

KIT Numerical and Experimental Investigations for LWR Reactor Safety

Victor Hugo Sánchez-Espinoza, R. Stieglitz, W. Tromm

victor.sanchez@kit.edu

Institute for Neutron Physics and Reactor Technology (INR)

PAR

KIT - The Research University in the Helmholtz Association

Outline

- Motivation
- Challenges
- LWR experimental investigations for safety
- LWR numerical simulations for Design Basis Accidents
- LWR numerical simulations for severe accidents

Motivation

- Nuclear energy use for electricity generation ends in 2022 in Germany
- Dismantling of Nuclear Power Plants will last for decades
 - Expertise in nuclear power plants, reactor physics, radiation protection, etc. is needed
- Construction of reactors around Germany and worldwide
 - Nuclear countries
 - Emerging countries
 - Developing countries
 - Necessity to keep EXPERTISE to assess SAFETY of any reactor system
 - Major mission of the Helmholtz Association of Large Research Centres (HGF). KIT is part of it.

Philippsburg II	2019
Brokdorf Grohnde Gundremmingen C	2021 2021 2021
sar II Neckarwestheim II Emsland	2022 2022 2022

Challenges

UPM Nuclear Technology Chair: Invited Lecture. 27. November 2018

INR, MACH, KIT CN

Challenge (2/3): Reactor Safety

No "Zero Risk" technology: Fukushima Severe Accident

• SAFETY DEMONSTRATION based mainly of NUMERICAL TOOLS

- Continuous improvement (state-of-the-art)
- Verification & Validation & Uncertainty quantification

Main goal of international nuclear community: Prevent any accident including SEVERE ACCIDENT !!

- Moving from LEGACY CODES to "HIGH FIDELITY" SIMULATIONS
 - Solve first-principles equations
 - Increase spatial discretization: 1D/3D Coarse MESH → 3D fine mesh / unstructured grids
 - Higher order numerical methods
 - Reduce conservatism

Main Driver: Huge and cheap computer power available worldwide, also in Germany (e.g. KIT: High Performance Computers for Energy Research)

HGF NUSAFE Program at KIT

- Topic 1: Nuclear Waste Management
 - Subtopic 1.1: Safety Research for Nuclear Waste Disposal
 - Subtopic 1.2: Waste management strategies

Topic 2: Reactor Safety

Subtopic 2.1: Reactor Operation and Design Basis Accidents

Subtopic 2.2: Beyond Design Basis Accidents and Emergency Management

LWR Experimental Investigations for SAFETY

Reactor dynamics and accident analysis: Thermal Hydraulics Experimental Facilities

COSMOS-L

10

Scientific objectives

- Detailed investigations on Critical Heat Flux (CHF) under reactor typical conditions
- Measurement data for CFD

System parameters

- Working fluid: Water
- System pressure 17 MPa
- System temperature 360°C
- System power 2 MW
- 4 m modular test section (600 kW
- High resolution instrumentation

https://www.iket.kit.edu/128.php

COSMOS-H

Critical Heat Flux On Smooth And Modified Surfaces – High Pressure Loop

https://www.iket.kit.edu/625.php

Materials Research: QUENCH-LOCA - Investigations

- Motivation
 - Cladding embrittlement criterion taking into account oxygen <u>and</u> hydrogen
 - Mechanical properties of cladding tubes and the influence of secondary hydrogen uptake
- 2011-2016, seven LB-LOCA experiments
 - supported by German industry
- Results:
 - Coolability of the bundles ensured
 - Residual strength and ductility sufficient
 - Channel blockage less than 25%
 - But secondary hydrogen uptake observed

J. Stuckert et al., Nucl. Eng. Des., 2013, DOI: <u>10.1016/j.nucengdes.2012.10.024</u> Grosse M. Stuckert I. Boesseer C. Steinbrueck M. Walter M. Kaestner A. Analysis o

Grosse, M., Stuckert, J., Roessger, C., Steinbrueck, M., Walter, M., Kaestner, A. Analysis of the secondary cladding hydrogenation during the quench-LOCA bundle tests with zircaloy-4 claddings and its influence on the cladding embrittlement (2015), ASTM Special Technical Publication, STP 1543, 1054-1073.

Unique out-of-pile bundle facility

Neutron tomography image

Severe Accidents: KIT Experimental Facilities

- In-Vessel and Ex-Vessel Phenomena:
 - Core coolability and debris cooling: QUENCH
 - In-vessel melt retention (IVR): LIVE
 - Fuel Coolant Interaction (FCI): DISCO
 - Molten Corium Concrete Interaction (MCCI): MOCKA
 - Hydrogen Safety: HYKA

M. Steinbrück et al., J. Nucl. Mater., 2017, DOI: <u>10.1016/j.jnucmat.2017.04.034</u> Tang, C., Stueber, M., Seifert, H.J., Steinbrueck, M. Protective coatings on zirconium-based alloys as accident-Tolerant fuel (ATF) claddings (2017), Corrosion Reviews 35, 141-165.

Ch. Haas, L. Meyer, Th. Schulenberg; FLOW INSTABILITY AND CRITICAL HEAT FLUX FOR FLOW BOILING OF WATER IN A VERTICAL ANNULUS AT LOW PRESSURE. ASME/JSME 2011, March13-17. Hawaii, USA

Severe Accidents

https://www.iket.kit.edu/132.php

KIT QUENCH Bundle Facility

- Unique out-of-pile bundle facility to investigate reflood of an overheated reactor core
- 21-31 electrically heated fuel rod simulators; T up to >2000°C
- Extensive instrumentation for T, p, flow rates, level, mass spectrometry
- So far, 18 experiments on Severe Accidents performed (1996-today)
 - Influence of pre-oxidation, initial temperature, flooding rate
 - B4C, Ag-In-Cd control rods
 - Air ingress; debris formation
 - Advanced cladding alloys
- 7 DBA LOCA experiments with separately pressurized fuel rods

QUENCH Activities for Accident Tolerant Fuel Claddings

- Participation in OECD-NEA Expert Group on Accident Tolerant Fuels for LWRs (EGATFL), IAEA CRP on Accident Tolerant Fuel Concepts for Light Water Reactors (ACTOF), and EC project IL TROVATORE
- Experiments on high-temperature oxidation of ATF claddings in various prototypical experiments in various scales
 - Small-scale separate-effects tests
 - Single-rod experiments including quench phase
 - Large-scale bundle tests in The QUENCH facility

FeCrAl test with ORNL on 2017 SiC under discussion with Westinghouse

SiC-SiC_f cladding after 64 h at 1600°C in steam

Inductively heated single-rod test

QUENCH bundle for large-scale experiments

LIVE: Melt pool behavior in the lower head - Coolability and melting of debris beds -

- 1:5 scaled LIVE-3D and LIVE-2D
- Molten salt to simulate corium
- Decay heat simulation by resistance wires
- Different cooling conditions (top, sidewall)
- Melt temperature evolution
- Heat flux profile

- Visualization of debris bed and molten pool behavior
- Transient behavior of heterogeneous debris beds
- Formation and behavior of interfacial crusts in a two-layer pool
- Formation and progression of a molten pool

A. Miassoedov et al, Heat Transfer Eng., 2013, DOI: <u>10.1080/01457632.2013.777247</u>.

LWR Numerical Investigations for Design Basis Accidents (DBA)

KIT Strategy for Numerical Simulations

- Strategy:
 - Combination of innovative research and education and training
 - Combination od in-house code developments and use of foreign codes
- Selection of Key Topics for improved Design, and safety assessment and high operational flexibility
- Integration in national / international activities / programs
- Strategic Partnership with Key Players
- Selected innovative research directions:
 - Advanced physical models and mathematical methods
 - "High-fidelity" simulations and multi-scale procedures
 - Uncertainty quantification
 - Verification, validation and application & analysis
 - Massive use of High Performance computing (HPC)

Thermal Hydraulics: Code Developments & Validation

- In-house code development
 - Sub-channel code: SUBCHANFLOW
 - Porous-media two-phase flow: TwoPorFlow

PWR Core: Square FA

•••

3D Cartesian grid

KIT Test Facilities for Validation:

- Counter-current flow in horizontal pipes: **WENKA facility**
- Critical heat flux of smooth and rough fuel rods: **COSMOS-L** and **COSMOS-H** water loops

External codes:

- System TH
- CFD

19

Multi-Scale Thermal Hydraulics: Developments

Current methods (Industry): 1D and coarse 3D TH codes e.g. TRACE, ATHLET, CATHARE

Multi-Scale TH: Coupling of TRACE with SUBCHANFLOW

- Approach: TRACE + SCF using ECI (External Coupling Interface: socket communication)
- Validation: VVER-1000 coolant mixing test

TRACE Implementation in SALOME

Steps for the implementation of TRACE:

- 1) Modularization of original TRACE source code to meet the functional requirements of SALOME-YACS
- Develop a C++ envelope to wrap the lower TRACE Fortran computing engine to form a TRACE-SALOME internal object
- 3) Develop a SWIG-file to stick the internal object to SALOME-YACS Python layer (TRACE-SALOME local python object)
- 4) Develop a CORBA-file for communication channels for TRACE module forming the final so called TRACE-SALOME Component

SALOME: TRACE Calculation chain in YACS

VVER RPV: Coolant temperature

Code Coupling using the EU Simulation platform: NURESIM

- Multi-physics: N / TH /TM
- Multi-scale: macro- and meso-scale
- Flexible code coupling

Neutronic /TH coupling:

- Powerful pre- and postprocessor
- In-build functions interpolation

EU NURESAFE Project (2013-2016)

TH Code Integration into SALOME

 SUBCHANFLOW: integration in SALOME for coupling with neutronics solver

Core with Hex FA Core with square FA

FA: Pin Level Resolution

 SUBCHANFLOW: Increasing user community (12 institutions): EU, Asia, Latin America, USA

SCF coupling with Diffusion Solvers

European Simulation Platform NURESIM

Multi-physics coupling: Example 1 → PARCS/SCF/TU: REA Analysis

- Core level code + TH + fuel behavior code (TU)
- PWR UOX/MOX core with different irradiated FA
- REA: Ejection of CR in FA-number E5 at HZP

Power evolution after rod ejection

More realistic prediction of irradiated fuel behavior due to the thermo-mechanic solver

26

INR, MACH, KIT CN

Selected results of McSAFE Project

INR, MACH, KIT CN

LWR Numerical Investigations for Severe Accident

Motivation

- Fukushima accidents showed necessity for review
 - Re-evaluation of accident analysis methodologies
 - Assessment of NPP safety status
 - Review of SAMG
 - Improvement of numerical simulation tools used for SAM e.g. ASTEC, MELCOR, etc.
- German activities in SA embedded in national (WASA-BOSS) and international projects (CESAM, FASNET, etc.)
 - KIT participation of SAM-optimization for BWR within WASA-BOSS project
 - KIT participation n SAM-optimization for PWR within EU CESAM project
- •Use of KIT experimental facilities such as QUENCH, LIVE, etc. to validate SA codes

Enhance understanding of SA-Phenomena and the Prediction Capability of SAFETY ANALYSIS TOOLS

KIT Experimental Facilities: Data for Code Validation

31

Severe Accident: Code Validation

Code validation using e.g. KIT experiments CORA, QUENCH, LIVE, etc.

QUENCH Test Facility: In-Vessel SA-Phenomena

33

ASTEC Validation: Temperature and hydrogen

- Predictions improved with V2.1
 - Radial discretization
 - Radiation upper unheated zone

Severe Accident: Applications

Optimization of accident management for German PWR and BWR

ASTEC V2.0: Simulation for SAM-Optimization

KIT JRODOS: Emergency Management

- Real-time on-line decision support system for nuclear and radiological incidents
 - Considering releases into water and the atmosphere
 - Determining contamination levels in the urban and agricultural environment and doses to the public

Emergency

- Adapted to Japan in the first week of the release
- Numerical weather data from NOMADS
- Needs rad- source terms s input

Preparedness

- > 5000 simulations,
 - 3 source terms
 - 3 sites
 - 1 year
- New pre-planning zones

https://resy5.iket.kit.edu/

Exercises

- NPP accidents and Radiological Dispersal Device incidents
- Figure: Exercise in Frascati, Italy.

Old	New
Central zone up to <u>2</u> km distance	Central zone up to <u>5</u> km distance
Middle zone up to 10 km distance	Middle zone up to 20 km distance
Outer zone up to 25 km distance	Outer zone up to 100 km distance
Far zone up to 100 km distance	Whole Germany

levdin, I., Trybushny, D., Zheleznyak, M. & Raskob, W. (2010). RODOS re-engineering: aims and implementation details. Radioprotection 45(5).

36 04.12.2018 UPM Nuclear Technology Chair: Invited Lecture. 27. November 2018

KIT JRODOS: Overview of World-Wide Users (2017)

KIT Education & Training Activities

- University (different faculties)
 - Nuclear technology lectures
 - PhD students
- Cooperation within ENEN (European Nuclear Education Network):
 - ANNETTE
 - FNFN+
- FRAMATOME Nuclear Professional School at KIT (former AREVA)
- Frederic Joliot Otto Hahn Summer School (together with CEA/France)
 - Since 25 years
- Training Centre for Technology and Environment (FTU)

Knowledge Dissemination in Reactor Safety

AREVA Nuclear Professional School