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RANDOMIZED EXPONENTIAL INTEGRATORS FOR MODULATED

NONLINEAR SCHRÖDINGER EQUATIONS

MARTINA HOFMANOVÁ, MARVIN KNÖLLER, AND KATHARINA SCHRATZ

Abstract. We consider the nonlinear Schrödinger equation with dispersion modulated by

a (formal) derivative of a α-Hölder continuous time-dependent function. Due to the highly

oscillatory nature of the problem classical numerical methods face severe order reduction
in non-smooth regimes α < 1. In this work, we develop a new randomized exponential

integrator based on a stratified Monte Carlo approximation which allows us to average the

high oscillations in the problem and obtain improved error bounds of order α + 1/2. In
addition, the new approach allows us to treat a far more general class of modulations than

the available literature. Numerical results underline our theoretical findings and show the

favorable error behavior of our new scheme compared to classical methods.

1. Introduction

We study modulated nonlinear Schrödinger equations of the form

(1) i∂tu(t, x) + ∆u(t, x)∂tg(t) = |u(t, x)|2 u(t, x), u(0, x) = u0(x), (t, x) ∈ R× Td,

where g : R→ R is an arbitrary α-Hölder continuous function of time for α ∈ (0, 1), independent
of the space variable.

Classical semilinear Schrödinger equations with g(t) = t are nowadays extensively studied
numerically. In this context, splitting methods (where the right-hand side is split into the kinetic
and nonlinear part, respectively) as well as exponential integrators (based on approximating
Duhamel’s formula) contribute particularly attractive classes of integration schemes. For an
extensive overview on splitting and exponential integration methods we refer to [17, 18, 19, 30],
and for their rigorous convergence analysis in the context of semilinear Schrödinger equations
we refer to [4, 6, 9, 12, 15, 16, 28] and the references therein.

In the last decades, the modulated Schrödinger equation (1) has gained a lot of attention
in physics serving, e.g., as a model describing propagation of light waves in optical dispersion-
managed fibers (see for instance [1, 7, 10, 11, 20, 21, 25, 32]). Numerically, however, only very
little is known so far for this type of problem. The highly oscillatory nature of the problem makes
the construction and analysis of numerical schemes for (1) particularly challenging in non-smooth
regimes, where g is α-Hölder continuous with exponent α < 1. Due to the loss of smoothness
in the system classical numerical schemes (e.g., splitting methods, exponential integrators, etc.)
face severe order reduction. This is due to the fact that their rate of convergence heavily depends
on the smoothness of g. To allow a reliable approximation classical numerical schemes are thus
subject to severe step size restrictions which leads to large errors and huge computational costs
in case of non-smooth modulations g. We refer to [13, 17] for an extensive overview on the
numerical analysis of highly oscillatory problems, and in particular to [22, 23] and the references
therein for the numerical analysis of semiclassical Schrödinger equations. Recently, the case of
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g being a Brownian motion, a stochastic process that has in particular α-Hölder continuous
trajectories for every α ∈ (0, 1/2), has gained a lot attention in numerical analysis. Various
numerical schemes have been proposed reaching from Crank-Nicolson discretizations [3] over
splitting schemes [29] up to exponential integrators [8]. A rigorous error analysis of these schemes
could be established based on probabilistic arguments, i.e., stating the ‘rate of convergence with
certain probability’ (see (3) below for the detailed convergence bound). Whereas the used
probabilistic arguments are applicable to Brownian motion they do not allow for an extension
to more general modulations g nor for deterministic error bounds. Up to our knowledge, nothing
is known in the numerical analysis literature so far for a general modulated dispersion ∂tg(t)∆
and, in particular, deterministic (pathwise) error bounds are still lacking.

In this work we consider for the first time the general case where the modulation g is any
α-Hölder continuous function in time and develop a new randomized exponential integration
scheme for the modulated Schrödinger equation (1) in this general setting. Our new technique
allows us to average the high oscillations in the solution and gain 1/2 in the convergence rate.
More precisely, we can firstly establish sharp improved pathwise convergence rates of order
α+ 1/2 for the new scheme (see (2) below for the precise error estimate). In contrast, classical
schemes face severe order reduction down to order α due to the loss of regularity in the modulated
problem (1). These theoretical findings are underlined by numerical experiments: while the error
of classical schemes oscillates widely, reaching large errors, our proposed randomized exponential
integrator allows us to average these oscillations maintaining its convergence rate with much
smaller and reliable errors, see Section 4.

For completeness, note that randomized numerical schemes in various settings have already
appeared in the literature, in particular in the context of ordinary differential equations and
recently also in case of uncertainty quantifications ([2]). Let us particularly mention [14, 24,
26, 27] which inspired our research and where further references can be found. However, to the
best of our knowledge such a method was not yet applied in the context of dispersive equations
such as (1). In [7], the modulated Schrödinger equation of type (1) has been studied from
the analytical point of view. Thereby an Euler-like procedure was used to prove existence and
construct solutions under certain regularity assumption on g. However, numerical analysis was
not the objective of this work.

New approach in a nutshell. In the present paper we put forward an exponential inte-
grator for (1) based on a stratified Monte Carlo approximation. More precisely, we consider the
mild formulation of (1) and approximate the convolution integral appearing on the right hand
side by means of a randomized Riemann sum. The key idea is to choose the randomization in
such a way, that the associated error is a (discrete time) martingale, which permits to apply
the so-called Burkholder-Davis-Gundy inequality (see Theorem 3.4). Remarkably, this allows to
gain half in the convergence rate in expectation. More precisely, splitting the time interval [0, T ]
into an equidistant partition t0, . . . , tN with the mesh size τ = T

N , for some N ∈ N, we establish
the following bound for the difference of the exact solution u at time tn and the numerical
solution un valid for initial conditions in Hσ+2 with σ > d/2 (see Theorem 3.1 for details):

(2)

(
Eξ max

n=0,...,N
‖u(tn)− un‖2Hσ

)1/2

≤ cτmin{1,α+ 1
2},

where Eξ is the expected value associated to the randomization of the numerical scheme and α
is the exponent of Hölder continuity of g. Classical numerical schemes are in contrast restricted
to convergence rates of order α, see also Remark 3.2 below.
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Comparison with previous results. We stress that the expectation above is taken only
with respect to the randomization of the scheme, whereas the modulation g is deterministic.
In other words, in the case of a random modulation, such as the Brownian motion treated in
[3, 8], our result provides pathwise error estimates leading to a pathwise convergence analysis.
In addition, it applies to a wide range of possible modulations, deterministic or random, and in
particular to any other stochastic process with Hölder continuous trajectories, overcoming the
limitations of [7].

Note that in [3] a semi-discrete Crank-Nicolson scheme is analyzed. The strong order of
convergence in probability in Hσ, σ > d/2, is equal to one for initial conditions in Hσ for
this scheme. In [8] an explicit exponential integrator is proposed and it is shown that it is
mean-square order 1 in Hσ for initial conditions in Hσ+4.

In both works [3, 8], a stochastic approach was used and it was only possible to obtain the
order of convergence 1 in probability which reads as

lim
C→∞

PW
(
‖u(tn)− un‖σ > Cτ

)
= 0,(3)

for all n = 0, . . . , N uniformly with respect to τ . Here we write PW to denote the probability
measure on the probability space where the Brownian motion g = W is defined (in contrast to
the notation Eξ above which only concerns the artificial randomness introduced in our scheme).
It was conjectured in [3] that a stronger result should hold, namely,

lim
C→∞

PW
(

max
n=0,...,N

‖u(tn)− un‖σ > Cτ
)

= 0,

uniformly with respect to τ . However, the proof would require very tedious computations which
were not presented. Our approach allows to overcome this challenge and the convergence analysis
is rather elegant and simple. See Remark 3.6 below.

Organization of the paper. Our exponential integrator is derived in Section 2. In Section 3
we carry out a rigorous error analysis for the new scheme. In Section 4 we present numerical
experiments for g being α-Hölder continuous function for various α ∈ (0, 1).

For practical implementation issues we impose periodic boundary conditions, i.e, x ∈ Td =
[0, 2π]d, d ∈ N. For notational simplicity we work with cubic nonlinearities. However, the
generalization to polynomial nonlinearities f(u) = |u|2pu is straightforward.

Notation. In the following let σ > d/2. We denote by ‖ · ‖σ the standard Hσ = Hσ(Td)
Sobolev norm, that is, if f ∈ Hσ such that f(x) =

∑
k∈Zd f̂keik·x, x ∈ Td, then

‖f‖σ =

∑
k∈Zd

(1 + |k|2)σ|f̂k|2
1/2

.

In particular, we exploit the well-known bilinear estimate

(4) ‖f1f2‖σ ≤ cσ‖f1‖σ‖f2‖σ
which holds for some constant cσ > 0 and every f1, f2 ∈ Hσ.

The space of α-Hölder continuous functions for α ∈ (0, 1) is denoted by Cα([0, T ]), whereas
C([0, T ];Hσ) denotes the space of continuous functions with values in Hσ.

For two quantities a, b, we use the notation a . b to say that there exists a constant c > 0
such that a ≤ cb. This proportionality constant will typically depend on data of the problem
and/or certain norms of the exact solution, which we always specify below. However, it will
always be independent of the step size τ and N .
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2. Derivation of the numerical scheme

It is possible to make sense of (1) using the associated mild formulation. To this end, let us
set

S(t) = Sg(t) = eig(t)∂
2
x , t ∈ R,

as well as

U(t, r) = S(t)S(r)−1 = ei[g(t)−g(r)]∂
2
x

such that in particular U(t, 0) = S(t). Note that due to the presence of the modulation g,
the problem (1) is not time-homogeneous. Consequently, the linear part of (1) generates an
evolution system given by the family of operators U(t, r), r, t ∈ R, which are (generally) not
functions of the difference t − r as it would be case in the classical setting, that is, g(t) = t.
Intuitively, U(t, r) describes the evolution of the linear part of (1) from time r to time t. Note
that since the modulation g does not depend on the space variable x, the above operators are
Fourier multipliers given by

F [S(t)f ](k) = e−ig(t)|k|
2

f̂k, F [U(t, r)f ](k) = e−i[g(t)−g(r)]|k|
2

f̂k

for f ∈ L2 such that f(x) =
∑
k∈Zd f̂keik·x, x ∈ Td.

In the construction and analysis of our numerical scheme we will in particular exploit that
the operators U(t, r) and S(t) are linear isometries in Hσ for all r, t ∈ R:

Lemma 2.1. For all f ∈ Hσ and r, t ∈ R we have that

(5) ‖U(t, r)f‖σ = ‖f‖σ, ‖S(t)f‖σ = ‖f‖σ.

Proof. The assertion follows by the definition of the Hσ norm together with the relation

eig(t)∂
2
xf(x) =

∑
k∈Zd

e−ig(t)|k|
2

f̂keik·x

which holds for all f ∈ L2 such that f(x) =
∑
k∈Zd f̂keik·x, x ∈ Td. �

We point out that a well-posedness theory of (1) under the generality assumed in the present
manuscript is very challenging and remains an open problem. Partial results were given in
[7] covering for instance the case of a fractional Brownian motion g and d = 1. Our numerical
study may help to better understand the properties of (1) for a general class of Hölder continuous
modulations g and might set a starting point for further analytical investigations.

Our goal is to derive a numerical scheme for the mild solution of (1) given by Duhamel’s
formula

(6) u(t) = U(t, 0)u0 − i
∫ t

0

U(t, r)[|u(r)|2u(r)]dr, t ∈ R.

Using the flow property U(t, ξ) = U(t, r)U(r, ξ) valid for all ξ ≤ r ≤ t, we deduce that it satisfies

u(t) = U(t, r)u(r)− i
∫ t

r

U(t, ξ)[|u(ξ)|2u(ξ)]dξ.

Let us now split [0, T ] into an equidistant partition t0, . . . , tN , with the mesh size τ = T
N , for

some N ∈ N, which yields that

(7) u(tn+1) = U(tn + τ, tn)u(tn)− i
∫ τ

0

U(tn + τ, tn + r)
[
|u(tn + r)|2u(tn + r)

]
dr.
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In order to numerically approximate the above time integral, we first use the approximation

u(tn + r) ≈ U(tn + r, tn)u(tn)

which is of order r in Hσ for solutions u ∈ C([0, T ];Hσ):

Lemma 2.2. Fix σ > d/2. Let u be a mild solution to (1) such that u ∈ C([0, T ];Hσ). Then
for all 0 ≤ t ≤ T and 0 ≤ r ≤ τ we have

‖u(t+ r)− U(t+ r, t)u(t)‖σ . r,

where the proportionality constant depends on sup0≤t≤T ‖u(t)‖σ, but can be chosen uniformly in
r.

Proof. Note that the mild formulation (7) yields that

u(tn + r) = U(tn + r, tn)u(tn)− i
∫ r

0

U(tn + r, tn + ξ)
[
|u(tn + ξ)|2u(tn + ξ)

]
dξ.

Together with the bilinear estimate (4) this implies that

‖u(tn + r)− U(tn + r, t)u(tn)‖σ .
∫ r

0

‖u(tn + ξ)‖3σ dξ

which yields the assertion. �

The above Lemma allows us to define the approximation

(8) u∗(tn+1) := U(tn + τ, tn)u(tn)− i
∫ τ

0

U(tn + τ, tn + r)f (U(tn + r, tn)u(tn)) dr,

where we let f(z) = |z|2z for z ∈ C. This approximates the exact solution u at time tn+1 with
order τ2:

Corollary 2.3. Fix σ > d/2. Let u be a mild solution to (1) such that u ∈ C([0, T ];Hσ). Then
the following approximation holds

‖u(tn+1)− u∗(tn+1)‖σ . τ
2(9)

where the proportionality constant depends on sup0≤t≤T ‖u(t)‖σ, but is independent of τ .

Proof. Taking the difference of the exact solution (7) and the approximation (8) yields with
f(z) = |z|2z, z ∈ C, that

‖u(tn+1)− u∗(tn+1)‖σ ≤
∫ τ

0

∥∥∥U(tn + τ, tn + r)
[
f
(
U(tn + r, tn)u(tn)

)
− f

(
u(tn + r)

)]∥∥∥
σ
dr.

The assertion thus follows by Lemma 2.2. �

Thanks to Corollary 2.3 it remains to find a suitable numerical approximation of (8). To this
end, we consider a stratified Monte Carlo approximation of the resulting time integral. More
precisely, let (ξn)n∈N0

be a sequence of independent identically distributed random variables
having the uniform distribution on [0, 1]. We assume that the sequence (ξn)n∈N0

is defined on
some underlying probability space (Ω,F ,P) and we denoted by E the associated expected value.
That is, for every n ∈ N0, the mapping ξ : (Ω,F) → ([0, 1],B([0, 1])) is measurable and for a
measurable function F : R→ R it holds

EF (ξn) =

∫
Ω

F (ξn(ω)) dP(ω) =

∫ 1

0

F (ξ) dξ,
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where the last equality follows by a change of variables from the fact that ξn is uniformly
distributed in [0, 1].

Then we approximate as follows

(10)

∫ τ

0

U(tn + τ, tn + r)
[
|U(tn + r, tn)u(tn)|2U(tn + r, tn)u(tn)

]
dr

≈ τU(tn + τ, tn + τξn)
[
|U(tn + τξn, tn)u(tn)|2U(tn + τξn, tn)u(tn)

]
.

Plugging the above approximation into (8) motivates us to define the randomized exponential
integrator
(11)
un+1 = U(tn + τ, tn)un − iτU(tn + τ, tn + τξn)

[
|U(tn + τξn, tn)un|2U(tn + τξn, tn)un

]
approximating the mild solution u at time tn+1 of the modulated nonlinear Schrödinger equa-
tion (1).

3. Convergence analysis

In this section we carry out the convergence analysis of the randomized exponential integra-
tor (17). Our main result reads as follows.

Theorem 3.1. Fix σ > d/2. Let g ∈ Cα([0, T ]) for some α ∈ (0, 1). Let u be a mild solution
to (1) such that u ∈ C([0, T ];Hσ+2). Then there exits τ0 > 0 such that for all τ ≤ τ0 it holds
true that for all tN ≤ T(

E max
M=0,...,N

∥∥u(tM )− uM
∥∥2

σ

)1/2

. τmin{1,α+ 1
2},

where the proportionality constant depends on T , ‖g‖Cα and sup0≤t≤T ‖u(t)‖σ+2, but is inde-
pendent of τ and N .

Remark 3.2 (Classical order of convergence). Let g ∈ Cα([0, T ]) for some α ∈ (0, 1). With
classical techniques we can readily derive the classical order of convergence for the randomized
exponential integrator (11) approximating solutions of the modulated nonlinear Schrödinger
equation (1): Taylor series expansion implies that for all 0 ≤ ξ ≤ 1 and 0 ≤ r ≤ τ it holds that∥∥(S(tn + r)− S(tn + ξτ)

)
f
∥∥
σ
≤
∣∣g(tn + r)− g(tn + ξτ)

∣∣‖f‖σ+2 ≤ ‖g‖Cατα‖f‖σ+2.

Applying the above estimate in (10) we observe together with Corollary 2.3 that the randomized
exponential integrator (11) introduces a local error of order

(12) τmin{1+α,2} = τ1+α

where the last equality follows as α ≤ 1. The isometric property in Lemma 2.1 together with
the bilinear estimate (4) furthermore allows the stability estimate

(13) ‖un+1‖σ ≤ ‖un‖σ + cτ‖un‖σ

where the constant c depends on ‖un‖2σ, but can be chosen independently of τ and ξn. Thanks
to a Lady Windermere’s fan argument (see [17]) we obtain by the local error (12) together with
the stability estimate (13) that there exists a τ0 > 0 such that for all τ ≤ τ0 the global error
bound holds

(14) ‖u(tn+1)− un+1‖σ ≤ cτα with c = c
(
sup0≤t≤tn‖u(t)‖σ+2

)
.
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Remark 3.3 (Apriori bounds). Let g ∈ Cα([0, T ]) with α ∈ (0, 1). The classical global error
bound (14) in particular implies the apriori boundedness of ‖un‖σ for all (ξn)n∈N0 in [0, 1] and
solutions u ∈ C([0, T ];Hσ+2).

In Proposition 3.5 below we will present the essential estimate needed for the proof of the
main error result Theorem 3.1. It is based on the following discrete version of the Burkholder-
Davis-Gundy inequality (see [5]).

Theorem 3.4. For each p ∈ (0,∞) there exist positive constants cp and Cp such that for every
discrete time Rd-valued martingale {Xn; n ∈ N0} and for every n ∈ N0 we have

cpE〈X〉p/2n ≤ E max
k=1,...,n

|Xk|p ≤ CpE〈X〉p/2n ,

where 〈X〉n = |X0|2 +
∑n
k=1 |Xk −Xk−1|2 is the quadratic variation of {Xn; n ∈ N0}.

Let us introduce the twisted variable

v(t) := S(t)−1u(t), v∗(t) := S(t)−1u∗(t).(15)

In terms of this new variable, the approximation u∗ is given by

v∗(tn+1) = v(tn)− i
∫ τ

0

S(tn + r)−1
[
|S(tn + r)v(tn)|2S(tn + r)v(tn)

]
dr,(16)

whereas the numerical solution vn = S(tn)−1un satisfies

(17) vn+1 := vn − iτS(tn + τξn)−1
[
|S(tn + τξn)vn|2S(tn + τξn)vn

]
.

Proposition 3.5. Let g ∈ Cα([0, T ]) for some α ∈ (0, 1). Then it holds true

E max
M=0,...,N

∥∥∥∥ M∑
n=0

∫ τ

0

S(tn + r)−1
[
|S(tn + r)v(tn)|2S(tn + r)v(tn)

]
dr

− τ
M∑
n=0

S(tn + τξn)−1
[
|S(tn + τξn)v(tn)|2S(tn + τξn)v(tn)

] ∥∥∥∥2

σ

. τ2α+1 sup
0≤t≤T

‖v(t)‖6σ+2,

where the proportionality constant depends on T , ‖g‖Cα but is independent of τ and N .

Proof. Since |u|2u = u2 · ū, we write∫ τ

0

S(tn + r)−1
[
|S(tn + r)v(tn)|2S(tn + r)v(tn)

]
dr

=

∫ τ

0

S(tn + r)−1
[
(S(tn + r)v(tn))2S(tn + r)v(tn)

]
dr =: I(τ).

We intend to estimate the error of the stratified Monte Carlo approximation of the above integral
I(τ) introduced above. Namely, in view of the discussion in Section 2, it is approximated by

I(τ) ≈ τS(tn + τξn)−1
[
|S(tn + τξn)v(tn)|2S(tn + τξn)v(tn)

]
= τS(tn + τξn)−1

[
(S(tn + τξn)v(tn))2S(tn + τξn)v(tn)

]
=: J(τ)
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As the next step, we observe that for x ∈ Td

I(τ, x) =
∑

k,k1,k2,k3∈Zd
k=−k1+k2+k3

eik·x
(∫ τ

0

eig(tn+r)[|k|2+|k1|2−|k2|2−|k3|2]v̂k2(tn)v̂k3(tn)̂̄vk1(tn)dr

)

and similarly

J(τ, x) = τ
∑

k,k1,k2,k3∈Zd
k=−k1+k2+k3

eik·x
(
eig(tn+τξn)[|k|2+|k1|2−|k2|2−|k3|2]v̂k2(tn)v̂k3(tn)̂̄vk1(tn)

)
.

For k, k1, k2, k3 ∈ Zd such that k = −k1 + k2 + k3, let us denote K := K(k1, k2, k3) :=
|k|2 + |k1|2 − |k2|2 − |k3|2, where for notational simplicity we omit the dependence of K on its

parameters. The same convention will be used in the estimates below. We denote V̂K(tn) :=
v̂k2(tn)v̂k3(tn)v̂k1(tn) and define the error

(18) EMK :=

M∑
n=0

(∫ τ

0

eig(tn+r)K − eig(tn+τξn)KdrV̂K(tn)

)
, M = 0, . . . , N.

Here

τ

M∑
n=0

eig(tn+τξn)K

appearing in the second summand of EMK can be regarded as a randomized Riemann sum
approximation of the integral ∫ Mτ

0

eig(tn+r)Kdr.

Next, we will show that for every fixed K defined above, EMK defines a discrete martingale
with respect to the parameter M = 0, . . . , N and the filtration (FM )M=0,...,N given by FM :=
σ(ξi; i = 0, . . . ,M). This will then allow us to apply the Burkholder-Davis-Gundy inequality,
Theorem 3.4. As it will be seen below, the martingale property is a consequence of the way
the randomization (ξn)n∈N0

was chosen. Since all ξn, n ∈ N0, are independent and uniformly
distributed in the interval [0, 1], it follows that

E
[
τeig(tn+τξn)K V̂K(tn)

]
= τE

[
eig(tn+τξn)K

]
V̂K(tn)

= τ

∫ 1

0

eig(tn+τξ)KdξV̂K(tn) =

∫ τ

0

eig(tn+r)KdrV̂K(tn).
(19)

As a consequence

E
[
EMK

]
=

M∑
n=0

E
[∫ τ

0

eig(tn+r)K − eig(tn+τξn)KdrV̂K(tn)

]

=

M∑
n=0

(∫ τ

0

eig(tn+r)Kdr − τE
[
eig(tn+τξn)K

])
V̂K(tn) = 0.

In addition, by definition of EMK we deduce that for every M = 0, . . . , N the random variable EMK
is measurable with respect to FM . Hence the stochastic process EMK , M = 0, . . . , N, is adapted
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to the filtration (FM )M=0,...,N . To finally verify the martingale property, we let M ≥ m and
compute the conditional expectation E

[
EMK |Fm

]
. It holds

E
[
EMK |Fm

]
=

M∑
n=0

E
[∫ τ

0

eig(tn+r)K − eig(tn+τξn)KdrV̂K(tn)
∣∣∣Fm]

= EmK +

M∑
n=m+1

E
[∫ τ

0

eig(tn+r)K − eig(tn+τξn)KdrV̂K(tn)
∣∣∣Fm]

= EmK +

M∑
n=m+1

(∫ τ

0

eig(tn+r)Kdr − τE
[
eig(tn+τξn)K

∣∣Fm]) V̂K(tn)

= EmK +

M∑
n=m+1

(∫ τ

0

eig(tn+r)Kdr − τE
[
eig(tn+τξn)K

])
V̂K(tn)

= EmK ,

where we used the adaptedness of EmK , properties of the conditional expectation, independence
of ξn as well as (19). Thus EMK , M = 0, . . . , N , is a martingale with respect to (FM )M=0,...,N .

Hence, we may apply the Parseval identity and the Burkholder-Davis-Gundy inequality, The-
orem 3.4, to obtain

E max
M=0,...,N

∥∥∥∥∥∥∥∥x 7→
∑

k,k1,k2,k3∈Zd
k=−k1+k2+k3

eik·xEMK

∥∥∥∥∥∥∥∥
2

σ

≤
∑
k∈Zd

(1 + |k|2)σE max
M=0,...,N

∣∣∣∣∣∣∣∣
M∑
n=0

∑
k1,k2,k3∈Zd
k=−k1+k2+k3

∫ τ

0

eig(tn+r)K − eig(tn+τξn)KdrV̂K(tn)

∣∣∣∣∣∣∣∣
2

.
∑
k∈Zd

(1 + |k|2)σE
N∑
n=0

∣∣∣∣∣∣∣∣
∑

k1,k2,k3∈Zd
k=−k1+k2+k3

∫ τ

0

eig(tn+r)K − eig(tn+τξn)KdrV̂K(tn)

∣∣∣∣∣∣∣∣
2

.
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Next, we have by the Minkowski integral inequality

E

∣∣∣∣∣∣∣∣
∑

k1,k2,k3∈Zd
k=−k1+k2+k3

∫ τ

0

eig(tn+r)K − eig(tn+τξn)KdrV̂K(tn)

∣∣∣∣∣∣∣∣
2

1/2

≤
∑

k1,k2,k3∈Zd
k=−k1+k2+k3

∫ τ

0

(
E
∣∣∣eig(tn+r)K − eig(tn+τξn)K V̂K(tn)

∣∣∣2)1/2

dr

≤
∑

k1,k2,k3∈Zd
k=−k1+k2+k3

∫ τ

0

(
E
[∣∣(g(tn + r)− g(tn + τξn))KV̂K(tn)

∣∣2])1/2

dr

≤ ‖g‖Cα
∑

k1,k2,k3∈Zd
k=−k1+k2+k3

∫ τ

0

(
E
[
|r − τξn|2α

])1/2
dr|K||V̂K(tn)|

. τα+1
∑

k1,k2,k3∈Zd
k=−k1+k2+k3

|K||V̂K(tn)|,

(20)

where we used the α-Hölder continuity of g together with E
[
|r − τξn|2α

]
≤ τ2α, which holds

true for r ∈ [0, τ ]. Therefore the final error is estimated using the bilinear estimate (4) together
with the fact that K = |k|2 + |k1|2 − |k2|2 − |k3|2 = 2(k − k2) · (k − k3) as follows

E max
M=0,...,N

∥∥∥∥∥∥∥∥x 7→
∑

k,k1,k2,k3∈Zd
k=−k1+k2+k3

eik·xEMK

∥∥∥∥∥∥∥∥
2

σ

. τ2(α+1)
N∑
n=0

∑
k∈Zd

(1 + |k|2)σ

 ∑
k1,k2,k3∈Zd
k=−k1+k2+k3

|K||V̂K(tn)|


2

.



RANDOMIZED EXPONENTIAL INTEGRATOR FOR MODULATED NLS 11

Using that

∑
k∈Zd

(1 + |k|2)σ

 ∑
k1,k2,k3∈Zd
k=−k1+k2+k3

|K||V̂K(tn)|


2

=
∑
k∈Zd

(1 + |k|2)σ

 ∑
k1,k2,k3∈Zd
k=−k1+k2+k3

|2(k − k2) · (k − k3)||v̂k1(tn)||v̂k2(tn)||v̂k3(tn)|


2

.
∑
k∈Zd

(1 + |k|2)σ+2

 ∑
k1,k2,k3∈Zd
k=−k1+k2+k3

|v̂k1(tn)||v̂k2(tn)||v̂k3(tn)|


2

. ‖v(tn)‖6σ+2

we obtain together with the bound Nτ ≤ T that

E max
M=0,...,N

∥∥∥∥∥∥∥∥x 7→
∑

k,k1,k2,k3∈Zd
k=−k1+k2+k3

eik·xEMK

∥∥∥∥∥∥∥∥
2

σ

. τ2α+2
N∑
n=0

‖v(tn)‖6σ+2 . τ
2α+1 sup

0≤t≤T
‖v(t)‖6σ+2.

This concludes the proof. �

Remark 3.6. Note that in the case of g being a Brownian motion as studied in [3, 8], g is
α-Hölder continuous for α ∈ (0, 1/2). Hence our analysis gives convergence rate α + 1/2 < 1.
On the other hand, exploiting instead Itô’s isometry together with the independence of the
increments in (20), our proof can be refined in order to establish the same order of convergence
as in [3, 8], namely 1. Moreover, this would lead to measuring the error in expectation and not
only in probability.

Combining Corollary 2.3 with Proposition 3.5, we obtain the estimate for the global error in
Theorem 3.1.

Proof of Theorem 3.1. In the following we will derive the bound

(21)

(
E max
M=0,...,N

∥∥v(tM )− vM
∥∥2

σ

)1/2

. τmin{1,α+ 1
2}.

The corresponding bound on u(tM ) − uM then follows by Corollary 2.3 together with the iso-
metric property (5).

In the following we denote the error v(tn) − vn by en, n = 0, . . . , N, and set f(z) := |z|2z.
The error in v reads

en+1 : = v(tn+1)− vn+1 = (v(tn+1)− v∗(tn+1)) + (v∗(tn+1)− vn+1)

= (v(tn+1)− v∗(tn+1)) + (v(tn)− vn)

− i
∫ τ

0

S(tn + r)−1f (S(tn + r)v(tn)) dr + iτS(tn + τξn)−1f (S(tn + τξn)vn) ,

where the last equality is obtained by subtracting (17) from (16).
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Next we use that

f(z) = f(w) + (z − w)z2 + w(z + w)(z − w), z, w ∈ C.

The above relation with z = S(tn + τξn)vn and w = S(tn + τξn)v(tn) yields that

en+1 = (v(tn+1)− v∗(tn+1)) + en

− i
[ ∫ τ

0

S−1(tn + r)f (S(tn + r)v(tn)) dr

− τS−1(tn + τξn)
{
f (S(tn + τξn)v(tn)) + S(tn + τξn)enz

2 + w(z + w)S(tn + τξn)en

}]
= (v(tn+1)− v∗(tn+1)) + en

− i
[ ∫ τ

0

S−1(tn + r)f (S(tn + r)v(tn)) dr − τS−1(tn + τξn)f (S(tn + τξn)v(tn))
]

+ τBnen
= (v(tn+1)− v∗(tn+1)) + en − iL(v(tn)) + τBnen,

where

L(v(tn)) :=
[ ∫ τ

0

S−1(tn + r)f (S(tn + r)v(tn)) dr − τS−1(tn + τξn)f (S(tn + τξn)v(tn))
]

and Bn denotes some bounded operator, depending on vn, v(tn) but bounded uniformly in ω, τ, n
due to Remark 3.3. Iterating the above formula yields

eM = (v(tM )− v∗(tM )) + (v(tM−1)− v∗(tM−1)) + eM−2 − iL(v(tM−2)) + τBM−2eM−2

− iLv(tM−1) + τBM−1eM−1

=

M−1∑
k=0

(v(tM−k)− v∗(tM−k)) + e0 − i
M∑
k=1

L(v(tM−k)) + τ

M∑
k=1

BM−keM−k

=

M∑
n=1

(v(tn)− v∗(tn)) + e0 − i
M−1∑
n=0

L(v(tn)) + τ

M−1∑
n=0

Bnen.

Hence we estimate (using Corollary 2.3, definition of the twisted variables (15), the isometric
property (5) and the fact that e0 = 0)

E max
M=1,...,N

‖eM‖2σ . max
M=1,...,N

∥∥∥∥∥
M∑
n=1

(v(tn)− v∗(tn))

∥∥∥∥∥
2

σ

+ E max
M=1,...,N

∥∥∥∥∥
M−1∑
n=0

L(v(tn))

∥∥∥∥∥
2

σ

+ τ2E max
M=1,...,N

∥∥∥∥∥
M−1∑
n=0

Bnen

∥∥∥∥∥
2

σ

.

(22)

Note that the first term on the right hand side does not depend on (ξn) and hence is independent
of ω. According to Corollary 2.3, definition of the twisted variables (15) and the isometric
property (5) it can be estimated by

max
M=1,...,N

∥∥∥∥∥
M∑
n=1

(v(tn)− v∗(tn))

∥∥∥∥∥
2

σ

≤

(
N∑
n=1

‖(v(tn)− v∗(tn))‖σ

)2

. τ2.
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The last term on the right hand side of (22) can be estimated as follows

τ2E max
M=1,...,N

∥∥∥∥∥
M−1∑
n=0

Bnen

∥∥∥∥∥
2

σ

≤ τ2E

(
N−1∑
n=0

‖Bnen‖σ

)2

. τ2E

(
N−1∑
n=0

‖en‖σ

)2

≤ τ2NE
N−1∑
n=0

‖en‖2σ . τ
N−1∑
n=0

E max
M=0,...,n

‖eM‖2σ .

Therefore, in view of Proposition 3.4 we estimate the second term on the right hand side of (22)
and obtain

E max
M=0,...,N

‖eM‖2σ . τ
2 + τ2α+1 + τ

N−1∑
n=0

E max
M=0,...,n

‖eM‖2σ .

Finally, we apply the discrete Gronwall Lemma to deduce

E max
M=0,...,N

‖eM‖2σ . τ
2 + τ2α+1,(23)

where the proportional constant depends on T but is independent of τ and N . This implies the
estimate (21) as long as ‖vn‖σ is bounded.

Recall the twisted variables (cf. (15))

v(t) = S(t)−1u(t), vn = S(t)−1un

such that in particular due to the isometric property (5) we can conclude that

‖v(t)‖σ = ‖u(t)‖σ, ‖vn‖σ = ‖un‖σ

which thanks to Remark 3.3 implies the apriori boundedness of ‖vn‖σ.
Thanks to Lemma 2.1 and Corollary 2.3 we then in particular obtain that

E max
M=0,...,N

∥∥u(tM )− uM
∥∥2

σ
. τ2 + τ2α+1

which concludes the proof. �

4. Numerical experiments

In this section we numerically underline the theoretical convergence result of Theorem 3.1.
Furthermore, we compare the convergence behavior of our newly derived randomized exponential
integrator (11) with a classical Strang splitting and exponential integration scheme. For the
latter we refer to [8, 15, 18, 28] and the references therein.

The numerical experiments emphasize the favorable error behavior of our newly derived
scheme over classical integration methods in the presence of a non-smooth modulation g: Whereas
the error of the classical schemes oscillates widely, reaching large errors, our proposed random-
ized exponential integrator (11) maintains its convergence rate allowing smaller and in particular
reliable errors without any oscillations.

In our numerical experiments we choose the classical exponential integrator

(24) un+1
E = U(tn + τ, tn)unE − iτU(tn + τ, tn)

(
|unE |2unE

)
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and to the modulated Schrödinger equation (1) associated Strang splitting scheme

(25)

ψ
n+1/2
− = e−i

τ
2 |ψ

n+1|2ψn+1

ψ
n+1/2
+ = ei(g(tn+1)−g(tn))∂2

xψ
n+1/2
−

ψn+1 = e−i
τ
2 |ψ

n+1/2
+ |2ψ

n+1/2
+ .

In all numerical experiments we choose the initial value

u0(x) =
cos(x)

2− sin(x)

and use a standard Fourier pseudospectral method for the space discretization where we choose
the largest Fourier mode K = 27 (i.e., the spatial mesh size ∆x = 0.049). To simulate the
α-Hölder continuous function g, we first choose uniformly distributed random numbers in the
interval [−1, 1], from which we take the discrete Fourier transform. These Fourier coefficients

are then divided by (1 + |k|)α+ 1
2 for k = −N2 , ...,

N
2 − 1 and transformed back with the inverse

Fourier transform and normalized. In Figure 1 below we illustrate the behavior of g in case of
α = 1/2 and α = 1/10. Moreover we consider a smooth example, where g(t) = sin(t). In the

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1

-0.5

0

0.5

1

(a) 1/2-Hölder continuous function.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1

-0.5

0

0.5

1

(b) 1/10-Hölder continuous function.

Figure 1. Illustration of the behavior of the modulation function g in case of
α = 1/2 and α = 1/10.

smooth setting g(t) = sin(t) we take as a reference solution the Strang splitting scheme with a
very small time step size. In the less regular case of a α-Hölder continuous function g, i.e., for
α = 1/2, α = 1/4 or α = 1/10 we take as a reference solution the schemes themselves with a
very small time step size.
To compute the error (EmaxM=0,...,N ‖eM‖21)1/2 (see Theorem 3.1) of our randomized expo-
nential integrator (11) we proceed as follows: We denote by uref(1) the reference solution at
time T = 1 and by u(ξi)ki

(1) the approximation computed with the randomized exponential

integration scheme (11), by using the sequence (ξi)
k
i . By taking m ∈ N sequences, we now use
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the approximation(
E max
M=0,...,N

‖eM‖21

) 1
2

≈

(
1

m

m∑
k=1

∥∥∥uref(1)− u(ξi)ki
(1)
∥∥∥2

1

) 1
2

,

where the derivative is computed by means of the Fourier transform. Note that the new scheme
can be easily implemented and allows for a parallelization in the sequence.
For the Strang splitting and the exponential integrator we compute the classical error in a
discrete H1 norm.
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-5

 

10
-3

 

10
-1

(a) g(t) = sin(t). The slope of the dashed lines is
one and two, respectively.
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10
0

10
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10
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10
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10
-3

10
-2

10
-1

(b) 1/2-Hölder continuous function. The slope of
the dashed line is α+ 1/2 = 1.

Figure 2. Convergence plot of the Strang splitting scheme (25), the classical
exponential integrator (24) and the randomized exponential integrator (11) with
100 sequences in the case of a smooth function g (left) and a non-regular, 1/2-
Hölder continuous function g (right).
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