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The 331 models constitute an extension of the Standard Model (SM) obtained by enlarging the SM
gauge group SUð3ÞC × SUð2ÞL ×Uð1ÞY to the group SUð3ÞC × SUð3ÞL × Uð1ÞX . We investigate how a
nonminimal 331 model may embed lepton flavor universality violating contributions to b → sll
processes without introducing lepton flavor violation, as suggested by the recent LHCb measurements
of the ratios RK and RK� . We discuss the model-independent scenarios of new physics in b → sll
currently favored by the data that could be accommodated by this model and consider a few
phenomenological constraints on this model.
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I. INTRODUCTION

At the energies currently reached at the LHC, no direct
signals of new physics (NP) have arisen yet, in the sense
that only particles already in the Standard Model (SM) have
been observed directly. This has pushed the scale of many
NP models much above the electroweak scale, challenging
the earlier expectations that these two scales would be
similar for these models—supersymmetric models being
the most prominent ones.
On the other hand, recent disagreements with the SM

expectations have appeared in flavor physics and more
specifically in b-quark decays (for recent reviews see

Refs. [1–4] and references therein). In particular, four
anomalies have appeared in ratios assessing lepton flavor
universality (LFU) in the decays B → Kð�Þlþl− (corre-
sponding to the quark-level decay b → sll) and B →
Dð�Þlν̄l (corresponding to the quark-level decay b → clν),
where l stands for e, μ, τ. The ratios of current interest are
defined as

RKð�Þ½q2min;q2max� ¼
BðB → Kμþμ−Þq2∈½q2min;q

2
max�

BðB → Keþe−Þq2∈½q2min;q2max�
;

RDð�Þ ¼ BðB → Dð�Þτν̄τÞ
BðB → Dð�Þlν̄lÞ

½l ¼ e; μ�; ð1Þ

whereRKð�Þ aremeasured over specific ranges for the squared
dilepton invariant mass q2 (in GeV2), whereas RDð�Þ deals
with the total branching ratios. It is interesting to make a
comparison between the experimental and theoretical values
for these quantities:
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Rexp
K½1;6� ¼ 0.745þ0.090

−0.074 � 0.036 ½5�; Rth
K ¼ 1.00� 0.01 ½2; 8�; 2.8σ;

Rexp
K�½0.045;1.1� ¼ 0.66þ0.11

−0.07 � 0.03 ½6�; Rth
K�½0.045;1.1� ¼ 0.922� 0.022 ½2�; 2.7σ;

Rexp
K�½1.1;6.0� ¼ 0.69þ0.11

−0.07 � 0.05 ½6�; Rth
K�½1.1;6.0� ¼ 1.000� 0.006 ½2�; 3.0σ;

Rexp
D ¼ 0.407� 0.039� 0.024 ½7�; Rth

D ¼ 0.300� 0.008 ½9�; 2.3σ;

Rexp
D� ¼ 0.304� 0.013� 0.007 ½7�; Rth

D� ¼ 0.252� 0.003 ½10�; 3.4σ: ð2Þ

In the experimental data the first errors are statistical and the
second ones systematic. Prominent contributions to these
ratio determinations have been given by BABAR, Belle, and
LHCb [5,6,11–15]. Although it is still not excluded that the
previous disagreements might be accounted to statistical
fluctuations of the data, or to a possible underestimate of
the theoretical errors, an interesting aspect of these anomalies
lies in the fact that they all seem to point in the direction of a
possible lepton flavor universality violation (LFUV) in the
interactions mediating the processes.Moreover, another LFU
ratio has been measured recently, corresponding again to the
quark decay b → clνl [16],

RJ=ψ ¼ BðBc → J=ψτν̄τÞ
BðBc → J=ψμν̄μÞ

; ð3Þ

around 2σ above the SM predictions.
For what concerns the RK and RK� anomaly, the situation

becomes even more intriguing for three reasons. First of all,
the process is mediated by a flavor changing neutral current
(FCNC). Since such a current cannot arise at tree level in
the SM, the suppression due to the loop structure implies
that the possible contribution of NP effects might arise in a
significant way in this process. Furthermore, it was noticed
in Ref. [17] that in the ratiosRKð�Þ the hadronic uncertainties
cancel to a very large extent [8,18–24],1 thus reducing
substantially the uncertainty on the theoretical expect-
ations. Finally, these deviations concerning the branching
ratios are only a part of the anomalies observed in b → sμμ
decays. Contrary to b → clν transitions, there are many
other observables that have been measured, especially
concerning the angular distribution of the decay products
in the decays B → K�ð→ KπÞμμ and Bs → ϕð→ KKÞμμ,
and some observables (the so-called P2 and P0

5 [25–27])
have featured deviations from SM expectations in addition
to the LFUV ratios quoted above [28–32]. Many model-
independent analyses of these anomalies in b → sll have
already been performed in terms of effective field theories
corresponding to the SM at the b-quark mass scale,
supplemented with the additional lowest dimensional
non-SM operators [19–24,33–40]. They are able to

accommodate all the deviations observed in b → sll in
terms of a significant shift of the short-distance Wilson
coefficient Cμ

9, possibly together with shifts in other Wilson
coefficients such as Cμ

90 or C
μ
10. Remarkably, the same shift

is needed to explain the anomalies in the angular observ-
ables in B → K�μμ and the LFUV ratios of branching
ratios RKð�Þ .
While model-independent analyses are powerful tools to

understand the pattern of the anomalies in terms of NP
contributions already felt at low energies, they are not able
to provide a dynamical explanation for these deviations.
This requires us to choose specific scenarios of physics
beyond the Standard Model and try to see if they allow for
such anomalies. Several models have been proposed to
account for RKð�Þ and RDð�Þ simultaneously. Most of the
successful candidates can be cast in two sets [41]. One set
includes models that try to reproduce the presence of LFUV
by assuming that the relevant processes are mediated by
leptoquark particles (see, e.g., Refs. [42–49]). In the other
set the process is mediated by heavy exotic gauge bosons,
whose couplings depend on the generation (see, e.g.,
Refs. [50–54]). In this article, we analyze a model falling
in the latter category and corresponding to a specific
version of the so-called 331 models [55,56].
The 331 models constitute one of the simplest extensions

of the SM [57–60]. The gauge group is extended from the
SM gauge group SUð3ÞC × SUð2ÞL × Uð1ÞY to the group
SUð3ÞC × SUð3ÞL ×Uð1ÞX. These models experience thus
two stages of breaking: at a heavier scale ΛNP, the extended
group is broken down to the SM gauge group, for which
electroweak symmetry breaking occurs at the lower scale
ΛEW. Phenomenologically, these models feature heavy
gauge bosons (W0, Z0) as well as an extended Higgs sector
triggering the two spontaneous breakdowns, leading to
heavy scalar/pseudoscalar bosons (H, A), with electric
charges depending on the implementation of the model.
In the most studied version [61–69], one simply extends

each SUð2ÞL doublet to one of the two fundamental
representations of SUð3ÞL, namely either 3 or 3̄, without
introducing any additional family. Furthermore, this
assumption is taken together with the requirement of
cancellation of chiral anomalies, which prescribes that
the number of triplets is equal to the number of antitriplets.
The three lepton families are then forced to belong to the
same fundamental representation of the group, hence

1The same cancellation does not occur for RDð�Þ due to the
presence of the heavy lepton τ in the final state.
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implying the family independence of the couplings with
gauge bosons. This in turn prevents any LFUV at the level
of the gauge couplings to the leptons.
Another version of the 331 model, partially analyzed in

Refs. [70,71], extends the lepton sector by introducing two
additional generations. With this assumption, one ends up
with a lepton generation that transforms differently com-
pared to the others, and hence presents different couplings
with the gauge bosons; this situation suffices to guarantee
the presence of LFUV. Two, rather than one, additional
lepton generations, are required to preserve anomaly
cancellation. We will focus on this version of the 331
model, and we will study if it can reproduce the anomalies
observed in b → sll processes under simple assumptions:
LFUV is present and dominated by neutral gauge boson
contributions, there is no significant LFV of the form
b → sl1l2, and the model should not yield too large
contributions to BsB̄s mixing. It turns out that the model
is then able to reproduce scenarios with large contributions
to ðCμ

9; C
μ
10Þ in good agreement with global fit analyses

of b → sll.
The paper is organized as follows: in Sec. II we review

the main features of our model and justify our choices
compared to the minimal 331 models more often studied in
the literature. In Sec. III we analyze the gauge boson-
mediated contributions arising for the process b → sll,
pointing out the arising of LFUV in the couplings. In
Sec. IV we compare these contributions with the global
analyses performed in Refs. [19,20]. In Sec. V, we examine
other simple phenomenological constraints on the model
for the gauge boson contributions considered here, in
particular BsB̄s mixing. In Sec. VI we conclude and discuss
further extensions of the model, for instance concerning
LFUV in RDð�Þ . Finally, the appendixes are devoted to
various computations concerning the spectrum and cou-
plings of our model.

II. FEATURES OF THE 331 MODEL

Starting from the gauge group SUð3ÞC × SUð3ÞL ×
Uð1ÞX (with gauge couplings gS, g; gX), the model will
undergo two spontaneous symmetry breakings (SSB). The
first one occurs at an energy scale ΛNP and allows one to
recover the SM gauge group. The subsequent one, at energy
scale ΛEW, reproduces the electroweak symmetry breaking
(EWSB) of the SM. We assume that ΛNP ≫ ΛEW, and we
introduce a parameter ϵ ¼ ΛEW=ΛNP keeping track of the
order of magnitude of the NP contributions of the model.
When enlarging the SM gauge group, embedding it into

the broader SUð3ÞC × SUð3ÞL ×Uð1ÞX group, there are a
few general requirements to be obeyed:

(i) The model should contain representations consistent
with the SM quantum numbers and should have no
anomalies, which sets powerful constraints on the
choice of representations for the fermions [64].

(ii) It should exhibit a Higgs sector able to trigger
the two stages of spontaneous symmetry breaking
(breaking down to the SM group and electroweak
symmetry breaking) and to generate masses with a
hierarchy in agreement with the observations (no
light particles apart from the SM ones) [65].

For our particular purposes, we will also require that the
lepton generations are not embedded equally into SUð3ÞL
representation, in order to be able to generate LFUV at the
level of the interactions.

A. Choice of β

We start by discussing the generators of the SUð3ÞL
group and its connection with the SM gauge group.
Leaving aside the case of SUð3ÞC, which presents no
differences with respect to the SM, the generators of the
SUð3ÞL gauge group are indicated with T̂1 � � � T̂8. Since
the generator of the Uð1ÞX group must commute with the
generators of SUð3ÞL, it has to be proportional to the
identity in the space referred to as the representation
of SUð3ÞL. The normalization of the generators is
Tr½T̂iT̂j� ¼ δij=2, and 1 ¼ diagð1; 1; 1Þ is the identity
matrix. We define the Uð1ÞX generator as T̂9 ¼ 1=

ffiffiffi
6

p
,

since this definition implies the same normalization relation
as the other eight generators.
We can then identify the hypercharge operator Ŷ in terms

of the generators of the new gauge group, by requiring that
Ŷ commutes with all the generators of SUð2ÞL, which
forces it to have only terms proportional to T̂8 and to the
Uð1ÞX generator. Naming X the quantum number associ-
ated with Uð1ÞX, we define

Ŷ
2
¼ βT̂8 þ X1; ð4Þ

where T̂8 ¼ 1=2λ̂8 ¼ 1=ð2 ffiffiffi
3

p Þdiagð1; 1;−2Þ. With λ̂i we
indicate the Gell-Mann matrices. With this definition of the
hypercharge, the electric charge operator reads

Q̂ ¼ aT̂3 þ Ŷ
2
¼ aT̂3 þ βT̂8 þ X1; ð5Þ

where T̂3 ¼ 1=2λ̂3 ¼ 1=2diagð1;−1; 0Þ. The electric
charge is defined in general as a linear combination of
the diagonal generators of the group, where the value of the
proportionality constant a and β distinguishes different
331 models.
In order to obtain isospin doublets which embed

SUð2ÞL ×Uð1ÞY into SUð3ÞL × Uð1ÞX, we set a ¼ 1.
The way in which the SM electroweak gauge group is
embedded in SUð3ÞL ×Uð1ÞX is encoded in the parameter
β, which controls the relation between the hypercharge and
the T̂8 generator of SUð3ÞL. In order to restrict β we could
demand that no new particle introduced in the model has
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exotic charges (i.e., different from the SM ones). Let us see
how this condition operates when fermions belong to a
triplet or an antitriplet of SUð3ÞL. After the first stage of
symmetry breaking at the scale ΛNP, the SUð3ÞL ×Uð1ÞX
representations of the fermions are broken down to
SUð2ÞL × Uð1ÞY representations as follows:

ð3; xÞ →
�
2;

βffiffiffi
3

p þ 2x

�
þ
�
1;−

2βffiffiffi
3

p þ 2x

�
;

ð3̄; xÞ →
�
2;−

βffiffiffi
3

p þ 2x

�
þ
�
1;

2βffiffiffi
3

p þ 2x

�
: ð6Þ

As just shown in Eq. (6), both the triplet and the
antitriplet representations of SUð3ÞL are broken down
to a doublet plus a singlet of SUð2ÞL. Let us consider the
case of the quarks. We will choose to identify the first
two components of the triplet (or antitriplet) with the SM
doublet: their charges acquire the SM values only by
setting the Uð1ÞY hypercharges to the SM values, that is,
�β=

ffiffiffi
3

p þ 2x ¼ 1=3. The last entry of the triplet (or
antitriplet) will be an additional, massive, fermion (called
“exotic” in the following), with an electric charge
∓ ffiffiffi

3
p

=2β þ 1=6, that becomes either 2=3 or −1=3 only
if we choose β ¼∓ 1=

ffiffiffi
3

p
.2 One can easily check that the

same discussion also holds in the case of the leptons,
with a similar outcome [61].
In this work, we will pick the particular value

β ¼ −1=
ffiffiffi
3

p
: ð7Þ

It can be related to the choice β ¼ 1=
ffiffiffi
3

p
by changing all the

representations for their conjugates and taking the opposite
sign for theUXð1Þ charges. We will thus have the following
definition of the electric charge operator:

Q̂ ¼ T̂3 −
1ffiffiffi
3

p T̂8 þ X1: ð8Þ

B. Fields and representations

In the following, we label the SM fermions with
lower cases and the exotic ones with upper cases, choosing
letters recalling their electric charge assignments. Using
the notation ½SUð3ÞC; SUð3ÞL; UXð1Þ� while referring to
the representations of the particles, we introduce the
following fermionic content, which ensures the cancellation
of the anomalies but allows for different representations for the
three lepton generations, and thus potential LFUVeffects (see
also Appendix A for a summary of the representations
chosen).

For the left-handed components,we introduce [66,67,70,71]
(i) three generations of quarks,

QL
m ¼

0
B@

dLm
−uLm
BL
m

1
CA ∼ ð3; 3̄; 0Þ; m ¼ 1; 2;

QL
3 ¼

0
B@

uL3
dL3
TL
3

1
CA ∼

�
3; 3;

1

3

�
; ð9Þ

(ii) five generations of leptons,

lL
1 ¼

0
B@

e−L1
−νL1
E−L
1

1
CA ∼

�
1; 3̄;−

2

3

�
;

lL
n ¼

0
B@

νLn

e−Ln
N0L

n

1
CA ∼

�
1; 3;−

1

3

�
; n ¼ 2; 3;

lL
4 ¼

0
B@

N0L
4

E−L
4

P0L
4

1
CA ∼

�
1; 3;−

1

3

�
;

lL
5 ¼

0
B@

ðE−R
4 Þc
N0L

5

ðe−R3 Þc

1
CA ∼

�
1; 3;

2

3

�
: ð10Þ

The superscripts refer to the charge and the chirality of the
fields. No positively charged leptons have been introduced in
the triplets. Indeed, they would only appear in lL

5 , but we
identify them with the charge conjugate of the right-handed
component of E−

4 and e−3 . This identification avoids the
presence of charged exotic particles with masses of the order
of the electroweak scale, which have not been observed.3

For the right-handed components, we do not consider
right-handed partners for neutral particles, since they would
be pure singlets with respect to the whole gauge group and
of no relevance in our analysis (they should be added to
discuss the neutrino mass matrix, which is beyond the
scope of this article). We define

(i) the quark fields

dR1;2;3 ∼ ð3; 1;−1=3Þ;
BR
m ∼ ð3; 1;−1=3Þ; m ¼ 1; 2;

uR1;2;3 ∼ ð3; 1; 2=3Þ;
TR
3 ∼ ð3; 1; 2=3Þ; ð11Þ

2Let us recall that other common values chosen in the
literature, β ¼ � ffiffiffi

3
p

, while maintaining the SM charge for the
SUð2ÞL doublet, introduce exotic electric charges for the SUð2ÞL
singlets (5=3 and −4=3).

3We discuss the structure of the fermion masses derived
from the Yukawa interactions between scalar and fermions in
Appendix B and, in particular the masses of the charged leptons
in Appendix B 4.
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(ii) the charged lepton fields,

e−R1;2 ∼ ð1; 1;−1Þ; E−R
1 ∼ ð1; 1;−1Þ: ð12Þ

As already indicated, the right-handed parts of e−3 and E−
4

are not singlets, but belong to the lepton triplet lL
5 .

This particle content enables the cancellation of chiral
anomalies. For instance, as discussed in Sec. I, it is easy
to see that the number of left-handed fermion triplets is
equal to the number of left-handed fermion antitriplets
(taking into account that the quark fields are counted
3 times more than the lepton ones due to color). Minimal
331 models also exhibit the anomaly cancellation by
having different SUð3ÞL representations for the three
quark generations, but having the same representation
for the three lepton generations prevents these minimal
models from exhibiting LFUV. More details on the
requirements imposed by the cancellation of anomalies
can be found in Appendix C.
It proves easier to discuss the spectrum of the theory after

introducing the flavor vectors gathering fields with the
same electric charge (for simplicity, we leave out the
neutrino fields)

D ¼ ð d1 d2 d3 B1 B2 ÞT;
U ¼ ð u1 u2 u3 T3 ÞT;
f− ¼ ð e−1 e−2 e−3 E−

1 E−
4 ÞT: ð13Þ

We also group the SUð3ÞL gauge bosons as

Wμ ¼ Wa
μTa

¼ 1

2

0
BBB@

W3
μ þ 1ffiffi

3
p W8

μ

ffiffiffi
2

p
Wþ

μ W4
μ − iW5

μffiffiffi
2

p
W−

μ −W3
μ þ 1ffiffi

3
p W8

μ W6
μ − iW7

μ

W4
μ þ iW5

μ W6
μ þ iW7

μ − 2ffiffi
3

p W8
μ

1
CCCA

ð14Þ

and introduce

W�
μ ¼ 1ffiffiffi

2
p ðW1

μ ∓ iW2
μÞ; V�

μ ¼ 1ffiffiffi
2

p ðW6
μ ∓ iW7

μÞ;

Y0ð0⋆Þ
μ ¼ 1ffiffiffi

2
p ðW4

μ ∓ iW5
μÞ: ð15Þ

The values of the charges of the Vμ and Yμ bosons depend

on the value of β (indeed, in the case β ¼ 1=
ffiffiffi
3

p
, we would

have V0ð0⋆Þ
μ and Y�

μ ). Let us observe that for β ¼ 1=
ffiffiffi
3

p
,

W4;5 are both eigenstates of the charge operator with
0 eigenvalue, which allows the choice to use them, rather
than Y0ð0⋆Þ, as independent degrees of freedom. We gather
the interactions between the gauge bosons and the charged
fermions in Appendix D.
Summarizing, we have chosen the particle content of the

model in a way that allows LFUV, but otherwise departs
from the SM as little as possible. Fixing β ¼ −1=

ffiffiffi
3

p
ensures nonexotic charges for both SM and new fields
in the spectra. Accommodating left-handed quarks and left-
handed leptons in triplets or antitriplets of SUð3ÞL repre-
sentations, while assuming anomaly cancellation and
LFUV simultaneously, forces an unequal number of quark
families and lepton families. We have allowed the new
degrees of freedom to be completely general, an exception
done for an identification in the fifth lepton generation and
the exclusion of right-handed partners for neutral particles,
as justified above. This last assumption implies that no
Dirac mass terms can be built for neutral particles (i.e.,
neutrinos).

C. Symmetry breakings and spectrum

We are now in a position to discuss the two stages of
symmetry breaking which will be assumed to be triggered
by [SUð3ÞC singlet] scalar fields acquiring nonvanishing
vacuum expectation values, in a way analogous to the SM.
On the other hand, we remain as general as possible for the
representations under SUð3ÞL, thus allowing for several
scalar fields with different representations. The overall
pattern of SSB is the following:

SUð3ÞC × SUð3ÞL × Uð1ÞX⟶
χ;S1

ΛNP

SUð3ÞC × SUð3ÞL ×Uð1ÞY⟶
η;ρ;Sb;c

ΛEW

Uð1ÞEM:

The SUð3ÞL symmetry breaking is accomplished through a
triplet χ and a sextet S1. The EWSB is accomplished by
means of two triplets η, ρ and two sextets Sb;c. Details on
the structure of the vacuum expectation values of these
fields and on their quantum numbers can be found in
Appendix B.
There are five gauge fields that acquire a mass of

the order of ΛNP, whereas the three remaining gauge
fields will become massive at the electroweak scale.

At the first SSB, the neutral and charged gauge
bosons, W4;5 and V�, acquire a mass, whereas the
two neutral gauge bosons X;W8 yield a massive
neutral gauge boson Z0 and a massless one B, with
a mixing angle θ331:

�
Z0

B

�
¼

�
cos θ331 − sin θ331
sin θ331 cos θ331

��
X

W8

�
: ð16Þ
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The angle θ331 can be found by singling out the Z0
field in the sector of the Lagrangian including the
masses of the gauge bosons, which stems from the
covariant derivative in the Higgs Lagrangian. It yields

sin θ331 ¼
gffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 þ g2X
18

q ; cos θ331 ¼ −
gX
3
ffiffi
2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g2X

18

q : ð17Þ

At the first stage of SSB, the mixing among neutral
gauge bosons only involves X and W8, but not W4;5

since these two classes of fields do not show the same
EW quantum numbers, which correspond then to the
unbroken part of the group. This can be seen for
instance acting on them with the generator T3. After
the EWSB, only the neutral gauge boson identified
with the photon remains massless, consisting of an
admixture of B and W3 described by the weak angle
θW . The two mixing angles obey the relation [61]

tan θW ¼ −
ffiffiffi
3

p
cos θ331; g ¼ −

gX tan θ331
3

ffiffiffi
2

p : ð18Þ

This is actually a very general feature of the 331
model, which can be written as cos θ331 ¼ β tan θW ,
with a deep relation with the pattern of EWSB [see for
instance Eq. (2.28) in Ref. [72] where the mixing
angle is shifted by 90° with respect to our notation]. In
particular, it is possible to write [61]

g2X
g2

¼ 6sin2θW
1 − ð1þ β2Þsin2θW

: ð19Þ

As sin2 θW is close to 0.25, the perturbativity condition
imposes significant constraints on the range of validity
of the 331 models in the case of β ¼ � ffiffiffi

3
p

: the SUð3ÞL
symmetry breaking must occur at most at a few TeV
[73]. This problem of perturbativity does not affect our
case β ¼ −1=

ffiffiffi
3

p
, allowing our model to have room for

a higher scale of SUð3ÞL symmetry breaking and
significantly heavier gauge bosons, and providing a
good justification to expansions in ϵ ¼ ΛEW=ΛNP.
While the photon consists of an admixture of the W3

and B fields only, the neutral gauge boson Z that
acquires mass from EWSB includes additional compo-
nents from the Z0 and W4 fields. Nevertheless, the
diagonalization of the neutral gauge boson mass matrix
after both stages of symmetry breaking shows that the
components along the exotic fields are suppressed by ϵ2

or higher. We will see in the following that the Z
contribution to b → sll involves a b → s transition
already suppressed by ϵ2, and we will neglect the
additionally ϵ2-suppressed contributions to the transition
coming from the Z0 and W4 components of the Z mass

eigenstate (which we will treat as consisting only of W3

and B at this order).
The most general Yukawa Lagrangian that can be built

with the scalar fields provides a (heavy) mass to all the
exotic particles after the SUð3ÞL SSB, in agreement with
phenomenological expectations. The mass matrices arising
for the charged fermions after the two SSBs are discussed
in Appendices B 3 and B 4. Performing a singular value
decomposition of the up-type and down-type mass matrices
yields the definition of the unitary rotation matrices relating
(unprimed) interaction eigenstates and (primed) mass
eigenstates

DL ¼ VðdÞD0L; UL ¼ VðuÞU0L;

DR ¼ WðdÞD0R; UR ¼ WðuÞU0R: ð20Þ
Due to the presence of the exotic fermions, these flavor
matrices are 4 × 4 (for up-type quarks) or 5 × 5 (for down-
type quarks) unitary matrices. If we perform this diago-
nalization order by order in ϵ, we observe the following
pattern for the mixing matrices Vðu;dÞ and Wðu;dÞ:

(i) at order ϵ0, the SM fields are massless and they only
mix among themselves; the massive exotic particles
mix also only among themselves;

(ii) at order ϵ1, there is only mixing between SM and
exotic particles;

(iii) the ϵ2 correction yields a mixing among all the
particles of the same flavor vector.

This particular structure can be understood by diagonaliz-
ing the mass matrix using perturbation theory in powers of
ϵ. Since the mass matrix for the SM particles is zero at
Oðϵ0Þ, all SM particles are massless and degenerate at this
order and they mix among themselves, whereas (heavy)
exotic particles also mix among themselves. The normali-
zation of the eigenvectors require, on the other hand, that
the Oðϵ1Þ correction to an eigenvector is orthogonal to its
Oðϵ0Þ expression, leading to a Oðϵ1Þ correction to the
rotation matrix that mixes SM and exotic fields (but not SM
fields alone or exotic fields alone).
A remark is in order regarding the structure of the

Cabibbo-Kobayashi-Maskawa (CKM) matrix. This is given
by the Wþ coupling with quarks, which can be written as
[see Eq. (D2)]

gffiffiffi
2

p Wþ
μ ŪLγμVDL ¼ gffiffiffi

2
p Wþ

μ ŪLγμ

0
BBB@

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

1
CCCADL

¼ VCKM
mn

gffiffiffi
2

p Wþ
μ Ū0L

mγ
μD0L

n ð21Þ

with the 4 × 5 equivalent of the CKM matrix

VCKM ¼ VðuÞ†VVðdÞ: ð22Þ
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Despite Vðu;dÞ being unitary, the presence of V yields a
nonunitary VCKM in the 331 model. If we want to
adequately reproduce the SM, we should, however, recover
a unitary CKM matrix if we remain at low energies (i.e.,
leading order in ϵ) and consider only the flavor subspace of
the SM particles. As indicated above, at this order, the
diagonalization of the fermion mass terms occurs in a
block-diagonal way: the mixing matrices VðuÞ and VðdÞ
consist in two unitary blocks, one mixing the SM particles
among themselves, and the other one mixing the exotic
ones among themselves. Furthermore, V reduces to 13×3 in
the SM flavor subspace. Therefore, at leading order in ϵ, the
3 × 3 SM block of VCKM will stem from the product of the
two unitary 3 × 3 SM subspaces of VðuÞ and VðdÞ, ensuring
that it is unitary at this order (this obviously does not mean
that VCKM remains unitary at all orders in ϵ, and this
331 model does indeed generate small deviations of
unitarity for VCKM).
A similar discussion could be held in the lepton

sector, with the singular value decomposition of the
charged lepton mass matrix leading to the definition of
5 × 5 unitary rotation matrices between interaction and
mass eigenstates

EL ¼ VðeÞE0L; ER ¼ WðeÞE0R: ð23Þ

The Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix
can be built by combining unitary rotation matrices VðeÞ

and VðνÞ. A discussion of the PMNS matrix would
require a discussion of the neutrino spectrum, which is
outside the scope of the present article.

III. NP CONTRIBUTION TO b → sll

A. Setting the problem

Having introduced a nonminimal 331 model with a SSB
pattern leading to a phenomenologically viable spectrum,
we will now investigate the consequences of the different
representations for the lepton fields for LFUV in b → sll.
We want to determine if this model is able to reproduce the
pattern of deviations indicated in the current global
analyses of this rare decay [33–37].
These analyses are performed in the framework of the

effective Hamiltonian at the b-mass scale, separating short-
and long-distance physics between Wilson coefficients and
local operators [74,75]:

Heff ¼ −
4GFffiffiffi

2
p VtbV�

ts

X
i

CiOi: ð24Þ

The main operators of interest for this discussion are the
following:

O7 ¼
e

16π2
mbðσ̄μνPRbÞFμν;

O70 ¼
e

16π2
mbðσ̄μνPLbÞFμν;

Ol
9 ¼ e2

16π2
ðs̄γμPLbÞðl̄γμlÞ;

Ol
10 ¼

e2

16π2
ðs̄γμPLbÞðl̄γμγ5lÞ;

Ol
90 ¼

e2

16π2
ðs̄γμPRbÞðl̄γμlÞ;

Ol
100 ¼

e2

16π2
ðs̄γμPRbÞðl̄γμγ5lÞ; ð25Þ

where PL;R ¼ ð1 ∓ γ5Þ=2 and the fields are understood as
mass eigenstates. In the SM, only O7, Ol

9 , and Ol
10 are

significant, with values of the Wilson coefficients Cl
9 ≃ 4.1

and Cl
10 ≃ −4.3 at the scale μ ¼ mb, whereas the primed

operators are ms=mb suppressed due to the chirality of the
quarks involved.
The analyses of the b → sγ and b → sll observables

(both LFUV observables and angular observables for
b → sμμ and b → sll) point toward the fact that the
pattern of deviations observed is consistent with a large
NP short-distance contribution to Cμ

9 (around 1=4 of the
SM contribution) [19,20,33]. More generally, scenarios
with NP contributions in Cμ

9 only, in ðCμ
9; C

μ
10Þ, or in

ðCμ
9; C

μ
90 Þ are particularly favored. On the other hand, the

LFUV observables agree well with the absence of
significant NP contributions to any electronic Wilson
coefficients Ce

i .
For the other operators, a good agreement with the

SM is obtained: in other words, the fitted values of the
NP contributions are constrained to remain small and
these additional operators are not needed to improve the
accuracy of the fit to the data. This is true for the
operators suppressed in the SM, in particular scalar and
pseudoscalar operators, which are constrained especially
by the good agreement between the observed value for
the Bs → μμ branching ratio and its SM prediction. The
same holds for the O7 and O70 operators, which are
constrained in particular by the B → Xsγ branch-
ing ratio.

B. Gauge boson contributions

Inview of these elements, wewill focus on thevector/axial
contributions which will be assumed to be the larger ones. In
particular, wewill assume that the complex pattern of EWSB
of our 331 model in the scalar potential ensures that the
scalar/pseudoscalar contributions to b → sll are small.
This would correspond to constraints on the couplings Yd,
yd, jd, Yð−Þ; fð−Þ; yð−Þ; J; j; K; k; c, the rotation matrices
Vðd;eÞ;Wðd;eÞ, and the masses of the six heavy scalar fields.
In a similar way, we assume that the total NP contribution to
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b → sγ is small: as there are no b → sγ transitions at tree
level in ourmodel, theNPcontributionwould correspond to a
sum of loops contributions involving a quark and either a
neutral or a charged gauge boson or heavy scalar bosons, i.e.,
involving the previous couplings, but also Yu, yu, ju and the
rotation matrices VðuÞ;WðuÞ. Let us mention that in both
cases, the structure of the rotation matrices V, W and the
presence of the heavy masses ensure already that these NP
contributions are somewhat suppressed. We could work out
the parameter space of couplings, mixing, and masses
allowed by both types of constraints in more detail, but at
this stage, we are more interested in checking the constraints
on thevector/axial sector, which are simpler and related to the
deviations seen in b → sll transitions.
The vector/axial contributions can only come from the

neutral gauge bosons Z0, Z; A;W4;5. We will consider
contributions at the lowest order in ϵ only, and we will
focus only on the non-SM contribution to the Wilson
coefficients (in other words, from now on Ci ¼ CNP

i ).
Let us start with the interaction of Z0 and Z with the

right-handed quarks. These interactions are proportional to

the identity in flavor space [see Eqs. (D5) and (D6)], so no
flavor change can arise, at any order in ϵ. We conclude that
Z0 and Z do not contribute to C0

9;10 in the process
b → slþl−. Only contributions to C9;10 are possible.
In the case of the heavy gauge boson Z0, a Oðϵ2Þ

suppression compared to the SM contribution comes
from the heavy mass in the propagator of the gauge
boson. The restriction of the interaction matrix to the
SM particles is not proportional to the identity matrix
in the interaction eigenbasis, as it can be seen in
Sec. E. Therefore, the flavor-changing transition b →
s mediated by Z0 arises already after reexpressing the
interaction in the mass eigenbasis using the leading
order ϵ0 rotation matrix. The overall suppression of the
Z0 contribution is thus Oðϵ2Þ. Following Sec. E, reex-
pressing the flavor eigenstates in the multiplets
Eqs. (13) in terms of mass eigenstates and eliminating
the coupling g by means of Eq. (18), we can rewrite
the leading-order Z0 contribution in terms of effective
operators as

Heff ⊃
g2X

54cos2θ331

1

M2
Z0
VðdÞ�
3k VðdÞ

3l
4π

α

��
−
1

2
VðeÞ�
1i VðeÞ

1j þ 1 − 6cos2θ331
2

WðeÞ�
3i WðeÞ

3j þ 1þ 3cos2θ331
4

δij

�
Oklij

9

þ
�
1

2
VðeÞ�
1i VðeÞ

1j þ 1 − 6cos2θ331
2

WðeÞ�
3i WðeÞ

3j þ −1þ 9cos2θ331
4

δij

�
Oklij

10

�
; ð26Þ

where the indices k, l refer to the SM generations of the
quark mass eigenstates (assuming k ≠ l), while i, j refer to
the SM lepton mass eigenstates (either from the same or
different generations). The effective operators Oklij

9;10 are
defined exactly as in Eq. (25), corresponding to the
ðq̄kqlÞðl̄iljÞ flavor structure. The fine-structure constant
is α ¼ e2=ð4πÞ. The V and W matrices provide the mixing
matrices arising from the diagonalization of the EWSB
mass terms in the subspace of left-handed and right-handed
SM fields. We stress that these rotations are related but
cannot be identified with the CKM or PMNS matrices and
they can be considered only at order ϵ0 for our purposes (we
have exploited their unitarity at that order for the δij
contributions). We notice that the presence of the mixing
matrices yields LFUV couplings, and moreover a leptonic
i ≠ j contribution might arise, corresponding to lepton-
flavor violating transitions b → slþl0−, with different
leptons in the final state, l ≠ l0, which is a frequent
feature of models generating LFUV couplings [76].

We can follow the same lines as the general analysis of
the NP corrections to the effective Hamiltonian induced by
neutral currents presented in Appendix E and specialized to
the case where the quarks have different flavors.
In the case of the SM gauge boson Z, there is no b → s

transition allowed at order ϵ0, since the 3 × 3 unitary
rotation matrices restricted to the SM subspace cancel,
following the same arguments as the discussion of the
unitarity of the CKM matrix at the end of Sec. II C. The
transition does not arise at order ϵ1 either, since there is no
correction to the mixing between SM particles at this order.
The mixing between SM particles, leading to potential
FCNC currents, starts only at orderOðϵ2Þ. Since there is no
suppression due to the mass of the intermediate gauge
boson here, we conclude that the NP contribution from the
SM gauge boson Z starts at Oðϵ2Þ, the same order as the Z0
contribution, although for different reasons. Indeed, start-
ing from the interaction eigenbasis and switching to the
mass eigenstates, we can express the part of interaction
relevant to the process as

LZ ⊃ g cos θWZμ

�
1þ 3cos2θ331

2

X
λ

V̂ðdÞ�
λk V̂ðdÞ

λl D̄
0L
k γ

μD0L
l þ −1þ 3cos2θ331

2
f̄0−Lγμf0−L þ 3cos2θ331f̄0−Rγμf0−R

�
; ð27Þ
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where V̂ðdÞ represents the Oðϵ1Þ correction to the rotation
matrix VðdÞ between interaction and mass eigenstates for

the left-handed down sector. As stated earlier, V̂ðdÞ
mn ¼ 0 ifm

and n are both SM or both exotic, which means that the sum
over λ is restricted to exotic components here (as k, l are
SM components). Since the NP quark coupling to the Z
gauge boson is already of order Oðϵ2Þ, we need only the
Oðϵ0Þ coupling to the charged leptons. Due to the unitary
block structure of the mixing matrix at this order and the
structure of the Z coupling to SM leptons (proportional to
identify), we see that the rotation matrices cancel out,
leading to the diagonal structure indicated in the leptonic
sector of Eq. (27). In terms of effective operators and
adopting the same notation of Eqs. (26), (27) can be
rewritten as

Heff ⊃
cos2θWð1þ 3cos2θ331Þ

8

g2

M2
Z

4π

α

X
λ

V̂ðdÞ�
λk V̂ðdÞ

λl δij

× fð−1þ 9cos2θ331ÞOklij
9 þ ð1þ 3cos2θ331ÞOklij

10 g:
ð28Þ

We observe that the coupling is the same for all the light
leptons, i.e., nonuniversality does not arise at order ϵ2 in the
interaction with Z. By comparing Eqs. (26) and (28), we
explicitly see that although the nonstandard coupling
originated from the Z boson is suppressed of order ϵ2

with respect to the ones of the Z0 boson, the contributions
are the same order, due to the additional ϵ2 suppression due
to the Z0 propagator.
There are no further contributions to be considered from

the other neutral gauge bosons. Indeed, for the photon A,
we see from Eq. (D7) that the interaction with down-type
quarks is proportional to the identity matrix in flavor space,
so that there are no FCNC from the photon interaction.
Concerning W4;5, we see from Eqs. (D3) and (D4) that
these gauge bosons always couple a SM particle with an
exotic one in the interaction basis. In order to obtain aW4;5-
mediated b → s, we need to consider the interaction with
one of the exotic interaction eigenstates, which will contain
a SM mass eigenstate due to the rotation matrix VðdÞ. As
indicated earlier, this occurs only at order OðϵÞ.
Furthermore, the process is mediated by a heavy gauge
boson, adding a further Oðϵ2Þ suppression. Therefore the
W4;5 contributions to the process are of orderOðϵ3Þ and can
be neglected compared to the Oðϵ2Þ NP contributions from
Z and Z0 gauge bosons.

C. Wilson coefficients and lepton-flavor violation

The joint effect of the two Oðϵ2Þ contributions from Z0
and Z processes in our 331 model can be rewritten
introducing the quantities

fZ
0 ¼ −

1

2
ffiffiffi
2

p
GFVtbV�

ts

4π

α

1

3 − tan2θW

g2

M2
Z0
VðdÞ�
3k VðdÞ

3l ;

fZ ¼ −
1

2
ffiffiffi
2

p
GFVtbV�

ts

4π

α

1

8

g2

M2
Z

X
λ

V̂ðdÞ�
λk V̂ðdÞ

λl ;

λðLÞij ¼ VðeÞ�
1i VðeÞ

1j ; λðRÞij ¼ WðeÞ�
3i WðeÞ

3j ; ð29Þ

where θ331 and gX have been expressed in terms of θW and g
by using Eq. (18). In order to focus on b → s transitions, let
us set the quark indices to k ¼ 2 and l ¼ 3 and rename
coefficients and operators by removing the corresponding
labels. We get

Heff ⊃ Cij
9O

ij
9 þ Cij

10O
ij
10; ð30Þ

where the operators Oij
9;10 denote operators with given

lepton flavors i, j, with the same normalization as in
Eq. (25). We obtain the following NP contributions to the
Wilson coefficients:

Cij
9 ¼ fZ

0
�
−
1

2
λðLÞij þ 1 − 2tan2θW

2
λðRÞij

þ 1þ tan2θW
4

δij

�
þ fZð−1þ 3tan2θWÞδij; ð31Þ

Cij
10 ¼ fZ

0
�
1

2
λðLÞij þ 1 − 2tan2θW

2
λðRÞij

þ −1þ 3tan2θW
4

δij

�
þ fZð1þ tan2θWÞδij: ð32Þ

We see that LFUV contributions arise from the Z0 con-
tribution, whereas the Z contribution does not depend on
the lepton flavor. In addition to the violation of lepton-
flavor universality, our model allows for lepton-flavor
violation, such as b → sl0þl− for l0 ≠ l. However, since
there have been no experimental indications of such
processes up to now, we will assume that these processes
are suppressed, and for simplicity, we will set these
coefficients to 0 when the two lepton indices are different,
for any i ≠ j. Imposing this, we get the system

8<
:

fZ
0 ½−λðLÞij þ ð1 − 2tan2θWÞλðRÞij � ¼ 0

fZ
0 ½λðLÞij þ ð1 − 2tan2θWÞλðRÞij � ¼ 0

if i ≠ j: ð33Þ

The trivial solution fZ
0 ¼ 0 has to be discarded,

since it would remove the only source of LFUV, i.e., the
coupling of the charged leptons to Z0. The alternative
solution is

λðLÞij ¼ λðRÞij ¼ 0; if i ≠ j: ð34Þ
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Due to the definitions of λðL;RÞij in Eq. (29), this solution

implies that VðeÞ
1I can be nonzero for a single index I among

1, 2, 3, and the same holds for a single J among 1, 2, 3 for

WðeÞ
3J .

4 In other words, we require that the left-handed
interaction eigenstate of the first generation and the right-
handed interaction eigenstate of the third generation are
also mass eigenstates. Due to the unitarity of these 5 × 5
matrices, we have then

λðLÞI ≡ λðLÞII ¼ jVðeÞ
1I j2 ¼ 1 − jVðeÞ

14 j2 − jVðeÞ
15 j2; ð35Þ

λðRÞJ ≡ λðRÞJJ ¼ jWðeÞ
3J j2 ¼ 1 − jWðeÞ

34 j2 − jWðeÞ
35 j2; ð36Þ

which means that they must both stay within the [0,1] range,
keeping in mind thatV andW entries on the right-hand sides
of Eqs. (35) and (36) are of order ϵ. In the following, and for
simplicity of notation, repeated indices (such as II or ee) will
be denoted with a single index (I or e).
We now consider two different scenarios:
(i) Case A: the index I for which the rotation matrix

element VðeÞ
1I is nonzero is the same as the index J for

which the element WðeÞ
3J is nonvanishing.

(ii) Case B: the two indices corresponding to non-
vanishing matrix elements are different.

1. Case A

If we denote with J the generation for which both entries
for the rotation matrices are nonzero, we get

CJ
9 ¼ fZ

0
�
−
1

2
λðLÞJ þ 1 − 2tan2θW

2
λðRÞJ þ 1þ tan2θW

4

�

þ fZð−1þ 3tan2θWÞ;

CJ
10 ¼ fZ

0
�
1

2
λðLÞJ þ 1 − 2tan2θW

2
λðRÞJ þ −1þ 3tan2θW

4

�

þ fZð1þ tan2θWÞ: ð37Þ

We get identical Wilson coefficients for the other two
generations i ≠ J, for which the entries in the rotation
matrices vanish,

Ci
9 ¼ fZ

0 1þ tan2θW
4

þ fZð−1þ 3tan2θWÞ;

Ci
10 ¼ fZ

0 −1þ 3tan2θW
4

þ fZð1þ tan2θWÞ: ð38Þ

Inverting these relations we get

fZ
0 ¼ ð1þ tan2θWÞCi

9 þ ð1 − 3tan2θWÞCi
10

2tan2θWð1 − tan2θWÞ
;

fZ ¼ ð1 − 3tan2θWÞCi
9 þ ð1þ tan2θWÞCi

10

8tan2θWð1 − tan2θWÞ
;

λðLÞJ fZ
0 ¼ Ci

9 − Ci
10 − CJ

9 þ CJ
10;

λðRÞJ fZ
0 ¼ Ci

9 þ Ci
10 − CJ

9 − CJ
10

−1þ 2tan2θW
: ð39Þ

We now have to identify whether the electron corresponds
to the index J or not. As discussed in Sec. III A, we set to
zero the corresponding NP contributions to the effective
Hamiltonian, Ce

9;10, on the basis of phenomenological
constraints.

(i) If we identify the electron with another index i ≠ J
(identifying the electron with a generation with van-
ishing entries), we must have Ci

9;10 ¼ 0. From
Eq. (39), we obtain that fZ

0 ¼ 0, so that no LFUV
could be generated. We have thus to discard this
possibility.

(ii) Ifwe identify the electronwith the index J (identifying
the electron with the generation with a nonvanishing
entry), we set the corresponding NP Wilson coeffi-
cients to zero. In this case, Eq. (39) yields constraints
on the possible values for the muon Wilson coeffi-
cients Ci

9;10 ¼ Cμ
9;10 (also equal to Cτ

9;10):

Cμ
10 ¼ Cμ

9 ×
2tan2θWðtan2θW − 1Þ þ λðLÞe ðtan2θW þ 1Þ
2tan2θWðtan2θW − 1Þ þ λðLÞe ð3tan2θW − 1Þ

;

Cμ
10 ¼ −Cμ

9 ×
2tan2θWðtan2θW − 1Þ þ λðRÞe ð2tan4θW þ tan2θW − 1Þ
2tan2θWðtan2θW − 1Þ − λðRÞe ð6tan4θW − 5tan2θW þ 1Þ

: ð40Þ

Since 0 ≤ λðLÞe ; λðRÞe ≤ 1, these expressions yield a wedge in
the ðCμ

9; C
μ
10Þ plane. The constraint from λðLÞ is the more

stringent one, imposing the ratio Cμ
10=C

μ
9 to remain between

−1.75 and −1 (we use sin2 θW ≃ 0.235), as indicated as a
grey wedge on the top part of Fig. 1.
In summary, in case A, we find that the electron has to be

identified with the generation with a nonvanishing entry in
the rotation matrices V and W. Muons and taus give the
same NP contribution to the Wilson coefficients C9 and C10

in Eqs. (40), imposing that jCμ
10j ≥ jCμ

9j.
4Assuming, e.g., I ¼ 1, that is, VðeÞ

11 ≠ 0, Eq. (34) implies
VðeÞ�
11 VðeÞ

12 ¼ VðeÞ�
11 VðeÞ

13 ¼ 0; that is, VðeÞ
12 ¼ 0 and VðeÞ

13 ¼ 0.
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2. Case B

In case B, we have two different indices I ≠ J such that

VðeÞ
1I ≠ 0 and WðeÞ

3J ≠ 0 (so that λðLÞI ≠ 0 and λðRÞJ ≠ 0). The
system of equations defining the Wilson coefficients,
Eqs. (31) and (32), becomes

8>>>>>>>>>>>><
>>>>>>>>>>>>:

CI
9¼ fZ

0
�
−1

2
λðLÞI þ 1þtan2θW

4

�
þfZð−1þ3tan2θWÞ

CI
10¼ fZ

0
�
1
2
λðLÞI þ−1þ3tan2θW

4

�
þfZð1þ tan2θWÞ

CJ
9 ¼ fZ

0
�
1−2tan2θW

2
λðRÞJ þ 1þtan2θW

4

�
þfZð−1þ3tan2θWÞ

CJ
10¼ fZ

0
�
1−2tan2θW

2
λðRÞJ þ−1þ3tan2θW

4

�
þfZð1þ tan2θWÞ

:

ð41Þ

Inverting with respect to fZ
0
; fZ; λðLÞJ fZ

0
; λðRÞJ fZ

0
we get

fZ
0 ¼ CI

9 þ CI
10

2tan2θW
þ CJ

9 − CJ
10

1 − tan2θW
;

fZ ¼ CI
9 þ CI

10

8tan2θW
þ −CJ

9 þ CJ
10

4ð1 − tan2θWÞ
;

λðLÞI fZ
0 ¼ −CI

9 þ CI
10 þ CJ

9 − CJ
10;

λðRÞJ fZ
0 ¼ −CI

9 − CI
10 þ CJ

9 þ CJ
10

1 − 2tan2θW
: ð42Þ

Moreover, if we denote K the remaining SM generation
(K ≠ I, J), we have the following relationships:

CK
9 ¼ 1

2
½CI

9 þ CI
10 þ CJ

9 − CJ
10�;

CK
10 ¼

1

2
½CI

9 þ CI
10 − CJ

9 þ CJ
10�: ð43Þ

We still have not identified which of the I, J, K indices
refers to the electron, muon, or tau leptons:

(i) If we identify the electron with J, we set
CJ
9 ¼ CJ

10 ¼ 0, and from the first and last relations
of Eq. (42) we get

λðRÞJ ¼ −
2tan2θW

1 − 2tan2θW
< 0; ð44Þ

leading to an inconsistency, since the λ must be non-
negative.

(ii) If we identify the electron with K, we set
CK
9 ¼ CK

10 ¼ 0, and from Eq. (43) we get

CI
9 ¼ −CI

10 ¼ −
1

2
fZ

0
λðLÞI ;

CJ
9 ¼ CJ

10 ¼
1

2
fZ

0 ð1 − 2tan2θWÞλðRÞJ ; ð45Þ

which can be used in Eq. (42) to show that
fZ ¼ fZ

0 ¼ 0, so that this solution can be discarded.
(iii) If we identify the electron with I, we set

CI
9 ¼ CI

10 ¼ 0, and the solutions Eq. (42) become

fZ
0 ¼ CJ

9 − CJ
10

1 − tan2θW
;

fZ ¼ −CJ
9 þ CJ

10

4ð1 − tan2θWÞ
;

λðLÞI fZ
0 ¼ CJ

9 − CJ
10;

λðRÞJ fZ
0 ¼ CJ

9 þ CJ
10

1 − 2tan2θW
; ð46Þ

from which we can read the expressions for the λ,

FIG. 1. Regions allowed for the Wilson coefficient Cμ
9 and Cμ

10

(abscissa and ordinate, respectively) in scenarios A (top) and B
(bottom). The thick black intervals correspond to the 1σ interval
for one-dimensional scenarios from Ref. [33].
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λðLÞI ¼ 1 − tan2θW ∈ ½0; 1�;

λðRÞJ ¼ CJ
9 þ CJ

10

CJ
9 − CJ

10

1 − tan2θW
1 − 2tan2θW

; ð47Þ

leading to the following conditions on the non-
vanishing NP Wilson coefficients:

CJ
10¼−CJ

9×
1− tan2θWþð2tan2θW −1ÞλðRÞJ

1− tan2θW − ð2tan2θW −1ÞλðRÞJ

;

CK
9 ¼−CK

10

¼CJ
9×

tanθ2W −1

tanθ2W −1þð2tan2θW −1ÞλðRÞJ

: ð48Þ

We see that the value found for λðLÞI ¼ λðLÞe lies in the
allowed interval [0, 1]. Furthermore, requiring that

λðRÞJ also remains in this interval yields a constraint
on the Wilson coefficients: if we identify the muon
with K, we have the exact equality Cμ

10=C
μ
9 ¼ −1,

and if we identify the muon with J, the slopeCμ
10=C

μ
9

is constrained between −1 and −0.28 (using
sin2 θW ≃ 0.235). These constraints are indicated
in grey on the bottom part of Fig. 1.

In summary, in case B, we find that the electron
generation must be identified with the nonvanishing entry
I in the rotation matrices V. Two possibilities can be
considered concerning the nonvanishing entry J in the
rotation matrices W. If we identify J with the muon
generation, muons and taus have different NP contributions
for the corresponding Wilson coefficients C9 and C10,
imposing that jCμ

10j ≤ jCμ
9j, the NP contribution to Cμ

10 is
different from zero, and Cτ

9 ¼ −Cτ
10. If we identify J with

the tau generation, one gets again different NP contribu-
tions for the Wilson coefficients C9 and C10 for muons and
taus, the roles played by muons and taus are reversed, and
thus one gets Cμ

9 ¼ −Cμ
10. Both cases yield thus NP

contributions given by Eq. (48).

IV. COMPARISON WITH GLOBAL ANALYSES

We perform a comparison between the 331 model con-
tributions to the process b → slþl− and the global analysis
of b → sll anomalies performed in Refs. [19,20,33]
(similar results were obtained in recent works from other
groups; see Refs. [33–37]). In these works, the authors
pointed out scenarios in which NP contributions to the
Wilson coefficients Cμ

9ð0Þ;10 are favored, whereas no NP

contributions occur for other Wilson coefficients (including
all the electronic ones). In particular they identified three
specific one-dimensional scenarios as particularly favored:

(i) NP in Cμ
9 ¼ −Cμ

90 , with the 1σ interval
½−1.18;−0.84�: this scenario cannot be described
in the framework of our nonminimal 331 model,

where no FCNC arise for right-handed quarks,
meaning that Cμ

90 ¼ 0 (see Sec. III B).
(ii) NP in Cμ

9, within the 1σ interval ½−1.27;−0.92�.
From the discussion of the previous section and
Fig. 1, we observe that this scenario is allowed in
neither scenario A nor scenario B.

(iii) NP in Cμ
9 ¼ −Cμ

10, within the 1σ interval
½−0.73;−0.48�. From the discussion of the previous
section and Fig. 1, we see that this scenario is
allowed in both scenarios A and B.

Our nonminimal 331model appears to be able to account for
the b → sll anomalies observed as far as we consider the
Cμ
9 ¼ −Cμ

10 case. More generally, it would be able to
reproduce other favored values for the two-dimensional
scenario ðCμ

9; C
μ
10Þ with negative NP contributions to Cμ

9

and positive to Cμ
10 (see top-left plot in Fig. 1 in Ref. [33]).

For simplicity and illustration of the potential of our 331
model, we will focus here on the one-dimensional (1D)
scenario Cμ

9 ¼ −Cμ
10 considered in Refs. [19,33]. Imposing

this equality, we see that in both case A and case B we have

λðLÞe ¼ 1 − tan2 θW
5 and

Cμ
9 ¼ −Cμ

10 ¼ fZ
0 1 − tan2θW

2

¼ −
1

VtbV�
ts

1 − tan2θW
3 − tan2θW

4π

α

M2
W

M2
Z0
VðdÞ�
3k VðdÞ

3l ½1D� ð49Þ

so that the NP contribution to Cμ
9 is given by parameters of

the 331 model included in fZ
0
, where the only unknown

quantities are MZ0 and V�ðdÞ
32 VðdÞ

33 . These can be further
constrained by other processes, and in particular Bs meson
mixing, as explained in the next section.

V. PHENOMENOLOGICAL CONSTRAINTS
ON Z AND Z0 COUPLINGS

We have built our 331 model in order to generate vector/
axial LFUV contributions to b → sll transitions. This
has led us to assume that the dominant contributions
for these couplings (bs and μμ) came from the gauge
bosons rather than the Higgs sector, and actually that the
dominant contributions came from anomalous couplings of
the Z gauge boson as well as tree-level exchanges of a Z0
gauge boson. Even in this restricted setting, there are
additional constraints to be considered on these couplings
from the phenomenological point of view, as discussed in
Refs. [61–63,77,78].
A first class of constraints for additional contributions

from neutral gauge bosons comes from the violation of

5According to Eq. (35), λðLÞI − 1 ¼ Oðϵ2Þ, indicating that ϵ
should be of the same order ofmagnitude as tan θW in this scenario.
Nevertheless, this estimate can be relaxed by the magnitude of the
lepton Yukawa couplings, on which λðLÞI depends.
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unitarity in the CKM matrix. One has to consider the
corrections to the decay μ− → e−νμν̄e (as it defines
the normalization for all decays through GF) as well
as the decays b; s; d → ue−ν̄e (leading to jVubj, jVusj,
and jVudj determinations assuming the SM). This
corresponds to box diagrams involving both W and Z
or Z0 bosons, as shown in graphs (a) and (b) of Fig. 2.
One can expect the Z0 contribution to be small, as the
diagrams require one to have a Z0 coupling to the first
generation, which is suppressed in our model. On the
other hand, the FCNC couplings of the Z to quarks
occur (in principle) between all down-type quarks,
meaning that we need a detailed understanding of the

OðϵÞ mixing matrix V̂ðdÞ [see Eq. (27)] in order to
compute this correction in our model. Such detailed
knowledge might be obtained by a complete analysis of
all flavor constraints on our model, which is far beyond
the scope of the present article.
A second constraint comes from Bs − B̄s mixing to

which both Z and Z0 gauge bosons give a tree-level
contribution, as can be seen on Fig. 2. This constraint can
thus provide useful information in addition to the b →
sll decay. As before, we restrict our discussion to
contributions of order Oðϵ2Þ, borrowing from the results
in Sec. III B. At this order, Z gives no contributions to
the mixing. Indeed, the bsZ vertex has a suppression of
Oðϵ2Þ, due to the structure of the unitary matrices needed
to obtain physical states. The contribution to Bs − B̄s
mixing will have two such vertices, and hence be
suppressed by a factor Oðϵ4Þ. Concerning the Z0 con-
tribution, we only need to take into account the Oðϵ2Þ
suppression coming from the heavy gauge boson propa-
gator, since the bs vertex for this gauge boson is already
mediated at Oðϵ0Þ.
As discussed in Appendix E, the relevant part of the

interaction for Bs − B̄s is thus (in the interaction eigenbasis)

LZ0 ⊃
cos θ331

gX
Z0
μ

g2X
3

ffiffiffi
6

p
cos2θ331

D̄Lγμ

0
B@

0 0 0

0 0 0

0 0 1

1
CADL:

ð50Þ

Expressing in terms of effective operators of eigenstates and
using Eq. (18), one obtains

Heff ⊃
g2X

54M2
Z0cos2θ331

ðV�ðdÞ
3k VðdÞ

3l Þ2ðDkγ
μDlÞðDkγ

μDlÞ

¼ 8GFffiffiffi
2

p ð3− tan2θWÞ
M2

W

M2
Z0
ðV�ðdÞ

3k VðdÞ
3l Þ2ðDkγ

μDlÞðDkγ
μDlÞ;

ð51Þ

where we will focus as usual on the case k ¼ 2, l ¼ 3.
The SM contribution to the mixing reads [79]

HSM
eff ¼ ðV�

tsVtbÞ2
G2

F

4π2
M2

W η̂BS

�
m̄t

2

M2
W

�
ðsLγμbLÞðsLγμbLÞ;

ð52Þ

where S is the Inami-Lim function and m̄t is the top quark
mass defined in the MS scheme. As in Ref. [79], we take

Sðm̄t
2

M2
W
Þ ≃ 2.35, for a top mass of about 165 GeV, and

η̂B ¼ 0.8393� 0.0034, which comprises QCD corrections.
Considering the modulus of the ratio of the NP con-

tribution over the SM, one gets

FIG. 2. Gauge contributions to the violation of unitarity of the
CKM matrix in the first row (for matrix elements determined
leptonic and semileptonic processes) and to BsB̄s mixing (see
Refs. [77,78]).
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rBs
¼
				 CNP

CSM

				
¼ 32π2jV�ðdÞ

32 VðdÞ
33 j2ffiffiffi

2
p ð3 − tan2θWÞjV�

tsVtbj2GFM2
W η̂BS

M2
W

M2
Z0
: ð53Þ

In this expression, the only values that are not assigned are

d ¼ V�ðdÞ
32 VðdÞ

33 and M2
Z0 or, equivalently, M2

W
M2

Z0
. Since d

consists of products of elements of unitary matrices, its
value must necessarily lie in the interval ½−1; 1� (assuming
that it is real).
In order to get an impression of the values allowed, we

perform a scan varying d in ½−1; 1� and MW=MZ0 in the
range [0, 0.1], corresponding roughly to a NP scale at least
of the order of 10 times the electroweak scale. We allow the
NP contributions to the Bs mixing to be at most 10% (i.e.,
rBs

≤ 0.1), in agreement with recent global fits to NP in Bd

and Bs mixings where the constraint from ΔMs is the main
limiting factor [80,81]. For those values, we evaluate
the NP contribution to the Wilson coefficient Cμ

9 ¼ −Cμ
10

in the one-dimensional scenario as expressed in Eq. (49).
The allowed values found in the scan are plotted in Fig. 3.
We see that values of Cμ

9 ¼ −Cμ
10 can reach −0.6, in

agreement with the results of global analyses of b → sll,
corresponding to rBs

¼ 0.1, MW=MZ0 ¼ 0.1, and
d ≃ −0.005. The allowed region is limited by the fact that
we have numerically

rBs
≃ 347 × 103 ×

�
MW

MZ0

�
2

× d2 ≤ 0.1;

Cμ
9 ≃ 11.3 × 103 ×

�
MW

MZ0

�
2

× d; jdj ≤ 1; ð54Þ

using Refs. [3,82], which leads to the parabolic con-
straint rBs

¼ ðCμ
9Þ2 × 0.003=ðMW=MZ0 Þ2 ≥ 0.3 × ðCμ

9Þ2,
represented in Fig. 3.
As we saw in the previous sections, our 331 model

can accommodate various NP contributions to ðCμ
9; C

μ
10Þ.

In the simple one-dimensional scenario Cμ
9 ¼ −Cμ

10, we can

accommodate both BsB̄s mixing and b → sll data, with a
NP scale (and in particular a Z0) around the TeV scale.
Choosing different values for ðCμ

9; C
μ
10Þ would extend the

parameter space for NP allowed, with the possibility to use
not only the value of fZ

0
, but also fZ, to accommodate

the data.
A third kind of constraints comes from the study of

contact interactions from the LEP data on eþe− → qq̄ or
lþl−, as analyzed in Ref. [83] (Tables 3.14 and 3.15)
and the LHC data on pp collisions, for instance the
ATLAS data [84] and reanalyzed in Table I of Ref. [85].
These studies impose constraints on the couplings Δ
introduced in Eq. (E4) as NP Oðϵ2Þ operators of the
effective Hamiltonian involving only light charged fer-
mions and being mediated by charged currents. This means
that theΔ couplings are generally ofOð0.01Þ or less. A few
general statements can be made even before studying
these constraints in detail. Reference [83] uses Z-decays
in order to put constraints on various kinds of patterns for
the contact interactions, leading to NP ranging from 2 to
15 TeV, corresponding to upper bounds on the couplings Δ
ranging from 0.15 to 0.003. The tables in Ref. [85] lead to
bounds on the couplings Δ ranging from 0.01 (in most of
the case) down to 0.001 (for couplings concerning u- or
d-quarks together with muons. This means that the struc-
ture of the matrix Vðu;d;eÞ and WðeÞ must be moderately
fine-tuned (at the 10% level) in order to accommodate both
LEP and LHC bounds in general. A more detailed study of
these constraints would require a thorough analysis of the
patterns of deviations for all four-fermion operators, which
is beyond the scope of this paper.

VI. CONCLUSIONS

Among many achievements, the LHC experiments
have been able to investigate many rare flavor processes,
with very interesting outcomes. In particular, the LHCb
experiment has identified several deviations from the
Standard Model in the b → sll transitions, with interest-
ing hints from violation of the lepton flavor universality.
These deviations can be elegantly explained within model-
independent effective approaches, where a few Wilson
coefficients receive significant NP contributions. This has
triggered a lot of theoretical work to identify viable models
explaining such deviations, among which Z0 models and
leptoquark models have often been used.
In the present paper, we try to embed a Z0 model in a more

global extension, widely used in the literature, namely the
331 models where the gauge group SUð3ÞC × SUð3ÞL ×
Uð1ÞX breaks down at a high scale into the SM gauge group,
before undergoing a second transition at the electroweak
scale. The minimal versions of such models do not feature
lepton flavor universality violation as they have to obey
anomaly cancellations. We thus investigated a nonminimal
331model with five lepton triplets able to include LFUV.We
described the choices made to build this model in order to

FIG. 3. Allowed points in the (Cμ
9; rBs

) plane.
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have all additional gauge bosons and fermions with heavy
masses [of the order of the scale of SUð3ÞL breaking] and
electric charges similar to those present in the SM. We
worked out how this model could reproduce the deviations
observed in b → sll transitions. This requires us to assume
that the deviations are dominated by neutral gauge boson
contributions (anomalous bsZ coupling due to fermion
mixing as well as flavor-changing neutral coupling to a
heavyZ0 boson). The absence of a significant contribution to
b → see and lepton-universality violating processes allowed
us to set constraints on the mixing matrices between
interaction and mass fermion eigenstates.
We identified two different cases for the mixing

matrices, with a rather simple outcome. Our model turns
out to have no right-handed currents, but it is able to
accommodate significant NP contributions to Cμ

9 (neg-
ative) and Cμ

10 (positive), in agreement with NP scenarios
favored by global fits. In each case, we could make
predictions concerning the τ Wilson coefficients (the
electron ones being assumed to receive no NP contribu-
tion). We considered additional phenomenological con-
straints on Z and Z0 couplings in order to check the
viability of our model: if the unitarity of the first row of
the CKM matrix is not powerful in our case due to the
large number of parameters involved, BsB̄s mixing proves
much more powerful.
Considering these results, it would be interesting to

progress further in the study of this nonminimal 331 model.
Since we are able to predict in each case the values of
Wilson coefficients for b → sττ from the electronic and
muonic ones, it would be interesting to predict the devia-
tions arising to related observables from our model,
whether in decays or in BsB̄s mixing [86–89].
Under our simplifying assumptions (no lepton-flavor

violation b → slilj, no contribution to b → see, opposite
contribution to Cμ

9 and Cμ
10), we saw that we are able to

accommodate both b → sll and BsB̄s mixing observables
at the price of a NP scale of order 1 TeV. Considering
different values of NP contributions to Cμ

9 and Cμ
10 might

also enable one to increase the scale of NP allowed. It
would also be interesting to compare this constraint with
direct searches for Z0 bosons, taking into account the
pattern of couplings specific to our model. A first look
at the constraints on contact interactions suggests that these
bounds could be accommodated through a moderate fine-
tuning of the unitary matrices connecting mass and
interaction eigenstates, but a more thorough analysis would
naturally be very useful.
Moreover, it would also be natural to consider the

other hints of LFUV currently present in flavor physics,
namely RD and RD� . Global model-independent analyses
show that the LFUV deviations seen in b → clν branch-
ing ratios can be explained by vector/axial exchanges,
whereas scalar/pseudoscalar exchanges are disfavored
[90,91]. In our model, the situation is a bit different

compared to b → sll transitions. Indeed the heavy
charged bosons have no couplings with SM fields in
the interaction eigenbasis, which means that the SM
quark and lepton couplings will be induced again by
mixing [each counting at OðϵÞ] and further suppressed by
the heavy gauge boson mass, leading to a contribution
Oðϵ4Þ. The light W� bosons have diagonal couplings in
the SM subspace in the interaction eigenbasis [see
Eq. (D2)], which means that LFUV will appear only
due to mixing effects in leptons.
This effect can in principle be of order Oðϵ2Þ or lower,

depending on the structure of the mixing in the neutral
lepton sector. For this reason, the deviations observed in
b → c transitions could also be explained in our model
through gauge boson contributions only. The discussion
requires an accurate analysis of the neutrino spectrum, and
we leave it for future work.
The additional requirements from RD and RD� would

thus allow us to further refine our nonminimal 331 model,
and to determine if it constitutes a viable alternative to
explain the LFUV processes currently observed in
b-decays. If it passes these tests, it could provide an
interesting alternative to current NP models used to
explain the deviations in b-quark decays, with a potential
to be tested both through deviations in flavor processes
among other generations of quarks and leptons and through
direct production searches at LHC.
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APPENDIX A: FERMIONIC CONTENT
OF THE MODEL

We summarize theUð1Þ charges of the fermionic content
of our model (for the charged fermions) in Table I. We
recall that the lowercase letters denote light fields corre-
sponding to the SM, whereas uppercase letters correspond
to heavy exotic fields. As discussed in Sec. II A, all fields
only have charges already present in the SM.
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APPENDIX B: HIGGS FIELDS AND
YUKAWA LAGRANGIAN

We need to build gauge invariant terms for the coupling
between a Higgs field and two fermions, so that we obtain
appropriate mass terms after SSB. This constrains possible
representations for the scalar fields. Since the fermions
transform either as a 3 or as a 3̄ under SUð3ÞL, we only have
a limited number of possibilities [65] for a scalar field Φ,
which can only be a singlet, a triplet, or a sextet.6

In the following, we will not analyze the possibility of a
singlet scalar. Electromagnetic invariance makes it a scalar
under Uð1ÞX. Thus, after the two steps of SSB, its vacuum
expectation value will never give rise to a mass term for the

gauge bosons or the charged fermions, and, as indicated
before, neutral leptons are outside the scope of the
present work.

1. SU(3)L × U(1)X → SU(2)L × U(1)Y
For the first transition 331 → 321, we can have triplet or

sextet scalar fields, denoted χ, χ⋆, and S1, respectively.
In order to break neither SUð2ÞL nor Uð1ÞEM invariances at
this stage, the following conditions for vacuum expectation
values (VEVs) of the Higgs fields hold:

T̂1;2;3hΦ1i ¼ Q̂hΦ1i ¼ 0; Φ1 ∈ fχ; χ⋆; S1g; ðB1Þ

which sets the VEVs and Uð1ÞX charges of the scalar fields
responsible for the first SSB. We have

hS1i ¼

0
B@

0 0 0

0 0 0

0 0 a3

1
CA; X ¼ −

2

3
;

hχi ¼ 1ffiffiffi
2

p

0
B@

0

0

u

1
CA; X ¼ −

1

3
: ðB2Þ

The Yukawa terms that can be built with the sextet are then
of the form

l̄L
i S1ðlL

j Þc; i; j ¼ 2; 3; 4; ðB3Þ

leading only to Majorana masses for the exotic leptons
N0

2;3, P
0
4.

The Yukawa terms built with the triplet and antitriplet
contribute to both quarks and lepton mass terms. The up-
quarks mass terms are of the form

χ�Q̄L
mDR; ðB4Þ

where DR represents both dRi and BR
n , with i ¼ 1, 2, 3 and

n, m ¼ 1, 2. The down-quark mass terms are of the form

Q̄L
3 χU

R; ðB5Þ

where UR represents both uRi and TR
3 . The equivalent form

in the lepton sector is

χ�l̄L
1L

−R; ðB6Þ

where L−R represents any of e−R1;2 ; E
−R
1 . The lepton

sector also allows combination of SUð3ÞL triplets and
antitriplets, as

ϵijkχ
�il̄Lj

a ðlL
5 Þck; ðB7Þ

TABLE I. Fermionic content of the model and associated Uð1Þ
charges.

Fermion Q X

Quarks uL1 ; u
L
2

2
3

0

dL1 ; d
L
2

− 1
3

0

uR1 ; u
R
2

2
3

2
3

dR1 ; d
R
2

− 1
3

− 1
3

uL3
2
3

1
3

dL3 − 1
3

1
3

uR3
2
3

2
3

dR3 − 1
3

− 1
3

BL
1;2 − 1

3
0

BR
1;2 − 1

3
− 1

3

TL
3

2
3

1
3

TR
3

2
3

2
3

Leptons e−L1 −1 − 2
3

e−R1 −1 −1
νL1 0 − 2

3

E−L
1

−1 − 2
3

E−R
1

−1 −1
e−L2;3 −1 − 1

3

e−R2 −1 −1
νL2;3 0 − 1

3

N0L
2;3 0 − 1

3

E−L
4

−1 − 1
3

N0L
4

0 − 1
3

P0L
4

0 − 1
3

N0L
5

0 2
3

6We could have also considered antitriplets with opposite
charge under Uð1ÞX with respect to the doublets, and analogous
Yukawa couplings. This would have led to a doubling of the
content in the Higgs triplet, but with no further impact on the
general discussion outlined here.
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where the label a can assume values 2,3,4 and i, j, k are
indices referred to SUð3ÞL.

2. SUð2ÞL × Uð1ÞY → Uð1ÞEM
The second, electroweak, transition 321 → 31 can

involve two triplets η and ρ, and sextets, denoted Si.
The electromagnetic gauge invariance still holds after this
SSB, which yields the following constraints on the VEVs:

Q̂hΦ2i ¼ 0; Φ2 ∈ fη; ρ; Sig: ðB8Þ

In order to choose the right alignment for sextet and triplets,
we start from the most general ones, impose a zero charge,
and verify if we can build Yukawa terms involving these
scalar fields and are invariant under Uð1ÞX. The VEVs of
the scalar fields responsible for EWSB are

hSbi ¼

0
B@

b1 0 b5
0 0 0

b5 0 b3

1
CA; X ¼ −

2

3
;

hSci ¼

0
B@

0 0 0

0 c2 0

0 0 0

1
CA; X ¼ 4

3
;

hηi ¼ 1ffiffiffi
2

p

0
B@

w1

0

w3

1
CA; X ¼ −

1

3
;

hρi ¼ 1ffiffiffi
2

p

0
B@

0

v

0

1
CA; X ¼ 2

3
: ðB9Þ

The Uð1ÞX invariant terms built with sextets are

l̄L
i SbðlL

j Þc; i; j ¼ 2; 3; 4;

l̄L
5ScðlL

5 Þc;
l̄L
1S

�
cðlL

1 Þc; ðB10Þ

and for the triplets, we have
(i) for quarks

Q̄L
mη

�DR;

Q̄L
3 ηU

R;

Q̄L
3ρD

R;

Q̄L
mρ

�UR; ðB11Þ

(ii) for leptons

l̄L
1 η

�L−R;

l̄L
aρL−R;

ϵijkη
�il̄Lj

a ðlL
5 Þck; ðB12Þ

where we have used the same notation of the previous SSB.
Therefore, the Yukawa Lagrangian is

(i) for quarks

Lq
Y ¼ðQ̄L

mχ
�Yd

miþ Q̄L
3ρy

d
3iþ Q̄L

mη
�jdmiÞDR

i

þðQ̄L
3 χY

u
3jþ Q̄L

mρ
�yumjþ Q̄L

3 ηj
u
3jÞUR

j ; ðB13Þ

where Yd;u; yd;u; jd;u represent the Yukawa cou-
plings introduced, respectively, for χ, ρ, and η;

(ii) for leptons

Ll
Y ¼ ðl̄L

1 χ
�Yð−Þ

1b þ l̄L
aρf

ð−Þ
ab þ l̄L

1 η
�yð−Þ1b ÞL−R

b

þ ϵijkðχ�ÞiðlL
5 ÞckJal̄Lj

a þ ϵijkðη�ÞiðlL
5 Þckjal̄Lj

a

þ l̄L
aS1ðlL

b ÞcKab þ l̄L
aSbðlL

b Þckab
þ c5l̄L

5ScðlL
5 Þc þ c1l̄L

1S
�
cðlL

1 Þc; ðB14Þ

where Y; y; K; k; f; c; J; j represent the Yukawa
couplings, with a, b ¼ 2, 3, 4 and Li ¼ e−R1;2 ; E

−R
1 ,

and where the i, j, k indices are referred to the
SUð3Þ space.

3. Quark masses

After the two SSBs, the quark mass terms arising from
the Yukawa Lagrangian read

Lq
Y →

�
uffiffiffi
2

p B̄L
mYd

miþ
vffiffiffi
2

p d̄L3 y
d
3iþ

�
w1ffiffiffi
2

p d̄Lmþ
w2ffiffiffi
2

p B̄L
m

�
jdmi

�
DR

i

þ
�
uffiffiffi
2

p T̄L
3Y

u
3i−

vffiffiffi
2

p ūLmyumiþ
�
w1ffiffiffi
2

p ūL3 þ
w2ffiffiffi
2

p T̄L
3

�
ju3i

�
UR

i :

ðB15Þ

It is possible to rewrite these mass terms in the form of a
matrix product with the flavor vectors D, U, introduced in
Eq. (13) as

Mq ¼ D̄LMdDR þ ŪLMuUR; ðB16Þ

where
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Mu ¼
1ffiffiffi
2

p

0
BBBBB@

−yu11v −yu12v −yu13v −yu14v
−yu21v −yu22v −yu23v −yu24v
ju31w1 ju32w1 ju33w1 ju34w1

ju31w2 þ Yu
31u ju32w2 þ Yu

32u ju33w2 þ Yu
33u ju34w2 þ Yu

34u

1
CCCCCA
;

Md ¼
1ffiffiffi
2

p

0
BBBBB@

jd11w1 jd12w1 jd13w1 jd14w1 jd15w1

jd21w1 jd22w1 jd23w1 jd24w1 jd25w1

yd31v yd32v yd33v yd34v yd35v

jd11w2 þ Yd
11u jd12w2 þ Yd

12u jd13w2 þ Yd
13u jd14w2 þ Yd

14u jd15w2 þ Yd
15u

jd21w2 þ Yd
21u jd22w2 þ Yd

22u jd23w2 þ Yd
23u jd24w2 þ Yd

24u jd25w2 þ Yd
25u

1
CCCCCA
: ðB17Þ

The diagonalization in the limit v ¼ w1 ¼ w2 ¼ 0

(before the EWSB) shows that the number of quarks
that remain massless after the SUð3ÞL SSB is three
for up-type and three for down-type quarks (for a given
color). This is exactly equal to the number of SM
particles, meaning that all the new exotic particles acquire
a mass of the scale ΛNP of the SUð3ÞL SSB. This feature
of the model is required if we want to justify why such
particles have not yet been observed at the electro-
weak scale.

4. Charged lepton masses

In our model, we have identified the charged elements of
l5 with the charge conjugated right-handed components of
particles already introduced in other generations; to be
more precise, we have set

lL
5 ¼

0
BB@

EþL
5

N0L
5

FþL
5

1
CCA →

0
BB@

ðE−R
4 Þc
N0L

5

ðe−R3 Þc

1
CCA: ðB18Þ

Apart from limiting the number of additional degrees of
freedom, the main reason for this identification is not clear
until we consider the charged exotic masses.
Without such identification, the introduction of the

right-handed degrees of freedom of the charged leptons
appearing in the fifth generation implies the additional
Yukawa term

Ll
Y ⊃ l̄L

5 ðχYðþÞ
5k þ ηyðþÞ

5k ÞPþR
k ; ðB19Þ

where PþR represents the right-handed components
of the positively charged elements Eþ

5 , Fþ
5 of l5.

Furthermore, the vector La in (B14) now stands for

Li ¼ e−R1;2;3; E
−R
1;4 . Introducing the flavor vector for negatively

charged leptons

�
e1 e2 e3 E1 E4 Ec

5 Fc
5

�
T

ðB20Þ

after the first SSB we get the following mass matrix:

0
BBBBBBBBBBBBBBBB@

0 0 0 0 0 0 0

0 0 0 0 0 − J15u�ffiffi
2

p 0

0 0 0 0 0 − J25u�ffiffi
2

p 0

Yð−Þ
11

u�ffiffi
2

p Yð−Þ
12

u�ffiffi
2

p Yð−Þ
13

u�ffiffi
2

p Yð−Þ
14

u�ffiffi
2

p Yð−Þ
15

u�ffiffi
2

p 0 0

0 0 0 0 0 − J35u�ffiffi
2

p 0

0 0 0 0 0 0 0

0 0 0 0 0
YðþÞ
5E uffiffi
2

p YðþÞ
5F uffiffi
2

p

1
CCCCCCCCCCCCCCCCA

:

ðB21Þ

One can check that the degeneracy of the 0 eigenvalue of this
matrix is greater than 3, implying that out of all the charged
leptons, not just the ones to be identified with the SM ones,
acquire mass at the EW scale.
As indicated in Sec. II B, we avoid the presence of

charged exotic particles with masses of the order of the
EW scale, which have not been observed phenomeno-
logically, through the identification of the charged ele-
ments of l5 with the charge conjugates of the right-handed
components of particles already introduced for other
generations. With this assumption, the mass matrix of
charged leptons originating after the two stages of SSB
becomes [67]
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Me ¼
1ffiffiffi
2

p

0
BBBBBB@

ye1w1 ye2w1 0 yE1
w1 0

k2e1v k2e2v je2w1 k2E1
v −Je2u − je2w2

k3e1v k3e2v je3w1 k3E1
v −Je3u − je3w2

Ye1uþ ye1w2 Ye2uþ ye2w2 0 YE1
uþ yE1

w2 0

k4e1v k4e2v jE4
w1 k4E1

v −JE4
u − jE4

w2

1
CCCCCCA
: ðB22Þ

The diagonalization in the limit v ¼ w1 ¼ w2 ¼ 0

(before the EWSB) shows that the number of leptons
that remain massless after the SUð3ÞL SSB is three.
This is exactly equal to the number of SM particles,
meaning that all the new exotic particles acquire a mass
of the scale ΛNP of the SUð3ÞL SSB. This feature of the
model is required if we want to justify why such
particles have not yet been observed at the electroweak
scale.

APPENDIX C: ANOMALY CANCELLATION

Particularly stringent constraints for 331 model building
arise from requiring that the theory is free from quantum
anomalies. We list here the relations among the fermion
charges that need to be satisfied. We denote with Q
the quark left-handed generations, q the corresponding
singlets, l the leptonic multiplets, and s the corresponding
singlets. Imposing the vanishing of the triangular anomaly
coupling to the different gauge bosons of the theory leads
to [64]

½SUð3Þc�2 ⊗ Uð1ÞX ⇒ 3
X
Q

XL
Q −

X
q

XR
q ¼ 0; ðC1Þ

½SUð3ÞL�3 ⇒
equal number of 3 and 3̄ fermionic

representations
; ðC2Þ

½SUð3ÞL�2 ⊗ Uð1ÞX ⇒ 3
X
Q

XL
Q þ

X
l

XL
l ¼ 0; ðC3Þ

½Grav�2 ⊗ Uð1ÞX ⇒ 9
X
Q

XL
Q þ 3

X
l

XL
l

− 3
X
q

XR
q −

X
s

XR
s ¼ 0; ðC4Þ

½Uð1ÞX�3 ⇒ 9
X
Q

ðXL
QÞ3 þ 3

X
l

ðXL
lÞ3

− 3
X
q

ðXR
q Þ3 −

X
s

ðXR
s Þ3 ¼ 0: ðC5Þ

It is clear from Eq. (C2) that we cannot generate LFUV
couplings for the gauge bosons unless we introduce

additional lepton families. Indeed, if we call NQ (NQ̄)

the number of quark generations transforming as a 3 (3̄),
with similar notation for the leptons l, the anomaly
cancellation in Eq. (C2) yields

3NQ − 3NQ̄ þ Nl − Nl̄ ¼ 0: ðC6Þ

Restricting to just three generations of quarks NQ þ
NQ̄ ¼ 3, we see that one has several possibilities. If we
assume that all three quark families transform in the
same way, one needs at least nine lepton generations
(three SM leptonics and six exotic ones), which would
then transform all in the same opposite way to get the
appropriate anomaly cancellation. Since all leptons
transform in the same way, there is no possibility to
generate different couplings between the leptons and the
gauge bosons, and thus no LFUV can arise from these
couplings.
The situation changes if one of the quark families

transforms differently compared to the others. Indeed, if
we assume only two quark families to transform as a 3̄, we
obtain

Nl − Nl̄ ¼ 3: ðC7Þ

Assuming three lepton generations implies that Nl ¼ 3;
Nl̄ ¼ 0. In this minimal model, often considered in the
literature, there is no possibility to generate LFUV from
the identical couplings of the gauge bosons to all lepton
families. We can increase the number of lepton gener-
ations. Assuming four generations, i.e., Nl þ Nl̄ ¼ 4,
yields no integer solutions for Eq. (C7). The next
possibility is Nl þ Nl̄ ¼ 5 lepton families, so that
Nl ¼ 4; Nl̄ ¼ 1, which provides LFUV in the gauge
couplings to leptons [64]. This is the nonminimal choice
that we adopt.

APPENDIX D: CURRENTS

We provide the expression of the couplings of the gauge
bosons with the fermions, the latter being expressed in the
interaction eigenbasis.
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1. Charged currents

For the non-SM charged gauge boson V� we get

LV ¼ gffiffiffi
2

p V−
μ

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

D̄Lγμ

0
BBBBBB@

0 0 0 0

0 0 0 0

0 0 0 1

1 0 0 0

0 1 0 0

1
CCCCCCA
UL þ N̄Lγμ

0
BBBBBBBBBBBBBBB@

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 0 0

1
CCCCCCCCCCCCCCCA

ðf−RÞc þ f̄−Lγμ

0
BBBBB@

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

1
CCCCCA
NL

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

þ gffiffiffi
2

p Vþ
μ

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ŪLγμ

0
BBB@

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

0 0 1 0 0

1
CCCADL þ N̄Lγμ

0
BBBBBBBBBBBBBBB@

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

1
CCCCCCCCCCCCCCCA

f−L þ ðf−RÞcγμ

0
BBBBBB@

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1
CCCCCCA
NL

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

:

ðD1Þ

For the SM charged gauge bosons W� we get

LW ¼ gffiffiffi
2

p W−
μ

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

D̄Lγμ

0
BBBBBB@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 0

1
CCCCCCA
ULþ N̄Lγμ

0
BBBBBBBBBBBBBBB@

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

1
CCCCCCCCCCCCCCCA

ðf−RÞcþ f̄−Lγμ

0
BBBBBB@

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

1
CCCCCCA
NL

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

þ gffiffiffi
2

p Wþ
μ

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ŪLγμ

0
BBBBB@

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

1
CCCCCA
DLþ N̄Lγμ

0
BBBBBBBBBBBBBBB@

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

1
CCCCCCCCCCCCCCCA

f−Lþðf−RÞcγμ

0
BBBBBB@

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

1
CCCCCCA
NL

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

:

ðD2Þ

DESCOTES-GENON, MOSCATI, and RICCIARDI PHYS. REV. D 98, 115030 (2018)

115030-20



In the previous relations the flavor vectors of charged fieldsD, U, and f− have been introduced in Sec. II B, and the neutral
flavor vector is defined as N ≡ ðν1; ν2; ν3; N0

2; N
0
3; N

0
4; N

0
5; P

0
4Þ.

2. Neutral currents

First we provide the interactions with the non-SM neutral gauge bosons W4;5; Z0,

L4 ¼
g
2
W4

μ

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ŪLγμ

0
BBBBB@

0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0

1
CCCCCA
UL − D̄Lγμ

0
BBBBBB@

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

1
CCCCCCA
DL

− f̄−Lγμ

0
BBBBBB@

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

1
CCCCCCA
f−L þ N̄Lγμ

0
BBBBBBBBBBBBB@

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

1
CCCCCCCCCCCCCA

NL − f̄−Rγμ

0
BBBBBB@

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 1 0 0

1
CCCCCCA
f−R

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

;

ðD3Þ

L5¼
i
g
2W5

μ

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ŪLγμ

0
BBBBB@

0 0 0 0

0 0 0 0

0 0 0 −1
0 0 1 0

1
CCCCCA
ULþ D̄Lγμ

0
BBBBBB@

0 0 0 −1 0

0 0 0 0 −1
0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

1
CCCCCCA
DL

þ f̄−Lγμ

0
BBBBBB@

0 0 0 −1 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

1
CCCCCCA
f−Lþ N̄Lγμ

0
BBBBBBBBBBBBB@

0 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0

0 0 0 0 −1 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

1
CCCCCCCCCCCCCA

NL− f̄−Rγμ

0
BBBBBB@

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 −1 0 0

1
CCCCCCA
f−R

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

;

ðD4Þ
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LZ0 ¼ cosθ331
gX

Z0
μ

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ŪLγμ

0
BBBBBBBBB@

−
ffiffi
3
2

q
g2 0 0 0

0 −
ffiffi
3
2

q
g2 0 0

0 0
9g2þg2X
3
ffiffi
6

p 0

0 0 0
−18g2þg2X

3
ffiffi
6

p

1
CCCCCCCCCA
ULþ

ffiffiffi
2

p
g2X

3
ffiffiffi
3

p ŪRγμUR

þ D̄Lγμ

0
BBBBBBBBB@

−
ffiffi
3
2

q
g2 0 0 0 0

0 −
ffiffi
3
2

q
g2 0 0 0

0 0
9g2þg2X
3
ffiffi
6

p 0 0

0 0 0
ffiffiffi
6

p
g2 0

0 0 0 0
ffiffiffi
6

p
g2

1
CCCCCCCCCA
DL−

g2X
3

ffiffiffi
6

p D̄RγμDR

− f̄−Lγμ

0
BBBBBBBBB@

9g2þ2g2X
3
ffiffi
6

p 0 0 0 0

0
−9g2þg2X

3
ffiffi
6

p 0 0 0

0 0
−9g2þg2X

3
ffiffi
6

p 0 0

0 0 0
2ð−9g2þg2XÞ

3
ffiffi
6

p 0

0 0 0 0
−9g2þg2X

3
ffiffi
6

p

1
CCCCCCCCCA
f−L

þ f̄−Rγμ

0
BBBBBBBBB@

g2Xffiffi
6

p 0 0 0 0

0
g2Xffiffi
6

p 0 0 0

0 0
ffiffi
2

p ð9g2−g2XÞ
3
ffiffi
3

p 0 0

0 0 0
g2Xffiffi
6

p 0

0 0 0 0 −
ffiffi
2

p ð9g2þ2g2XÞ
3
ffiffi
3

p

1
CCCCCCCCCA
f−R

þ N̄Lγμ

0
BBBBBBBBBBBBBBBBBBBBBB@

−9g2þ2g2X
3
ffiffi
6

p 0 0 0 0 0 0 0

0 −−9g2þg2X
3
ffiffi
6

p 0 0 0 0 0 0

0 0 −−9g2þg2X
3
ffiffi
6

p 0 0 0 0 0

0 0 0 −18g2þg2X
3
ffiffi
6

p 0 0 0 0

0 0 0 0 −18g2þg2X
3
ffiffi
6

p 0 0 0

0 0 0 0 0 −−9g2þg2X
3
ffiffi
6

p 0 0

0 0 0 0 0 0
9g2þ2g2X
3
ffiffi
6

p 0

0 0 0 0 0 0 0 −18g2þg2X
3
ffiffi
6

p

1
CCCCCCCCCCCCCCCCCCCCCCA

NL

9>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>;

: ðD5Þ

Moving to the SM neutral gauge bosons Z, A, we have
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LZ ¼ cos θWgZμ

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ŪLγμ

0
BBBBBB@

1−cos2θ331
2

0 0 0

0 1−cos2θ331
2

0 0

0 0 1−cos2θ331
2

0

0 0 0 −2cos2θ331

1
CCCCCCA
UL − 2cos2θ331ŪRγμUR

þ D̄Lγμ

0
BBBBBBBB@

− 1þcos2θ331
2

0 0 0

0 − 1þcos2θ331
2

0 0 0

0 0 − 1þcos2θ331
2

0 0

0 0 0 cos2θ331 0

0 0 0 0 cos2θ331

1
CCCCCCCCA
DL þ cos2θ331D̄RγμDR

þ f̄−Lγμ

0
BBBBBBBB@

−1þ3cos2θ331
2

0 0 0 0

0 −1þ3cos2θ331
2

0 0

0 0 −1þ3cos2θ331
2

0 0

0 0 0 3cos2θ331 0

0 0 0 0 −1þ3cos2θ331
2

1
CCCCCCCCA
f−L

þ f̄−Rγμ

0
BBBBBBBB@

3cos2θ331 0 0 0 0

0 3cos2θ331 0 0 0

0 0 3cos2θ331 0 0

0 0 0 3cos2θ331 0

0 0 0 0 −1þ3cos2θ331
2

1
CCCCCCCCA
f−R

þ 1þ 3cos2θ331
2

N̄Lγμ

0
BBBBBBBBBBBBB@

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0

1
CCCCCCCCCCCCCA

NL

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

; ðD6Þ

LA ¼
ffiffiffi
3

p
cos θ331 cos θWgAμ

�
−
2

3
ŪγμU þ 1

3
D̄γμDþ f̄−γμf−

�
: ðD7Þ

APPENDIX E: FOUR-FERMION OPERATORS INVOLVING LIGHT CHARGED
FERMIONS MEDIATED BY NEUTRAL CURRENTS

Wewant to determine the contributions for four-fermion operators up to and includingOðϵ2Þ in the effective Hamiltonian
involving light charged fermions and mediated by neutral gauge bosons. It turns out that the only relevant couplings are the
ones between Z and Z0 to light charged fermions.
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In the case of the Z boson, it means that we have to determine theOðϵ2Þ corrections to the SM couplingsOðϵ0Þ. For each
chirality of each fermion type U, D, f, N, it proves useful to split the Z coupling Eq. (D6) between a contribution
proportional to the identity that is the only contribution for SM fermions and a contribution only for exotic fermions, e.g.,

LZ ¼ cos θWgZμ

8>>>>><
>>>>>:
1 − cos2θ331

2
ŪLγμ

0
BBBBB@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1
CCCCCA
UL −

1þ 3cos2θ331
2

ŪLγμ

0
BBBBB@

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

1
CCCCCA
UL þ � � �

9>>>>>=
>>>>>;
; ðE1Þ

which can be expressed in terms of mass eigenstates using
the rotations V and W defined in Eq. (20). The first term,
proportional to identity, is unaffected by the rotations. The
second term can induce couplings to SM through mixing to
exotic fermions: this cannot come from Oðϵ0Þ V and W as
they are block diagonal, connecting only SM fermions
among themselves and exotic fermions among themselves,
but it can occur from their Oðϵ1Þ contributions, denoted V̂
and Ŵ, which connect SM and exotic fermions. AtOðϵ2Þ in
the couplings, one thus obtains the couplings for the Z
meson to SM fermions in the mass eigenbasis,

LZ ⊃ cos θWgZμ

X
ψ¼u;d;f−

X
X¼L;R

X
k;l¼1;2;3

ðαþ βÞψX

kl ψ̄
X
k γ

μψX
l ;

ðE2Þ

where α and β correspond to SM Oðϵ0Þ and NP Oðϵ2Þ
couplings, respectively. Their values are collected in
Table II.
A similar analysis can be carried out for the interaction

with Z0 starting from Eq. (D5). The propagation of the
heavy Z0 boson already provides a Oðϵ2Þ suppression for
the effective four-fermion operators, so we have only to
consider the Oðϵ0Þ couplings of the Z0 to light charged
fermions. We can determine these couplings by splitting
Eq. (D5) into a term proportional to the identity in flavor
space and a term that depends on the generation, and we
reexpress all the fermion fields in the mass eigenbasis using
Eq. (20). We have only to consider the Oðϵ0Þ part of these

rotations, which connect only SM flavors among them-
selves and exotic flavors among themselves. As we are only
interested in the coupling of the Z0 to light charged
fermions, we can restrict the analysis to the SM sector,
leading to the following structure of couplings:

LZ0 ⊃
1

3
ffiffiffi
6

p gX
cos θ331

Z0
μ

X
ψ¼u;d;f−

X
X¼L;R

X
k;l¼1;2;3

γψ
X

kl ψ̄
X
k γ

μψX
l ;

ðE3Þ

where γ correspond to NP Oðϵ0Þ couplings. Their values
are collected in Table II.
There are no further contributions to be considered from

the other neutral gauge bosons for neutral currents. Indeed,
for photon A, we see from Eq. (D7) that the interaction with
down-type quarks is proportional to the identity matrix in
flavor space, so that there are no FCNC from the photon
interaction. Concerning W4;5, we see from Eqs. (D3) and
(D4) that these gauge bosons always couple a SM particle
with an exotic one in the interaction basis, which occurs
only at orderOðϵÞ. Furthermore, the process is mediated by
a heavy gauge boson, adding a further Oðϵ2Þ suppression.
Therefore theW4;5 contributions to the process are of order
Oðϵ3Þ and can be neglected compared to the Oðϵ2Þ NP
contributions from Z and Z0 gauge bosons.
The Oðϵ2Þ NP corrections induced to the effective

Hamiltonian will be of the form

TABLE II. Z and Z0 couplings to light charged fermions up to Oðϵ2Þ. V and W unitary matrices can be considered at Oðϵ0Þ only,
whereas V̂ and Ŵ denote their Oðϵ1Þ components.

αkl βkl γkl

uL 1
2
ð1 − cos2 θ331Þδkl − 1

2
ð1þ 3 cos2 θ331ÞV̂ðuÞ�

4k V̂ðuÞ
4l − 1

2
ð1 − cos2 θ331Þδkl þ VðuÞ�

3k VðuÞ
3l

uR −2 cos2 θ331δkl 0 2 cos2 θ331δkl
dL − 1

2
ð1þ cos2 θ331Þδkl 1

2
ð1þ 3 cos2 θ331ÞðV̂ðdÞ�

4k V̂ðdÞ
4l þ V̂ðdÞ�

5k V̂ðdÞ
5l Þ − 1

2
ð1 − cos2 θ331Þδkl þ VðdÞ�

3k VðdÞ
3l

dR cos2 θ331δkl 0 − cos2 θ331δkl
f−L 1

2
ð−1þ 3 cos2 θ331Þδkl 1

2
ð1þ 3 cos2 θ331ÞV̂ðeÞ�

4k V̂ðeÞ
4l

1
2
ð1 − 3 cos2 θ331Þδkl − VðeÞ�

1k VðeÞ
1l

f−R 3 cos2 θ331δkl − 1
2
ð1þ 3 cos2 θ331ÞŴðeÞ�

5k ŴðeÞ
5l 3 cos2 θ331δkl þ ð1 − 6 cos2 θ331ÞWðeÞ�

3k WðeÞ
3l
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Heff ⊃ 4
ffiffiffi
2

p
GFcos4θW

X
X;Y¼L;R

X
ψ ;Ψ¼u;d;f−

�
αijβkl þ βijαkl þ

1

4cos2θW − 1

M2
Z

M2
Z0
γijγkl

�
ðψ̄X

i γ
μψX

j ÞðΨ̄Y
k γμΨY

l Þ

¼ 4
ffiffiffi
2

p
GFcos4θW

X
X;Y¼L;R

X
ψ ;Ψ¼u;d;f−

Δ½ψX
i ;ψ

X
j ;ΨY

k ;ΨY
l �ðψ̄X

i γ
μψX

j ÞðΨ̄Y
k γμΨY

l Þ: ðE4Þ

We see that the couplings Δ½ψX
i ;ψ

X
j ;ΨY

k ;ΨY
l � are of Oðϵ2Þ and combine Z and Z0 couplings.
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