
Security and Anonymity Aspects of the
Network Layer of Permissionless Blockchains

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenscha�en

von der KIT-Fakultät für Informatik

des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Till Neudecker

aus Kassel

Tag der mündlichen Prüfung: 30. November 2018

Erster Gutachter: Prof. Dr. rer.nat. Hannes Hartenstein

Karlsruher Institut für Technologie

Zweiter Gutachter: Prof. Dr. Jordi Herrera-Joancomart́ı

Universitat Autònoma de Barcelona

�is document is licensed under a Creative Commons Attribution 4.0 International License

(CC BY 4.0): https://creativecommons.org/licenses/by/4.0/deed.en

�is work was supported by the German Federal Ministry of Education and Research within

the projects KASTEL IoE and KASTEL ISE in the Competence Center for Applied Security

Technology (KASTEL) and by the state of Baden-Württemberg through bwHPC, bwFileStor-

age, and LSDF Online Storage.

https://creativecommons.org/licenses/by/4.0/deed.en

Zusammenfassung

Permissionless Blockchains sind dezentrale Systeme, die Konsens erzielen. Das promi-

nenteste Beispiel einer Permissionless Blockchain ist das elektronische Zahlungssys-

tem Bitcoin, welches Konsens über die von Teilnehmern des Systems erzeugten Fi-

nanztransaktionen erzielt. Während verteilter Konsens seit Jahrzehnten Gegenstand

zahlreicher Forschungsarbeiten ist, ist Bitcoin das erste bekannte System, welches Kon-

sens im sog. permissionless-Modell erzielt, d.h. ohne die vorausgehende Feststellung

der Identitäten der Teilnehmer des Systems.

Die Teilnehmer von Permissionless Blockchains kommunizieren über ein unstruk-

turiertes Peer-to-Peer (P2P) Netzwerk miteinander. Da das Verfahren zur Konsensbil-

dung von Permissionless Blockchains auf Daten basiert, die über dieses P2P-Netzwerk

übertragen werden, können Sicherheitslücken in der Netzwerkschicht auch die Kon-

sensbildung und damit die angestrebte Funktion des Systems beein�ussen. Während

unstrukturierte P2P-Netzwerke in der Vergangenheit umfassend analysiert wurden,

führt ihr Einsatz in Permissionless Blockchains zu Sicherheitsanforderungen und

Angreifermodellen, die bisher noch nicht berücksichtigt wurden. Obwohl einzelne

Angri�e auf die Netzwerkschicht von Permissionless Blockchains analysiert wurden,

ist unklar, welche Sicherheitseigenscha�en die Netzwerkschicht von Permissionless

Blockchains haben sollte. Diese Unklarheit motiviert die erste in dieser Dissertation

behandelte Forschungsfrage:Wie können Anforderungen und Zielkon�ikte, die in den

Mechanismen der Netzwerkschicht von Permissionless Blockchains vorhanden sind,

untersucht werden?

In dieser Dissertation wird eine Systematisierung von Angri�en auf die Netzwerk-

schicht von Bitcoin vorgestellt, in der Angri�e hinsichtlich der angegri�enen Mech-

anismen und der Auswirkungen der Angri�e auf höhere Schichten des Systems

kategorisiert werden. Basierend auf der Systematisierung werden fünf Anforderun-

gen für die Netzwerkschicht von Permissionless Blockchains abgeleitet: Leistung,

niedrige Beteiligungskosten, Anonymität, Robustheit gegen Denial-of-Service An-

gri�e sowie Topologieverschleierung. Darüber hinaus werden der Entwurfsraum der

Netzwerkschicht aufgezeigt und der Ein�uss von Entwurfsentscheidungen auf die

Erfüllung von Anforderungen qualitativ untersucht. Die durchgeführten Systema-

tisierungen weisen auf inhärente Zielkon�ikte sowie Forschungsmöglichkeiten hin

und unterstützen die Entwicklung von Permissionless Blockchains.

Weiterhin wird auf Grundlage von seit 2015 durchgeführtenMessungen eine Charak-

terisierung des Bitcoin-P2P-Netzwerks präsentiert. Die Charakterisierung ermöglicht

die Parametrisierung und Validierung von Simulationsmodellen und die Bewertung

der Zuverlässigkeit von realen Experimenten. Darüber hinaus gewährt die Netz-

i

werkcharakterisierung Einblicke in das Verhalten von Netzwerkknoten und deren

Betreibern. Beispielsweise kann gezeigt werden, dass Sybil-Ereignisse in der Ver-

gangenheit im Bitcoin-P2P-Netzwerk stattgefunden haben und dass die Leistung

und die Anonymitätseigenscha�en der Transaktions- und Blockausbreitung durch

Implementierungs- und Protokolländerungen verbessert worden sind.

Auf Grundlage dieser Charakterisierung werden zwei ereignisdiskrete Simulations-

modelle des Bitcoin-P2P-Netzwerks entworfen. Die Modelle werden durch einen Ver-

gleich der simulierten Informationsausbreitungsverzögerung mit der beobachteten

Informationsausbreitungsverzögerung im realen Netzwerk validiert. Da der Vergleich

eine hohe Übereinstimmung zeigt, ermöglichen die vorgestellten Simulationsmodelle

die Simulation des Bitcoin-Netzwerks mit einer Genauigkeit, die für die Analyse

von Angri�en im Bitcoin-Netzwerk ausreicht.

Die vorgestellten Simulationsmodelle sowie die durchgeführte Systematisierung

von Angri�en verdeutlichen die Bedeutung der Kenntnis der Netzwerktopologie als

Grundlage für Forschung und die Analyse von Deanonymisierungsangri�e. Daher

addressiert die zweite Forschungsfrage dieser Dissertation Methoden der Topolo-

gieinferenz und der Deanonymisierung: Unter welchen Voraussetzungen und in

welchem Maße sind netzwerkbasierte Topologieinferenz und Deanonymisierung in

Bitcoin (un)möglich? Diese Frage wird durch Anwendung der vorgeschlagenen Me-

thodenkombination aus Messungen, Simulationen und Experimenten beantwortet.

In dieser Dissertation werden vier verschiedene Methoden zur Topologieinferenz

vorgestellt und unter Verwendung von Experimenten und Simulationsstudien analy-

siert. Anhand von Experimenten wird gezeigt, dass ein Angreifer, der in der Lage ist,

Verbindungen zu allen Knoten des Netzwerks zu etablieren, die direkten Nachbarn

eines Netzwerkknotens mit hoher Sensitivität (recall) und Genauigkeit (precision)

(87 % recall, 71 % precision) durch dieVerö�entlichung vonwidersprüchlichenTransak-

tionen im Netzwerk heraus�nden kann. Unter der Annahme eines passiven An-

greifers, der in der Lage ist, sich mit allen erreichbaren Netzwerkknoten zu verbinden,

war 2016 ein Rückschluss auf die Nachbarn eines Netzwerkknotens mit einer Sensi-

tivität von 40% bei einer Genauigkeit von 40% durch Beobachtung von mindestens

acht Transaktionen, die von diesem Netzwerkknoten stammen, möglich. Darüber

hinaus ist es möglich, die Akkumulation mehrere Transaktionen zum Zwecke der

Topologieinferenz zu geringen Kosten auszunutzen. Allerdings bleibt die erwartete

Inferenzqualität aufgrund fehlender Validierungsmöglichkeiten unklar. Schließlich

kann simulativ gezeigt werden, dass der Peer-Discovery-Mechanismus eines P2P-

Netzwerks bei bestimmte Parametrisierungen Topologinferenz ermöglichen kann.

Abschließend wird die Möglichkeit einer netzwerkbasierten Deanonymisierung

bewertet, indem analysiert wird, ob eine Korrelation zwischen der IP-Adresse des

Netzwerkknotens, der eine Transaktion verö�entlicht, und dem mutmaßlichen Er-

steller der Transaktion besteht. Der zugrundeliegende Datensatz basiert auf den

durchgeführten Messungen und besteht aus fast 10 Millionen Transaktionen mit

zugehörigen IP-Adressen. Es wird gezeigt, dass Transaktionen von 5% bis 8.3 % der

Benutzer au�allend häu�g von einzelnen Netzwerkknoten verö�entlicht wurden, was

diese Benutzer dem Risiko netzwerkbasierter Deanonymisierungsangri�e aussetzt.

ii

Abstract

Permissionless blockchains are decentralized consensus systems.�e most prominent

example of a permissionless blockchain is the electronic payment system Bitcoin that

achieves consensus on �nancial transactions issued by participants. While distributed

consensus has been a subject of research for decades, Bitcoin was the �rst system

to achieve consensus in the permissionlessmodel, i.e., without prior establishment

of identities of participants.

�e participants of a permissionless blockchain communicate over an unstructured

peer-to-peer (P2P) network. As the consensus protocol of permissionless blockchains

relies on data transmitted through that P2P network, vulnerabilities in the network

layer can also a�ect the establishment of consensus and, therefore, the intended

function of the system. While unstructured P2P networks have been extensively

analyzed in the past, their deployment in permissionless blockchains leads to di�erent

security requirements and adversary models that existing work has not considered yet.

Furthermore, although a number of attacks on the network layer of permissionless

blockchains have been analyzed, no general notion of the desired security properties

of the network layer of permissionless blockchains exists. �is motivates the �rst

research question addressed in this dissertation: How to research requirements and

tradeo�s present in the network layer mechanisms of permissionless blockchains?

First, we provide a systematization of attacks on the network layer of Bitcoin re-

garding the exploited network layer mechanisms and the e�ects of the attacks on

the application and consensus layers of Bitcoin. Based on this systematization, we

derive �ve requirements for the network layer of permissionless blockchains: per-

formance, low cost of participation, anonymity, denial-of-service resistance, and

topology hiding. Furthermore, we systematize the design space of the network layer

and qualitatively show the e�ect of design decisions on the ful�llment of requirements.

Our systematizations indicate inherent tradeo�s, point out research possibilities, and

guide developers of permissionless blockchains.

Secondly, based on measurements performed since 2015 we provide a characteriza-

tion of the Bitcoin P2P network.�e characterization enables the parametrization and

validation of simulation models and the assessment of the reliability of real-world

experiments. Furthermore, the network characterization provides insights into the be-

havior of peers and their operators. For instance, we provide evidence that Sybil events

happened in the past in the Bitcoin P2P network. Additionally, our measurements

show that the performance and anonymity of transaction and block propagation has

been improved by implementation and protocol changes.

iii

�irdly, research of the network layer of permissionless blockchains can be per-

formed by employing network simulations. Based on the network characterization,

we present two discrete-event simulation models of the Bitcoin P2P network that can be

used for performing simulations at the full scale of the Bitcoin network. We validate

our models by comparison of the simulated information propagation delay to the

observed one in the real-world network. As the comparison shows a high correspon-

dence, the presented simulation models enable the simulation of the Bitcoin network

with a precision su�cient for the analysis of attacks.

Our simulation models and our systematization of attacks highlight the importance

of knowledge of the network topology as a basis for research and as a prerequisite for

certain attacks, such as network-based deanonymization attacks.�erefore, we ad-

dress topology inference and deanonymization in the second research question of this

dissertation: Under which assumptions and to which degree are network-based topology

inference and deanonymization (im-)possible in Bitcoin?We answer this question by

building on the results of the �rst research question, i.e., by applying a combination

of measurements and experiments, and by using the presented simulation models.

We evaluate four di�erent topology inferencemethods using real-world experiments

and simulations. Using real-world experiments we show that an adversary that is able

to connect to all peers of the network can infer the direct neighbors of a peer with high

recall and precision (87% recall, 71 % precision) at low costs by actively publishing

con�icting transactions on the network. Furthermore, for a passive adversary that is

able to connect to all reachable peers, inference of the neighbors of a peer was possible

in 2016 with a recall of 40% at a precision of 40% by observing at least 8 transactions

originating from that peer. Additionally, network topology information can be in-

ferred at low costs by exploiting the client behavior transaction accumulation, however,

the expected real-world inference quality remains unclear, because a ground-truth

validation is inherently hard to perform for the proposed method. Subsequently, we

show in simulations that a P2P network’s peer discovery mechanism can be exploited

for topology inference for certain parametrizations of the peer discovery mechanism.

Finally, we assess the possibility of network-based deanonymization by analyzing

whether a correlation between the IP address of the peer announcing a transaction

�rst and the suspected creator of the transaction can be detected. Our dataset is

based on our network characterization and consists of almost 10 million transactions

with associated IP addresses. We show that transactions of 5 % to 8.3 % of users were

conspicuously o�en published by individual peers, potentially making these users

susceptible to network-based deanonymization attacks.

iv

Contents

Zusammenfassung i

Abstract iii

List of Figures ix

List of Tables xiii

1 Introduction 1
1.1 Contributions . 3

1.2 �esis Outline . 6

2 Fundamentals 9
2.1 De�nitions and Key Literature Results 10

2.2 Bitcoin . 13

2.2.1 Application Layer . 14

2.2.2 Consensus Layer . 17

2.2.3 Network Layer: Peer-to-Peer Network 21

2.3 Discussion . 23

2.3.1 Relation to Consensus Models and Key Results 23

2.3.2 Bitcoin’s Impact . 26

2.3.3 Conclusion . 27

3 Network Layer Requirements and Design Space 29
3.1 Related Work . 30

3.2 System Requirements . 31

3.2.1 Functional Requirements . 31

3.2.2 Non-Functional Requirements 32

3.2.3 Security Requirements - Attack Survey 32

3.2.4 Adversary Models . 35

3.2.5 Related Requirements and Adversary Models 36

3.3 Design Space Survey . 36

3.3.1 Attachment Strategy . 37

3.3.2 Communication Strategy . 44

3.3.3 Remarks . 48

v

Contents

4 Network Characterization 51
4.1 Methodology . 52

4.1.1 Architecture & So�ware . 52

4.1.2 Dataset . 55

4.2 General Network Properties . 56

4.2.1 Connections . 56

4.2.2 IP Properties . 62

4.2.3 Latency . 64

4.2.4 Propagation of Transactions and Blocks 67

4.3 Case Studies . 72

4.3.1 Bitcoin Cash Sybil Peers . 72

4.3.2 IPv6 Teredo . 74

4.4 Discussion . 77

5 Simulation Methodology 79
5.1 Related Work . 80

5.2 Client Behavior Models . 81

5.2.1 Top-Down Model . 81

5.2.2 Bottom-Up Model . 87

5.3 Network and Client Parametrization 89

5.4 Discussion . 96

6 Topology Inference 99
6.1 Exploiting Transaction Accumulation for Topology Inference 101

6.1.1 Fundamentals & Assumptions 101

6.1.2 Topology Inference Method Description 101

6.1.3 Discussion & Variants . 102

6.1.4 Simulation Results . 103

6.1.5 Experimental Results . 105

6.1.6 Discussion . 106

6.2 Exploiting Double Spends for Topology Inference 107

6.2.1 Topology Inference Method Description 107

6.2.2 Discussion & Variants . 108

6.2.3 Simulation Results . 109

6.2.4 Experimental Results . 111

6.2.5 Discussion . 111

6.3 Exploiting Timing for Topology Inference 113

6.3.1 From Observations to Network Topology 113

6.3.2 Experimental Validation in the Bitcoin P2P Network 117

6.3.3 Countermeasure: Trickling . 119

6.3.4 Discussion . 124

6.4 Exploiting Peer Discovery for Topology Inference 125

6.4.1 Peer Discovery: Requirements & Tradeo�s 125

6.4.2 Peer Discovery Strategy Description 126

6.4.3 Adversary Model . 127

vi

Contents

6.4.4 Methodology . 127

6.4.5 Results . 129

6.4.6 Discussion . 130

6.5 Topology Inference - Discussion . 132

7 Anonymity 135
7.1 Related Work . 136

7.2 Clustering based on Blockchain Information 137

7.2.1 Clustering Procedure & Heuristics 137

7.2.2 Results . 141

7.3 Network Information . 142

7.3.1 Association of Transactions and IP Addresses 143

7.3.2 Methodology . 144

7.3.3 Results & Discussion . 146

7.4 Discussion . 147

8 Conclusions and Outlook 149

A Proofs of Topology Inference Methods 155
A.1 Exploiting Transaction Accumulation for Topology Inference 155

A.2 Exploiting Double Spends for Topology Inference 156

B Approximative Propagation Delay Model 159
B.1 Notation and Assumptions . 159

B.2 Probability for Shortest Path Length 160

B.3 Delay Distribution Depending on Path Length 160

Bibliography 165

vii

List of Figures

2.1 Elements of a Bitcoin transaction. 15

2.2 Bitcoin script: Pay To PubKey Hash (P2PKH) 16

2.3 Elements of a Bitcoin block . 19

3.1 Behavior and requirements of the network layer of permissionless

blockchains [NH18] . 30

3.2 Known network-based attacks on permissionless blockchains at the

example of Bitcoin, visualized as attack trees [NH18]. 33

3.3 Exemplary design choices and their e�ects on the ful�llment of re-

quirements [NH18] . 47

3.4 Qualitative e�ect of the thenumber of connections on the requirements

performance, DoS resistance and cost of participation (CoP) [NH18]. 49

4.1 Measured number of connections between July 2016 and April 2018

for both monitor peers . 57

4.2 Comparison of the number of connections according to our measure-

ments (KIT), and the number of connections reported by Coindance

and Bitnodes. 58

4.3 Share of connected peers with a connection duration longer than one

minute, hour, day, week, or month, respectively. 59

4.4 Number of connections established and closed, respectively, per hour 60

4.5 Number of peers announcing displayed version string for the top

eight version strings between April 2016 and April 2018. 61

4.6 Number of IPv6 peers using native IPv6, Teredo, and 6to4 between

July 2016 and April 2018. 62

4.7 Number of peers per country for the eight countries with the most

peers. 63

4.8 Number of peers per AS for the eight AS’s with the most peers. . . . 64

4.9 Average median measured latency from monitor peers to remote peers. 65

4.10 Average measured latency per remote peer w.r.t. distance to remote

peer . 66

4.11 Total number of observed INV announcements per hour per monitor

peer from July 2015 until April 2018 . 67

4.12 Bitcoin propagation delay for block and transaction propagation

(50% and 90% percentiles). 69

ix

List of Figures

4.13 Comparison of the 50% block propagation percentile of our measure-

ments (KIT), and the measurements performed by bitcoinstats and

bitnodes. 70

4.14 Total Number of observed INV announcements per hour and the

50% transaction propagation percentile between March 24th, 2018,

and March 31st, 2018. 71

4.15 Measured number of connections around August 1st, 2017 [Neu18]. 73

4.16 Announced client version strings of Sybil peers [Neu18]. 73

4.17 Connections per AS, only AS’s with most connections shown [Neu18]. 73

4.18 Number of INV announcements received for BCH blocks [Neu18]. . 73

4.19 Share of peers from displayed country for the set of Teredo peers and

the set of natively connected peers. 75

4.20 Share of peers from displayed ASs for the set of Teredo peers and the

set of natively connected peers. 75

4.21 Share of peers announcing displayed version string for the set of

Teredo peers and the set of natively connected peers. 76

5.1 Research methodology for the analysis of the network layer of per-

missionless blockchains [NH18]. 80

5.2 Event architecture of the simulator. 83

5.3 Latency distribution broken down by geographical distance between

measurement node and foreign peer [NAH16] 90

5.4 Comparison of the unintentional client delay for the Bitcoin reference

client versions 0.10.2 and 0.11.2 [NAH16]. 91

5.5 Experiment setup for the observation of the 0-hop transaction prop-

agation delay. 93

5.6 Comparison between measured and simulated INV propagation
delay as histogram data; limited to direct neighbors of originating

peer (bottom) and for the complete network (top). Both networks

parametrized with γ = −2.3 [NAH16]. 95

6.1 Exploiting transaction accumulation for topology inference [GNH18] 102

6.2 Number of true positives and false positives per run for the base

approach and the variant DS with three di�erent inputs [GNH18]. . 104

6.3 Number of true positives and false positives depending on the net-

work size for vM being connected to half of the peers [GNH18]. . . . 105

6.4 Exploiting double spends for topology inference [GNH18] 108

6.5 Precision and Recall depending on the number of runs with vM being

connected to 250 (half connected) and 500 (fully connnected) of 500

peers [GNH18]. 109

6.6 Precision and recall depending on the number of runs for variant

Count and vM being connected to 375 of 500 peers[GNH18]. 110

6.7 Precision and recall depending on the number of runs for variants

Suppress and Suppress + Ignore with vM being connected to 500 of

500 peers (fully connected) [GNH18]. 111

x

List of Figures

6.8 Experimental Results: Precision and recall depending on the number

of runs using variant Suppress and Suppress+Ignore [GNH18]. 112

6.9 Timing-based topology inference method. 114

6.10 Precision and recall in a simulated network wrt. the number of ob-

servations per pair of peers [NAH16]. 116

6.11 Conditional delay distributions and certainty wrt. to observed de-

lay [NAH16] . 117

6.12 Precision vs. recall of two estimations for measurements performed

on Jan 26th (A) and Jan 28th (B), 2016 for varying number of obser-

vations ∣∆∣ [NAH16]. 118

6.13 Tradeo� between low consistency delay and topology inference resis-

tance when applying trickling [NAH16] 120

6.14 Considered scenario: �e adversary M wants to infer whether S

and T are directly connected (le� side), or whether S and T are not

directly connected (right side) [NH18]. 121

6.15 Top: Optimal d̂. Bottom: Resulting P(δ = t∣C = c) for c ∈ {1, 2}.
Parameters: µ = 10, λ(1) = 1 (0 else), P(C = 1) = P(C = 2) =
0.5 [NH18]. 123

6.16 Recall depending on the number of observations [NH18] 124

6.17 Measured number of unique IP addresses of the Bitcoin P2P net-

work to which connections were established per day during the year

2017 [NH18]. 128

6.18 Average number of IP addresses in all client’s address lists [NH18]. . 129

6.19 Average recall depending on the number of observations ∣O∣ [NH18]. 130
6.20 Average precision depending on the number of observations ∣O∣ [NH18]. 131
6.21 Overview of considered topology inference methods 133

7.1 High-level overview of the used approach [NH17] 136

7.2 Overview of the clustering process . 138

7.3 Histogram of the resulting cluster sizes for heuristics H1 and variants

of H2 [NH17]. 141

7.4 Histogram of the resulting cluster sizes for heuristics H1 and variants

of HG [NH17]. 143

7.5 Histogram of the number of unique transactions associated per IP

address . 144

7.6 Decision process for �agging the association between clusters and IP

addresses as conspicuous. 145

B.1 Propagation Delay: Comparison of Model to Simulation [NAH16]. . 162

xi

List of Tables

3.1 Design space of the network layer of permissionless blockchains [NH18]. 37

4.1 Measurement system parameters. 54

5.1 Event types of bottom-up model. 88

6.1 Overview of the analyzed topology inference methods. 100

7.1 Comparison of all heuristics. Total number of addresses: 196,963,722,

total number of transactions: 172,868,721 [NH17]. 140

7.2 Comparison of the number of clusters with at least two associated IP

addresses (∣{C ∶ ∣AC ∣ ≥ 2}∣) and the number and share of conspicuous
clusters (C+), and the share of conspicuous IP addresses (A+) for
various heuristics [NH17]. 147

xiii

1

Introduction

What is needed is an electronic payment system based on cryptographic

proof instead of trust, allowing any two willing parties to transact directly

with each other without the need for a trusted third party.

(Satoshi Nakamoto, 2008)

With an increasing volume and complexity of trade, banks have become core insti-

tutions of the economic system centuries ago. In addition to traditional banks, the

widespread use of online shopping gave rise to digital payment systems (e.g., PayPal)

during the last decade. Banks and digital payment systems serve as intermediaries

between merchants and buyers, acting as a trusted third party between those two

entities. Motivated by the required trust, a person or group using the pseudonym

Satoshi Nakamoto published the concept of Bitcoin [Nak08], which enables �nancial

interaction through the Internet without a single trusted entity.

Bitcoin realizes a decentralized ledger that is used to store transactions created by

users in order to transfer money. As long as all participants agree on the stored transac-

tions, a public ledger can be su�cient to realize a currency system.1 Since its inception,

more than 300 million Bitcoin transactions were issued by users of the system.

Bitcoin is the �rst known implementation of what later became known as a per-

missionless blockchain.2 Technically, permissionless blockchains are decentralized

systems that achieve consensus on data (e.g., transactions) that is stored in blocks.

�ese blocks are chained using cryptographic hash functions in order to guarantee

1�e Yap stone money is o�en used as an analogy [Cor75]: A society onMicronesian islands used to

use large stone disks as a form of currency. Because these stones were hard to transport, ownership of

a stone was not indicated by physical access, but by the recorded history of past changes in ownership.

�is requires that everyone agrees on the history of past transactions.
2�e Bitcoin paper contains neither the term blockchain, nor the term permissionless.

1

1 Introduction

integrity of the stored data. While distributed consensus has been a subject of re-

search for decades, Bitcoin was the �rst system to (eventually) achieve consensus

in the permissionless model [Wat16].

In contrast to permissioned consensus, no prior establishment of identities of partic-

ipants is required for permissionless consensus.�is allows new participants to join

the system without any form of authentication. In order to reduce the e�ectiveness

of Sybil attacks [Dou02], which are inherently possible in the permissionless model,

Bitcoin utilizes a proof-of-work scheme that limits the ability to contribute to the

consensus process to the computational resources of the participant.

Participants of permissionless blockchains communicate over an unstructured peer-

to-peer (P2P) network in order to achieve a high degree of decentralization. As the

consensus process relies on data transmitted by the network layer, vulnerabilities in

the network layer can also a�ect the establishment of consensus and, therefore, the

realized function of the system (e.g., the Bitcoin currency system). Hence, the security

of the overall system also depends on the security of the network layer.

Unstructured P2P networks have been widely used in the past decades, especially

for the purpose of �le sharing.�erefore, unstructured P2P networks also have been

the subject of extensive research. However, the use of unstructured P2P networks as

communication infrastructure for permissionless blockchains leads to vastly di�erent

(security) requirements and adversarymodels that were not considered, yet.�erefore,

insights delivered by existing research are o�en not directly applicable to the domain

of permissionless blockchains.

Speci�cally, we observe the following limitations of existing research on the network

layer of permissionless blockchains: While a number of attacks on the network layer

of permissionless blockchains has been analyzed, no general notion of the desired

security properties of the network layer of blockchains exists. Furthermore, the

relationship between design options, the degree of ful�llment of security properties,

and the e�ect of inherent tradeo�s among design options is not su�ciently understood.

Finally, there is a lack of data and models that are required to analyze security and

anonymity aspects of the network layer of permissionless blockchains. Motivated by

these limitations, the �rst research question addressed in this dissertation is:

How to research requirements and tradeo�s present in the network layer

mechanisms of permissionless blockchains?

Two important requirements of the network layer of permissionless blockchains

are resistance against denial-of-service (DoS) attacks and resistance against deano-

nymization attacks. In permissionless blockchains, a lack of resistance against DoS

attacks not only reduces the availability of the system, but can also enable attacks on

the consensus system, which can result in direct monetary loss of participants of the

system [HKZG15]. Ensuring the anonymity of users is especially important consid-

ering the fact that Bitcoin publicly stores �nancial transactions. While users do not

include their real-world identity in Bitcoin transactions, they use pseudonyms (Bit-

coin addresses).�e use of pseudonyms makes it crucial to prevent a linking between

the pseudonyms of a user and other personally identi�able information of that user,

2

1 Introduction

in order to ensure anonymity. Such linking could be facilitated by the observation of

the message propagation process of the underlying P2P network [FV17].

Knowledge of the topology of the P2P network is a key factor for the feasibility,

costs, and success of these attacks. While speci�c approaches for topology inference

of the Bitcoin P2P network exist [MLP+15], it is not clear to which degree topology

inference is generally possible in P2P networks of permissionless blockchains, and

what the resulting inference quality is. Besides for these adversarial purposes, knowl-

edge of the P2P network topology is also highly bene�cial for research, as it can

enable precise simulations of the system. �erefore, the second research question

addressed in this dissertation is:

Under which assumptions and to which degree are network-based topol-

ogy inference and deanonymization (im-)possible in Bitcoin?

1.1 Contributions
�e contributions of this dissertation address the two main stated research questions,

and can, therefore, be categorized into contributions that mainly enable research of

the network layer of permissionless blockchains, and contributions that address the

possibility and quality of network-based topology inference and deanonymization.

Advancement of Research of the Network Layer of Permissionless Blockchains

In this dissertation we (1) systematize threats and design options of the network layer,

(2) collect and provide measurement data of the real-world Bitcoin P2P network, and

(3) develop, parameterize, and validate simulation models for Bitcoin.

Systematization We systematize known attacks on the network layer of permis-

sionless blockchains regarding the exploited mechanisms and e�ects on higher layers.

�e systematization shows that all known attacks aiming at a monetary bene�t of the

adversary are based on DoS attacks. Furthermore, the aim of all studied attacks is

either monetary bene�t or the deanonymization of users by linking IP addresses to

application data (i.e., pseudonyms of users).�e systematization also allows us to

derive �ve requirements: performance, low cost of participation, anonymity, DoS

resistance, and topology hiding. Furthermore, we survey the design space of the

network layer by analyzing design decisions of a wide range of proposed and deployed

systems. For each design decision we qualitatively show the e�ect on the ful�llment of

the requirements and identify existing tradeo�s. Showing the existence of such trade-

o�s indicates directions of future research, and enables designers of permissionless

blockchains to develop the network layer according to their requirements.

Measurements Weperform long-term (2015 to 2018, ongoing)measurements of the

Bitcoin P2P network by joining the network with twomonitor nodes and collecting raw

data on the propagation of messages through the network.�e Bitcoin P2P network

3

1 Introduction

consists of more than 10,000 reachable peers and is used to carry out real-world

�nancial transactions valued to up to several billion Euros per day.3

�e measurements provide insights into the technical and human activity on the net-

work. First, the ongoing characterization of the network allows to monitor the e�ects

of changes to client implementations. For instance, improvements to the performance

and anonymity of message propagation in commonly used client implementations

manifest in the observed propagation characteristics. Furthermore, as the Bitcoin P2P

network is an open network, the composition of peers can change drastically within

short periods of time. For instance, during our measurements we could observe mul-

tiple Sybil events with several thousand peers joining the network in a coordinated

way. Finally, although the Bitcoin P2P is a technical system, the observations also

allow conclusions regarding the behavior of the persons operating the peers. For

instance, our measurements show that it usually takes several months between the

release of a new client version and the widespread deployment of that client version.

�is indicates that peers are operated by a large number of individuals.

In addition to the described insights regarding the network itself, the measurements

enable simulations of the Bitcoin P2P network and experiments performed in the

Bitcoin P2P network. Our ongoing characterization of the network enables the

assessment of the reliability of experiments performed in the real-world network.

For instance, if experiments are performed during periods with observed unusual

user or network behavior, the reliability of experiments is substantially reduced.

Furthermore, in order to perform simulations that represent the real-world system,

the simulated network should be a precise model of the real-world network. Based on

our measurements we parametrize and validate our simulation models. Aggregated

measurement data has been made available to the research community.4

SimulationModels We present two approaches for modeling the behavior of peers

of the Bitcoin P2P network as a discrete-event model. Both models di�er in their

degree of abstraction and in the computational e�ort required for the execution of

simulations. Based on the conducted measurements we parametrize our simulation

model, and perform an empirical validation by comparing simulation results to

real-world measurements. �e validation shows a close correspondence between

simulated and measured information propagation. �e parametrization based on

our real-world measurements enables the simulation of the Bitcoin network with

a precision su�cient for the analysis of attacks.

Possibility and Quality of Network-Based Topology Inference and Deanonymization

In the dissertation we propose several methods for network based topology inference

and deanonymization and analyze their feasibility using simulations and real-world

experiments.

3https://blockchain.info/de/charts/estimated-transaction-volume-
usd

4https://dsn.tm.kit.edu/bitcoin

4

https://blockchain.info/de/charts/estimated-transaction-volume-usd
https://blockchain.info/de/charts/estimated-transaction-volume-usd
https://dsn.tm.kit.edu/bitcoin

1 Introduction

Network-Based Topology Inference We present and analyze four di�erent meth-

ods for inferring the P2P topology of permissionless blockchains.�e �rst method

targets a behavior (transaction accumulation) speci�c to the most commonly used

Bitcoin client. While the general feasibility of the approach is shown in simulations

and real-world experiments, the method lacks the possibility to in�uence which exist-

ing connection of the network is inferred. As this makes a ground-truth validation

infeasible, the real-world inference quality of the proposed method remains unclear.

�e second method exploits a behavior of clients regarding con�icting transactions:

As con�icting transactions can be created by participants of the network at minimal

costs (i.e., the cost is constant in the number of created transactions), such double

spends are dropped by clients to prevent DoS attacks on the network. We show

in simulations and real-world experiments that this behavior can be exploited for

inferring the neighbors of a peer at low costs reaching a recall of 87% at a precision

of 71 %.�is inference quality is potentially su�cient for academic and adversarial

purposes, assuming the adversary is capable of connecting to all peers of the network.

�e third method is based solely on passively observing the timing of message prop-

agation on the Bitcoin P2P network, which is inherently possible in permissionless

blockchains. Experiments in the real-world Bitcoin network show that topology infer-

ence was possible with a recall of 40% at a precision of 40% at the time of performing

the experiments in 2016. However, improvements to the transaction propagation

mechanism of commonly used Bitcoin clients render this method hardly feasible

in 2018. Finally, the fourth method targets Bitcoin’s peer discoverymechanism, i.e.,

the exchange of IP addresses of reachable peers between clients. Our simulation

results show that only certain parametrizations of the peer discovery mechanism

are exploitable for topology inference.

Network-Based Deanonymization We assess whether the use of network obser-

vations facilitates the deanonymization of participants by linking Bitcoin addresses

contained in published transactions to the IP addresses of peers that were observed

to relay the transaction �rst. While Bitcoin addresses are pseudonyms, prior research

shows that the set of addresses used by an individual participant can be clustered

using several proposed heuristics based on information available from the public

blockchain. We apply all clustering heuristics that are known to us to blockchain

information and associate the resulting clusters with IP address information extracted

from our network observations. Our results indicate that for the vast majority of users

network information cannot facilitate deanonymization in the considered adversary

model.�e adversary model is de�ned by the performed measurement of the Bitcoin

P2P network (i.e., the adversary runs a small number of passive monitor nodes con-

nected to all reachable peers of the network, but does not have access to any further

information such as the network topology). Still, a small number of participants (5 %

to 8.3 %) exhibit conspicuous behavior that might make them susceptible to network

based deanonymization attacks in the considered adversary model.

Parts of the contributions presented in this dissertation have been published in the

following previous works:

5

1 Introduction

– T. Neudecker, P. Andel�nger, and H. Hartenstein. A simulation model for anal-
ysis of attacks on the Bitcoin peer-to-peer network. In IFIP/IEEE International

Symposium on Integrated Network Management (IM), 2015, pages 1327–1332,

May 2015.

– T. Neudecker, P. Andel�nger, and H. Hartenstein. Timing analysis for inferring
the topology of the Bitcoin peer-to-peer network. In Intl. IEEE Conference on

Advanced and Trusted Computing (ATC), 2016, pages 358–367, July 2016.

– T. Neudecker and H. Hartenstein. Could network information facilitate address
clustering in Bitcoin? In 4th Workshop on Bitcoin and Blockchain Research,

Financial Cryptography and Data Security 2017, 2017.

– T. Neudecker. Bitcoin Cash (BCH) Sybil nodes on the Bitcoin peer-to-peer
network. In Karlsruhe Reports in Informatics 4, 2018.

– M. Grundmann, T. Neudecker, and H. Hartenstein. Exploiting transaction
accumulation and double spends for topology inference in Bitcoin. In 5th

Workshop on Bitcoin and Blockchain Research, Financial Cryptography and Data

Security 2018, 2018.

– T. Neudecker and H. Hartenstein. Network layer aspects of permissionless
blockchains. Accepted in IEEE Communications Surveys & Tutorials, 2018.

1.2 Thesis Outline
�e remainder of this thesis is structured as follows. In Chapter 2 we revisit existing

de�nitions, models, and results from the past decades in order to give a broader

view on the theoretical foundation of permissionless blockchains. Furthermore, we

introduce the technical concept of Bitcoin as the �rst instance of a permissionless

blockchain, and discuss which existing models and results are applicable to permis-

sionless blockchains, and which are not.

In Chapter 3 we de�ne the requirements of the network layer of permissionless

blockchains. Furthermore, we provide a systematization of known attacks on the

network layer of permissionless blockchains, and survey its design space.

In Chapter 4 we give an extensive characterization of the real-world Bitcoin P2P

network. For this, we �rst describe the used methodology, then the network is

characterized regarding its general, long-term properties. Finally, an analysis of a

selection of unusual events and a discussion is presented.

In Chapter 5 we introduce the simulation models that will be used thoughout this

dissertation. We present two approaches for modeling the behavior of peers of the

Bitcoin network as a discrete-event model. Furthermore, based on the measure-

ments presented in Chapter 4 we parametrize our simulation model, and perform an

empirical validation by comparing simulation results to real-world measurements.

In Chapter 6 we present and analyze four di�erent topology inference methods

targeting the P2P network of permissionless blockchains. While the �rst method

6

1 Introduction

exploits the accumulation of transactions in a speci�c Bitcoin client implementation,

the second analyzed method targets the handling of double spending transactions,

which is equal among all clients.�e third proposed and analyzed method is based

solely on passively observing the timing of message propagation.�e fourth method

targets the peer discoverymechanismof permissionless blockchains, which is required

for the establishment of connections in a P2P network.

In Chapter 7 we empirically address the question whether observations on the

Bitcoin P2P network can be used to link the creators of transactions to IP addresses

of Bitcoin peers. Finally, a conclusion of the results presented in this dissertation

and an outlook is given in Chapter 8.

7

2

Fundamentals

�e public hype associated with blockchains can easily give the impression that block-

chains are a fundamentally new technology, regularly associated with the promise

to improve the life of individuals and the expectation to change societies as a whole.

However, although the concept of permissionless blockchains was �rst published

in 2008 [Nak08], neither the problem that permissionless blockchains aim to solve,

nor the building blocks combined into permissionless blockchains are new to com-

puter science [NC17].

Permissionless blockchains solve a speci�c type of the consensus problem, a prob-

lem that has been the subject of research in the �eld of distributed systems for

decades [Asp]. Recent works show that existing models require only minor adaptions

to be able to be used in the analysis of permissionless blockchains (e.g., [GKL15]).

Furthermore, the individual technologies combined into permissionless blockchains

have been known for many years before the concept of Bitcoin was published. For

instance, the proof-of-work mechanism was published in 1992 [DN92], the elliptic

curve used for public key cryptography has been standardized in 2000 [Res10], and

peer-to-peer networks like Napster were extensively used around the year 2000.

In this chapter we �rst revisit existing de�nitions, models, and results from the past

decades in order to give a broader view on the theoretical foundation of permissionless

blockchains.�en, we introduce the technical concept of Bitcoin as the �rst instance

of a permissionless blockchain. Finally, we discuss which existing models and results

are applicable to permissionless blockchains, and show aspects of permissionless

blockchains that actually push existing models out of their limits.

9

2 Fundamentals

2.1 Definitions and Key Literature Results
In this section we revisit de�nitions and results that are highly relevant to permis-

sionless blockchains. We acknowledge that there are many more de�nitions, models,

and results that are in some sense relevant to permissionless blockchains, which

are not included in this section.

Distributed Systems Distributed systems have been a subject of research for several

decades. One of the most commonly referenced de�nitions for distributed systems

is given by Andrew Tanenbaum [TVS07]:

A distributed system is a collection of independent computers that ap-

pears to its users as a single coherent system.

Several remarks can be made regarding this de�nition: A collection implies that

a distributed system consists of at least two independent computers. Typically, a

distributed system consists of a large number of independent computers.1 Independent

means that each computer2 has a local state, which is a�ected by local computations.

Independent does not imply that computers have to be controlled by separate entities,

i.e., all computers of a distributed system can be under the control of one single

entity. In order to appear as a coherent system, the independent computers need to

coordinate, which is usually achieved by passing messages between computers, or

by having memory shared among computers. A common example for distributed

systems are multi-core processor systems, where each processor can be seen as an

independent computer that interacts with the other processors via shared memory.

Another example are cloud storage systems (e.g., Amazon S3), which store data

transparently to the user on a large number of computers.

Decentralized Systems Decentralized systems are a subset of distributed systems,

which impose additional constraints on the control over the components of the

distributed system [TIDH17]:

Decentralized system: A distributed system in which multiple authorities

control di�erent components and no single authority is fully trusted by

all others.

�e de�nition implies that systems, in which multiple authorities control di�erent

components, but there is a single fully trusted authority, are not regarded as decen-

tralized. An example for such a not decentralized system could be an online game,

which is run at the computers of multiple authorities, but which relies on a central

server coordinating the game. On the other hand, the Domain Name System (DNS)

1Aspnes de�nes distributed systems by their structure:
”
A typical distributed system will consist of

some large number of interacting devices that each run their own programs but that are a�ected by

receiving messages, or observing shared-memory updates or the states of other devices.“ [Asp]
2Other commonly used terms for computer are component, node, or peer, which will be used

interchangeable throughout this work.

10

2 Fundamentals

can be regarded as a decentralized system, because no single fully trusted entity

exists in the system. One could argue that the DNS root servers are components

of the system that are more trusted than other components, however, this is not

excluded by the given de�nition.

Peer-to-Peer System In order to achieve decentralization, communication between

components must not be controlled by a single entity. �is suggests peer-to-peer

system architectures as used in, e.g., BitTorrent [PGES05] and Bitcoin. Steinmetz

and Wehrle [SW05] de�ne a peer-to-peer system as a

self-organizing system of equal, autonomous entities (peers) which aims

for the shared usage of distributed resources in a networked environment

avoiding central services.

Clearly, according to their de�nitions, peer-to-peer systems are a subset of decentral-

ized systems.�e de�nition of peer-to-peer systems even goes a little bit further by

requiring equal and autonomous peers. For instance, the Domain Name System is not

a peer-to-peer system, because there are DNS root servers, which perform a distinct

role in the system, di�erent from the role of other DNS servers.

Consensus As stated above, distributed systems require some form of coordination

in order to provide their service to the user. One example of such coordination is

reaching consensus, i.e., the components of a distributed system have to agree on

some common value. Permissionless blockchains agree on a set of data, therefore,

they can be seen as systems solving an instance of the consensus problem.

We will now brie�y introduce the terms and scenario considered in the consensus

problem. �e system is composed of two types of nodes: correct nodes, which

perform the protocol as speci�ed, and faulty nodes, which may fail according to a

speci�ed failure model. In order to solve the consensus problem, a system has to

satisfy three properties [Wat16]:

– Termination: All correct nodes terminate in �nite time.

– Agreement: All correct nodes agree on the same value.

– Validity: Every node starts with some input value.�e decision value must be
the input value of a correct node.

�ere are various common assumptions that can be made for di�erent aspects of

the system model. For instance:

– CommunicationModel:�ere are several possibilities to model the communi-
cation between nodes. First, communication can be assumed to be synchronous.

�ere are several synchronous communication models, some are very strict, i.e.,

assume that all messages between nodes are transmittedwithin a single timestep,

others only give an upper bound on the delay of messages. Synchronous com-

munication models allow protocols to use some kind of timeout mechanism

11

2 Fundamentals

to detect faulty nodes. Contrary, in the asynchronous communication model

messages can be delayed by an arbitrary duration (but are eventually delivered).

�erefore, timeouts cannot be used to reliably detect the failure of nodes in

asynchronous communication models.

– Failure Model: Nodes and communication links can both fail according to
some failure model.�e most common process failure models are crash fail-

ures, which let faulty processes stop working, and Byzantine failures, which

allow faulty processes to arbitrarily divert from the speci�ed protocol. Com-

munication failure models include omission failures, which drop messages, and

Byzantine failures, which can also create and alter messages [Asp].

– (In-)determinism: �e consensus protocol can be either deterministic or prob-
abilistic.

Although this list is not exhaustive, it sketches important aspects in the analysis of

consensus systems. We will discuss whether these assumptions can be made in the

analysis of Bitcoin in Section 2.3.

Key Literature Results We will now brie�y describe key results from the literature

on consensus protocols.�ese results are o�enmentioned in discussions on properties

of blockchains. A discussion of the applicability of these results on permissionless

blockchains will be presented in Section 2.3.

�e Two Generals Problem states that no protocol can guarantee consensus be-
tween two parties if omission failures (i.e., messages may be dropped on the link)

are allowed [Gra78, AEH75].3 However, there are probabilistic protocols, which can

reduce the probability of violating the agreement property asymptotically close to

zero by increasing the number of rounds [Asp].

�e Byzantine Generals Problem [LSP82] uses the following system model: A
synchronous communication model is assumed, i.e., messages are reliably delivered

a�er a known delay.�is assumption circumvents the two generals problem described

previously. However, Byzantine process failures are allowed, i.e. faulty processes can

deviate from the protocol in any way. It was shown that the number of correct nodes

must outnumber the number of faulty nodes by strictly more than a factor of two (i.e.,

the number of faulty nodes must be strictly less than one third of the total number

of nodes).�ere are several protocols solving the Byzantine Generals Problem, for

instance Practical Byzantine Fault Tolerance (PBFT) [CL+99].

Another key result (commonly referred to as the FLP result [FLP85]) states that no
deterministic protocol can guarantee consensus in the asynchronous communication

model in the presence of at least one crash-failure node. Please note that this result only

applies to deterministic protocols. Randomized protocols can guarantee consensus

in the asynchronous communication model.

3�e idea for the proof is that if there was an protocol that guarantees consensus a�er n commu-

nication rounds, the protocol would also guarantee consensus a�er n − 1 rounds, because the last
message could be dropped.�is reduces the number of required rounds to 0 by induction, which is a

contradiction.�erefore, no such protocol can exist.

12

2 Fundamentals

Finally, the CAP theorem [FB99] is a result which states an inherent tradeo� be-
tween the properties consistency, availability and partition-resilience in distributed

systems. In contrast to the previously discussed results, the CAP theorem has its

origin in the observation of real-world large-scale applications such as distributed

databases.�erefore, it is less formalized and uses a di�erent system model than the

system model used for the standard consensus problem. For the CAP theorem, we

consider a distributed system, which o�ers a read and write service on some data

to its users [GL12]. Ideally, the service provides consistency, i.e., every read access to

data gives the value that was written last for every read access. Ideally, the service also

provides availability, i.e., every read or write access will be successfully completed

within a short (to be de�ned) period of time. Ideally, the service is also partition-

resilience, i.e., consistency and availability are still achieved, if the nodes of the system

are partitioned so that no communication between the partitions is possible.

�e CAP theorem states a system can only provide either consistency or availability

in case of a network partition, but not both properties. For instance, in case of a

network partition, a system can still provide availability, if nodes in both partitions

execute the user’s read and write operations. However, in that case the system does

not guarantee consistency anymore, because a write access to a node in one parti-

tion remains unknown to nodes in the other partition, hence violating consistency.

Contrary, a system could choose to cease operation in case of a network partition,

hence sacri�cing availability but guaranteeing consistency.

In this section we sketched a number of de�nitions, models, and results that serve

as a theoretical basis for the understanding of permissionless blockchains. We will

now describe the technical concept of Bitcoin as the �rst deployed instance of a

permissionless blockchain and later discuss the applicability of the described mod-

els and results on Bitcoin.

2.2 Bitcoin
In 2008 a person or group using the pseudonym Satoshi Nakamoto published a paper

titled Bitcoin: A Peer-to-Peer Electronic Cash System [Nak08] on the cryptography

mailing list.4 �e paper proposes an electronic payment system, which is
”
based on

cryptographic proof instead of trust“ [Nak08]. While electronic payment systems

already existed (e.g., VISA, PayPal), these systems rely on trusted �nancial institutions.

Furthermore, payments made using these systems are reversible in case of dispute,

which requires merchants to
”
hassle [their customers] for more information than

they would otherwise need“ [Nak08].

In order to illustrate the tasks required for operating a payment system, let us con-

sider the example of a traditional, simpli�ed bank.�e bank has a set of customers that

have their account run by the bank and that wish to transfer funds to other customers.

�e bank’s task threefold: First, its customers needs to be able to send transactions to

the bank, e.g., on paper or through online banking. Secondly, when a customer has

4http://satoshi.nakamotoinstitute.org/emails/cryptography/1/

13

http://satoshi.nakamotoinstitute.org/emails/cryptography/1/

2 Fundamentals

sent a transaction to the bank, the bank has to validate the authenticity of the trans-

action. Traditionally, this is done by verifying the signature on a printed document

or by checking the PIN/TAN used for online banking�irdly, the bank has to keep

track of all accepted transactions and has to apply them to the customers’ accounts.

Customers have to trust the bankwith regard to several aspects. First, the bank could

retroactively temper with transactions, e.g., remove old transactions from a customer’s

ledger. Secondly, the bank could not validate incoming transactions properly. Even

worse, the bank could create transactions in the name of their customers. Finally, the

bank could suppress certain transaction and simply not accept them, although the

transaction is valid. Traditionally, customers trust banks, because banks are subject

to strict regulations and are incentivized to honestly perform their business.

We will now describe how Bitcoin provides a payment system without relying on a

trusted entity such as the bank from our example.�e mechanisms used by Bitcoin

can be divided into three layers.�e application layer handles the actual �nancial

transactions, i.e., it allows users to transfer fund and also allows validation of trans-

actions.�e consensus layer achieves consensus on the set of accepted transactions

that were created by the application layer. Finally, the network layer enables the

communication between participating peers, which is required for the functioning of

the upper layers. We will now introduce the mechanisms used in each layer.

2.2.1 Application Layer

Let us for now ignore the consensus layer and the network layer, and assume that

there exists a system, which is capable of storing some system state in a consistent

way. We will �rst describe the data structures used by the application layer of Bitcoin

and then discuss the properties of the application layer.

Transactions

�e main data structure of the application layer of Bitcoin is the transaction. Trans-

actions can be created by participants of the system and allow the modi�cation of

the system state. Actually, the (application layer) system state consists exactly of the

set of transactions that were accepted by the system.

Each transaction is identi�ed by its hash value (i.e., the SHA-256 hash value com-

puted over a serialized representation of the complete transaction). A transaction

can contain several inputs and several outputs (Figure 2.1). Each input contains a

reference to exactly one output of a previously accepted transaction. Each reference

consists of the hash value of a previous transaction and the index of the referenced

output. Additionally, each input contains an executable script denoted ScriptSig. Each

output contains the value of the output (i.e., the amount of bitcoins to be transferred)

and an executable script denoted ScriptPubKey.

In order to be valid, a transaction has to satisfy several conditions:

– All inputs have to reference unspent outputs of previously accepted transac-
tions. Unspent means that no transaction has already been accepted that also

references the output in question.

14

2 Fundamentals

TXIN0
Previous TX&Index
ScriptSig

TXIN1
Previous TX&Index
ScriptSig

TXOUT0
Value
ScriptPubKey

TXOUT1
Value
ScriptPubKey

Transaction

..
.

..
.

Figure 2.1: Elements of a Bitcoin transaction.

– �e sum of the values of the outputs must be equal or smaller than the sum of

the values of the outputs referenced as inputs.

– For all inputs, the ScriptSig and the ScriptPubKey of the referenced output are
evaluated; this evaluation has to return true.

Scripts

Wewill now describe the purpose of the scripts in Bitcoin, and explain how scripts are

evaluated. Both scripts are part of the access control mechanism that is used to ensure

that valid transactions can only be created by authorized users.�e idea is that the

ScriptPubKey, which is part of each output, states conditions, which the ScriptSig has

to satisfy in order for the transaction to be valid. An example for such a condition is to

require a transaction to be signed using a private key that matches a given public key.

While such a condition could also be hardcoded into the system, the use of scripts

allow much more �exibility in the de�nition of the used access control policy.

Bitcoin scripts are written in a stack-based programming language, which allows the

implementation of simple �ow control structures, data manipulation operations, and

cryptographic operations such as the calculation of hash values and signatures. Bitcoin

scripts are, however, not Turing complete, because it is not possible to implement

jumps or loops in Bitcoin scripts. While this property limits the expressiveness of the

programming language, it makes it possible to trivially give an upper bound on the

required execution time for each script (derived from the total number of operations

in a script).�e ability to give an upper bound for the execution time of a script is

important, because scripts with very long execution times (e.g., in�nite loop) could

be created by malicious users for denial of service attacks.

In order to check, whether a transaction satis�es the access control policy speci�ed

in the ScriptPubKey of another transaction, whose outputs are referenced as inputs

in the transaction, the ScriptPubKey and the ScriptSig have to be executed. Figure 2.2

visualizes how both scripts interact with the stack during execution. First, the ScriptSig

is executed, which in the example pushes two data item on the stack (a signature

<sig> of the transaction and a public key <pubKey>). Both data items are part of
the script and are speci�ed by the creator of the transaction.�en, ScriptPubKey is

executed while preserving the content of the stack as it was at the end of the execution

15

2 Fundamentals

OP_PUSHDATA

<sig>

ScriptPubKey

OP_PUSHDATA

<pubKey>

Stack

OP_DUP OP_HASH160
OP_PUSHDATA

<pubKeyHash?>
OP_EQUALVERIFY OP_CHECKSIG

ScriptSig

<pubKeyHash?>

<pubKey>

<sig> <sig>

<pubKey>

<sig>

<pubKey>

<pubKey>

<sig>

<pubKeyHash>

<pubKey>

<sig>

<pubKeyHash>

<pubKey>

<sig>

Figure 2.2: Bitcoin script: Pay To PubKey Hash (P2PKH)

of ScriptSig. �is way, ScriptSig can push a solution onto the stack, a�er which

ScriptPubKey can verify the correctness of the solution.

In the example depicted in Figure 2.2 ScriptPubKey checks whether the redeeming

transaction (i.e., the transaction referencing the unspent) is correctly signed with a

signature corresponding to a public key, which has a speci�ed hash value. In order to

perform this validation, ScriptPubKey �rst duplicates the public key that was pushed

by the ScriptSig on the stack and hashes the public key.�en, it pushes the required

hash value of the public key (<pubKeyHash?>) on the stack and compares both
hash values. <pubKeyHash?> has been previously speci�ed by the creator of the
redeemed transaction. If that comparison fails, the execution of the script is aborted

and the redeeming transaction is regarded invalid. Otherwise, the correctness of the

given public key and the signature of the transaction is validated. If this validation

is positive, the script returns true and the transaction can be accepted (assuming all

other required conditions were positively evaluated).�is kind of script is one of the

most commonly used script pattern in Bitcoin, called Pay To PubKey Hash (P2PKH).

Properties

We will now discuss the properties of the application layer of Bitcoin. First, the

set of accepted transactions can be represented as a transaction graph, with each

vertex representing a transaction, and each directed edge representing one reference

between the input of a redeeming transaction and the output of a previous transaction.

Because every transaction input references the output of a previous transaction, there

exists a partial ordering between transactions.�erefore, the resulting transaction

graph is a directed acyclic graph (DAG).

�e set of unspent transaction outputs (UTXO set) can also be directly derived

from the set of accepted transactions by enumerating all transaction outputs that have

not been redeemed by any transaction, yet. While the set of accepted transactions

contains complete historic information about all past transactions, the UTXO set

contains all information required to validate new transactions.

In order to illustrate the functioning of Bitcoin from a user’s perspective, let us

consider the example of Alice, who wants to transfer a certain amount of money (say,

one bitcoin (1 BTC)) to Bob. Obviously, in order to be able to transfer 1 BTC to Bob,

Alice has to own at least 1 BTC. Ownership of bitcoins is de�ned by the permission

to spend certain bitcoins.�is means, the current UTXO set has to contain outputs

with a value of at least 1 BTC that Alice is able to spend. If that is the case, Alice can

16

2 Fundamentals

create a transaction that has one or more input, so that the sum of input values is at

least 1 BTC. For each input in her transaction, Alice has to provide a valid ScriptSig.

�e transaction will also have an output that transfers the ownership of 1 BTC to Bob,

by requiring redeeming transactions to be signed with Bob’s private key (i.e., Bob’s

public key is encoded in the output as shown in Figure 2.2).�is means that Bob has

to tell Alice his public key. In case the input values sum up to more than the amount

that Alice wants to pay to Bob, Alice can add an additional output to the transaction,

which sends the change (i.e., the di�erence between the sum of input values and the

amount to be paid to Bob) back to a public key under her own control.

�e example illustrates that the described system can be used for payments between

participants of the system.�e system also makes it possible for everyone with access

to the set of accepted transactions to validate every transaction. However, until now

we have assumed that there is a system that is capable of storing the system state (i.e.,

the set of accepted transactions) in a consistent way. Furthermore, the described

system has to be somehow bootstrapped: If every transaction input refers to the

output of a previous transaction, there would be an in�nite chain of transactions.

Both issues are solved in the consensus layer of Bitcoin, which will be described now.

2.2.2 Consensus Layer

Recall that Bitcoin aims at providing payment functionality without the need for a

trusted third party. In the previous subsection we described the application layer of

Bitcoin, which provides payment functionality, but requires the consistent storage

of the set of accepted transactions. Without a single trusted third party, the task of

storing the system state has to be accomplished by multiple parties in a decentralized

way. With multiple parties storing the state, the problem of (in)consistency arises.

Consider a situation in which the set of accepted transactions is stored at two sites (s1
and s2).�en, two new transactions t1 and t2, which both redeem the same (unspent)

output but di�er in their outputs, are created and t1 is sent to s1 and t2 is sent to s2
at the same time. Both sites will accept the transaction sent to them, because both

transactions are valid. However, both sites now store a di�erent system state, which

means that there are di�erent opinions on who owns certain Bitcoins.�e fact that a

user can create multiple transactions that are all valid on their own, but con�icting

in the sense that they are redeeming the same outputs, is called double spending

problem.�e consensus layer has to ensure that the system state is consistent among

all participants.�is is achieved by ensuring that only one of the double spending

transactions becomes part of the system state.

Assume for now that there is a set of peers that can communicate via some peer-to-

peer (P2P) network, which we will describe later. If a user wants to issue a payment,

the user creates a transaction and publishes the transaction on the P2P network,

which will transmit the transaction to all peers. Because of the double spending

problem and because of network latencies, di�erent peers can receive a di�erent set

of transactions. We will now describe how the consensus layer of Bitcoin achieves

consensus on the set of accepted transactions. For this, we �rst introduce the used

17

2 Fundamentals

mechanisms, then explain how the mechanisms are combined in Bitcoin, and �nally

discuss properties and assumptions of Bitcoin’s consensus layer.

Mechanisms

Merkle Tree AMerkle tree [Mer80] is a data structure proposed by Ralph Merkle

in 1980, which enables the e�cient veri�cation of the integrity of large data structures.

Consider a data structure consisting of n single elements. A straightforward way to

ensure integrity of that data structure is to calculate a cryptographic hash value of the

complete data structure. One drawback of this approach is that it is not possible to

verify the integrity of one single element without calculating the hash value of the

complete data structure, which requires access to the complete data structure. Merkle

trees address this issue by individually hashing each element of the data structure and

then combining the resulting hash values into a tree structure (cf. Figure 2.3).�is

structure allows veri�cation of any element of the data structure with access to only

log
2
n hash values from the tree, instead of the complete data structure.

Blockchain A blockchain is a data structure that guarantees integrity of a growing

amount of data by successively hashing blocks of data. Each block contains the data

itself and the hash value of the previous block.�is creates a chain of blocks with the

property that the newest hash value is su�cient for the veri�cation of the integrity

of the complete data. It is not possible to alter any data (i.e., modify, remove or add

data) without a�ecting all subsequent hash values.

Proof-of-Work Proof-of-work is amechanismoriginally proposed tomitigate email

spam by requiring the sender of an email to solve a computationally expensive task

in order to send the email [DN92]. �e task should be hard to solve, however, its

solution should be easy to verify. A common task for proof-of-work is �nding a

partial hash inversion for a given data (with some data allowed to be modi�ed). For

instance, an email server could accept incoming emails only, if the hash value of the

email is smaller than a de�ned threshold. In order to achieve this, the sender of the

email has to modify the content of the mail (e.g., a header entry designated for that

purpose) so that its hash value satis�es the condition. Because the result of the hash

function cannot be predicted by the sender, there is no method to �nd an accepted

hash value except for repeatedly changing the email’s content until the hash value is

accepted. While the sender has to put a substantial e�ort into �nding a solution, the

receiver can easily verify the solution’s correctness by hashing the email.

Combination of Mechanisms

We will now describe how the discussed mechanisms are combined in the consensus

layer of Bitcoin.�emain data structure of the consensus layer is the block (Figure 2.3).

A block consists of a header part and the Merkle tree of the set of transactions,

which are included in the block. �e transactions contained in a block cannot be

changed without also changing the Merkle root, which is part of the block header.

�e block header also contains the hash value of the previous block.�is creates a

18

2 Fundamentals

H(Blockn) Nonce

H(Blockn-1) Time

MerkleRoot

H(H(TX1)H(TX2)) H(H(TX3)H(TX4))

TX1 TX2 TX3 TX4

H(TX1) H(TX2) H(TX3) H(TX4)

Blockn

B
lo

ck
 H

ea
d
er

C
o
n
ta

in
ed

 T
ra

n
sa

ct
io

n
s

Figure 2.3: Elements of a Bitcoin block. Elements in light gray (i.e., H(Blockn) and
the Merkle tree) are not part of serialized blocks but can be computed from the other

elements.

blockchain, de�ned by the references from each block to its predecessor. In order for

a block to be valid, all transactions included in that block have to be individually valid

(cf. Section 2.2.1) and all transactions have to be non-con�icting to all transactions

included in the blockchain de�ned by the current block and all of its predecessors.

Furthermore, the hash value of the block header (H(Blockn)) has to be smaller than
a certain value, i.e., a valid block contains a proof-of-work.

Blocks are created in the process ofmining. As new transactions are continuously

broadcast on the P2P network, certain peers (miners) verify these transactions, include

them in a new block and continuously try to solve the proof-of-work required for

the block to be valid. If a miner �nds a solution to the proof-of-work puzzle, it

publishes the block on the P2P network. Other miners then verify the correctness of

the block and start working on a new block, i.e., disregard all transactions that are

already part of the received block and update the reference to the previous block.5

�e mining process creates a blockchain that grows in length and contains a set of

non-con�icting, valid transactions.

�e miner of a block is rewarded for the computational e�ort put into �nding a

valid proof-of-work by allowing the miner to create a special coinbase transaction and

include that transaction into the mined block. A coinbase transaction has no inputs

5�e used hash-based proof-of-work mechanism ismemoryless, i.e., the probability of �nding a

solution in the next trial is independent of the e�ort that has already been put into �nding a solution

in the past.�erefore, changing the content of the block does not change the expected time when a

solution to the proof-of-work puzzle is found.

19

2 Fundamentals

(i.e., it does not redeem any previous transaction), yet it may contain outputs up to

a certain value.�e reward of the miner consists of two parts: transaction fees and

block rewards. Transaction fees can be (implicitly) speci�ed by users by creating a

transaction with a sum of output values being strictly smaller than the sum of input

values. A miner is rewarded with the sum of all transaction fees of all transactions

included in the mined block. Furthermore, a miner is rewarded with the block reward,

which is a certain amount of bitcoins speci�ed by protocol rules.�e block reward

was initially 50 BTC, and halves every 210,000 blocks (roughly every four years). As

of 2018, the block reward is 12.5 BTC. In the transaction graph, coinbase transactions

form the beginning of every transaction chain.

In order to account for changes in the overall computing power of the miners, the

di�culty of the proof-of-work puzzle (i.e., the maximum value the block header hash

is allowed to have) is adapted every 2,016 blocks so that on average every 10 minutes

a new block is found by a miner. Because blocks carry a timestamp, the calculation

of the di�culty can be carried out by each peer individually and will result in the

same di�culty value for all peers with access to the same blockchain.

�e transactions contained in the created blockchain could be seen as the set of

accepted transactions. However, it is possible that two miners each generate a new

block at the same point in time (blockchain fork). Both blocks can each contain di�er-

ent sets of transactions, and transactions contained in each block can be con�icting.

�erefore, transactions that are contained in a block cannot be necessarily regarded

as accepted, and there has to be a method for resolving the inconsistency.

Resolving the inconsistency is based on the speci�cation made by Bitcoin that

miners should always work on the blockchain, in which the most computational e�ort

has been put into. When a blockchain fork occurs, there are two blockchains, in which

the same computational e�ort has been put into.�erefore, miners will choose one

blockchain at their discretion (e.g., based on which block they received �rst) and work

on extending that chain. Once aminer �nds a new block on either chain and publishes

that block, it increases the computational e�ort that has been put into that blockchain.

�erefore, other miners will now switch their mining e�ort to that chain, adding even

more blocks to the chain.�is means, that while there can be short periods in which

two or more blockchains are of equal length, eventually one blockchain will become

the single longest chain, which serves as a reference for the accepted transactions.

Assumptions and Properties of the Consensus Layer

In the beginning of this section we laid out the example of a centralized bank, which

could attack the system by improperly validating transactions, removing old transac-

tions, and by suppressing transactions. We will now discuss how Bitcoin addresses

these threats.

First, the application layer of Bitcoin and the public availability of the blockchain

makes it possible for every participant to validate transactions.�erefore, if miners

decide to include invalid transactions into their blocks, all other peers can detect

this and will reject the block.

Secondly, consider the following scenario: An adversary creates and publishes a

20

2 Fundamentals

transaction t that moves funds to a merchant, who delivers some goods a�er seeing

the transaction being included in the blockchain in block bn. A�er reception of the

goods, the adversary wants to remove the transaction from the blockchain, thus

regaining control of the funds that were previously sent to the merchant. In order

to succeed, the adversary has to create a blockchain, which does not include the

transaction t and which is longer (i.e., having more computational e�ort being put

into) than the existing blockchain. If the adversary has some computational power,

the adversary could replace the block bn, which contains the transaction t, by a

block bn̂ that does not contain the transaction t.�e adversary could publish that

block, however, because other miners already created a larger number of new blocks

succeeding bn, other peers will ignore the block created by the adversary. However, if

the adversary controls more than 50% of the computational power of all miners, the

adversary is able to create blocks faster than the honest miners and will eventually be

able to overtake the honest miners, i.e., creating a blockchain which is longer than the

original chain. Once the adversary managed to create a blockchain, which is longer

than the original blockchain, all peers will accept the data contained in the adversary’s

chain as the data being agreed on, e�ectively undoing the transaction t.

�e example illustrates that the consensus layer of Bitcoin is not secure against

adversaries with more than 50% of the computational power of all miners.6 �e

example also illustrates that consensus is an emergent property in permissionless

blockchains, i.e., there is no single point in time when the system has settled and a

transaction is ultimately accepted. However, the e�ort to remove a transaction from

the blockchain increases with the number of mined blocks referencing the block that

includes the transaction.�erefore, the required number of subsequent blocks before

regarding a transaction as settled is a tradeo� between performance (i.e., con�rmation

time) and security against a double spend attack. It is common behavior of Bitcoin

client so�ware to treat a transaction included in a block with 5 subsequent blocks

as settled.�is corresponds to an average con�rmation time of one hour, assuming

an average block interval of 10 minutes.

Furthermore, the example shows that immutability is not an absolute property of

blockchains. �e content of permissionless blockchains can be changed by invest-

ing enough computational power. �e termMutable-By-Hashing-Power has been

suggested to account for this characteristic [CdLSJ+17].

2.2.3 Network Layer: Peer-to-Peer Network

So far, we have assumed that all Bitcoin clients have the ability to communicate

via some broadcast communication medium in order to exchange transactions and

blocks.�e network layer of Bitcoin creates a peer-to-peer network, which serves

as such a broadcast communication medium. We will now brie�y describe how the

network is established and how peers communicate. A more detailed description and

6If an adversary does not immediately publish new blocks, but instead withholds blocks for a

certain duration, even adversaries with less than 50% of the mining power can successfully attack

Bitcoin’s consensus layer [ES14].

21

2 Fundamentals

discussion of the network layer mechanisms can be found in Section 3.3.

Attachment Strategy

In order to establish connections to other peers, clients need IP addresses of other

reachable peers. Providing such IP addresses to peers is the task of Bitcoin’s peer

discovery mechanisms.�e �rst mechanism used by Bitcoin is an out-of-band peer

discovery mechanism, which allows clients to query DNS servers that provide IP

addresses of reachable peers. Once a client is connected to at least one remote peer, it

can query remote peers for additional IP addresses of other peers using an in-band

peer discovery mechanism.

Based on the received IP addresses, Bitcoin clients establish connections to other

peers. Clients establish a certain number of outbound connections to remote peers.

�ese peers are selected mostly at random, only avoiding establishing too many

connections to peers within a small IP address range. However, there are many more

possible strategies for neighbor selection, i.e., to which IP addresses connections

should be established (cf. Section 3.3.1).

Communication Strategy

A�er a client has established connections to other peers, it needs to synchronize

its copy of the blockchain. Other peers, which already participated in the network,

maintain the current blockchain and deliver it to the newly joined client upon request.

Recall that the client can validate the correctness of all blocks (e.g., valid proof-of-

work, valid transactions) on its own. Furthermore, by asking multiple peers for their

blockchain, the client can detect if a malicious remote peer presents an alternative

(valid) blockchain with less accumulated di�culty.

Once a client is in possession of the current blockchain, it can also validate transac-

tions and new blocks that are �ooded through the network. Flooding is implemented

in three steps. A client that creates a transaction announces its hash value to its

neighbors via an INV message.7 If the announced hash value is unknown to the
remote peer, it requests the actual transaction via a GETDATA message. Finally,
the creating peer sends the transaction using a TXmessage. A�er validation of the
transaction, the receiving peer proceeds as if the transaction was created locally and

announces the transaction hash to its neighbors (except for neighbors that have al-

ready announced the transaction’s hash itself). Blocks are �ooded accordingly, but

using a BLOCK message in the last step.8

Properties

In order to serve as a broadcastmedium for the consensus layer of Bitcoin, the network

layer should transmit messages to all participating peers within a certain period of

time. We will now discuss whether Bitcoin’s network layer satis�es this requirements.

In order to transmit messages to all participating peers, the resulting network graph

has to be connected. As peers may leave the network or adversaries may actively

sabotage connections, it cannot be guaranteed that the network graph is always

7One INVmessage may contain the hash values of multiple transactions or blocks.
8�ere are two additional methods for block relay, which accelerate dissemination [Daf15, Cor16].

22

2 Fundamentals

connected. However, the probability of a network split can be reduced close to zero

by increasing the number of connections each client establishes.

�e maximum allowed delay of a message di�ers for blocks and transactions: If

transactions are delayed for a longer period, transactions may not be included in a

block, hence the time until the con�rmation of a transaction increases. However, the

delaying of transactions has no e�ect on the consensus layer. Contrary, large delays in

the transmission of blocks cause miners to work on outdated blocks, which reduces

the overall security of the consensus layer [GKW+16]. In Bitcoin, messages can be

theoretically delayed arbitrarily by network and processing delays. Although most

messages are transmitted within at most a few seconds (cf. Chapter 4), no strict upper

bound on the maximum message delay can be given.9

While Bitcoin’s network layer cannot guarantee the required properties, it provides

the properties with very high probability. Even if the properties do not hold for a

short time period, e.g., due to a DoS attack, the system state will only be temporarily

inconsistent, as the consensus layer can recover as soon as the required connectivity is

reestablished. However, if participants rely on a temporarily inconsistent state without

knowing of the inconsistency, or if participants know of the inconsistency but require

the availability of the system (cf. CAP theorem), substantial damage can occur.�is

lack of guarantees by the network layer combined with a substantial risk in case of

failure requires a precise understanding of the network layer’s properties.

Finally, note that communication channels between peers are not authenticated or

encrypted by default10, i.e., messages are transmitted in plaintext. Authentication of

remote peers or messages is not necessary, as the authenticity of all messages transmit-

ted by remote peers can be validated without additional information: Transactions

refer only to information (e.g., public keys) that is contained in the blockchain, and

blocks contain a proof-of-work, which can be validated on its own. Encryption is

not required as all data is published anyway.

2.3 Discussion
So far we have described classical de�nitions and results, and gave an introduction

into the mechanics of Bitcoin. In this section we �rst discuss how Bitcoin relates

to these classical de�nitions and results. �en we describe the impact of Bitcoin

on research and deployed systems.

2.3.1 Relation to Consensus Models and Key Results

In Section 2.1 we brie�y introduced several system models that are commonly used

in the analysis of the consensus problem. We will now discuss which of these models

are suited for the analysis of Bitcoin. We emphasize that the relation of Bitcoin to

9Nakamoto states that
”
messages are broadcast on a best e�ort basis“ [Nak08], a term, which is

commonly associated with internet communication in general.
10�ere are proposals for encryption of connections between peers [Sch16b] and authentication of

peers [Sch16a].

23

2 Fundamentals

common de�nitions in the �eld of distributed systems is subject to ongoing research

and debate. �erefore, there is no common understanding of the correct system

model for Bitcoin. Based on the discussion of suitable models we will address the

applicability of the fundamental results on Bitcoin.

Models

Communication Model As stated above, communication between peers is unreli-

able in the sense that messages can get lost, and message delays can be theoretically

unbounded.�is suggests that an asynchronous communicationmodel with omission

failures matches the behavior of Bitcoin. In practice, however, communication delays

are bounded with overwhelming probability by a few seconds.�e average interval

between the creation of two new blocks in Bitcoin is 10 minutes, i.e., much longer than

the maximummessage delay (cf. Chapter 4). Furthermore, while omission failures

(packet drops) are possible, they rarely a�ect the consensus protocol, because the

used Transmission Control Protocol (TCP) transparently enhances communication

reliability using mechanisms such as sequence numbers and retransmissions.�ere-

fore, one could also argue that (almost) all nodes have received the previous block

before a new block was created, resulting in a synchronous communication model.11

Consequently, synchronous as well as asynchronous communication models were

used for Bitcoin in the past (synchronous [MLJ14], partially synchronous12 [GKL15],

asynchronous with a-priori bounded delays [PSS17]).

(In-)Determinism Mining is an indeterminstic process, i.e., �nding a solution to

the proof-of-work puzzle is a random process.�erefore, Bitcoin should be modeled

as an indeterministic protocol (e.g., [MLJ14, GKL15, PSS17, Wat16]).

Node Failure Model Because the P2P network is open for everyone to join, adver-

saries cannot be prevented from joining the network.�e behavior of the adversarial

peers can be freely de�ned by the adversary. �erefore, no assumption on the be-

havior of faulty nodes can be made, i.e., Byzantine node failures have to be assumed.

Furthermore, adversaries can join the network with a theoretically unlimited number

of peers.�erefore, no upper bound on the number of faulty nodes can be given.

Consensus Problem De�nition �e standard consensus problem de�nition as-

sumes that all nodes start with an initial value and agree on one value guaranteeing

termination, agreement, and validity. In Bitcoin, the initial value of nodes is a set of

published transactions that should be included in a block. However, Bitcoin provides

an ongoing service, i.e, instead of solving a single instance of the consensus problem,

the consensus problem is continuously solved with new transactions.�erefore, ter-

mination has to be interpreted with regard to one single problem instance from the

11While transactions are created more frequent, only the creation of blocks is relevant for the

consensus protocol. Transactions can be seen as proposals to be included into the block.
12In the partially synchronous model a maximum message delay is assumed, however no full

synchrony is assumed.

24

2 Fundamentals

past, i.e., nodes have to decide on one set of accepted transactions in �nite time a�er

publication of these transactions. Intuitively, the termination property translates to

regarding a transaction as accepted (i.e., deciding) once the transaction is included in

a block and a number of subsequent blocks were appended to that block.

As previously discussed, agreement cannot be guaranteed, because it cannot be

completely ruled out that an adversary creates a longer blockchain even a�er honest

nodes terminated.�erefore, the agreement property is usually weakened by allowing

disagreement with negligible probability (e.g., [MLJ14]). Allowing a failure with

negligible probability is a common approach in cryptography and is required to

proof the security of any cryptographic scheme that does not provide information-

theoretic security [KL14]. Furthermore, the validity property is o�en weakened

because adversaries with non-negligible computing power have a non-negligible

chance (according to their relative computing power) of mining a block [GKL15].13

Because the iterative process of blockchains is only weakly captured by the standard

consensus problem de�nition, other problem de�nitions were proposed. For instance,

Pass et al. [PSS17] proposed a property denoted T-consistency: T-consistency requires

that honest nodes agree on the current chain, except for a number of T uncon�rmed

blocks at the end of the chain.

Participation Model Classical work on consensus systems typically assumes that

the set of participating nodes is known a-priori. Requiring nodes to be somehow

permissioned to participate in the consensus process is required in order to prevent

a theoretically unlimited number of faulty nodes to join the network. Such a Sybil

attack [Dou02] would defeat any protocol that relies on any upper bound on the

number of faulty nodes. Bitcoin allows nodes to freely join the network (permission-

less). However, Bitcoin limits the ability to contribute to the consensus process to the

computational resources of the node.�is renders Sybil attacks ine�ective, as a larger

number of nodes does not bene�t the adversary. In contrast to a maximum number

of faulty nodes that can be tolerated by a consensus protocol, Bitcoin requires that

the computation power share of the adversary is bounded by 50%.

Applicability of Results

Based on Bitcoin’s relation to consensus models and assumptions, we will now discuss

the applicability of the key results discussed earlier in Section 2.1.

�e FLP impossibility result is only applicable for determinstic protocols. As
discussed, Bitcoin is indeterminstic, hence, the FLP result is not applicable.

While the impossibility result of the Two Generals Problem is applicable because
of unreliable communication, it can be easily circumvented:�e Two Generals Prob-

lem requires a protocol to guarantee consensus with a probability of 1. However,

protocols can still reach consensus with a negligible failure probability, which is

the case for Bitcoin.

13While this is technically a violation of the validity property as the adversary determines the output

value, it does not pose a problem because the correctness of the block mined by the adversary can be

veri�ed by every honest node.

25

2 Fundamentals

Bitcoin can be seen as a probabilistic Byzantine Agreement (BA) protocol, as-
suming the adversary’s computational power is bounded by 1/3 [GKL15]. Satoshi

Nakamoto gave an informal description of the mapping between Bitcoin and the

Byzantine Agreement problem.14 However, the additional assumption on the adver-

sary’s computational power prevents results in the standard BA model from being

applied to Bitcoin (e.g., the upper bound of faulty nodes may exceed 1/3 in Bitcoin).

�e CAP theorem applies to Bitcoin in the following way: A read operation trans-
lates to a client looking up state from its local copy of the blockchain. Awrite operation

translates to the creation and publication of a new block by a miner. If a network

partition occurs, every peer can still access its local blockchain copy, hence availability

is guaranteed. However, miners may concurrently create new blocks unbeknown

to nodes in the other network partition, creating inconsistent state. However, a�er

the network links between the partitioned nodes are reestablished, peers exchange

the newly mined blocks and the longest blockchain will become the agreed system

state, resolving the temporarily inconsistent state.�erefore, Bitcoin is a system that

ensures availability but not consistency in case of a network partition.

�e discussions on the applicability of classical models and results show that while

some existing models can be easily adapted to model Bitcoin, most fundamental

results are not directly applicable.

2.3.2 Bitcoin’s Impact

We will now discuss the e�ect of the publication of Bitcoin’s concept on the research

of decentralized systems and the development of technological innovations inspired

by Bitcoin.

With the publication of its concept and the real-world deployment, Bitcoin itself

became an object of investigation.�is research can be roughly categorized into three

categories: empirical research, conceptual research, and the analysis of attacks.�e

public nature of the blockchain data and the P2P network enables empirical research

that analyzes data generated by Bitcoin’s users and peers. For instance, transaction

data stored in the blockchain has been used to assess anonymity of users [RH13], and

P2P information propagation has been analyzed [DW13]. In Chapter 4 we present

empirical measurements of the Bitcoin P2P network.

Many conceptual research contributions focus on analyzing the properties exhibited

by Bitcoin. As discussed before, most classical results are not applicable to Bitcoin,

hence the development of adaptedmodels was required [GKL15, Mil16]. Furthermore,

as Bitcoin couples the consensus layer with the application layer by rewarding miners

for their work, economic and game theoretic aspects have to be considered [ES14].

Finally, many more or less severe attacks on Bitcoin have been discussed, and

countermeasures have been pointed out (e.g., [HKZG15]). In Chapter 3 we present a

survey of attacks on the network layer of Bitcoin. Furthermore, we analyze methods

for inferring the network topology of the Bitcoin P2P networks in Chapter 6 and

analyze a method for attacking the anonymity of Bitcoin users in Chapter 7.

14https://satoshi.nakamotoinstitute.org/emails/cryptography/11/

26

https://satoshi.nakamotoinstitute.org/emails/cryptography/11/

2 Fundamentals

Bitcoin has not only been a subject of investigation, but also subject to a large

number of proposed improvements. Some of the main challenges of Bitcoin are the

limited scalability and weak anonymity.15 �ese challenges were addressed by a large

number of proposed and/or implemented improvements, ranging from technologies

building on top of Bitcoin’s application layer (e.g., payment channels [DW15, PD16]),

to improvements of the transaction structure (e.g., SegregatedWitnesses [LW16]), and

to proposals for improved anonymity on the network layer (e.g., Dandelion [FVB+18]).

Furthermore, Bitcoin sparked the development of new concepts for permissionless

blockchains with modi�ed or extended functionality. On the one hand, there is a large

number of permissionless blockchains that were derived directly from Bitcoin and

only modify some parameters, such as the maximum block size, or the average block

generation interval (e.g., Bitcoin Cash). On the other hand, there are systems that

build on the concept of Bitcoin, but signi�cantly modify its functionality, e.g., by intro-

ducing certain privacy preserving transaction types [MGGR13]. Finally, completely

new concepts for permissionless blockchains, fundamentally di�ering from Bitcoin’s

concept were proposed and deployed.�e most prominent example for such a system

is Ethereum [Woo14], which enables decentralized computation of almost arbitrary

code, thus allowing the decentralized enforcement of Smart Contracts [Sza97].

2.3.3 Conclusion

In this chapter we laid out the scienti�c foundations for permissionless blockchains,

introduced the concept of Bitcoin, and discussed the relationship between classical

research results and permissionless blockchains. We showed that the concept of

Bitcoin combines well-established mechanisms in a way that makes the resulting

system similar to existing (consensus) systems, yet di�erent enough so that most

established theoretical results are not applicable to permissionless blockchains. Es-

pecially a blockchain’s network layer does not provide any formal guarantees, which

requires a thorough understanding of its properties in order to assess the properties

of the complete system. In the next chapter we contribute to the understanding of

the network layer of permissionless blockchains by de�ning its requirements, by

providing a systematization of known attacks, and by surveying its design space.

15�e �rst responses to the Nakamoto’s publication of the Bitcoin concept on

the mailing list questioned the scalability and anonymity of Bitcoin (https://
satoshi.nakamotoinstitute.org/emails/).

27

https://satoshi.nakamotoinstitute.org/emails/
https://satoshi.nakamotoinstitute.org/emails/

3

Network Layer Requirements and Design
Space

�e content presented in this chapter has been previously published in [NH18].

So far, the network layer of permissionless blockchains has been analyzed pri-

marily with regard to speci�c attacks such as network based deanonymization at-

tacks (e.g., [FV17, BKP14]), double spend attacks (e.g., [KAC12]), or eclipsing attacks

(e.g., [AZV17, HKZG15]), or in an empirical way (e.g., [DPSHJ14, DW13]). While

theseworks help in the design and research of the network layer by pointing out certain

weaknesses and propose countermeasures against them, they neither make require-

ments of the network layer of permissionless blockchains explicit, nor do they show

the complete design space or point out the inherent tradeo�s for some design decisions.

�is coincides with the observation that many design choices made in the network

layer of client implementations seem ad-hoc and without su�cient reasoning.1

�is chapter aims at supporting the design and research of the network layer of

permissionless blockchains by (1) analyzing the requirements of the network layer

of permissionless blockchains, and (2) giving a comprehensive survey of the design

space of the network layer of permissionless blockchains.�e set of requirements

contains functional, non-functional, and security requirements, which are derived

based on a survey of relevant attacks.�e design space survey includes design aspects

and options that are implemented in permissionless blockchains or proposed in the

literature, and shows which tradeo�s are implied by design decisions.

�e network layer of permissionless blockchains is related to two classes of sys-

tems that have been analyzed in the past: unstructured peer-to-peer networks and

1�is does not make them bad choices, however, knowledge of which choices are possible and

knowledge of the inherent tradeo�s between design choices could result in better choices or justi�ed

design decisions.

29

3 Network Layer Requirements and Design Space

Network Topology

Attachment
Strategy

Communication
Strategy

Topology
Hiding

Low Cost of
ParticipationPerformance

DoS
Resistance

Anonymity

Designer AdversaryUsers

defines knows

wants attackswant

Figure 3.1:�e network layer of permissionless blockchains is characterized by the

P2P network topology, the client’s attachment and communication strategies, and

the users’ behaviors.�e requirements include performance, low cost of participa-

tion, anonymity and DoS resistance, and the intermediate goal network topology

hiding [NH18].

anonymity providing networks.�e use of �ooding or gossip protocols makes the

network layer of permissionless blockchains unstructured P2P networks, which have

been used for decades (e.g., Gnutella [Rip01]) and were extensively analyzed (e.g.,

[LCP+05, JC10]), however, mostly from a performance perspective or with adversary

models not matching the threat to blockchain systems. Although anonymity provid-

ing networks (e.g., Tor [DMS04]) have di�erent requirements regarding information

propagation than blockchain based systems, they are similar in the considered ad-

versary models and security requirements. Commonly considered requirements in

anonymity providing networks are high performance, low bandwidth cost, resistance

to tra�c analysis, and resistance to catastrophic denial of service (DoS) [BMS01],

which we will use as a basis for our analysis.

Figure 3.1 gives a high level overview of the aspects, requirements and actors a�ect-

ing the network layer of permissionless blockchains.�e blockchain’s P2P network

is characterized by its network topology and the behavior of its peers, which is de-

termined by the client so�ware behavior (i.e., its communication and attachment

strategy) and the user behavior. In addition to the (non-security) requirements per-

formance and low cost of participation and the security requirements anonymity and

DoS resistance, we also consider network topology hiding as an intermediate security

requirement, because many attacks rely on knowledge of the network topology.

3.1 Related Work
Wewill brie�y discuss related work that covers network security in blockchain systems

or P2P networks on an abstract level. Discussion of related works with more focus

(e.g., speci�c attacks) is given in Sections 3.2.3 and 3.

Gervais et al. [GKW+16] give a thorough security analysis of proof-of-work block-

chain systems, however, their focus is on the consensus layer (i.e., block generation)

whereas the network layer is abstracted. Troncoso et al. [TIDH17] show a broader

perspective covering numerous systems apart from Bitcoin and Tor, but also abstract

30

3 Network Layer Requirements and Design Space

from the network layer. A recent paper by Delgado-Segura et al. [DSPSHJ+18] ex-

plores the characteristics of the peer-to-peer network established by Bitcoin, but

abstracts from the design space of the network layer. Lua et al. [LCP+05] focus on �le

sharing peer to peer networks and leave out anonymity objectives and strong adver-

sary models.�ere are several surveys covering Bitcoin in general [TS16, BMC+15],

the security of Bitcoin [CKLR18], and the privacy and anonymity of permissionless

blockchains [HJPS16, KL18].

3.2 System Requirements
Based on the sketch given in Figure 3.1 we analyze the requirements of the network

layer of permissionless blockchains. Bitcoin serves as a prototype for the consid-

ered scenario. However, we emphasize that our de�nition also matches most other

permissionless blockchains and parts of this chapter are also applicable to a wider

range of unstructured P2P networks.

3.2.1 Functional Requirements

In contrast to a private blockchain or a permissioned blockchain, in a permissionless

blockchain there is neither a restriction on the ability to read from the blockchain,

which ensures public veri�ability, nor a requirement for pre-established identities for

write access to the blockchain [WG17]. In order for anyone to join the system, there

need to be enough peers on the network that accept incoming connections.�ere

may be peers that are not reachable (e.g., because they are behind a NAT), however,

the openness of the system can only be guaranteed with a su�ciently large share of
reachable peers. Although unreachable peers can only connect to reachable peers,

they can still serve the system by increasing the network’s robustness (cf. Section 3.3).

In order to provide public veri�ability and allow peers to create blocks, all relevant

datamust be accessible by peers.�erefore, themain requirement of the network layer

of blockchains is the dissemination of information among all participants. Peers
need to be able to retrieve historic information from the network (e.g., when a new

peer initially joins the network), but also need to stay informed continuously about

new information. To ensure a fast dissemination of new information, a �ooding

or gossip mechanism is used, that broadcasts new information to all peers. �ere

may be clients that are unable to process that amount of data (e.g., because they are

running on a mobile device), which only get a subset of data relayed (e.g., SPV clients

in Bitcoin [HC12]).�ese clients, however, put some trust in the peers they connect

to and assume that these peers do not withhold messages.

In contrast to (communication) anonymity providing systems, which ensure con-

�dentiality of the exchanged data between a certain sender-receiver pair, permis-

sionless blockchains publish information to all participants.�erefore, the data is

not encrypted, which makes each piece of information (e.g., a transaction) uniquely

identi�able and distinguishable. Encryption of the connections between peers was

proposed [Sch16b], however, without pre-established identities of peers, this approach

31

3 Network Layer Requirements and Design Space

is vulnerable to man in the middle attacks as authenticity cannot be protected. Au-

thentication of peers, which requires the out of band exchange of a public key, has also

been proposed for Bitcoin [Sch16a, AZV17], and is implemented in Ethereum and Tor.

3.2.2 Non-Functional Requirements

Back et al. [BMS01] identi�ed two non-functional requirements for anonymity pro-

viding networks: performance and low bandwidth cost. Although the network layer

of blockchains and anonymity providing systems di�er in many ways, both require-

ments still apply. We generalize the goal of a low bandwidth cost and require a low

cost of participation, which implies low bandwidth costs.

Performance: Information dissemination should be fast. For a blockchain sys-
tem, a slow dissemination of information implies a longer time until consistency

on the information is reached. �is can facilitate attacks on the application layer

such as double-spends (cf. Section 3.2.3). Furthermore, the e�ciency of proof-of-

work blockchains depends on fast information dissemination [GKW+16]. A metric

that quanti�es the performance is the delay between the initial sending of a piece of

information until the time that n percent of peers have received that information.

Low Cost of Participation: As permissionless blockchains aim to be open for
participants to join the network, participants wishing to run a peer on the network

should not be faced with unbearable costs.2 �e costs of running a peer include the

required bandwidth, computation, and storage costs. Reducing these costs enables

more users to run a peer, which improves the overall reliance of the system. On

the other hand, a large number of peers make the consideration of scalability issues

necessary. Metrics that quantify the cost of participation are the number of bytes a

peer has to send and receive depending on the application layer load (e.g., the number

of transactions) during a time period, or the required storage.

3.2.3 Security Requirements - Attack Survey

In order to derive the security requirements of permissionless blockchains, we system-

atize network based attacks on Bitcoin.3 �e resulting systematization of attacks is visu-

alized in Figure 3.2 using the concept of attack trees [Sch99] (with or nodes only). We

will now brie�y describe the structure of the systematization and the surveyed attacks.

As described in Chapter 2, the network layer of permissionless blockchains supports

the consensus layer, which is used to execute some application logic (e.g., the Bitcoin

payment system). While attacks may target the network layer, the goals of all surveyed

attacks are located at the application layer, where some aspect of the application layer

2While users can participate in the blockchain without running a peer by delegating the commu-

nication with the network to trusted parties, we only consider the direct communication with the

network by running a peer as participation from a network-level perspective.
3Our systematization does not include attacks without interaction with the network layer, e.g.,

sel�sh mining [ES14] or address clustering [RH13]. For a comprehensive survey of such attacks please

refer to [CKLR18].

32

3 Network Layer Requirements and Design Space

A
p

p
li
ca

ti
o

n
N

et
w

or
k

A
sp

ec
t

G
o

a
l

G
o

a
l

M
ea

n
s

A
sp

ec
t

Deanonymization

Link IP Address to
Application Data

Monetary Benefit

DestructiveMining

Stubborn mining [NKMS16]
Splitting mining power [NG16]

Double Spend

0-conf. [KAC12, Fin]
n-conf. [GRKC15, SZ16]

Eclipse/Partition

Cut Connections Prevent Communication

Connectivity

Sybil/DoS [NAH15]
BGP [AZV17]

Client Behavior

Information eclipsing [KAC12]
Neighbor Selection [HKZG15]
Timeouts [GRKC15]

Relay Behavior

Anomaly [KKM14]
Centrality [FV17]
Entry-Node [BKP14]
First-Timestamp [FV17, NH17]

Tunneling

Tor [BP14]

SPV

Bloom Filter
[GCKG14, KTO17]

Figure 3.2: Known network-based attacks on permissionless blockchains at the exam-

ple of Bitcoin, visualized as attack trees [NH18].

is attacked.4 Attacks usually exploit some aspect of the network layer by certainmeans

in order to achieve an intermediate (network layer) goal.�is hierarchy represents

the structure of our systematization of attacks shown in Figure 3.2.

We will now discuss the properties of the resulting attack tree and brie�y cover

selected attacks. One possible goal of an adversary is the deanonymization of users

by associating network layer information (e.g., IP addresses) to application layer

information (e.g., Bitcoin addresses). Several aspects of the network layer can be

exploited for this purpose: Clients with limited resources that are unable to store

the complete blockchain and are unable to process all transactions (SPV Clients) can

request the forwarding of relevant transactions from remote peers by sending a Bloom

�lter [Blo70] to remote peers.�e Bloom �lter encodes the Bitcoin addresses of the

SPV client in a probabilistic way. Gervais et al. [GCKG14] showed that adversaries

can learn the Bitcoin addresses of SPV clients from their Bloom �lters.

�e transaction relay behavior of Bitcoin has been shown to be susceptible to de-

anonymization attacks in several previous works. For instance, it has been shown

that anomalous relaying behavior of clients can facilitate the linking of IP addresses

to Bitcoin addresses [KKM14]. Furthermore, an adversary with knowledge of the

network topology can exploit properties of the propagation graph to identify the IP

address of the sender of a transaction [FV17]. We provide an analysis a deanonymi-

zation method based solely on observing the �rst announcement of a transaction

in Chapter 7. Finally, tunneling the communication to the Bitcoin network through

Tor has been shown to enable deanonymization attacks [BP14].

Apart from deanonymization, another goal of an adversary could be to gain a

monetary advantage by either earning disproportionally high mining rewards, by

4In this systematization we do not distinguish between the consensus and application layer as done

in Chapter 2, because attacks targeting the consensus layer (e.g., the aspectmining) also ultimately

target the application layer.

33

3 Network Layer Requirements and Design Space

double spending funds, or by performing a destructive Gold�nger attack5. Destruc-

tive attacks can also be ideologically or politically motivated without any monetary

incentive. All published attacks have in common that some form of interruption of

information �ow between peers on the network is required.�is can be either the

eclipsing of single peers from certain information or the complete partitioning of

large parts of the network. Two general methods to achieve this have been proposed:

Either to directly attack the connections between peers, i.e., a�er a successful attack

the victim peer has no connections to other honest peers, or to prevent communi-

cation from and to victim peers, i.e., a�er a successful attack the victim peer has

functioning connections to other peers but does not receive the required information

over them. Preventing communication can be achieved by exploiting client behav-

ior (e.g., [KAC12, HKZG15, GRKC15]). Cutting connections can also be achieved

by exploiting client behavior, but also by directly attacking the underlying network

stack (e.g., [AZV17, NAH15]).

Two observations can be made regarding the overall structure of the presented

attack tree: First, no common adversarial network layer goal can be identi�ed for

deanonymization attacks, because the observation of any information enabling the

linking between IP addresses to Bitcoin addresses is su�cient for deanonymization.

Secondly, all attacks aiming at monetary bene�t have the intermediate goal of pre-

venting the information �ow by partitioning the network or eclipsing certain peers.

�erefore, we can identify two security requirements for the network layer: Prevent

linkage of IP addresses and application layer information (anonymity) and prevent
interruption of the information �ow by eclipsing or partitioning (DoS resistance).
A number of attacks (e.g., [NAH15, FV17, BKP14]) require the adversary to know

the network topology of the P2P overlay network. As this information is not publicly

known and known to be hard to infer (cf. Chapter 6), an intermediate goal for an ad-

versary can be to approximate the topology of the underlying P2P network. Although

many attacks are still possible without knowledge of the network topology, lack of

such knowledge causes a less precise attack, which generally requires more resources

to be spent by the adversary. From the perspective of a designer of a permissionless

blockchain, hiding the network topology can prevent subsequent attacks.�erefore,

we also consider topology hiding as an intermediate security requirement.
Metrics that quantify topology hiding are the precision and recall with which a

certain adversary can estimate connections of the network topology.�ese metrics

will be used in Section 6. Metrics that quantify anonymity are the precision and recall

with which a certain adversary can link network layer to application layer information.

A metric that quanti�es DoS resistance is the required amount of resources required

to execute a DoS attack for a certain adversary.

5In a Gold�nger attack the adversary earns money by destruction of the system, e.g., by going short

on the cryptocurrency or by blackmailing [KDF13].

34

3 Network Layer Requirements and Design Space

3.2.4 Adversary Models

�e attacks discussed in the previous section made various assumptions on the ability

of the adversary.�erefore, also the discussed metrics of the security requirements de-

pend on the adversarymodel. Wewill now discuss several aspects of adversarymodels.

For network-based attacks, the most critical aspect is the network power of the
adversary. An adversary can easily run a peer that connects to all reachable peers

in the network. Such monitoring peers have been previously shown to be able to

connect to several thousand peers on the Bitcoin P2P network (cf. Chapter 4) using

standard hardware and requiring a bandwidth of less than 100Mbit/s. Adversaries

with more resources could perform a Sybil attack on the network by inserting a large

number of peers to the network. As the cost of running a network peer should be

low (cf. Section 3.2.2), the number of Sybil peers on the network could outnumber

the number of honest network peers. �e adversary could run the Sybil peers on

own hardware, use cloud service providers, or use botnet services. Finally, an adver-

sary with access to core internet infrastructure (e.g., ISPs, internet exchange points,

intelligence services) is additionally able to monitor and manipulate tra�c, e.g., by

hijacking BGP routes [AZV17] or simply by dropping packets.

�e computation power available to an adversary can be either modeled to allow
the adversary to only run the peers required for the attack, or the adversary can

also have a share of mining power under control. With mining power available to

the adversary, network based attacks that result in disproportional mining rewards

are possible (e.g., [NKMS16]).

An additional variable in the adversary model is the attack duration. �anks to
cloud services, it may be cheap for an adversary to spawn several thousand Sybil

peers for a short period of time.6 However, carrying out such an attack for a longer

period increases the adversary’s costs.

Network power, computation power, and attack duration are highly speci�c to each

single adversary. In contrast, there are similarities among all adversaries: Adver-

saries in permissionless blockchain systems are always able to create new pieces of

information (e.g., transactions) and insert them to the network. Furthermore, all

adversaries are aware of the source code of most client’s so�ware running on the

network. Client so�ware is usually published open source in order to establish trust

in the implementation and the system. Although it is possible for single parties to

use a modi�ed client with a deviating behavior, for the majority of users this is not

viable. Hence, adversary models should assume that it is not possible to hide any

behavior from the adversary (cf. Kerckho�s’ principle [KL14]).7

6We show that short-term Sybil events actually occurred in the past on the Bitcoin P2P network in

Section 4.3.1.
7Of course the client can make use of pseudorandom number generators, the output of which

remains unknown to the adversary.

35

3 Network Layer Requirements and Design Space

3.2.5 Related Requirements and Adversary Models

We will now discuss additional requirements and adversary models that have been

considered for permissionless blockchains or related systems.

Requirements

Scalability has been identi�ed as a separate non-functional requirement of anonymous

communication systems [GRPS03]. We will treat scalability as the dependance of the

overall cost of participation and the performance on the number of peers.

A high level of decentralization, i.e., the absence of one or a few authorities that

control a large share of the system components (e.g., network peers, mining power),

is also a requirement of permissionless blockchains [GKCC14]. From a network

layer perspective, a low cost of participation is a requirement for decentralization.

Centralization in a system can be modeled by considering adversary models that

have, e.g., a large share of mining power or a large number of (Sybil) peers.�erefore,

while decentralization is an important requirement, especially on the consensus layer,

we do not treat decentralization as a distinct requirement.

Finally, there can be a lack of incentives to actively participate in the P2P net-

work and actually forward transactions and blocks to other peers [BDOZ12, EREL17].

For instance, miners can increase their revenue by withholding transactions with

high transaction fees from other miners. Hence, incentive compatibility can also

be regarded as a requirement. While we acknowledge the importance of incentive

compatibility, the analysis of incentive compatibility requires the common consid-

eration of network, consensus, and application layer aspects using game theoretic

approaches and is therefore out of scope in this work.

Adversary Models

Slightly di�erent adversary models than the ones discussed before have been used

in the �eld of rumor source detection (e.g., [FKO+17]). In this setting the only goal

of the adversary is the identi�cation of the source of a rumor that is propagated

across the network. �is equals the attack of anonymity by linking network data

(the rumor source) to application data (the rumor).�e adversary is either modeled

to obtain a snapshot of the propagation of a rumor at a certain point in time or to

have a number of spy nodes in the network that gather the time of reception of a

rumor as well as all possibly attached metadata.

One main di�erence in the considered adversary models is that the adversary in

rumor source detection is usually assumed to know the topology of the network.

Although this assumption can be valid in certain scenarios, it does not hold in the

case of a peer-to-peer network with dynamically established links.

3.3 Design Space Survey
We will now analyze the design space of the network layer of permissionless block-

chains from the perspective of a developer, who maintains the source code of a client

so�ware. As the network is assumed to be open, users are still free to use modi�ed

36

3 Network Layer Requirements and Design Space

Table 3.1: Design space of the network layer of permissionless blockchains [NH18].

Main A�ected Requirements & Tradeo�s Further Readings

Peer Discovery Functional requirement: establish and maintain list of IP addresses of other peers.

Out-of-Band DoS Resistance, Anonymity, Topology Hiding required for bootstrapping, trusted third party

In-Band [Performance, DoS Resistance]↔ [Topology Hiding] Section 6.4, [MLP+15], [HKZG15]

Neighbor Selection Functional requirement: establish and maintain connections to network peers

Information Sources — IP address based, own observation, reputation

Number of Connections [Performance, DoS Resistance]↔ [Cost of Participation] [AJB00, AB02]

Incoming Connections [Performance, DoS Resistance]↔ [Cost of Participation] [BKP14, Alm17, HKZG15, BDE+13]
Topology Generation [Performance, Cost of Participation]↔ [DoS Resistance] [FOA], remarks: requires trusted information

Stability [DoS Resistance]↔ [Topology Hiding] [CKS+06]
Connection Anomaly Detection DoS Resistance [AZV17]

Communication Functional requirement: information propagation

Information Sources — Message content, metadata [BVFV17], side-channel

Push vs. Announce-and-Request [Performance]↔ [Cost of Participation] [GRKC15]

Flooding vs. Gossip [Performance, DoS Resistance]↔ [Cost of Participation] [PSCVMV15]

Relay Delay [Performance]↔ [Anonymity, Topology Hiding] Section 6.3.3

Message Accumulation [Performance, Cost of Participation]↔ [Topology Hiding] [GNH18]

client so�ware with deviant behavior. Table 3.1 summarizes the a�ected requirements

and further readings for each aspect that will be discussed. �e second column

shows the requirements that are mainly a�ected by a certain design aspect. Tradeo�s

between two or more requirements are marked with the symbol↔.
�ere are two strategies that can be modi�ed in the client that a�ect the network

layer of the system: First, the attachment strategy de�nes which connections to
other peers are established. Second, the communication strategy de�nes how clients
communicate with their neighbors.

As all public P2P networks require interconnection between its peers, the attach-

ment strategies in di�erent P2P networks are very similar among a wide range of

P2P networks including permissionless blockchains.�is allows the analysis of the

attachment strategy of permissionless blockchains along with the attachment strategy

of systems like Tor in order to identify similarities and varying approaches. In con-

trast, the communication strategy is heavily driven by application layer requirements

and makes a comparison between blockchain based systems and systems used for

applications such as �le sharing not bene�cial.

We will now analyze the design space by covering all aspects of the attachment

and communication strategies, which either appear in deployed systems, or were

proposed or discussed. Although these aspects characterize the network layer of

known systems, new systems may include aspects that are not covered in our analysis.

3.3.1 Attachment Strategy

�e attachment strategy de�nes how clients establish connections to remote peers. In

order to establish outgoing connections, a client needs to discover the IP addresses of

other peers (peer discovery).�en, the client has to decide to which peers it establishes

connections and how it handles incoming connections (neighbor selection).

37

3 Network Layer Requirements and Design Space

Peer Discovery

�e main goal of peer discovery is to establish and maintain a set of reachable IP

addresses of other peers in order to establish connections to them. Peer discovery

can be done using out-of-band communication with one or more seed nodes that

provide IP addresses of reachable peers. If a client is connected to at least one peer

on the network, peer discovery can also be performed in-band by requesting IP

addresses of reachable peers from neighbors.

Out-of-band peer discovery with one or more seed nodes (e.g., DNS server, IP

addresses hard coded to the client) is in general required for bootstrapping.8 Although

a large number of seed nodes can be used, it is still some form of centralization that

can a�ect the requirements DoS resistance, anonymity, and topology hiding.

Discussion: Malicious seed nodes might return only IP addresses of peers under its

own control, hence enabling eclipsing attacks on peers that rely solely on information

from that seed.9 Furthermore, malicious seed nodes could try to attack anonymity by

linking IP addresses of requesters to application layer data that is later transmitted via

the peer returned in the seed’s reply. Finally, malicious seed node operators could try

to infer topology information by linking IP addresses of requesters to IP addresses

returned by the seed node. Adversaries might also try to perform DoS attacks on the

seed nodes itself, making it impossible for peers to connect to the network.

In order to prevent these attacks, a large number of seed nodes operated by di�erent

parties is required. Clients should request IP addresses from multiple seed nodes

operated by di�erent parties tominimize chances that all seed nodes are compromised.

Connections should then be established to IP addresses received from di�erent parties.

To improve topology hiding, clients should receive a large number of IP addresses but

only connect to a small subset. Obviously, all measures cause a bandwidth overhead

for clients and seed node operators, thus increasing the cost of participation.

Examples: Tor uses out-of-band peer discovery with a hard coded list of directory

authorities along with their public keys10.�e Bitcoin client11 and the Monero client

have hard coded lists of DNS seeds for bootstrapping.12 �e communication to the

DNS seeds is not authenticated. Bitcoin has an operator policy that requests from

seed nodes to provide unbiased samples of functioning network peers and to not use

8Another possibility is random address probing [DW09], where a clients tries to connect to

peers randomly selected from the IP address space. Random address probing comes with signi�cant

drawbacks, especially a high bandwidth cost, bad performance, and it is practically infeasible in IPv6

address space.
9�e IP addresses received using in-band communication from that peer are then also controlled

by the adversary.
10https://www.torproject.org/docs/faq#KeyManagement
11When discussing client implementation aspects, we use the term Bitcoin to refer to the reference

client bitcoind (https://github.com/bitcoin/bitcoin).
12Bitcoin: https://github.com/bitcoin/bitcoin/blob/

13f53b750dc09cb59192b2aa4ac8e499ee36e1ca/src/chainparams.cpp#L127,
Monero: https://github.com/monero-project/monero/blob/
75563db6e36f044ca0fd08722e2b29a3c950430a/src/p2p/net node.h#L133

38

https://www.torproject.org/docs/faq#KeyManagement
https://github.com/bitcoin/bitcoin
https://github.com/bitcoin/bitcoin/blob/13f53b750dc09cb59192b2aa4ac8e499ee36e1ca/src/chainparams.cpp#L127
https://github.com/bitcoin/bitcoin/blob/13f53b750dc09cb59192b2aa4ac8e499ee36e1ca/src/chainparams.cpp#L127
https://github.com/monero-project/monero/blob/75563db6e36f044ca0fd08722e2b29a3c950430a/src/p2p/net_node.h#L133
https://github.com/monero-project/monero/blob/75563db6e36f044ca0fd08722e2b29a3c950430a/src/p2p/net_node.h#L133

3 Network Layer Requirements and Design Space

data gathered from operating the seed node to attack the anonymity of users.13

Ethereum has a list of IP addresses along with the public keys of the peers hard

coded into the client.14 Other methods for bootstrapping include IRC channels (e.g.,

used by Gnutella and formerly used by Bitcoin).

In-band peer discovery can be used once at least one connection to another peer

is established. Clients can either request IP addresses from their neighbors or clients

can send IP addresses unsolicited to their neighbors.�e requirements performance

and DoS resistance are a�ected by the peer discovery, because it determines the speed

of establishing connections.�e requirement topology hiding is also a�ected, because

in-band peer discovery can be used to infer connections between peers.

Discussion: �e announced IP addresses should be reachable with substantial prob-

ability, i.e., a successful connection to the announced address should have been made

in the past. However, the announced IP addresses should not indicate the connec-

tions of a peer. If a client naively announced its neighbor’s IP addresses as reachable

peers, adversaries could easily infer the connections of that client. However, as peers

join and leave the network, it is important to distinguish between peers that are

still online and peers that already went o�ine. Otherwise, old IP addresses keep

being announced on the network because they were reachable in the past. A detailed

analysis of these tradeo�s is presented in Section 6.4.

Examples: Bitcoin clients can request IP addresses from their neighbors by sending

GETADDRmessages. Furthermore, clients can send IP addresses unsolicited to their
neighbors. Peer discovery has been successfully used to infer the network topology of

the Bitcoin P2P network [MLP+15]. Ethereum uses a Kademlia-like [MM02] system

to discover IP addresses of peers based on their public key.15 �is mechanism was

vulnerable to eclipse attacks [MHG18].

Neighbor Selection

�e main goal of neighbor selection is the establishment of connections to other

peers so that the requirements of the system (e.g., performance, DoS resistance) are

satis�ed. Generally speaking, a peer can choose to which peers it establishes outgoing

connections and from which peers it accepts incoming connections. For this decision,

the following questions need to be answered:

– Which information sources are available for the assessment of remote peers?

– How many outbound connections are established? How many inbound con-
nections are accepted?

– Does the selection of neighbors aim at creating a certain network topology?
13Bitcoin DNS seed operator policy: https://github.com/bitcoin/bitcoin/blob/

57b34599b2deb179ff1bd97ffeab91ec9f904d85/doc/dnsseed-policy.md
14https://github.com/ethereum/go-ethereum/blob/

79b11121a7e4beef0d0297894289200b9842c36c/params/bootnodes.go
15https://github.com/ethereum/devp2p/blob/master/rlpx.md#node-

discovery

39

https://github.com/bitcoin/bitcoin/blob/57b34599b2deb179ff1bd97ffeab91ec9f904d85/doc/dnsseed-policy.md
https://github.com/bitcoin/bitcoin/blob/57b34599b2deb179ff1bd97ffeab91ec9f904d85/doc/dnsseed-policy.md
https://github.com/ethereum/go-ethereum/blob/79b11121a7e4beef0d0297894289200b9842c36c/params/bootnodes.go
https://github.com/ethereum/go-ethereum/blob/79b11121a7e4beef0d0297894289200b9842c36c/params/bootnodes.go
https://github.com/ethereum/devp2p/blob/master/rlpx.md#node-discovery
https://github.com/ethereum/devp2p/blob/master/rlpx.md#node-discovery

3 Network Layer Requirements and Design Space

– Are connections maintained for as long as possible?

– Is the correct functioning of connections monitored?

Information Sources: Once a client has a set of possibly reachable IP addresses

obtained through peer discovery, the client can either randomly select peers to con-

nect to from that set, or discriminate remote peers based on information about

that peer. Discriminating remote peers can be advantageous in order to (1) prevent

adversaries from monopolizing all connections of a client (i.e., improving DoS re-

sistance), or (2) enhance the performance or reduce bandwidth cost by creating

certain network topologies.

Discussion: A peer can utilize three types of information about foreign peers: (1)

only the IP address and static information associated with it, (2) information based

on own observations in the past, (3) information provided by others.�e IP address

of a peer can be used to identify, e.g., from which IP address ranges, autonomous

systems, or geographic regions other peers come from. It is known to the client

even before a connection is established. On the other hand, using information based

on own observations requires the previous establishment of connections to that

peer.16 Using information provided by other peers on the network (i.e., reputation) is

vulnerable to Sybil attacks [Dou02]. Hence, one or more trusted entities providing

that information are required.

Examples: IP address information is used in Bitcoin to limit the number of outgoing

connections per IP address range in order to improveDoS resistance by preventing the

client from establishing too many connections to adversaries with limited IP address

resources. Furthermore, taking AS level information into account has been proposed

for Bitcoin [AZV17] and Tor [IBW17]. Information based on own observations is

used in Bitcoin to blacklist IP addresses that were misbehaving in the past for a certain

amount of time. Tor uses trusted directory authorities to provide information such as

available bandwidth and availability (i.e., uptime) to clients in order to mitigate Sybil

attacks with only a short duration and also to enhance performance by providing

information required for load balancing.

Number of Connections: �e most basic parameter of the attachment strategy is

the number of connections a peer establishes, both, inbound and outbound. Typically,

a client establishes a certain number of outgoing connections and may allow up to

a certain number of incoming connections.�e number of connections is mainly

a tradeo� between the cost of participation on the one hand and performance and

DoS-Resistance on the other hand.

Discussion: In a �ooding network, the bandwidth cost of a peer increases in the

number of connections. When naively �ooding messages, the increase is linear in the

number of connections as every message will be sent over every link once. However,

using a two-legged process for �ooding (cf. Section 3.3.2), where new messages are

16Without any identi�cation mechanism of peers, a peer’s identity can only be coupled to the IP

address it uses. With dynamic IP addresses, this can lead to false association of information and peers.

40

3 Network Layer Requirements and Design Space

�rst announced and only sent on request, can reduce the overall bandwidth cost to

be sublinear in the number of connections. To which peers a client is connected has

no signi�cant e�ect on the total bandwidth cost.

A large number of connections per peer can reduce the propagation delay if the

communication strategy makes use of the connections. Many connections can also

lead to a reduction in the network diameter, improving propagation speed and en-

hancing robustness of the network.�e required e�ort for an adversary to isolate a

single peer from the network or to partition the whole network increases with the

number of connections the clients establish. Many models for the analysis of the

e�ect of the number of connections on performance and security properties of the

network have been published (e.g., [AJB00, AB02]).

Examples: �e default number of outgoing connections for Bitcoin is 8. It has been

proposed to increase this number in order to enhance DoS resistance [HKZG15].

Incoming Connections are less trustworthy than outgoing connections, because

even a very limited adversary (i.e., a small number of Sybil peers) can establish a large

number of incoming connections to other peers.�e maximum number of incoming

connections is, as with the total number of connections, a tradeo� between the cost

of participation on the one hand and performance and DoS-Resistance on the other

hand. However, DoS resistance increases less with more incoming connections than

with the same number of outgoing connections.

Discussion: Allowing a large number of incoming connections enables other peers

to establish (more trustworthy) outgoing connections. Furthermore, it is the only

possibility for clients that are not able or willing to accept incoming connections to

establish connections to the network at all.�ese peers, although not publicly o�ering

their service, help in connecting the network further, and these peers are hard to iden-

tify and attack for adversaries without access to core infrastructure. Hence, allowing

incoming connections to be made also improves DoS resistance for the peer itself.

�e fact that adversaries can easily establish a large number of incoming connections

led to the discussion of several options. In order to prevent information eclipsing, it

was proposed to not allow incoming connections when accepting zero con�rmation

payments17 in Bitcoin [BDE+13]. While certain peers may opt to establish only outgo-

ing connections, the overall network requires peers to accept incoming connections.

A primitive but still possibly e�ective attack is to use up all incoming connections

slot from all peers on the network.�is would prevent honest peers from establishing

connections. To increase the cost of such attacks it has been proposed to require peers

to solve a proof-of-work in order to establish outgoing connections [BKP14, Alm17],

which would also increase the cost of participation. Furthermore, it was proposed to

limit incoming connections based on IP address information [HKZG15].

Examples: �e default number of allowed incoming connections in Bitcoin is 117.

17Zero con�rmation (0-conf) refers to the behavior of regarding a transactions as accepted as soon

as the transaction is received through the Bitcoin network, instead of waiting for the transaction to be

included in a block. While this strategy drastically improves performance by reducing the payment

delay, it is highly susceptible to double spending attacks.

41

3 Network Layer Requirements and Design Space

�e number of unreachable peers in the Bitcoin network (i.e., peers behind NATs

or peers not allowing incoming connections) has been estimated to up to 155,000

during a 6 hour period in May 2017 [WP17]. With about 5,500 peers reachable via

IPv4 during that time, there are almost 30 unreachable peers per reachable peer,

according to the estimate. We will discuss this estimate in more detail and compare

it to our own measurements in Section 5.3.

Topology Generation: Based on the information sources available to the client, the

client can decide to which peers connections are established.�is decision a�ects

the resulting network topology, which has a strong e�ect on the requirements cost

of participation, performance, and DoS resistance.

Discussion: Proposals were made to increase performance by favoring the establish-

ing of connections to peers in geographic proximity [FOA]. Geographic proximity

can be easily deducted using IP address information and freely available databases,

hence, the required information can be easily obtained. However, although this idea

might improve the network’s performance, it comes at the cost of highly reduced DoS

resistance and robustness against random failure. As the number of long distance

links such as inter-continental links is reduced, failure of these connections due to

random error or attack can cause the network to partition.18

It might also be desirable to create network topologies with certain node degree

distributions for performance reasons. For instance, scale free networks result in

faster information propagation compared to random Erdős–Rényi (ER) graphs for

larger networks [CLA16]. However, there are several issues with these approaches:

First, in order to create a certain network topology apart from a random graph, clients

need information about the node degree of others (e.g., in order to perform some

form of preferential attachment).�is information can only be provided by the peers

itself (peer may lie about their connection count), or by a trusted entity that is able

to monitor connections between peers. Despite their better performance, scale free

networks were shown to have a lower resistance to targeted attacks, i.e., to an attack

where the adversary knows the network topology and attacks and removes speci�c

peers [AJB00]. As ER graphs exhibit a high attack tolerance it is questionable whether

it is a good idea at all to change the network topology to not be a random graph.

Examples: One implemented example of a topology generating attachment strategy

is the load balancing in Tor. A network wide load balancing is implemented by

choosing the probability to establish a circuit through a certain peer according to

its relative bandwidth share of the whole network.

Stability: Once connections are established, clients can either try to keep connec-

tions for the longest possible duration (i.e., keep the network topology as static as

18�e distinction between error and attack tolerance of a network implies that an adversary knows

the network topology at least partially and is able to selectively attack connections or peers. In order

to enhance the DoS resistance of a network it is advantageous to hide the network’s topology from an

adversary. An adversary that does not know the network topology has to fall back to randomly attack

peers of the network, which equals random failure of peers.

42

3 Network Layer Requirements and Design Space

possible) or can deliberately disconnect from connected peers a�er some period

and connect to other peers. �e stability of the network topology a�ects DoS re-

sistance and topology hiding.

Discussion: On the one hand, a static network topology makes it harder for adver-

saries to in�ltrate the network with Sybil peers, because connections between honest

peers remain as long as possible and only cease to exist due to churn or DoS attacks.

On the other hand, a static network topology makes inferring the network topology

easier, which enables DoS attacks on central peers of the network and also facilitates

deanonymization attacks that rely on knowledge of the network topology (e.g. [FV17]).

Examples: For peers without any incoming connections it was proposed to establish

new outgoing connections between publishing two transactions in order to avoid

deanonymization [BKP14]. A bene�cial e�ect of continuous changes to the network

topology has also been suggested against DoS attacks that are based on hijacking

routes to certain autonomous systems [AZV17]. We will revisit the aspect stability in

the discussion on countermeasures against topology inference in Chapter 6.

Connection Anomaly Detection: In order to avoid being eclipsed, a peer relies on

its neighbors to relay relevant information. Clients can monitor their connections

and terminate connections to peers that do not behave as expected.�is can improve

DoS resistance, however, it can also enable DoS attacks.

Discussion: One scenario in eclipsing attacks is that the adversary tries tomonopolize

all connections of a peer by inserting Sybil peers that stop relaying messages to the

peer at some point in time. In order to counter such attacks a client could monitor the

rate at which neighbors relay messages. If that rate is signi�cantly lower than the rate

observed in the past (or by other neighbors), the client should establish additional

connections to avoid being eclipsed. Obviously, the message rate varies over time so

that false positives and false negatives can occur. However, as the cost of temporarily

establishing more connections is low, clients at risk of being eclipsed should employ

this measure to enhance DoS resistance.

In case a client observes a signi�cantly lower message rate from a certain peer, the

client could choose to terminate the connection to that peer. On the one hand this

wouldmakemonitor and Sybil attacksmore expensive as the peers of the adversary are

then required to relay messages to their neighbors. On the other hand, such ameasure

would detain users with minimal resources to passively participate in the system.

Examples: Bitcoin monitors connections in the sense that neighbors which send

messages not compliant with the protocol are disconnected and blacklisted. �is

mechanism has been exploited to disconnect Tor exit nodes from the Bitcoin net-

work [BP14], i.e., exploiting an anti-DoS mechanism for a DoS attack. Anomaly

detection was also proposed to include metrics such as the round-trip time to neigh-

bors in order to detect other kinds of attacks (e.g., attacks on routing) [AZV17].

Although anomaly detection has been proposed in the past, there is a lack of models

that actually can be used for monitoring and detection. Such models should re-

liably predict message rates and provide con�guration options for balancing the

a�ected tradeo�s.

43

3 Network Layer Requirements and Design Space

3.3.2 Communication Strategy

Whenever a client creates a new message (e.g., a transaction or block in Bitcoin), that

message needs to be disseminated to all other peers on the network. As the creating

client is only connected to a small number of peers, it relies on other peers that relay

the message to all other peers. �e communication strategy of a client decides at

runtime for all messages received in the past, which of these messages are relayed to

which neighbors at which point in time and how this relaying is implemented.

For this decision, the following questions need to be answered:

– Which information sources are available?

– Are messages pushed or announced and pulled?

– To which neighbor are messages relayed?

– When are messages relayed?

– Is each message treated separately or are messages aggregated?

Information Sources: �e client can either treat each message equally, or adapt the

communication strategy according to additional information on the message.

Discussion: Strategies might use the content of the message in order to decide

relaying times and peers. In contrast to the message content, which serves the ac-

tual application, additional metadata can be sent along with the message to provide

information to the communication strategy of other peers. Finally, side-channel

information can be any information transmitted via the network or collected locally

that can be used by the client.

Examples: One example for using the content of the message is the di�erent treat-

ment of blocks and transactions in Bitcoin, where blocks are immediately relayed

whereas random delays are applied before relaying transactions. Another use of

the message’s content can be to treat own messages (e.g., transactions created by

the user of the client) di�erently from relayed messages. �at way, a dissemina-

tion strategy that enhances anonymity (at the cost of other goals) can be used for

initial sending of a message only. Further relaying of the message can then utilize

strategies with better performance.

Dandelion [BVFV17] proposes to use a two phase communication strategy and

to indicate the current phase via metadata attached to the message. Clients can

then apply the currently selected phase of the communication strategy in order

to enhance anonymity.

Meta information could also be used as a general means for users to express their per-

sonal tradeo� between anonymity and performance for a certain message by setting a

suggested meanmessage delay value. As the metadata is relayed to a client’s neighbors,

even for the weakest adversarymodels the adversary learns of this information. Hence,

the use ofmetadata onlymakes sense if the advantages in a better communication strat-

egy outweigh the disadvantages of an additional information source for the adversary.

44

3 Network Layer Requirements and Design Space

Side-channel information is usedwhenBitcoin SPV clients tell their neighborswhich

transactions should be relayed by sending a bloom �lter. Because bloom �lters can

be used to attack the anonymity of users, the design of privacy-preserving bloom �l-

ters [KTO17] should be considered. Other proposals to use side-channel information

include to send Canary status messages upon detection of double spends [OAB+16].

Push vs. Announce and Request: A protocol can be designed to directly relay

(push) new messages to neighbors, or it can be designed to use a two-legged pro-

cess, in which new messages are �rst announced to neighbors using some form of

ID (e.g., the message’s hash value).�e neighboring client can then check whether

the message has already been received and can request the message if necessary

(announce-and-request). �is aspect is mainly a tradeo� between performance

and cost of participation.

Discussion: Push results in a faster propagation than announce-and-request. When

pushing a message, only one latency between peers elapses until the message is

delivered, with announce-and-request three latencies elapse.

�e average bandwidth cost of both approaches can be calculated given the average

size of messages (sm), the size of the ID (sh), and the probability of request (pr).�e

average bandwidth cost per message per connection is sm for a push strategy, and

sh + pr(sh + sm) for an announce-and-request strategy.�e relative bandwidth saving
can be calculated as sh/sm(1 + pr) + pr. For instance, assuming sh = 32Bytes, sm =
500Bytes and pr = 1/16, which is a very rough estimate of the parameters for Bitcoin
transactions, announce-and-request only consumes 13% of the bandwidth of push.

Only in cases where the additional latency is signi�cant, or where the messages are

very small compared to their ID and the probability of request is very high (i.e., in

sparsely connected networks), a push protocol is favorable. Even in these systems,

peers still need to provide a mechanism for other peers to request messages. For

instance, new participants in blockchain systems need to access historic data in

order to verify new messages.

Examples: When using announce-and-request, clients need to keep track of re-

quested messages and monitor whether the message is in fact delivered by the remote

peer.�e timeout mechanism used in Bitcoin for that purpose was vulnerable to a

DoS attack in which an adversary announces new blocks to the victim, but does not

deliver the blocks [GRKC15]. �e block synchronization mechanism in Ethereum

was also vulnerable to an attack that delayed the reception of valid blocks at remote

peers [WG16]. Proposed countermeasures include using dynamic timeouts, penaliz-

ing non-responding peers or requesting the message from multiple peers [GRKC15].

For the transmission of blocks in Bitcoin it has been proposed to announce a new

block by sending the block header, which is only 80 Bytes. Furthermore, an extension

to the Bitcoin protocol reduces the required bandwidth of block propagation by

replacing complete transactions in blocks by short transaction IDs [Cor16].�is is

possible because most transactions have been previously received by peers through

the transaction propagation process. Transactions that have not been previously

received can be requested subsequently from the remote peer.

45

3 Network Layer Requirements and Design Space

Flooding vs. Gossip: When a message has been received or created, the client has

to decide to which of its neighbors the message is relayed. Messages can be relayed

either to all neighbors (�ooding), or to a (randomly selected) subset of neighbors.

�is decision mainly a�ects the requirements performance, cost of participation, and

DoS resistance, but can also a�ect anonymity.

Discussion: Flooding has a higher bandwidth cost compared to gossiping. However,

when using an announce-and-request protocol, the bandwidth cost does not increase

linearly in the number of selected neighbors. With an increasing number of selected

neighbors the probability that these neighbors already have received the message

increases, thus eliminating the need to relay the message itself.

Not relayingmessages to certain neighbors has the same e�ect as not having a connec-

tion to these neighbors.�erefore, it has the same negative e�ect on DoS resistance as

a small number of connections in a very dynamic network (i.e., with quickly changing

connections). As the subset of neighbors is randomly selected (e.g. for each message),

there is a risk that certain messages do not propagate through the whole network.

How large that probability is, given a certain network topology and relay probability

has been analyzed for decades in the �eld of epidemic spreading (e.g., [PSCVMV15]).

Examples: �e Bitcoin client uses �ooding.�e �rst phase of the proposed Dan-

delion strategy relays messages to one neighbor peer only, which can be seen as a

gossip strategy [BVFV17]. It has also been proposed to route messages along certain

paths to miners [EREL17].

Relay Delay: Clients can not only decide to which neighbors they relay messages,

but also when. �is decision mainly a�ects the requirements performance, ano-

nymity, and topology hiding.

Discussion: �e decision when to relay a message can be deterministic or proba-

bilistic. An example for a deterministic approach would be a time-slotted system

which rebroadcasts all messages received within a certain time slot at the end of

that slot. An example for a probabilistic approach would be a system where upon

reception of a message a random delay according to some probability distribution

is used to calculate the sending time.

Deterministic decisions might be better from a performance perspective in cases

where strict bounds on the information propagation delay are required. For these

cases (e.g., real-time requirements), however, the considered systems are in general

unsuitable. Indeterminism can be bene�cial for topology hiding and anonymity

as the attacker has incomplete knowledge of the probabilistic process and can only

model the used probability distribution and not the outcome of each single decision.

Obviously, deliberately delaying messages reduces the propagation speed, i.e., there is

an inherent tradeo� between performance on the one side and topology hiding and

anonymity on the other side. A more detailed analysis is presented in Section 6.3.3.

Examples: Bitcoin delays the relaying of messages according to an exponential

distribution.

46

3 Network Layer Requirements and Design Space

Aspect: In-Band Peer Discovery

Precise Randomizedvs.

Aspect: Number of Connections

High Lowvs.

Aspect: Topology Generation

Scale-Free Randomvs.

Aspect: Stability of Connections

Stable Changingvs.

Aspect: Push vs Announce-and-Request

Push Announce-and-Requestvs.

Aspect: Flooding vs Gossip

Flooding Gossipvs.

Aspect: Relay Delay

Short Longvs.

Performance

DoS
Resistance

Cost of Participation

Topology Hiding

Anonymity

Figure 3.3: Exemplary design choices and their e�ects (solid green = positive, dashed

red = negative) on the ful�llment of requirements. For each shown aspect two possible

choices are given (e.g., a short and a long relay delay). Redundant e�ects (e.g., if a

short relay delay has a positive e�ect on performance, a long relay delay obviously

has a negative e�ect on performance) are omitted for the sake of readability [NH18].

Message Accumulation: So far, we have only considered one message at a time

and considered several messages and their relaying times and neighbors to be in-

dependent. However, a client could aggregate multiple messages so that they are

sent at the same time, which can reduce bandwidth costs by reducing the required

control data (e.g., packet header). It can also a�ect the requirements performance,

anonymity, and topology hiding.

Discussion:Message accumulation only makes sense when clients do not rebroad-

cast messages immediately, because only then the collection of messages is possible.

Besides reducing bandwidth costs, it can bemore e�cient from a so�ware engineering

perspective to maintain only one queue per neighbor with one potential sending time

instead of maintaining one sending time per message.

Message accumulation can reduce the average relay delay depending on the number

of aggregated messages: messages that enter a queue that already contains many

messages may be sent early because their time of sending has already been scheduled

before they have been received by the client. Message accumulation might improve

topology hiding and anonymity because it adds more entropy that is unknown to the

attacker as sending times depend on message receptions the attacker does not know

about. However, active adversaries can, for example, regularly send new messages

to a remote peer and can infer the time the remote peer received a certain message

from another peer based on the other messages that are within the same aggregated

set. We will present and analyze a topology inference method exploiting message

accumulation in Section 6.1.

Examples: Bitcoin usesmessage accumulation bymaintaining one queue of outgoing

messages per neighbor. Messages to be relayed to that neighbor are appended to the

queue and all transactions within a queue are announced in one INVmessage.

47

3 Network Layer Requirements and Design Space

3.3.3 Remarks

Based on the implementation of real-world permissionless blockchains we structured

the design space of the network layer into several aspects. Figure 3.3 sketches the

e�ects of exemplary design choices on the ful�llment of requirements. Figure 3.3

can be read in several ways: First, assuming a �xed set of design decisions (e.g.,

taken from an existing system), one can qualitatively assess the ful�llment of each

requirement. Secondly, assuming a �xed importance of each requirement (e.g., based

on the envisioned application during the design of the network layer), one can derive

design decisions that support the important requirements. Furthermore, the �gure

shows which design options can be enabled by relaxing certain requirements. For

instance, if anonymity is not required in a certain scenario, the relay delay might be

shorter, which enhances performance and DoS resistance.

A more general observation can be made regarding the prevailing tradeo�s between

requirements: With the exception of the aspect topology generation, all sketched

design decisions either bene�t the requirements performance and DoS resistance

or the requirements topology hiding, cost of participation, and anonymity. �is

also implies that there are only few tradeo�s between performance and DoS resis-

tance and between topology hiding, cost of participation, and anonymity. Roughly

speaking, achieving performance and DoS resistance requires peers to send more

data, whereas achieving anonymity, a low cost of participation, and topology hiding

requires peers to send less data.

While only two design choices per aspect are sketched in Figure 3.3, design choices

are typically not binary. For instance, the number of connections can be anywhere

between one and the total number of reachable peers. Figure 3.4 depicts the e�ect of

the number of connections on the ful�llment of the requirements performance, DoS

resistance, and cost of participation. Because a minimum number of connections

is required for the network to be connected (i.e., to have a path between any two

peers), any design with less than that number becomes unusable (i.e, performance

and DoS resistance are not su�cient). While increasing the number of connections

substantially enhances performance for a small number of connections, the e�ect

diminishes with a higher number of connections. On the other hand, the cost of

participation increases linearly with each new connection.�erefore, there is a certain

range in which the inherent tradeo� should be adjusted to satisfy the requirements.

Although we discussed each aspect individually, there are interdependencies be-

tween certain aspects. Obvious dependencies are the available information sources

and how the information is used (e.g., increasing the number of connections based on

anomaly detection, increasing the relay delay based on network statistics). In order to

comprehensively assess the ful�llment of a requirement in a certain design, all aspects

that a�ect a requirement (cf. Table 3.1 and Figure 3.3) need to be considered.

Finally, the design of the network layer is, with few exceptions, only limited by the

creativity of the designer. Hence, while covering a wide range of aspects, no claim

of completeness can be made. Having described the design space and implications

of design decisions facilitates the detailed, quantitative analysis of certain aspects

as demonstrated in the following chapters.

48

3 Network Layer Requirements and Design Space

Number of Connections

R
eq

u
ir

em
en

t
F

u
lfi

ll
m

en
t

DoS Resistance

CoP

Performance

(high)(low)

(high)
Unusable

Adjustable
Tradeoff

Diminishing
Returns

Figure 3.4: Qualitative e�ect of the the number of connections on the requirements

performance, DoS resistance and cost of participation (CoP) [NH18].

�e remainder of this dissertation builds on the results presented in this chapter

in two main ways: First, the identi�cation of the security objectives topology hiding

and anonymity in the �rst part of this chapter motivates the second main research

question, which is addressed in Chapter 6 (analyzing topology inference) and in

Chapter 7 (analyzing network-based deanonymization). Secondly, the design survey

indicates possible countermeasures against analyzed attack methods, and allows their

assessment regarding all considered objectives.

49

4

Network Characterization

�e Bitcoin P2P network is real-world phenomenon, which is used as a basis for

processing �nancial transactions in the range of several billion Euros per day.1 Its

structure and behavior is subject to continuous variation and is in�uenced by numer-

ous internal and external factors. First, the usage of Bitcoin on the application layer

(i.e., the creation of transactions by users) varies, thus the information propagated

through the network varies. Furthermore, the behavior of those users operating

their own Bitcoin peer in�uences the network, e.g., by creating churn. Many client

implementations that are used to connect to the network are actively developed

and, therefore, their behavior changes over time. Finally, the underlying network

infrastructure, which in�uences IP routes and network latencies, varies over time.

�ere are several reasons, why a characterization of the network is required in order

to perform research on the network layer of permissionless blockchains. First, in order

to perform simulations that produce results, which are applicable to the real-world

system, the simulated network should resemble the real-world network.�erefore, a

model of the real-world network has to be created. Secondly, even when performing

experiments directly in the real-world network, an ongoing characterization of the

network is required to assess the reliability of the performed experiments. For instance,

in order to avoid experiments being performed during periods with very unusual

user or network behavior, an ongoing characterization is required. Furthermore,

an ongoing network characterization helps in monitoring the e�ects of changes to

client implementations. For instance, if changes are made, which aim at reducing

propagation delays, the comparison of the observed propagation delay at di�erent

points in time can help monitoring the success of the implemented modi�cation.

1https://blockchain.info/de/charts/estimated-transaction-volume-
usd

51

https://blockchain.info/de/charts/estimated-transaction-volume-usd
https://blockchain.info/de/charts/estimated-transaction-volume-usd

4 Network Characterization

Finally, by characterizing the network, insights on the human activity, which in the

end creates the network, can be gained.

In this chapter we will �rst describe the methodology used to characterize the net-

work.�en, the network is characterized regarding its general, long-term properties.

�is chapter ends with the analysis of a selection of unusual events and a discussion.

4.1 Methodology
In order to characterize the Bitcoin P2P network, observations from the operation

of the network have to be made. Without access to link level data between remote

peers of the network (e.g., obtained by packet sni�ng at ISPs or internet exchange

points), participating in the P2P network with a modi�ed client is a common way to

make observations from the network’s operation. We will now describe the system

architecture and so�ware design used to participate in the network and perform

measurements. Furthermore, a description of the collected data and the accessibility

and usage of the collected data is given.

4.1.1 Architecture & Software

�e main idea of our measurement system is to run a modi�ed client (monitor peer),

which connects to all reachable remote peers and observes and logs the announce-

ments of transactions and blocks made by other peers. One important principle in the

design of our measurement infrastructure is to minimize the e�ect we have on other

peers of the network. Speci�cally, we aim to reduce resources like bandwidth and

processing power required by other peers to serve our measurement infrastructure.

We acknowledge that while we participate in the network, we do not provide any

service directly to the network and only consume resources.2 Scaling our approach to

a large number of monitor peers to obtain more measurements could be considered a

DoS attack on the network. We also chose to make our monitor peer not reachable

by other peers, to avoid other (non-reachable) peers to establish connections to our

monitor peers, which do not provide any service to them.

�e monitor peer has several functional and non-functional requirements. First, it

needs to be able to establish and maintain connections to several thousand Bitcoin

peers. In order to do that, it also needs to discover IP addresses of remote peers to

connect to. Furthermore, it has to monitor and persistently log inbound messages

from its neighbors. Finally, it should measure the latency to remote peers, which is

a parameter usually required to perform network simulations.

In addition to these functional requirements, there are also non-functional (i.e.,

performance) requirements. First, the discovery of reachable IP addresses and the

successful establishment of connections should be fast.�is is especially important,

because the number of reachable peers is much smaller than the total number of

IP addresses obtained through the peer discovery mechanism. Furthermore, the

2�is behavior is quite common in public P2P networks, such as �lesharing systems, and o�en

referred to as free-riding (e.g., [FPCS06]).

52

4 Network Characterization

monitor peer has to be capable of processing and storing a large amount of inbound

data (in the range of several gigabytes per hour). Finally, inbound messages have to

be timestamped precisely, i.e., the logged time of reception of a message should be

close to the actual reception of the message on the wire.

We rejected the option to write a monitor client implementation from scratch,

because of the required e�ort. Instead, we chose to base our monitor peer imple-

mentation on the Bitcoin reference client implementation bitcoind (version 0.10) to

ensure compatibility of our monitor peer with other peers. We will now describe

the changes made to the client implementation in order to satisfy all requirements

listed above.3 Furthermore, we will describe the used parameters, which are also

summarized in Table 4.1.

Connection Limit �e maximum number of connections in bitcoind is limited

by two independent factors. First, the number of connections is limited to 125 by

default by a con�gured constant value, which we simply removed. Secondly, bitcoind

0.10 uses the POSIX select API4 in order to access its network sockets. However,
select only supports up to 1024 sockets, i.e., the total number of connections is
limited to 1024. While later versions of bitcoind abandoned the select API in
favor of a completely asynchronous so�ware architecture, we opted for a less invasive

change and replaced select by the epoll system call. epoll provides a similar
interface as select, and allows more than 1024 concurrent connections.

Peer Discovery & Connection Attempts In order to receive IP addresses of other

peers to connect to, a client can send GETADDR messages to its neighbors, which
in turn respond with a list of up to 1000 IP addresses.�e interval with which our

monitor peer sends out these GETADDRmessages is a tradeo� between the number
of available IP addresses (and, therefore, the number of connections that can be estab-

lished) and the e�ort (e.g., bandwidth usage) created at remote peers. In accordance to

our principle of minimizing the e�ect on other peers, we con�gured our monitor peer

to send on average one GETADDRmessage every 2 minutes to one of the connected
peers (i.e., at 10,000 connected peers, one peer receives one GETADDRmessage every
2 weeks on average). Because IP addresses are also announced unsolicited by other

peers, the con�gured request frequency turned out to be su�cient to supply enough

IP address for the establishment of connections.

Received IP addresses are stored in a local database and used for connection requests.

�e strategy used for the establishment of connections has to account for several

aspects: First, only a very small share of the announced IP addresses are actually

reachable (e.g., because peers are located behind NAT routers or peers terminating

their client), i.e., a large number of connection attempts has to be made for a small

number of successful connection establishments. Secondly, even reachable peers

can be temporarily not reachable, because the remote peer already has hit its own

3Many aspects of bitcoind have been changed in newer releases of bitcoind.�erefore, the following

description only applies to bitcoind version 0.10.
4http://man7.org/linux/man-pages/man2/select.2.html

53

http://man7.org/linux/man-pages/man2/select.2.html

4 Network Characterization

Table 4.1: Measurement system parameters.

Parameter Value Comment

Connection Limit ∞ Original: 125

GETADDR interval 2 minutes For complete network

Initial connection backo� 10 seconds A�er �rst failed connection attempt

Backo� increment 10 seconds Per failed connection attempt

Connection retry count 5

#Connection threads 50

Failed connection blacklist 6 hours Prevent connection attempts

PING Interval 2 minutes Per peer

con�gured limit on the number of connections. Finally, connection attempts should

be rate limited in order to avoid being classi�ed as abusive tra�c and in order to

conform to the principle of least e�ect on other peers.

We implemented the connection establishment strategy as a parallelized system

using a con�gurable number of threads, which continuously try to establish connec-

tions. Rate limitation is implemented as a linear backo�, i.e., the minimum interval

between two connection attempts increases with every failed connection attempt by

10 seconds. A�er a certain number of failed connection attempts, an IP address is

removed from the database and blacklisted for a certain duration.�e IP address will

be added once the blacklist period expired and it is again announced by another peer.

�e strategy has many con�guration parameters listed in Table 4.1, which all balance

the speed of connection establishment and the bandwidth usage of our monitor peer

and of other peers. �e operation of the monitor peer shows that a high degree

of parallelization (e.g., 50 threads establishing connections) is bene�cial for a fast

establishment of connections. Contrary, the minimum interval between connection

attempts as well as the maximum number of connection attempts was set quite low

(e.g., 10 seconds initial backo�, at most 5 connection attempts).

Message Logging �e main message type that is monitored by our monitor peer

are INV messages, which announce blocks and transactions by their hash value.
In order to estimate propagation delays, a precise timestamping of these messages

is required. �erefore, it is important to avoid any processing delay between the

reception of a message and its timestamping. bitcoind 0.10 separates the processing

of messages into two threads:�readSocketHandler reads incoming data from the

sockets into queues for later processing by�readMessageHandler. We chose to keep

this so�ware architecture, as it enables a fast timestamping directly a�er reading a

message from the socket in the�readSocketHandler. In order to avoid any delays in

�readSocketHandler, we also removed any functionality that requires the acquisition

of locks, which might be held by slower threads.

�readMessageHandler processes the messages written into queues for each neigh-

bor peer. INVmessages are directly written to permanent storage in binary format

54

4 Network Characterization

containing the announced hash value, the announcing IP address, and the timestamp

as set by the�readSocketHandler. ADDR messages are used as input to the modi-
�ed peer discovery mechanism (see above). PING messages trigger PONG replies
according to the protocol speci�cation, in order to prevent connections from be-

ing closed. �e processing of all other message types has been removed to avoid

unnecessary delays and complexity. All further processing of the measured data is

done independently from the monitor peer.

Latency Measurement Our monitor peer uses three distinct methods for the mea-

surement of latencies to remote peers. First, the Bitcoin protocol PING/PONGmes-
sages are used to measure the time between sending a PINGmessage and receiving a
PONGmessage. One advantage of these messages is that all peers respond to these
messages. Because the messages are handled by the Bitcoin client itself, this method

measures not only the network link latency, but also the delay introduced by the client

so�ware such as processing times and waiting times for the acquisition of locks.�e

second method we use is sending ICMP echo messages. In contrast to the Bitcoin

protocol PINGmessages, responses to ICMP messages are sent by the underlying op-
erating system, hence no application delays are introduced.5 One drawback of ICMP

echomessages is that a substantial number of peers do not respond to ICMP echomes-

sages because of �rewalls or network stack con�guration.�erefore, the third method

we employ are TCP SYN pings: A TCP SYN packet is sent to a peer’s port running

Bitcoin and the time until either a RST or a SYN/ACK packet is received is measured

as a round-trip time. �is method is commonly used by network scanners (e.g.,

nmap), and has the advantage that almost all peers respond to TCP SYNmessages.

All three methods are implemented within the monitor application as three addi-

tional threads, which regularly send all types of pings to remote peers and monitor

the reception of the responses. In order to avoid storing the sending time of all sent

ping messages, the sending time of the messages are stored in the ICMP payload

and in the TCP sequence number, respectively.�e measured round-trip times of

all methods are stored as-is, i.e., no aggregation or combination is performed during

the monitoring process, as such processing can be performed later in the analysis

process (cf. Section 4.2.3).

4.1.2 Dataset

We will now describe the acquired dataset. Measurements initially started in July

2015, however, several features of the monitor peer were added subsequently. As

of April 2018, the measurements are ongoing. During the observation period there

are several short measurement gaps, e.g., because of maintenance events, network

outages, and system restarts. Furthermore, there is one larger measurement gap

(December 21st 2015 until January 29th 2016) due to a unrecoverable disk system

failure. As of April 2018 the total amount data accumulates to around 12 terabytes

5Delays can be introduced by the operating system, if the complete system is operating at full

capacity.

55

4 Network Characterization

per monitor peer, i.e., 24 terabytes in total.

Aggregated data including continuously generated statistics have been made avail-

able to the research community6 under a Creative Commons license.7 Furthermore,

anonymized snapshots of the network are provided.�e data has been used in several

scienti�c publications, e.g. [MBK+17, GSY18].

Our monitor peers collect data from four di�erent categories. We will now brie�y

describe the collected raw data.

Churn �e collected churn data consists of tuples containing the current timestamp,

the IP address of the remote peer, and the event to be logged. Logged events are the

establishment of a connection, the closing of a connection, and the reception of a

version message from a remote peer. Since April 2016, the logged version event also

contains the announced client version string. Furthermore, since April 2016 the

monitor peers also regularly log the set of all connected peers. Since May 2017 the

logged version event additionally contains the announced services and version bits.

Latency As described above, the monitor peers regularly send various types of ping

messages to their peers.�e collected data consists of tuples containing the current

timestamp, the IP address of the remote peer, the type of the ping message, and the

measured latency. For every reception of a pong message, such a tuple is created.

Failed ping attempts, i.e., sending a ping message without receiving a corresponding

pong message, are not logged.

INV �e reception of INV messages is logged as tuples consisting of the current

timestamp, the IP address of the remote peer, and the announced hash value. While

one INVmessage can announce multiple single hash values, each hash value is logged

individually, but with the same timestamp.

ADDR �e reception of each ADDR message is logged using the the current times-

tamp, the IP address of the remote peer, and the list of announced IP addresses

including the nTime parameter for each announced address.

4.2 General Network Properties
Wewill now describe and discuss the long-term results of ourmeasurements since July

2015. A detailed analysis of certain short-term events will be presented in Section 4.3.

4.2.1 Connections

We will �rst analyze properties of the connections established to other peers, speci�-

cally, the number of established connections, the connection duration, and the churn.

6https://dsn.tm.kit.edu/bitcoin
7https://creativecommons.org/

56

https://dsn.tm.kit.edu/bitcoin
https://creativecommons.org/

4 Network Characterization

0

2000

4000

6000

8000

10000

12000

14000

16000

Jul’16 Sep’16 Nov’16 Jan’17 Mar’17 May’17 Jul’17 Sep’17 Nov’17 Jan’18 Mar’18

N
u

m
b

er
of

C
on

n
ec

ti
on

s

Total
IPv4
IPv6
Sybil

Figure 4.1: Measured number of connections between July 2016 and April 2018 for

both monitor peers.�e same line colors are used for both monitor peers, because of

predominantly overlapping graphs.

Connection Count

�e number of peers participating in a P2P network is of interest, because it indicates

user adoption of the system and is also important when assessing the possibility of

certain types of attacks on the network. Because we can only connect to reachable

peers, we do not know the total number of peers on the Bitcoin P2P network. However,

the number of reachable peers can be approximated by the number of established

connections by our monitor peers.

Figure 4.1 shows the number of connections maintained by our monitor peers be-

tween July 2016 and April 2018. For earlier dates, the number of connections can only

be unreliably approximated, because of missing data.8 �e plot shows the number

of IPv4 and IPv6 connections, and the total number of connections, which is the

sum of IPv4 and IPv6 connections. Furthermore, the number of Sybil connections is

displayed. Sybil connections refer to multiple established connections by the same IP

address, i.e., the number of Sybil connections is the di�erence between the total num-

ber of connections and the number of unique IP addresses we are connected with.9

Data from both monitors overlap generally overlap closely, with only a few excep-

tions (e.g., in October 2017).�e total number of connections varied between less

than 6,000 connections in late 2016 and around 14,000 connections in 2018. �e

number of IPv4 connections increased at a relatively constant rate during 2017 (with

the exception of a few peaks).�e number of IPv6 connections increased from less

than 2,000 to 4,000 until September 2017, but started to oscillate between 4,000

and 2,000 connections. �is oscillation is caused by IPv6 tunneling protocols, as

8Until July 2016 only the establishment and closing of connections was logged, which would be

only su�cient to derive the number of established connections, if the monitor peer was continuously

running.
9Sybil here refers to a very simple and easy to detect form of a Sybil attack. Of course, a single

person running a large number of peers with di�erent IP addresses would still be considered a Sybil

attack, but would not be detected that easily.

57

4 Network Characterization

0

2000

4000

6000

8000

10000

12000

14000

16000

Jul’16 Sep’16 Nov’16 Jan’17 Mar’17 May’17 Jul’17 Sep’17 Nov’17 Jan’18 Mar’18

N
u

m
b

er
of

C
on

n
ec

ti
on

s
Total (KIT)
Total (Coindance)
IPv4 (KIT)
IPv4 (Bitnodes)
IPv6 (KIT)
IPv6 (Bitnodes)

Figure 4.2: Comparison of the number of connections according to ourmeasurements

(KIT), and the number of connections reported by Coindance and Bitnodes.

we will discuss later (cf. Figure 4.6).

�e number of Sybil peers is generally very low (less than 50 prior to July 2017,

less than 200 a�er August 2017), with the exception of short events in June 2017 and

August 2017. We will discuss these events in detail in Section 4.3.1.

In order to assess the validity of our measurement, we compare our results to avail-

able results obtained by independent measurements. We are aware of two projects,

which perform similar measurements: Bitnodes10 uses a Python based monitor imple-

mentation11 to connect to peers of the Bitcoin network. It also obtains IP addresses of

reachable peers using the in-band peer discovery mechanism and establishes connec-

tions them. Coindance12 also publishes measurements on the total number of peers,

however, no di�erentiation for IPv4 and IPv6 connections are made. Furthermore,

no information on the used methodology is provided.

Figure 4.2 shows a comparison of the number of connection asmeasured by us (KIT),

Coindance, and Bitnodes.�e Bitnodes IPv4 connection count follows very closely

the IPv4 connection count measured by us. Even short peaks are congruent in both

datasets. However, the Bitnodes IPv6 connection count shows a larger deviation to

our measurements, with a consistently smaller number of IPv6 connections reported

by Bitnodes (ranging from a minimum di�erence of 200 in Feb 2017 to a maximum

di�erence of more than 2,000 connections during summer 2017 and January 2018).

�e total number of connections reported by Coindance lies between our measured

total number of connections and the number of IPv4 connections. Since August 2017,

the number reported by Coindance is very close to our number of IPv4 connections,

leading to the guess that Coindance only establishes IPv4 connections (or a very

small number of IPv6 connections). Until August 2017, Coindance could have either

established a similar number of IPv6 connections as we and Bitnodes, or Coindance

10https://bitnodes.earn.com/
11https://github.com/ayeowch/bitnodes
12https://coin.dance/nodes

58

https://bitnodes.earn.com/
https://github.com/ayeowch/bitnodes
https://coin.dance/nodes

4 Network Characterization

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Jul’16 Sep’16 Nov’16 Jan’17 Mar’17 May’17 Jul’17 Sep’17 Nov’17 Jan’18 Mar’18

S
h

ar
e

of
C

on
n

ec
te

d
P

ee
rs

≥1 min
≥1 hour
≥1 day
≥1 week
≥1 month

Figure 4.3: Share of connected peers with a connection duration longer than one

minute, hour, day, week, or month, respectively. Every data point shows the average

per day (48 measurements).�e lines show moving averages over the range of one

month.

could have establishedmore IPv4 connections thanwe did. While there are di�erences

between all three measurements, we emphasize that all measurements deviate only

to a reasonable extend, all measurements reproduce the same general trends, and

all measurements show the same short-term e�ects.

Churn & Connection Duration

Besides the size of the P2P network, the churn is an important property of P2P

networks. Peers entering and leaving the network can be a representation of user

behavior [Jün15]. However, we cannot directly measure churn, as connections estab-

lished between two remote peers are not observable to us.�e only events we can

observe, are the establishment and closing of connections to or from our monitor

peers.�ese events, however, can be used to gain insights on the churn of the network.

One important observation is the duration for which peers stay connected to our

monitor peer.�ere are two ways to sample this value: First, we can select a random

point in time and create a statistic over the connection durations of all peers that are

connected to our monitor peer at that point in time. Secondly, we can consider a

time interval and create a statistic over the connection durations of all peers that were

connected during that period. Both approaches di�er in the statistical population, with

long connection durations dominating the �rst population, whereas short connection

durations dominate the second population. Furthermore, the composition of the

second population depends on the considered time interval.�erefore, we chose to

sample the connection duration of peers connected at distinct points in time.

Figure 4.3 shows the share of peers connected for at least a certain duration to our

monitor peer since July 2016. Each data point is the average of 48 measurements (i.e.,

24 measurements per day for two monitor peers), the lines are moving averages over a

period of one month. Consistently, around 99% of peers are connected for at least one

minute. Between 90% and 95% of connected peers are connected for at least one hour.

59

4 Network Characterization

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

Jul’16 Sep’16 Nov’16 Jan’17 Mar’17 May’17 Jul’17 Sep’17 Nov’17 Jan’18 Mar’18

N
u

m
b

er
of

(D
is

-)
C

on
n

ec
ts

p
er

H
ou

r Connect
Disconnect

Figure 4.4: Number of connections established and closed, respectively, per hour.

Points show data averaged per day. Lines show moving averages over the range of

one week.

�e average share of peers connected for at least one day varies between 55% and 75%,

the share of peers connected for at least one week varies between 20% and 50% Finally,

between 0% and 20% of connected peers are connected for more than one month.

�e large variance in the share of peers connected formore than onemonth is caused

by the regular loss of connections because of system restarts or network outages. A�er

such an event, it takes one month until peers are connected for one month again.

�erefore, the share of peers being connected to the Bitcoin network formore than one

month, can be expected to be close to themaximumobserved share (i.e., around 20%).

Compared tomeasurements of churn in P2P networks primarily used for �le sharing

(e.g., Kademlia [Jün15]), many peers are connected to the Bitcoin network for a very

long duration. �is indicates that running a peer is not directly associated with

user activity in Bitcoin. Users of �le sharing systems usually run their clients on

their desktop computers, start the client when downloading a �le, and quit the client

a�er �nishing the download. In contrast, operators of Bitcoin peers o�en seem to

continuously run their clients on hosted machines (cf. Figure 4.8). Furthermore,

while the estimated total number of Kademlia peers oscillated with a frequency of

24 hours, indicating human behavior, the total number of Bitcoin peers does not

show such an oscillation.

As previously discussed, the used sample method favors connections with long con-

nection durations.�erefore, Figure 4.4 shows the number of connections established

per hour, and the number of connections closed per hour.�is gives a complementary

view on churn, because it completely ignores the duration of connections, but only

focuses on the establishment and loss of connections. Each data point shows the

daily average, the lines indicate moving averages (one week).�e average number

of established and closed connections per hour, respectively, varies between a few

hundred and several thousand. Furthermore, the moving averages of connect and

disconnect events seem to overlap perfectly during the displayed interval.

60

4 Network Characterization

0

1000

2000

3000

4000

5000

6000

7000

Apr’16 Jul’16 Oct’16 Jan’17 Apr’17 Jul’17 Oct’17 Jan’18

N
u

m
b

er
of

C
on

n
ec

ti
on

s

/Satoshi:0.12.1/
/Satoshi:0.13.2/
/Satoshi:0.14.1/
/Satoshi:0.14.2/
/Satoshi:0.15.0.1/
/Satoshi:0.15.1/
/Satoshi:0.16.0/
/Bitcoin ABC:0.16.1(EB8.0)/

Figure 4.5: Number of peers announcing displayed version string for the top eight

version strings between April 2016 and April 2018.

Both observations seem to contradict the previously presented measurements re-

garding the total number of connections (which increased from 6,000 and 14,000),

and the long durations of connections. However, the results are not contradicting

but show di�erent aspects of churn: First, while there is an increase in the number

of connections, it is too small to be visible as a di�erence in the number of connects

and disconnects at the scale of the shown plot. Secondly, the majority of connections

established by our monitor peers are closed within a few seconds. O�en, connections

to one single remote peer are established and closed on a continuous basis.13 Although

only few such connections are established at any single point in time, they account

for the majority of (dis-)connect events.

Client Versions

A�er establishment of a new connection, both clients send a version message to

the remote peer to indicate their version string, their protocol version number, and

their services.�e main goal of the exchange of this information is to ensure com-

patibility between both clients of a connection. For instance, clients that support

the Bitcoin Cash fork and are, therefore, incompatible with clients supporting the

Bitcoin main chain, announce a distinguished set of services. Furthermore, certain

protocol extensions such as Bloom �lters [CT15] and Segregated Witnesses [LW16]

are encoded in the announced services.

Figure 4.5 shows the number of peers announcing a certain client version between

April 2016 and April 2018 for the eight most common version strings during that

period. Except for one version of the Bitcoin ABC client, which supports the Bitcoin

Cash fork, all most common version strings belong to di�erent versions of the Bitcoin

reference client implementation bitcoind, announced as /Satoshi:xx/ (xx denoting

the client version number). Whenever new versions of bitcoind are released, the

13Remote peers may chose to disconnect from our monitor peer a�er detecting that we do not

provide any service to them.

61

4 Network Characterization

0

500

1000

1500

2000

2500

Jul’16 Sep’16 Nov’16 Jan’17 Mar’17 May’17 Jul’17 Sep’17 Nov’17 Jan’18 Mar’18

N
u

m
b

er
of

P
ee

rs
Native
Teredo
6to4

Figure 4.6: Number of IPv6 peers using native IPv6, Teredo, and 6to4 between July

2016 and April 2018.

deployment of these versions at the monitored peers can be observed. Usually, there

is an increase in the number of peers running a new version in the �rst two months

a�er the release of the new client version.�is gradual adoption of new client versions

is likely caused by peers being operated by a large number of distinct users. Each

user chooses their own time to upgrade on a new client version based on factors

like importance of the update to the user, available time to actually perform the

upgrade, and reluctance to use a new version because of possible bugs. As these

factors are highly subjective and vary from user to user, the deployment of a new

client version takes the observed time.

Contrary, the number of peers using the Bitcoin Cash client Bitcoin ABC increased

from 0 to more than 700 within one day. A thorough discussion of the Bitcoin Cash

fork will be presented in Section 4.3.1.

4.2.2 IP Properties

So far we have only considered information directly obtained from the establishment

and closing of connections to remote peers. Because all connections are established

using TCP and peers are addressed using their IP addresses, the characterization

of the Bitcoin P2P network can also rely on information that can be associated to

remote IP addresses. In the remainder of this subsection we will look at the usage of

IPv6 tunneling protocols, and the countries and autonomous networks associated

with the IP addresses of remote peers.

IPv6 Tunnel

In order to allow hosts that are connected only via IPv4 to communicate with IPv6

hosts, several tunneling protocols exist, with Teredo [Hui06] and 6to4 [CM01] being

themost prominent ones.�e use of both protocols by a remote host becomes evident,

because both protocols use a speci�ed range of dedicated IPv6 addresses.�erefore,

based on the IP address of a remote peer, we can determine whether the remote host

62

4 Network Characterization

0

1000

2000

3000

4000

5000

6000

Jul’15 Oct’15 Jan’16 Apr’16 Jul’16 Oct’16 Jan’17 Apr’17 Jul’17 Oct’17 Jan’18

US
DE
CN
FR
NL
CA
RU
GB

Figure 4.7: Number of peers per country for the eight countries with the most peers.

is using native IPv6 or one of the tunneling protocols for its IPv6 communication.

Figure 4.6 shows the number of IPv6 peers using native IPv6, Teredo, and 6to4,

respectively. During the displayed period, the number of native IPv6 peers increases

from less than 1,000 in late 2016 to more than 1,500 in 2017 and 2018.�e number of

6to4 peers remains at a low level between 50 and 150.�e number of Teredo peers

shows several abrupt rises and declines during the displayed period. For instance,

it increases from less than 100 to more than 1,000 within a few days in March 2017,

falls from more than 2,000 peers to almost zero (around 10) several times in 2017

and 2018, and increases back to more than 2,000 peers.

�e increases and drops in the number of Teredo peers correspond to the observed

changes in IPv6 connections in Figure 4.1. We will discuss possible reasons for this

observation in Section 4.3.1.

Countries

During the assignment process of IP addresses, information about the assignee is

stored in databases of organizations such as ICANN and RIPE.�is information can

be retrieved using theWHOIS protocol [Dai04], in order to determine the countries,

to which the IP addresses were registered. Although this information is not 100%

accurate, it gives a reasonable impression of the geographic distribution of peers

among various countries.

Figure 4.7 shows the eight countries, with the most peers during the displayed

period from July 2015 until April 2018. Consistently, most peers are located in the

US (ranging from around 1,500 to more than 5,000). Between 500 and 1,800 peers

were located in Germany during the observed period.�e number of peers located

in China increased from less than 400 in April 2017 to more than 2,500 in April 2018.

As peers from the US account for roughly one third of all reachable peers, and

many peers are located in Western Europe, the geographical and politically distri-

bution of peers can be regarded as somehow centralized, although there are peers

from other continents as well.

63

4 Network Characterization

0

200

400

600

800

1000

1200

1400

1600

Jul’15 Oct’15 Jan’16 Apr’16 Jul’16 Oct’16 Jan’17 Apr’17 Jul’17 Oct’17 Jan’18

CHINANET-JS
ALISOFT
AT-88-Z
OVH
CONTABO
GOOGLE-CLOUD
OVH-200141d00000
LINODE-US

Figure 4.8: Number of peers per AS for the eight AS’s with the most peers.

Autonomous Systems

For internet routing purposes, a set of IP addresses under a single technical ad-

ministration (e.g., under the control of one ISP) is grouped into one autonomous

system (AS) [HB96]. �e AS of an IP address can be resolved using BGP data or

using the WHOIS protocol.

Figure 4.8 shows the number of peers per AS for the eight most common AS’s. As

of April 2018, the two AS’s with the most peers both are assigned to Chinese ISPs

(Chinanet and Aliso�). �e number of peers in the Chinanet AS increased from

zero in January 2018 to more than 1,200 within less than two month. All of the

Chinanet peers (with the exception of two peers) are announcing the same client

version (Satoshi 0.15.1), which leads to the guess that those peers are administrated

by one single party.�e AS with the third most peers (AT-88-Z) is assigned to the

US based company Amazon.�e number of peers in the Amazon AS shows some

short peaks, e.g., in June and November 2017.

�e data shows that a large number of peers is located at cloud and hosting providers,

i.e., many peers are run on hosted servers and not at home. For instance, the largest

AS from the ISP Verizon only has 72 peers.14 In general, the data shows a similar cen-

tralization as seen on the country level, but on a more �ne grained level and focusing

on internet structure instead of political structure. It has been shown that this AS-level

centralization makes the Bitcoin P2P network vulnerable to routing attacks [AZV17].

4.2.3 Latency

Besides properties of the remote client and their IP addresses, our monitor peers

also perform regular estimations of the latencies to their neighbors. As previously

described, latencies are measured using Bitcoin protocol ping messages, ICMP echo

messages, and TCP SYN messages. We will use the latency measurements in our

14Verizon manages a large number of di�erent AS’s, which might reduce the number of peers per

AS.

64

4 Network Characterization

40

50

60

70

80

90

100

110

120

Oct’15 Jan’16 Apr’16 Jul’16 Oct’16 Jan’17 Apr’17 Jul’17 Oct’17 Jan’18

A
ve

ra
ge

M
ed

ia
n

L
at

en
cy

[m
s]

BTC Ping
ICMP/SYN Ping

Figure 4.9: Average median measured latency from monitor peers to remote peers.

simulation model in Chapter 5.

Figure 4.9 shows the development of the average median latency from July 2015

until April 2018: First, the median of all measured latencies within one hour (typically

30 to 60 single measurements) of each peer is calculated.�en, the average of these

medians over all peers is calculated and displayed as one data point in the plot. Finally,

the lines show moving averages over one month of data points. Measured latencies

using the ICMP echo method and using the TCP SYN method are regarded as one

measurement, because of their similar handling by the operating system network

stack, and their resulting similar measured latencies.

�e measured latency using ICMP/SYN remains relatively constant between 50ms

and 60ms until October 2017. From October 2017 until April 2018, the observed

latencies as well as their variance increase drastically. We will now discuss possible

reasons for this increase in the measured latency.

First, the measured latencies seem to originate from a bimodal distribution: While

many data points still show a latency of about 60ms, other data points indicate

latencies of more than 100ms. A closer look into the collected data reveals that

starting in September 2017, the measured latencies strongly vary in the course of a day,

with high measured latencies during working hours (around 6am to 6pm, weekdays

only), and low measured latencies at night. Because both monitor peers show the

same behavior and run on di�erent hardware, we can exclude a saturation of the

monitor peers itself as the cause of the increased measured latency. Furthermore, we

also see the e�ect of an increased measured latency to peers that are topologically

close to our monitor peer, e.g., a peer located at the University of Erlangen, which is

connected with KIT directly through the German National Research and Education

Network (DFN). Hence, we suspect that saturation of the KIT network may cause

the increased observed latency.

Figure 4.9 also shows that the latencies measured using Bitcoin protocol pings

increased much less since October 2017. In contrast to ICMP and TCP SYN packets,

these messages are transmitted through an existing TCP connection. Upon reception

65

4 Network Characterization

0

50

100

150

200

250

300

0 5000 10000 15000 20000

L
at

en
cy

[m
s]

Distance [km]

ICMP/SYN Ping
BTC Ping
Speed of Light in Fiber

Figure 4.10: Average measured latency per remote peer w.r.t. distance to remote peer.

Data from 1st July 2017. Furthermore, the speed of light in �ber (200.000km/s) is
displayed.

of a packet, stateful �rewalls usually try to match packets to an existing connection,

which can be done very fast. If no such connection exists, the �rewall has to evaluate

the packet against its ruleset, which can be much slower.�erefore, a saturation of

the ruleset evaluation of a stateful �rewall at KIT could cause the observed e�ect. We

contacted the technical sta� in charge of the network infrastructure at KIT, however,

no data was available to con�rm our observation.

�e latency between two hosts on the internet is the sum of all processing delays

of all routers on the path between and the hosts, and the transmission delays of all

links between routers. A lower bound on the possible latency between two hosts can

be calculated as the quotient of the distance between both hosts and the speed of

light in �ber. Figure 4.10 shows the average measured latency for every remote peer

depending on its distance to our monitor peers in Karlsruhe, Germany.�e location

of remote peers is obtained using the Maxmind GeoIP Database.15 Furthermore, the

speed of light in �ber (200.000km/s) is displayed.
As can be seen, a small number of peers seem to have a latency that is lower that what

is physically possible.�ere are twopossible reasons for these errors: First, the distance

estimation can be wrong, caused by a wrongmapping between IP address and location.

As IP address ranges are frequently transferred between ISPs, such inaccuracies are

quite common.16 Secondly, we cannot exclude the possibility of wrong measurements.

Figure 4.10 also shows that the latency to many peers is only slightly larger than the

physically possible minimum latency. �is means that the overall latency to these

peers is dominated by the limited propagation velocity, and not by processing delays

or queuing times. �is observation is coherent to our previous observation that

many peers are hosted at hosting providers and not connected via consumer ISPs,

where a larger e�ect of the last mile, i.e., the communication link to the consumer’s

15http://dev.maxmind.com/geoip/
16https://www.maxmind.com/en/geoip2-city-database-accuracy

66

http://dev.maxmind.com/geoip/
https://www.maxmind.com/en/geoip2-city-database-accuracy

4 Network Characterization

0

5 × 107

1 × 108

1.5 × 108

2 × 108

2.5 × 108

Oct’15 Jan’16 Apr’16 Jul’16 Oct’16 Jan’17Apr’17 Jul’17 Oct’17 Jan’18
0

50000

100000

150000

200000

250000

300000

350000

400000

450000

O
b

se
rv

ed
IN

V
A

n
n

ou
n

ce
m

en
ts

p
er

H
ou

r

C
on

fi
rm

ed
T

ra
n

sa
ct

io
n

s
p

er
D

ay

TX
INV

Figure 4.11: Total number of observed INV announcements per hour per monitor

peer from July 2015 until April 2018. For comparison, the number of con�rmed

transactions (i.e., the number of transactions included in the blockchain) is also

displayed.

home, could be expected.

4.2.4 Propagation of Transactions and Blocks

So far we have only focused on (derived) properties of remote peers, but not on

the behavior of the peers and the network in general. We will now look at the an-

nouncement and propagation of information (i.e,, transaction and blocks) over the

Bitcoin P2P network.

INV Announcements per Hour

Figure 4.11 shows the total number of received INV announcements per hour per

monitor peer since July 2015. One INV announcement means the announcement

of a single hash value, multiple of which can be announced within one single INV

message.�e lines indicate moving averages over the time interval of one week. In

addition to the number of received INV messages, Figure 4.11 also shows the number

of transactions included in the blockchain per day.

Every valid transaction published on the network should be announced by every

peer to all of their neighbors.�erefore, the number of received INV announcements

should be equal to the number of published transactions multiplied by the number of

connections (cf. Figure 4.1). As can be seen from the plots, this relationship roughly

holds.17 In detail, the relationship does not hold because of several reasons: First,

peers may stay passive and not announce transactions at all to our monitor peer.

�is behavior can be observed for several hundred peers. Secondly, peers may also

17For instance, there were roughly 260,000 transactions included in the blockchain in January 2017,

i.e., 11,000 transactions per hour. Our monitor peer had around 6,000 connections at that time, hence

around 65 million INV announcements per hour can be expected, which is coherent to the number of

received INV announcements.

67

4 Network Characterization

announce a single transaction hashmore than one time.�is behavior can be observed

for around 50 peers. Peers may also come to di�erent decisions whether transactions

should be forwarded or not, depending on the fee speci�ed in the transaction, or

depending on the used scripts. Furthermore, a transaction may be published on the

P2P network, but not included in the blockchain, e.g., because its fee is too low.

During the considered time interval, the number of received INV announcements

varied between less than 30 million per hour in 2015, and more than 150 million per

hour in late 2017. Because of the limited capacity of Bitcoin blocks, the fee required

for transactions to be included in a block increases, if more transactions are published

than can be included in blocks in a timely manner.�is e�ect can be seen during the

period of in late 2017.18 It was speculated, whether the large number of transactions

was intentionally created, in order to increase the required fee for transactions to

be included into the blockchain. Furthermore, a relation to the fork of the Bitcoin

Cash blockchain is subject of discussion.19.

Propagation Delay

As transactions and blocks are �ooded through the network, we can indirectly observe

this �ooding process by observing the announcements made by remote peers to our

monitor peers. Upon reception of an INV announcement from a remote peer, we

can conclude that this peer has previously received the corresponding transactions

or block. However, we cannot precisely estimate the exact time a remote peer has

received a speci�c message, because of delays between the reception of messages and

their announcement to other peers.�is e�ect is stronger for transactions, because

the announcement of transactions is deliberately delayed by longer periods, whereas

blocks are announced immediately a�er validation.

A common measure, which re�ects the propagation delay in a network, is the

time between the start of information dissemination and the time until a certain

percentage (e.g., 50%) of peers have received the information. In order to calculate

that value, we use the timestamp of reception of INV announcements by remote

peers as the assumed time of reception of information by the remote peers.�en, the

time between the �rst reception of an announcement with a speci�c hash and the

reception of announcements containing that hash value by 50% of peers is measured.

Figure 4.12 shows the resulting propagation delays for blocks and transactions (for

50% and 90% percentiles) since July 2015.

Since 2015, block propagation delay has decreased from more than six seconds in

2015 until 50% of peers have announced a block, to less than one second in 2018.

Consistently, the 90% percentile decreased from more than 15 seconds in 2015 to

around two seconds in 2018.�ere are two main reasons for this increase in block

propagation speed: First, relay networks, such as FIBRE20, transmit blocks using

forward error correction and UDP communication at transmission rates close to phys-

ical limits (i.e., speed of light in �ber). Secondly, extensions to the Bitcoin protocol

18https://jochen-hoenicke.de/queue/#1,all
19https://medium.com/@deadwing66/cryptoconspiracy-bitcoin-network-

might-be-under-expensive-spam-attack-f2fa7baab113
20http://bitcoinfibre.org/stats.html

68

https://jochen-hoenicke.de/queue/#1,all
https://medium.com/@deadwing66/cryptoconspiracy-bitcoin-network-might-be-under-expensive-spam-attack-f2fa7baab113
https://medium.com/@deadwing66/cryptoconspiracy-bitcoin-network-might-be-under-expensive-spam-attack-f2fa7baab113
http://bitcoinfibre.org/stats.html

4 Network Characterization

0

5

10

15

20

25

30

Oct’15 Jan’16 Apr’16 Jul’16 Oct’16 Jan’17 Apr’17 Jul’17 Oct’17 Jan’18

S
ec

on
d

s

90% Block Percentile
50% Block Percentile
90% TX Percentile
50% TX Percentile

Figure 4.12: Bitcoin propagation delay for block and transaction propagation (50%

and 90% percentiles).

itself enable a faster transmission of blocks by only sending transactions IDs instead

of the complete transaction, which is possible because most transactions have been

previously received by peers through the transaction propagation process [Cor16].

Furthermore, performance improvements in client implementations (e.g., using hard-

ware optimization for SHA256 hashing) also decrease the required time to verify new

blocks, which reduces overall propagation delay.

On the other hand, transaction propagation delay decreased until February 2016

(to around one second for the 50% percentile) and increased since then to around

5 second for the 50% percentile. Transaction propagation delay is mostly caused

by deliberately delaying the forwarding of transactions to enhance anonymity and

topology hiding. In bitcoind versions prior to 0.12, a change to the so�ware archi-

tecture rendered the implemented transaction delay mechanism useless, e�ectively

forwarding transactions immediately. bitcoind 0.12 was released in February 2016

with a modi�ed transaction delay mechanism, which delayed transaction forwarding

by a longer duration.21 �ese changes are well re�ected in the observed transaction

propagation delay, especially in the 90% percentile.

In order to assess the validity of our measurement, we compare our results to

available results obtained by independentmeasurements. We are aware of two projects,

which perform similar measurements, namely Bitnodes, which was described in

Section 4.2.1, and bitcoinstats22, which is operated by the authors of [DW13]. In

contrast to our measurements, Bitcoinstats connects only to 250 to 1,000 randomly

selected peers and monitors INV announcements from these peers.

Figure 4.13 shows a comparison of the 50% block propagation percentile for all

three data sources. In order to enhance readability, single data points were omitted

for our measurements, and only the moving average is displayed. No data prior to

April 2016 was available for bitnodes. In general a high correspondence between

21https://github.com/bitcoin/bitcoin/pull/7125
22http://bitcoinstats.com/network/propagation/

69

https://github.com/bitcoin/bitcoin/pull/7125
http://bitcoinstats.com/network/propagation/

4 Network Characterization

0

2

4

6

8

10

12

Oct’15 Jan’16 Apr’16 Jul’16 Oct’16 Jan’17 Apr’17 Jul’17 Oct’17 Jan’18

S
ec

on
d

s
50% Percentile (KIT)
50% Percentile (bitcoinstats)
50% Percentile (bitnodes)

Figure 4.13: Comparison of the 50% block propagation percentile of our measure-

ments (KIT), and the measurements performed by bitcoinstats and bitnodes.

all three datasets can be seen:�e long-term trend as well as short-term variations

(e.g., a decrease in March/April 2017 followed by an increase in May 2017) are mostly

congruent among all measurements.

However, there are also systematic di�erences in the collected datasets: Until mid-

2017, bitnodes reported the fastest transaction propagation, o�en around 2 seconds

faster than our measurements, which makes a signi�cant di�erence if the measure-

ments are 3 or 5 seconds, respectively.�e transaction propagation delay reported

by bitcoinstats is only slightly lower than the one observed by us, and higher than

the one reported by bitnodes.

We will now discuss possible reasons for these deviations. All results were obtained

using monitor peers located in Europe, hence, no signi�cant di�erence in latencies

to other peers should exist among the three measurements. Furthermore, even if

measurements were conducted from other continents, the expected latency di�erence

would be in the range of a few hundred milliseconds (cf. Section 4.2.3), which is

not enough to explain the observed di�erences. As discussed in Section 4.2.1, the

number of connections di�ers between our measurements and the measurement

performed by bitnodes. Being connected to a di�erent subset of peers can make a

di�erence in the observed propagation delay, depending on how fast each subset

of peers forward transactions. However, the monitor peer operated by bitcoinstats

establishes only 250 to 1,000 connections to random peers and the results are still

very similar to the other results. Hence, we suspect that the e�ect of which peers

are selected on the propagation delay to be negligible.

A possible explanation for the deviating results could be the method of calculating

the percentile values from the collected raw data, i.e., all three projects observe the

similar raw data, but might process them slightly di�erently. Although the calculation

of a percentile seems straightforward, there are several parameters, which can a�ect

the output.�e main question is which remote peers constitute the statistical popula-

tion. An obvious answer would be to use the set of connected peers as the statistical

70

4 Network Characterization

4.6

4.7

4.8

4.9

5

5.1

5.2

5.3

5.4

24-Mar’18 25-Mar’18 26-Mar’18 27-Mar’18 28-Mar’18 29-Mar’18 30-Mar’18 31-Mar’18
4 × 107

5 × 107

6 × 107

7 × 107

8 × 107

9 × 107

1 × 108

1.1 × 108

P
ro

p
ag

at
io

n
D

el
ay

[S
ec

on
d

s]

O
b

se
rv

ed
IN

V
A

n
n

ou
n

ce
m

en
ts

p
er

H
ou

r

50% TX Percentile
INV

Figure 4.14: Total Number of observed INV announcements per hour and the 50%

transaction propagation percentile between March 24th, 2018, and March 31st, 2018.

population.�is approach comes with several problems:�e set of connected peers

is not constant over time. Furthermore, the set of connected peers includes peers that

do not announce a single transaction or block, i.e., that stay completely passive. If

more than 10% of all connections are to such passive peers, we will not receive INV

announcements from 10% of peers, hence, we cannot even calculate a 90% percentile.

�is means that the statistical population has to be reduced to the set of peers, which

actually announce a new message within a certain interval a�er the �rst observation

of a new message.�e choice of that interval determines the number of outlier peers

(i.e., peers which announce a hash many seconds, minutes, or even hours a�er its

�rst reception) in the statistical population. For instance, choosing a small interval

reduces the number of peers with high propagation delays, hence reducing the mea-

sured percentiles. We suspect that di�erences in the choice of parameters cause the

deviation between the measurements. We also emphasize that a propagation percentile

is not a directly measured value, but is derived from measurements, which can be

in�uenced by the measured system, the measurement, and the derivation method.

While Figure 4.12 shows the long-term changes in the propagation delay, there are

also short-term changes caused by varying user behavior. Figure 4.14 shows the 50%

transaction propagation percentile for the duration of one week in March 2018.�e

plot shows that the percentile oscillates between 4.8 seconds and 5.3 seconds with

a frequency of 24 hours. Furthermore, Figure 4.14 shows the number of observed

INV announcements per hour, which also oscillates between 50 million and 100

million, and correlates to the propagation delay. �e minimum number of INV

announcements per hour was observed on a Sunday (March 25th).

Because no such oscillation can be seen in the number of peers, we suspect that the

variation in propagation delay is actually caused by the variation in network tra�c.

Please note that while there is an oscillation observable, the amplitude is very small

(i.e., below 200ms for most days). Such a variation can be caused by the transaction

delay mechanism in bitcoind:�e maximum number of hashes announced in one

71

4 Network Characterization

single INV message is limited to 35. �erefore, if more than 35 transactions are to

be announced to a remote peer, the transactions in excess of 35 are further delayed,

increasing the overall propagation delay.

4.3 Case Studies
In the previous section we characterized the Bitcoin P2P network by looking at the

long-term changes of network properties. In addition to the general characterization,

we also identi�ed several short-term events, which we will now further analyze.

4.3.1 Bitcoin Cash Sybil Peers

�e following case study has been previously published as a technical report [Neu18].

As described in Section 4.2.1, there were several short periods, during which a large

number of connections from a small number of IP addresses could be observed. One

such event took place on August 1st, 2017.�is event is of particular interest, because

it happened during the fork of the Bitcoin Cash (BCH) Blockchain.23 Bitcoin Cash is

a modi�cation to Bitcoin, which allows block sizes to be larger than 1MB. Because

such blocks are rejected by miners, who follow the traditional consensus rules, the

blockchain permanently forks into two independent branches.

Figure 4.15 shows the total number of connections from our monitor peers between

July 29th and August 5th, 2017. As in Section 4.2.1, the number of Sybil peers is

calculated as the di�erence between the total number of connections and the number

of unique IP addresses we are connected to. While the number of connections is quite

constant until August 1st, on August 1st, 2017, the number of Sybil peers increased to

up to 5,000. A�er a period of about 12 hours, the number of Sybil peers decrease to

almost zero.�e total number of IPv4 connections remains slightly above its previous

level (from 6,800 IPv6 connections to 7,400).

Because a relation to the Bitcoin Cash fork seems likely, we analyzed the version

strings announced by the Sybil peers. Figure 4.16 shows the number of peers an-

nouncing version strings of Bitcoin Cash clients on August 1st. Bitcoin ABC as well

as BUCash are clients for the Bitcoin Cash system. Most Sybil peers announced

the version string Bitcoin ABC:0.14.6(EB8.0), however, some peers also announced

BUCash:1.1.0(EB12; AD12) and Bitcoin ABC:0.14.5(EB8.0).�e number of peers an-

nouncing Bitcoin ABC:0.14.6(EB8.0) was below 100 before, and at around 400 a�er

the Sybil period.

�e fact that the Sybil peers did not all use the same client version string can be

interpreted in multiple ways: First, Sybil peers could be spawned by independent

parties, using di�erent client versions. Secondly, di�erent client versions could have

been used in order to make the Sybil peers look more natural, i.e., caused by normal

user behavior. Finally, di�erent client versions could have been used to prevent a single

point of failure caused by a potentially existing bug in one client implementation.

23https://www.coindesk.com/bitcoin-cash-what-expect-fork-10000-
foot-view/

72

https://www.coindesk.com/bitcoin-cash-what-expect-fork-10000-foot-view/
https://www.coindesk.com/bitcoin-cash-what-expect-fork-10000-foot-view/

4 Network Characterization

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

29-Jul 30-Jul 31-Jul 01-Aug 02-Aug 03-Aug 04-Aug 05-Aug

N
um

b
er

of
C

on
ne

ct
io

ns Total
IPv4
IPv6
Sybil

Figure 4.15: Measured number of connec-

tions around August 1st, 2017 [Neu18].

0

1000

2000

3000

4000

5000

01-Aug:00h 01-Aug:12h 02-Aug:00h 02-Aug:12h 03-Aug:00h

N
um

b
er

of
C

on
ne

ct
io

ns Bitcoin ABC:0.14.6(EB8.0)
BUCash:1.1.0(EB12; AD12)
Bitcoin ABC:0.14.5(EB8.0)
Bitcoin ABC:0.14.3(EB8.0)
Bitcoin ABC:0.14.4(EB8.0)

Figure 4.16: Announced client version

strings of Sybil peers [Neu18].

0

1000

2000

3000

4000

5000

01-Aug:00h 01-Aug:12h 02-Aug:00h 02-Aug:12h 03-Aug:00h

N
um

b
er

of
C

on
ne

ct
io

ns AMAZON-02
AMAZON-AES
DIGITALOCEAN-ASN
HETZNER-AS
OVH

Figure 4.17: Connections per AS,

only AS’s with most connections

shown [Neu18].

0

1000

2000

3000

4000

5000

01-Aug:00h 01-Aug:12h 02-Aug:00h 02-Aug:12h 03-Aug:00hO
bs

er
ve

d
IN

V
A

nn
ou

nc
em

en
ts

Figure 4.18: Number of INV announce-

ments received for BCH blocks [Neu18].

Figure 4.17 shows the change in the number of peers with IP addresses from the top

�ve autonomous systems during that period. A steep incline in the number of peers

from the AS fromAmazon (AMAZON-02 and AMAZON-AES) during the considered
period can be seen.�e total number of connections to peers in Amazon’s ASmatches

the total number of Sybil peers, i.e., all Sybil peers originated from Amazon’s AS.�is

observation suggests that all Sybil peers were spawned by one single party, although

it cannot be excluded that several parties independently started a large number of

Bitcoin Cash clients on Amazon’s hosting services.

Finally, the question arises what the purpose of the large number of Sybil peers

was. Sybil peers can be used to attack the anonymity of users, or to perform a DoS

attack (e.g., eclipsing) on the network. However, correctly operating Sybil peers

can also support the network and defend the network against attacks by increas-

ing the number of peers.

Figure 4.18 shows howmany INVmessages announcing each Bitcoin Cash block our

monitor peers received.�e �rst BCH block was mined on August 1st and announced

by 3,583 peers. �e following blocks on August 1st were all announced by roughly

3,500 peers, the blocks on August 2nd were announced by roughly 800 peers. No

BCH block was mined during a 13 hour period on August 2nd. �e number of

observed INV messages for each block corresponds well to the total number of Sybil

peers. �e fact that the Sybil peers actually announced BCH blocks, suggests that

the peers should support the BCH network during the critical period of the fork.

As the total number of reachable BCH peers is relatively low, a DoS attack on those

peers could be easily executed and could have resulted in a partitioned network.�e

Sybil peers temporarily increased the number of reachable BCH peers by a factor of

73

4 Network Characterization

about four. Finally, it is also possible that the Sybil peers were spawned by mistake,

e.g., by miscon�guration of Amazon cloud instances.

4.3.2 IPv6 Teredo

As discussed in Section 4.2.2, the number of connections to peers using the Teredo

IPv6 tunnel mechanism varied abruptly several times, with periods with more than

2,000 Teredo connections, immediately followed by periods with almost zero con-

nections to Teredo IPv6 addresses.�is raises two questions: First, what causes the

abrupt changes in the number of connections to Teredo hosts? Secondly, are Teredo

peers di�erent from the peers that are connected via IPv4 or via native IPv6?

Before addressing both questions, wewill nowbrie�y introduce the Teredo tunneling

protocol [Hui06]. A host (Teredo client) that is connected via IPv4 to the internet

and wishes to communicate with an IPv6 host via Teredo, contacts a Teredo server,

which provides the con�guration required for the establishment of the tunnel. A�er

the establishment of the tunnel, tra�c relaying is done by Teredo relays. Every Teredo

client has a unique, routable IPv6 address, which encodes the IPv4 addresses of the

Teredo client as well as the Teredo server. Furthermore, because IPv6 packets are

encapsulated in IPv4 UDP packets, a traversal of NAT routers is possible.

In order to answer both questions, we analyzed a single snapshot of connections

from one monitor peer from January 1st, 2018. At that point in time, a total of 13,885

connections were established, out of which 2,102 connections were made to Teredo

IPv6 addresses.�e 2,102 connections can be mapped to 2,059 unique IPv4 addresses.

�is means, that only a small number of peers establish multiple connections via

di�erent Teredo tunnels, i.e., we can rule out attempted Sybil attacks using Teredo

tunneling as an ampli�er for the number of IP addresses available as a cause for the

abrupt changes in the number of Teredo connections. Furthermore, out of the 2,059

unique IPv4 addresses, only 239 peers were also connected via native IPv4.

In contrast to the previous case study, the e�ect does not seem to be caused by a

single instance establishing a large number of connections. Furthermore, we contacted

KIT’s network infrastructure administrator to rule out the possibility that changes

to the local network infrastructure caused the e�ect. �erefore, we suspect that

the e�ect is caused by changes to the Teredo tunneling infrastructure. Interestingly,

all 2,102 Teredo connections use only eight di�erent Teredo servers, all of which

are in IP ranges assigned to Microso�.24 Microso� announced in 2013 to sunset its

Teredo services and already performed experiments including temporarily shutting

down Microso� Teredo servers and relays.25 �is suggests that the e�ect is caused

by Microso� performing changes to its Teredo services.

We will now analyze, whether the Teredo peers di�er from the peers connected via

IPv4 or via native IPv6. One general limitation of our monitoring method is that only

connections to reachable peers can be established. However, there is also a presumably

24List of Teredo servers and the number of connections per Teredo server: 157.56.106.184 (504),

157.56.144.215 (444), 157.56.106.189 (392), 157.56.149.60 (288), 94.245.121.251 (270), 157.56.120.207 (146),

94.245.121.253 (57), 65.55.158.118 (1).
25https://ietf.org/proceedings/87/slides/slides-87-v6ops-5.pdf

74

https://ietf.org/proceedings/87/slides/slides-87-v6ops-5.pdf

4 Network Characterization

0

0.1

0.2

0.3

0.4

US RU CA CN TH NL DE FR

S
ha

re
of

P
ee

rs

Teredo
Native

Figure 4.19: Share of peers fromdisplayed

country for the set of Teredo peers and

the set of natively connected peers.

0

0.01

0.02

0.03

0.04

0.05

0.06

CHIN
ANET-G

D

VIS-B
LOCK

RRW
E

BEELIN
E

RRMA

ALISOFT

AT-88-Z

CONTABO
OVH

LIN
ODE-U

S

S
ha

re
of

P
ee

rs

Teredo
Native

Figure 4.20: Share of peers from dis-

played ASs for the set of Teredo peers

and the set of natively connected peers.

large number of peers that is unreachable, about which we cannot collect information.

Because of Teredo’s NAT traversal feature, the connections established to Teredo peers

are mostly connections to peers that are unreachable via IPv4. As discussed, only

12% of Teredo peers are also reachable via their IPv4 address.�erefore, analyzing

the set of Teredo peers allows a peek into the set of unreachable peers.

Figure 4.19 compares the share of peers from certain counties for the set of Teredo

peers and the set of natively connected peers. For both sets of peers, the top �ve

countries are displayed. While some countries have a similar share among both sets

of peers (e.g., USA and China), some countries show a vastly di�erent share among

Teredo peers and non-Teredo peers: For instance, 14% of all Teredo peers are from

Russia, but only 3% of all non-Teredo peers are from Russia. Even more extreme,

around 5% of Teredo peers are from�ailand, but only 0.4% of non-Teredo peers

are from�ailand. On the other hand, countries like the Netherlands, Germany, and

France are underrepresented in the set of Teredo peers.

One reason for these di�erences might be di�erent IPv6 adoption rates in various

countries and, hence, di�erent strategies used by ISPs to cope with the limited number

of available IPv4 addresses. For instance, according to Google26, the IPv6 adoption

rate is high in the US, Germany, and France. �erefore, there is little demand for

tunneling mechanisms such as Teredo. Contrary, the IPv6 adoption in Russia is

very low at only about 2%, which might explain the large number of Russian peers

using Teredo.�e large number of Teredo peers from�ailand, however, cannot be

explained with�ailand’s IPv6 adoption rate, which is much higher than Russia’s

IPv6 adoption rate (15%). Possible reasons for the large number of Teredo peers

from�ailand include speci�cs to the network con�guration of�ai ISPs or the

operating system con�guration of�ai users.

Figure 4.20 compares the share of peers from certain autonomous systems for the

set of Teredo peers with the set of natively connected peers. Interestingly, four of

the top �ve AS’s for non-Teredo peers (AT-88-Z, Contabo, OVH, Linode) do not

have a single Teredo peers. Contrary, the most prominent AS’s for Teredo peers

are all less common among non-Teredo peers. Furthermore, the share of the most

26https://www.google.com/intl/en/ipv6/statistics.html

75

https://www.google.com/intl/en/ipv6/statistics.html

4 Network Characterization

0

0.1

0.2

0.3

0.4

0.5

Satoshi:0.15.1

Satoshi:0.15.0.1

BitC
ore:0.14.1.6

Satoshi:0.14.2

Satoshi:0.14.1

Bitcoin ABC:0.16.1

BitcoinUnlim
ited:1.0.3

S
ha

re
of

P
ee

rs

Teredo
Native

Figure 4.21: Share of peers announcing displayed version string for the set of Teredo

peers and the set of natively connected peers.

common AS among Teredo peers (Chinanet-GD), is at 1.6% much lower than the

share of Aliso� peers among native peers (5.7 %), i.e., Teredo peers show a higher

degree of AS level decentralization.

�e top �ve autonomous systems among Teredo peers are all operated by ISPs pro-

viding consumer internet access (Chinanet, Verizon, Time Warner Internet, Beeline

Boradband). Contrary, the top �ve autonomous systems among native peers are

all operated by cloud hosting providers (Alibaba Cloud, Amazon, Contabo, OVH,

Linode). Again, this supports the thesis that Teredo peers are run on consumer

PCs behind NAT. A similar observation has been made in a previous study focusing

on unreachable Bitcoin peers [WP17]: Here, the top 5 AS were all common mobile

operators (T-Mobile, Comcast, Verizon, and Rogers).

Figure 4.21 compares the announced version strings among Teredo and native peers.

Only minor di�erences the usage of bitcoind (version string Satoshi) can be seen.

BitCore is a client for a Bitcoin fork (BTX) with modi�ed block size, block generation

interval, and mining algorithm.27 While less than one percent of all native peers run

the BitCore client, more than 12% of the Teredo peers run the BitCore client. Out of

the 370 total peers running BitCore, more than 27% are from�ailand, which might

explain the large share of Teredo peers among BitCore clients.

Contrary, the share of clients for the Bitcoin Cash fork (version strings Bitcoin

ABC and BitcoinUnlimited) is much lower for Teredo peers than for native peers.

�is is caused by the very large number of Bitcoin Cash peers operated from cloud

services: More than 41% of all reachable Bitcoin Cash peers are operated from the

Alibaba Cloud. Furthermore, many of these clients seem to be operated by only a

small number of parties, because peers simultaneously join and leave the network.

For instance, on April 13th, 2018, the number of Bitcoin Cash peers decreased from

more than 800 to 375 within three hours.

27https://bitcore.cc

76

https://bitcore.cc

4 Network Characterization

4.4 Discussion
�e presented results indicate that the observation of large P2P networks is not only

required for the creation of simulationmodels (cf. Section 5), but also delivers insights

into the network itself. Speci�cally, our measurement lead to the following statements

about the Bitcoin P2P network:

– Performance and anonymity improvements to block and transaction propaga-
tion manifest in their observed propagation speed.

– Reachable Bitcoin peers are o�en run in data centers, unreachable (Teredo)
Bitcoin peers tend to be connected via consumer ISPs.

– Bitcoin peers are usually (gradually) upgraded within a few months a�er the
release of a new client version.�e upgrade of Bitcoin Cash clients was observed

to happen within much shorted time intervals.

– Sybil events actually happened in the past.

– Although Bitcoin is a global network, regional di�erences can be observed, e.g.,
in the IPv6 connectivity and in the used client version.

Furthermore, the comparison of our measurement results with other results indi-

cated a reasonable agreement, however, some deviations cannot be explained com-

pletely. While the causes for some observed e�ects can be identi�ed with high con�-

dence, the causes of other e�ects remain unclear due to a lack of ground truth data,

i.e., data collected at remote peers.

We also like to emphasize the potential of measurement errors:�e Bitcoin network

is a decentralized, changing network, which should be the only system a�ecting our

measurements. However, the measurement systems itself (i.e., monitor hardware,

monitor so�ware, local network connectivity) is also subject to change and can a�ect

the measurements.�e latency measurements presented in Section 4.2.3 clearly show

such an e�ect of the measurement system, however, it is generally hard to decide

whether an e�ect is caused by the observed network, or by the measurement system.

�erefore, a larger number of monitor peers with independent hardware, so�ware,

and network connectivity could improve the reliability of the measurements.

77

5

Simulation Methodology

�e security of a system is usually relative to the capabilities of the adversary, which is

speci�ed in the adversary model. In Chapter 3 we qualitatively explored the relation-

ship between security objectives, adversary models, design choices, and speci�c types

of attacks. In order to quantitatively analyze this relationship for certain aspects, a

method is required that allows an assessment of the e�ect of certain attacks, without

interfering with the deployed system by actually executing the attack.

A variety of methods can be used for the analysis of distributed systems in general

and permissionless blockchains in particular (Figure 5.1). Each method has a certain

degree of abstraction, requires a certain model of the analyzed system, and can deliver

certain kinds of insights. For instance, experiments in the real system come without

any abstraction and do not require a model of the system. However, the experiments

have to be performed in the real system, the results of the experiments have to be

observable, and any potential damage to the deployed system and legal issues have to

be avoided. Experiments can lead to results that are highly speci�c to the analyzed

system, however, they tend to lack generality. Furthermore, because of the limited

control over the system during the experiments, it is hard to identify causalities, i.e.,

to explain why a certain result was observed.

Simulation based methods require models for the analyzed system.�ese models

are usually based onmeasurements of the real network (cf. Chapter 4) and on behavior

models derived from protocol speci�cations (cf. Chapter 2) and client implementa-

tions (cf. Chapter 3). However, in most cases at least some assumptions regarding

unknown behavior or parameters have to be made because of incomplete knowledge

of the system. Because a wide range of model variations and parameter settings can

be simulated, the results of simulation based approaches can be generalized to some

extent. While realistic simulations can deliver precise results for existing systems,

the identi�cation of causalities remains challenging because of the large number of

79

5 SimulationMethodology

Real System

Methods (examples)

Network

Attachment &

Communication

Strategy

Experiments

Simulation Analytical

Measure

Small-Scale

DES

Abstraction

Full-Scale

DES

Markov

Chain

Monte Carlo

Simulation
Closed Form… ………

Model

Parameter Assumptions

Parametrization

Behavior Assumptions

Behavior Model

Figure 5.1: Research methodology for the analysis of the network layer of permission-

less blockchains [NH18].

overlapping e�ects.�erefore, it can be bene�cial to reduce complexity by abstraction,

and use a simpli�ed simulation or analytical approach.

In this dissertation, a wide range of methods is used:�e collection of measure-

ment data as described in Chapter 4 itself is an experiment. Furthermore, experi-

ments performed in the Bitcoin network1 are used for the validation of simulation

results. Discrete-event simulations (DES) are used extensively in the analysis of sev-

eral topology inference methods. Finally, analytical approaches are used to model

adversarial knowledge.

�is chapter focuses on the used simulation models. Speci�cally, we present two

approaches for modeling the attachment and communication strategy of peers as

a discrete-event model. Furthermore, based on the measurements presented in

Chapter 4 we parametrize our simulation model, and perform an empirical validation

by comparing simulation results to real-world measurements.

5.1 Related Work
We will now brie�y cover (simulation) models for permissionless blockchains and

relatedworkwith focus on the transformation of application code into simulationmod-

els.�e models are discussed roughly ordered by an increasing level of abstraction.

Testbeds2 run actual client implementations on a large number of potentially virtual-

ized machines, hence their degree of client behavior abstraction is minimal. However,

this lack of abstraction leads to high operational costs. Furthermore, the simulation of

network parameters such as latencies between peers require virtualized network

infrastructure.

1One set of experiments has been performed in the Bitcoin testnet, the other experiments have

been performed in the Bitcoin mainnet.
2E.g. http://hackingdistributed.com/2017/02/10/miniature-world/

80

http://hackingdistributed.com/2017/02/10/miniature-world/

5 SimulationMethodology

Emulation approaches still run the actual client implementations, however, the

client implementations interact with an emulated operating system instead of the real

operating system.�is reduces operational costs and simpli�es management of the

simulated network. For example, Shadow [JH11] executes the Tor application in a

simulation environment and supports Bitcoin using a plugin [MJ15].

Furthermore, a discrete-event simulation model of Bitcoin for the network simu-

lator ns-3 [RH10] has been published [GKW+16].�is model focuses on the trans-

mission of blocks. Finally, analytical models exist, which were already discussed

in Section 2.3, e.g., [GKL15].

5.2 Client Behavior Models
In order to serve in the analysis of network layer aspects, the used simulation model

has to ful�ll two main requirements. First, a precise behavior model of selected parts

of the client implementation (e.g., transaction forwarding) is required. Other aspects

of the client implementation, such as block validation, might be modeled less precise,

hence improving simulation performance.�e second requirement is the ability to run

large-scale simulations with several thousand peers within a reasonable duration and

with available hardware. We will now present two approaches for obtaining a behavior

model. Because both requirements are con�icting to a certain degree, both approaches

result in simulation models that di�er in the degree that each requirement is ful�lled.

5.2.1 Top-Down Model

�e starting point of ourmodeling approach is the source code of the Bitcoin reference

client bitcoind.�e idea is to utilize existing source fragments, and run them within a

discrete event simulation. In contrast to emulation approaches, we do not emulate

the operating system, but modify the application source code so that it interfaces

with the underlying simulation engine. �e modeling approach presented in this

subsection has been previously published in [NAH15].

We start by brie�y describing the so�ware architecture of bitcoind 0.10.0 and the

operating principle of discrete-event simulations.�e di�erence between those two

create the challenge of our modeling approach, which will be discussed therea�er.

Bitcoind

�e bitcoind client is a multithreaded application written in C++. Communication

between threads is mainly achieved via message queues and global locks, limiting

access to global data structures. Each thread may call blocking functions, such as

reading data from a socket. We will now sketch the functional and temporal behavior

of the three main threads used for networking in bitcoind:

�readOpenConnections/�readOpenAddedConnections �ese two threads try

to establish connections to other peers in the network, until the maximum number

of outgoing connections (8 by default) is reached. �e selection of which hosts to

81

5 SimulationMethodology

connect to is based on the received IP addresses from the peer discovery protocol

described in Section 3.3. Connection attempts are performed using blocking connect()

calls.�erefore, the timing behavior of this thread depends on how fast connections

can be established, or timeouts on unsuccessful connections occur.

�readSocketHandler As described in Section 4.1, this thread reads data from

sockets and writes them into message queues for later processing. It also sends data

that was previously stored in designated outgoing queues to remote peers. Again, the

calls in socket functions are blocking so timing is a�ected by the blocked duration

(e.g., sending a packet on a saturated link).�e thread iterates over all connections

at most every 10ms. Our measurements show that blocking calls can increase this

interval time to up to around 60ms.

�readMessageHandler Messages that were stored in incoming queues by�read-

SocketHandler are processed by this thread. It cycles every 100ms through all con-

nection’s queues and performs the protocol handling itself (e.g., reacting to messages,

checking for timeouts).�e timing of this thread can be a�ected by cryptographic

processing delays for instance, during the validation of a block or transaction.

Discrete-event simulation

Adiscrete-event simulation (DES) is characterized by a system state that ismodi�ed by

events occurring at discrete points in simulated time [Law14]. Each event is associated

with an event handler, which is a piece of code that executes the logic of the event. A

simulator maintains an event queue containing the timestamps and event handlers of

future events. Future events can be inserted into the event queue during simulation

initiation or as an e�ect of the execution of event handlers. �e execution of the

simulation consists of continuously selecting the next event (i.e., the event with the

smallest timestamp) from the event queue, and executing its event handler.

In the context of distributed systems, each node of the system usually maintains a lo-

cal state, which can bemodi�ed by events. Activities spanning an interval of simulated

timemust bemodeled usingmultiple events that represent the start and end of an activ-

ity, respectively. For instance, if amessage is transmitted fromone peer to another peer,

the sending of the message is initiated in one send event, which schedules a receive

event at the receiving peer in the simulated future, accounting for transmission delay.

Simulator Design

We will now �rst discuss three main requirements of the simulator design. �en

the architecture of our simulator is presented.

First, the simulator has to be able to simulate a large number of interacting peers

within one simulation. �e simulation of each peer can require the simulation of

several threads per peer. In order to satisfy both requirements, state that is local to

peers and state that is local to threads has to be stored individually per peer and

thread, respectively.

Secondly, the real execution of the original application implicitly de�nes its temporal

behavior by the variable durations of computations and waiting times for blocking

82

5 SimulationMethodology

Thread

Callstack

Blocked Flag

DES Loop

Thread Queue

Event

Handler

• return

• call (blocking)

• execute event handler• execute thread

• block thread

Figure 5.2: Event architecture of the simulator.

function calls, such as network communication or disk access. Because the simulated

time is independent of the runtime of the executed event handlers of a DES, delays

must be re�ected explicitly in the DES model.�is requires splitting contiguous code

segments into several distinct event handlers, which in turn requires maintaining

the local state of threads across events.

Finally, all interaction of the application with the underlying operating system

(e.g., network stack, disk access) has to be substituted by calls to corresponding

functionality provided by the simulator.

Figure 5.2 depicts the high-level architecture of the resulting simulator. In addition

to the main simulator event loop shown on the le�-hand side, another event loop

dedicated to each thread is used to enable the simulation of threads.

�e code executed by each thread has to be transformed into two or more event

handlers. Splitting the code into multiple event handlers is required, because most

threads invoke blocking function calls (otherwise, the thread would continuously run

at full CPU utilization).�e event handlers are not directly executed by the DES loop,

but instead by a per-thread loop, which is used to keep track of the current execution

of the thread. Each event handler ends its execution with either returning or by calling

a (blocking) function. If an event handler ends without calling a blocking function,

the per-thread loop will immediately select and execute the next event handler to be

executed according to the stored callstack. Only if a blocking function is called, an

event for the modeled timestamp of return of the blocking function is enqueued in

the main event queue, and control is returned to the main DES loop.

�is architecture implies that the main event queue only holds one type of event

(continue thread). Furthermore, in addition to global state and state held per peer,

there is also state held per thread.

Transformation

We will now discuss the transformation steps from application source code into the

presented simulator design.

Timing behavior �e main challenge arises from the conversion of implicitly de-

�ned timing behavior in native applications to explicitly de�ned timing behavior

83

5 SimulationMethodology

in a DES model. We have to split the original code into several event handlers, so

that code that is executed at di�erent points in time in the real application is also

executed at di�erent points in simulated time. Technically, every single instruction of

the native application is executed at a di�erent point in time by the CPU. However, we

only care about signi�cant execution delays, such as the call to a blocking operating

system function or a very expensive calculation. We de�ne an execution delay point

(EDP) as such a point in the application source code.

�is leads to the following method for splitting application code into event handlers:

1. One event handler is created for each entry point of each thread of the appli-

cation. �e event handler, for now, contains the unmodi�ed code segments

required for the execution of the thread.

2. Every EDP within an event handler splits the event handler into two parts –

one event handler containing all code segments leading up to the EDP, and one

event handler containing all code segments a�er the EDP.�is transformation

has to be done for all EDPs.

3. If an EDP is located within a function that is called from an event handler, the

event handler also has to be split into two event handlers at the function call.

�is transformation has to be performed recursively.

Listing 5.1: Example: Timing behavior

transformation - source model.

1 vo id threadA () {
2 / / do s t u f f A . . .

3 s l e e p (1 0 0) ;

4 / / do s t u f f B . . .

5 doWork () ;

6 / / do s t u f f C . . .

7 }
8

9 vo id doWork () {
10 / / do s t u f f D . . .

11 i n t i ← r e a dB l o c k i n g () ;

12 / / do s t u f f E . . .

13 }

Listing 5.2: Example: Timing behavior

transformation - simulation model.

1 vo id th r e adA1 () {
2 / / do s t u f f A . . .

3 }
4 vo id threadA2 () {
5 / / do s t u f f B . . .

6 }
7 vo id threadA3 () {
8 / / do s t u f f C . . .

9 }
10

11 vo id doWork1 () {
12 / / do s t u f f D . . .

13 }
14 vo id doWork2 () {
15 / / do s t u f f E . . .

16 }

Consider the example sketched in Listings 5.1 and 5.2. Step one of the transformation

does not change the source code but keeps both functions as-is. In step 2, any EDP

has to be located and the created event handler has to be split at the EDP.�e source

model contains two EDPs, sleep(100) in line 3 andreadBlocking() in line 11.
�is means that both functions have to be split into two single event handlers each.

Because the function doWork() contains an EDP, all event handlers calling that
function also have to be split at the point of calling doWork().�e resulting event
handlers are shown in Listing 5.2.

84

5 SimulationMethodology

Splitting the source code into event handlers in the demonstrated way enables a

return of the control �ow at each EDP to the simulator engine, thus allowing the

advancement of simulation time. However, several aspects were not covered by the

approach so far. First, the original program �ow has to be preserved across the

split code fragments. For instance, the event handler threadA1() has to ensure
that a�er returning, the thread becomes blocked for 100ms, and continues with the

execution of threadA2().�is is achieved by adding a code segment to the end of
threadA1() that sets the blocked �ag of its thread to true and adds threadA2()
to the callstack (cf. Figure 5.2)

Secondly, return values of blocking function calls have to be made available to the

calling function. Because every blocking function call splits the original function

into two event handlers, the return value of a function can be provided to the second

event handler as a parameter. For instance, the source model from Listing 5.1 reads

an int i in line 11 from the blocking function readBlocking().�erefore, the
event handler doWork2() in Listing 5.2 requires access to the read variable, and
will be provided the variable as a parameter (doWork2(int i)).
Furthermore, the behavior of the blocking function has to be implemented in the

simulation. For example, a blocking function that reads data from a network socket

has to actually read data received by the peer in previous events. Finally, because

single functions were split into separate event handlers, local state must be carried

across multiple events by the simulator. We will now discuss this aspect.

Program state �e programmer of the original application has several options

to keep state during the execution of the client. First, global variables can be used,

which can be accessed from any function of the program. Secondly, local variables

within one function or scope can be used. Furthermore, the program can dynamically

allocate memory to store data. Finally, data can be transferred between functions

in the form of function arguments and return values.

In order to simulate several client instances, the original source code has to be mod-

i�ed so that (1) each peers accesses its own state and does not interfere with the state

of other peers, and (2) state is kept persistent across the execution of multiple events.

�e use of global variables in the original application has to be changed in the simu-

lation model, because all executed instances would access the same global variable.

A straightforward approach is to move all global variables into one data structure,

which is instantiated once per simulated peer. Of course, all references to the global

variable in the application code must be modi�ed to access the variable within the

instance’s data structure. Listings 5.3 and 5.4 give an example for such a transfor-

mation. �e example shows the use of a global variable (int counter), which
is stored within a struct globals in the simulation model. In order to access
the variable, a parameter containing the ID of the simulated peer is added to the

function signature of the function inc().

85

5 SimulationMethodology

Listing 5.3: Example: Global variables -

source application.

1 i n t c oun t e r ;

2

3 vo id i n c () {
4 coun t e r ++;

5 }

Listing 5.4: Example: Global variables

- simulation model.

1 s t r u c t g l o b a l s {
2 i n t c oun t e r ;

3 } ;
4 g l o b a l s [NPEERS] ;

5

6 vo id i n c (i n t peerID) {
7 g l o b a l s [peerID] . c oun t e r ++;

8 }

�e dynamic allocation of memory (e.g., usingmalloc, the C++ new operator, or C++

containers) in source applications does not impose any problem during a simulation,

because thememory of every simulated peer is independent of other peers and the sim-

ulator.�erefore, dynamic memory allocation can be used without modi�cation in a

simulation model. Only in cases where memory consumption is high, and peers main-

tain redundant state (e.g., all peers store the complete blockchain, with only minor

exceptions), a modi�cation that reduces memory consumption can be appropriate.

As previously discussed, local variables have to be made persistent when splitting

single functions into multiple event handlers. A similar approach as used for global

variables can be used: One data structure is de�ned for all functions that have to be split

into more than one event handler.�is data structure contains all variables that are

used in the corresponding function. When the �rst event handler of a function is exe-

cuted during simulation, an instance of the data structure is created and stored along

with the call stack in the thread. Subsequent event handlers modeling later segments

of the same function can then access the data structure. A�er the last event handler

of the function has been executed, the data structure is removed from the call stack.

Discussion

We will now discuss advantages and drawbacks of the presented method for trans-

forming a native application’s source code into a discrete-event simulation model.�e

alternatives to the presented method are the use of emulation based simulation (e.g.,

Shadow [JH11]) on the one hand, and the use of more abstract simulation models

created from scratch on the other hand.

Obviously, the main advantage compared to models built from scratch is the lower

degree of abstraction, i.e., the model precisely matches the client behavior. However,

there are also three main drawbacks: First, the performance of our model is quite

limited. While we were able to run simulations consisting of 6,000 peers (i.e., the

number of reachable peers during the time of execution), the simulation of one hour

of simulated time took about three hours of wall clock time consuming 22GB of

memory.�e main reason for the limited performance is the continuous creation

of new events by our thread model.�ese threads may cycle continuously without

actually changing the simulation state (e.g., when no new data has arrived).

Secondly, the manual e�ort for the presented transformation method is extremely

high, even though the actual application logic can be used from the original appli-

cation’s source code. Creating a simulation model from scratch, and only porting

86

5 SimulationMethodology

the required application logic into the DES model can substantially reduce the re-

quired manual e�ort, especially if only a small part of the original application logic

needs to be simulated.

Finally, while the precision that can be achieved by the behavior model might

be close to perfect, there are inherent inaccuracies in the parametrization of the

simulation (cf. Section 5.3), which can nullify all e�orts for a precise simulation model.

�erefore, a behavior model that models execution delays probabilistically (e.g., as

an additional delay for the transmission of a packet) can achieve a similar overall

precision as a behavior model that explicitly models execution delays as described.

Compared to emulation based approaches, the main advantage of the used approach

is that the resulting simulation model is a pure DES model, i.e., there is no reliance

on speci�c threading libraries or system architectures. �is allows such a model

to be used in existing simulators and enables the combination of the simulation

model with existing models and the use of existing approaches for parallelization

using standard HPC infrastructure.

However, compared to emulation approaches that require only minimal changes

to the application’s source code, the e�ort for the manual transformation is enor-

mous. Furthermore, the transformation changes the source code in a way that makes

it hard to follow the application logic from the DES model, because logically con-

tiguous source code fragments (e.g., single functions) are broken into several in-

dependent event handlers.

�e discussion shows that only in distinct cases the presented approach can be

better suited than a bottom-up behavior model or emulation based approaches. We

believe that a reduction of the manual e�ort is possible using (semi-)automatic source

code transformation, e.g., using LLVM and Clang [Lat08]. For instance, automatic

source code transformation has been successfully used for benchmarking of parallel

applications [SDHD13]. However, because a model of only parts of the client applica-

tion su�ces our requirements and because we require a better runtime performance,

we opt to create another behavior model bottom-up, i.e., starting from scratch and

only modeling the required pieces of application logic.

5.2.2 Bottom-Up Model

We will now present the bottom-up simulation model for Bitcoin. Instead of modi-

fying the source code of the client bitcoind, we start with the protocol speci�cation

of the Bitcoin network and model the required event types and handlers.

�e �rst events o�en required for the simulation of the Bitcoin network are join and

leave events. Although simulations with a static network topology are also possible

and useful in some scenarios, modeling churn is required for the analysis of the peer

discovery mechanism in Section 6.4. A join event models a new peer that enters the

network and establishes connections to other peers. Modeling the default behavior

of bitcoind, a joining peer establishes outbound connections to 8 randomly selected

reachable peers that maintain fewer connections than their con�gured maximum

number of connections. A leave event models a peer disconnecting from the network.

87

5 SimulationMethodology

Table 5.1: Event types of bottom-up model.

Event Type Parameters

Join peer

Leave peer

(INV sender, receiver, hashes)

(GETDATA sender, receiver, hashes)

TX sender, receiver, transaction

GETADDR sender, receiver

ADDR sender, receiver, addrlist

On a leave event all connections from and to the leaving peer are removed from the

network topology. Furthermore, peers that established on of their 8 outgoing connec-

tions to the leaving peer establish a new connection to another, randomly selected

peer, so that the total number of outgoing connections remains at the previous level.

In contrast to the previously presented top-down model, the establishment and

termination of connections happens atomically in one event. While this does not

accurately model the real behavior, it drastically improves simulation performance.

Furthermore, the analysis of most aspects does not rely on such a precise model

of the connection establishment.

In order to simulate transaction propagation, the �ooding process described in

Section 2.2.3 has to be modeled. As the protocol contains three di�erent message

types (INV, GETDATA, and TX), an obvious way to model the �ooding process is
be to introduce one event type for the reception of each message type and model

the behavior according to the client’s behavior upon reception of a corresponding

message. However, all three messages can also be modeled as one single event (tx) that

models the reception of a new transaction.�is model represents a push strategy as

described in Section 3.3. In order to correctly model behavior and timing of the origi-

nal announce-and-request �ooding protocol, several adoptions are required: First,

the time between one peer sending an INVmessage announcing a new transaction to
another peer until that peer receives the TXmessage containing the transaction has to
be modeled correctly.�erefore, a tx event will be scheduled at a simulated time that

accounts for three times the latency to the remote peer includes potential client delays

(e.g., because of trickling). Secondly, all client behavior that has been separated into

handling the reception of di�erent messages has to be merged into one event handler.

When a client receives an INV announcement, it checks whether it has already re-
ceived the announced transaction and, if the transaction is new to the client, requests

it via a GETDATAmessage.�is checking is done in the tx event in the simulation
model, i.e., the incoming transaction is discarded, if it has already been receive earlier.

�e rationale behind modeling all three steps of the message �ooding process in

one event is the improved performance, reduced complexity, and no requirement for

explicitly modeling all three steps. Furthermore, the increase in required bandwidth,

which discourages the use of a push �ooding protocol, is no issue in a simulation, as all

88

5 SimulationMethodology

communication between peers aremodeledwithin localmemory. A simulationmodel

that models each step as one event would be required if simulated peers would deviate

from the standard message �ow and would for example send GETDATAmessages
without the prior reception of an INV message.
Finally, two event types representing the reception of a GETADDR and an ADDR
messages are required.�ese events are only used for the analysis of the peer discovery

mechanism in Section 6.4 and are explained in detail in that section. An overview

of all used event types is given in Table 5.1.

Although the bottom-up behavior model is much simpler and more abstract than

the previously presented top-down model, it enables the realistic simulation of the

transaction propagation of Bitcoin and will be used in Chapter 6.

5.3 Network and Client Parametrization
In addition to the behavior of clients, the parametrization of the network and peers

has to be modeled. We base our parametrization on our measurements of the Bitcoin

P2P network described in Chapter 4.�e parametrization of our simulation model

contains the aspects churn, delay, network topology, and client behavior parametriza-

tion, which will be discussed now.

Churn

A model of churn is required in order to appropriately schedule join and leave events

of peers. If the simulation assumes a static network topology, no churn model is

required. We model churn based on our observation of connection establishments

and terminations at our monitor nodes (cf. Section 4.2.1).�is means, we schedule

a join event for every successful connection attempt, and schedule a leave event for

every connection termination.

Several caveats for this approach should be noted. First, there is a time di�erence

between a reachable peer joining the network (i.e., establishing its �rst connection

to any other peer) and the establishment of a connection to one of our monitor

peers.�is time di�erence includes the time until the peer’s IP address is announced

to our monitor node and the time it takes for the establishment of the connection.

Secondly, our observations showed that a large number of very short living connec-

tions were established by a small number of peers. We suspect that these peers are

not continuously joining and leaving the network (e.g., by continuously restarting

the client), but rather terminate the connection to our monitor nodes quickly af-

ter establishment. Although this introduces an inaccuracy in our parametrization,

the implications are mostly a reduced simulation performance, because the e�ect

of a small number of peers on a simulated network consisting of several thousand

peers is negligible. Finally, our parametrization does not account for unreachable

peers, e.g., peers behind NAT routers. We will address the modeling of unreachable

peers in detail later in this section.

89

5 SimulationMethodology

50 100 150 200 250 300 0
4000

8000
12000

16000
20000

0

0.02

0.04

0.06

0.08

0.1

P
D

F

Latency [ms]
Distance [km]

P
D

F

Figure 5.3: Latency distribution broken down by geographical distance between

measurement node and foreign peer. Binsize = 2000km [NAH16].

Delay Model

�ere are two main sources for delays in a distributed system like a permissionless

blockchain. First, there are communication delays caused by the latency between two

peers. Secondly, the execution of code at the client introduces delays, which can be

intentional or unintentional. We will now model both sources of delay. �e delay

model presented in this subsection has been previously published in [NAH16].

Network Latency While it is easy to measure the latency distribution from one

location to other peers, it is much harder to estimate the latency between two foreign

peers. In order to perform simulations, however, these peer-to-peer latencies have to

be modeled. Approaches like iPlane [MIP+06] provide a latency estimate for pairs

of IP addresses by modeling the Internet’s routing structure. However, iPlane only

provides predictions for a subset of the IP addresses that participated in the Bitcoin

P2P network. Additionally, iPlane only estimates a mean latency and not a latency

distribution.�erefore, we chose to rely on our own latency measurements to Bitcoin

peers, and estimate the latency between peers based on their geographical distance.

We have already shown in Figure 4.10 that the measured latency between our

monitor peer and remote peers strongly depends on the geographical distance to the

remote peer. Figure 5.3 shows the observed delay distribution from the monitor nodes

to all peers broken down by the geographical distance to the remote peer. As the

location of peers can be approximated using the Maxmind GeoIP Database3, every

peer can be simulated according to its presumed geographical location. In order to

determine the latency for a speci�c message in the simulation, the distance between

sender and receiver of the message is calculated, and a measured latency from the

corresponding latency distribution (i.e., the latency distribution for the calculated

distance bin) is selected randomly according to the measured probability distribution.

3http://dev.maxmind.com/geoip/

90

http://dev.maxmind.com/geoip/

5 SimulationMethodology

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 20 40 60 80 100 120 140

∼ 0.4

P
D

F

Delay [ms]

Satoshi:0.11.2
Satoshi:0.10.2

Figure 5.4: Comparison of the unintentional client delay for the Bitcoin reference

client versions 0.10.2 and 0.11.2 [NAH16].

We acknowledge that this model has certain limitations: First, the model does

not account for latency introduced by temporal behavior such as link saturation.

Secondly, while the latency model is well suited for estimating the latency between

peers located at well-connected hosting services, it falls short of modeling peers with

slow connections to their ISP. However, as most Bitcoin peers are located at hosting

services, we expect the resulting error to be limited (cf. Section 4.2.3). Finally, the

distance between two peers on the earth’s surface may not re�ect the routed distance,

e.g., through submarine optic �ber cables. A possible approach to improving the

used latency model could include a combination of the collected measurement data

with other latency estimation approaches such as iPlane.

Client Delay We de�ne the time between the reception of a message and sending of

subsequent messages to its peers as the client delay.�ese delays can be unintentional,

such as computation delays or delays introduced by blocking behavior of the so�ware

architecture. However, the client may also intentionally delay forwarding of messages

in order to impede timing analysis or reduce network load. We will �rst model these

unintentional delays empirically and model the intentionally introduced delays in

the Bitcoin client analytically.

For the empirical model of the unintentional client delays we leverage the possibility

of sending two di�erent types of ping messages to peers: those that are processed by

the operating system’s network stack (ICMP and SYN) and those that are processed by

the application code (Bitcoin protocol PING). Although processing by the operating
system can be severely delayed, it usually takes only a negligible amount of time

in the microsecond range [BRE+15]. By subtracting the averaged network latency

from the observed delay for answering a Bitcoin PING, we receive an estimate of
the application’s processing delay.

Figure 5.4 shows the observed unintentional client delay distributions for clients

using one of two exemplary deployed client versions. Whereas the older client version

(0.10.2) employs a blocking message processing architecture with a �xed 100ms sleep,

the newer version (0.11.2) uses an event driven message processing that minimizes

91

5 SimulationMethodology

delays. Our delay estimates clearly re�ect these changes; especially the behavior of

the older version can be easily modeled with a uniform delay distribution between 0

and 100ms. Please note that although most delays are less than 100ms, a substantial

number of much longer delays were observed: More than 7.5% of all delays were

longer than one second, 2.6% of all delays were even longer than 10 seconds.

Two di�erent causes for these very long delays could be identi�ed: On the one

hand there are peers that constantly have a very high client delay (i.e., more than

1 second). �ese peers are probably permanently overloaded. On the other hand

there are peers that exhibit small client delays in most cases, but long delays for a

few measurements only.�ese peers are probably only temporarily busy, e.g., they

could be verifying a block at this particular point in time. In order to model this

dependency, we use our measurements to generate one client delay distribution per

peer. Every time a client delay has to be simulated, a client delay measurement is

chosen randomly from the peer’s client delay distribution.

�e Bitcoin reference client implements a trickle mechanism to intentionally delay

the forwarding of INV messages to neighboring peers. �e following description
of the trickling mechanism applies to version 0.10.x. We will later discuss changes

to current versions. Upon reception of a transaction, the client randomly decides

whether to apply trickling on this transaction. Trickling is performed for 75% of

all transactions, 25% of all transactions are immediately forwarded. Transactions

that were not immediately forwarded to all neighboring peers are forwarded to one

neighbor at a time during each of the following message processing cycles, which

are executed every 100ms.

�is means, the trickling delay probability mass function (PMF) for a peer with

c neighbors is given as

DTRICKLE(t) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0.25, if t = 0
0.75 ⋅ (c−1

c
)(r−1) ⋅ 1

c
, if t = r ⋅ 100, r ∈ N

0, otherwise.

(5.1)

�e �rst case models the immediate forwarding of a transaction in 25% of all

cases.�e second case models the trickling case, which is a Bernoulli experiment,

where in each round r one neighbor of the peer is selected for message forwarding.

With the source code changes in version 0.11.x, the �xed 100ms interval vanished,

e�ectively increasing the number of processing cycles and, therefore, accelerating

message forwarding even with trickling.

As of version 0.12.x, this behavior was changed again so that trickling is performed

on a per-neighbor basis with sending times chosen according to an exponential

distribution.4 �e mean sending interval (i.e., parameter µ in the exponential func-

tion) is set to 5 seconds for incoming connections, and to 2 seconds for outgoing

connections. As the composition of client versions in the Bitcoin network changes

over time (cf. Figure 4.5), the modeled behavior also has to be adapted to changes

made to the client behavior.

4https://github.com/bitcoin/bitcoin/commit/5400ef6bcb9d243b2b21697775 aa6491115420f3#di�-

7ec3c68a81e�f79b6ca22ac1f1eabba

92

5 SimulationMethodology

BA C

MonitorCreator

Figure 5.5: Experiment setup for the observation of the 0-hop transaction propagation

delay.

Network Topology

�e network topology model presented in this section has been previously pub-

lished in [NAH16].

In order to simulate a P2P network, connections between peers have to be modeled.

As the real topology of the Bitcoin network is unknown, the topology has to be

statistically modeled by assuming a certain node degree distribution, i.e., a PMF which

represents the probability of a peer having a certain number of connections. �e

node degree distribution a�ects the overall propagation in the network, and is also

important for the analysis of attacks on the network. In order to generate network

topologies following a given node degree distribution during simulation, we use the

con�guration model as described in [New10].5 We will now present a method for

approximating the node degree distribution of the reachable peers of the Bitcoin P2P

network. Later, we will also approximate the number of unreachable peers.

Node Degree Distribution Although most Bitcoin network peers maintain a rela-

tively small number of connections, some peers maintain an extremely large number

of connections [MLP+15]. As many similar networks were shown to resemble a scale

free network [B+09] and previous data [MLP+15] also supports this assumption, we

assume that the node degree distribution follows a power law: P(k) ∼ k−γ. How-

ever, as the client is con�gured to establish eight outbound connections, we set the

minimum node degree to be eight as well (i.e., P(k) = 0, k < 8).6 In order to �nd
a suitable parameter γ for the Bitcoin network, we simulate several possible values

for γ and compare the simulated transaction propagation speed to the observed

transaction propagation speed.

One challenge with this approach is that transaction propagation speed is not only

a�ected by the node degree distribution, but also by the number of unreachable

peers, and by peers with deviating behavior. �erefore, we do not take the overall

5�e con�guration model consists of two steps: In the �rst step, each peer is assigned its number of

connections according to the node degree distribution. In the second step, connections between peers

are randomly created so that each peer actually has the number of connections assigned in step 1.
6Obviously, the probabilities for P(k), k ≥ 8 have to be normalized accordingly so that∑k P(k) = 1.

93

5 SimulationMethodology

transaction propagation speed into account, but only the 0-hop propagation speed,

i.e., the time it takes for peers directly connected to the creator of a transaction

to announce the transaction to their direct neighbors. Figure 5.5 depicts the used

experiment: In addition to our monitor node (cf. Chapter 4) we ran an additional

peer (Creator), which runs a slightly modi�ed version of bitcoind and connects to

reachable peers.�e only modi�cation made to the Creator client was to remove any

delays in the forwarding of transactions, i.e., we disabled trickling.�en, transactions

were created at the creator peer and immediately sent to its direct neighbors. �e

announcements of these transactions by the neighbors of the creator peer were then

monitored by the monitor peer.

We chose to focus on the 0-hop transaction propagation delay for two reasons: First,

the trickling function (Equation 5.1) depends on the number of connections a peer has.

�erefore, the 0-hop transaction propagation delay is strongly a�ected by the node

degree distribution. Secondly, the 0-hop transaction propagation is not a�ected by the

behavior of other peers (except for other peers increasing the number of connections).

�is makes it possible to ignore unreachable peers for now, which is important,

because it reduces the number of parameters that have to be concurrently considered.

�e bottom part of Figure 5.6 shows the measured propagation delay distribution

between the creation time of a transaction and the reception of the correspondingINV
messages by our monitor node from the neighbors of the creator of the transaction

(0-Hop). Additionally, the simulated delay distribution for the same number of

reachable peers and a node degree distribution following the adapted power law

parametrized with γ = −2.3 is shown. Various values for the parameter γ were

simulated with γ = −2.3 resulting in the smallest deviation between measurements
and simulation, i.e., showing the least square error sum between the two distributions.

�erefore, we chose γ = −2.3 for the node degree distribution of the reachable nodes
of our simulation model.

Unreachable Peers With the node degree distribution of the reachable peers given,

the number of unreachable nodes has to be approximated in order to simulate the

network. Without an estimation of the number of unreachable peers it is not possible

to determine how many connections any reachable peer has to other reachable peers,

and how many connections it has to unreachable peers.

In the Bitcoin network there are at least two known classes of unreachable peers:

standard clients that maintain a low number of connections (i.e., eight) and peers

that are speci�cally used to maintain a high number of connections and perform fast

message forwarding.�e �rst class of peers could represent a standard user behind

a NAT, whereas the second class of peers could be run by an exchange service, for

example. We added peers of these two classes to our model and, again, varied the

parameters (i.e., the number of peers per class and the number of connections held

by the second class of peers) and compared the simulated transaction propagation

delay distribution to the measured one. In contrast to the �rst measurements, that

were restricted to direct neighbors of the generating peer, the transaction propagation

delay now covers propagation through all reachable peers. Although additional peers

94

5 SimulationMethodology

0

0.005

0.01

0 1000 2000 3000

0

1

2

3

P
M

F
:

R
ec

ei
ve

d
I
N
V

p
er

m
s

Time since propagation / Delay [ms]

0-Hop (Simulated)
0-Hop (Measured)

Overall (Simulated)
Overall (Measured)

Figure 5.6: Comparison between measured and simulated INV propagation delay as
histogram data; limited to direct neighbors of originating peer (bottom) and for the

complete network (top). Both networks parametrized with γ = −2.3 [NAH16].

and connections are added to the model, the node degree distribution of the reachable

peers does not change, as connections to additional peers substitute already existing

connections in the simulation.

�e upper part of Figure 5.6 shows the measured transaction propagation delay

distribution of all reachable peers compared to the simulated one with 16,000 un-

reachable standard peers and 70 unreachable peers with 200 connections each. Again,

we simulated a broad range of values and the parametrization shown resulted in

the smallest square error sum between measurements and simulation. Although

this speci�c parametrization represents the transaction propagation in the real net-

work well, one cannot draw the conclusion that the real network consists exactly of

these types of peers in these quantities. It is possible that there are numerous other

parametrizations (including additional peer classes or anomalous behavior) that also

lead to the same transaction propagation delay distribution.

In a recent study the number of unreachable clients was estimated to be
”
at least

155,000 at any given 6-hours interval“ [WP17]. While this sounds far o� of our

estimation, the authors do not state the number of unreachable peers that are con-

currently connected to the Bitcoin network. However, the authors state that 93.9%

of connections were maintained for a duration of less than 60 seconds. Assuming

that these 145,545 connections were uniformly distributed across their 6-hour in-

terval results in an average of less than 7 concurrent connections from these peers.

�e paper does not state the distribution of connection durations above 100 sec-

onds, however, assuming these peers are connected for the entire 6-hours interval

results in an additional 9,455 connections from unreachable peers, which is in rough

correspondence to our estimation.

We emphasize that Figure 5.6 also serves as an empirical validation of our sim-

ulation model. Overall, the deviation between simulated transaction propagation

and observed transaction propagation is reasonably low. We suspect that the re-

95

5 SimulationMethodology

maining deviation in the overall propagation delay is caused by anomalous clients

that were not modeled here.

5.4 Discussion
In this chapter we presented a simulation model for the Bitcoin P2P network, which

will be used in Chapter 6. Two methods for developing behavior models were dis-

cussed: While the top-down approach enables high-precision simulations, it turned

out to be too costly, from a development as well as operational perspective. Contrary,

the presented bottom-up simulation model deliberately accepts a lower precision

at lower overall costs.�e parametrization based on our real-world measurements

enables the simulation of the Bitcoin network with a reasonable precision.

We will now discuss lessons learned and possible future work regarding the behavior

model and parametrization of the simulationmodel. Although the top-down behavior

model turned out to be inappropriate for our purpose, the transformation method

presented showed the steps required to transforma client application into aDESmodel.

Making these steps explicit illustrates the di�erences between native application code

and DES model code. One measure to reduce these di�erences is using an event-

driven architecture in the native application, as used in newer versions of bitcoind.

Using (semi-)automatic source code transformation, it might be possible to further

reduce the required e�ort for the transformation of application code into a DESmodel.

Although the prerequisites for the parametrization of our simulation model seem to

be very promising (e.g., comprehensive monitoring of public network, public source

code), there is still an inherent ground-truth problem associated with modeling the

network layer of permissionless blockchains. For instance, parameters such as the

number of unreachable peers or the network topology can only be approximated

based on observations. We emphasize that while a lack of knowledge of such pa-

rameters impedes research, hiding such parameters also improves the security of

the system against several attacks (cf. Chapter 3). Despite the existing ground-truth

problem, we provided a parametrization of our simulation model based on approx-

imations derived from our real-world measurements. Furthermore, we validated

our model and its parametrization by comparing the simulated information prop-

agation to the observed one (cf. Figure 5.6). Overall, the ground-truth problem

stresses the importance of topology inference as a basis for research, and not only as

a intermediate goal for adversaries.

While the behavior of reachable peers of the Bitcoin network is well analyzed,

more work on unreachable peers similar to [WP17] is required. We acknowledge

the di�culty of this kind of research without a�ecting unreachable peers on the

network, especially as this kind of research usually requires operating a large number

of reachable peers. Knowing more about unreachable peers could enable a better

parametrization of our simulation model.

Finally, the source code of most commonly used client implementation is publicly

available, whichmakes it possible to create behaviormodels for these clients. However,

even a very small number of peers with anomalous behavior can signi�cantly a�ect

96

5 SimulationMethodology

the overall network.�erefore, the identi�cation and modeling of such anomalous

behavior is required (cf. Chapter 7).

97

6

Topology Inference

�e topology of the P2P network of permissionless blockchains is an important

aspect in ensuring anonymity of users [FV17] and in ensuring robustness against

denial of service attacks [HKZG15], double spending attacks [KAC12], and attacks

on mining [ES14, NKMS16] (cf. Chapter 3). Furthermore, knowledge of the topology

can facilitate the analysis of P2P networks for research purposes (cf. Chapter 5). In

this chapter we present and analyze four di�erent methods for inferring the topology

of the Bitcoin P2P network.

Table 6.1 gives an overview of the used methods and which aspect of the network

layer is being exploited. As can be seen the methods exploit various aspects, which

can be located at di�erent positions of the network layer of permissionless blockchains:

Transaction accumulation is a client implementation speci�c aspect, which can be

easily changed in a client’s implementation. �e handling of double spends on the

network layer is predetermined by the handling of double spends on the consensus

layer, therefore, the e�ects of changes to this aspect are far more severe than changes

to an implementation speci�c aspect. Finally, the methods targeting timing and peer

discovery exploit the communication and connectivity, respectively, between peers

itself. Preventing these analysis methods comes with inherent tradeo�s negatively

a�ecting communication delay and connectivity between peers.

Before the methods are presented and analyzed in detail in Sections 6.1 to 6.4, we

de�ne the considered topology inference problem and brie�y cover related work

in the �eld of topology inference.

Scenario De�nition �e presented scenario de�nition has been previously pub-

lished in [GNH18]. Wewill now de�ne the general considered scenario that is valid for

all considered topology inference methods. Additional assumptions and restrictions

required for single topology inference methods will be discussed later.

99

6 Topology Inference

Table 6.1: Overview of the analyzed topology inference methods.

Inference Method Layer Exploited aspect Countermeasures

Section 6.1 Implementation Transaction accumulation Modify implementation

Section 6.2 Application Logic Double spends Relay double spends

Section 6.3 Communication Timing Increase TX delay

Section 6.4 Connectivity Peer discovery Randomize peer discovery

LetG = (V , E) be the undirected graphmodeling the peers (V) and connections (E)
of the Bitcoin network. Given a subset R ⊆ V of the reachable peers of the network,

the adversary1 tries to infer all connections between all peers in R.�e inference can

lead to false positives (i.e., inferring a connection although no connection exists) and

false negatives (i.e., not inferring a connection although a connection exists). We

will use precision (i.e., the share of inferred connections that are true positives) and

recall (the share of existing connections that were inferred) as metrics to describe

the success of the inference.

We assume that the adversary can run a small number of peers, which can connect

to as many other peers as possible.�is number is limited by the number of reachable

peers and the network capabilities of the adversary.2 We also assume that the adversary

is able to precisely estimate the latency between its own peers and remote peers, e.g.,

based on the observation of Bitcoin ping messages or ICMP ping messages. �e
adversary is not assumed to have information that an ISP or state actor organization

might have about connections and tra�c of other peers. We do not consider stronger

adversary models (e.g., ISPs), as these adversaries could simply monitor the network

tra�c in order to infer the network topology.

Related Work Topology inference in Bitcoin has been the subject of several pre-

vious works. Peer discovery in Bitcoin allows clients to query their neighbors for

IP addresses of other peers in order to establish connections to them.�e queried

neighbor then sends a list with IP addresses along with a lastseen timestamp.
Until March 2015 the timestamp was not randomized su�ciently and allowed Miller

et al. [MLP+15] to exploit this mechanism and infer the network topology. Peer discov-

ery can also be exploited for topology inference by sending IP addresses that do not

correspond to reachable peers, but are sent to remote peers so that the announcement

of these IP addresses by other peers can be observed [BKP14].

Furthermore, a comparison of the node degree distribution of peers on the Bitcoin

and Bitcoin Cash network is performed in [JW18]. However, the paper does not state

the used method for �nding out the node degrees of remote peers.3

1As stated, topology inference is a dual-use technology, which can be used for research purposes

as well as for adversarial purposes. For the sake of simplicity, we refer to the entity performing the

topology inference as adversary, independent of their intentions.
2Our measurements show that maintaining connections to ≈10,000 peers consumes about

20Mbit/s.
3One of the authors also claimed to be Satoshi Nakamoto without providing a veri�able proof for

100

6 Topology Inference

6.1 Exploiting Transaction Accumulation for Topology In-

ference
�e topology inference approach presented in this section exploits an implementation

aspect in the forwarding of transactions of the Bitcoin implementation Bitcoin Core

(bitcoind). Hence, we will �rst describe the exploited client behavior and re�ne the

adversary model for the presented topology inference method.�en, the inference

method will be presented, discussed, and evaluated.�e content presented in this

section has been previously published in [GNH18].

6.1.1 Fundamentals & Assumptions

As described in Section 2.2.3, transactions and blocks are �ooded through the Bitcoin

network using three types of messages (INV, GETDATA, and TX/BLOCK, respec-
tively). A�er receiving and validating a transaction, INVmessages are not sent out
immediately to a client’s neighbors, but are delayed according to a non-deterministic

function. Bitcoin Core maintains one outgoing queue for each connected peer for

storing these delayed transactions. When a new transaction is received or created,

this transaction is added to the queues for all neighbors. �erefore, each queue

contains all transactions that are to be announced to that peer. At certain times

all messages in a queue are announced to the neighbor via a single INVmessage.4

Every time the elements of the queue are sent to the neighbor, a new sending time is

determined.�ese times are chosen according to an exponential distribution with a

mean of 5 seconds for incoming connections and 2 seconds for outgoing connections.

�is mechanism has the property that all transactions received between two sending

timestamps are sent in one single INV message.
We will demonstrate how to exploit this transaction accumulation for topology

inference by creating and publishing transactions in a certain way. In addition to the

assumptionsmade previously regarding the adversarymodel, we now also assume that

the adversary is able to create a large number of transactions.�ese transactions can

transfer funds between addresses controlled by the adversary, however, transaction

fees still have to be paid.

6.1.2 Topology Inference Method Description

Assume for now that the adversarial monitor peer vM is connected to all peers vi ∈ V
of the network. �e adversary creates one transaction ti ∈ τ for each connected

peer vi . All transactions are independent and not con�icting in any way (i.e., they are

spending di�erent outputs). All transactions are sent to the peer they were created for

(i.e., ti to vi) so that they arrive at all peers at the same time. A�erwards, the adversary

monitors the �rst INVmessages that will be received by vM from all connected peers,
and infers information about the topology by using the following inference rules:

that claim.
4If there are more than 35 transactions in the queue (which occurs only infrequently), only 35

transactions are announced at once.

101

6 Topology Inference

vM

vBvA vC

tA tB tC

tCtB , tC

tB , tC

Figure 6.1: Exploiting transaction accumulation for topology inference. Dashed

lines indicate existing connections. Solid lines indicate the transmission of transac-

tions [GNH18].

1. If the �rst INVmessage that peer vA sends to vM contains only tB (i.e., the trans-
action sent to vB) and no other transaction from the set of created transactions τ,

then vA and vB are directly connected.

2. If the �rst INV message that peer vA sends to vM contains more than one
transaction from the set of created transactions τ, at least one of the peers

associated with the announced transactions is connected to vA.

Let us consider the scenario depicted in Figure 6.1 to demonstrate that the presented

inference rules do not lead to false positives if all assumptions are met. A formal

proof is given in the Appendix (A). vM is connected to vA, vB, and vC . vA is connected

to vB, vB is connected to vC . A�er the transactions were sent by the adversary, each

peer has only the transaction designated for itself (and transactions created by other

participants, which can be ignored). Statement 1 is equal to If vA and vC are not directly
connected, then vA will not send an INVmessage that contains only tC and no other

transaction from the set of created transactions τ.

Because vA and vC are not connected, tC has to be relayed by another peer (vB)

to vA. As we assumed that the adversary is connected to all peers, the adversary is

also connected to vB and has sent a transaction tB to vB. Because of the queuing

mechanism of bitcoind, vB’s queue for vA already contains tB.�erefore, tB and tC will

be announced together to vA, which announces them together to vM . It is also possible

that tB will be sent earlier than tC , because the queue at vB is sent between the reception

of tB and tC by vB. However, it is not possible that tC arrives earlier than tB at vA.

�is scenario also explains the second statement: If vA sends an INVmessage that
contains tB and tC , the adversary does not know whether vB, vC , or both are directly

connected to vA.�e transactions initially sent to all peers serve as identi�able �ags

that the remote peers attach to the �rst group of transactions they forward a�er

receiving their transaction. �is allows the adversary to reconstruct the path of

transactions and thereby infer connections between peers.

6.1.3 Discussion & Variants

While this topology inference approach is possible under perfect conditions, there

are several issues that can arise when not all assumptions are met.

102

6 Topology Inference

If there are peers on the network that the adversary is not connected to, false positives

can occur. Consider again the scenario depicted in Figure 6.1, but let us assume that

vM is not connected to vB. �en, vB would not have received a transaction tB, and

the INVmessage sent by vA would only include tC , which would lead to the wrong
conclusion that vA and vC are directly connected.

False positives can also occur when the adversary cannot guarantee that all trans-

actions arrive at all peers at the same time. While the latency measurement might

be precise in general, temporal changes, e.g., due to bandwidth peaks, are possible

and hard to foresee by the adversary. Furthermore, sending several thousand trans-

actions within a few hundred milliseconds in a coordinated way can require much

bandwidth and computational e�ort.

�e reception of INVmessages containing multiple transaction from τ does not

advance the performed topology inference, because it does not allow to draw any

de�nite conclusions from the observation. �e transactions included in the INV
messages of remote peers is determined by the sending times of the respective queues

and is unknown to the adversary.�erefore, even when all assumptions are met, the

success of the approach depends on the order in which the remote peers forward

transactions to their neighbors. �is means that repeating the approach (possibly

very o�en) is required in order to infer a large number of connections.

Another issue with the approach is that it is not possible to explicitly target a

speci�c remote peer in order to infer the connections of that peer only. Instead,

the inferred connections are a subset of all existing connections, which cannot be

in�uenced by the adversary.5

VariantDS:We will now present a variant of the discussed approach that reduces
the cost by reducing the incurring transaction fees. Assuming 10,000 peers on the

network and transaction fees of $1 per transaction, the cost for one run of the approach

is $10,000.6 A possibility to reduce this cost is to still create one transaction per peer,

but to create these transactions so that they are all double spends of only a few di�erent

outputs.�e number of di�erent inputs among all transactions is a parameter freely

chosen by the adversary (e.g., DS3 denotes variant DS with three di�erent inputs).

Each transaction is still unique (e.g., by having di�erent outputs), which enables

the mapping of one transaction to one remote peer.�at way, the adversary has to

pay only for those transactions that get included in the blockchain. However, this

approach can cause transactions to be dropped, which can cause false positives. We

will evaluate the e�ect of double spendings on this approach in the next subsection.

6.1.4 Simulation Results

We will now brie�y describe the used simulation setup before the results of the sim-

ulation are presented and discussed. Simulations are performed using a discrete

event simulation with an adapted version of the simulation model presented in Chap-

5�e subset is in�uenced by the times at which peers �ush their queues and the latencies between

peers.
6Due to �uctuations in transaction fees and exchange rates, this calculation is just an example.

103

6 Topology Inference

0

5

10

15

20

50 100 150 200 250 300 350 400 450 500

T
P

C
ou

nt
,

F
P

C
ou

nt

Number of Connected Peers

TP Count, Base
FP Count, Base
TP Count, DS3
FP Count, DS3

Figure 6.2: Number of true positives and false positives per run for the base approach

and the variant DS with three di�erent inputs [GNH18].

ter 5. �e total simulated number of peers on the network is 500, which roughly

corresponds to the number of peers on the Bitcoin testnet.�e network topology is

generated by creating eight outbound connections to uniformly chosen peers for each

simulated peer.�is results on average in eight incoming and 16 total connections

per peer.�e adversary is modeled as a speci�c peer that establishes a large number

of connections (depending on scenario) and sends and receives the transactions

according to the presented inference strategy.

While the simulation matches the general behavior of the Bitcoin client, several

simpli�cations were made. First, we model the three-step transaction propagation

process (INV - GETDATA - TX) as one single event. Secondly, the latencies between
peers are chosen according to a normal distribution (µ = 100ms, σ = 50ms, truncated
to [1ms, 6000ms]).�irdly, when peers forward transactions and have more than
35 transactions in their queue, they choose the transactions to forward uniformly at

random, but prefer transactions created by the adversary7.�erefore, our simulation

is not a precise model of the Bitcoin network or testnet and the results should be

seen as a proof of concept.

Figure 6.2 shows the true positive (TP) and false positive (FP) count depending

on the number of connected peers for the base variant and variant DS with three

di�erent inputs for one run of the approach. If the adversary is connected to all

500 remote peers, one run of the approach results in about 20 correctly detected

connections for variant DS, and in about 13 correctly detected connections for the

base variant. Reduction of the share of connected peers leads to a decline in the true

positive count. While we expected the false positive count of variant DS to be higher

than that of the base variant, surprisingly, variant DS also results in a higher true

positive count compared to the base variant. Double spends limit the propagation of

individual transactions, because they are dropped at all peers that already received

7�is models the scenario that the adversary pays higher transaction fees than the fees for the other

transactions.

104

6 Topology Inference

0

2

4

6

8

10

12

14

100 200 300 400 500 600 700 800 900 1000

T
P

C
ou

nt
,

F
P

C
ou

nt

Network Size

TP Count, Base
FP Count, Base

Figure 6.3: Number of true positives and false positives depending on the network

size for vM being connected to half of the peers [GNH18].

another transaction with the same input.�is limitation of propagation is actually

bene�cial for the approach, because only single-hop propagation of each transaction

(i.e., from one remote peer to another and back to vM) is required and leads to the

correct detection of a connection.

As we performed the simulation with a �xed number of 500 peers, the question of

the e�ect of the network size on the inference quality arises. Hence, we simulated

the network with a varying number of peers for an adversary connected to half of

all network peers. Figure 6.3 shows a that linear relationship between the number of

peers and the TP and FP counts exists.�erefore, a network with twice the number of

peers results in about twice the number of true positives at the same false positive rate.

6.1.5 Experimental Results

In order to perform a ground truth validation of our simulation results, we set up sev-

eral peers on the Bitcoin testnet: Two peers perform the role of the adversary peers and

connect to all reachable public peers (around 520 connections during the experiments

in November 20178). Another �ve peers running Bitcoin Core (0.15.0.1) serve as vali-

dation targets.�ese peers establish eight outgoing connections and are reachable to

the adversary peers via IPv4 and IPv6. In this setup the adversary peers are connected

to all neighbors of the validation targets, which is a best-case scenario for inference.

During the experiments, one of the adversarial peers sends transactions to other

peers so that they all arrive at the same time at their destination. �e latency to

remote peers was measured using ICMP ping, TCP SYN packets, and Bitcoin ping

messages as described in Chapter 4.

We performed 50 runs of variant DS of the described inference approach using

transactions with three di�erent inputs. A total of 632 unique connections were

detected, which roughly conforms to our simulation results. Out of these 632 connec-

8Peers were found using https://github.com/ayeowch/bitnodes/

105

https://github.com/ayeowch/bitnodes/

6 Topology Inference

tions, only 9 connections were connections from or to one of our validation peers.

From these 9 detected connections, only 6 actually existed, which corresponds to an

observed precision of 67%.9 Roughly estimating the total number of connections on

the testnet to be 4,16010, and assuming a precision of 67% results in a recall (with

respect to all connections of the network) of about 10% a�er 50 runs for a total cost

of 50 ∗ 3 = 150 transaction fees.

6.1.6 Discussion

In this section we presented and analyzed two variants of a topology inference ap-

proach that exploits the accumulation of transactions by the Bitcoin client bitcoind.

Simulation results show that although the base variant is technically feasible, the costs

for actually performing the variant are unbearable high (i.e., one transaction fee per

network peer for one run). Contrary, the costs for performing the variant DS are

very low (i.e., constant in the size of the network). Furthermore, simulation results

suggest a decent inference quality and show that the number of inferred connections

scales linearly with the size of the network. Although the small sample size of the

experimental results only allows very rough estimates of the inference quality to be

expected for variant DS, the expected recall is in the range of 10% at the cost of 150

transaction fees for a network with 500 peers.

While these results sound promising, there are twomain limitations of the presented

approach. First, because it is not possible to infer the connections of a speci�c peer

only, rather than inferring connections of random peers of the network, it is hard to

thoroughly validate the approach in real-world networks. For adversarial purposes,

this lack of in�uence on which connections are inferred prevents targeted attacks,

especially taking into account that topology inference is only an intermediate goal

for further attacks. For scienti�c purposes, the lack of validation of the approach

leads to results that are hard to justify and which should not be used in any models

without careful consideration.

Secondly, the variant DS produces false positives even if all assumptions are met.

False positives can also occur when the adversary is not connected to all peers. Addi-

tionally, false positives can occur when other client implementations are used that

do not exhibit the exploited transaction accumulation behavior. All these causes

for false positives typically exists in real-world networks. Hence the reliability of

the approach is limited.

Finally, as transaction accumulation is implementation speci�c, the implementation

could be easily modi�ed to counter this topology inference method. For instance, if

each transaction that is stored in an outgoing queue is sent with a certain probability

only, transactions could overtake each other in a client’s queue, making the assump-

tions, on which the discussed method relies, invalid. As the presented approach

shows that transaction accumulation does leak some information, such countermea-

9Because of the small sample size, the real precision can strongly deviate from the observed

precision.
10520 peers with 8 connections each.

106

6 Topology Inference

sures could also prevent possible advanced approaches that also exploit transaction

accumulation for topology inference or for deanonymization of users.

6.2 Exploiting Double Spends for Topology Inference
�e content presented in this section has been previously published in [GNH18]. One

major drawback of the approach presented in Section 6.1 is that it is not possible to

infer the connections of a speci�c peer only, rather than inferring connections of

random peers of the network.�is is not only problematic for adversaries, but also

makes validation a challenge. In this section we will describe and analyze a topology

inference method that relies on the transaction validation behavior of clients with

regard to double spending transactions.

We brie�y recap the transaction validation behavior described in Chapter 2: When

a peer receives a transaction, it validates the correctness of the transaction. �is

includes checking the correct format, checking whether the sum of input values is

at least as large as the sum of output values, and checking whether the inputs of

the transaction are actually spendable. Because every transaction output can only

be spent once, a transaction with an input that was already spent by a transaction

received earlier is regarded as invalid and dropped silently. We will now demonstrate

how to exploit this behavior regarding double spends for topology inference. As in

the previous section, we assume that the adversary is able to create and publish own

transactions on the network.

6.2.1 Topology Inference Method Description

Again, assume for now that the adversarial monitor peer vM is connected to all peers

vi ∈ V of the network. One of the connected peers is the target peer vT , the connections
of which the adversary wants to infer.�e adversary creates one transaction ti ∈ τ for

each connected peer vi , except for the target peer vT . All transactions have the same

input, i.e., they are double spends, but all transactions are unique, e.g., by specifying

di�erent output addresses. Again, all transactions are sent to the peer they were

created for (i.e., ti to vi) so that they arrive at all peers at the same time. �en the

adversary monitors which transaction the target peer vT forwards to the monitor

peer vM and can conclude that the peer associated with the forwarded transaction

is directly connected to the target peer vT .

Let us consider the scenario depicted in Figure 6.4 to demonstrate that the proposed

strategy reveals existing connections of the target peer if all assumptions are met.

A formal proof is given in the Appendix (A).�e monitor peer vM is connected

to vA, vT , vB, and vC . �e target peer vT is connected to vA and vB, while vB is also

connected to vC . A�er the transactions were sent by the adversary, every peer only

has the transaction designated for itself, and vT has no transaction received yet. Every

peer will only accept and forward exactly one of the created transactions, because they

are all double spends of the same output.�erefore, if vC forwards tC to vB (dotted

line), vB will drop tC because of the earlier reception of the con�icting transaction tB.

107

6 Topology Inference

vM

vTvA vB vC

tA tB
tC

tA tB tC

tB

Figure 6.4: Exploiting double spends for topology inference. Dashed lines indicate

existing connections. Solid lines indicate the transmission of transactions. Dotted

lines indicate dropping of transactions by the receiver because of an earlier reception

of a con�icting transaction [GNH18].

Because the target peer vT has not yet received any of the con�icting transactions, it

will accept exactly one transaction forwarded by one of its neighbors (transaction tB
in Figure 6.4).�is transaction gets forwarded to the monitor peer vM and indicates

a neighbor of the target peer vT .

6.2.2 Discussion & Variants

If the adversary is not connected to all peers of the network, or if the transactions

are not received by all peers at the same time, false positives can occur.�e reason is

basically the same as for the approach exploiting transaction accumulation discussed

in Section 6.1: A neighbor of vT that did not receive its double spending transaction

from vM will accept another double spending transaction ti from another neighbor

vi and forward that transaction to vT , which may forward ti to the adversary causing

the false inference of a connection between vT and vi . Obviously, if the adversary

cannot establish a connection to vT , the connections of vT cannot be inferred using

the discussed approach. We will now discuss three variants of the presented approach

that aim at optimizing the inference even when not all assumptions are met.

Variant Count:When repeating the approach several times, one would expect the
transactions associated with real neighbors (true positives) to be sent to the adversary

by vT more o�en than those of peers that are not connected to vT (false positives),

because those transactions have to be relayed by another peer and should be slower.

In order to reduce false positives, the approach can be repeated and connections are

only identi�ed, if the number of transactions indicating a speci�c peer as a neighbor

of vT is larger than a certain threshold.

Variant Ignore: Assume that tA is forwarded by vT to vM . If the adversary was un-
able to synchronize the reception of all transactions at all remote peers (e.g., due to bad

latency estimation or bandwidth limitation), it is possible that tA is also forwarded to

vM by another peer, say, vB. As such a reception indicates the violation of a key assump-

tion and vT might have received tA from vB rather than directly from vA, the adversary

can opt to ignore the result without concluding a connection between vT and vA.

Variant Suppress: �e cost for a single run of the approach is one transaction fee.

108

6 Topology Inference

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

P
ro

ba
bi

lit
y

Number of Runs

Precision, half connected
Recall, half connected
Precision, fully connected
Recall, fully connected

Figure 6.5: Precision and Recall depending on the number of runs with vM being

connected to 250 (half connected) and 500 (fully connnected) of 500 peers [GNH18].

However, one single run reveals at most one connection of the target peer. In order

to infer more connections, additional runs are necessary, which each come at the

cost of one transaction fee. Which connection can be inferred depends on which

transaction arrives �rst at vT , which is determined by the sending times of the remote

peers and the latencies between peers. With bad luck (or single clients being very

fast), multiple runs of the approach can all result in inference of the same, already

known, connection. Variant Suppress slightly modi�es the approach to eliminate the

repeated inference of the same connection. Consider again the example depicted in

Figure 6.4 and assume that the adversary inferred the connection between vT and vB
in the �rst run of the approach. For the next run, we (1) want the transaction tB to be

dropped at vT and (2) we do not want vB to forward any other transaction ti . While

simply not sending any transaction to vB would satisfy the �rst requirement, it would

make vB a hidden node and violate the second requirement.�erefore, we modify

the way the double spending transactions are created. Assume there are two unspent

outputs i1 and i2 that will be used as inputs to the transactions in the following way:

– All peers vi , except for vT and vB, receive transactions ti spending i1 only.

– vT receives a transaction tT spending i2 only.

– vB receives a transaction tB spending i1 and i2.

�is approach satis�es both requirements: vT will drop tB because it is a double spend

of i2. Any transaction ti will be dropped by vB because they are double spending i1.

Yet, any transaction ti will be accepted by vT because they are spending di�erent

outputs (i1 and i2).

6.2.3 Simulation Results

We simulated the approach exploiting double spends with the same simulation setup

as described in Section 6.1.4. Figure 6.5 shows how recall and precision develop

109

6 Topology Inference

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250

P
ro

ba
bi

lit
y

Number of Runs

Precision
Recall

Figure 6.6: Precision and recall depending on the number of runs for variant Count

and vM being connected to 375 of 500 peers[GNH18].

depending on the number of runs for the base version of the approach. Please note

that the statistical population of connections to be inferred is now limited to the

connections of the target peer vT . Hence, perfect recall and precision here mean

that all connections of the target peer have been correctly identi�ed, and not that all

connections of the complete network have been correctly identi�ed. If the monitor

peer vM is connected to all peers of the network, the recall reaches 95% a�er 100 runs

while the precision decreases slowly. �e precision decreases because the latency

between the adversary peer and other peers is simulated probabilistically, i.e., the

simulated adversary cannot ensure that all generated transactions are received at

the same point in time. �erefore, it is possible that remote peers receive a dou-

ble spending transaction from one of their neighbors before receiving their double

spending transaction from the adversary peer.

If the adversary is connected to only half of the peers of the network, the expected

maximum possible recall is 50%, because the adversary is on average only connected

to half of the neighbors of vT . As described above, the target’s neighbors being not

connected to the adversary cause false positives and thus the precision is lower than

for the fully connected scenario.

Figure 6.6 shows precision and recall for the variantCount of the approach exploiting

double spends. As can be seen, the recall increases in steps.�ese steps are caused by

adjusting the threshold for the required number of receptions. While this variant can

be used to reach high precision, the recall is limited even a�er more than 200 runs.

Figure 6.7 shows precision and recall of the variant Suppresswith vM being connected

to all peers. Using only this variant results in the recall growing faster, because this

variant prevents neighbors from being detected multiple times. However, not only

true neighbors are detected faster, but also false positives, which results in a faster

declining precision. If vM is not connected to all peers, the precision falls even faster,

because the likeliness that a detection is a false positive is higher.

�e precision can be improved by combining the variants Suppress and Ignore, for

110

6 Topology Inference

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40

P
ro

ba
bi

lit
y

Number of Runs

Precision, Suppress
Recall, Suppress
Precision, Suppress + Ignore
Recall, Suppress + Ignore

Figure 6.7: Precision and recall depending on the number of runs for variants Sup-

press and Suppress + Ignore with vM being connected to 500 of 500 peers (fully con-

nected) [GNH18].

which precision and recall are also shown in Figure 6.7. Combining both variants

results in a recall of 96% a�er 25 runs with a precision of about 94% if the monitor

is connected to all peers.

6.2.4 Experimental Results

Wevalidate the approach in the Bitcoin testnet with the setup described in Section 6.1.5

with the exception that the adversarial peers do not send any transactions to the IPv6

addresses of the validation targets. �e reason for this exception is that otherwise

the presented approach infers connections between the IPv4 and IPv6 addresses

of the validation target. While this might also be an interesting application for the

approach, it would impair our validation.

We ran the approach six times against each of the �ve validation targets with 50 runs

each using the combination of the variants Suppress and Ignore. Analyzing the data

generated during the experiments using di�erent combinations of variants results

in various combinations of precision and recall. Two of them using Suppress and

Ignore are shown in Figure 6.8.�e combination of the variants Suppress and Ignore

results in a recall of 60% and a precision of 97%.�e recall can be improved though

by relaxing the restrictions imposed by Ignore by using only the variant Suppress.

�is combination results in a recall of 87% and a precision of 71% (also shown in

Figure 6.8) for a total cost of 99 transaction fees. Again, note that precision and recall

refer to the connections of the target peer only.

6.2.5 Discussion

In this section we presented and analyzed a topology inference method that exploits

the handling of double spending transactions by Bitcoin clients. Our simulation as

well as experimental results in the Bitcoin testnet indicate a high inference quality

111

6 Topology Inference

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

P
ro

ba
bi

lit
y

Number of Runs

Recall, Suppress + Ignore
Precision, Suppress + Ignore
Recall, Suppress
Precision, Suppress

Figure 6.8: Experimental Results: Precision and recall depending on the number of

runs using variant Suppress and Suppress+Ignore [GNH18].

at low costs (i.e., 99 transaction fees per target peer). However, we emphasize again

that the experiments were performed using a favorable scenario, i.e., the adversarial

peer was connected to all neighbors of the validation peers.�e existence of hidden

neighbors as possible in reality could severely impair the inference quality.

Several countermeasures against the approach are possible, however, each coun-

termeasure comes with certain drawbacks. First, an obvious countermeasure would

be to forward double spends, which, however, would create the potential for DoS

attacks: Malicious peers could publish large numbers of double spending transactions

at the cost of only one transaction fee on the network. �ese transactions would

all be �ooded through the network, consuming a large amount of bandwidth at

participating peers.11

Another countermeasure could be to not always forward the transaction that was

received �rst, but randomly deciding which double spending transaction will be for-

warded.�is countermeasure, however, could a�ect security against double spending

attacks in zero-con�rmation payments [KAC12, DW13].

Furthermore, individual peer operators may choose to deny incoming connections,

which prevents the discussed approaches from working, but is not desirable from an

overall network’s perspective. On the other hand, operating a reachable peer with

a large number of incoming connections from unreachable peers also impedes the

presented inference approaches. Finally, because of the large number of transactions

created, the proposed topology inference method can be observed by monitoring

large parts of the network (cf. Chapter 4).

11�e Bitcoin Cash client Bitcoin Unlimited has been recently modi�ed to relay dou-

ble spending transactions in order to improve the detection of double spending attempts

when accepting zero-con�rmation payments (https://github.com/BitcoinUnlimited/
BitcoinUnlimited/pull/1109).

112

https://github.com/BitcoinUnlimited/BitcoinUnlimited/pull/1109
https://github.com/BitcoinUnlimited/BitcoinUnlimited/pull/1109

6 Topology Inference

6.3 Exploiting Timing for Topology Inference
While the topology inference method presented in Section 6.1 exploited an imple-

mentation speci�c aspect of the network layer, the method presented in Section 6.2

exploited network layer behavior that is required because of consensus layer require-

ments. In this section, we present a topology inference method that is completely

independent of the implementation and the consensus layer. Instead, it targets the

information propagation of the P2P network itself. Hence, the presented method can

be applied to all open �ooding P2P networks. �e only required assumptions are

that messages are �ooded through the whole network, that each message is uniquely

identi�able, and that it is possible to connect to arbitrary peers of the network in

order to receive the propagated messages from remote peers.

An overview of the presented method is depicted in Figure 6.9. A monitor peer

connected to (almost) all reachable peers of the network observes the message prop-

agation process by logging the timestamp of reception of each message from each

remote peer. For each message, a set of tuples (reception time, sending peer) is ob-

served – one tuple for each forwarding peer. Intuitively, the reception times in the

observations caused by one message correlate with the network topology.�erefore,

this observation is then compared to a propagation delay model, which enables us

to assign likelihoods for each pair of IP addresses for being directly connected or

not. Finally, the likelihoods derived from the observation of multiple messages are

combined using a maximum likelihood estimation.

�e remainder of this section is structured as follows. First, the timing based

inference method will be presented and validated using an analytical model and

simulations.�en, we present a real-world validation using experiments in the Bitcoin

network. Finally, we analyze the trickling countermeasure against the presented

topology inference method.�e content presented in this section has been previously

published in [NAH16] and in [NH18].

6.3.1 From Observations to Network Topology

We will now show how to infer the topology of a network based on the comparison

between observations of the information propagation delay in the network and a prop-

agation delay model. For this, we will �rst formalize the problem considered.�en,

the approach is presented and validated. Finally, limits of the approach are discussed.

Observations

Every time a message is forwarded to an adversary’s monitor, a tuple (reception time

tr, sending peer v) is created at the monitor.�erefore, for each unique message m,

the adversary observes a set of tuples Om = {(tr0, v0), (tr1, v1), ...}. As we assume
the adversary to be aware of the latency from the monitor node to other peers, the

adversary can subtract this latency from the reception time and get an estimate of

the sending time: O′
m = {(t0, v0), (t1, v1), ...}, where the �rst tuple (t0, v0) represents

the message’s sending by the originator (v0) of the message.

We convert the absolute timestamps ofO′
m to time di�erences relative to the creation

113

6 Topology Inference

IP Address ¢Time

1.2.3.4 0

5.6.7.8 50

4.3.2.1 120

... …

IP Address ¢Time

1.2.3.4 0

5.6.7.8 50

4.3.2.1 120

... …

IP Address ¢Time

1.2.3.4 0

5.6.7.8 200

4.3.2.1 400

... …

Monitor

Reachable Bitcoin Peers

IP Address Pair 0-Hop 1-Hop n-Hop

1.2.3.4 – 5.6.7.8 40% 10% …

1.2.3.4 – 4.3.2.1 5% 35% …

Observations for each Transaction Propagation Delay Model

Likelihood per Observation

Maximum

Likelihood

Estimation

Figure 6.9: Timing-based topology inference method.

time t0 (δ1 = t1 − t0, δ2 = t2 − t0, ...). Each of these time di�erences δi is a sample of

the delay between the originator of the message and the peer vi , which forwarded the

message to the adversary’s peer. Grouping all time di�erences of all messages by these

two peers results in a set of measured delays for each pair of peers ∆v1 ,v2 = {δ1, δ2, ...}.
�e set contains one time di�erence for each message that was created by v1 or v2.

�erefore, the set is empty for all pairs of peers that both did not create a message

during the observation period.

We will now focus on how to estimate the shortest path length Cmin between two

peers in the network (i.e., the shortest sequence of edges between both peers) based

on the observations made.

Inferring the Shortest Path Length

�e following estimation compares the observations made to the analytical propa-

gation delay model described in the Appendix (B).�e parameters of the modeled

network are the number of peers and the probability of existence of each possible

connection.�e network in our delay model is assumed to match a random graph

model [ER59]. Furthermore, we assume that the zero-hop delay distribution (i.e.,

the latency between any pair of peers) is known.

Using the model, we can calculate the a priori probability that the shortest path Cmin

between two randomly chosen peers has length l (i.e., P(Cmin = l)). �e discrete
random variableDmodels the propagation delay between two randomly chosen peers

(discretized to e.g. milliseconds12).�e model enables us to calculate the probability

of observing a speci�c delay δ: P(D = δ). It also allows calculation of the probability
of observing a speci�c delay δ assuming that the shortest path length between sender

and receiver equals l : P(D = δ∣Cmin = l).
We are now looking for a method to assess how likely it is to observe a speci�c

set of time di�erences, depending on the shortest path length between the two ob-

12Although a delay could be modeled as a continuous random variable, we opt for a discrete model

to enhance readability and closely match our simulation model.

114

6 Topology Inference

served peers. A relationship between the unknown shortest path length Cmin and

the observed time di�erence δ is given by P(D = δ∣Cmin = l).13 Evaluation of this
formula for each possible shortest path length and all observations allows a com-

parison between the resulting probabilities and lets us decide, which shortest path

length has the maximum likelihood.

�e likelihood function for a set of observed time di�erences ∆v1 ,v2 and a length of

the shortest paths l follows from the de�nition of a likelihood function as

L(Cmin = l ∣∆v1 ,v2) =
P(Cmin = l) ⋅ ∏

δ∈∆v1 ,v2
P(D = δ∣Cmin = l).

�e maximum likelihood estimation of the shortest path length between v1 and

v2 is computed by selecting the largest likelihood among all shortest path lengths,

resulting in

l̂ = argmax
l

L(Cmin = l ∣∆v1 ,v2).

For an asymptotically large number of observations, l̂ converges to the real value of

Cmin. However, the estimated shortest path length can di�er from the real shortest

path length, if, for instance, the observation contains only a few values and many of

them are outliers.�erefore, some measure of con�dence in the guess is required.

�e quotient of the likelihood function of l̂ and the sum of all likelihood functions

gives the probability that the guess is in fact correct (certainty)

P(Cmin = l̂ ∣∆v1 ,v2) =
L(Cmin = l̂ ∣∆v1 ,v2)
∑l L(Cmin = l ∣∆v1 ,v2)

. (6.1)

Actually, this equation can be calculated not only for Cmin = l̂ , but also for all

other values of Cmin, denoting the probability that each Cmin is in fact correct.�is

corresponds to assigning probabilities to each shortest path length.14

Simulation Results & Validation

We will now show the e�ectiveness of the proposed timing-based topology inference

method by examining the resulting error rates. A �ooding network was simulated

that generated the observations as input for the timing analysis.�e timing analysis

resulted in a guess which edges of the network exist. By comparing the estimate to

the simulated network, we can judge the quality of the presented technique.

13�is problem can be formulated as a very simple Hidden Markov Model (HMM): Each hidden

state represents one minimum path length Cmin between two peers in the network.�e observable

states of the HMM are the time di�erences δ.�e transition probabilities from each hidden state l to

the observable states equal the probability of observing a delay of δ assuming a minimum path length

of l : P(D = δ∣Cmin = l).
14�e shortest path lengthCmin can also be seen as a probabilistic information source, which outputs

l with a probability of P(Cmin = l ∣∆v1 ,v2). �e entropy of this information source then equals the
uncertainty in the estimation.�e di�erence P(Cmin = l) − P(Cmin = l ∣∆v1 ,v2) is an upper bound for
the information content of the observation ∆v1 ,v2 .

115

6 Topology Inference

0

20

40

60

80

100

2 4 6 8 10 12 14 16 18 20

P
re

ci
si

on
,

R
ec

al
l

[%
]

Number of Observations

Recall - Expected
Recall - Simulation
Precision - Simulation

Figure 6.10: Precision and recall in a simulated network wrt. the number of observa-

tions per pair of peers [NAH16].

�e estimation can lead to two kind of errors: false positives and false negatives.

A false positive occurs if a speci�c edge is postulated although it does not exist. A

false negative occurs, if an existing edge is not detected by the analysis. Obviously,

the more observations are in ∆v1 ,v2 , the less likely are both kinds of errors, as each

observation originates from the correct distribution.

As before, we use precision (true positives divided by the sum of true and false

positives) and recall (true positives divided by the number of elements that should

have been detected) as measures for the quality of the topology inference method.

Figure 6.10 shows howprecision and recall increasewith the number of observations in

the performed simulation. Additionally, the calculated expected recall is depicted.�e

recall converges quickly to 100%, whereas the precision rises much slower and reaches

90% a�er 12 observations. Both, expected and experimental recall match very well.

Although the error rates look extremely promising, it should be noted that the

simulation experiment makes some idealized assumptions that cannot be matched in

the real world: First, the delay distribution as assumed by the adversary equals the real

delay distribution used in the simulation. In reality, an adversary has to estimate the

delay distribution, which will only be an approximation (cf. Section 5.3). Additionally,

the network and the delay distribution is static in the simulation, whereas churn and

jitter are known to occur in real-world networks. We will leave a sensitivity analysis of

the delay distribution estimation used by the adversary as future work and give a proof

of concept of the proposed method in the real Bitcoin P2P network in Section 6.3.2.

Limits

As just shown, there exists a relationship between the number of observations and

the quality of the estimation. Intuitively, the shape and especially the overlap of the

conditional delay distributions for each shortest path length also a�ect the estimation’s

quality: highly overlapping delay distributions impede correct estimations, whereas

observations from non-overlapping distributions are easy to map to shortest path

lengths. We will �rst illustrate this relationship before analyzing the e�ectiveness and

116

6 Topology Inference

0

20

40

60

80

100

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

C
er

ta
in

ty
:
P
r(
C

m
in
=
l̂∣δ

)
[%

]

P
r(
D
′
=

δ
∣C

m
in
=
l)

[%
]

Time Difference δ [ms]

Certainty
Cmin = 1
Cmin = 2
Cmin = 3
Cmin = 4

Figure 6.11: Conditional delay distributions and certainty wrt. to observed delay.

Scenario: 6, 000 nodes, 16 connections per node on average, zero-hop latency distri-

bution according to a normal distribution (µ = 200ms, σ = 100ms) [NAH16].

tradeo�s of a countermeasure against timing analysis.

Figure 6.11 shows the probabilities P(D = δ∣Cmin = l) depending on the observed
time di�erence δ for Cmin ∈ {1, 2, 3, 4} for a given scenario. Additionally, the certainty,
as calculated by Equation 6.1, of such an observation is shown. It can be seen that

observing small time di�erences (below 200ms) leads to the highest certainty, because

of the fact that these delays result from Cmin = 1 with overwhelming probability. As
the conditional probabilities overlap between 200ms and 600ms, such observations

do not help much in reconstructing the network, as various minimum path lengths

are almost equally likely. For delay di�erences higher than 600ms the certainty rises

again. However, this is only because of the limited considered shortest path length of

4 for this calculation. Larger shortest path lengths result in conditional probabilities

similar to Cmin = 4 but slightly shi�ed, similar to the small di�erence between the
conditional probabilities for Cmin = 3 and Cmin = 4. We will exploit the fact that small
delays cause a higher certainty in the real-world validation in Section 6.3.2.

6.3.2 Experimental Validation in the Bitcoin P2P Network

We already showed that the proposed timing analysis method is feasible in theory and

simulation under idealized conditions. In order to analyze its real-world feasibility, we

now apply the proposedmethod to the Bitcoin P2P network. We will �rst describe our

parametrization of the propagation delay model, then explain the used experimental

setup, and �nally present and discuss our results.

�e propagation delaymodel is the core of the presented topology inferencemethod,

as it provides the mapping between observed time di�erences and hop count.�e

presented analytical model assumes a random graph model, however, in Section 5.3

we have seen that the node degree distribution of the Bitcoin P2P network follows a

power law. Hence, the analytical delay model cannot be used to obtain the required

probabilities P(D = δ∣Cmin = l) for the real network. Instead, we simulated the

117

6 Topology Inference

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall (Measurement A)

∣∆∣ = 2
∣∆∣ = 4
∣∆∣ = 6
∣∆∣ = 8

Recall (Measurement B)

∣∆∣ = 2
∣∆∣ = 4
∣∆∣ = 6
∣∆∣ = 8

Figure 6.12: Precision vs. recall of two estimations for measurements performed on

Jan 26th (A) and Jan 28th (B), 2016 for varying number of observations ∣∆∣ [NAH16].

transaction propagation in the Bitcoin network using the presented simulation model,

and measured the resulting delays for each hop distance. Based on this measurement,

the delay distribution can be approximated. We emphasize the importance of a

validated simulation model for this approach (cf. Figure 5.6).

In order to carry out an experimental ground truth validation, two o�-site peers run-

ning bitcoind 0.11.0 with ∼ 50 neighboring peers each were used to create transactions
and publish them to the Bitcoin network. As we operate these peers, we know their

direct neighbors and can thus compare the inferred connections against the actually

existing connections. Our monitor peers, which are connected to all reachable Bitcoin

peers, observed the propagation of transactions through the network.

It turned out that the maximum likelihood estimator presented in Section 6.3.1

does not deliver satisfying results because of a large number of very long delays,

even for directly connected peers.�ese large delays increase the likeliness of longer

shortest path length, although there were a few observations that indicate a direct

connection between a certain peer and the originating peer. As the high certainty of

observations with small delays has already been pointed out (cf. Figure 6.11), we now

use an estimation that focuses on the smallest observed delay: assuming the set of time

di�erences for a pair of peers ∆v1 ,v2 contains n observations, an edge between the two

peers is detected, i� the theoretical probability (i.e., the probability as derived from the

model) that all n observations are larger than the smallest observation δmin is higher

than a certain threshold s (P(D > δmin∣Cmin = 1)n > s).�e threshold represents the

sensitivity of the estimation and a�ects the false positive and negative rates.

Figure 6.12 shows the resulting precision and recall depending on the chosen sen-

sitivity and the number of observations for two di�erent measurements. Each data

point corresponds to one setting of the sensitivity threshold s. Depending on the

analysis’ goal, the threshold can be con�gured achieve either a higher recall or a

higher precision. An increasing number of observations also increases the quality

of the estimation up to about 6 estimations, where no further improvement can be

118

6 Topology Inference

seen. With the appropriate sensitivity, the estimation can achieve a recall of 40%

while maintaining a precision of also about 40%.

Precision and recall can be combined into the F1-Score, which is a commonmeasure

of accuracy and is calculated as F1 = 2⋅precision⋅recall
precision+recall . A perfect predictor results in F1 = 1,

whereas worse predictors result in smaller F1-Scores.�e results of our experiments

correspond to an F1-Score of 0.4, which is substantially lower than the theoretically

achievable scores, however, much better than simply guessing the connections of a

peer, which would result in an F1-Score of 0.0125. Furthermore, our data shows that

44% of peers that were online for at least one hour publish at least 5 transactions per

day, making a passive topology inference possible. For the remaining 56% of peers,

an adversary has to actively insert transactions similar to the approaches presented

in Subsections 6.1 and 6.2.

Although the topology inference quality is much lower in the real-world valida-

tion than in the simulation-based validation, the results still show the feasibility

of the presented method.

6.3.3 Countermeasure: Trickling

A common countermeasure against timing analysis is deliberately delaying the for-

warding of messages (trickling) instead of instantaneously rebroadcasting all messages.

�is countermeasure is implemented in Bitcoin.�e idea is to improve anonymity

by making it harder to identify the originator of a transactions, and to impede topol-

ogy inference by increasing the overlap in the conditional delay distributions, which

reduces the certainty and hinders the adversary from reconstructing the network.

However, this also increases the overall propagation delay in the network, which is

not desirable for most applications, for example Bitcoin, where reaching consistency

is the main purpose of the network.

Analysis of Trickling Delay Distributions

�e existence of general tradeo�s between the objectives DoS resistance, anonymity,

topology hiding, performance, and cost of participation have already been discussed

in Chapter 3. We will now apply the presented propagation delay model and the

timing analysis technique in order to quantify the tradeo� between topology hiding

in terms of precision and recall, and performance in terms of consistency delay, i.e.,

the delay until a message has been �ooded through a certain share of the network. We

assume that the analyzing adversary is aware of the fact that trickling is performed

and how it is parametrized.

Figure 6.13 illustrates the e�ect of applying the trickling countermeasure on the

consistency delay and the precision and recall, given as the F1-Score, of an adversary

for our exemplary scenario. In the exemplary scenario, trickling is performed by

randomly delaying the forwarding of messages for a certain length of time according

to a) a uniform distribution and b) an exponential distribution. Both distributions

were parametrized with a set of mean values: at µ = 0, e�ectively no trickling happens,
therefore, the result corresponds to what has been shown in Figure 6.10. With increas-

ing mean values, both the time until information is propagated to 90% of peers, as

119

6 Topology Inference

0.7

0.75

0.8

0.85

0.9

0.95

500 1000 1500 2000

µ = 50ms

µ = 50ms
µ = 0msF

1
S

co
re

90 % Information Propagation [ms]

Uniform Trickling
Exponential Trickling

Figure 6.13: Tradeo� between low consistency delay and topology inference resistance

when applying trickling. Trickling is performed using a) a uniform distribution of

varying size, and b) an exponential distribution with varying mean.�e x-Axis shows

the overall delay until 90% of peers received the propagated message. F1-Score a�er 4

observations [NAH16].

well as the F1-Score increases. Only for higher delays, the F1-Score starts to decline.

Although one might expect trickling to always have a positive e�ect on topology

hiding, the results show that trickling, if inappropriately parametrized, can actually

reduce the resistance to topology inference, i.e., it can improve an adversary’s precision

and recall.�is is caused by trickling’s negative e�ect on propagation speed. Trickling’s

goal is to increase the overlap of the transition probability distributions. On the one

hand, trickling broadens the shape of the conditional delay distribution, on the other

hand it also increases the di�erence between the mean of the di�erent distributions.

For example, a constant trickling distribution that delays all packets by one second

makes it much easier for an adversary to guess the packet’s hop-count, as the constant

delay only increases the gap between the di�erent conditional probabilities, but does

not broaden each distribution’s shape. Figure 6.13 also shows that trickling according

to an exponential distribution can increase the resistance against topology inference

if properly parametrized, whereas trickling with a uniform distribution has a negative

e�ect for the parameters considered.

Please note that although trickling may be detrimental for preventing topology

inference, it also can have positive e�ects on the general timing analysis resistance

that were not discussed here. For example, trickling makes it substantially harder for

an adversary to identify the originator of a message in the network, which improves

anonymity in the network (cf. Chapter 7) and also makes timing based topology

inference harder, as the adversary has to actively create transactions.

Optimal Trickling

�e example shown in Figure 6.13 indicates that delaying messages according to an

exponential delay distribution is Pareto-better (i.e., results in worse topology inference

quality at the same performance) than delaying messages according to a uniform

120

6 Topology Inference

S T

M

S X T

M

Figure 6.14: Considered scenario:�e adversaryM wants to infer whether S and T

are directly connected (le� side), or whether S and T are not directly connected (right

side) [NH18].

delay distribution.�is raises the question what an optimal trickling delay distribution

is. In this subsubsection we will address this question by numerically optimizing

the trickling delay distribution for a simpli�ed scenario.

�e content presented in this subsubsection has been previously published in [NH18].

Considered Scenario & Adversary Model We consider the simpli�ed scenario

sketched in Figure 6.14: An adversary M is connected to two peers S and T and

wants to infer, whether S and T are directly connected or not.�e adversary creates a

message (e.g., a transaction) and sends it to S so that S receives the message at time 0.

�e adversary then waits andmeasures the duration δ until T sends the message toM.

δ is therefore the delay from S receiving the message until T sends the message toM.

Consider the case that the latency between any two peers is one time unit, i.e.,

the transmission of a message over one link takes one time unit, and each peer

immediately rebroadcasts each message to its neighbors.�en, the adversary knows

that if δ = 2 then S and T are directly connected, if δ = 3 then S and T are not directly
connected. In reality, the latency between two peers is not constant but follows a

probability distribution. We assume that the latency between any two peers follows

the same distribution λ(t), which is known to the adversary.
We will now adapt the maximum likelihood estimator presented in Subsection 6.3.1

that can be used by the adversary to infer whether a direct connection between two

peers exists. We consider a simple relay delay strategy that delays every message

independently using a given delay function d. All notation in this section is discrete,

hence d is a probability mass function (PMF) that de�nes the probability that a

message is delayed by a certain duration.�e duration is a discretized representation

of time, e.g., time slots of millisecond precision. Let f ∗ g denote the convolution

of the (discrete) functions f and g, and let f ∗n denote the n-th convolution power

of a function f . Let C be the random variable modeling the path length between S

and T . C = 1 if S and T are directly connected, C = 2 if there is one hop between S
and T . �e resulting distribution for the overall delay δ equals time t conditional

to the path length C is then given by

P(δ = t∣C = c) = (λ∗c ∗ d∗(c+1))(t). (6.2)

For example, if S and T are directly connected (C = 1), the message is delayed by
one link latency (the link between S and T) and two relay delays according to d

(at peers S and T).

121

6 Topology Inference

�e probability that the distance between S and T is c, given an observed time

di�erence of t, is given by

P(C = c∣δ = t) = P(δ = t∣C = c) ⋅ P(C = c)
P(δ = t) . (6.3)

P(δ = t∣C = c) can be calculated using equation (6.2), P(δ = t) can be calculated
using the law of total probability, P(C = c) is assumed to be known to the adversary
based on statistic properties of the network.�e MLE maximizes P(C = c∣δ = t), i.e.,
the adversary guesses the path length C that is most likely based on the observation δ.

Optimization Methodology Based on the adversary model we will now derive a

delay function d that maximizes the expected error of the adversary, i.e., which makes

topology inference as hard as possible.�e expected error ed of the guess of the adver-

sary depends on the delay function d, and can be calculated using equation (6.3) as

ed =∑
t

[P(δ = t) ⋅ (1 −max
c

P(C = c∣δ = t))]. (6.4)

�e expected error is the objective function that should be maximized.�e variable

in the optimization problem is not a scalar, but the delay function d.�e optimization

has to ensure that d is a PMF (i.e., d(t) ≥ 0∀t,∑t d(t) = 1). Furthermore, we want
to limit the expected value E(d) of d to be less than some constant µ.�e choice of
the parameter µ re�ects performance constraints in the system: A small choice of µ

ensures fast message propagation, a large µ allows for slower message propagation.

�e resulting optimization problem is

maximize
d

ed

subject to E(d) < µ

d is a PMF.

(6.5)

Because d is a discrete function, Equation (6.5) is a multidimensional optimiza-

tion problem, where each time step of the delay function d is one dimension (i.e.,

one free variable) of the optimization problem. �e optimization problem is also

constrained (E(d) < µ and d is a PMF). However, the optimization problem with

both constraints can be transformed into an unconstrained optimization problem

(e.g., using gradient projection [Ros60]).�e optimal solution to the transformed

problem can be approximated using common so�ware for optimization (e.g., we used

the BFGS search algorithm implemented in the Dlib toolkit [Kin09]).

Results We assume a scenario with a �xed latency of one time unit between all

directly connected peers (λ(1) = 1,∀t ≠ 1 ∶ λ(t) = 0), equal a priori probabilities
(P(C = 1) = P(C = 2) = 0.5), and a maximum expected value of 10. �e top part
of Figure 6.15 shows the approximated optimal delay function d̂(t). For a delay of
0 the probability peaks at around 0.42 and rapidly declines to less than 0.02, where

122

6 Topology Inference

0

0.1

0.2

0.3

0.4

0.5

0 20 40 60 80 100

P
D

F

Time

d(t)

0

0.05

0.1

0.15

0.2

0 20 40 60 80 100

P
D

F

Time

c = 1
c = 2

Figure 6.15: Top: Optimal d̂. Bottom: Resulting P(δ = t∣C = c) for c ∈ {1, 2}.
Parameters: µ = 10, λ(1) = 1 (0 else), P(C = 1) = P(C = 2) = 0.5 [NH18].

it stays until t=39.�e expected value of d̂ is 10, ed̂ is 0.41. Please note that d̂ does

not decrease monotonically over time and d̂ does not resemble any common PMF

(e.g., the PMF of a binomial distribution).

�e bottom part of Figure 6.15 shows P(δ = t∣C = c) for the same scenario with
the optimal function d̂ for c ∈ {1, 2}. P(δ = t∣C = c) is used by the MLE to derive
the probability for C = 1 and C = 2, based on the observed time di�erence δ. We can

see that P(δ = t∣C = 1) and P(δ = t∣C = 2) are exactly congruent between δ = 2 and
δ = 19.�is implies that an observation within that range is completely useless for the
adversary. However, if the adversary observes δ = 1, he can be sure that C = 1 because
P(δ = 1∣C = 2) = 0 and P(δ = 1∣C = 1) > 0. If the adversary observes δ ≥ 40, he learns
that C = 2 is more likely than C = 1 because P(δ = t∣C = 2) > P(δ = t∣C = 1).
Especially the observation of δ = 1 is valuable for topology inference, because it
allows the de�nite conclusion that both remote peers are directly connected. While

P(δ = 1∣C = 1) is only around 17% for one single observation, the probability that at
least one out of ten observations for two directly connected peers is δ = 1, is already
at 85%. �is property makes d̂ a non-optimal delay function when the adversary

123

6 Topology Inference

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16 18 20

R
ec

al
l

Number of Observations

d = U(0, 20)
d = Exp(1/10)
d = d̂

Figure 6.16: Recall depending on the number of observations for d ∈
{d̂ , Exp(1/10),U(0, 20)} [NH18].

combines multiple observations.

Figure 6.16 shows the recall (i.e., the probability that an existing connection is

correctly inferred) depending on the number of observations for d being d̂, a uniform

distribution, and an exponential distribution (all with a mean of 10), obtained by

simulation. Although d̂ results in the lowest recall for a small number of observations,

for large numbers of observations other distributions are better for topology hiding.

All shown delay functions result in a recall of more than 95% for 20 observations.

However, these values are a result of the strong adversary model with perfect knowl-

edge of all network properties (e.g., latency, node degree distribution). Imperfect

estimation of these properties causes a decline in inference quality.

Although the considered scenario is simpli�ed, it shows the general possibility

of optimizing the delay function and, thereby, calculating the optimal delay func-

tion according to the given constraints. However, the considered scenario is so

simpli�ed that it neither accounts for realistic latency distributions nor for realistic

network topologies. Furthermore, the optimization problem only covers the tradeo�

between performance and topology hiding, but does not incorporate the requirement

anonymity (cf. Chapter 7).

6.3.4 Discussion

In this section we presented and analyzed a timing-based topology inference method.

�e real-world validation in the Bitcoin network shows that the proposed method

could be used to infer network links at a substantial (∼ 40%) recall and precision at the
time of conducting the experiments in January 2016. We also showed that randomly

delaying the forwarding of messages can, if inappropriately parametrized, actually

reduce the resistance to timing-based topology inference. Finally, we show how such

a parametrization can be optimized regarding performance and topology hiding.

As the �ooding process is inherently observable in permissionless blockchains,

delaying the forwarding of messages is the only possible countermeasure. While

124

6 Topology Inference

transactions were hardly delayed in 2016, the transaction delay has increased sub-

stantially since then (cf. Figure 4.12), rendering the discussed topology inference

method much more di�cult to execute. On the other hand, there were discussions15

in the Bitcoin Cash community to reduce transaction propagation delay in order

to accelerate zero-con�rmation payments.

Finally, we would like to point out the similarity between timing analysis for topol-

ogy inference in �ooding P2P networks on the one hand and timing analysis for

deanonymization in anonymous communication (AC) networks: A common ad-

versary model in the analysis of AC networks is the global-passive adversary (GPA,

e.g. [MD05]), which is able to observe the inter-packet intervals on all links between

nodes of the network.�is adversary model is similar to the one used in this work, as

an adversary that participates in a �ooding network receives all messages from all

of its neighbors and, therefore, can reconstruct message �ows. One di�erence to the

assumptions made in our work is that in AC networks, an adversary is not able to link

messages received by a peer to messages sent by that peer, as these message appear

indistinguishable to the adversary because of encryption. Because timing analysis

attacks on AC networks like Tor have been extensively studied (e.g., [DMMK17]),

knowledge from this area of research might also be applicable in the area of topology

inference in permissionless blockchains.

6.4 Exploiting Peer Discovery for Topology Inference
As discussed in Chapter 3, some form of peer discovery is required for every peer-to-

peer network in order for peers to �nd other peers to connect to. In this section, we

explore how the design of the in-band peer discovery strategy a�ects the requirements

topology hiding, DoS resistance, and performance of a network, and demonstrate

a method for quantitatively assessing the quality of a peer discovery strategy. In

contrast to the previous sections, this analysis does not aim at any speci�c system (e.g.,

Bitcoin), and no real-world validation is performed. Instead, we use simulations to

quantitatively asses the inherent tradeo�s in the design space.�e content presented

in this section has been previously published in [NH18].

6.4.1 Peer Discovery: Requirements & Tradeoffs

It is important that a client is able to quickly establish outgoing connections, not only

from a performance perspective but also for DoS resistance. In the event of an eclipse

attack a client should be able to react on the loss of connections caused by the attack

by the establishment of new connections. Metrics that re�ect this ability are the total

number of IP addresses in a client’s address list and the number of reachable addresses

in a client’s address list.�e total number of reachable addresses gives an upper bound

on the number of successful connections a client can establish, the share of reachable

addresses indicates the probability of successfully establishing a connection per con-

nection attempt, assuming the client tries to connect to randomly chosen addresses.

15https://twitter.com/PeterRizun/status/980224151242784768

125

https://twitter.com/PeterRizun/status/980224151242784768

6 Topology Inference

Another requirement that is a�ected by the peer discovery strategy is topology

hiding as an adversary can infer connections between peers based on the address

messages peers send to their neighbors [MLP+15]. Metrics that indicate the success

of an adversary are precision and recall for the classi�cation problem of whether a

direct connection between two peers exists.

Intuitively we expect that the choice of parameters of the peer discovery strategy

has an oppositional e�ect on the two requirements. For instance, a con�guration that

sends a large number of IP addresses at short time intervals with precise timestamps

of connected IP addresses will result in a good DoS resistance, but will also make

it easy for adversaries to infer the network topology. We will quantitatively analyze

the tradeo� between these two requirements in the next sections.

Finally, adversaries should be unable to eclipse peers by �lling their address list with

IP addresses under the adversary’s control and making the victim peer connect exclu-

sively to attacker’s peers [HKZG15]. We will discuss this requirement in Section 6.4.6.

6.4.2 Peer Discovery Strategy Description

We analyze a basic in-band peer discovery strategy that periodically exchanges reach-

able IP addresses between connected peers.

Every client maintains an address list l containing tuples consisting of an IP address

ai and an associated timestamp ti (l = {(a1, t1), (a2, t2), ...}). Every δs seconds a

client sends an address message containing n randomly (uniform) selected entries of

its address list to each neighbor. On reception of such a message from a neighbor a

client updates its own address list: new addresses (and their timestamp) are added

to the list, and the timestamp of known addresses is updated if a newer timestamp

than the one stored is received. When a new connection is established to or from a

client, the client adds the foreign IP address to its address list l and randomly selects

a timestamp for that IP address from a uniform distribution U[t − δd , t] where t is
the current time and δd is a con�gured value. When the timestamp of a connected

peer becomes smaller than t − δd , a new timestamp is set according to the same

uniform distribution (U[t − δd , t]).�is strategy ensures that the timestamps of all
connected peers are always newer than the current timeminus δd , hence δd represents

the maximum age of connected IP addresses in a peer’s address list. Finally, addresses

with timestamps smaller than t − δx are removed from a client’s address list, with

δx being a con�gurable parameter.

�e described strategy is very simple and can be con�gured using only the parame-

ters n, δs , δd , δx . However, there are many more changes possible, e.g., the timestamp

of connections could follow other probability distributions than the used uniform

distribution, the subset of addresses to be sent to neighbors could be biased based

on the timestamp, or the number of addresses to be sent could depend on the total

number of entries in a client’s address list or the connection duration. However, we

will limit our analysis to the described strategy with its parameters and leave a more

detailed assessment as future work.

126

6 Topology Inference

6.4.3 Adversary Model

�e adversary wants to infer the topology of the network based on information

leaked by the peer discovery mechanism. For now we assume a passive monitor

adversary that establishes connections to peers and receives the announced addresses

from its neighbors. A discussion of other adversary models is made in Section 6.4.6.

We assume that the adversary knows all chosen parameters as well as all required

parameters of the network (e.g., node degree distribution). Consider the example of

an adversary that wants to know whether two peers, p1 and p2, are directly connected.

Let us consider the case that the adversary is connected to p1 only. One observation

o ∈ O by the adversary is the reception of one address message from p1 containing a

subset of p1’s address list. One observation can be either the age of the IP address of

p2 or the fact that the IP address of p2 is not contained in the sent list i.e., o ∈ R+∪{�}
(o = � implying that the IP address of p2 is not contained in the sent list).
Let C be the random variable modeling the existence of a connection between

two peers (i.e., C = 1 if both peers are directly connected, C = 0 otherwise). �e
maximum likelihood estimator (MLE) for a set of observations O maximizes the

likelihood function

L(C = c∣O) = P(C = c) ⋅∏
o∈O

P(o∣C = c)

for c ∈ {0, 1}. In order to utilize the MLE, an adversary requires knowledge of
the probability distributions P(C = c) (i.e., the a-priori probabilities of two peers
being connected) and P(o∣C = c) (i.e., the probability of making a speci�c obser-
vation o conditional to both peers being connected or not connected, respectively).

Combining knowledge about the client source code with statistic properties of the

network into a simulation model allows approximation of both probability distri-

butions for real-world systems.16

6.4.4 Methodology

In order to analyze the discussed peer discovery strategy, we implemented a model of

a P2P network as a discrete event simulation (cf. Chapter 5).�e simulation model

has three types of events: a peer joins the network, a peer leaves the network, and a

peer sends an address message to a neighbor.�e churn of the network (i.e., join and

leave events) was taken from a real-world measurement on the Bitcoin network: our

monitor peer establishes connections to all reachable peers on the Bitcoin network.

Every new connection to the monitor peer translates to a join event, every disconnect

translates to a leave event.�e simulation was performed with a one week snapshot

16P(o = �∣C = 1) is calculated by dividing the parameter n (the number of IP addresses a client
sends) by the total number of addresses in the client’s address list. Both values can be approximated by

the adversary from the client source code. P(o = �∣C = 0) is calculated as P(o = �∣C = 1)multiplied
by the probability that a client has the IP address in question in its list. An adversary with knowledge

of the client source code and basic statistic properties of the network (e.g., number of nodes, churn)

can approximate that probability by simulation.�at way, an adversary can also derive P(o∣C = 1) and
P(o∣C = 0) for o ≠ �.

127

6 Topology Inference

2000

4000

6000

8000

10000

12000

14000

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

considered
intervalN

um
b

er
of

U
ni

qu
e

IP
A

dd
re

ss
es

Figure 6.17: Measured number of unique IP addresses of the Bitcoin P2P network to

which connections were established per day during the year 2017 [NH18].

from May 29th, 2017 until June 5th, 2017. During that period, our monitor peer

established connections to 35,000 unique IP addresses. On average around 9,000 peers

were concurrently reachable during that period, which is also the size of the simulated

network. All simulations were performed for the duration of one simulated week.

Although the use of a speci�c snapshot from the Bitcoin network for parametrization

of the simulation reduces generality of the obtained results, the selected snapshot

is a representative sample of the Bitcoin network in 2017: Figure 6.17 shows the

number of unique IP addresses to which connections were established per day during

the year 2017. While there were anomalous events during that year (e.g., several

thousand Sybil peers on August 1st), no such event occurred during the considered

time frame. Furthermore, the observed connection duration distribution during

that time frame is consistent with the distributions observed during most of the

year. Finally, other measurements of the Bitcoin network17 are in correspondence

to our measurements. We will discuss whether the results can be generalized to

other networks in Section 6.4.6.

When a peer joins the network in the simulation, it establishes 8 outgoing con-

nections to randomly selected peers. When a peer leaves the network, other peers

that established an outgoing connection to the leaving peer establish new outgoing

connections to other randomly selected peers so that the total number of outgoing

connections remains 8.�is behavior matches the behavior of the Bitcoin client.

�e address send event implements the described strategy.�e simulation does not

account for latencies between peers because these are typically in the milliseconds

range and, therefore, irrelevant for our analysis. We also ignored unreachable peers

during the simulation but will discuss the e�ect of unreachable peers on the results

later.�e simulation also allows us to directly observe all probability distributions

(cf. Sec. 6.4.3) required for the adversary. We simulate the adversary by providing

17Publicly available data sources include https://bitnodes.earn.com/ and http://
bitcoinstats.com/network/propagation/.

128

https://bitnodes.earn.com/
http://bitcoinstats.com/network/propagation/
http://bitcoinstats.com/network/propagation/

6 Topology Inference

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0.1 1 10 100 1000

A
vg

.
N

um
b

er
of

IP
A

dr
es

se
s

δd [min]

n = 100, total
n = 100, reachable
n = 10, total
n = 10, reachable

Figure 6.18: Average number of IP addresses in all client’s address lists [NH18].

all these probability distributions and observations to the simulated adversary and

letting the adversary guess whether peers are connected or not.�is implies that our

adversary has perfect knowledge, which is almost impossible to achieve in reality.

6.4.5 Results

Wewill now �rst discuss simulation results regarding DoS resistance and then discuss

results regarding topology hiding. We �xed the address send interval δs to one hour

and the address deletion age δx to 24 hours for all simulation runs. Parameters

that were varied were the number of addresses to send n and the maximum age

of connected IP addresses δd .

Figure 6.18 shows the average number of IP addresses (total and reachable only) in

all client’s address lists for n ∈ {10, 100} depending on δd . For n = 100 the average total
number of IP addresses is around 5,500 for δd < 100 minutes.�e average number of
reachable IP addresses is around 3,700 for δd < 100 minutes. For very large choices
of δd , the total and reachable number of IP addresses decline. With n = 10 a similar
behavior can be seen, although the overall numbers aremuch smaller (less then 1,000).

�e results indicate that the discussed peer discovery strategy works well over a

wide range of parameter choices. Even when con�gured to sending only 10 addresses

per hour per neighbor (n = 10), the address list of peers still contains around 600
reachable IP addresses on average. Furthermore, the e�ect of the choice of δd is

negligible for δd < 100 minutes. Please note that the given values are averages over all
peers a�er one week of simulated time. Peers that remain in the network for a long

time and have established many connections have more entries in their address list

than peers that joined the network just a short time ago. Furthermore, the session

length distribution of peers a�ects the share of reachable IP addresses: a large number

of short living peers would increase the total number of IP addresses but would

contribute less to the number of reachable IP addresses.

Based on these results we chose three parameter sets for analysis of a topology

inference attack. We �xed the number of addresses to send to n = 100 and simulated

129

6 Topology Inference

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

R
ec

al
l

Number of Observations

δd = 0.16min
δd = 85min
δd = 683min

Figure 6.19: Average recall depending on the number of observations ∣O∣ [NH18].

a topology inference attack for δd ∈ {0.16min, 85min, 683min}. δd = 0.16min and
δd = 683min represent extreme choices (corresponding to the outermost points in
Figure 6.18), δd = 85min corresponds to a choice where, based on the results from
Figure 6.18, no signi�cant deterioration of DoS resistance can be expected.

Figure 6.19 shows the expected recall depending on the number of observations ∣O∣.
Recall is de�ned as the quotient of true positives and relevant elements, i.e., the

share of existing connections the adversary infers. As expected, the recall rises in

the number of observations and also rises with decreasing δd .

Figure 6.20 shows the expected precision depending on the number of observa-

tions ∣O∣. Precision is de�ned as the quotient of true positives and all inferred elements,
i.e., the share of inferred connections that actually exist. For δd = 0.16min the pre-
cision is close to 1 regardless of the number of observations. For the other δd , the

precision increases with the number of observations.

6.4.6 Discussion

We will �rst discuss the implications of the shown results before we address various

aspects of the adversary model and the discussed strategy.

Results

Assume a con�guration with δd = 85min and n = 100. Our results then show that
an adversary that is able to obtain 100 observations from a certain peer is able to

identify 55% of the neighbors of that peer with very high precision (i.e., almost no

false positives). With the setting of δs to one hour, an adversary that only connects

to that peer would have to wait 100 hours. A monitor adversary that connects to

all reachable peers would only need to wait 50 hours to obtain 100 observations for

each pair of peers because he receives one address message per hour from every peer.

By using more than one monitor peer an adversary can easily reduce the required

time to collect the desired number of address messages.

One important requirement for the adversary is that the network topology does

130

6 Topology Inference

0.5

0.6

0.7

0.8

0.9

1

1.1

0 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

on

Number of Observations

δd = 0.16min
δd = 85min
δd = 683min

Figure 6.20: Average precision depending on the number of observations ∣O∣ [NH18].

not change while making observations. Measurements on the Bitcoin network show

that roughly 40% of all connections exist for periods longer than one week (cf. Sec-

tion 4.2.1). In these cases even an adversary with onemonitor peer would be able to col-

lect enough address messages to identify a substantial share of connections of peers.18

Adversary Model

�e adversary model we considered in this analysis is in some aspects stronger than

whatwe expect a real adversary to be (e.g., perfect knowledge of all relevant parameters

and distributions), however, there are other aspects where a stronger adversary model

might be appropriate. First, we assumed the adversary to be passive. In reality, an

adversary can easily actively transmit its own address messages to other peers.

A very simple attack is to �ood unreachable IP addresses to other peers so that the

share of reachable IP addresses decreases.�e number of IP addresses an adversary

can send per connection is limited by the choice of n/δs and the expiration duration

δx . For instance, with δs and δx as before and n = 100, an adversary can send up to
2400 unreachable IP addresses per connection in 24 hours. Even with 100 adversarial

connections, the share of reachable IP addresses would still be around 1.5 %, implying

that a connection can be established within a few minutes or less. Furthermore,

the required memory to store all addresses would be less than 10MB. Hence, this

attack is not viable for most scenarios.

A known attack is to eclipse peers by �lling their address list with IP addresses under

the adversary’s control and making the victim peer connect exclusively to attacker’s

peers [HKZG15]. If a client selects IP addresses from its address list randomly for

establishing connections, the adversary has no other option than to announce the

IP addresses of his peers and hope that the victim peer connects exclusively to his

peers. In the analyzed case, an adversary has to spawn more than 40,000 peers and

announce their IP addresses in order to eclipse a peer with 8 outgoing connections

18Although some parameters were chosen in accordance with those in Bitcoin, our results are not

directly applicable to the Bitcoin network because neither the discussed peer discovery strategy nor

the network topology matches the ones in Bitcoin.

131

6 Topology Inference

with a probability of 50%.19

Furthermore, the considered MLE is only optimal assuming independence between

several observations. Adversaries could exploit further information such as the dif-

ferences in timestamps of certain IP addresses between several observations. Also,

partial knowledge of the network topology might enable an adversary to not only

exploit information received from peers p1 and p2 in order to infer whether a con-

nection between p1 and p2 exists, but also to facilitate information sent by other

peers (e.g., the neighbors of p1 and p2).

Peer Discovery Strategy

Although the analyzed peer discovery strategy is very simple, the results indicate

that an adequate parametrization of the strategy could already satisfy the considered

requirements to a reasonable extend. In scenarios with stronger requirements, several

changes to the strategy are possible: In order to prevent toomany connections to peers

from small IP ranges or the same AS, simple checks can be implemented a�er the

random selection of IP addresses from the address list. Selecting IP addresses biased

towards new addressesmight improve performance, however, it can be easily exploited

by adversaries to increase chances of connections to its ownpeers.�erefore, a random

selection is preferable. A possibility to improve performance and DoS resistance at the

cost of higher bandwidth cost proposed in [HKZG15] and implemented in Bitcoin20

is to continuously check whether IP addresses are reachable.�is drastically reduces

the share of unreachable IP addresses.

6.5 Topology Inference - Discussion
In this chapter we presented and analyzed four di�erent topology inference methods.

Figure 6.21 summarizes the results for all methods.�e �rst method targets the accu-

mulation of transactions in the Bitcoin client bitcoind, however, the lack of validation

possibilities makes an assessment of the real-world inference quality challenging.�e

second analyzed method exploits the handling of double spending transactions and

resulted in an inference quality su�cient for academic and adversarial purposes.�e

third method is based solely on passively observing the timing of message propaga-

tion. It resulted in a reasonable inference quality in 2016, but is hardly feasible as

of 2018 because of deliberately increased and randomized transaction propagation

delays.�e fourth method targets the peer discovery mechanism, which turned out

to be exploitable only for certain parametrizations.

We emphasize that topology inference is usually only an intermediate goal (cf. Chap-

ter 3).�erefore, whether the quality of an inference method is su�cient depends on

the actual goal of the adversary. Topology inference can be seen as a dual use technol-

ogy, which can be used for research purposes as well as for adversarial purposes. First,

19Calculated as: (number of adversarial peers / total number of reachable IP addresses in l)8 = 0.5:
40000/437008 ≈ 0.49.
20https://github.com/bitcoin/bitcoin/blob/5114f8113627791b871c88998bd/

src/net.cpp/#L1756

132

https://github.com/bitcoin/bitcoin/blob/5114f8113627791b871c88998bd/src/net.cpp/#L1756
https://github.com/bitcoin/bitcoin/blob/5114f8113627791b871c88998bd/src/net.cpp/#L1756

6 Topology Inference

Peer

Discovery

Propagation

Timing

Double

Spends

Transaction

Accumulation

• Inference of random edges

• Difficult validation

• Implementation specific

• Possible in any open flooding

network

• Reasonable inference quality

• Passive attack possible

• Possible in any P2P network with

in-band peer discovery

• High inference quality

• Low costs

• Validation possible

• Substantial precision and recall

• Low costs (variant DS)

• Unreachable nodes reduce

inference quality

• Inference quality strongly

depends on parametrization

of peer discovery

• Randomization of message

propagation substantially

reduces inference quality

Figure 6.21: Overview of considered topology inference methods. Advantages and

drawbacks of each method are given from the perspective of enabling topology infer-

ence.

it can be used as a basis for a deanonymization of users [FV17]. Further research is

required in order to asses, whether the topology inference quality provided by the

analyzed methods is su�cient for deanonymization.21 Secondly, topology inference

can be used as a basis for eclipsing attacks. While it is hard to estimate the capabilities

and motivation of an adversary wishing to perform an eclipsing attack, the quality

of the analyzed topology inference methods seems su�cient to substantially reduce

the costs for eclipsing attacks. Finally, topology inference can be used as a basis for

research. Using the analyzed methods it is not possible to get a view of the complete

network graph, which might be desirable for a precise parametrization of simulation

models. However, insights on properties such as the node degree distribution or on

single, conspicuous peers can be gained using the analyzed methods.

All analyzed topology inference methods have two general limitations in common.

First, connections to unreachable peers cannot be inferred using any approach.22

Although unreachable peers to not contribute to the P2P network by providing con-

nection slots, they contribute to the overall security because they are hidden to most

other peers (except for those peers they are connected to). Secondly, churn changes

the network topology over time, limiting the time frame available for gathering

information for topology inference.

�e fact that the topology of a changing network is harder to infer suggests the

idea to deliberately disconnect from neighbors a�er a certain period and regularly

establish new connections to other peers.23 If topology hiding is considered extremely

important in a certain system, clients could apply a notion similar to the privacy

budget known from di�erential privacy [Dwo08] to its own connections. Sending

21https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2018-
July/016216.html
22Although peer discovery can leak IP addresses of unreachable peers, those IP addresses could be

�ltered by checking the reachability of an IP address before announcing it.
23�is idea has been proposed for structured P2P networks [CKS+06].

133

https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2018-July/016216.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2018-July/016216.html

6 Topology Inference

messages that allow an adversary to infer that connection decreases the budget of

the connection. When the budget is exceeded, the connection is terminated. One

drawback of this approach is, however, that an unstable network topology not only

increases bandwidth cost, but also reduces DoS resistance against short term Sybil

attacks. An adversary that enters the network with a large number of Sybil peers is

able to thin out connections between honest peers much faster in a changing network,

as peers will establish connections to the Sybil peers faster. �erefore, a thorough

analysis of all implications of such an approach is required.

Several countermeasures were discussed for all analyzed topology inference meth-

ods. All countermeasures have two aspects in common: First, they all randomizewhen

actions are performed by a client (e.g., delay of transaction propagation) and how

these actions are performed (e.g., accumulated vs. individually). We could show that

the parametrization of the random process (i.e., the probability distribution used for

transaction trickling) is crucial for the e�ectiveness of the countermeasure. Secondly,

all countermeasures have in common that they make actions initiated by a client

independent of what an adversary can in�uence. �is includes making decisions

independent of information provided by other, untrusted peers.

A possible way to improve inference quality is to combine the information gathered

using several of the discussed methods. For instance, passively acquired timing infor-

mation might be used to establish guesses, which can be con�rmed by active methods

with higher precision such as the method exploiting double spends. Furthermore, the

method exploiting double spends might be optimized by making use of more monitor

peers, by a continuous sending of transactions, or by further combination of double

spending inputs. In this dissertation we analyze the feasibility and quality of several

topology inference methods, but do not actually apply the methods with the goal

of inferring the topology of a complete real-world network. By further improving

the discussed methods, an approximation of node degree distribution or the iden-

ti�cation of single, well connected peers might be possible. Such knowledge could

facilitate further research by improving the available simulation model, hence making

simulation-based assessments more accurate. However, such knowledge could also

facilitate attacks on the network.�erefore, it can be reasonable to design a network

so that the e�ectiveness of topology inference is limited, although knowledge of the

topology is desirable from a scienti�c perspective.

134

7

Anonymity

We have identi�ed anonymity as a security objective of permissionless blockchains in

Chapter 3. In this chapterwe empirically address the questionwhether observations on

the Bitcoin P2P network can be used to link the creators of transactions to IP addresses

of Bitcoin peers.�e content of this chapter has been previously published in [NH17].

Several previous works suggest that a network-based deanonymization can be

possible in certain scenarios and assuming certain adversary models (e.g., [Kam11,

KKM14, FV17, BKP14]). However, with users using dynamically assigned IP addresses,

operating from clients behind NAT routers or using wallet services, it is not clear

whether information obtained by participating in the network and observing the

normalmessage �ow could be used for the deanonymization of Bitcoin users.

In addition to network-based deanonymization, heuristics for the clustering of

Bitcoin addresses based solely on blockchain data have been proposed (e.g., [RH13]),

which can enable the linking of several addresses to one user. It was also shown that

it can be possible to establish a link between one of a user’s addresses and informa-

tion from additional sources that reveals the user’s identity. In the worst case, this

knowledge can be used to learn about all �nancial transactions of an identi�able user.

One fundamental challenge for the analysis of deanonymization approaches is the

lack of ground truth data.�erefore, neither for a blockchain based clustering nor for

a network-based deanonymization a ground truth validation can be performed.1 How-

ever, both approaches operate on disjoint data (blockchain vs. network data) but aim at

computing the same result (addresses controlled by one user).�erefore, a correlation

between the results of both approaches can serve as a validation of both approaches.

Figure 7.1 illustrates our approach: First, we apply blockchain based clustering

1An exception to this is was presented by Nick [Nic15], who was able to extract ground truth data

because of a client implementation bug.

135

7 Anonymity

User–Addresses Association

(Address Clustering)

TX–IP Address Association

(Network Observation)
TX

TX

PK
PK

PK

IP

IP

Correlated?

Figure 7.1: High-level overview of the used approach: Addresses are clustered using

known heuristics; transactions are assigned to IP addresses based on network observa-

tions and to clusters based on their content. We then check whether single clusters are

conspicuously o�en associated to a single IP address, and whether single IP addresses

are conspicuously o�en associated to a single cluster [NH17].

heuristics that result in disjoint sets of Bitcoin addresses.�en, we assign transactions

to IP addresses based on network observations. Furthermore, each transaction is

assigned to a cluster, based on the input addresses used in the transaction. Finally, we

validate our approach by analyzing the correlation between IP addresses and clusters.

�e remainder of this chapter is structured as follows: A�er brie�y addressing

related work in Section 7.1, we describe and apply all clustering heuristics that are

known to us in Section 7.2. �e network based deanonymization approach is pre-

sented in Section 7.3, which also contains the validation of the approach. Finally,

a discussion of the results is given.

7.1 Related Work
�e anonymity of users in Bitcoin has been analyzed in several ways in the past.�e

fact that all transactions are publicly available facilitated clustering approacheswith the

goal to group Bitcoin addresses by the controlling user. We will review all published

heuristics known to us in detail in Section 7.2 and therefore sketch related work only

brie�y here. �e �rst analysis of anonymity in Bitcoin was performed by Reid et

al. [RH13] and already made use of the most commonly used heuristic that links the

addresses used by multiple inputs of one transactions to one user.2 Meiklejohn et

al. [MPJ+13] proposed additional heuristics based on the behavior of standard clients.

Blockchain information has not only been used for clustering but also for large

scale analysis of the distribution of wealth, common transaction patterns, behavior

analysis, etc. [RS13], and for an evaluation of user privacy [AKR+13]. More recently,

Nick was able to use ground truth data of consumer wallets due to a bug in a client

implementation [Nic15].�is work also proposes a heuristic speci�c to the behavior

2Satoshi Nakamto already mentioned the basis for this heuristic in [Nak08]:
”
Some linking is still

unavoidable with multi-input transactions, which necessarily reveal that their inputs were owned by

the same owner.“ It was later shown that transactions can actually be created by multiple users that

each sign only one input [Max13].

136

7 Anonymity

of consumers in Bitcoin. Reasons for the e�ectiveness of clustering have been given

by Harrigan et al. [HF16], e.g., the incremental growth of clusters.

Network based information has also been used previously to attack the anonymity

of users. For instance, the observation of anomalous relaying behavior has been used

to map Bitcoin addresses to IP addresses [KKM14]. Furthermore, it was shown that

the creation time of transactions can be used to infer the user’s time zone [DS15],

which might provide a link to the user’s identity given background information.

Biryukov et al. [BP14] performed a man in the middle attack on clients using Tor by

becoming the only possible Tor exit node by banning all other exit nodes in the Bitcoin

network. Because all connections of a victim’s peer are then routed through adversarial

peers, the adversary can link the IP address used to publish Bitcoin transactions to

the used Bitcoin addresses.

7.2 Clustering based on Blockchain Information
Each Bitcoin user can create a practically unlimited number of distinct public/private

key pairs and use each of them only for one transaction. Hence, each Bitcoin address

can be seen as one pseudonym of the user.�e goal of address clustering is to partition

the set of Bitcoin addresses into subsets (clusters), so that each subset contains the

addresses under the control of one user. Several heuristics for address clustering in

Bitcoin have been proposed in the past. We will now brie�y describe the general

procedure for clustering, which uses one or more heuristics, and then describe and

discuss the used heuristics.

7.2.1 Clustering Procedure & Heuristics

For the de�nition of the heuristics used in clustering, we use the following notation,

which loosely follows the notation used in [MPJ+13]: Let t ∈ T be a Bitcoin transac-
tion. Let P be the set of all addresses speci�ed in all transactions in T . Let the set
inputs(t) ⊆ P include all addresses referenced by the inputs of a transaction t and the
set outputs(t) ⊆ P include all addresses contained in the outputs of a transaction t.
Let o j(t) ∈ outputs(t) be the j-th output of a transaction t (j ≤ ∣outputs(t)∣), and let
i j(t) ∈ inputs(t) be the j-th input of a transaction t (j ≤ ∣inputs(t)∣) .
�e clustering procedure computes a partition Π = {C1,C2, ...,Cn} of the set of all
addresses P with C1, ...,Cn denoting the resulting clusters. Ideally, each cluster con-

tains all addresses used by one user.�e clustering process is depicted in Figure 7.2: All

transactions are processed in their temporal order. For each transaction t, a cluster Ĉt

is computed that contains all addresses that belong into one cluster, according to the

evaluated heuristics. �is transaction speci�c cluster Ĉt encodes which addresses

used in the transaction are controlled by one user.

�e heuristics are applied in a prede�ned order, each heuristic further altering Ĉt .

Ĉt is then used to merge existing clusters in Π, and to add new addresses to Π. Several

cases are possible: If Ĉt contains only new addresses (i.e., addresses which are not

yet in any cluster in Π, Ĉt is added as a single new cluster to Π. If Ĉt contains one

137

7 Anonymity

t

outputs(t)

i1(t)

i2(t)

o1(t)

o2(t)

inputs(t)

T
Heuristics

H1

H2

HV

HG

C2

C3

C1

modify merge

…

C4

Figure 7.2: Overview of the clustering process.�e set of transactions T is chrono-

logically processed using all selected clustering heuristics.�e heuristics modify the

temporary cluster Ĉt for each transaction t. A�er processing of each transaction, Ĉt

is merged into the partition Π.

or more address from exactly one existing cluster in Π, Ĉt is added to that cluster.

If Ĉt contains addresses from more than one existing cluster in Π, all those existing

clusters are merged into one cluster, and remaining addresses from Ĉt are added to

that merged cluster.�is transitively connects all addresses controlled by one user

(according to the applied heuristics).

We will now describe the heuristics used for the clustering process.

Heuristic 1 (H1): Multi-Input

If a transaction spends more than one input, the transaction needs to be signed using

the private keys corresponding to the public keys from all inputs. Assuming that the

transaction was created by a single user, that user controls all addresses that are input

to the transaction.�is heuristic was �rst used in [RH13] and [MPJ+13].

For a transaction t the cluster determined by this heuristic is Ĉt = inputs(t).�is
heuristic is always applied �rst and is used for all used combinations of clustering

heuristics.�is heuristic only produces false positives (i.e., clustering addresses that

are not controlled by the same user into the same cluster), if the assumptions are not

correct.�is can be either the case if users give services access to their private key

(e.g., Mt.Gox) or if transactions are assembled by multiple users in a decentralized

fashion (e.g., CoinJoin [Max13]).

Heuristic 2 (H2): Change Address

Every output of a transaction can only be spent in its entirety. Hence, if Alice controls

an unspent outputworth 2 BTCandwants to pay Bob 1 BTC,Alice creates a transaction

claiming the 2 BTC as an input with two outputs: One output of 1 BTC to Bob’s address

and one output of 1 BTC to a change address [MPJ+13] under the control of Alice

(assuming no transaction fees). Since the change address as well as the addresses of

the inputs (cf. H1) are all controlled by Alice, they should be clustered together.�e

challenge is to identify which output is the change address and which output is the

address of the payee, which should be in a di�erent cluster. Meiklejohn et al. [MPJ+13]

138

7 Anonymity

proposed the following heuristic to identify the change address: An output o j(t) is
the change address if these four conditions are met:

1. �is is the �rst appearance of the address o j(t).

2. �e transaction t is not a coin generation transaction.

3. �ere is no address within the outputs, which also appears on the input side

(self-change address).

4. Condition 1 is only met for exactly one o j(t) and not also for some ok(t) with
j ≠ k.

For a transaction t the partition determined by this heuristic (based on Ĉt fromH1) is

Ĉt = inputs(t) ∪ {o j(t)}.
�e rationale behind this heuristic is that the reference Bitcoin client creates a new

key pair for change addresses and only uses these addresses once when the received

change is spent again. Ancient version of bitcoind used to send change to an address

that was also used as input (self-change address).

Obviously, this heuristic can lead to false positives and false negatives: In a transac-

tion with two outputs that have not appeared before, it is not possible to determine

the change address (cond. 4), although there might be one. Also, a transaction could

spend money to two payees without any change and the heuristic could mistake one

of the payees’ addresses for the change address.

Heuristic 2 exceptions

In order to capture changing wallet behavior, two exceptions to Heuristic 2 have

been proposed in [MPJ+13]: �ere is no change address in a transaction t if there

is an output address in t that. . .

– had already received exactly one input (H2a).

– had been used in a self-change transaction before (H2b).
�ese exceptions captured common behavior in 2013, however, it is not clear whether

the exceptions are useful anymore.

We now de�ne an additional exception to heuristicH2 that makes use of blockchain

information that is newer than the current processed transaction t.�e behavior for

change addresses is that they are only used once. In H2 we demand that, in order

to qualify as a change address, an address must not occur before t. However, with

H2c we demand that the address also does not occur in later transactions (except
for one occurrence as an input).

Value based (HV): Optimal Change

If a transaction has only one output, whose value is smaller than any of its inputs, this

output address is likely the change address.�is heuristic is based on the behavior

of Bitcoin clients to minimize the transaction size, i.e., the number of inputs and

outputs: If the change was larger than any input, the input could be omitted and the

change could be reduced by this input.�is heuristic was used in [Nic15].

139

7 Anonymity

Table 7.1: Comparison of all heuristics. Total number of addresses: 196,963,722, total

number of transactions: 172,868,721 [NH17].

Heuristics # Cluster ∅Size Max Size #Cluster w/ Size 1

H1 88m 2.24 12m 65m

H1+H2 46m 4.25 92m 29m

H1+H2a 51m 3.89 87m 32m

H1+H2b 63m 3.10 66m 40m

H1+H2c 48m 4.13 85m 30m

H1+HG10 146m 1.34 0.1m 123m

H1+HG100 121m 1.62 0.25m 97m

H1+HG1000 108m 1.83 1m 84m

H1+HG10000 104m 1.88 8m 81m

H1+HV 72m 2.71 76m 62m

Consumer based: Redeeming Transaction

Nick [Nic15] proposed a heuristic that uses properties of the redeeming transaction of

a possible change output (i.e., the transaction with the change output as an input). For

a change address it requires that the redeeming transaction has at most two outputs.

�e heuristic was used speci�cally for clustering consumer wallets that show this

characteristic. �e approach used by Nick made it possible to identify consumer

wallets. As we cannot distinguish between consumer wallets and other wallets, we

omit this heuristic from further analysis.

Cluster Growth (HG)

In [HF16] it has been shown that clusters normally grow in steady, but small steps.

Especially the merger of two already large clusters by a new transaction is unlikely

and might hint at a false positive from one of the applied heuristics.�is observation

can be formulated as a heuristic that can be applied a�er other heuristics have already

established a transaction speci�c partition.

HGk: If updating Π with Ĉt would cause the largest a�ected partition in Π to grow

by more than a constant number of k addresses, then set Ĉt = ∅.
Discussion

To our knowledge, we list all heuristics that were published. However, there is a

whole class of heuristics that we barely cover. Although most described heuristics

only consider single transactions, heuristics could exploit knowledge of the complete

transactions graph and base their decisions on any property derived from the graph.

�e consumer based heuristic and the cluster growth heuristic use simple transaction

graph information, but much more sophisticated methods, e.g., facilitating metrics

such as connectivity or centrality are possible.

Furthermore, we acknowledge that a lot of manual e�ort can be put into a better

clustering by carefully inspecting special cases, modeling speci�c behavior and man-

140

7 Anonymity

0
1

10
100

1,000
10,000

100,000
106
107
108

[1-10)
[10-100)

[100-1,000)

[1,000-10,000)

[10,000-100,000)

[100,000-10 6)

[10 6-10 7)
[10 7-10 8)

C
lu

st
er

C
ou

nt

#Addresses per Cluster

H1
H1+H2
H1+H2a
H1+H2b
H1+H2c

Figure 7.3: Histogram of the resulting cluster sizes for heuristicsH1 and variants of

H2 [NH17].

ually merging or splitting clusters. For the sake of comparability, we chose not to

do any manual intervention in our clustering process. We also acknowledge that

many heuristics were proposed several years ago andmight depend on client behavior,

which could have changed in the meantime. For instance, between May 2015 and

April 2017, more than 78,000 CoinJoin could be identi�ed [GKRN17].

7.2.2 Results

We will now compare the results of the clustering process with di�erent combinations

of heuristics.�e clustering was performed at blockchain height 440,349 (November

24th, 2016). Using machines equipped with a Xeon E7-8837 and 512 GB memory, one

run of our implementation3 of the clustering process took about 30 minutes to com-

plete. Prior to clustering we generated the transaction graph as a pointer-based data

structure.�is process takes several hours but requires lessmemory and only has to be

done once.�e generated data structure is then read to memory by the clustering pro-

cess, which is run completely in-memory and requires no further hard disk accesses.

Table 7.1 lists a comparison of key properties of the resulting clusterings for the

heuristicsH1, all discussed variants ofH2,HV, and several variants ofHG.�e shown

properties include the total number of clusters (# Cluster), the average number of

addresses per cluster (∅Size), the number of addresses of the largest cluster (Max Size),

and the number of clusters that consist of only one single address (#Cluster w/ Size 1).

Applying only heuristic H1 results in a clustering with 88m clusters. Additionally

applying H2 causes more clusters to be merged, hence resulting in fewer, but bigger,

clusters. Additionally applying variants of HG, however, causes fewer clusters to be

merged, hence resulting in more, but smaller, clusters.

�e di�erent variants of heuristic H2 lead to 46m to 63m clusters. �e three

exceptions to H2 cause fewer clusters to be merged than by applying H1 and H2 only.

3https://github.com/tillneu/bitcoin-clusterer

141

7 Anonymity

�e strongest e�ect on the resulting clusters has H2b, which reduces the average

cluster size from 4.25 for H2 to 3.1 addresses per cluster for H2b. Figure 7.3 shows a

histogram of the resulting cluster sizes for heuristicH1 and for variants of the heuristic

H2. Interestingly, all variants ofH2 cause the number of clusters for all sizes except

10 to 100 addresses to decrease when compared to applying H1 only.

�e value based heuristic HV has only a small e�ect on the average cluster size

(grows to 2.71 addresses per cluster) but a large e�ect on the size of the largest cluster

(from 12m to 76m). A possible explanation for the result is that a disproportionately

large share of transactions that originated from that super-cluster have a combination

of input and output values that makes HV applicable to them, thus merging more

addresses into the super-cluster.

A small choice of the parameter k for the heuristic HG causes fewer clusters to be

merged as the threshold is easily exceeded. �is causes the average cluster size to

decrease down to 1.34 addresses per cluster for HG10. Figure 7.4 shows a histogram of

the resulting cluster sizes for variants of the heuristicHG. Notably, there are onlyminor

changes in the number of clusters with a size of 10 to 100,000 addresses. However,

the number of clusters with 100,000 to 1 million addresses is reduced to 1 using HG10
compared to 59 using only H1. Most likely, transactions that cause a false positive

in H1 are less likely to occur in these medium sized clusters.

In all variants the largest identi�ed cluster contains between 100,000 and 92m

addresses.�is cluster contains among others the addresses of the former exchange

Mt.Gox.�e existence of this super-cluster was also discussed in [HF16].�e size of

that cluster is substantially increased by application of variants ofH2 andHV, whereas

the application of HG can limit the growth of that cluster.

�e di�erences in the resulting cluster sizes, counts, and composition of the clusters

depending on the used heuristics illustrate the challenges in the validation of clustering

approaches without ground-truth data. While it is still possible that one combination

of heuristics performs a perfect clustering (i.e., one cluster per user), it is much more

likely there are errors in all resulting clusterings - we just cannot identify these errors

because of a lack of ground-truth data. For our approach, it is not required to identify

the best heuristic and assess its quality. Instead, we compare all resulting clusterings

with our collected network-based observations.

7.3 Network Information
Wewill now explain how network based information was acquired and how that infor-

mation is compared to the blockchain information based clustering results.�e main

idea is to associate IP addresses to transactions based on observations on the Bitcoin

P2P network and then use the previously established linking between clusters and

transactions in order to determine the correlation between clusters and IP addresses.

142

7 Anonymity

0
1

10
100

1,000
10,000

100,000
106
107
108

[1-10)
[10-100)

[100-1,000)

[1,000-10,000)

[10,000-100,000)

[100,000-10 6)

[10 6-10 7)
[10 7-10 8)

C
lu

st
er

C
ou

nt

#Addresses per Cluster

H1
H1+HG10000
H1+HG1000
H1+HG100
H1+HG10

Figure 7.4: Histogram of the resulting cluster sizes for heuristics H1 and variants of

HG [NH17].

7.3.1 Association of Transactions and IP Addresses

In order to observe transactions being �ooded through the network, we deployed

two monitor peers that maintain connections to all reachable peers in the network

and log for each transaction, when it is received from each peer in the network

(cf. Section 4). For each transaction there is one peer (originator) which �rst sent

the transaction to our monitor peer. We want to associate one IP address to each

transaction. However, we cannot conclude that the �rst peer we received a transaction

from has really �rst brought the transaction to the network, nor can we conclude that

the peer generated the transaction. First, the user could connect to any reachable peer

in the network, send the transaction to that peer and leave the network a�erward.

Secondly, due to trickling, the transaction can be sent to other network peers, which

might forward the transaction to our monitor peers before we receive the transaction

from the creating peer.�erefore, we apply several heuristics that aim at reducing

the number of obviously false mappings:

– If both monitor peers �rst received a transaction from di�erent peers, we
discard both possible originators.

– If the time di�erence at which the transaction is received from the originator
by both monitor peers di�ers by ≥100ms, the originator is discarded.

– �e subsequent receptions of the transaction from other peers must not be

faster than what the speed of light in �ber allows. By using the Maxmind GeoIP

services4, we can approximate the location of the other network peers and

establish a lower bound on the time it takes for a transaction to be transmitted

from the originator to our monitor peer via any other network peer. If we

receive a transaction faster than that lower bound, we discard the originator.

4http://dev.maxmind.com/geoip/

143

http://dev.maxmind.com/geoip/

7 Anonymity

0

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000 1 × 106

IP
A

dd
re

ss
C

ou
nt

#TX Associated w/ Single IP Address

Figure 7.5: Histogram of the number of unique transactions associated per IP ad-

dress. Read as:�ere are 10,000 IP addresses that are associated to 4 to 8 transactions

each [NH17].

During themonitored period between block 366,000 (2015-07-19) and block 440,349

(2016-11-24), 96,520,958 transactions were added to the blockchain. For 9,934,056 of

these transactions (≈ 10%), we identi�ed an originator IP address using the heuristics
described above. In total, 79,079 unique IP addresses appeared as originators.�is

leads to an average of about 125 transactions per IP address. However, the number of

transactions associated per IP address follows a heavy tailed distribution. Figure 7.5

shows the distribution of howmany transactions were associated with each IP address.

Most IP addresses were an originator address only for a small number of transactions.

However, two IP addresses were originators for more than 65,000 transactions each.

Interestingly, both of these IP addresses (one of which IPv4 and one IPv6) are in

IP ranges assigned to the same hosting provider.

Although we are able to associate IP addresses to transactions, we do not know

whether the mapped IP addresses in fact identify the user that issued the transaction

and simply regard the IP address as a piece of information that might be linked to

the user. In order to validate that linking, we will now compare the results from the

clustering based on the transaction graph to the collected IP address information.

7.3.2 Methodology

We will now introduce the notation used for the association of clusters with IP

address information. For the association between transactions and clusters we use the

following notation: Let c(t) describe the cluster that issued a transaction t according
to the evaluated heuristics.5 Let the set of transactions issued by a cluster C be

TC ∶= {t ∈ T ∶ c(t) = C}. For the association between transactions and IP addresses
as described in Section 7.3.1 we use the following notation: Let A be the set of all

5Each transaction is associated with exactly one cluster, because each transaction is processed

individually, and the resulting transaction speci�c cluster Ĉt is merged with all existing clusters with

the same addresses.

144

7 Anonymity

TX

IP Address Count

1.2.3.4 15

5.6.7.8 12

4.3.2.1 10

... …

Σ= |𝐴𝐶|

Cluster C

TX

TX

TX

TX

TX

< 1%Cluster C is conspicuously

associated to IP address

> 1% No conspicuous association

between cluster and IP address

Figure 7.6: Decision process for �agging the association between clusters and IP

addresses as conspicuous.

observed IP addresses. Let a(t) ∈ A describe the IP address of the originator (if any)
of a transaction t. Finally, we de�ne the tuple of all IP addresses associated with a

cluster C as AC = (a(t) ∶ t ∈ TC). AC is de�ned as a tuple instead of a set because

single IP addresses can occur multiple times in AC and we are interested in that count.

�e main question now is whether there is a correlation between clusters and IP

addresses or whether for each transaction the originator is simply a random IP address.

Both, IP addresses and clusters, are nominal variables that cannot be ranked in any

way. Standard statistical methods (e.g., [MBB12]) would suggest to �ll a contingency

table with all observed IP addresses as one dimension and all clusters as the other

dimension. �en, for each tuple (IP address, Cluster) the expected frequency and

the observed frequency could be compared using the chi-squared test. However, a

problemwith the data is that the contingency table is very sparsely populated. In order

to perform the chi-squared test, no more than 20% of the expected frequencies should

be less than 5 and all individual expected frequencies should be 1 or greater [YMM96],

which is not the case for our data. Even if the frequencies were su�cient, the large

sample size would cause biased results [LLJS13].

�erefore, we analyze each clusterC separately in order to see whether the associated

IP addresses AC are independent. Figure 7.6 depicts our approach: First, for each

cluster, the IP address Â with the highest observed frequency ∣ÂC ∣ in this cluster
is selected. �en, we calculate the probability that such a high frequency ∣ÂC ∣ (or
even higher) can be observed if IP addresses and clusters are independent. If this

probability is smaller than 1 %, we reject the independence hypothesis, conclude that

the IP address and the cluster are conspicuously associated, and add the cluster to

the set of conspicuous clusters C+.

�e only information required for this approach is the probability that a certain

frequency ∣ÂC ∣ is observed given the total number ∣AC ∣ of IP addresses associated with
this cluster and assuming independence.�is translates to a simpleurn problem, where

a number of ∣AC ∣ IP addresses are selected at random from an urn (with replacement).
�e probability to choose an IP address A would be P(A) = ∣A∣/∑A′∈A ∣A′∣ (with
∣A∣ being the total observation count of A, i.e., the share of an IP address in all

145

7 Anonymity

observations, cf. Figure 7.5).6 �e question to be answered with the urn problem is

the probability of selecting one IP address at least ∣ÂC ∣ times.
Obviously, in addition to checking for each cluster whether the associated IP ad-

dresses were randomly chosen, we can also check for each IP address whether the

associated clusters are randomly chosen.�is analysis has been also performed using

the same method as described above for the opposite direction with TA denoting

the set of transactions associated with an IP address A, and A+ denoting the set of
conspicuous IP addresses according to the hypothesis testing.

7.3.3 Results & Discussion

From our data we selected all clusters with at least two IP addresses associated (∣AC ∣ ≥
2), determined ∣ÂC ∣ for these clusters, and calculated the set of conspicuous cluster C+.

Table 7.2 shows the number of clusters with at least two associated IP addresses

(∣{C ∶ ∣AC ∣ ≥ 2}∣) and the number of conspicuous clusters ∣C+∣ for various heuristics.
�e number of clusters with at least two associated IP addresses varies between

283k and 456k clusters. Comparing these numbers to the total number of clusters

(cf. Table 7.1) shows, that only a small percentage of all clusters has two IP addresses

associated, with the highest percentage for the H1+H2c combination.

�e number of clusters ∣C+∣ with a conspicuously large ∣ÂC ∣ varies between 15k and
35k, which corresponds to 5% to 8.3 % of the considered clusters. For comparison,

when randomly selecting IP addresses based on their a-priori probability, the share

of conspicuous clusters is around 1%.�e results indicate that the highest correlation

between clusters and their associated IP addresses exists, when clustering using

variants of H2. For the value based heuristic, the growth based heuristic, and the

base heuristic H1, fewer conspicuous clusters were found.

Table 7.2 also shows the share of conspicuous IP addresses A+ among those IP
addresses with at least two associated transactions.�e share varies between 6.2%

and 20.2% with the smallest percentages for clusterings with variants of H2. �is

is caused by the extremely large super cluster that is created by these heuristics

(cf. Table 7.1):�e probability to randomly select that cluster very o�en (assuming

independence) increases with the number of transactions associated with that cluster.

�erefore, the independence hypothesis gets accepted for more IP addresses.

Only for a small share of clusters and IP addresses, a correlation between clusters

and network information could be shown. At least for these clusters, information

obtained by observing the network could also be used in a constructive way during

the clustering process. For example, the set of candidate clusters for a transaction

could be reduced based on networking information. Also, the information could be

used for tie breaking when having multiple change address candidates.

For the majority of clusters and IP addresses, we did not observe any correlation

to network information. �is could mean that there is no correlation, or that the

used method did not reveal a correlation. For example, a more powerful observer

6For large values of ∣AC ∣, the distribution can be approximated with the binomial distribution with
p being the probability of the most likely IP address (p ≈ 0.02 for our data).

146

7 Anonymity

Table 7.2: Comparison of the number of clusters with at least two associated IP

addresses (∣{C ∶ ∣AC ∣ ≥ 2}∣) and the number and share of conspicuous clusters (C+),

and the share of conspicuous IP addresses (A+) for various heuristics [NH17].

Heuristics ∣{C ∶ ∣AC ∣ ≥ 2}∣ ∣C+∣ ∣C+∣
∣{C∶∣AC ∣≥2}∣

∣A+∣
∣{A∶∣TA∣≥2}∣

H1 282,950 14,879 5.26% 18.7 %

H1+H2 398,802 32,623 8.18 % 6.2%

H1+H2a 387,696 32,026 8.26% 6.2%

H1+H2b 456,063 35,138 7.70% 6.5 %

H1+H2c 452,189 35,602 7.87% 6.7%

H1+HG10 299,140 15,537 5.19% 16.7 %

H1+HG100 300,927 15,755 5.23 % 19.6%

H1+HG1000 301,775 16,434 5.45% 20.2%

H1+HG10000 308,900 18,788 6.08% 19.7 %

H1+HV 296,132 14,736 4.97% 6.9%

with more monitoring nodes could be able to associate IP addresses to transactions

more precisely. Furthermore, the statistical analysis used here only reveals certain

correlations between a cluster and a single IP address.

7.4 Discussion
In this chapter we performed address clustering in Bitcoin according to published

heuristics, and compared the resulting clusters to IP address information obtained

from observations in the Bitcoin P2P network. We showed that only a small share of

clusters was conspicuously associated with a single IP address, and that only a small

number of IP addresses showed a conspicuous association with a single cluster.

Our results indicate that for the vast majority of users network information cannot

facilitate address clustering easily. However, a small number of participants exhibit

correlations that might make them susceptible to network based deanonymization

attacks. A more precise network observation or better clustering heuristics might

reveal further correlations that could not be observed with our approach.

�e goal of our analysis of network-based deanonymization was to provide a high

level view on clusters and their correlation to network observations. An obvious

next step could be to focus on single clusters and IP addresses and identify the

anomalous behavior that caused the revealed correlations. Since this would require

an in-depth analysis of single entities on the network, we decided not to carry out

such an analysis without ensuring the user’s privacy. We emphasize that for ethical

reasons no further attempt at linking the conspicuous IP addresses or clusters to

other available information was performed.

In order to perform an in-depth analysis of single clusters and peers, a privacy pre-

serving method for the analysis of blockchain and network data should be developed.

147

7 Anonymity

�e results of such an analysis could point to possible improvements in the P2P pro-

tocol or speci�c client implementations. Furthermore, the consideration of temporal

changes such as IP address changes or changes in client implementations might fur-

ther improve the quality of our analysis. Finally, the statistical analysis might bene�t

from more advanced methods to establish sharper bounds on possible correlations.

148

8

Conclusions and Outlook

Since the publication of the concept of Bitcoin in 2008, permissionless blockchains

have received widespread attention from the public as well as from the scienti�c

community. While most research focuses on the consensus layer and the application

layer, the underlying network layer is o�en overlooked.

In this dissertation we address security and anonymity aspects of the network

layer of permissionless blockchains by answering two main research questions.�e

�rst research question is motivated by the limited research of the network layer of

permissionless blockchains:

How to research requirements and tradeoffs present in the network layer mechanisms
of permissionless blockchains?

In this dissertation we show that such research can be conducted by a combination

of (1) a systematization of known attacks and design aspects of the network layer

of permissionless blockchains, (2) measurements and experiments performed in

real-world P2P networks, and (3) simulation studies based on validated models.

So far, a number of attacks on the network layer of permissionless blockchains have

been analyzed, however, no general notion of the desired security properties of the

network layer of blockchains exists. Furthermore, the e�ect of design options on the

ful�llment of performance and security properties is not su�ciently understood. We

provide a systematization of attacks on the network layer of Bitcoin regarding the
exploited network layer mechanisms and the e�ects of the attacks on higher layers of

Bitcoin. We show that the goal of all studied attacks is either monetary bene�t or the

deanonymization of users by linking IP addresses to application data. Furthermore,

all known attacks aiming at a monetary bene�t of the adversary are based on DoS

attacks. In contrast to DoS attacks on classical unstructured P2P networks (e.g., �le

sharing networks), DoS attacks on permissionless blockchains can enable attacks on

149

8 Conclusions and Outlook

the consensus system, which can result in direct monetary loss for participants of

the system. Based on the systematization, we derived the requirements performance,

low cost of participation, anonymity, DoS resistance, and topology hiding for the

network layer of permissionless blockchains.

Our survey of the design space of the network layer qualitatively shows the e�ect
of design decisions on the ful�llment of the requirements and illustrates existing

tradeo�s. Developers of network layers of permissionless blockchains may use this

knowledge in order to adjust the properties of the developed system according to

their requirements. Furthermore, each identi�ed tradeo� can be seen as a start-

ing point for new research.

�e assessment of the security of distributed systems requires an understanding of

the general (protocol) behavior and the characteristics of the speci�c system. While

the behavior can o�en be deducted from speci�cations, the characteristics of a decen-

tralized system are in�uenced by numerous factors (e.g., user behavior), which can

strongly deviate between two instances of the same protocol. Observations of the real-

world deployment of permissionless blockchains enable us to characterize these sys-

tems. In this dissertation we provide a characterization of the Bitcoin P2P network,
based on measurements performed since 2015.�e network characterization enables

the parametrization and validation of our simulation models by directly providing

some of the required parameters (e.g., number of reachable peers) and by serving as

a basis for the estimation of other parameters (e.g., peer-to-peer latencies, number of

unreachable nodes). Our measurements not only serve as a basis for simulations, but

also enable the assessment of the reliability of experiments performed in the Bitcoin

network. Finally, the network characterization provides insights into the behavior of

peers and their operators. For instance, we show that Sybil events actually happened

in the Bitcoin P2P network, and that the performance and anonymity of transaction

and block propagation has been improved by implementation and protocol changes.

While experiments in deployed networks can deliver substantial insights, their

execution is not only costly but also commonly subject to ethical and legal concerns.

Furthermore, the complexity of the analyzed networks o�en prevents a purely an-

alytical approach. �erefore, simulation is a common method for the analysis of

network based attacks as it allows capturing complex system behavior and network

parameters. In this dissertation we present two approaches for modeling the be-

havior of clients of the Bitcoin P2P network as a discrete-event simulation model.
Based on the conducted measurements we parametrize our simulation model, and

validate the parametrization of our simulation models by comparing the simulated

information propagation delay to the observed one. Both information propagation

delays only show a minor deviation, indicating a high correspondence between the

simulated network and the real network.�e presented simulation models enable

the simulation of the Bitcoin network with a precision su�cient for the analysis of

attacks at the full scale of the Bitcoin network.

We show that research on the network layer of permissionless blockchains can

be conducted using the proposed combination of systematizations, measurements,

experiments, and simulations by analyzing the possibility of network-based topology

150

8 Conclusions and Outlook

inference and deanonymization in Bitcoin using these methods.

Under which assumptions and to which degree are network-based topology inference
and deanonymization (im-)possible in Bitcoin?

Our systematization of attacks shows that resistance against denial-of-service and

deanonymization attacks is an important requirement of the network layer of per-

missionless blockchains. A key factor for the feasibility and costs of these attacks is

knowledge of the P2P network topology. In this dissertation we give an in-depth anal-

ysis of the possibility and limitations of topology inference in Bitcoin. We propose
four di�erent methods for topology inference that exploit four di�erent aspects of

the network layer, i.e., double spends, timing, transaction accumulation, and peer

discovery. We evaluate the methods using real-world experiments and simulations.

We can summarize the results of our experiments performed in the Bitcoin network

and the Bitcoin testnet in the following statements:

– Assuming an active adversary that is able to connect to all peers of the network,
inference of the neighbors of a peer is possible with high recall and precision

(87% recall, 71 % precision) at low costs (99 transaction fees per peer) by a

coordinated creation of double spending transactions. Remark: connecting to

all peers of the network is a non-trivial task.

– Assuming a passive adversary that is able to connect to all reachable peers,
inference of the neighbors of a peer was possible in 2016 with a recall of 40% at

a precision of 40% (only considering connections between reachable peers) by

observing at least 8 transactions originating from that peer.

Furthermore, we can summarize the results of our simulation studies in the fol-

lowing statements:

– Assuming an active adversary that is able to connect to all peers of a simulated
network consisting of 500 peers, a coordinated creation of transactions that

exploits transaction accumulation can lead to the correct inference of 20 exist-

ing connections of the network and the incorrect inference of 2 non-existing

connections at minimal costs. Remark: �e adversary has no in�uence on

which connections will be inferred.

– Certain parametrizations of transaction relay delays can actually improve topol-
ogy inference, instead of defying it.

– A P2P network’s peer discovery mechanism can be con�gured so that the
reception of 40 address messages by the adversary results in a recall of less than

20%, and so that a su�cient number of reachable IP addresses is provided to

peers.

Overall, the results indicate that substantial e�ort and strong adversary models

are required for a high topology inference quality. �erefore, we choose to model

our adversary in the analysis of a network based deanonymization attack without

151

8 Conclusions and Outlook

access to network topology information. We assess whether a correlation between

the IP address of the peer announcing a transaction �rst and the suspected creator

of the transaction exists. Our dataset is based on our network measurements and

consists of almost 10 million transactions with associated IP addresses. We handle the

inherent ground truth problem of the association of transactions to users by applying

all previously published Bitcoin address clustering heuristics known to us.�e results

from our analysis can be summarized in the following statements:

– Transactions of 5 % to 8.3 % of users (as identi�ed by the used clustering heuris-
tics) were conspicuously o�en published by single peers, potentially making

these users susceptible to network-based deanonymization attacks.

– No such association could be identi�ed for the remaining users.

We emphasize that network-based deanonymization might be also possible for the

latter group of users under the assumption of stronger adversary models.

Outlook

�e results presented in this dissertation suggest several directions of future research.

First, discrete-event simulations were extensively used in this dissertation, especially

in the analysis and execution of several topology inference approaches. However, the

creation of discrete-event simulation models is time consuming and requires ongoing

e�ort, because client implementations as well as the constitution of deployed networks

constantly change.�erefore, the automatic generation of simulation models based

on source code fragments of client implementations, along with an ongoing adaption

of the parametrization based on measurements could facilitate more research on the

network layer of permissionless blockchains.

Secondly, our characterization of the Bitcoin P2P network only gives a view of the

network from one vantage point. One limitation of this approach is that it is o�en not

possible to de�nitely decide, whether an observed e�ect is caused by the observed

network or by the measurement infrastructure itself. We believe that data aggregated

from a geographical and organizational distributedmeasurement infrastructure could

provide a better view on P2P networks.

In this dissertation, methods for topology inference have been extensively analyzed,

however, topology inference has not been applied to real-world networks with the

goal of actually learning the network topology of that network. �e main reasons

for not applying a topology inference approach depend on the analyzed method

and are either the low expected inference quality, or the high costs, or assumptions

that cannot be met in the real network with the available resources. In order to use

topology inference for gaining insights on the network, the presented approaches

might be further improved. However, we emphasize that hiding the network topology

is an important security objective of the network layer of permissionless blockchains.

�erefore, while inference of the network topology is of scienti�c interest, preventing

such inference is also in the interest the users of the permissionless blockchain.

Finally, the adversarymodel considered in the analysis of network based deanonymi-

zation in this dissertation does not match the capabilities of organizations actually

152

8 Conclusions and Outlook

interested in performing such an attack. However, our results regarding topology infer-

ence suggest that perfect knowledge of the network topology is also hardly achievable.

�erefore, the analysis of network based deanonymization might consider adversary

models with partial and imperfect topology knowledge.

153

A

Proofs of Topology Inference Methods

In this chapter we provide proofs for the correctness of the topology inference ap-

proaches exploiting transaction accumulation and double spends.

Let G = (V , E) be the undirected graph modeling the peers (V) and connections
(E) of the Bitcoin network. In our proofs we make the following assumptions:

– �e adversarial monitor peer vM is connected to all peers vi ∈ V of the network.

– �e network topology remains static during the execution of the topology

inference.

– All peers eventually forward valid and non-con�icting transactions to their
neighbors.

– �e adversary is able to send messages to all peers of the network, so that all

messages arrive at the same time at all peers.

A.1 Exploiting Transaction Accumulation for Topology In-

ference
We furthermore assume that all peers use the transaction accumulation method

described in Section 6.1, i.e., valid transactions are queued into outgoing queues

per neighbor. Eventually, all elements of a queue are announced in one INV mes-
sage to a peer’s neighbor.

�e adversary creates one transaction ti ∈ τ for each connected peer vi . All transac-

tions are independent and not con�icting in any way (i.e., they are spending di�erent

155

A Proofs of Topology InferenceMethods

outputs). All transactions are sent to the peer they were created for (i.e., ti to vi)

so that they arrive at all peers at the same time.

Let vA ∈ V , vB ∈ V , and vC ∈ V be peers on the network.

�eorem 1. If the �rst INVmessage that peer vA sends to vM contains only tB (i.e., the

transaction sent to vB) and no other transaction from the set of created transactions τ,

then vA and vB are directly connected.

Proof. �eorem 1 is equal to the statement If vA and vC are not directly connected,
then the �rst INV message that vA sends to vM will not contain only tC and no other

transaction from the set of created transactions τ.We will now prove this statement.

Assume that peers vA and vC are not directly connected.

If there is no path between vA and vC , transaction tC cannot reach peer vA, therefore,

vA cannot send an INV message containing tC . If there is a path between vA and
vC , then there is at least one additional peer, say, vB on that path, because vA and vC
are not directly connected. Let us for now assume that vB is the only peer on the

path between vA and vC . Because the adversary is connected to all peers, vM is also

connected to vA, vB, and vC . Because incoming transactions are immediately written

into outgoing queues at each peer, and because all transactions are sent by vM so that

they arrive at the same point in time, the outgoing queue from vB to vA contains tB at

that time, and the outgoing queue from vC to vB contains tC at that time.

In order for peer vA to send an INV message that contains only tC and no other
transaction from the set of created transactions τ, the outgoing queue of vA to vM
has to contain tC and not tB when vA sends its �rst INV message to vM . As tC can
reach vA only via vB, and vB’s outgoing queues already contain tB, and because all

transactions in a queue are sent in one message, tB will be sent by vB no later than tC .

�erefore, the outgoing queue of vA to vM cannot contain tC and not tB at the time

of sending the �rst INVmessage from vA to vM . By induction this also holds if vB is

not the only peer on the path between vA and vC , and if there is more than one path

between vA and vC .

Please note that the method does not guarantee any progress, i.e., we cannot exclude

that the �rst INVmessage vA sends always contains more than one transaction from
the set of created transactions τ.

A.2 Exploiting Double Spends for Topology Inference
We furthermore assume that peers drop transactions that spent outputs that were

already spent by a transaction that has previously been received by the peer (double

spends).�e adversary selects on target peer vT , the connections of which shall be

inferred. �e adversary creates one transaction ti ∈ τ for each peer vi ∈ V , except
for the target peer vT . All transactions have the same input, but all transactions are

unique. All transactions are sent to the peer they were created for (i.e., ti to vi) so

that they arrive at all peers at the same time.

156

A Proofs of Topology InferenceMethods

�eorem 2. If the target peer vT forwards transaction tA to the monitor peer vM , then

vA and vT are directly connected.

Proof. �eorem 2 is equal to the statement If vA and vT are not directly connected,
then the target peer vT will not forward transaction tA to the monitor peer vM .We will

now prove this statement. Assume that peers vA and vT are not directly connected.

If there is no path between vA and vT , transaction tA cannot reach peer vT , therefore,

vT cannot forward transaction tA to vM . If there is a path between vA and vT , then there

is at least one additional peer, say, vB on that path, because vA and vT are not directly

connected. Because the adversary is connected to all peers, vM is also connected to

vA, vB, and vT . Because all transactions are sent by vM so that they arrive at the same

point in time, vB has received tB no later than vA can send tA to vB As tA is con�icting

with the already received tB, vB will drop tA upon reception. �erefore, tA cannot

reach vT .�e same argument applies for other paths and longer paths.

Progress, i.e., that the target peer vT actually forwards a transaction from the set τ

to the monitor peer vM , follows directly from the bounded interval between clients

�ushing the queues, assuming the target peer is connected to at least one other

peer besides vM . With variant Suppress, the repeated inference of the same con-

nection can be prevented.

157

A Proofs of Topology InferenceMethods

158

B

Approximative Propagation Delay Model

�e proposed timing analysis method infers the number of hops a message trav-

eled through the network by comparing the observed delay to the delay that is to

be expected for several path lengths.�erefore, a model for the propagation delay

depending on the path length between sender and receiver is required. Given two

randomly chosen peers as the sender and the receiver and their (hop) distance in

the network graph, we want to know the delay distribution between sending and

receiving a message.�e delay model presented in this chapter has been previously

published in [NAH16].

B.1 Notation and Assumptions
We will now introduce the notation used in the propagation model. All random

variables in this model are regarded as discrete random variables. �e network is

represented as a connected and undirected graph G = (V , E), where V is the set of
peers (v ∈ V) and E is the set of connections (e ∈ E) between peers. We assume a
random, Erdos-Renyi graph network model [ER59], which means each possible edge

exists independently with a certain probability p.

A simple path R between two peers is a sequence of edges (e1, ..., ec) connecting
the peers with a length of ∣R∣ = l .1 We use simple paths to model the propagation of

messages through the �ooding network. As the graph is assumed to be connected, at

least one path between any two vertices of the graph exists. Furthermore, we de�ne

Cmin as the minimum path length between two peers.

In this model, we assume that the message delay (i.e., the time di�erence between

sending by one peer and reception by another peer) only depends on the length of

1Each vertex may only be contained once in a simple path.

159

B Approximative Propagation DelayModel

the path the message traversed. We de�ne P(Dl = t) as the probability for a message
delay of t for a message transmitted via a path of length l . We assume that these

probability distributions are known to the adversary.

B.2 Probability for Shortest Path Length
We will now show how to approximate P(Cmin = l), i.e., the probability that the
shortest path between two randomly chosen peers of an ER graph equals l . �e

probability can be calculated based on themaximum possible number Zl of simple

paths with length l between two peers. Zl can be calculated as

Zl = (∣V ∣ − 2
l − 1) ⋅ (l − 1)!. (B.1)

Proof. Let s and t denote the �rst and last node of the path. A simple path of length l

traverses the nodes s, t, and l − 1 additional nodes, which can be freely chosen from
all nodes of the network, except for s and t. Hence, there are (∣V ∣−2

l−1) possible sets of
nodes for a simple path of length l .�e graph can traverse all nodes except for s and

t in any order, i.e., there are (l − 1)! permutations of the path.

�e probability of a shortest path length of l between two randomly chosen peers

s and t is calculated for Cmin < 3 as

P(Cmin = l) = (1 − (1 − pl)Z l) ⋅∏
i<l

(1 − pi)Z i . (B.2)

Proof. Case Cmin = 1: Zl equals 1, hence the term evaluates to p1, i.e., the probability

that the shortest path length between two peers is 1 equals the probability that an

edge between those peers exists. Case Cmin = 2: �ere are Z2 possible paths of
length 2 between s and t, each path exists independently with probability pl . Hence,

1 − (1 − pl)Z l gives the probability that at least one such path exists. �e product

∏i<l(1 − pi)Z i is calculated only for i = 1, i.e., it gives the probability that no path of
length 1 exists.

�e given formula is only exact for Cmin < 3, because longer paths can overlap (i.e.,
they are not vertex independent between s and t) and their probability of existence

is not independent anymore. For Cmin ≥ 3 the given formula only approximates
the real probability.2

B.3 Delay Distribution Depending on Path Length
For the presented timing analysis approach we need to calculate P(D = t∣Cmin = l),
i.e., the probability of observing a message delay t, given a shortest path length l . Let

P(D̂k = t) be the probability of a delay t of a message sent over any existing path
of length k. �en, we can calculate P(D = t∣Cmin = l) as

2A recursive approach might result in better approximations [KNbA+15].

160

B Approximative Propagation DelayModel

P(D = t∣Cmin = l) =∑
k

(P(D̂k = t∣Cmin = l) ⋅ P(D̂k′≠k ≥ t∣Cmin = l)). (B.3)

Each summand gives the probability for a delay t over a path of length k, and no

shorter delay over any path of a di�erent length.3 Iterating over all considered path

lengths k results in the overall delay distribution.

We will now show how to calculate the probability P(D̂k = t∣Cmin = l) of a delay t
of a message sent over any existing path of length k. Let P(zk = n) be the probability
that exactly n paths of length k exist.�en, P(D̂k = t∣Cmin = l) can be calculated as

P(D̂k = t∣Cmin = l) =
Zk

∑
n=1

(P(zk = n∣Cmin = l) ⋅ P(D̂k = t∣zk = n)). (B.4)

We iterate over all possible number of paths of length k (i.e., n goes from 1 to Zl) and

sum the joint probability that exactly n paths of length k exists and that this number

of paths results in a delay of t.�erefore, we have to be able to calculate the probability

P(zk = n) (i.e., exactly n paths of length k exists) and have to be able to calculate the
probability P(D̂k = t∣zk = n) (i.e., the probability of a delay t of a message sent over
any existing path of length k assuming there are n paths of length k).

P(zk = n) can be approximated as the binomial distribution

P(zk = n) ≈ (Zk

n
) ⋅ pnk ⋅ (1 − pk)Zk−n . (B.5)

For the same reason as Equation B.2 is only an approximation for path length of 3

or more, the given formula is also an approximation for path lengths of 3 or more.

Obviously, P(zk = n∣Cmin = l) equals zero for k < l and n > 0, i.e., if the shortest path
length is l , the probability for any positive number of shorter paths is zero.

Finally, the probability P(D̂k = t∣zk = n) of a delay t of a message sent over any
existing path of length k assuming there are n paths of length k can be calculated as

P(D̂k = t∣zk = n) = n ⋅ P(Dk = t) ⋅ P(Dk ≥ t)n−1. (B.6)

We de�ned P(Dk = t) as the probability of a message delay of t, when the message tra-
verses a single, isolated path of length k, and assume that this probability distribution

is known to the adversary. As there are n paths over which the message can be trans-

mitted �rst, the delay distribution of each path has to be considered (P(Dk = t) ⋅ n),
however, no other path may result in a shorter delay (P(Dk ≥ t)n−1).
Summarizing, we broke down the overall probability P(D = t∣Cmin = l) �rst by
path length (Equation B.3) and then by the number of possible paths (Equation B.4)

for that length.

Validation and Limitations

�e presented propagation model is only an approximation for path length of 3 and

more. However, as only short path lengths are of interest for the proposed timing

3P(D̂k′≠k > t) = ∏k′≠k P(D̂k′ > t), i.e., the probability that the delay of all paths with a length
di�erent than k result in a delay larger than t.

161

B Approximative Propagation DelayModel

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000

R
ec

ep
ti

on
P

ro
ba

bi
lit

y
p

er
m

s
[%

]

Time [ms]

Scenario A - Simulation
Scenario A - Model
Scenario B - Simulation
Scenario B - Model

Figure B.1: Propagation Delay: Comparison of Model to Simulation [NAH16].

analysis technique, we can accept errors for longer path lengths. We will now validate

the model using simulations in order to assess the quality of the approximation. We

consider two exemplary scenarios: Scenario A comprises a network with 1,000 peers,

an average of 8 connections per peer and a uniformly distributed latency (D1) between

50 and 100ms. Scenario B consists of 6,000 peers, each with 16 connections on average

and a uniform latency distribution (D1) between 100 and 300ms.�e delay distribu-

tion for multi-hop transmission (D2,D3, ...) was calculated by convolution from D1
in both scenarios. Figure B.1 shows the resulting delays for these two scenarios.

It can be seen that during the beginning of the propagation our model perfectly

matches the simulation outcome, whereas a deviation becomes visible a�erward.�is

deviation is caused by the already mentioned abstraction made in the model: we

treat two paths between sender and receiver as independent although the paths may

share common hops (i.e., they may not be vertex-independent).�is causes a wrong

estimation on the number of paths. Additionally, when a peer receives a message

over more than one path (i.e., the peer is a common hop to two or more paths), it

will forward it once, e�ectively joining both paths from this hop on.�erefore, the

resulting propagation delay di�ers to a scenario with two independent paths.

Obviously, this situation can only occur for paths with a length of three or more, as

one hopmust be the joining hop and one hopmust di�er in order to result in di�erent

paths. Additionally, the likeliness of paths not being vertex-independent increases

with the paths’ length and the number of possible paths, which also increases with

the paths’ length. We will use the model to distinguish between a shortest path length

of one and any longer path length.�erefore, a precise modeling of the propagation’s

beginning is required, whereas the further propagation is not crucial.

Another, more practical, limitation of the presented model can be imposed by the

possible extremely large number of possible paths Zc , which can reach values of more

than 10100 pushing the following calculation of P(zc = k) against common numerical
limits. However, the use of arithmetic libraries as well as limiting the path length

bypasses these issues. Lastly, the assumption of an ER-graph does not hold in most

162

B Approximative Propagation DelayModel

real-world networks. We argue, however, that for some network models an adaption

is possible analytically, whereas for others the use of simulation and �tting techniques

allows the development of practically usable models, which is done in the real-world

experiments presented in Subsection 6.3.2.�e model derived here can be especially

useful for theoretically assessing the presented timing analysis method.

163

B Approximative Propagation DelayModel

164

Bibliography

[AB02] Réka Albert and Albert-László Barabási. Statistical mechanics of com-

plex networks. Reviews of modern physics, 74(1):47, 2002.

[AEH75] Eralp A Akkoyunlu, Kattamuri Ekanadham, and RV Huber. Some

constraints and tradeo�s in the design of network communications. In

ACM SIGOPS Operating Systems Review, volume 9, pages 67–74. ACM,

1975.

[AJB00] Réka Albert, Hawoong Jeong, and Albert-László Barabási. Error and

attack tolerance of complex networks. nature, 406(6794):378–382,

2000.

[AKR+13] Elli Androulaki, Ghassan O Karame, Marc Roeschlin, Tobias Scherer,

and Srdjan Capkun. Evaluating user privacy in Bitcoin. In International

Conference on Financial Cryptography and Data Security, pages 34–51.

Springer, 2013.

[Alm17] Karl-Johan Alm. Rate limiting via peer speci�ed challenges (bip

154). https://github.com/bitcoin/bips/blob/master/bip-0154.mediawiki,

2017.

[Asp] James Aspnes. Notes on theory of distributed systems cpsc 465/565:

Fall 2017. http://www.cs.yale.edu/homes/aspnes/classes/465/notes.pdf.

[AZV17] Maria Apostolaki, Aviv Zohar, and Laurent Vanbever. Hijacking Bit-

coin: Routing attacks on cryptocurrencies. In Security and Privacy

(SP), 2017 IEEE Symposium on, pages 375–392. IEEE, 2017.

[B+09] Albert-László Barabási et al. Scale-free networks: a decade and beyond.

science, 325(5939):412, 2009.

[BDE+13] Tobias Bamert, Christian Decker, Lennart Elsen, Roger Wattenhofer,

and Samuel Welten. Have a snack, pay with Bitcoins. In Peer-to-Peer

Computing (P2P), 2013 IEEE �irteenth International Conference on,

pages 1–5. IEEE, 2013.

[BDOZ12] Moshe Babaio�, Shahar Dobzinski, Sigal Oren, and Aviv Zohar. On

Bitcoin and red balloons. In Proceedings of the 13th ACM conference on

electronic commerce, pages 56–73. ACM, 2012.

165

BIBLIOGRAPHY

[BKP14] Alex Biryukov, Dmitry Khovratovich, and Ivan Pustogarov.

Deanonymisation of clients in Bitcoin P2P network. In Proceedings of

the 2014 ACM SIGSAC Conference on Computer and Communications

Security. ACM, 2014.

[Blo70] Burton H Bloom. Space/time trade-o�s in hash coding with allowable

errors. Communications of the ACM, 13(7):422–426, 1970.

[BMC+15] Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan,

Joshua A Kroll, and Edward W Felten. Sok: Research perspectives and

challenges for Bitcoin and cryptocurrencies. In Security and Privacy

(SP), 2015 IEEE Symposium on, pages 104–121. IEEE, 2015.

[BMS01] Adam Back, Ulf Möller, and Anton Stiglic. Tra�c analysis attacks

and trade-o�s in anonymity providing systems. In Information Hiding,

pages 245–257. Springer, 2001.

[BP14] Alex Biryukov and Ivan Pustogarov. Bitcoin over Tor isn’t a good idea.

arXiv preprint arXiv:1410.6079, 2014.

[BRE+15] Alexander Beifus, Daniel Raumer, Paul Emmerich, Torsten M Runge,

Florian Wohlfart, Bernd E Wol�nger, and Georg Carle. A study of

networking so�ware induced latency. In Networked Systems (NetSys),

2015 International Conference and Workshops on, pages 1–8. IEEE, 2015.

[BVFV17] Shaileshh Bojja Venkatakrishnan, Giulia Fanti, and Pramod Viswanath.

Dandelion: Redesigning the bitcoin network for anonymity. Proceed-

ings of the ACM on Measurement and Analysis of Computing Systems,

1(1):22, 2017.

[CdLSJ+17] Daniel Conte de Leon, Antonius Q Stalick, Ananth A Jillepalli,

Michael AHaney, and Frederick T Sheldon. Blockchain: properties and

misconceptions. Asia Paci�c Journal of Innovation and Entrepreneur-

ship, 11(3):286–300, 2017.

[CKLR18] Mauro Conti, Sandeep Kumar, Chhagan Lal, and Sushmita Ruj. A

survey on security and privacy issues of Bitcoin. IEEE Communications

Surveys & Tutorials, 2018.

[CKS+06] Tyson Condie, Varun Kacholia, Sriram Sank, Joseph M Hellerstein,

and Petros Maniatis. Induced churn as shelter from routing-table

poisoning. In NDSS, 2006.

[CL+99] Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance.

In OSDI, volume 99, pages 173–186, 1999.

[CLA16] Fabio Caccioli, Giacomo Livan, and Tomaso Aste. Scalability and

egalitarianism in peer-to-peer networks. In Banking Beyond Banks

and Money, pages 197–212. Springer, 2016.

166

BIBLIOGRAPHY

[CM01] B. Carpenter and K. Moore. Connection of IPv6 Domains via IPv4

Clouds. RFC 3056 (Proposed Standard), February 2001.

[Cor75] Lee C. Cora. Stone money of yap: A numismatic survey. Smithsonian

Studies in History and Technology, (23):1–75, 1975.

[Cor16] Matt Corallo. Compact block relay (bip 152).

https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki,

2016.

[CT15] Matt Corallo and Peter Todd. NODE BLOOM service bit (bip 111).

https://github.com/bitcoin/bips/blob/master/bip-0111.mediawiki, 2015.

[Daf15] Suhas Da�uar. Sendheaders message (bip 130).

https://github.com/bitcoin/bips/blob/master/bip-0130.mediawiki,

2015.

[Dai04] L. Daigle. WHOIS Protocol Speci�cation. RFC 3912 (Dra� Standard),

September 2004.

[DMMK17] Debajyoti Das, Sebastian Meiser, Esfandiar Mohammadi, and Aniket

Kate. Anonymity trilemma: Strong anonymity, low bandwidth over-

head, low latency - choose two. IACR Cryptology ePrint Archive,

2017:954, 2017.

[DMS04] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: �e

second-generation onion router. Technical report, Naval Research Lab

Washington DC, 2004.

[DN92] Cynthia Dwork and Moni Naor. Pricing via processing or combatting

junk mail. In Annual International Cryptology Conference, pages 139–

147. Springer, 1992.

[Dou02] John R Douceur. �e sybil attack. In International Workshop on Peer-

to-Peer Systems, pages 251–260. Springer, 2002.

[DPSHJ14] Joan Antoni Donet, Cristina Pérez-Sola, and Jordi Herrera-

Joancomart́ı. �e Bitcoin P2P network. In International Conference

on Financial Cryptography and Data Security, pages 87–102. Springer,

2014.

[DS15] Jules DuPont and Anna Cinzia Squicciarini. Toward de-anonymizing

Bitcoin by mapping users location. In Proceedings of the 5th ACM

Conference on Data and Application Security and Privacy, pages 139–

141. ACM, 2015.

[DSPSHJ+18] Sergi Delgado-Segura, Cristina Pérez-Solà, Jordi Herrera-Joancomart́ı,

Guillermo Navarro-Arribas, and Joan Borrell. Cryptocurrency net-

works: A new p2p paradigm. Mobile Information Systems, 2018, 2018.

167

BIBLIOGRAPHY

[DW09] Jochen Dinger and Oliver Waldhorst. Decentralized bootstrapping of

P2P systems: A practical view. NETWORKING 2009, pages 703–715,

2009.

[DW13] Christian Decker and Roger Wattenhofer. Information propagation

in the Bitcoin network. In Peer-to-Peer Computing (P2P), 2013 IEEE

�irteenth International Conference on, pages 1–10. IEEE, 2013.

[DW15] Christian Decker and Roger Wattenhofer. A fast and scalable payment

network with bitcoin duplex micropayment channels. In Symposium

on Self-Stabilizing Systems, pages 3–18. Springer, 2015.

[Dwo08] Cynthia Dwork. Di�erential privacy: A survey of results. In Interna-

tional Conference on�eory and Applications of Models of Computation,

pages 1–19. Springer, 2008.

[ER59] Paul Erdős and Alfréd Rényi. On random graphs. Publicationes Math-

ematicae Debrecen, 6:290–297, 1959.

[EREL17] Oguzhan Ersoy, Zhijie Ren, Zekeriya Erkin, and Reginald L Lagendijk.

Information propagation on permissionless blockchains. arXiv preprint

arXiv:1712.07564, 2017.

[ES14] Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining

is vulnerable. In International Conference on Financial Cryptography

and Data Security, pages 436–454. Springer, 2014.

[FB99] Armando Fox and Eric A Brewer. Harvest, yield, and scalable tolerant

systems. InHot Topics in Operating Systems, 1999. Proceedings of the

Seventh Workshop on, pages 174–178. IEEE, 1999.

[Fin] Hal Finney. �e �nney attack. https://bitcointalk.org/
index.php?topic=3441.msg48384#msg48384.

[FKO+17] Giulia Fanti, Peter Kairouz, Sewoong Oh, Kannan Ramchandran, and

Pramod Viswanath. Hiding the rumor source. IEEE Transactions on

Information�eory, 2017.

[FLP85] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossi-

bility of distributed consensus with one faulty process. Journal of the

ACM (JACM), 32(2):374–382, 1985.

[FOA] Muntadher Fadhil, Gareth Owenson, and Mo Adda. Locality based

approach to improve propagation delay on the Bitcoin peer-to-peer

network.

[FPCS06] Michal Feldman, Christos Papadimitriou, John Chuang, and Ion Stoica.

Free-riding and whitewashing in peer-to-peer systems. IEEE Journal

on Selected Areas in Communications, 24(5):1010–1019, 2006.

168

https://bitcointalk.org/index.php?topic=3441.msg48384#msg48384
https://bitcointalk.org/index.php?topic=3441.msg48384#msg48384

BIBLIOGRAPHY

[FV17] Giulia Fanti and Pramod Viswanath. Anonymity properties of the

Bitcoin P2P network. arXiv preprint arXiv:1703.08761, 2017.

[FVB+18] Giulia Fanti, Shaileshh Bojja Venkatakrishnan, Surya Bakshi, Bradley

Denby, Shruti Bhargava, Andrew Miller, and Pramod Viswanath. Dan-

delion++: Lightweight cryptocurrency networking with formal ano-

nymity guarantees. Proceedings of the ACM on Measurement and

Analysis of Computing Systems, 2(2):29, 2018.

[GCKG14] Arthur Gervais, Srdjan Capkun, Ghassan O Karame, and Damian

Gruber. On the privacy provisions of bloom �lters in lightweight

Bitcoin clients. In Proceedings of the 30th Annual Computer Security

Applications Conference, pages 326–335. ACM, 2014.

[GKCC14] Arthur Gervais, Ghassan Karame, Srdjan Capkun, and Vedran Capkun.

Is bitcoin a decentralized currency? IEEE security & privacy, 12(3):54–

60, 2014.

[GKL15] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. �e bitcoin back-

bone protocol: Analysis and applications. In Annual International

Conference on the�eory and Applications of Cryptographic Techniques,

pages 281–310. Springer, 2015.

[GKRN17] Steven Goldfeder, Harry Kalodner, Dillon Reisman, and Arvind

Narayanan. When the cookie meets the blockchain: Privacy risks

of web payments via cryptocurrencies. arXiv preprint arXiv:1708.04748,

2017.

[GKW+16] Arthur Gervais, Ghassan O Karame, Karl Wüst, Vasileios Glykantzis,

Hubert Ritzdorf, and Srdjan Capkun. On the security and performance

of proof of work blockchains. In Proceedings of the 2016 ACM SIGSAC

Conference on Computer and Communications Security, pages 3–16.

ACM, 2016.

[GL12] Seth Gilbert and Nancy Lynch. Perspectives on the cap theorem. Com-

puter, 45(2):30–36, 2012.

[GNH18] Matthias Grundmann, Till Neudecker, and Hannes Hartenstein. Ex-

ploiting transaction accumulation and double spends for topology

inference in Bitcoin. In 5th Workshop on Bitcoin and Blockchain Re-

search, Financial Cryptography and Data Security 2018, 2018.

[Gra78] James N Gray. Notes on data base operating systems. In Operating

Systems, pages 393–481. Springer, 1978.

[GRKC15] Arthur Gervais, Hubert Ritzdorf, Ghassan O Karame, and Srdjan Cap-

kun. Tampering with the delivery of blocks and transactions in Bitcoin.

169

BIBLIOGRAPHY

In Proceedings of the 22nd ACM SIGSAC Conference on Computer and

Communications Security, pages 692–705. ACM, 2015.

[GRPS03] Sharad Goel, Mark Robson, Milo Polte, and Emin Sirer. Herbivore: A

scalable and e�cient protocol for anonymous communication. Tech-

nical report, Cornell University, 2003.

[GSY18] Diksha Gupta, Jared Saia, and Maxwell Young. Proof of work without

all the work. In Proceedings of the 19th International Conference on

Distributed Computing and Networking, page 6. ACM, 2018.

[HB96] J. Hawkinson and T. Bates. Guidelines for creation, selection, and

registration of an Autonomous System (AS). RFC 1930 (Best Current

Practice), March 1996. Updated by RFCs 6996, 7300.

[HC12] Mike Hearn and Matt Corallo. Connection bloom �ltering (bip

37). https://github.com/bitcoin/bips/blob/master/bip-0037.mediawiki,

2012.

[HF16] MartinHarrigan and Christoph Fretter.�e unreasonable e�ectiveness

of address clustering. arXiv preprint arXiv:1605.06369, 2016.

[HJPS16] Jordi Herrera-Joancomart́ı and Cristina Pérez-Solà. Privacy in bitcoin

transactions: new challenges from blockchain scalability solutions. In

Modeling Decisions for Arti�cial Intelligence, pages 26–44. Springer,

2016.

[HKZG15] Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg.

Eclipse attacks on Bitcoin’s peer-to-peer network. In 24th USENIX

Security Symposium (USENIX Security 15), pages 129–144, 2015.

[Hui06] C. Huitema. Teredo: Tunneling IPv6 over UDP through Network

Address Translations (NATs). RFC4380 (Proposed Standard), February

2006. Updated by RFCs 5991, 6081.

[IBW17] Mohsen Imani, Armon Barton, and MatthewWright. Forming guard

sets using as relationships. arXiv preprint arXiv:1706.05592, 2017.

[JC10] Xing Jin and S-H Gary Chan. Unstructured peer-to-peer network

architectures. Handbook of Peer-to-Peer Networking, pages 117–142,

2010.

[JH11] Rob Jansen and Nicholas Hooper. Shadow: Running Tor in a Box

for Accurate and E�cient Experimentation. Technical report, DTIC

Document, 2011.

[Jün15] Konrad Jünemann. Con�dential Data-Outsourcing and Self-Optimizing

P2P-Networks: Coping with the Challenges of Multi-Party Systems. KIT

Scienti�c Publishing, 2015.

170

BIBLIOGRAPHY

[JW18] Marco Alberto Javarone and Craig Steven Wright. From Bitcoin to

Bitcoin Cash: a network analysis. arXiv preprint arXiv:1804.02350, 2018.

[KAC12] Ghassan O Karame, Elli Androulaki, and Srdjan Capkun. Double-

spending fast payments in Bitcoin. In Proceedings of the 2012 ACM

conference on Computer and communications security, pages 906–917.

ACM, 2012.

[Kam11] D Kaminsky. “black ops of tcp/ip. Black Hat USA, 2011.

[KDF13] Joshua A Kroll, Ian C Davey, and Edward W Felten. �e economics of

Bitcoinmining, or Bitcoin in the presence of adversaries. In Proceedings

of WEIS, volume 2013, 2013.

[Kin09] Davis E King. Dlib-ml: A machine learning toolkit. Journal of Machine

Learning Research, 10(Jul):1755–1758, 2009.

[KKM14] Philip Koshy, Diana Koshy, and Patrick McDaniel. An analysis of ano-

nymity in Bitcoin using P2P network tra�c. In Financial Cryptography

and Data Security, volume 8437 of Lecture Notes in Computer Science,

pages 469–485. Springer Berlin Heidelberg, 2014.

[KL14] Jonathan Katz and Yehuda Lindell. Introduction to modern crypto-

graphy. CRC press, 2014.

[KL18] Merve Can Kus Khalilov and Albert Levi. A survey on anonymity and

privacy in bitcoin-like digital cash systems. IEEE Communications

Surveys & Tutorials, 2018.

[KNbA+15] Eytan Katzav, Mor Nitzan, Daniel ben Avraham, PL Krapivsky, Reimer

Kühn, Nathan Ross, and Ofer Biham. Analytical results for the distri-

bution of shortest path lengths in random networks. EPL (Europhysics

Letters), 111(2):26006, 2015.

[KTO17] Kota Kanemura, Kanemura Toyoda, and Tomoaki Ohtsuki. Design

of privacy-preserving mobile bitcoin client based on γ-deniability en-

abled bloom �lter. In Personal, Indoor and Mobile Radio Communi-

cations(PIMRC), 2017. IEEE 18th International Symposium on. IEEE,

2017.

[Lat08] Chris Lattner. Llvm and clang: Next generation compiler technology.

In�e BSD Conference, pages 1–2, 2008.

[Law14] Averill M. Law. Simulation Modeling and Analysis (Int’l Ed). McGraw

Hill Higher Education, 2014.

[LCP+05] Eng Keong Lua, Jon Crowcro�, Marcelo Pias, Ravi Sharma, and Steven

Lim. A survey and comparison of peer-to-peer overlay network

schemes. IEEE Communications Surveys & Tutorials, 7(2):72–93, 2005.

171

BIBLIOGRAPHY

[LLJS13] Mingfeng Lin, Henry C Lucas Jr, and Galit Shmueli. Research

commentary-too big to fail: large samples and the p-value problem.

Information Systems Research, 24(4):906–917, 2013.

[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease. �e byzantine

generals problem. ACM Transactions on Programming Languages and

Systems (TOPLAS), 4(3):382–401, 1982.

[LW16] Eric Lobrozo and Pieter Wuille. Segregated witness (peer services).

https://github.com/bitcoin/bips/blob/master/bip-0144.mediawiki,

2016.

[Max13] GregoryMaxwell. Coinjoin: Bitcoin privacy for the real world. https:
//bitcointalk.org/index.php?topic=279249, 2013. Ac-
cessed: 27.09.2016.

[MBB12] William Mendenhall, Robert J Beaver, and Barbara M Beaver. Intro-

duction to probability and statistics. Cengage Learning, 2012.

[MBK+17] Andrew Miller, Iddo Bentov, Ranjit Kumaresan, Christopher Cordi,

and Patrick McCorry. Sprites and state channels: Payment networks

that go faster than lightning, 2017.

[MD05] Steven J Murdoch and George Danezis. Low-cost tra�c analysis of

Tor. In Security and Privacy, 2005 IEEE Symposium on. IEEE, 2005.

[Mer80] Ralph C Merkle. Protocols for public key cryptosystems. In Security

and Privacy, 1980 IEEE Symposium on, pages 122–122. IEEE, 1980.

[MGGR13] Ian Miers, Christina Garman, Matthew Green, and Aviel D Rubin.

Zerocoin: Anonymous distributed e-cash from bitcoin. In Security

and Privacy (SP), 2013 IEEE Symposium on, pages 397–411. IEEE, 2013.

[MHG18] Yuval Marcus, Ethan Heilman, and Sharon Goldberg. Low-resource

eclipse attacks on ethereum’s peer-to-peer network. http:
//www.cs.bu.edu/˜goldbe/projects/eclipseEth.pdf,
2018.

[Mil16] Andrew Miller. Provable Security for Cryptocurrencies. PhD thesis,

2016.

[MIP+06] Harsha V. Madhyastha, Tomas Isdal, Michael Piatek, Colin Dixon,

�omas Anderson, Arvind Krishnamurthy, and Arun Venkataramani.

iPlane: An Information Plane for Distributed Services. In Proceedings

of the 7th Symposium on Operating Systems Design and Implementation,

OSDI ’06, pages 367–380. USENIX Association, 2006.

172

https://bitcointalk.org/index.php?topic=279249
https://bitcointalk.org/index.php?topic=279249
http://www.cs.bu.edu/~goldbe/projects/eclipseEth.pdf
http://www.cs.bu.edu/~goldbe/projects/eclipseEth.pdf

BIBLIOGRAPHY

[MJ15] Andrew Miller and Rob Jansen. Shadow-bitcoin: Scalable simulation

via direct execution of multi-threaded applications. IACR Cryptology

ePrint Archive, 2015:469, 2015.

[MLJ14] Andrew Miller and Joseph J LaViola Jr. Anonymous byzantine consen-

sus from moderately-hard puzzles: A model for bitcoin. 2014.

[MLP+15] Andrew Miller, James Litton, Andrew Pachulski, Neal Gupta, Dave

Levin, Neil Spring, and Bobby Bhattacharjee. Discovering Bitcoin’s

public topology and in�uential nodes. https://cs.umd.edu/
projects/coinscope/coinscope.pdf, 2015.

[MM02] Petar Maymounkov and David Mazieres. Kademlia: A peer-to-peer

information system based on the xormetric. In InternationalWorkshop

on Peer-to-Peer Systems, pages 53–65. Springer, 2002.

[MPJ+13] Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kirill Levchenko,

Damon McCoy, Geo�rey M Voelker, and Stefan Savage. A �stful of

Bitcoins: characterizing payments among men with no names. In

Proceedings of the 2013 conference on Internet measurement conference,

pages 127–140. ACM, 2013.

[NAH15] T. Neudecker, P. Andel�nger, and H. Hartenstein. A simulation model

for analysis of attacks on the Bitcoin peer-to-peer network. In Integrated

Network Management (IM), 2015 IFIP/IEEE International Symposium

on, pages 1327–1332, May 2015.

[NAH16] T. Neudecker, P. Andel�nger, and H. Hartenstein. Timing analysis for

inferring the topology of the Bitcoin peer-to-peer network. In 2016 Intl

IEEE Conference on Advanced and Trusted Computing (ATC), pages

358–367, July 2016.

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system.

2008.

[NC17] Arvind Narayanan and Jeremy Clark. Bitcoin’s academic pedigree.

Communications of the ACM, 60(12):36–45, 2017.

[Neu18] Till Neudecker. Bitcoin cash (bch) sybil nodes on the bitcoin peer-to-

peer network. Technical Report 4, 2018.

[New10] Mark Newman. Networks: An Introduction. Oxford University Press,

2010.

[NG16] Christopher Natoli and Vincent Gramoli. �e balance attack against

proof-of-work blockchains:�e r3 testbed as an example. arXiv preprint

arXiv:1612.09426, 2016.

173

https://cs.umd.edu/projects/coinscope/coinscope.pdf
https://cs.umd.edu/projects/coinscope/coinscope.pdf

BIBLIOGRAPHY

[NH17] T. Neudecker and H. Hartenstein. Could network information facil-

itate address clustering in Bitcoin? In 4th Workshop on Bitcoin and

Blockchain Research, Financial Cryptography and Data Security 2017,

2017.

[NH18] T. Neudecker and H. Hartenstein. Network layer aspects of permis-

sionless blockchains. Accepted in: IEEE Communications Surveys &

Tutorials, 2018.

[Nic15] Jonas David Nick. Data-driven de-anonymization in Bitcoin. Master’s

thesis, ETH-Zürich, 2015.

[NKMS16] Kartik Nayak, Srijan Kumar, Andrew Miller, and Elaine Shi. Stubborn

mining: Generalizing sel�sh mining and combining with an eclipse

attack. In Security and Privacy (EuroS&P), 2016 IEEE European Sympo-

sium on, pages 305–320. IEEE, 2016.

[OAB+16] A Pinar Ozisik, Gavin Andresen, GD Bissias, Amir Houmansadr, and

Brian N Levine. A secure, e�cient, and transparent network archi-

tecture for Bitcoin. Technical report, UMass Amherst, Tech. Rep.

UM-CS-2016-006, 2016, 2016.

[PD16] Joseph Poon and�addeus Dryja. �e bitcoin lightning network:

Scalable o�-chain instant payments. dra� version 0.5, 9:14, 2016.

[PGES05] Johan Pouwelse, Pawe�l Garbacki, Dick Epema, and Henk Sips. �e

bittorrent p2p �le-sharing system: Measurements and analysis. In In-

ternational Workshop on Peer-to-Peer Systems, pages 205–216. Springer,

2005.

[PSCVMV15] Romualdo Pastor-Satorras, Claudio Castellano, Piet Van Mieghem,

and Alessandro Vespignani. Epidemic processes in complex networks.

Reviews of modern physics, 87(3):925, 2015.

[PSS17] Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain

protocol in asynchronous networks. In Annual International Confer-

ence on the�eory and Applications of Cryptographic Techniques, pages

643–673. Springer, 2017.

[Res10] Certicom Research. Sec 2: Recommended elliptic curve domain pa-

rameters. http://www.secg.org/SEC2-Ver-1.0.pdf, 2010.

[RH10] George F Riley and�omas R Henderson.�e ns-3 network simulator.

In Modeling and tools for network simulation, pages 15–34. Springer,

2010.

[RH13] Fergal Reid and Martin Harrigan. An analysis of anonymity in the

Bitcoin system. In Security and privacy in social networks, pages 197–223.

Springer, 2013.

174

http://www.secg.org/SEC2-Ver-1.0.pdf

BIBLIOGRAPHY

[Rip01] Matei Ripeanu. Peer-to-peer architecture case study: Gnutella net-

work. In Peer-to-Peer Computing, 2001. Proceedings. First International

Conference on, pages 99–100. IEEE, 2001.

[Ros60] Jo Bo Rosen. �e gradient projection method for nonlinear program-

ming. part i. linear constraints. Journal of the society for industrial and

applied mathematics, 8(1):181–217, 1960.

[RS13] Dorit Ron and Adi Shamir. Quantitative analysis of the full Bitcoin

transaction graph. In International Conference on Financial Crypto-

graphy and Data Security, pages 6–24. Springer, 2013.

[Sch99] Bruce Schneier. Attack trees. Dr. Dobb’s journal, 24(12):21–29, 1999.

[Sch16a] Jonas Schnelli. Peer authentication (bip 150).

https://github.com/bitcoin/bips/blob/master/bip-0150.mediawiki,

2016.

[Sch16b] Jonas Schnelli. Peer-to-peer communication encryption (bip

151). https://github.com/bitcoin/bips/blob/master/bip-0151.mediawiki,

2016.

[SDHD13] Matthew Sottile, Amruth Dakshinamurthy, Gilbert Hendry, and

Damian Dechev. Semi-automatic extraction of so�ware skeletons

for benchmarking large-scale parallel applications. In Proceedings of

the 1st ACM SIGSIM Conference on Principles of Advanced Discrete

Simulation, pages 1–10. ACM, 2013.

[SW05] Ralf Steinmetz and Klaus Wehrle. 2. what is this “peer-to-peer” about?

In Peer-to-peer systems and applications, pages 9–16. Springer, 2005.

[SZ16] Yonatan Sompolinsky and Aviv Zohar. Bitcoin’s security model revis-

ited. arXiv preprint arXiv:1605.09193, 2016.

[Sza97] Nick Szabo. �e idea of smart contracts. Nick Szabo’s Papers and

Concise Tutorials, 6, 1997.

[TIDH17] Carmela Troncoso, Marios Isaakidis, George Danezis, and Harry

Halpin. Systematizing decentralization and privacy: Lessons from

15 years of research and deployments. Proceedings on Privacy Enhanc-

ing Technologies, 2017(4):404–426, 2017.

[TS16] Florian Tschorsch and Björn Scheuermann. Bitcoin and beyond: A

technical survey on decentralized digital currencies. IEEE Communi-

cations Surveys & Tutorials, 18(3):2084–2123, 2016.

[TVS07] Andrew S Tanenbaum and Maarten Van Steen. Distributed systems:

principles and paradigms. Prentice-Hall, 2007.

175

BIBLIOGRAPHY

[Wat16] Roger Wattenhofer. �e Science of the Blockchain. CreateSpace Inde-

pendent Publishing Platform, 2016.

[WG16] Karl Wüst and Arthur Gervais. Ethereum eclipse attacks. Technical

report, ETH Zurich, 2016.

[WG17] Karl Wüst and Arthur Gervais. Do you need a blockchain? IACR

Cryptology ePrint Archive, 2017:375, 2017.

[Woo14] Gavin Wood. Ethereum: A secure decentralised generalised transac-

tion ledger. Ethereum Project Yellow Paper, 151, 2014.

[WP17] Liang Wang and Ivan Pustogarov. Towards better understanding of

Bitcoin unreachable peers. arXiv preprint arXiv:1709.06837, 2017.

[YMM96] Daniel Yates, David Moore, and George McCabe. �e Practice of

Statistics. WH Freeman and Company, New York, NY, 1996.

176

	Zusammenfassung
	Abstract
	List of Figures
	List of Tables
	Introduction
	Contributions
	Thesis Outline

	Fundamentals
	Definitions and Key Literature Results
	Bitcoin
	Application Layer
	Consensus Layer
	Network Layer: Peer-to-Peer Network

	Discussion
	Relation to Consensus Models and Key Results
	Bitcoin's Impact
	Conclusion

	Network Layer Requirements and Design Space
	Related Work
	System Requirements
	Functional Requirements
	Non-Functional Requirements
	Security Requirements - Attack Survey
	Adversary Models
	Related Requirements and Adversary Models

	Design Space Survey
	Attachment Strategy
	Communication Strategy
	Remarks

	Network Characterization
	Methodology
	Architecture & Software
	Dataset

	General Network Properties
	Connections
	IP Properties
	Latency
	Propagation of Transactions and Blocks

	Case Studies
	Bitcoin Cash Sybil Peers
	IPv6 Teredo

	Discussion

	Simulation Methodology
	Related Work
	Client Behavior Models
	Top-Down Model
	Bottom-Up Model

	Network and Client Parametrization
	Discussion

	Topology Inference
	Exploiting Transaction Accumulation for Topology Inference
	Fundamentals & Assumptions
	Topology Inference Method Description
	Discussion & Variants
	Simulation Results
	Experimental Results
	Discussion

	Exploiting Double Spends for Topology Inference
	Topology Inference Method Description
	Discussion & Variants
	Simulation Results
	Experimental Results
	Discussion

	Exploiting Timing for Topology Inference
	From Observations to Network Topology
	Experimental Validation in the Bitcoin P2P Network
	Countermeasure: Trickling
	Discussion

	Exploiting Peer Discovery for Topology Inference
	Peer Discovery: Requirements & Tradeoffs
	Peer Discovery Strategy Description
	Adversary Model
	Methodology
	Results
	Discussion

	Topology Inference - Discussion

	Anonymity
	Related Work
	Clustering based on Blockchain Information
	Clustering Procedure & Heuristics
	Results

	Network Information
	Association of Transactions and IP Addresses
	Methodology
	Results & Discussion

	Discussion

	Conclusions and Outlook
	Proofs of Topology Inference Methods
	Exploiting Transaction Accumulation for Topology Inference
	Exploiting Double Spends for Topology Inference

	Approximative Propagation Delay Model
	Notation and Assumptions
	Probability for Shortest Path Length
	Delay Distribution Depending on Path Length

	Bibliography

