

Exactly as in Remark 2.5 of [23], for unbounded G in our proofs we will make
a simplifying assumption on the coefficients χ and σ in order to avoid certain
easier terms in the calculations.

Remark 5.1. Let G be unbounded, m ≥ 3, û ∈ G̃m(J × G), and χ and
σ be given by (2.3) or (2.4). As noted in Remark 4.7, for our linear results
we can admit coefficients A0 = χ(û) and D = σ(û) belonging to the space
described in (4.14). The additional bounded terms can easily be estimated in
each computation. Without loss of generality, in the proofs we will therefore
exclude such terms by imposing extra decay on the space derivatives of χ and σ
as |x| → ∞. More precisely, for all multiindices α ∈ N9

0 with α4 = . . . = α9 = 0
and 1 ≤ |α| ≤ m, R > 0, V b U , and v ∈ L∞(J, L2(G)) with range in V and
‖v‖L∞(J,L2(G)) ≤ R we require that

(∂αχ)(v), (∂ασ)(v) ∈ L∞(J, L2(G)),

‖(∂αχ)(v)‖L∞(J,L2(G)) + ‖(∂ασ)(v)‖L∞(J,L2)(G)) ≤ C, (5.6)
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where C = C(χ, σ,m,R, V ). With this assumption, Lemma 2.1 of [23] yields
that χ(û) and σ(û) are contained in Fm(J ×G). ♦

We start with the uniqueness of solutions to (2.2).

Lemma 5.2. Let t1 > t0 in R and J = (t0, t1). Assume that either (2.3)
or (2.4) is valid. Let u1, u2 ∈ G3

Σ(J × G) solve (2.2) with inhomogene-
ity f , boundary value g, and initial value u0 at initial time t0. If assump-
tion (2.3) is satisfied, we require that z0(κ1)2κ2

2 ≤ (2C0)−1 where κ1 ≥
maxj∈{1,2} ‖B1uj‖L∞(J×Σ), κ2 ≥ minj∈{1,2} ‖B1uj‖L∞(J×Σ), and C0 is taken

from (5.7) and depends on the norm of u1 and u2 in W 1,∞(J ×G) and on the
lower bound η of χ and ζ. Then u1 = u2.

Proof. We focus on the assumption (2.3) of a nonlinear boundary condition,
since the linear one in (2.4) is easily treated as in Lemma 3.2 of [23]. Let
T0 ∈ J be the supremum of all t ∈ J such that u1 = u2 on [t0, t]. The two
functions coincide on [t0, T0] by their continuity.

We suppose that T0 < t1. We take a time T ′ ∈ (T0, t1) and set J ′ = (T0, T
′).

We fix a compact set V ⊂ U containing the ranges of u1 and u2 on J ′. The maps
u1 and u2 in G3

Σ(J ′×G) both solve (2.2) on J ′ with the same initial value u1(T0),
inhomogeneities f and g, and the operators Lj = L(χ(uj), A

co
1 , A

co
2 , A

co
3 , σ(uj))

and Bj = B(uj) for j = 1, respectively j = 2. Without loss of generality
we assume that ‖B1u2‖L∞(J×Σ) = minj∈{1,2} ‖B1uj‖L∞(J×Σ). The difference
u1 − u2 fulfills

L1(u1 − u2) = (χ(u2)− χ(u1))∂tu2 + (σ(u2)− σ(u1))u2 =: f1 on J ′ ×G,
B1(u1 − u2) = ((ζ(B1u2)− ζ(B1u1))B1u2)× ν =: g1 on J ′ × Σ,

(u1 − u2)(T0) = 0 on G.

Lemma 2.1 of [23] and Sobolev’s embedding theorem yield that χ(uj) and σ(uj)
are elements of F 3(J ×G), and ζ(uj) of F 3

H(J ×Σ). Moreover, χ(u1) and ζ(u1)
are symmetric and bounded from below by η > 0. Let r (resp. R) be the
maximum of the norms of u1 and u2 in W 1,∞(J × G) (resp. in G3

Σ(J × G)).
Then the Lipschitz norms of χ(u1) and σ(u1) and the sup-norm of ζ(u1) are
bounded by a constant depending on r. Proposition 3.1 now provides constants
C0 = C0(η, r) and γ = γ(η, r) such that

‖u1 − u2‖2G0
Σ,γ(J ′×G) ≤ C0 (‖f1‖2L2

γ(J ′×G) + ‖g1‖2L2
γ(J ′×Σ)). (5.7)

Exactly as in the proof of Lemma 3.2 in [23], we can control

‖f1‖2L2
γ(J ′×G) ≤ c(η,R)(T ′ − T0) ‖u1 − u2‖2G0

γ(J ′×G) . (5.8)

Recalling the definition of κj in the statement and of z in (5.3), we next derive

‖g1‖2L2
γ(J ′×Σ) ≤ z0(κ1)2κ2

2 ‖ trτ (u1 − u2)‖2L2
γ(J ′×G) . (5.9)

By the assumption on κj , we can choose T ′ > T0 so small that (5.7), (5.8), and
(5.9) imply that u1 = u2 on [T0, T

′] and thus on [t0, T
′]. This result contradicts

the definition of T0, and hence u1 = u2 on J . �
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We next construct local in time solutions of (2.2) using Banach’s fixed point
theorem and our linear result Theorem 4.6. Special care in the treatment of
the constants is required to close the argument, and we need the structure of
the estimate (3.7) here. For the data we define the quantity

dk(J) := ‖u0‖2Hk(G)+

k−1∑
j=0

‖∂jt f(t0)‖2Hk−1−j(G)+‖f‖
2
Hk(J×G)+‖g‖

2
Hk(J×Σ). (5.10)

Moreover, CS is the norm of the Sobolev embedding H2(G) ↪→ Cb(G). We note

that below the number C0 only depends on a radius r3 ≥ d3(J)1/2 instead of r,
as an inspection of the proof shows.

Theorem 5.3. Let t0 ∈ R, T > 0, J = (t0, t0 + T ), and m ∈ N with m ≥
3. Assume that either (2.3) or (2.4) is valid. Choose data u0 ∈ Hm(G)6,
f ∈ Hm(J × G)6, and g ∈ Hm(J × Σ)3 with g · ν = 0 such that the tuple
(t0, χ, σ, ζ, u0, f, g) fulfills the compatibility conditions (2.21) of order m. Pick
a radius r > 0 satisfying

dm(J) ≤ r2.

Take a number κ > 0 with

dist({u0(x) |x ∈ G}, ∂U) > κ.

If (2.3) is valid, we take κ̃ > 0 with

z(κ̃) ≤ min
{

1
8(Cm,0C)−1/2, (2C0)−1/2

}
. (5.11)

and assume that ‖B1u0‖L∞(Σ) < κ̃. The constants C0, Cm,0, and C depending
on χ, σ, ζ, m, r, κ, and T are given by Lemma 5.2, (5.16), (5.4), and (5.5).

Then there is a time τ = τ(χ, σ, ζ,m, T, r, κ, κ̃) > 0 such that the nonlinear
initial boundary value problem (2.2) with data f , g, and u0 has a solution u
on [t0, t0 + τ ] which belongs to GmΣ ((t0, t0 + τ) ×G). It is unique among those
solutions with ‖B1u‖L∞((t0,t0+τ)×Σ) < κ̃.

Proof. 1) We focus on the assumption (2.3) of a nonlinear boundary condition,
since the linear one in (2.4) can be treated as in Theorem 3.3 of [23]. Without
loss of generality we assume t0 = 0 and, if G is unbounded, that χ and σ
satisfy (5.6), cf. Remark 5.1. Moreover, the quantities dk(J) can be chosen
to be positive since u = 0 is the unique solution of (2.2) for (u0, f, g) = 0 by
Lemma 5.2.

Let τ ∈ (0, T ] and R > 0. We introduce Jτ = (0, τ) and

Vκ = {y ∈ U | dist(y, ∂U) ≥ κ} ∩B(0, CSr).

Note that ran(u0) is contained in the compact set Vκ. Our fixed point space is

E(R, τ) = {v ∈ G̃mΣ (Jτ ×G) | ‖v‖GmΣ (Jτ×G) ≤ R, ‖v − u0‖L∞(Jτ×G) ≤ κ/2,

∂jt v(0) = Sm,j,χ,σ(0, u0, f) for 0 ≤ j ≤ m− 1}

endowed with the metric induced by the norm of G̃m−1
Σ (Jτ ×G). We have

ran(v) ⊆ Ṽκ := Vκ +B(0, κ/2) ⊆ U (5.12)
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for v ∈ E(R, τ). As in Lemma 2.6 in [23], starting from Lemma 5.4 below one

can construct a function w ∈ G̃mΣ (Jτ × G) satisfying the initial conditions in
E(R, τ). Using Lemma 5.4 and the estimates on Sm,j,χ,σ from Lemma 2.4 in [23],
one obtains a constant C5.4 = C5.4(χ, σ,m, T, r, κ) such that ‖w‖G̃mΣ ≤ C5.4r.

Take R > C5.4r. Since

w(t)− u0 =

∫ t

0
∂sw(s) ds,

we can bound ‖w−u0‖L∞(Jτ×G) ≤ CSRτ . As a result, E(R, τ) is non-empty, if

we choose R > C5.4r and τ ∈ (0, κ/(2CSR)]. It is straightforward to show the
completeness of E(R, τ) for its metric by means of the Banach-Alaoglu theorem,
cf. the proof of Theorem 3.3 in [23].

2) Let û ∈ E(R, τ). Take η > 0 from (2.3). Then A0 := χ(û) is contained in
Fmη (Jτ × G), b := ζ(B1û) in FmH,η(Jτ × Σ), and D := σ(û) in Fm(Jτ × G) by

Lemma 2.1 of [23], Remark 5.1, Sobolev’s embedding, and the remarks before
(5.4). The tuple (0, χ(û), Aco

1 , A
co
2 , A

co
3 , σ(û), ζ(û), u0, f, g) satisfies the linear

compatibility conditions (2.20) due to Lemma 2.6 of [23], the initial conditions
in E(R, τ), and formula (5.1). Theorem 4.6 yields a solution u ∈ GmΣ (Jτ × G)
of the system (2.5) with the coefficients A0, D, b and the data u0, f , g. In this
way one defines a mapping Φ: û 7→ u from E(R, τ) to GmΣ (Jτ × G). We want
to prove that Φ is a strict contraction on E(R, τ) for a suitable radius R and a
sufficiently small time step τ .

To this aim, take numbers τ ∈ (0, T ] with τ ≤ κ/(2CSR) and R > C5.4r
which will be fixed below. Let û ∈ E(R, τ). Because of (5.12), the map ζ(û) is

bounded by a constant c(Ṽκ). As in step II) of the proof of Theorem 3.3 in [23],
one finds radii r0 = r0(χ, σ, ζ,m, r, κ) and R1 = R1(χ, σ, ζ,m,R, κ, T ) such that

max{‖χ(û)(0)‖Fm−1,0(G), max
1≤l≤m−1

‖∂ltχ(û)(0)‖Hm−l−1(G)} ≤ r0,

max{‖σ(û)(0)‖Fm−1,0(G), max
1≤l≤m−1

‖∂ltσ(û)(0)‖Hm−l−1(G)} ≤ r0, (5.13)

‖χ(û)‖Fm(J×G), ‖σ(û)‖Fm(J×G), ‖ζ(û)‖Fm−1(J×G) ≤ R1. (5.14)

Moreover, the relations (5.4) and (5.12) imply the bound∑
|α|=m

‖∂αζ(B1û)‖2L2(J×Σ) ≤ C(ζ,R, T, κ)(τ + z0(κ̃)2). (5.15)

Let the constant

Cm,0 = Cm,0(χ, σ, ζ, r, κ) = Cm,0(η(χ, ζ), r0(χ, σ, ζ,m, r, κ), c(Ṽκ)) (5.16)

be given by Theorem 4.6. The radius R = R(χ, σ, ζ,m, r, κ, T ) for E(R, τ) is
now defined as

R = max
{√

32Cm,0 r, C5.4r + 1
}
. (5.17)

Let γm = γm(χ, σ, ζ, T, r, κ) and Cm = Cm(χ, σ, ζ, T, r, κ) be the constants
from Theorem 4.6 with η(χ, ζ) and R1(χ, σ, ζ,m,R, κ, T ). Lemma 2.1 in [22]
yields product rules and Corollary 2.2 in [23] Lipschitz bounds of composition
operators. We write C2.1,[22] for the maximum of the constants in Lemma 2.1 in
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[22] and C2.2,[23] for that of Corollary 2.2 in [23] applied to our material laws and

with the numbers m and R and the set Ṽκ. We finally introduce the parameter
γ = γ(χ, σ, ζ,m, T, r, κ) and the time step τ = τ(χ, σ, ζ,m, T, r, κ, κ̃) by

γ = max
{
γm, C

−1
m,0Cm

}
, (5.18)

τ = min
{
T,

κ

2CSR
,

ln 2

2γ +mC1
,
Cm,0
Cm

, [16Cm,0C(4κ̃2 + C2
ST (T + z0(κ̃)2))]−1 ,

(16Cm,0C)−1, [32R2Cm,0C
2
2.1,[22]C

2
2.2,[23]]

−1
}
. (5.19)

3) With the definitions and notations of step 2), Theorem 4.6, (5.15), and
Sobolev’s embedding yield

‖Φ(û)‖2GmΣ (Jτ×G) ≤ e2γτ ‖Φ(û)‖2GmΣ,γ(Jτ×G)

≤ (Cm,0 + τCm)e(mC1+2γ)τ
(m−1∑
j=0

‖∂jt f(0)‖2Hm−1−j(G) + ‖u0‖2Hm(G)

+ ‖g‖2Hmγ (Jτ×Σ) + C(τ + z0(κ̃2))‖B1Φ(û)‖2L∞γ (Jτ×Σ)

)
+
Cm
γ

e2γτ ‖f‖2Hmγ (Jτ×G)

≤ 2Cm,0 · 2
(
r2 + C(τ + z0(κ̃)2)(2‖B1u0‖2L∞(Σ) + 2τ2‖∂t(B1Φ(û))‖2L∞(Jτ×Σ))

)
≤ 8Cm,0

(
r2 + C(τ + z0(κ̃)2)(κ̃2 + τ2C2

S‖Φ(û)‖2GmΣ (Jτ×G))
)
. (5.20)

Employing (5.11) and R ≥ 1, we thus obtain

‖Φ(û)‖2GmΣ (Jτ×G) ≤ 16Cm,0

(
r2 + C(τ + z0(κ̃)2)κ̃2

)
≤ R2

2
+ 16Cm,0C κ̃

2τ + 16Cm,0Cz(κ̃)2 ≤ R2.

Step III) of the proof of Theorem 3.3 in [23] shows that the map Φ(û) satisfies
the initial and sup-norm conditions in E(R, τ). So we have shown that Φ maps
E(R, τ) into itself.

Take û, v̂ ∈ E(R, τ). Set u = Φ(û) and v = Φ(v̂). As above, we look at the
linear system (2.5) with coefficients A0 = χ(û), D = σ(û), and b = ζ(B1û).
The difference v − u solves this system with inhomogeneities

f̃ = (χ(û)− χ(v̂))∂tv + (σ(û)− σ(v̂))v, g̃ = B0(ζ(B1û)− ζ(B1v̂))B1v,

cf. in step IV) of the proof of Theorem 3.3 in [23]. Proceeding as in this step
and in (5.20), from Theorem 4.6 we deduce the estimate

‖Φ(v̂)− Φ(û)‖2
Gm−1

Σ (Jτ×G)
≤ e2γτ ‖Φ(v̂)− Φ(û)‖2

Gm−1
Σ,γ (Jτ×G)

≤ 1

4
‖v̂ − û‖2

Gm−1
Σ (Jτ×G)

+ 4Cm,0C(τ + z(κ̃)2)‖û− v̂‖2
Gm−1

Σ (Jτ×G)

≤ 3

4
‖v̂ − û‖2

Gm−1
Σ (Jτ×G)

, (5.21)

employing also (5.5). (The last part of (5.19) enters when using the arguments
of [23].) Together with Lemma 5.2, the result is proven. �
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We add a lemma used in the proof of Theorem 5.3.

Lemma 5.4. Let m ∈ N and k ∈ {0, . . . ,m− 1}. Take maps hk in Hm−k(R3
+).

Then there is a function u ∈ Gm(R× R3
+) such that ∂kt u(0) = hk for all k, the

trace of u on ∂R3
+ belongs to Hm(R× ∂R3

+), and

‖u‖Gm(R×R3
+) + ‖∂jt u‖L2(R,Hm+1/2−j(R3

+)) + ‖ tr∂R3
+
u‖Hm(R×∂R3

+)

≤ c
m−1∑
k=0

‖hk‖Hm−k(R3
+), (5.22)

for all j ∈ {0, . . . ,m} and a constant c = c(m).

Proof. Let k ∈ {0, . . . ,m− 1}. Take gk ∈ S(R3). Fix a map ψ ∈ C∞c (R) which
equals 1 in (−1

2 ,
1
2) and vanishes on R \ (−2, 2). We define the function v by

v(t, x) = F−1
(
ψ((1 + | · |2)1/2t)

m−1∑
k=0

ĝk
tk

k!

)
(x), (t, x) ∈ R4,

where F and the hat denote the spatial Fourier transform. Observe that we
apply F−1 to a function in S(R4). The dominated convergence theorem yields

∂kt v(0) = gk

for all k. To show (5.22) for v and gk, we take j ∈ {0, . . . ,m} and compute

‖∂jt v‖2L∞(R,Hm−j(R3)) = sup
t∈R

∫
R3

(1 + |ξ|2)m−j |F(∂jt v)(t, ξ)|2 dξ

≤ C sup
t∈R

∫
R3

(1 + |ξ|2)m−j
m−1∑
k=0

∣∣∣∂jt(ψ((1 + |ξ|2)1/2t)ĝk(ξ)
tk

k!

)∣∣∣2 dξ

≤ C
m−1∑
k=0

sup
t∈R

∫
R3

(1 + |ξ|2)m−j−k|ĝk(ξ)|2
∣∣∂jt [ψ((1 + |ξ|2)

1
2 t)((1 + |ξ|2)

1
2 t)k)]

∣∣2 dξ

≤ C
m−1∑
k=0

∫
R3

(1 + |ξ|2)m−k|ĝk(ξ)|2 sup
s∈R
|∂jt (ψ(s)sk)|2 dξ

= C

m−1∑
k=0

∫
R3

(1 + |ξ|2)m−k|ĝk(ξ)|2 dξ = C

m−1∑
k=0

‖gk‖2Hm−k(R3).

So the first estimate in (5.22) has been shown.
For the second one we proceed similarly, now abbreviating ψl,k(s) :=

∂lt(ψ(s)sk) for s ∈ R and each l ∈ {0, . . . ,m}. We then derive

‖∂jt v‖2L2(R,Hm+1/2−j(R3))
=

∫
R

∫
R3

(1 + |ξ|2)m+1/2−j |F(∂jt v)(t, ξ)|2 dξ dt

≤ C
m−1∑
k=0

∫
R3

(1 + |ξ|2)m−k |ĝk(ξ)|2
∫
R
|ψj,k((1 + |ξ|2)1/2t)|2 (1 + |ξ|2)1/2 dtdξ

= C

m−1∑
k=0

∫
R
|ψj,k(s)|2 ds

∫
R3

(1 + |ξ|2)m−k |ĝk(ξ)|2 dξ ≤ C
m−1∑
k=0

‖gk‖2Hm−k(R3).
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Denoting (x1, x2) by x′ and (ξ1, ξ2) by ξ′, we finally compute

∂mt v(t, x′, 0) = ∂mt F−1
(
ψ((1 + | · |2)1/2t)

m−1∑
k=0

ĝk
tk

k!

)
(x′, 0)

=
1

2π

∫
R2

eix′·ξ′ 1√
2π

∫
R
∂mt

(
ψ((1 + |ξ|2)1/2t)

m−1∑
k=0

ĝk(ξ)
tk

k!

)
dξ3 dξ′.

The spatial Fourier transform on R2 of ∂mt v(t, x′, 0) is thus given by

F(∂mt v(t, ·, 0))(ξ′) =
1√
2π

∫
R
∂mt

(
ψ((1 + |ξ|2)1/2t)

m−1∑
k=0

ĝk(ξ)
tk

k!

)
dξ3.

We next fix a time t ∈ R \ {0}. Since ψ vanishes on the complement of (−2, 2),
the integrand above vanishes if |ξ3| > 2/|t|. This fact yields the estimate

|F(∂mt v(t, ·, 0))(ξ′)|2 ≤ C
m−1∑
k=0

[ ∫
R

(1 + |ξ|2)
m−k

2 |ĝk(ξ)|ψm,k((1 + |ξ|2)1/2t) dξ3

]2

≤ C
m−1∑
k=0

∫ 2/|t|

−2/|t|
1 dξ3

∫
R

(1 + |ξ|2)m−k |ĝk(ξ)|2 |ψm,k((1 + |ξ|2)1/2t)|2 dξ3

= C
m−1∑
k=0

∫
R

(1 + |ξ|2)m−k |ĝk(ξ)|2
|ψm,k((1 + |ξ|2)1/2t)|2

|(1 + |ξ|2)1/2t|
(1 + |ξ|2)1/2 dξ3.

Since k < m, at least one derivative falls onto ψ in ψm,k(t) = ∂mt (ψ(t)tk). As
ψ is constant on (−1/2, 1/2), the function ψm,k vanishes on this interval, and

hence the map s 7→ |ψm,k(s)|2
|s| belongs to C∞c (R). We infer

‖∂mt v(·, 0)‖2L2(R×R2) =

∫
R

∫
R2

|F(∂mt v(t, ·, 0))(ξ′)|2 dξ′ dt

≤ C
m−1∑
k=0

∫
R

|ψm,k(s)|2

|s|
ds

∫
R3

(1 + |ξ|2)m−k|ĝk(ξ)|2 dξ ≤ C
m−1∑
k=0

‖gk‖2Hm−k(R3).

Also employing the trace theorem, we obtain (5.22) for the functions v and gk.
The assertion now follows by approximation. �

We assume that the conditions of Theorem 5.3 concerning the data are valid
and that the inhomogeneities f and g belong to the spaces Hm((t0, T ) × G)
respectively Hm((t0, T )× Σ), for all T > 0. For the assumption (5.11) we take
the quantity dm((t0, t0 + 1)) unless something else is specified. We then define
the maximal existence time by

T+ = T+(m, t0, u0, f, g)

= sup{τ ≥ t0 | ∃unique GmΣ -solution u of (2.2) on [t0, τ ]}. (5.23)

The interval (t0, T+) =: Jmax is called the maximal interval of existence. These
notions are modified in a straightforward way if the inhomogeneities are given
only on a bounded interval (t0, T ). By standard methods we can extend the
solution from Theorem 5.3 to a maximal solution u of (2.2) on Jmax which
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belongs to GmΣ ((t0, T )×G) for all T < T+ and cannot be extended beyond this
interval by a positive time span. More precisely, we obtain the following basic
blow-up criterion, cf. Lemma 4.1 of [23].

Proposition 5.5. Let t0 ∈ R and m ∈ N with m ≥ 3. Assume that either
(2.3) or (2.4) is valid. Choose data (u0, f, g) such that u0 ∈ Hm(G)6, f ∈
Hm((t0, T ) × G)6, g ∈ Hm((t0, T ) × Σ)3 for all T > t0, g · ν = 0, and the
tuple (t0, χ, σ, ζ, u0, f, g) fulfills the compatibility conditions (2.21) of order m.
If assumption (2.3) is valid, we require condition (5.11). Let u be the maximal
solution of (2.2) on Jmax introduced above. If T+ <∞, then one of the following
blow-up properties

(a) lim inft↗T+ dist({u(t, x) |x ∈ G}, ∂U) = 0,
(b) limt↗T+ ‖u(t)‖Hm(G) =∞,
(c) lim supt↗T+

‖B1u(t)‖L∞(Σ) ≥ κ̃ for any κ̃ satisfying (5.11),

occurs, where the last item is removed if (2.4) is satisfied. In (c), we assume
that (a) and (b) do not occur and define the constants in (5.11) for the quantities
κ := dist({u(t, x) |x ∈ G, t ∈ (t0, T+)}, ∂U) > 0 and r2 = dm(T+−δ, T+ +δ) for
some δ ∈ (0, T+ − t0) and with ‖u0‖Hm(G) replaced by lim inft↗T+ ‖u(t)‖Hm(G).

6. Local wellposedness

In this section we improve the blow-up criterion of Proposition 5.5 and show
the continuous dependence on the data. For various quasilinear hyperbolic
systems, one has established such criteria in terms of Lipschitz norms. (See
Section 4 of [23] for references.) These results rely on Moser-type estimates as
stated in Lemma 4.2 of [23]. They will imply in partcular that the maximal
existence time is independent ofm ≥ 3 in the case of linear boundary conditions.
The next proposition is the key step in this direction, where we recall (5.10).

Proposition 6.1. Let m ∈ N with m ≥ 3 and t0 ∈ R. Assume that either (2.3)
or (2.4) is valid. Choose data u0 ∈ Hm(G)6, f ∈ Hm((t0, T ) × G))6, and g ∈
Hm((t0, T )×Σ)3 with g ·ν = 0 for T > t0 such that the tuple (t0, χ, σ, ζ, u0, f, g)
fulfills the compatibility conditions (2.21) of order m. Let u be the maximal
solution of (2.2) provided by Proposition 5.5 on Jmax = (t0, T+). We introduce
the quantity

ω(T ) = sup
t∈(t0,T )

‖u(t)‖W 1,∞(G)

for every T ∈ (t0, T+). We further take r > 0 with dm(Jmax) ≤ r2. We set
T ∗ = T+ if T+ < ∞ and pick any T ∗ > t0 if T+ = ∞. Take ω0 > 0 and a
compact subset U1 of U such that ω(T ) ≤ ω0 and ranu(t) ⊆ U1 for all t ∈ [t0, T ]
and some T ∈ (t0, T

∗). If (2.3) is true, we also assume that (5.11) is valid for
κ and that

z(κ)2 ≤ 1/(2C̃m), (6.1)

where κ = ‖B1u‖L∞((t0,T )×Σ) and C̃m = C̃m(χ, σ, ζ,m, r, ω0,U1, T
∗ − t0) is de-

fined as max1≤k≤m
∑
|α|=k Ck,α with Ck,α appearing in (6.5).

Then there exists a constant C = C(χ, σ, ζ,m, r, ω0,U1, T
∗ − t0) such that

‖u‖2GmΣ ((t0,T )×G) ≤ C dm((t0, T )).
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Proof. 1) We focus on the assumption (2.3) of a nonlinear boundary condition,
since the linear one in (2.4) is easily treated as in Proposition 4.4 of [23]. With-
out loss of generality we assume t0 = 0 and that, if G is unbounded, the non-
linearities χ and σ satisfy (5.6), cf. Remark 5.1. We fix a number T ′ ∈ (0, T ∗)
such that ω(T ′) ≤ ω0 and ranu(t) ⊆ U1 for all t ∈ [0, T ′]. Let T ∈ (0, T ′] and
set J = (0, T ). As in the proof of Proposition 4.4 of [23], we have to work with
the localized nonlinear problem on G = R3

+ and coefficents A1, A2 ∈ F m̃cf (R3
+)

and A3 = Aco
3 . The full space case has already been treated in Proposition 7.20

in [21]. We do not repeat the localization procedure itself, cf. Section 2. As in
(4.3) of [23] we obtain a constant c = c(χ, σ, r, ω0,U1, T

∗) such that

‖u‖W 1,∞(Ω) ≤ ‖∂tu‖L∞(Ω) + ω(T ) ≤ c.

We put L(u) = L(χ(u), A1, A2, A3, σ(u)). Let α ∈ N4
0 with |α| ≤ m. In view

of differentiated versions of (2.2), we define

fα = ∂αf −
∑

0<β≤α

(
α

β

)
∂βχ(u)∂t∂

α−βu−
2∑
j=1

∑
0<β≤α

(
α

β

)
∂βAj∂j∂

α−βu

−
∑

0<β≤α

(
α

β

)
∂βσ(u)∂α−βu,

gα = ∂αg + ν ×
∑

0<β≤α

(
α

β

)
∂βζ(Bco

1 u)∂α−βBco
1 u

As u solves (2.2), the function v = ∂αu satisfies the system

L(u)v = fα, x ∈ R3
+, t ∈ (0, T ),

v(0) = ∂(0,α1,α2,α3)Sm,α0,χ,σ(0, u0, f), x ∈ R3
+.

(6.2)

If additionally α3 = 0, it is a solution of the boundary value problem

L(u)v = fα, x ∈ R3
+, t ∈ (0, T ),

B(u)v = gα, x ∈ ∂R3
+, t ∈ (0, T ),

v(0) = ∂(0,α1,α2,α3)Sm,α0,χ,σ(0, u0, f), x ∈ R3
+.

(6.3)

Here we used that ∂jt u(0) = Sm,j,χ,σ(0, u0, f) for all j ∈ {0, . . . ,m} by (2.14).
Let |α′| ≤ m− 1. Step I) of the proof of Proposition 4.4 of [23] shows that

‖fα‖L2(Ω) ≤ ‖f‖H|α|(Ω) + c ‖u‖H|α|(Ω),

‖fα′‖H1(Ω) + ‖fα′(0)‖L2(R3
+) ≤ cd|α′|+1(J) + c‖u‖H|α′|+1(Ω)

with a constant c = c(χ, σ,m, r, ω0,U1). The above results rely on Lemma 4.2
of [23] which is actually true for u ∈ Hm(Ω), cf. Lemma 7.19 of [21].

As in (5.4), we reduce most terms in gα to those appearing in fα by means
of the trace theorem. The main ones then lead to a summand involving z(κ).
So we arrive at

‖gα‖L2(Γ) ≤ ‖g‖H|α|(Γ) + c (‖u‖H|α|(Ω) + z(κ) ‖Bco
1 ∂

αu‖L2(Γ)

)
,
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‖gα′‖H1(Γ) ≤ ‖g‖H|α′|+1(Γ) + c (‖u‖H|α|(Ω) + z(κ)
∑

|β|=|α′|+1

‖Bco
1 ∂

βu‖L2(Γ)

)
,

where c = c(χ, σ, ζ,m, r, ω0,U1).
2) We next show that there are constants Ck=Ck(χ, σ, ζ,m, r, ω0,U1,T

∗) with

‖∂αu‖2G0
Σ(Ω) ≤ Ckdk(J) (6.4)

for all α ∈ N4
0 with |α| = k and k ∈ {0, . . . ,m}. Proposition 3.1 yields the

case k = 0 as in the proof of Proposition 4.4 of [23]. So let (6.4) be true for all
j ∈ {0, . . . , k − 1} and some k ∈ {1, . . . ,m}. Take α ∈ N4

0 with |α| = k. We
first show that there is a constant Ck,α = Ck,α(χ, σ, ζ,m, r, ω0,U1, T

∗) with

‖∂αu‖2G0
Σ(Ω) (6.5)

≤Ck,α
[
dk(J) +

∑
|β|=k

∫ T

0

[
‖∂βu(s)‖2L2(R3

+)+z(κ)2‖Bco
1 ∂

βu(s)‖2L2(∂R3
+)

]
ds
]

for each α ∈ N4
0 with |α| = k. This claim is shown via induction over α3.

So let α3 = 0. Since ∂αu solves (6.3), Proposition 3.1, the bounds on fα and
gα, and estimate (2.17) yield a constant c = c(χ, σ, ζ, k, r, ω0,U1, T

∗) such that

‖∂αu‖2G0
Σ(Ω) ≤ c

(
dk(J) + ‖u‖2H|α|(Ω)

+ z(κ)2
∑
|β|=k

‖Bco
1 ∂

βu‖2L2(Γ)

)
.

The derivatives of u of order up to k − 1 can be bounded by the induction
hypothesis (6.4). So we have shown (6.5) for k and α3 = 0. The other induction
steps then only involve the initial value problem (6.2) without a boundary
condition so that we can argue exactly as in Proposition 4.4 of [23] to derive
(6.5) for all α3 ≤ k.

We now sum in (6.5) over all α ∈ N4
0 with |α| = k. Assumption (6.1)

then allows to absorb the boundary terms in the left-hand side. After-
wards, we use Gronwall’s inequality to control

∑
|α|=k ‖∂αu‖G0(Ω) as in (4.14)

of [23]. Combining these two estimates, we finally obtain a constant Ck =
Ck(χ, σ, ζ,m, r, ω0,U1,T

∗) such that∑
|α|=k

‖∂αu‖2G0
Σ(Ω) ≤ Ckdk(J). (6.6)

We have thus shown (6.4). The assertion now follows by induction. �

The blow-up criterion for (2.2) will be established in the local wellposed-
ness Theorem 6.4 below. Before, we provide auxiliary results needed to show
the continuous dependence on data, starting with an approximation lemma in
lowest order. Its proof is omitted since it is a minor modification of that of
Lemma 5.1 in [23].

Lemma 6.2. Let J ⊂ R be an open interval and t0 ∈ J . Take coefficients
A0,n, A0 ∈ F 3

η (Ω), A1, A2 ∈ F 3
cf(R3

+), A3 = Aco
3 , Dn, D ∈ F 3(Ω), and bn, b ∈

F 3
H,η(Γ) for all n ∈ N such that (A0,n)n, (Dn)n respectively (bn)n are bounded in

W 1,∞(Ω) respectively W 1,∞(Γ) and converge to A0, D respectively b uniformly.
Let Bj = Bco

j for j ∈ {1, 2} and G = R3
+. Choose u0 ∈ L2(R3

+), f ∈ L2(Ω), and
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g∈L2(Γ) with g ·ν = 0. Let un, u ∈ G0
Σ(Ω) solve the linear Maxwell system (2.5)

with the above coefficients and data. Then (un)n tends to u in G0
Σ(Ω).

The next result is the core of the proof of continuous dependence. It improves
the norm in which solutions converge by one regularity level, provided one has
appropriate apriori information.

Lemma 6.3. Let J ⊆ R be an open bounded interval, t0 ∈ J , and m ∈ N
with m ≥ 3. Assume that either (2.3) or (2.4) is valid. Choose data u0, u0,n ∈
Hm(G), f, fn ∈ Hm(J×G), and g, gn ∈ Hm(J×Σ) with g ·ν = 0 and gn ·ν = 0
for all n ∈ N such that

‖u0,n − u0‖Hm(G) −→ 0, ‖fn − f‖Hm(J×G) −→ 0, ‖gn − g‖Hm(J×∂G) −→ 0,

as n → ∞. We further assume that (2.2) with data (t0, u0,n, fn, gn) and
(t0, u0, f, g) have GmΣ (J × G)-solutions un and u for all n ∈ N, that there is
a compact subset U1 of U with ranu(t) ⊆ U1 for all t ∈ J , that (un)n is bounded
in GmΣ (J×G), and that (un)n converges to u in Gm−1

Σ (J×G). If (2.3) is valid,
we require that

z(κ)2 ≤ 1/(2Ĉm) (6.7)

for a fixed number κ > ‖B1u‖L∞(Γ), where Ĉm = Ĉm(χ, σ, ζ, r,U1, T
′) appears

in (6.14), |J | ≤ T ′, and r only depends on dm(J), ‖u‖GmΣ (J×G) and Ω. Then

the solutions un converge to u in GmΣ (J ×G).

Proof. 1) We focus on the assumption (2.3) of a nonlinear boundary condition,
since the linear one in (2.4) is easily treated as in Lemma 5.2 of [23]. Without
loss of generality we take t0 = 0, J = (0, T ) and that, if G is unbounded, the
nonlinearities χ and σ satisfy (5.6), cf. Remark 5.1. Moreover, T is less or
equal than a fixed time T ′ < ∞. As in Proposition 6.1 we have to work with
the localized nonlinear problem on G = R3

+ and coefficients A1, A2 ∈ F m̃cf (R3
+)

and A3 = Aco
3 . We do not repeat the localization procedure itself, cf. Section 2.

Throughout, we let α ∈ N4
0 with |α| ≤ m and n ∈ N ∪ {∞}, where we put

u∞ = u etc. Due to our assumptions, we can fix a number r > 0 that only
depends on dm(J), ‖u‖GmΣ (J×G), and Ω and that dominates the quantities dnm(J)

for the data (u0,n, fn, gn) and the norms of un in GmΣ (Ω) and L∞(Ω) as well as
A1 and A2 in Fm(Ω). Here and in the next statement we may omit n ≤ n0

for some n0 ∈ N. Let κ = dist(U1, ∂U) > 0 and U ′1 = U1 + B(0, κ/2). Then we
obtain κ > ‖B1un‖L∞(Γ) and ranun(t) ⊆ U ′1 for all t ∈ J and n ∈ N. There
is another radius R = R(χ, σ, ζ,m, r,U1) dominating the functions χ(un) and
σ(un) in Fm(Ω) and ζ(Bco

1 un) in FmH (Γ).
Let Ln and Bn be the differential and boundary operator from (2.5) with

coefficients A0 = χ(un) and D = σ(un) respectively b = ζ(Bco
1 un). We use the

modified inhomogeneities

fα,n = ∂αf −
∑

0<β≤α

(
α

β

)
∂βχ(un)∂t∂

α−βun −
2∑
j=1

∑
0<β≤α

(
α

β

)
∂βAj∂j∂

α−βun

−
∑

0<β≤α

(
α

β

)
∂βσ(un)∂α−βun,
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gα,n = ∂αg + ν ×
∑

0<β≤α

(
α

β

)
∂βζ(Bco

1 un)∂α−βBco
1 un,

where we assume that α3 = 0 when considering gα,n here and below. Exploiting
that A3 and Bco

j are constant, we see that the function v = ∂αun solves the
linear initial boundary value problem

Lnv = fα,n, x ∈ R3
+, t ∈ J,

Bnv = gα,n, x ∈ ∂R3
+, t ∈ J,

v(0) = ∂(0,α1,α2,α3)Sm,α0,χ,σ(0, u0,n, fn), x ∈ R3
+,

(6.8)

if α3 = 0. We further introduce the auxiliary map

hn(t) =

3∑
i=1

∑
0≤j≤m

∑
0≤γ≤α,γ0=0
|γ|=m−j

6∑
l1,...,lj=1

‖(∂ylj . . . ∂yl1∂
(γ1,γ2,γ3)
x θi)(un(t))

− (∂ylj . . . ∂yl1∂
(γ1,γ2,γ3)
x θi)(u(t))‖L∞(R3

+)

+
∑

0≤j≤m

∑
0≤γ≤α′,γ0=0
|γ|=m−j

3∑
l1,...,lj=1

‖(∂ylj . . . ∂yl1∂
(γ1,γ2)
x ζ)(Bco

1 un(t))

− (∂ylj . . . ∂yl1∂
(γ1,γ2)
x ζ)(Bco

1 u(t))‖L∞(∂R3
+),

where t ∈ J , n ∈ N, θ1 = χ, θ2 = σ, θ3 = χ−1, and α′ ∈ N3
0 with |α′| = m.

Observe that the functions hn tend to 0 uniformly as n→∞.
Using the calculus results Lemma 2.1 of [22] and Corollary 2.2 of [23], one

can show that all maps fα,n and gα,n are bounded in L2(Ω) respectively L2(Γ)
by a constant c = c(χ, σ, ζ,m, r,U1, T

′). If |α| ≤ m− 1, then we have analogous
bounds in H1(Ω), G0(Ω) respectively, H1(Γ). We further derive the inequalities

‖fα,n− fα,∞‖2Hk(Ω) ≤ c
[
‖fn− f‖2Hm(Ω) + ‖un− u‖2Gm−1(Ω) + δ|α|(m−k)‖hn‖2∞

+

∫ T

0

∑
α̃∈N4

0,|α̃|=m

‖∂α̃(un(s)− u(s))‖2L2(R3
+) ds

]
,

‖fα,n− fα,∞‖2G0(Ω) ≤ c
(
‖fn − f‖2Gm−1(Ω) + ‖un − u‖2Gm−1(Ω)

)
, (6.9)

‖gα,n− gα,∞‖2Hk(Ω) ≤ c
[
‖gn− g‖2Hm(Γ) + ‖un− u‖2Gm−1(Ω) + δ|α|(m−k)‖hn‖2∞

+

∫ T

0

∑
α̃∈N4

0,|α̃|=m

‖∂α̃(un(s)− u(s))‖2L2(R3
+) ds

+ z(κ)2

∫ T

0

∑
α̃∈N3

0,|α̃|=m

‖Bco
1 ∂

α̃(un(s)− u(s))‖2L2(∂R3
+) ds

]
for k ∈ {0, 1} and |α| ≤ m − 1, using also (5.4) and (5.5). Here the first and
the last estimate are also true for |α| = m in the case k = 0.
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2) We first treat tangential derivatives with α3 = 0. We set w0,n =

∂(0,α1,α2,0)Sm,α0,χ,σ(0, u0,n, fn). To decompose ∂αun = wn + zn, we use the
solution wn ∈ G0

Σ(Ω) of the linear system

Lnv = fα,∞, x ∈ R3
+, t ∈ J,

Bnv = gα,∞, x ∈ ∂R3
+, t ∈ J,

v(0) = w0,∞, x ∈ R3
+,

(6.10)

with fixed data, and zn ∈ G0
Σ(Ω) of the linear problem

Lnv = fα,n − fα,∞, x ∈ R3
+, t ∈ J,

Bnv = gα,n − gα,∞, x ∈ ∂R3
+, t ∈ J,

v(0) = w0,n − w0,∞, x ∈ R3
+,

(6.11)

with data tending to 0 as we show below. These solutions exist due to Proposi-
tion 3.1, and we have w∞ = ∂αu by uniqueness and (6.8). By our assumptions,
the coefficients χ(un), σ(un) and ζ(Bco

1 un) converge uniformly to χ(u), σ(u)
respectively ζ(Bco

1 u). In view of the estimates in step 1), Lemma 6.2 shows

‖wn − ∂αu‖G0
Σ(Ω) = ‖wn − w∞‖G0

Σ(Ω) −→ 0, n→∞. (6.12)

Let γ = γ(χ, σ, ζ,m, r,U1, T
′) ≥ 1 be the parameter γ0(η,R) from Proposi-

tion 3.1. We now apply this result to (6.11) and argue as in (5.22) of [23]. By
means of (6.9), we thus obtain

‖zn‖2G0
Σ(Ω) ≤ c

[
d̃nm(J) + ‖un − u‖2Gm−1(Ω) + ‖hn‖2∞ (6.13)

+
∑
α̃,α′

∫ T

0

(
‖∂α̃(un(s)− u(s))‖2L2(R3

+) + z(κ)2‖∂α′Bco
1 (un(s)− u(s))‖2L2(∂R3

+)

)
ds
]

for a constant c = c(χ, σ, ζ,m, r,U1, T
′), where we sum over all multi-indices

α̃ ∈ N4
0 and α′ ∈ N3

0 with |α̃|, |α′| = m and the quantity d̃nm(J) is defined as in
(5.10) for u0,n − u0, fn − f and gn − g. We write In(T ) for the above sum of
integrals. Since ∂α(un − u) = wn − ∂αu + zn by uniqueness again, estimates
(6.12) and (6.13) imply the bound

‖∂α(un − u)‖G0
Σ(Ω) ≤ aα,n + cIn(T )

for numbers aα,n tending to 0 as n → ∞. As in step III) of Lemma 5.2 of
[23] an induction extends the above estimate to the case of all α3 ≤ m. These
arguments do not involve the boundary conditions, so that there is no need to
repeat them here. We obtain as in [23] the inequality∑
|α̃|,|α′|=m

(
‖∂α̃(un(t)− u(t))‖2L2(R3

+) + ‖∂α′ trτ (un − u)‖2L2(Γ)

)
(6.14)

≤ an + Ĉm

∫ t

0
‖Dα̃(un(s)− u(s))‖2L2(R3

+) ds+ z(κ)2Ĉm‖Dα′Bco
1 (un − u)‖2L2(Γ)

for t ∈ J , a null sequence (an) and a constant Ĉm = Ĉm(χ, σ, ζ, r,U1, T
′).

The notation Dα also includes the summation over |α| = m, where α̃ ∈ N4
0
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and α′ ∈ N3
0. Finally, we first use the smallness assumption on z(κ) and then

Gronwall’s inequality to conclude the assertion. �

We finally establish the full local wellposedness theorem. For times t0 < T
we introduce the data space

Mχ,σ,ζ,m(t0, T ) = {(ũ0, f̃ , g̃) ∈ Hm(G)×Hm((t0, T )×G)×Hm((t0, T )× Σ) |

(χ, σ, ζ, t0, f̃ , g̃, ũ0) is compatible of order m, g̃ · ν = 0}
and endow it with its natural norm.

Theorem 6.4. Let m ∈ N with m ≥ 3 and t0 ∈ R. Assume that either (2.3)
or (2.4) is valid. Choose data u0 ∈ Hm(G), f ∈ Hm((t0, T ) × G)), and g ∈
Hm(((t0, T ) × Σ) with g · ν = 0 for all T > t0 such that ran(u0)⊆U and the
tuple (χ, σ, ζ, t0, u0, f, g) fulfills the compatibility conditions (2.21) of order m.
If assumption (2.3) is true, we pick κ̃ > 0 satisfiying (5.11) and we require
‖B1u0‖L∞(Σ) < κ̃/4.

Then the maximal existence times T+(k, t0, u0, f, g) from (5.23) do not depend
on k ∈ {3, . . . ,m} if (2.4) is true. Moreover, the following assertions hold.

(1) There exists a unique maximal solution u of (2.2) which belongs to the
function space GmΣ ((t0, T )×G) for all T < T+.

(2) If T+ <∞, then

(a) the solution u leaves every compact subset of U , or
(b) lim supt↗T+

‖∇u(t)‖L∞(G) =∞, or

(c) condition (c) from Proposition 5.5 occurs or (6.1) fails as T → T+.

If (2.4) is valid, the last condition can be dropped.

(3) Let T ∈ (t0, T+). Fix T ′ ∈ (T, T+). If assumption (2.3) is true, let (6.7)
hold on (t0, T

′) and assume that ‖B1u‖L∞((t0,T ′)×Σ) < κ̃/4 and that (6.18)
is valid for κ̃. (The constants in these conditions depend on r from (6.16),
(T ′− t0), and κ = 1

2 dist(U1, ∂U) for a compact subset U1 ⊆ U with ran(u(t)) ⊆
U1 for all t ∈ [t0, T

′].) Then there is a number δ > 0 such that for all data

(ũ0, f̃ , g̃) ∈Mχ,σ,ζ,m(t0, T ) fulfilling

‖ũ0 − u0‖Hm(G) < δ, ‖f̃ − f‖Hm((t0,T ′)×G) < δ, ‖g̃ − g‖Hm((t0,T ′)×Σ) < δ

the maximal existence time satisfies T+(m, t0, f̃ , g̃, ũ0) > T . Let u(·; ũ0, f̃ , g̃) be
the corresponding maximal solution of (2.2). The flow map

Ψ: BMχ,σ,ζ,m(t0,T ′)((u0, f, g), δ)→ GmΣ ((t0, T )×G), (ũ0, f̃ , g̃) 7→ u(·; ũ0, f̃ , g̃),

is continuous. Moreover, there is a constant C = C(χ, σ, ζ,m, r, T ′− t0, κ) with

‖Ψ(ũ0,1,f̃1, g̃1)−Ψ(ũ0,2, f̃2, g̃2)‖Gm−1
Σ ((t0,T )×G) (6.15)

≤ C‖ũ0,1 − ũ0,2‖Hm(G) + C

m−1∑
j=0

‖∂jt f̃1(t0)− ∂jt f̃2(t0)‖Hm−j−1(G)

+ C ‖f̃1 − f̃2‖Hm−1((t0,T )×G) + C ‖g̃1 − g̃2‖Hm−1((t0,T )×Σ)

for all (ũ0,j , f̃j , g̃j) ∈ BMχ,σ,ζ,m(t0,T ′)((u0, f, g), δ).
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Proof. Except for (3) the assertions follow in a standard way from Theorem 5.3
and Propositions 5.5 and 6.1, cf. the proof of Theorem 5.3 in [23].

1) To show (3), let t0 < T < T ′ < T+ be as in the statement and J ′ = (t0, T
′).

Again, we focus on assumptions (2.3) concerning nonlinear boundary conditions
since the linear ones from (2.4) can be treated very similar to the proof of
Theorem 5.3 in [23]. Let C ′S be the norm of the embedding of Hm(J ′ × G) in

Gm−1(J ′ ×G) and CS of H2(G) into Cb(G). We take radii r > 0 such that

‖u0‖Hm(G) + ‖f‖Gm−1(J ′×G) + ‖f‖Hm(J ′×G) + ‖g‖Hm(J ′×Σ) < r/(mC ′S),

‖u‖GmΣ (J ′×G) < r, (6.16)

Let U1 ⊆ U and κ̃ > 4‖B1u‖L∞((t0,T ′)×Σ) be given as in the statement. As in the
proof of Theorem 5.3 in [23] one finds a radius r̃ = r̃(χ, σ,m, r,U1) larger than
the norms of θ(u) in Fm((t0, T

′)×G), of ζ(B1u) in FmH ((t0, T
′)×Σ), of θ(u(t0))

in Fm−1,0(G) and that of ∂jt θ(u)(t0) in Hm−1−j(G) for j ∈ {1, . . . ,m− 1} and
θ ∈ {χ, σ}. We fix a number κ < 1

2 dist(U1, ∂U) and set

Vκ = {y ∈ U | dist(y, ∂U) ≥ κ}∩B(0, 2CSr) and Ṽκ = Vκ +B(0, κ/2) ⊆ U .
We take R = R(χ, σ, ζ,m, 4r, κ, T ′) > 4r of (5.17) in the proof of Theorem 5.3.

Choose a number T̂ ∈ (t0, T
′) and data (û0, f̂ , ĝ) ∈ Mχ,σ,ζ,m(J ′) such that

û0 maps into Vκ and the data satisfy the bounds (6.16) with 2r instead of r.

Let Ĵ = (t0, T̂ ). We assume that a solution û ∈ GmΣ (Ĵ × G) of (2.2) exists for

these data with norm less or equal R in this space and taking values in Ṽκ. Let
κ̂ ≥ κ bound the supnorm of B1û on (t0, T̂ )× Σ. There then exists a constant

Ĉ = Ĉ(χ, σ, ζ,m, 2r,R, Ṽκ, T
′) and a time step τ̂ = τ̂(χ, σ, ζ,m, 2r,R, Ṽκ, κ̂, T

′)
such that the difference of u and û is controlled by

‖u− û‖2
Gm−1

Σ (Ĵ×G)
≤ Ĉ

(
‖u0 − û0‖2Hm−1(G) +

m−1∑
j=0

‖∂jt f(t0)− ∂jt f̂(t0)‖2Hm−j−1(G)

+ ‖f − f̂‖2
Hm−1(Ĵ×G)

+ ‖ĝ1 − ĝ2‖2Hm−1(Ĵ×Σ)

)
, (6.17)

where Ĵ = (t0, t0 + τ̂) and we assume that

τ̂ , z(κ̂)2 ≤ (4ĈC(R))−1 (6.18)

with C(R) from (5.5). Using Proposition 3.1 and (5.5), this fact can be shown
as (5.31) in [23] with modifications analogous to (5.21).

2) We take as a time step τ the minimum of τ̂ in step 1), of κ̃/(2CSR),
and of τ(χ, σ, ζ,m, T ′, 2r, κ, κ̃) from (5.19). There is an index N ∈ N with
t0 + (N − 1)τ < T ≤ t0 + Nτ. We set tk = t0 + kτ for k ∈ {1, . . . , N − 1}. If
t0 + Nτ < T ′, we put tN = t0 + Nτ ; else we take any tN from (T, T ′). Next,
we choose a radius δ0 > 0 which is less than r/(4mC ′S), κ̃/(4CS), and κ/CS .

Let (ũ0, f̃ , g̃) ∈ BMχ,σ,ζ,m(t0,T ′)((u0, f, g), δ0) =: BM (δ0). As in (5.37) and (5.38)

of [23] one sees that these data satisfy the bounds (6.16) with 2r instead of r,
that ‖B1ũ0‖L∞(Σ) < κ̃/2, and that the range of ũ0 is contained in Vκ.

As a result, Theorem 5.3 yields a solution ũ ∈ GmΣ ((t0, t1)×G) of (2.2) with

data (ũ0, f̃ , g̃) instead of (u0, f, g). The proof of this theorem also shows that ũ
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is bounded by R in GmΣ ((t0, t1)×G) and thus Ψ maps BM (δ0) into the ball in
GmΣ ((t0, t1)×G) with center 0 and radius R. Moreover, both ‖B1u‖L∞((t0,t1)×Σ)

and ‖B1ũ‖L∞((t0,t1)×Σ) are smaller than κ̃ by the choice of τ . It follows that

estimate (6.17) is true for ũ instead of û, with time step τ and constant Ĉ,
because κ̃ satisfies (6.18).

Next take a sequence (u0,n, fn, gn)n in BMχ,σ,ζ,m(t0,T ′)((u0, f, g), δ0) which con-

verges to (u0, f, g) in this space. Since∑m−1

j=0
‖∂jt fn(t0)− ∂jt f(t0)‖2Hm−j−1(G) ≤ mC

′
S‖fn − f‖2Hm((t0,T ′)×G) −→ 0

as n→∞, estimate (6.17) yields the limit

‖Ψ(u0,n, fn, gn)−Ψ(u0, f, g)‖Gm−1
Σ ((t0,t1)×G) −→ 0.

Lemma 6.3 thus shows that (Ψ(u0,n, fn, gn))n converges to Ψ(f, g, u0) in
GmΣ ((t0, t1) × G). We conclude that Ψ is continuous in (u0, f, g). Using (6.16)
and the choice of κ, we then find a number δ1 ∈ (0, δ0] such that for all data

(ũ0, f̃ , g̃) ∈ BMχ,σ,ζ,m(t0,T ′)((u0, f, g), δ1) the solution Ψ(ũ0, f̃ , g̃) exists on [t0, t1]

and satisfies (6.17) on (t0, t1) and

‖Ψ(ũ0, f̃ , g̃)‖GmΣ ((t0,t1)×G)

≤ ‖Ψ(ũ0, f̃ , g̃, )−Ψ(u0, f, g)‖GmΣ ((t0,t1)×G) + ‖Ψ(u0, f, g)‖GmΣ ((t0,t1)×G) < 2r,

‖B1ũ(t1)‖L∞(Σ) < κ̃/2,

dist(ran Ψ(ũ0, f̃ , g̃)(t), ∂U) > κ,

for all t ∈ [t0, t1]. In particular, Ψ(ũ0, f̃ , g̃)(t1) satisfies the assumptions of
Theorem 5.3 with the same parameters as used before.

3) As in the proof of Theorem 5.3 in [23] we can iterate the above argument
up to time tN ≥ T , arriving at a final radius δ := δN for the data. In particular,
the final existence time T+(m, t0, ũ0, f̃ , g̃) is larger than T if (ũ0, f̃ , g̃) belongs

to BM (δ). Next fix two tuples (ũ0,j , f̃j , g̃j) from this ball. Replacing u by

Ψ(ũ0,2, f̃2, g̃2) in step I), we deduce from (6.17) that

‖Ψ(ũ0,1, f̃1, g̃1)−Ψ(ũ0,2, f̃2, g̃2)‖2
Gm−1

Σ ((t0,T )×G)
(6.19)

≤ Ĉ
(
‖ũ0,1 − ũ0,2‖2Hm(G) + ‖f̃1 − f̃2‖2Hm−1((t0,T )×G) + ‖g̃1 − g̃2‖2Hm−1((t0,T )×Σ)

+
∑m−1

j=0
‖∂jt f̃1(t0)− ∂jt f̃2(t0)‖2Hm−j−1(G)

)
,

where Ĉ = Ĉ(χ, σ, ζ,m, 2r,R, Ṽκ, T
′). This estimate implies (6.15).

Finally, take a sequence (ũ0,n, f̃n, g̃n)n in BM (δ) with limit (ũ0,1, f̃1, g̃1) in

this ball. Inequality (6.19) shows that the solutions Ψ(ũ0,n, f̃n, g̃n) tend to

Ψ(ũ0,1, f̃1, g̃1) in Gm−1
Σ ((t0, T )×G) as n→∞. Lemma 6.3 thus shows that this

convergence takes place in GmΣ ((t0, T )×G). So also part (3) is established. �

Remark 6.5. Reversing time and adapting coefficients, data and smallness
assumptions accordingly, we can transfer the results of Theorem 6.4 to the
negative time direction, cf. Remark 3.3 in [21].
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