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Abstract

 Through forward genetic screening for mutations affecting visual system development, we identified 

prominent coloboma and cell-autonomous retinal neuron differentiation, lamination and retinal axon 

projection defects in eisspalte (ele) mutant zebrafish. Additional axonal deficits were present, most 

notably at midline axon commissures. Genetic mapping and cloning of the ele mutation showed that 

the affected gene is slbp, which encodes a conserved RNA stem-loop binding protein involved in 

replication dependent histone mRNA metabolism. Cells throughout the central nervous system 

remained in the cell cycle in ele mutant embryos at stages when, and locations where, post-mitotic 

cells have differentiated in wild-type siblings. Indeed, RNAseq analysis showed down-regulation of 

many genes associated with neuronal differentiation. This was coincident with changes in the levels 

and spatial localisation of expression of various genes implicated, for instance, in axon guidance, 

that likely underlie specific ele phenotypes. These results suggest that many of the cell and tissue 

specific phenotypes in ele mutant embryos are secondary to altered expression of modules of 
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developmental regulatory genes that characterise, or promote transitions in, cell state and require 

the correct function of Slbp-dependent histone and chromatin regulatory genes.

Keywords: Zebrafish, RNA seq, slbp, eye, coloboma, axogenesis, neurogenesis, proliferation.

Author Summary

Congenital deficits of eye formation are common in humans and to help understand the 

genetic basic of such conditions, we are studying zebrafish with comparable eye 

defects.  We identified defects in both the shaping of the eye and in its connections to the 

brain in eisspalte mutant fish.  Further analyses revealed additional deficits in the brain, 

most notably a severe reduction in neurons and their connections.  We find that this is due 

to an inability of the cells that generate neurons to transition from proliferation to neuronal 

differentiation.  By using a sequencing approach to compare mutant embryos to their 

normal siblings, we identified the affected gene as slbp, which encodes a protein that 

binds the mRNAs of other genes important for cell proliferation.  This sequencing 

approach revealed the full extent of changes in gene expression in the mutant, helping us 

to better understand why the nervous system defects occur.  Our study suggests that in 

the absence of Slbp function, cells lose the ability to transition from the proliferative to the 

differentiated state and this leads to additional defects in the eyes and brain.

Introduction 

Mutations in a wide variety of genes are known to lead to congenital abnormalities of eye formation 

[1,2]. Some of these genes, such as pax6 and rx3, show temporally and spatially restricted 

expression within developing visual system structures and consequently, a priori, are obvious 

candidates for roles in eye formation [3].  However, other genes, such as hdac1 [4] and yap [5], are 
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more ubiquitously expressed and consequently visual system specific phenotypes observed upon 

aberrant gene function are not so easily explained. Forward genetic screens in animal models 

provide a relatively unbiased approach to identify the full spectrum of genes involved in specific 

developmental processes, as the initial selection is based upon phenotypes of interest [6]. To this 

end, we have been using a forward genetic approach in which we screen existing and new zebrafish 

lines carrying randomly induced mutations for phenotypes affecting visual system development.

In this study, we observed that in eisspalte (ele) mutants, the ventro-nasal and ventro-temporal lips 

of the forming eye cup fail to fuse, leading to prominent retinal coloboma. The eisspalte phenotype 

was originally identified on the basis of aberrant morphogenesis of the midbrain/hindbrain boundary 

[7] but the affected gene had not been identified. Using both traditional mapping approaches and a 

novel mapping-by-sequencing approach based on the variant discovery mapping Cloudmap pipeline 

[8,9], we find that the eisspalte mutation lies within the slbp gene. This is consistent with a description 

of retinal defects in another slbprw440 mutant allele [10]. 

Slbp is a stem loop RNA-binding protein required for all aspects of replication dependent histone 

mRNA metabolism. Replication-dependent histone genes, which are predominantly expressed 

during S-phase in proliferating cells, are intron-less and encode non-polyadenylated pre-mRNAs that 

are processed by an unusual mechanism that requires two cis-acting elements in their 3’ 

untranslated regions (UTR) referred to as the stem loop (SL) and the histone downstream element 

(HDE). Slbp binds to the stem-loop of the mRNA as it is transcribed, preventing polyadenylation[11] 

and recruiting factors, such as U7 snRNP, that trim the 3’-end of the pre-RNA to from the mature 

histone mRNA [12-16]; reviewed in[17]). Slbp remains bound to the histone mRNA throughout its 

lifetime and participates in its processing, translation and degradation. 

Due to the stoichiometric nature of the relationship of Slbp with histone mRNAs, the levels of Slbp 

are believed to regulate the total level of histone mRNA that can accumulate in the cytoplasm [18]. 

Slbp therefore facilitates post-transcriptional regulation of histone mRNA levels and the incorporation 

of appropriate proportions of both replication and non-replication dependent histone variants into 

chromatin [17,18]. 
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As well as being involved in regulating cell cycle progression, Slbp is itself regulated through the 

cell-cycle, with increasing levels accumulating during G1/S followed by rapid degradation at the end 

of S-phase [19,20].  Slbp levels/activity are regulated at the protein level by the ubiquitin proteolysis 

pathway, a process mediated by Cyclin A-CDK1 and CK2 dependent phosphorylation of two 

threonine residues in the TTP motif located within the amino terminus of SLBP [17-21]. 

Loss of Slbp in C. elegans, Drosophila and mouse leads to defects in cell-cycle dependent histone 

mRNA production and processing, resulting in the accumulation or depletion of unprocessed histone 

mRNA in the cytoplasm and a reduction in histone protein production [22-25]. Such changes in 

histone production cause problems with chromosome condensation and chromatin structure leading 

to cell cycle arrest and genomic instability [23,26]. Loss of maternal Slbp function in C. elegans, 

Drosophila and mice as well as Slbp2 in zebrafish leads to very early embryonic defects with 

embryogenesis arrested at mid-blastula transition (MBT; [22,24,27,28]. Transcriptomic analysis at 

MBT in Drosophila showed zygotic gene activation to be severely compromised [29]. Disruption of 

Slbp function at later stages has revealed some surprising phenotypes that suggest unexpectedly 

cell-type-specific roles: in Drosophila, most slbp homozygous null mutants perish at late pupal stage 

but some survive to adulthood and show female sterility [24]; loss of Cdl-1 (Slbp) in C. elegans 

results in defects in pharynx morphogenesis and body elongation[23]; and, in zebrafish slpb mutants 

survive until 5dpf and present defects in retinal development [10].  

In this study, in addition to the initially observed retinal coloboma, we identify several other 

phenotypes affecting the eyes and central nervous system (CNS) in slbp mutants. These include 

deficits in axon guidance and pathway formation, particularly at midline commissures. Despite the 

relatively specific nature of the nervous system phenotypes, RNAseq analysis showed that gene 

expression in ele is very dysregulated.  Many of the gene expression changes are consistent with 

cells failing to express differentiation-related genes while retaining expression of genes linked to 

proliferation. Consequently, the loss of slbp function likely affects modules of spatially and temporally 

regulated genes that mediate the transition from proliferation to differentiation.  Indeed, we observe 

that whereas early born cells appear to differentiate, at later stages, cells both in the mesoderm and 

neuroectoderm fail to transition from proliferation to differentiation.  This suggests that despite their 
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specificity, some ele phenotypes are most likely a consequence of early born neurons differentiating 

within an environment that fails to mature appropriately.  

Results

The eisspalte mutation is in slbp

To identify genes contributing to eye morphogenesis, we screened existing lines of fish carrying 

genetic mutations and noticed that homozygous eisspaltety77e/ty77e (ele) mutant embryos frequently 

exhibited coloboma (Fig. 1A-B), a failure in closure of the optic/choroid fissure of the eye. The ele 

mutant was originally identified in a screen for mutations affecting brain morphology with the 

phenotype described as a dent in the midbrain-hindbrain boundary (MHB) [7]. In addition to this dent, 

slightly smaller eyes and a downward curve to the body axis were early morphological hallmarks of 

the ele phenotype, evident by 32hpf (not shown) and becoming more prominent by 2-3 days post-

fertilisation (dpf; Fig 1A’). Failure of choroid fissure closure was evident by 2 dpf (Fig 1A’,B’). Two 

other phenotypes observed in the mutant at this late stage were heart oedema (Fig 1A) and abnormal 

otolith development, with otoliths smaller and fused together (not shown).  Variations in penetrance 

and expressivity of ele phenotypes were observed in different genetic backgrounds. The ele 

phenotype was most severe in the TU strain such that although a downward curve to the body axis 

is present in TU, AB and WIK backgrounds, no obvious coloboma or MHB dent were observed when 

the mutation was crossed into the AB and WIK backgrounds.  

Bulked segregant analysis using SSLPs localised the ele mutation to chromosome14 between 

markers z4896 and z6847 (10.75Mb and 17.26 Mb respectively). This location (between 10 and 

20Mb) was confirmed with an RNA-seq based mapping approach using a modification of the 

Cloudmap mapping pipeline on Galaxy (Fig 1C,C’; http://usegalaxy.org/cloudmap; [9]. RNA-seq data 

showed that the interval containing the ele mutation harboured 14 protein-coding (non-synonymous, 

splice, stop) variants of which only one with a stop codon (position 14.8Mb, located in the middle of 

the peak; Fig1C). The non-sense point mutation (C-to-A) is located in exon 5 of the slbp gene that 

encodes Stem-loop binding protein (Slbp), introducing a premature stop codon (Y180stop) within the 

73 amino acid RNA binding domain (RBD) (Fig 1D). This mutation is predicted to lead to a truncation 
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in Slbp at the amino-terminus of the RNA binding domain (RBD), generating a protein that lacks all 

the conserved residues required for RNA binding activity and histone pre-mRNA 3’UTR processing 

(Fig 1D). Supporting the possibility that the causative mutation is in slbp, embryos injected with a 

splice-site morpholino, targeting the exon3-to-intron3 donor site in slbp, phenocopied various 

aspects of the ele phenotype including the morphological dent caudal to the MHB and coloboma 

(data not shown). Furthermore, another published mutation (slbprw440) in slbp has been shown to 

cause retinal defects [10].

To test whether reduction/loss of Slbp function causes all observed phenotypes, we injected 

synthetic RNA encoding wild-type RFP-tagged Slbp into embryos from a cross between ele 

heterozygous fish and assayed these embryos for rescue of phenotypes. Expression of Slbp-RFP 

fusion protein was confirmed by the presence of fluorescence at early gastrulation stages but no 

expression was detected by 26 hpf, suggesting that Slbp-RFP fusion protein may be degraded by 

this stage (data not shown). This is consistent with the notion that Slbp protein undergoes cell-cycle 

regulated cycles of synthesis and degradation [20,21,30]. To overcome these cycles of degradation, 

we therefore mutated two threonine residues within the TTP motif to alanines creating a construct 

encoding a degradation resistant SlbpTT-AA–RFP fusion protein[20].

Injected degradation-resistant slbpTT-AA-RFP RNA encodes a stably expressed nuclear localised 

protein that fully rescued the curve in the body axis, the MHB dent, commissural defects (described 

below) and the coloboma phenotypes over the first few days of development (data not shown). In 

control, non-injected embryos, 25.7% (n=100/389) showed an ele phenotype and the remaining 

embryos appeared normal consistent with full phenotypic penetrance in homozygous mutants. In the 

experimental group, injection of 150pg of degradation-resistant slbpTT-AA-RFP synthetic RNA 

reduced the number of embryos with an ele phenotype (as defined above) to 6% (Fig 1E; n=13/206 

showed an ele phenotype; n=193/206 showed no phenotype). This rescue confirms that altered or 

absent Slbp function is the cause of the phenotypes we observe in mutants and for the remainder of 

this paper ele mutants will be referred to as slbpty77e mutants.  

Only slbp and not slbp2 is expressed in proliferative neural cells 
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To better understand how compromised Slbp function may lead to slbpty77e phenotypes, we analysed 

the spatial and temporal expression of slbp and the paralogous slbp2 gene. slbp and slbp2 

transcripts are maternally expressed and ubiquitously distributed in early cleavage stage embryos 

(Fig 1F-H and[10]). slbp2 transcripts are undetectable by in situ hybridization from 50% epiboly stage 

but continue to be detected by RT-PCR until 4-8 somite stage suggesting gradual depletion of a 

maternal transcript pool (Fig 1F,G). In contrast, by 16s, increased levels of spatially restricted slbp 

transcripts were observed in the presumptive central nervous system and from 24hpf, high levels of 

expression start to become restricted to the proliferative zones of the brain, retina, fin buds and trunk 

(Fig. 1H; [10,31]). The expression of slbp is maintained in proliferative zones of the CNS at 2dpf (Fig 

1H) where it overlaps with the expression of several replication dependent histone genes (e.g. h1f0-

H1: Fig.S2A, B). 

Both slbp and slbp2 transcripts are maternally deposited suggesting that Slpb2 along with wildtype 

maternally derived Slbp may compensate for loss of functionality of zygotic Slbp during very early 

development.  However as maternal RNA and protein is depleted and slbp2 is not expressed after 

gastrula stages, this is likely to lead to the emergence of slbpty77e phenotypes in the nervous system 

during subsequent development.

slbpty77e mutants have less neurons and show axonal defects. 

Coloboma phenotypes have been associated with retino-tectal pathfinding defects (eg. [32,33]) and 

indeed acetylated -tubulin labelling of axons showed that retino-tectal projections are severely 

compromised in slbpty77e mutants. In wildtype animals, retinal ganglion cell (RGC) axons exit the eye 

via the choroid fissure at the optic nerve head, decussate at the optic chiasm and extend dorsally to 

innervate the contralateral optic tectum (Fig 2A,B).  In slbpty77e mutants, the few RGC axons present 

often failed to exit the eye to form the optic nerve (Fig 2A’) and instead extended in aberrant locations 

within the retina itself (Fig 1C’ arrowhead; see also Imai et al, 2014). The optic tectal neuropil, formed 

by both RGC axons and tectal neuron dendrites, was severely depleted in slbpty77e mutants (Fig 2B’) 

suggesting that tectal neurons may also be depleted. 

In addition to retino-tectal defects, several forebrain commissures, particularly those that form later 

in development [34,35], were reduced or absent in slbpty77e mutants/morphants. The brain underwent 
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relatively normal morphogenesis and the anterior and post-optic commissures (AC and POC, 

respectively) formed but they were reduced in size and showed aberrant axons directed away from 

the main commissural pathway (Fig 2A’). In all genetic backgrounds analysed, the stria medullaris 

and tract of the habenula commissure did not form and consequently the habenula commissure (HC) 

was absent (Fig 2B’). In the TU background another dorsal commissure, the posterior commissure 

(PC) was present in slbpty77e mutants but was reduced to a thin bundle of axons crossing the midline, 

comparable to the tract in much younger wild type embryos. Additional axons were observed in the 

tract of the PC ventrally, but these did not extend dorsal-wards to the commissure (Fig 2B’). Posterior 

commissural defects were less severe in other genetic backgrounds in which more axons crossed 

the midline, though the commissure itself was less compact and axons were spread over a wider 

area (data not shown). These defects are consistent with commissure establishment and growth 

stalling after the first day of development.

Aberrant formation of the AC was the first discernable axonal defect we observed in ele 

mutants/morphants. In 30 hpf wildtype embryos, telencephalic axons have crossed the midline to 

form the AC (Fig 2D). In slbpty77e mutants/morphants this process was delayed and no AC was visible 

at 30hpf (Fig 2D’D”). The post optic commissure (POC) was present in slbpty77e mutants by this stage 

but was usually defasciculated (Fig 2D’). Correlating with these deficits, various genes encoding 

midline axon guidance molecules (including sema3d, slit2, zic2.1 and netrin1a) showed 

misexpression in slbpty77e mutants (Fig S1). The severity of these commissural defects was variable 

in different genetic backgrounds and strongest in TU. 

To assess whether the reduction in the extent of axonal labelling in slbpty77e mutants was correlated 

with a reduction in the numbers of neurons, we examined expression of the Tg(-8.4neurog1:GFP) 

transgene [36] which is present in many neurons throughout the anterior CNS and the 

Tg(lhx5:GFP)b1205 transgene in dorsal telencephalic neurons[37]. Wildtype and mutant embryos 

labelled with antibodies to GFP and acetylated tubulin showed no overt difference in the extent and 

pattern of neurons in either Tg(-8.4neurog1:GFP)sb1 or Tg(lhx5:GFP)b1205 backgrounds prior to 30hpf 

(data not shown). However at later stages, slbpty77e mutants (Fig 2E’, F’) had fewer Tg(-

8.4neurog1:GFP)sb1 and Tg(lhx5:GFP)b1205 positive neurons throughout the forebrain when 
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compared to wildtype siblings (Fig 2E,F).  A similar phenotype was seen in the retina in which the 

earliest born ath5:GFPrw021 expressing RGCs were observed in the ventro-nasal retina of mutants 

but later born neurons in the central retina were depleted (Fig 4A’) and subsequent waves of 

neurogenesis were delayed and less RGCs were present at later stages (data not shown). Later 

born retinal neurons were severely depleted in slbpty77e mutants with rods (not shown) and cone 

photoreceptors almost absent (Fig 4B’). Overall, neurons in slbpty77e mutant brains initially appeared 

relatively normal but after 30hpf, neuronal clusters failed to expand and late-born neurons were 

severely depleted/absent suggesting production of neurons may be arrested in the mutant. 

To determine if the reduction in the number of neurons was due to an increase in programmed cell 

death, we performed TUNEL labelling on 30hpf embryos. An increase in TUNEL-labelled cells was 

observed in the tectum of slbpty77e mutants from 30 hpf (Fig 3A-A’). slbpty77e mutants showed no 

obvious cell death in the retina or forebrain at this stage and cell death in the lens comparable to 

wildtype siblings (Fig 3B-B’). We next asked if the axonal defects could be a consequence of the 

increased numbers of apoptotic cells in the brain. Blocking cell death from 16hpf using a caspase 

inhibitor did increase the level of acetylated tubulin labelling of neurites in the optic tectum and 

cerebellum (compare Fig 3C’ to 3C”) where apoptotic cells are prominent in slbpty77e mutants but did 

not rescue axonal defects. In such embryos, aberrantly located retinal axons were still present (Fig 

3C’’) and habenular commissure and neuropil defects persisted. Overall the elaboration of axon 

tracts and neuropil did not recover to wildtype levels (Fig 3 C-C’’) in caspase inhibitor treated 

slbpty77emutants indicating that the axonal deficits seen in slbpty77emutants are not simply a 

consequence of cell death.

Slbp is cell-autonomously required for differentiation and lamination of retinal neurons. 

To address whether the slbpty77e mutation compromises neuronal differentiation in a cell autonomous 

manner, we performed cell transplantation experiments in the eye in which patterns of neurogenesis 

are very stereotyped and differentiated neuronal types are easy to visualise.  

GFP-expressing wildtype cells transplanted into wildtype retinas formed clonal columns of retinal 

neurons, with cells occupying all layers of the retina (n=30, Fig 4C,D).  In contrast, slbpty77e mutant 

cells transplanted into wildtype retinas lacked neuronal morphologies and appeared clumped instead 
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of being distributed throughout the three layers of the retina (n=7 clones in 4 retinas; Fig 4C’,D’). 

Notably, slbpty77e mutant cells rarely, if ever, contributed to the outer neural retina in which many later 

born neurons reside.  Moreover, retinal lamination, visualised with -catenin antibody, was absent 

within, and adjacent to, the slbpty77e mutant clones (Fig 4D’).  These experiments show that Slbp is 

required cell autonomously for differentiation and lamination of retinal neurons and that clones of 

slbp mutant cells can non-autonomously disrupt organisation of adjacent wild-type retina.

slbpty77e mutant cells fail to transition from proliferation to differentiation. 

Slbp regulates histone mRNA metabolism and levels of Slbp protein are tightly cell cycle regulated 

[18,20,22,24,27]. To examine the effect of loss of Slbp function on cell cycling we first utilized flow 

cytometry to profile cell phasing in dissociated cells from 2dpf wildtype and slbpty77e mutant embryos. 

The percentage of slbpty77e mutant cells (47.4%) in S-phase was double that in wildtype (23.6%).  

Similarly, 10.4% of slbpty77e mutant cells were in G2/M phase compared with 4.1% of wildtype cells. 

Conversely, fewer slbpty77e mutant (41%) than wildtype (71.7%) cells with G1 DNA content were 

observed (Fig 5A).  

To assess if proliferative cells showed abnormal spatial distributions in slbpty77e mutants, we 

assessed BrdU incorporation (which labels cells in S phase) and PH3 labelling (which recognises 

mitotic cells). In wildtype 56hpf embryos, S and M-phase proliferating retinal cells were confined to 

the ciliary marginal zone  whereas many BrdU and PH3 positive cells were located in the central 

retina of slbpty77e mutants (Fig 5B-C’) as has also been shown in slbprw440 mutants[10]. Furthermore, 

expression analyses that showed that cyclins representative of all stages of the cell cycle cyclin D1, 

cyclin E2, cyclin A, cyclin B were all upregulated in slbpty77e mutants and were expressed in areas of 

the brain and eye that are largely post mitotic in wild-type embryos (Fig 6, S2 and data not shown).  

These results suggest that many neural cells remain proliferative in slbpty77e mutants and fail to 

transition to generating post-mitotic neurons.

To define the onset of cell cycle defects in slbpty77e mutants, the Tg(EF1:mAG-zGem(1/100))rw0410h 

transgene [38] that visualizes cells in S, G2 and M phases (Fucci green) and Tg (EF1: mKO2-

zCdt(1/90))rw0405b transgene that highlights cells in G1 phase (Fucci orange) were crossed into fish 

carrying the slbpty77e mutation and embryos analysed to detect the ratio of proliferating and non-
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proliferating cells in live embryos. These transgenes were expressed at low/negligible levels in the 

nervous system and so our analysis focussed on the transition from proliferation to differentiation in 

the mesodermal somites.

Timelapse imaging of the developing somites showed that from about 14 hpf, most cells in anterior 

somites (the earliest forming) of wildtype embryos were post mitotic (red) whereas in slbpty77e 

embryos, the majority of cells were still expressing transgenes normally restricted to proliferating 

cells (Fig 5D-D’). Some somitic slbpty77e cells maintained expression of S/G2/M phase transgenes 

through later developmental stages (30/32hpf; Fig 5D-D’). Consequently, although slbpty77e mutants 

only show an overt morphological phenotype from around 30-32hpf, defects in the transition from 

proliferation to differentiation are already present from as early as 12/14 hpf. These results are 

consistent with the observations above and suggest that both in mesodermal and ectodermal 

tissues, slbpty77e mutant cells are compromised in their ability to effectively transition from 

proliferation to differentiation.

RNAseq analysis of slbpty77e mutants reveals mis-regulation of histone and chromatin 

remodelling genes and loss of expression of genes indicative of differentiation 

RNAseq analysis of slbpty77e mutant and wild-type embryos at 52hpf showed that gene expression 

in slbpty77e is strongly dysregulated in mutants with 2158 genes significantly upregulated (Table S2) 

and 2607(Table S3) genes downregulated based on a q value  0.01 (Fig 6A). Consistent with the 

role of Slbp in histone RNA processing [18], we found that histone transcripts were highly enriched 

in slbpty77e mutants including both canonical and non-canonical histone subunits (49 of the top 100 

highest fold over-represented transcripts are from histone subunit encoding genes). 

To determine whether the expression of certain groups of genes is particularly dysregulated in 

slbpty77e mutants we used the AmiGO2 tool (The Gene Ontology Consortium) [39] to perform a GO 

term enrichment analysis for “Biological Process” on genes showing a significant change in 

expression (q value  0.01) in the RNAseq data. This enrichment analysis was performed for both 

up (Fig 6B’, Table S2) and down (Fig 6B”, Table S3)-regulated genes. GO terms significantly 

enriched (p 0.05) in slbpty77e sequence datasets were compared to GO terms assigned to 25,800 

protein-coding danio rerio genes and were manually grouped into 14 categories (Fig 6B; Table S2 
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& S3). GO terms relating to DNA/RNA regulation (many of which relate to chromatin regulation and 

cell cycle) were enriched, indeed accounting for 27% of enriched GO terms in the up-regulated gene 

list and 6% for down-regulated genes. GO terms relating to nervous system development 

(GO:0007399), neurogenesis (GO:0022008), eye development (GO:0001654) and axogenesis 

(GO:0007409) (grouped under GO term category; “system development”) were also highly 

represented in both upregulated (9% of all enriched GO terms) and downregulated (27% of all 

enriched GO terms) gene datasets. 

Further interrogation of the lists above for genes expressed with a log fold change of greater than    

-2 revealed downregulation of many genes normally expressed in differentiated neurons (Table S4). 

For instance crx (Cone-Rod Homeobox Protein); syt5b (synaptotagmin Vb), neurod6a (neuronal 

differentiation 6a), olig1 (oligodendrocyte transcription factor 1); slc6a1b (solute carrier family 6 

(neurotransmitter transporter, member 1b); nr4a2a (nuclear receptor subfamily 4, group A, member 

2a); gria1a (glutamate receptor, ionotropic, AMPA1a); slitrk5a (SLIT and NTRK-like family, member 

5a); gad2(glutamate decarboxylase 2); grm2a (glutamate receptor, metabolic 2a) were among the 

downregulated genes normally expressed in mature neurons . In contrast among those genes 

comparably upregulated were many linked to cell cycle and proliferation (Table S4 and Fig S2). One 

of the most upregulated genes in slbpty77e mutants was elavl2, which encodes another RNA binding 

protein [40] that is expressed as progenitors transition to post-mitotic neurons ([41]; Reviewed in[42]) 

while expression of both elavl3 and elavl4, expressed in mature neurons, was downregulated. These 

results are consistent with many slbpty77e mutant cells failing to differentiate and maintaining 

expression of genes characteristic of proliferative progenitor cells.  

To validate and further interrogate the RNAseq data, we assessed expression of several genes 

related to histone function or eye/nervous system development by in situ hybridization and/or 

quantitative RT-PCR. qPCR of 19 selected genes showed comparable upregulation or 

downregulation of expression as observed in the RNAseq dataset (Fig 6C). In situ hybridisation 

analysis of 10 genes from the RNAseq dataset (of which gnb3a, cyclinD1, netrin1a and h2afx were 

also analysed by qPCR) showed changes in expression that confirmed RNAseq data (Fig 6D-F’ and 

Fig S1, S2).  For instance, instead of being restricted to expected sites of neural cell proliferation, 
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histone h2afx mRNA was expressed very broadly throughout much of the brain whereas the 

Protocadherin encoding gene pcdh10, which is expressed in neurons and regulates axon guidance 

[43] , was widely downregulated. Together, RNAseq data confirmed by qPCR and ISH showed 

widespread developmental transcriptional dysregulation in slbpty77e mutants, with many changes 

consistent with a failure of many cells to transition to differentiation.  

Altogether, these results support that the axonal and retinal phenotypes observed in slbpty77e mutants 

are potentially due to mis-regulation of modules of regulatory genes important for the transition from 

proliferation to differentiation and subsequently for specific features of nervous system development 

such as axon guidance and retinal morphogenesis.

Discussion

In this study we describe the cloning of the slbpty77e mutation and characterization of nervous system 

phenotypes in slbpty77e mutants.  We show that although early born neurons are present and 

elaborate axons in slbpty77e mutants, later born neurons are severely depleted and consequently late 

forming commissures are absent and early tracts and commissures fail to grow. These results are 

consistent with the observation that many proliferative neural cells fail to transition to differentiation 

and consequently there are major alterations in the spatial and temporal distribution of proliferative 

versus differentiated cells in the developing nervous system. One result of this phenotype is that 

early born neurons differentiate in a very abnormal environment and this no doubt contributes to the 

axon guidance and other defects present in mutants. Such phenotypes may be a consequence of 

the role of Slbp in regulating histones that modulate chromatin structure thereby influencing 

expression of modules of developmental regulatory genes.

A failure in transitioning from proliferation to differentiation may underlie most slbp mutant 

nervous system phenotypes 

While slbp mutants are not viable in mammals [22,44,45], the survival of fish slbp mutants through 

embryogenesis allowed us to study relatively late nervous system phenotypes. The late appearance 

of phenotypes in fish slbp mutants is likely due to the presence of both maternally provided slbp 

transcripts and the early expression of the paralogous slbp2 gene through gastrulation stages. We 
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assume that nervous system phenotypes emerge after the gradual depletion of these pools of 

Slbp/Slbp2 protein. 

A consistent feature of our phenotypic analyses of slbp mutants is the depletion of neurons and 

continued presence of cells that fail to transition from proliferation to differentiation.  For instance, 

within slbp mutant eyes, the earliest born retinal neurons in the ventro-nasal retina appear as normal 

but later born neurons in the central retina are severely depleted; in contrast BrdU-incorporating cells 

and mitotic figures remain present within the central retina, long after they are largely absent in wild-

type eyes. This phenotype is consistent with other studies/contexts in which loss of Slbp has been 

linked to cell cycle progression and differentiation deficits [10,46,47]. 

The presence of early born neurons and early axon tracts and absence of later neurons/tracts is 

perhaps most simply explained if sufficient maternal Slbp/Slbp2 protein is retained in the precursors 

of these early-born neurons to enable them to exit the cell cycle. If this is indeed correct, then small 

differences in the levels/perdurance of maternal Slbp/Slbp2 protein may contribute to the variation 

in phenotypic severity seen in different backgrounds.

Although difficult to determine with any certainty, it is also possible that late phenotypes such as a 

failure in the closure of the choroid fissure and commissural axon guidance phenotypes could be a 

secondary consequence of the failure of many neural cells to differentiate.  For instance, choroid 

fissure closure is dependent on appropriately timed expression of genes in neural retina and retinal 

pigment epithelium [33,48]; and GG and SW, unpublished data); depigmentation of the ventral eye 

is associated with coloboma in slbp mutants suggesting a failure in differentiation of the retinal 

pigment epithelium cells may contribute to the coloboma.  Similarly, the altered environment along 

the pathways through which axons from early born neurons extend almost certainly contributes to 

the observed axon guidance phenotypes.  The early axon pathways in the brain are mostly 

established along boundary regions within the neuroepithelium, many of which are sites of neuronal 

differentiation[49].  The depletion of neurons in mutants coupled with the widespread misregulation 

of genes encoding axon guidance proteins expressed in neuroepithelial cells presents the extending 

axons with a very abnormal environment, no doubt contributing to their projection errors.   
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Slbp regulates expression levels of numerous histone genes and other genes affecting 

chromatin

In slbpty77e mutants, the slbp gene encodes a predicted protein that is truncated at the amino-

terminus of the RNA-binding domain and lacks all the conserved residues required for RNA binding 

activity and histone pre-mRNA 3’UTR processing. Therefore, slbpty77e mutant Slbp is most likely 

devoid of all RNA binding activity. One consequence of this is a likely shortage of histone proteins 

during S phase, which would lead to aberrant chromatin structure. Indeed, RNAseq results showed 

genes encoding or associated with histone proteins are highly represented suggesting that the 

aberrant translational regulation of Slbp-dependent histones leads to profound changes in histone 

gene transcription. The upregulation of histone RNA expression could be due to the production of 

unprocessed and aberrant polyadenylated histone mRNAs that are more stable than corresponding 

wildtype RNAs as previously shown for histone H3 and H4 in Drosophila Slbp mutants [24] and for 

all replication-dependent histones in human cells [24]. This is in apparent contrast to recent work, 

again in Drosophila, showing that histone mRNA levels can be dramatically decreased in Slbp 

mutants [29]. Additionally selective downregulation of particular histones has been reported in 

mouse and slbp2 zebrafish mutants [22,28].

This As expected,we have found that histone mRNA levels aredramatically decreased in Slbp mutants, concordantwith previous work in Drosophila showing thematernal deposition of histone protein and mRNAis hampered in these mutants [17,36].
Degradation of Slbp at the end of S phase may not be essential for its function. 

In mammalian cells, Slbp levels are regulated in a cell-cycle dependent manner through a highly 

conserved phosphorylation motif (TTP) that targets Slbp for ubiquitin mediated degradation by the 

proteosome at the end of S-phase [20]. This motif is present in Slbp, (but surprisingly absent from 

maternally deposited Slbp2, [20]), suggesting that zebrafish Slbp has the potential to be regulated 

in an identical manner. Indeed, exogenously expressed wildtype Slbp is rapidly turned over (and 

consequently cannot rescue slbpty77e mutant phenotypes). However, in contrast, expression of a 

degradation resistant Slbp (slbp1TT-AA) very effectively rescues slbpty77e phenotypes. The simplest 

explanation of this result is that degradation of Slbp at the end of S phase is not required for histone 

mRNA regulation. Moreover, no overt phenotype was observed in wildtype embryos overexpressing 

slbp1TT-AA suggesting that embryos can tolerate excess Slbp throughout many cell cycles.
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Disrupted chromatin regulation underlies many congenital abnormalities of visual system 

and brain development 

If the role of Slbp in chromatin regulation underlies some of the more intriguing phenotypes in slbpty77e 

mutants, then it would be consistent with an ever-increasing list of chromatin regulators being linked 

to human congenital abnormalities of eye and brain development [50-56] ). For instance, loss of 

function of chromodomain helicase DNA binding protein 7 (CHD7, [57]; reviewed in [58] is the cause 

of CHARGE syndrome, a rare genetic syndrome that shares phenotypic characteristics with slbpty77e 

mutants. For instance, patients show congenital abnormalities in the visual system and brain 

including coloboma, cranial nerve deficits and intellectual disability (reviewed in [58]). Chd7 is also 

required for proper extension, pruning, guidance and extension of axons in the developing central 

nervous system of the fly [50,59], suggesting that such defects could contribute to the neurological 

symptoms in human patients.

Coloboma, small eyes, ear and neurogenesis defects are also observed when Hdac1 function is 

compromised [60-62]. Hdacs (Histone deacetylases) are among the most critical histone-modifying 

enzymes and their loss of function results in chromatin de-compaction and transcriptional 

perturbation (reviewed in [63]. Various studies have linked Hdac (and indeed Slbp) function with 

specific developmental genes and pathways such as Fgf [62,64], Notch [10,62] and Wnt [4,65,66] 

but as we show, it is possible to observe quite specific phenotypes even in contexts when there is 

massive dysregulation of gene expression.  Consequently, when chromatin regulators are implicated 

in developmental events, transcriptomic studies provide a valuable overview of the expression 

landscape within which specific phenotypes may arise. 

Materials and Methods

Zebrafish lines and genotyping

AB, TU, WIK and EKWILL wild-type, eisspalte (ele/slbpty77e), Tg(-8.4neurog1:GFP)sb1[36],  

Tg(lhx5:GFP)b1205[37], Tg(atoh7:GFP)rw021 [67], Tg(EF1:mAG-zGem(1/100))rw0410h and 
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Tg4(Xla.Eef1a1:mKOFP2-cdt1)rw0405b [38] zebrafish (Danio rerio) lines were bred and maintained 

according to standard procedures [68]. To prevent pigment formation, 0.003% phenylthiourea (PTU, 

Sigma) was added to the fish water between 20 and 24hpf. For live timelapse imaging of Fucci lines 

embryos were anaesthetised in 0.2% tricaine methanesulfonate (MS222, Sigma) in fish water.

Genotyping of the elety77e mutation was performed following PCR analysis of genomic DNA using 

primers JH-641 (forward 5- CTCATCAGAAGACAGAAGCAGATCAACTA -3) and JH-209 (reverse 

5- TTGCCCACCCCTGTTCTA-3) followed by DdeI restriction digestion of the PCR products to 

generate 445 bp and 418 bp fragments for the wildtype and mutant alleles respectively. The bold C 

nucleotide is changed within the primer to create the DdeI restriction site in the elety77e mutant allele. 

Latterly, a KASP assay (KASP, LGC genomics; ID 1234567890), performed according to the 

manufacturer instructions was also used for genotyping embryos. 

SNP-mapping 

ele heterozygotes in a TU background were outcrossed to WIK strain for bulk segregant linkage 

analysis [69] and to EKWILL for subsequent mapping. Simple sequence length polymorphisms 

(SSLPs) were used to establish low resolution linkage[70]. Single nucleotide polymorphisms (SNPs) 

were identified by sequence analysis of PCR products derived from heterozygote F1 ele/EKWILL 

fin-clip derived DNA for distantly located markers and by comparison to homozygous F2 

EKWILL/EKWILL wildtype and ele mutant embryos derived DNA sequences for closely located 

markers. PCR products harbouring SNPs that gave rise to restriction fragment length polymorphisms 

(RFLPs) were digested with appropriate restriction enzymes and resolved by 2-4% agarose gel 

electrophoresis. If no restriction site was present, dCAPS Finder 2.0 software [71] was used to 

design primers that generate a restriction site polymorphism for analysis in the same manner.  

Sequence data was analysed using Lasergene Navigator software.  

Mapping-by-sequencing and RNAseq

We also used an RNAseq approach to map the ele mutation, identify causal variants and reveal 

gene expression differences in ele mutants. To obtain embryos at the same developmental stage, 

elety77 heterozygotes were kept apart in breeding tanks and embryos collected 30 minutes after 
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divider removal. Mutant and sibling embryos were sorted by phenotype at 2 dpf. For RNAseq 

analysis, we performed 2 biological replicates and 1 experimental replicate. Total RNA was isolated 

from 30 embryos using 500μl of Trizol followed by homogenization with a G30 syringe and 

standard chloroform extraction and ethanol precipitation. RNA integrity was validated by RQI > 9.6, 

where 0 corresponds to fully degraded RNA and 10 corresponds to intact RNA (Experion RNA 

HighSens Analysis, BIORAD). 

RNAseq analysis was performed on an in-house Galaxy server using the Tuxedo pipeline [72]. 

Briefly, reads from both mutants and siblings were mapped to the zebrafish Zv9.65 genome using 

TopHat2, assembled into a parsimonious list of transcripts using Cufflinks and a merged transcript 

dataset from all the Cufflinks transcripts was created using Cuffmerge [72]. Differential expression 

analysis was performed on the BAM files from all three biological replicates and the merged 

transcript dataset using Cuffdiff (Table S1). Differential expression between mutant and sibling 

samples was only counted as significant if q < 0.01. GO term enrichment analysis for “Biological 

Process” on all of the genes showing a significant change in expression (q value  0.01) in our 

RNAseq data was performed using the AmiGO2 tool (The Gene Ontology Consortium) [39]. GO 

terms significantly enriched (p 0.05) in ele compared to a background list of 25,800 protein-coding 

Danio rerio genes were manually grouped into 14 categories (Table S2 & S3).

Mapping-by-sequencing was performed in parallel on the same in-house Galaxy server using a 

modified version of the Cloudmap variant discovery mapping (VDM) platform[8,9] to process 

RNAseq rather than whole-genome sequencing data. Instead of plotting individual allele frequencies 

of the variants identified in the mutant sample as per the VDM pipeline, the kernel density of 

homozygous/heterozygous SNPs was plotted along each chromosome. To narrow the list of causal 

variants in the mutant sample we subtracted homozygous variants identified in the sibling sample, 

as well as a list of common wildtype variants complied by combining variants identified through our 

own sequencing the ekwill strain plus a list compiled from previously published data [73,74].

Microinjection 

An slbp antisense morpholino oligonucleotide was designed to target the third coding exon-intron 

boundary and synthesised by Gene Tools LLC. slbp morpholino (5-
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ATTCAAGAGAGGCAACTGACCGATG-3) was injected at 2ng and to assess effectiveness of the 

morpholino to block splicing, RT-PCR analysis was carried out using primers JH711 (forward: 5-

CAAAGGAGCTTCAAGGTGGT-3) and JH712 (reverse: 5-AGGGAAATCACTCGCAAGAA-3).

To generate a degradation resistant wildtype slbp expression construct for rescue analysis,  (T92A) 

and (T93A) mutations were created using a PCR-based mutagenesis method [75]. The resulting 

fragment was cloned into CS2+RFP to generate CS2+RFP-SlbpTT-AA. Capped mRNA was prepared 

using the mMachine RNA Synthesis Kit (Ambion) according to the manufacturer's instructions. One-

cell-stage embryos resulting from elety77e heterozygous in-crosses were injected with 50pg of 

CS2+RFP-SlbpTT-AA mRNA.

DNA content analysis 

To obtain single cell suspensions, between 40 and 50 anesthetized mutant and wild-type 48hpf 

embryos were incubated for 20 minutes on a shaker in 0.25% trypsin in L15 tissue culture media 

(Sigma). Repeated trituration using fire-polished glass pipettes was performed. Cell suspensions 

were cleaned with a mesh and re-suspended in PBS. Cells were fixed in 70% EtOH and stored at 

4ºC for several days. Cells were re-suspended in 100 microliters of propidium iodide solution (in 4 

mM citrate buffer, pH 6.5, containing 0.1 mg/ml propidium iodide (Sigma), 200 μg/ml RNase, and 

0.1% Triton X-100) and stored at 4ºC until analysis. Data acquisition was performed by using a 

Becton Dickinson FACS-Calibur machine and analyzed by using the FlowJO programme. 

Histology

Whole-mount immunolabelling procedures were performed as previously described [34,76]. For 

antibody staining of cryosections, embryos were first protected by sequential incubation in 15% then 

30% sucrose in phosphate-buffered saline supplemented with 0.5% Triton X-100 (PBST) for 12-16 

hours at 4°C, embedded in OCT, stored at –80°C, and sectioned at 16-20m using a Leica cryostat. 

-tubulin (Sigma; 1:200); zn5 [Zebrafish International Resource Center (ZIRC); 1:250]; GFP (AMS 

Biotechnology TP401; 1:1000); anti-acetylated tubulin (IgG2b, Sigma; 1:500); anti-SV2 (IgG1, 

DSHB; 1:500); BrdU (Roche; 1:300); PH3 (Upstate Biochemical; 1:500); zpr-1 (ZIRC, 1:50) 

antibodies were used.
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Antisense mRNA probes for whole-mount in situ hybridisation were synthesised using RNA 

polymerases (Promega) and digoxigenin labelled nucleotides (Roche) following manufacturer's 

instructions. Whole-mount in situ hybridisations were performed essentially as previously described 

[33]. TUNEL labelling to detect apoptosis was performed using the ApopTag Kit (Chemicon 

International). In ordered to block apoptosis, 24hpf embryos were treated with 300 µM of caspase 

inhibitor (Z-VAD-FMK, Sigma).

Cell proliferation assays 

BrdU (Sigma) incorporation was performed as previously described [77]. Briefly, de-chorionated 

embryos were incubated in 10mg/ml BrdU/15%DMSO in E3 on ice for 20 minutes, washed in warm 

E3 at 28 degrees for 20 minutes prior to fixation with 4% paraformaldehyde.

Cell transplantations

Embryos from elety77e heterozygote incrosses were injected with GFP mRNA (40-50 pg per embryo) 

at the one-cell stage. Thirty to 40 GFP+ cells were transplanted from the apical region of mid-blastula 

donor embryos into early-gastrula-staged hosts in the region fated to become the eye [78,79]. Donor 

embryos were either genotyped or allowed to grow until 3 dpf to distinguish mutants from siblings. 

Host embryos were fixed at the stages indicated in the results, genotyped if necessary, then 

prepared for cryo-sectioning and antibody staining. 

Imaging and data processing

Embryos subjected to whole-mount in situ hybridisation were cleared in serial incubations of glycerol 

(25, 50, 75 and 95%), the eyes and brains dissected and placed in a drop of glycerol, cover-slipped, 

and imaged with a 40X (0.8 NA) water-immersion lens using a Nikon E1000 microscope connected 

to a digital camera (Jenoptik) operated by Openlab (Improvision) software. 

Cryosections were examined by confocal fluorescence microscopy (Leica Systems) using a 40X (1.2 

NA) or 63X (1.4 NA) oil-immersion lens. Whole-mount immunostained embryos were imaged using 

a 25X (0.95 NA) water-immersion lens. All confocal images were processed using Volocity 

(Improvision) or Imaris software and all figures were composed with Adobe Photoshop and Adobe 

Illustrator. 
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Quantitative RT-PCR 

Mutant and sibling zebrafish embryos were sorted by phenotype at 48hpf. Total RNA was isolated 

using Trizol according to manufacturer’s instructions. cDNA was synthesized and amplified with 

Transplex Whole Transcriptome Amplification Kit (Sigma) using 50 nanograms of total RNA, 

according to the protocol provided. Nucleic acid concentrations were obtained using a Nanodrop. 

Real-time PCR experiments were performed in triplicate using GoTaq qPCR Master Mix (Promega) 

in a BioRad iCycler. Fold changes in RNA levels were calculated according to the ΔΔCt method [80], 

and expression was normalized to β-actin levels. Quantitect primers (Qiagen) were used to amplify 

aldh1a3 (QT02111613), actb1 (QT02174907), ccnd1 (QT02178519), chd7 (QT02068584), col10a1a 

(QT02129708), crabp1b (QT02229297), elavl2 (QT02092713), gnb3a (QT02129701), h2afx 

(QT02140278), hat1 (QT02209501), hdac1 (QT02157099), ntn1a (QT02422490), nr2f5 

(QT02125424), rx1 (QT02067786), shha (QT02236136), shhab (QT02055312), smarcc2 

(QT02101008), tdrd6 (QT02235821), tfap2 (QT02211622), and vsx2 (QT02050426). 
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Figure Legends. 

Figure 1.  The ele mutation is in slbp.
(A-A’) Morphology of 2dpf wildtype and ele mutant embryos (red asterisk indicates heart oedema).   
(B, B’) Heads of 2dpf wildtype (A) and ele (A’) mutant embryos showing the coloboma phenotype in 
the mutant (arrowhead in B’). 
(C-C’) RNAseq mapping plot of SNP homozygosity across Chromosome 14 and 15.
(D) Domain organisation of wildtype and mutant Slbp predicted proteins. 
(E) Dot plots of percentages of embryos showing ele phenotypes in control clutches (blue) and in 
clutches injected with wildtype slbpTT-AA-RFP RNA (red).  Each dot is the percentage from one of 
seven independent experiments.  Thick black bars = standard deviation; fine black line = mean. 
(F) Reverse transcriptase polymerase chain reaction (RT-PCR) for slbp and slbp2 at developmental 
stages indicated. 
(G, H) Whole mount RNA in-situ hybridization for slbp (H) and slbp2 (I) at developmental stages 
indicated. 
Scale bars: (A, A’, H, I) 250m; (B and B’) 100m.

Figure 2. slbpty77e mutants have less neurons and show axonal defects.
(A-D”) Acetylated -tubulin labelling of wildtype (A-D) and ele mutant (A’-D’’) embryo brains and 
eyes. 

Frontal (A-A’; D-D”) and lateral (B- B’) views of brains and lateral views of eyes (C,C’) of 3dpf (A-C’) 
and 30hpf (D- D’’) wildtype (A-D), slbpty77e mutant (A’-D’) and morphant (D”) embryos.  Arrowhead in 
C’ highlights the aberrant extension of RGC axons within the retina. The asterisks in D’-D” highlight 
aberrantly positioned axons near the midline commissural region in slbp mutant and morphant 
embryos.  

(E-E’) Lateral view with anterior to the left of 3dpf wildtype (E) and slbpty77e mutant (E’) embryos 
showing expression of the Tg(-8.4neurog1:GFP)sb1 transgene (green) labelled neurons and 
acetylated -acetylated tubulin labelled axons/neurites (magenta) .  
(F-F’) Frontal views of the telencephalon in 3dpf wildtype (F) and slbpty77e mutant (F’) embryos 
showing expression of the Tg(lhx5:GFP)b1205 transgene (green) labelled neurons, SV2 labelled 
neuropil (red) and acetylated -acetylated tubulin labelled axons/neurites (cyan).  
Abbreviations: AC, anterior commissure; POC, post-optic commissure; ON, optic nerve; T, 
telencephalon; PC, posterior commissure; OT, optic tectum; Hb,habenula; E,eye; P,pineal. 

Scale bars: (A-C”, E, E’) 100m (D-D”, F, F’) 50m.

Figure 3.  Suppressing cell death partially restores axonal/neuropil deficits in the tectum of 
slbpty77e mutants. 

(A-B’) Lateral view of 26hpf wild type (A,B) and slbpty77e (A’,B’) heads and eyes stained with TUNEL.  
Apoptosis is prominent in the tectum (arrowhead) and dorsal hindbrain of the mutant (A’) but not 
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within the eye (B’).  The white lines outline the lens within which there is apoptosis in both the wildtype 
and mutant eyes.

(C-C”) Lateral view of 72hpf untreated wildtpe (C), untreated slbpty77e (C’) and (C”) caspase inhibitor 
treated slbpty77e heads labelled with anti-acetylated tubulin (axons, green) and anti-SV2 (neuropil, 
red). Arrow shows aberrant retinal ganglion axons in the mutant eye.

Abbreviations: AC, anterior commisure; E, eye; OT, optic tectum; T, telencephalon. 

Scale bar: (A-A’,C-C”) 100m; (B-B’) 50m. 

Figure 4.  Slbp is required cell autonomously for retinal neuron differentiation. 

(A, A’) Images from live timelapse recordings of Tg(atoh7:GFP)rw021 GFP-transgene expression in 
retinal neurons in control (A) and slbpty77e (A’) eyes at 30hpf.  

(B-B’) Frontal sections of 3dpf wildtype (B) and slbpty77e (B’) retinas showing anti--tubulin labelled 
neurites/neuropil (magenta) and zpr1-expressing cone photoreceptors (green). The arrowhead 
points to a few remaining zpr1+ cone cells in the slbpty77e mutant eye. 

(C-C’) Frontal sections of 3dpf wildtype (wt) host retinas containing transplanted wildtype (C) or 
slbpty77e mutant (C’) GFP-labelled cells (green).

(D-D’) High magnification images of transplanted cells in C-C’.  Note the break in the plexiform layer 
in the retina (arrowhead) in the vicinity of the slbpty77e mutant cells.

Abbreviations: nr, nasal retina. 

Scale bars: (A-C’) 50m; (D-D’) 25m. 

Figure 5.  slbpty77e mutant cells fail to transition from proliferation to differentiation.

(A,A’) DNA content of 48 hpf wildtype and slbpty77e embryos as assessed by flow cytometry. 

(B,B’, C,C’) Transverse sections through 48hpf wildtype (B,C) and slbpty77e mutant (B’,C’) eyes 
immunostained with anti-BrdU (B,B’) and anti-pH3 antibodies (C,C’). 

(D,D’) Series of projections of confocal images extracted from live time-lapse movies of 
tg(EF1:mAG-zGem(1/100))rw0410h;  tg(EF1: mKO2-zCdt(1/90))rw0405b transgenic wildtype (D) and 
slbpty77e mutant (D’) embryos showing cell cycle progression in cells of the forming somites.  Green 
cells are proliferative (S, G2, M) whereas red cells are differentiating somite cells.

Scale bar: (B-C’) 50m; (D-D’) 300m.  

Figure 6.  RNAseq analysis reveals that loss of Slbp function induces large-scale changes in 
gene expression levels consistent with many cells failing to transition to differentiation.

(A) Volcano plot displaying differential expressed genes between wildtype and slbpty77e embryos 
The red dots on the right represent the significant up regulated expressed transcripts (p < 0.01, 
false discovery rate (FDR) q < 0.01); the red dots on the left represent the transcripts with 
expression significantly down regulated (p < 0.01, FDR q < 0.01). Non-significant genes (q > 
0.01) are represented by a black dot. 

(B) GO term categories for enriched genes.

(B’, B”) Pie charts showing percentages of GO terms relating to each category for up (B) and down 
(B’)-regulated genes in slbpty77e mutants compared to wildtype.
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C) Graph showing real time PCR quantification of expression changes for genes selected from the 
RNAseq dataset. Samples were normalized to β-actin and wildtype values for each gene were set 
to 1. Fold changes in mutants were plotted relative to this value.

(D-F’) Lateral views of 3dpf wildtype (D-F) and slbpty77e mutant (D’-F’) heads/eyes showing 
expression of h2afx (D, D’); gnb3a (E,E’) and pcdh10 (F,F’). Note that expression changes for h2afx 
and gnb3a (C) are consistent with qPCR data (yellow box in C).   Scale bars: 100m.

Figure S1. Misregulation of expression of genes potentially implicated in midline axon 
guidance in slbpty77e mutants.
Views of heads/brains of wildtype (A-H) and slbpty77e (A’-H’) embryos showing expression of genes 
indicated to the left of each row. Genotype is indicated at top of each column. Lateral views 
(A,A’,C,C’,E,E’); dorsal views (B,B’,D,D’,F,F’,G,G’,H,H’). All embryos are 60hpf apart from G,G’ 
which are 30hpf. 
Scale bars: 100m. 

Figure S2. Upregulation of cell cycle markers in slbpty77e mutants.

Images of wildtype (wt, A-F) and slbpty77e (A’-F’) heads (A-C’; E,E’) and eyes (D-F’) at 60hpf showing 
expression of genes indicated to the left of each row. Genotypes indicated at top of each column. 
Lateral (A,A’; C-F’) and dorsal view (B,B’). Scale bars: 100m.

Table S1. List of transcripts with differential expression between wildtype and slbpty77e 
mutants.

Unprocessed transcript list derived from the differential expression analysis performed on the BAM 
files from all three biological replicates and the merged transcript dataset using Cuffdiff. 

Table S2. Gene list used for GO term enrichment analysis for “Biological Process” on all of 
the upregulated genes showing a significant change in expression (q value  0.01) in our 
RNAseq data.

(Sheet 1) Upregulated genes sorted by q value.

(Sheet 2). Upregulated genes sorted by log2(fold change).

(Sheet 3) List of GO terms related to “Biological Process” generated using the AmiGO2 tool (The 
Gene Ontology Consortium) manually grouped into 14 categories (Listed in Fig 6B).

(Sheet 4) Manual categories used to generate the GO term pie chart in Figure 6B’.

Table S3. Gene list used for GO term enrichment analysis for “Biological Process” on all of 
the downregulated genes showing a significant change in expression (q value  0.01) in our 
RNAseq data.

(Sheet 1) Downregulated genes sorted by q value.

(Sheet 2). Downregulated genes sorted by log2(fold change).

(Sheet 3) List of GO terms related to “Biological Process” generated using the AmiGO2 tool (The 
Gene Ontology Consortium) manually grouped into 14 categories (Listed in Fig 6B).

(Sheet 4) Manual categories used to generate the GO term pie chart in Figure 6B’’.
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Table S4. Manually curated list of genes showing significant changes in expression level 
related to nervous system development, cell cycle and histones. 

(Sheet 1) Downregulated genes with a log2(fold change >-2) related to neural Development, axon 
pathfinding and synaptogenesis. 

(Sheet 2) Upregulated genes related to cell cycle.

(Sheet 3) Histone related genes all show a log2(fold change >2.5). Histone subunit genes enriched 
in our dataset are largely found in two chromosomal regions on chromosome 7 and chromosome 
25. 
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