

 Karlsruhe Reports in Informatics 2018,11
Edited by Karlsruhe Institute of Technology,
Faculty of Informatics

 ISSN 2190-4782

Supplementary Material for the Evaluation
of the Layered Reference Architecture for

Metamodels to Tailor Quality Modeling and
Analysis

Misha Strittmatter, Robert Heinrich, Ralf Reussner

 2018

KIT – University of the State of Baden-Wuerttemberg and National

Research Center of the Helmholtz Association

Please note:
This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/4.0/

X =1.00

X =0.01
perf

lossSD
Software Design and Quality

Supplementary Material for the Evaluation
of the Layered Reference Architecture for
Metamodels to Tailor Quality Modeling and

Analysis
Technical Report

Misha Strittmatter, Robert Heinrich, Ralf Reussner

{strittmatter|heinrich|reussner}@kit.edu

18.12.2018

Karlsruher Institut für Technologie

Fakultät für Informatik

Postfach 6980

76128 Karlsruhe

Contents

1 Introduction . 1

2 Case Studies . 3

2.1 Palladio Component Model . 3

2.2 Smart Grid Topology . 15

2.3 KAMP4aPS . 18

2.4 BPMN2 . 20

3 Evaluation Tool . 33

4 Evaluation Data . 35

4.1 Evolution Scenarios . 35

4.1.1 Palladio Component Model . 35

4.1.2 Smart Grid Topology . 37

4.1.3 KAMP4aPS . 38

4.1.4 BPMN2 . 39

4.2 Models . 39

i

1 Introduction

This technical report contains supplementary information to the evaluation of the Layered

Reference Architecture for Metamodels. Chapter 2 provides detailed descriptions of the

case study metamodels (original and modular version). Chapter 3 provides installation

instructions for the evaluation tool. Section 4.1 presents the evolution scenarios in detail.

Section 4.2 contains information about the models.

All metamodels, Modular EMF Designer diagrams, the evaluation tool, as well as the

input and output data can be found online:

https://github.com/kit-sdq/Metamodel-Reference-Architecture-Validation

1

https://github.com/kit-sdq/Metamodel-Reference-Architecture-Validation

2 Case Studies

This section is concerned with the case studies that we modularized according to the

reference structure. The metamodels that we used as case studies are the Palladio Compo-

nent Model [7], Smart Grid Topology [5] (a DSML for modeling and resilience analysis in

smart grid topologies
1
), KAMP4aPS [2] (a DSML for modeling and predicting the main-

tainability of automated production systems) and the BPMN2 [4] (a DSML for modeling

business processes). For each metamodel we present the original metamodel, describe the

modularization and present the resulting modular metamodel. In the description of the

modular metamodel, we will not go into detail about transitive dependencies, as they do

not in�uence the dependency graph.

It is important to note that we created the modular versions of the case study metamodels

for the evaluation. We refactored them solely according to the rules of the reference

architecture. We did not �x bad smells that the reference architecture does not address as

this would damage the internal validity of the evaluation.

To give an overview of the case studies, we applied several basic counting metrics to all

metamodels. Table 2.1 shows the results. The �rst row shows the names of the metamodels.

They are grouped after the four case studies. Within a group, the left metamodel is the

original version; the right metamodel is the modularized version. The metamodel elements

that were counted are listed in the �rst column. Although a containment is a special case

of reference, the amount of containments is not included in the number of references. The

dependencies row shows the sum of all dependencies (attributes, inheritances, references,

containments).

2.1 Palladio Component Model

The starting point for the modularization is version 4.1
2

of the PCM.

Original Metamodel The PCM features six view types. These view types are good indica-

tors for the topmost decomposition. We will now brie�y describe these view types. For

more in-depth information, please consult the respective literature [1, 8]. The Repository
view type is used to de�ne components and interfaces. Components provide and require

Interfaces, which results in Provided Roles and Required Roles. The de�nitions of the Com-

ponents is independent of the software systems in which they are used. The SEFF (Service

EFFect Speci�cation) view type enables the modeling of the behavior of the services of the

components and their resource demands. It resembles a �ow chart and an activity diagram.

1https://sdqweb.ipd.kit.edu/wiki/Smart_Grid_Model
2https://sdqweb.ipd.kit.edu/wiki/PCM_4.1

3

https://sdqweb.ipd.kit.edu/wiki/Smart_Grid_Model
https://sdqweb.ipd.kit.edu/wiki/PCM_4.1

2 Case Studies

Metamodel P
C

M

m
P

C
M

S
m

a
r
t
G

r
i
d

m
S
m

a
r
t
G

r
i
d

K
A

M
P

4
a
P

S

m
K

A
M

P
4
a
P

S

B
P

M
N

2

m
B

P
M

N
2

Metamodules 5 27 3 6 5 9 4 28

Packages 24 42 3 7 12 23 4 31

Classes 203 229 30 34 185 185 157 163

Attributes 56 54 9 9 14 14 135 135

Inheritances 193 194 25 25 163 163 157 162

References 198 174 15 18 117 115 134 151

Containments 120 131 11 14 101 92 103 79

Dependencies (Σ) 567 553 60 66 395 384 529 527

Table 2.1: Case Studies: Counting Metric Results

There is an abstract SEFF class, that allows for the extension of SEFFs of arbitrary type (e.g.,

data �ow). For the sake of simplicity, however, we will address behavior describing SEFFs

simply as SEFF. Systems and Composed Components can be described using the Assembly
view type. There, Components can be instantiated (by so-called Assembly Contexts) and

their Roles can be connected. In the Resource Environment, Resource Containers, which

represent servers and workstations, their connections, and resources are modeled. In the

Allocation view type, the Assembly Contexts of a system can then be deployed to Resource

Containers of a Resource Environment. The Usage Model enables the modeling of behavior

of the users of the system.

The module structure of the PCM is shown in Figure 2.1. It consists of �ve metamod-

ules. Identi�er provides a superclass for all classes that need an identi�er attribute. Units
de�nes units and provides a superclass that keeps track of a unit. StoEx, which is short

for stochastic expression, de�nes arithmetic on random variables, which are used in the

PCM to de�ne and modify parameter values. ProbFunction de�nes abstractions to model

probability functions, which can be used in stochastic expressions.

Around 73 % of the classes of the PCM metamodel reside in the PCM metamodule. This

metamodule de�nes all main concepts of the PCM like components, interfaces, composition,

assembly, resource environments, deployment, and usage models. Figure 2.2 shows the

package structure of the PCM metamodule. If a package that is located within another

package, it means the outer package contains the inner package. The arrows between

the packages represent dependencies between the classes of the packages. The �gure

makes several simpli�cations to ensure clarity. Dependencies to and from the packages on

the third nesting level (e.g., composition) count towards the dependencies of their parent

packages (e.g., core in the case of composition). The �gure omits transitive dependencies

and dependencies to the entity package as these are very numerous. All view types of the

PCM are re�ected in the package structure. The Assembly view point is implemented in

the Composition package.

4

2.1 Palladio Component Model

Modular metamodel

pcm

units

stoex

probfunction

identifier

Figure 2.1: PCM Module Structure

The PCM package is the root package of the PCM metamodule. It simply contains the

other packages. The Core package contains the entity and composition package, as well

as class that implements random variables. Entity provides several abstract superclasses.

Composition, Repository, UsageModel, ResourceEnvironment, Allocation, and SEFF contain

mostly classes that implement their respective view types. However, they also contain

classes of crosscutting features and extensions. The System and Subsystem packages contain

one class each, which represents a software system and a software subsystem respectively.

ResourceType contains classes that specify Resource Types, which are used by the Resource

Containers. Protocol provides one single abstract class, that can be used as an extension

point to de�ne protocols [6]. It is currently unused. Parameter implements abstractions

for the speci�cation and manipulation of variable values. Reliability provides modeling of

failure types and their occurrences. The SEFF Performance subpackage provides resource

related calls as well as resource demands. This may suggest, that its parent package

SEFF is free from resource dependent abstractions. However, it is not. SEFF Reliability
provides abstractions to handle recovery from failures. It has the same problem as the

SEFF Performance package, as the classes in SEFF still contain reliability related properties.

QoS Annotations stands for quality of service annotations and implements a extension

point for Systems. This extension point can be utilized by performance and reliability

abstractions that are de�ned in its subpackages QoS_Reliability and QoS_Performance.

Modularization During the refactoring of the PCM, we split the PCM metamodule into 23

smaller metamodules to separate its language features [10] properly. The modularization

of the PCM metamodule was driven by the e�ort to separate the view-points and to

extract their advanced features to make them extensions. By doing so, the basic view

point metamodules would be decoupled from their advanced features. The other four

metamodules were already su�ciently modular and �tted well into the π layer. The

number of classes in the modular PCM (mPCM) grew from 203 to 229. This is due to

splitting classes during refactoring and the creation of new containers for extensions. The

number of references dropped from 198 to 174, as redundant dependencies that violated

5

2 Case Studies

pcm

core

entity

composition

repository usagemodelresourcetype

allocation

subsystem

resourceenvironment

protocol

reliability

seff

seff performance

seff reliability

qosannotations

qos performance

qos reliability

system

parameter

Figure 2.2: Package Structure of the PCM [10]

6

2.1 Palladio Component Model

the reference architecture were removed or remodeled. The number of containments

increased from 120 to 131, as new extending classes needed to be contained.

In the next section, we present the metamodules of the mPCM and explain how we

refactored the PCM to achieve the modularization. During the refactoring, we performed

refactorings and modi�cations of the following types many times. We will only mention

the concrete operations and refactorings, if it is of special interest.

• Moving of classi�ers between packages (possibly packages of di�erent metamodules)

• Moving packages into another package (possible into another metamodule)

• Creating, deleting, renaming packages and modules

• The deletion of redundant relations that violated the constraints of the reference

structure

• The reversion of dependencies that violated the constraints of the reference structure

• The creation of a new root container for a metamodule

• The creation of containments from root containers

• Renaming of classes (e.g., after we have factored out properties belonging to another

concern)

Modular Metamodel Figure 2.3 shows the module structure of the mPCM. For the sake of

simplicity, we have hidden transitive dependencies.

In the following we will present the resulting metamodules. For each metamodule we

will explain its purpose, its dependencies, and how we created it in the refactoring process.

Paradigm The π layer contains the unaltered metamodules Identi�er, Units, Probfunc-

tion and StoEx. It also contains the two basic metamodules Base and Variables that are

used by many other metamodules. π further contains 5 metamodules that de�ne view

types.

Base The Base metamodule provides two superclasses that are commonly inherited from.

The NamedElement class provides a name attribute. Entity inherits from NamedEle-

ment and the Identi�er class (from the Identi�er metamodule) to combine name

and ID attributes. As almost all other metamodules use these superclasses, we will

not explicitly mention dependencies to Base. The Base module does also contain a

dummy class, that is not used and was only introduced to the PCM as a technical

workaround. The execution engine of the transformation language QVT-R was not

able to handle a root package without any classes. We did not remove the class, as it

does not validate the constraints of the reference structure. Thus, by removing it,

it would have harmed the internal validity of the evaluation. We created base due

to the big initial horizontal split. It originates from the Entity package. It was not

split as a language feature, but as a featureless metamodule that is used by other

language features.

7

2 Case Studies

Modular metamodel

 π base

repository
environment

variables

annotations
seff

composition
usage

stoex
probfunction

identifier units

 Δ
software repository

software seff

resources

allocation

software composition

internal behaviour
events

infrastructure

resource interfaces
abstract component types

software usage

Ω
reliability

rel annotationsperf annotations
performance

Figure 2.3: mPCM Module Structure

8

2.1 Palladio Component Model

Variables This metamodule enables to model properties of variables. It does that on the

basis of arithmetic of random variables and thus depends on the StoEx metamod-

ule. Variables originated from the Parameter package. We factored it out due to a

horizontal split to separate its language feature. The class PCMRandomVariable,

which is now part of the Variables metamodule, had many outgoing container

relations, which were redundant. As Variables is a π metamodule, many of the

referenced containers are located in more speci�c layers. Container relations to such

classes violated the constraints of the reference structure and had to be removed.

The other container relations remained, except if they caused a dependency cycle,

to not harm the internal validity of the evaluation.

Repository The Repository now contains the most basic versions of the abstractions of

the former repository view type. We factored out all extensions (e.g., infrastructure,

events) and content of more speci�c layers (e.g., software, performance, reliability).

What remains are Components, Interfaces and their relations (Roles). We formed

Repository in the scope of the big initial horizontal split and the subsequent paradigm

extraction from its ∆ counterpart.

Composition (π) This metamodule lays the abstract superclass ComposedStructure for all

structures in the PCM that contain instances of components and their connectors.

Composition provides the new superclass Containable. From this superclass all

classes that can be contained in a ComposedStructure must inherit. This metamod-

ule de�nes AssemblyContexts and Connectors as containable. Composition depends

on Repository, as a AssemblyContext references a Component. Also, some Com-

posedStructures need Interfaces. So, a further superclass in Composition inherits

from a superclass in Repository that provides Roles. Composition is transitively

dependent on Variables, as a ComposedStructures may feature parameters. Com-

position originated from the initial horizontal split and the subsequent paradigm

extraction from its ∆ counterpart.

Usage, SEFF (π) The metamodules Usage and SEFF implement the domain-independent

portion of their respective view types Usage Model and SEFF. Both metamodules

are dependent on Variables, as they uses random variables. Both originate from

the initial horizontal split and the subsequent paradigm extraction from their ∆
counterpart.

Environment The environment resulted from the resource environment view type. We

factored out all resource-dependent content into ∆ metamodules. ResourceCon-

tainers are now Containers, LinkingResources, which connect Containers, are now

Links.

Annotations Annotations contains the quality independent part of the QoS Annotations

package. It established an extension for services of Signatures and is therefore

dependent on the Repository metamodule. It originated from the initial horizontal

split and the subsequent paradigm extraction from its ∆ counterpart.

9

2 Case Studies

Domain The ∆ layer of the mPCM provides abstractions for the domain of software

components. Therefore, the ∆ layer extends the view type implementing metamodules of

Repository, Composition, Environment, SEFF and Usage by respective ∆ modules.

So�ware Repository This metamodule extends its counterpart in π by domain-speci�c

content: exceptions and interfaces that provide operation. It also de�nes an atomic

component, that has an abstract class as a generic extension point to specify the

e�ects of services. Although the behavior describing SEFF metamodule uses this

extension point, it is not behavior-speci�c and can therefore be used for other kinds

service e�ect speci�cations. Therefore, this metamodule is free from content of

the behavior features. On its own, the Software Repository can be used to de�ne

software components their interfaces and operations. It is, however, mostly used

together with composition and SEFF. Software Repository is transitively dependent

on Variables, as it enables component-wide parameters for their operations. Software

Repository originated from the initial horizontal split. It implements a standalone

features and therefore needs to be separated from metamodules it is not dependent

on.

Abstract Component Types This is a small metamodule, that de�nes two abstract compo-

nent types. They can be used as blueprints in the component architecture of a system,

as components with full service e�ect speci�cations are not yet available. As soon

as they are available, they can replace the abstract components. This metamodule

distinguishes implemented components from unimplemented components. Thus, it

is ∆ content and depends on the Software Repository instead of only depending on

the Repository metamodule from π . It is transitively dependent on Repository (π)

This metamodule resulted from a extension extraction from Software Repository. It

is not essential for the modeling of Software Repositories, therefore it is an extension.

Resources This metamodule extends the Environment metamodule’s containers and links

by hardware resource speci�cations. These can either be used just for documentation

or to simulate performance, as these resources process the resource demands that can

be extended into SEFFs. In addition to its dependency to Environment, Resources also

depends on Units, as for a ResourceTypes a Unit can be assigned. We performed an

extension extraction to separate the Resources language feature from Environment.

To achieve this, we split several classes and created a new root container.

Composition (∆) The Composition metamodule extends its counterpart from the π layer

domain-speci�c abstractions. It provides several concrete classes that inherit from

the abstract π Composition concepts. These classes are: System, CompositeCompo-

nent, SubSystem and several Connectors. This metamodule can only be used together

with Software Repository to describe how ComposedStructures (e.g., Systems and

CompositeComponents) are internally structured. In addition to π Composition,

this metamodule is dependent on Software Repository and transitively on Reposi-

tory, as in Composition Components are instantiated into AssemblyContexts. This

metamodule originated from the initial horizontal split.

10

2.1 Palladio Component Model

Allocation The Allocation metamodule implements the Allocation view type. It provides

the concepts that are necessary to deploy AssemblyContexts on Containers. There-

fore it is dependent on Composition (∆) and Environment. It is transitively dependent

on Composition (π). This metamodule originated from the initial horizontal split.

SEFF (∆) This metamodule provides many concrete classes that represent domain-speci�c

Activities that it adds to the SEFF from π . It further extends the Software Repository

by behavior as it provides a new subclass of the generic extension point that we

mentioned earlier. Therefore, this metamodule depends on SEFF (π) and Software

Repository. It depends transitively on Variables and Repository. This metamodule

originated from the initial horizontal split.

Internal Behavior This metamodule is an extension of SEFF (∆) and enables to model

SEFFs that are not called through the interfaces of a component, but internally

from other SEFFs. They are analogous to private methods in object-oriented pro-

gramming. This metamodule is dependent on SEFF (∆), as it is an extension. It

is transitively dependent on SEFF (π) and Software Repository. We performed an

extension extraction to remove these concepts from SEFF (∆).

Usage (∆) This metamodule extends its π counterpart by domain-speci�c concepts. It

adds the description of workloads, and user-speci�c data. It enables the modeling

of activities that call into the software system (so called EntryLevelSystemCalls).

It is therefore dependent on the Software Repository, as it references Operations;

and π Composition, as it references the provided role of a ComposedStructure. It is

transitively dependent on Variables. This metamodule originated from the initial

horizontal split.

Infrastructure This metamodule is an extension of the SEFF, Repository, and Composition

view types. It introduces a new type of component, interfaces, roles, connectors,

and calls. These new abstractions are called infrastructure and are used to model

middleware. Besides the dependencies to the view type implementing metamod-

ules it extends (SEFF (π and ∆), Software Repository, Repository, and Composition

(π)), it is transitively dependent on Variables. Like the following cross-cutting

extensions (Events and Resource Interfaces) we created this metamodule by an

extension extraction. As it is a cross-cutting extension, we had to extract it from the

packages of the respective view types.

Events This metamodule is an extension of the SEFF, Repository, Composition, and Allo-

cation view types. It introduces abstractions to model event based communication.

It provides event interfaces, roles, emit actions, connectors and also event channels

that can be assembled and allocated. Besides the dependencies to the view type

implementing metamodules it extends (SEFF (π and ∆), Repository, Allocation, and

Composition (π)), it is transitively dependent on Variables.

Resource Interfaces This metamodule is an extension of the SEFF, Repository, Composi-

tion, and Environment view types. It provides modeling concepts to place resource

demands on speci�c resources from within SEFFs. Besides the dependencies to the

11

2 Case Studies

view type implementing metamodules it extends (SEFF (π and ∆), Repository, and

Composition (π)), it extends Resources and is transitively dependent on Variables.

Quality The quality layer contains two metamodules that implement abstractions to

model Performance and Reliability. Further, two extension metamodules provide advanced

concepts for Performance and Reliability respectively.

Performance The Performance metamodule enables the modeling of performance deter-

mining properties. This is achieved by adding resource demands to the activities

within SEFFs and processing rates to Resources. This metamodule is therefore de-

pendent on SEFF (π and ∆) and Resources. As well as transitively dependent on

Variables. We created Performance due to an extension extraction, to rid the quality-

independent language features SEFF and Resources from performance abstractions.

Performance Annotations The Performance Annotations metamodule allows to add un-

parametrized performance speci�cations to the operations of required roles of sys-

tems and to provided roles of components. Usually, the performance of a operation

is determined by the resource demands of its SEFF and the processing rate and the

contention on the required resources. However, it is not always possible to specify

such detailed descriptions of the behavior and demand of an operation. Therefore,

Performance Annotations can be used as a coarse performance abstraction. We

created Performance Annotations by an extension extraction.

Reliability In short, the Reliability metamodule provides several failure types and modeling

constructs to apply failure rates to Activities of SEFFs and to Resources. It also

enables the modeling of recovery behavior after a failure. We created Reliability due

to an extension extraction, to rid the quality-independent language features SEFF,

Repository and Resources from reliability-speci�c abstractions.

Reliability Annotations This metamodule allows to specify reliability of Operations that

are required by a System. It is dependent on Annotations and Reliability. We created

this metamodule by an extension extraction.

UncorrectedBadSmells andModelingErrors As we already mentioned, we only refactored

bad smells and modeling errors that violate the constraints that our approach imposes.

We will now brie�y elaborate on the bad smells and modeling errors that we did not �x as

well as on general improvements that we did not implement. By using proper extension

mechanisms, a large portion of the QoS Annotations metamodules could be dropped.

The two π metamodules SEFF and Usage have a big overlap and should be consolidated.

The class ResourceTimeoutFailureType has a reference to PassiveResource, which breaks

modeling levels. Either ResourceTimeoutFailureType is not a FailureType but a failure

occurrence, or or the reference is nonsensical. HDDProcessingResourceSpeci�cation has

redundant relations to ResourceContainer. The modules identi�er and base could be

merged, as they are both concerned with identity. We did not merge them, as we did

not want to modify the �ve metamodules the original PCM metamodule is dependent on.

ExceptionType is not a �rst-class concept, as it is not contained in a root container but

12

2.1 Palladio Component Model

in the Signature class. This con�icts with ExceptionType being a type, as it should be

possible to use instances of types from multiple places.

The following are occurrences of bad smells. ResourceInterfaceProvidingRequiringEn-

tity is a dead class, as it is not referenced by any other class. Even if it were, it should not be

abstract. Either RequiredResourceDelegationConnector or ResourceRequiredDelegation-

Connector is a dead class. There is a possible dead reference from Signature to FailureType.

CharacterisedVariable may be a dead class. Before resolving possible dead properties

and classes, they should be con�rmed by searching dependent code for references. If

no references are found, the class or property should be deleted, assuming there are no

plans to use it in the future. There are still many redundant references, that did not cause

cycles and did not violate the layering. These include redundant opposite relations and all

container relations. ExceptionType might be a dead class.

FeatureModel Figure 2.4 shows the feature model of the mPCM. All relations are required

relations. Therefore, we have omitted the explicit required labels. Quality, View Types,

Behavior, Structure, and Cross-cutting Extensions are grouping features and are therefore

mandatory. We have grouped the view types into structural and behavioral features. Only

the direct child features of the grouping features are classi�ed by the grouping feature.

For example, SEFF is a view type; its child feature Internal Behavior is not a view type. We

placed it as a child of SEFF to demonstrate that it is an extension of SEFF and of nothing

else (in contrast to the Cross-cutting Extensions). Resources and Abstract Component

Types are also extensions and no view types. The Cross-cutting Extensions are advanced

features and have no incoming requires relations from the rest of ∆. This means, that they

could even be put in a sub-layer between ∆ and Ω to enforce this decoupling. The small

arrow that mark some required relations indicate that we pulled the relation up from all

child features. For example, the requires relation from Quality to Resources was originally

present in the Reliability and Performance feature.

For the sake of clarity in the diagram, we do not show the feature model together with

the metamodule diagram. The grouping features do not have implementing metamodules.

Neither has the mPCM root feature. The remaining feature nodes represent language

features, are implemented by exactly one metamodule and are named like this feature.

The π metamodules have no counterparts in the feature model, as they cannot be used

without domain modules. Therefore they do not implement language features.

Further Decoupling Potential By looking at the feature model (Figure 2.4), more decou-

pling potential becomes apparent. This decoupling is not mandated by the guidelines

of the reference structure, as the respective language features are intended to be used

together. Such decouplings, however, increase the degree of indirection and complexity.

SEFF and Usage are dependent on Software Repository. By performing feature support

extractions, the two features could be decoupled from Software Repository. This would

enable the creation of system-independent Usage and SEFF Models without the need

to install and load the Software Repository metamodule. For example, Usage could be

decoupled quite easily by moving the EntryLevelSystemCall class into a new metamodule.

13

2 Case Studies

View Types

Software
Repository

Usage
Environ-

ment

Resources
Compo-

sition

SEFF

Resource
Interfaces

Abstract Com-
ponent Types

Internal
Behavior

Events

Allocation

Infra-
structure

Reliability Performance

Performance
Annotations

Reliability
Annotations

mPCM

Quality

Cross-cutting
Extensions

StructureBehavior

↑

↑

↑

↑

Δ

Ω

Figure 2.4: mPCM Feature Model (small arrows indicate the result of a pull up refactoring)

As EntryLevelSystemCall has no incoming dependencies within the ∆ Usage metamodule,

this would decouple ∆ Usage from Software Repository.

The cross-cutting extensions are dependent on several view types, like the name suggests.

If one of the extension features is selected, all required view type features are also selected.

If it is desired to use only a subset of the view types with a speci�c extension, feature

support extractions have to be performed to separate the parts of the respective extension

that depend on the individual view types.

Both quality features are dependent on the SEFF and Resources features. By feature

support extractions the parts that are dependent to these two features could be split. For

example, this enables to model the performance of resources without being dependent on

SEFF.

14

2.2 Smart Grid Topology

Predefined Metamodule Selections The modularization of the PCM enables a selection

of language features according to the needs of the tool user. Based on the feature model in

Figure 2.4, we will now present selection that ful�ll the needs of certain user groups of

the PCM. Of course, any selection is possible that ful�lls to the constraints of a feature

selection. However, these prede�ned selections will cover the needs of most tool users.

ADL ADL stands for architecture description language. In the context of the PCM this

means the description of the component architecture without any quality informa-

tion. This selection will usually used in early design stages or when reengineering

the architecture of a legacy software system It consists of all structural view types:

Software Repository, Composition, Allocation, Environment, and Resources. Op-

tionally, if the description of behavior is also needed, SEFF, Usage or both can also

be selected.

ADL+ This selection contains all selected features from the ADL selection with the addition

of advanced features for expert tool users. It includes Abstract Component Types

and all cross-cutting extensions. Optionally, if behavior is included in the ADL

selection, Internal Behavior is also selected.

Performance Prediction This selection includes all view types as well as the Performance

feature. As Quality is the parent feature of Performance, its required relations have

to also be satis�ed. Therefore, Resources is also selected. SEFF is already selected, as

it is a view type.

Performance Prediction+ This is the advanced version of the Performance Prediction

selection. It includes the same additional features as the ADL+ selection with the

addition of Performance Annotations.

Reliability This selection is used for reliability analysis. It includes all view types, Re-

sources, and the Reliability feature. Optionally, the advanced ∆ features can be

included as well as the Reliability Annotations feature.

2.2 Smart Grid Topology

Original Metamodel The Smart Grid Topology metamodel features four view types: the

topology, types of devices in the topology, input state and output state. Input and output

state are used by the analysis that is performed on the metamodel. It predicts the impact

of the current power supply onto the smart devices in the topology.

Figure 2.5 shows the module structure of the Smart Grid Topology metamodel. It consists

of three metamodules. Input and output state view types are implemented in their own

metamodules. The Topo metamodule implements the device type and topology view types.

Modularization During the modularization, the input and output metamodules remained

unmodi�ed. We split the main metamodel module in several ways to separate the two

view types and also to extract π metamodules. The number of classes increased from 30

to 34. The number of dependencies increased from 60 to 66.

15

2 Case Studies

Modular metamodel

input
topo

output

Figure 2.5: Smart Grid Topology Module Structure

Modular Metamodel Figure 2.6 shows the module structure of the modular metamodel.

It populates the layers π , ∆, and Σ. In the following we will present the resulting meta-

modules. For each metamodule we will explain its purpose, its dependencies, and how we

created it in the refactoring process.

Paradigm This layer contains the domain-independent metamodules Base and Graph.

Base This metamodule de�nes abstract superclasses that are used by all other metamod-

ules. They provide name and ID attributes. As almost all other metamodules depend

on Base, we will not mention incoming dependencies. This metamodules has no

dependencies. Base originated from the horizontal split of Topo. It is not a language

feature. We factored it out, as it used by several metamodules.

Graph This abstract metamodule de�nes a simple network graph structure. Nodes are

connected by logical and physical connections and can be connected to power supply.

Graph originated from the horizontal split of Topo.

Domain The ∆ layer provides abstractions that are speci�c for the domain of smart

grids. It contains the Topo and TypeRepo metamodules.

Topo This metamodule provides several smart-grid-speci�c types of devices and extends

them into the graph structure by the means of subtyping. It therefore depends on

Graph. This metamodule originated from the horizontal split of the original Topo

metamodule.

TypeRepo TypeRepo extends SmartMeters, NetworkNodes and PhysicalConnections by

Types that are stored in a Repository that is independent of concrete smart grid

topologies. The extended classes lie in Topo and Graph. We factored TypeRepo

out due to the horizontal split of the original Topo metamodule. Originally the

devices and connections knew their types. So we performed horizontal splits to

remove the type-dependent properties from the devices and connections. As this

type information does not belong in the type de�nitions either, we created a new

root container that now holds the three kinds of type applications.

16

2.2 Smart Grid Topology

Modular metamodel

 π
base

graph

 Δ topo
typerepo

SGT.DeviceTypes

SGT.Topology

 Σ
input

output

SGT.Input SGT.Output

SGT.ImpactAnalysis

Figure 2.6: Modular Smart Grid Topology Module Structure and Feature Model

Analysis The Σ layer contains the Input and Output metamodules. We did not modify

them, as they were already su�ciently modular and �t the Σ layer well.

Feature Model The feature model for the modular Smart Grid Topology metamodel is

shown directly in the layered module diagram (Figure 2.6). The root node represents the

Topology language feature. As the Topology language feature is always used, its feature

was pulled up and merged with the formal root feature. Thus, it is implemented by the

Topo metamodule and its dependencies. As the TypeRepo is an extension metamodule,

it is re�ected by the optional child feature DeviceTypes. ImpactAnalysis is a grouping

feature node. Usually, grouping features are mandatory child features. However, it is

best located on the Σ layer. Therefore it is optional, as its parent relation crosses a layer

boundary. From a functional feature selection perspective, it is equivalent if the feature is

placed on ∆ or Σ. It is also equivalent if it is mandatory or optional as long as its children

are all optional. The optional child features of ImpactAnalysis are implemented by their

respective metamodule.

17

2 Case Studies

2.3 KAMP4aPS

Original Metamodel The KAMP4aPS metamodel features 3 view types. The Automated

Production System (APS) view type is used to model the structure of such a system. The

Field of Activity view type adds information about artifacts that are relevant for the

evolution of the system. This includes information about the sta�, tests, documentation,

speci�cations, and further documents and �les. The Modi�cation Marks view point

describes how the system is modi�ed. Based on the information of the 3 view types, the

KAMP4aPS analysis predicts the extent maintenance of the automated production system.

Figure 2.7 shows the module structure of the original KAMP4aPS metamodel. The APS,

Field of Activity and APS Modi�cation Marks metamodules implement their viewpoint.

The Modi�cation Marks metamodule is a generalized part from the KAMP metamodel

that is reused by the APS Modi�cation Marks metamodule. Basic contains superclasses

that contribute name and ID attributes.

Modular metamodel

aps modificationmarks

modification marks
aps

field of activity annotations

basic

Figure 2.7: KAMP4aPS Module Structure

Modularization During the modularization, we split the APS metamodule into parts

of di�erent speci�city: Automation Systems (AS), automated production systems, and

a specialization for a speci�c kind of automated production system, called a pick an

place unit (PPU). The same kind of modularization was performed on the module that

describes modi�cations. In the scope of these two modularizations, we performed several

dependency inversions to direct the module dependencies to go from the most speci�c to

the most abstract metamodules.

The refactoring increased the number of metamodel modules from 5 to 9. The number

of classes stayed constant at 185 as existing containers could be well utilized. The number

18

2.3 KAMP4aPS

of dependencies dropped from 395 to 390, as some redundant opposite references were

removed that violated the reference architecture.

Modular Metamodel Figure 2.8 shows the module structure of the modular metamodel.

It populates the layers π , ∆, and Ω. In the following, we will present metamodules that

resulted from the modularization or were modi�ed. For each metamodule we will explain

its purpose, its dependencies, and how we created it in the refactoring process.

Modular metamodel

 π
basic modification marks

 Δ (AS)
as

K4aPS.AS

 Δ (APS)
aps K4aPS.APS

 Δ (PPU) ppu
K4aPS.PPU

 Ω
as modification marks

as field of activity annotations

aps modification marks

ppu modification marks

K4aPS.FoAA

K4aPS.AS_ModificationMarks

K4aPS.APS_ModificationMarks

K4aPS.PPU_ModificationMarks

<<requires>>

<<requires>>

Figure 2.8: mKAMP4aPS Module Structure and Feature Model

Paradigm The π layer contains the Basic and Modi�cation Marks metamodules. We

did not change them, as they are already su�ciently modular and domain-independent.

Domain The ∆ layer contains the metamodules that originated from the horizontal

split of the APS metamodule. The more speci�c of these metamodules depend on the more

abstract ones, as new subclasses are introduced and existing classes are referenced.

19

2 Case Studies

The ∆ layer is subdivided into three sublayers to enforce the proper direction of the

dependencies. This subdivision is optional. It, however, demonstrates nicely that the

number of layers is not �xed to the ones that the reference structure suggests.

AS The AS metamodule contains quite general abstractions that can be used to model a

wide range of automation systems. Such general modeling comes, however, with

the loss of speci�city.

APS The APS metamodule introduces more speci�c abstractions that are concerned with

automated production systems.

PPU The PPU metamodule provides abstractions for pick and place units.

Quality The Ω layer contains the Field of Activity Annotations metamodule, which

was not altered, as it is already su�ciently modular and only references the most abstract

concepts from the AS metamodule. All metamodules of the Ω layer, are located here as

they de�ne abstractions that are needed to determine the maintainability of an automation

(or more speci�c) system.

Modification Marks The Ω layer further contains the three metamodules that resulted

from the split of the APS Modi�cation Marks metamodule. It was split in a way to

mirror the structure of the ∆ layer: one metamodule for the Modi�cation Marks of

the AP metamodule, one for APS, and one for PPU. These metamodules reference

their respective ∆ counterpart as well as the AS Modi�cation Marks module, as it

provides superclasses.

Feature Model The feature model for mKAMP4aPS is shown directly in the layered mod-

ule diagram (Figure 2.8). The root node represents the AS language feature. As the AS

language feature is always used, its feature was pulled up and merged it with the formal

root feature. Thus, it is implemented by the AS metamodule and its dependency Basic.

The structure of the feature model pretty much mirrors the module structure. PPU is

an optional child of APS. APS is an optional child of AS. AP, APS, and PPU have their

respective Modi�cationMarks as optional children. AS, APS and PPU, their Modi�cation-

Marks and FoAA are implemented by their respective metamodules. Additionally, AS

Modi�cationMarks is implemented by the abstract π Modi�cationMarks metamodule. As

the APS and PPU Modi�cationMarks features are dependent on the AS Modi�cationMarks

feature, they have required relation pointing towards it.

2.4 BPMN2

Original Metamodel Figure 2.9 shows the internal structure of the BPMN2 concepts that

is conveyed by the standard [4]. It suggests a layered and modular structure. However, a

look at the classes that implement these concepts, shows that they are often mutually or

cyclically coupled by dependencies. Starting from the basic concepts in the middle, we

will brie�y give an overview of the concepts shown in the �gure. For a more detailed

explanation, please consult the standard [4].

20

2.4 BPMN2

Figure 2.9: BPMN2 Concept Structure [4]

Infrastructure Infrastructure contains the most basic classes of BPMN2: De�nitions, the

root container of all BPMN2 models, and Import, which is used to reference external

resources.

Foundation Foundation, which is not shown in the �gure, provides classes that are funda-

mental to an abstract syntax and are needed by the three other core packages.

Commons Commons (Common Elements in the �gure) provides classes that are needed

by the advanced concepts Process, Choreograpy and Collaboration.

Services Services provides fundamental abstractions that are needed to model services,

interfaces, and operations.

Process A Process is a sequence of activities. It is related to �ow charts and activity

diagrams. It consists of tasks, interactions with events, branching, loops, and many

more. These elements can be partitioned into pools and lanes. A pool represents the

actor who performs the process.

Collaboration Collaborations are used to model the interactions between processes and

their message exchanges.

Choreography A Choreography is used to express the interaction between processes in a

sequential way.

Data Data can be required by activities. It can represent information or physical objects

and is used in messages.

21

2 Case Studies

Activities Activities are the main elements of a process. The most important activities are

tasks, calls and sub-processes. Tasks are atomic activities that can be performed.

Calls invoke a global process or task. Sub-processes contain a �ow of activities and

can be used for hierarchical decomposition.

Human Human is needed to express the involvement of persons in business processes.

E.g., there are several types of tasks that have to be performed by a person.

Conversations A Conversation diagram is used to provide an overview of which pools

interact with each others, but not how they interact in detail. The details of processes

are usually not shown in the pools.

Figure 2.10 shows the module structure of BPMN2 version 2.0.2. It consists of 4 meta-

modules. We got the metamodel source from the BPMN2 Modeler Eclipse plugin
3

version

1.4.2. The main metamodule is BPMN2, which contains classes for all BPMN2 concepts.

The three other metamodules are only used to express diagram information. One is BPMN

speci�c. The others are more general and could be reused by other languages to express

diagrams. There is a dependency cycle between BPMN2 and BPMN Diagram Interchange.

This dependency hardly couples BPMN2 models with their diagram representation, which

is undesirable.

Modular metamodel

BPMN2

BPMN Diagram Interchange

Diagram Interchange

Diagram Commons

Figure 2.10: BPMN2 Module Structure

Modularization The only metamodule that we refactored is the BPMN2 metamodule.

As it implemented all concepts of BPMN2, there was great modularization potential. As

a starting point we modularized the metamodule into the groups of concepts that are

proposed by the speci�cation (as presented earlier).

3https://www.eclipse.org/bpmn2-modeler/

22

https://www.eclipse.org/bpmn2-modeler/

2.4 BPMN2

We reconstructed the result of the initial horizontal split in Figure 2.11. The diagram does

not represent an exact state of the metamodule structure in the refactoring of the BPMN2, as

in the modularization process we performed other refactorings (e.g., dependency inversion)

in between the steps of the big horizontal split. The purpose of this �gure is to illustrate

the level of entanglement between the parts that the layering in Figure 2.9 suggests.

The �nal metamodules span two layers: π and ∆. We modularized the main meta-

modules according to its language features into 25 metamodel modules (resulting in 28

metamodel modules in total). 16 of these metamodel modules are on the π layer; 9 are on

the ∆ layer. The number of classes grew only slightly from 157 to 163, as we was able to

often inherit from the abstract class RootElement. RootElement is contained in to root

container De�nitions and therefore provides a convenient generic extension point. The

number of dependencies slightly reduced from 529 to 527 (mainly because of redundant

relations that violated the reference architecture).

We did not refactor the dependency from the original BPMN2 metamodule to the

BPMN Diagram Interchange metamodule. Removing or inverting the dependency would

have decoupled the BPMN2 metamodule completely from the diagram-related metamod-

ules. In the evaluation, this would have improved the results for the modular metamodel

signi�cantly. However, we want to show the bene�ts of our approach regarding the more

subtle and di�cult modularization of metamodules. Although the dependency in question

violates the constraints of our reference architecture, we did not want these bene�ts to be

overshadowed by the results of such an easy refactoring.

The metamodel that We obtained contains one peculiarity that we had to resolve. It

contains the class DocumentRoot, which is not covered in the standard. DocumentRoot

holds a containment reference to every other class in the metamodel. This is strange, as

these classes already form a proper containment hierarchy. It is also a grave bad smell, as

it completely breaks the modularity. We had to remove it in both metamodels (the original

and the modularized version) to get comparable results. Table 2.1 does not include the

DocumentRoot and its properties.

Modular Metamodel Figure 2.12 shows the module structure of mBPMN2. For the sake of

simplicity, we have hidden transitive dependencies (e.g., the dependency between BPMN

Diagram Interchange and Diagram Commons).

In the following we will present the resulting metamodules. The names of the new

metamodules relate strongly to concepts of the BPMN2 speci�cation [4]. Thus, here, we

will only refer to their internals where necessary. For each metamodule we will explain its

purpose, its dependencies, further modularization potential where applicable, and how we

created it in the refactoring process.

Paradigm Many BPMN2 concepts are not limited to the use of modeling business

processes (e.g., many concepts are shared with or could extend �owcharts); thus, many

metamodules are located at the paradigm layer. It was seldom the case, that a general

concept contained domain information and a paradigm extraction had to be performed.

Thus, many of the paradigm metamodules contain concrete classes. This is, however,

justi�able for a refactored legacy metamodel.

23

2 Case Studies

Modular metamodel

activities

choreographies

collaborations

commons

conversations

data

foundation

human

infrastructure

processes

services

BPMN Diagram Interchange

Diagram CommonsDiagram Interchange

Figure 2.11: BPMN2 Module Structure after Horizontal Split According to the Structure in

the Speci�cation (Reconstructed)

24

2.4 BPMN2

Modular metamodel

 π core

groupexternals

correlations

messaging

flows

gateways

expressions

resources

activities

events

subprocesses

looping

data

services

artifacts

 Δ processeshuman resources advanced events

collaborationschoreographiesadvanced event expressionsprocess resources

auditing and monitoring human interaction

conversations

 Diag Diagram Interchange

Diagram Commons

BPMN Diagram Interchange

Figure 2.12: mBPMN2 Module Structure

25

2 Case Studies

Core This metamodule implements the most basic concepts: De�nitions, which is the

root container of all BPMN2 models; RootElement, the superclass for all �rst-class

concepts; Documentation; and BaseElement, which provides an ID and a reference

to documentation. Core has only one outgoing dependency, a containment to BPMN

Diagram Interchange. Almost all other metamodules depend on Core. We did not

explicitly factor the core package out of another metamodule. We was was the

remainder of the modularization.

Artifacts This metamodule provides all BPMN2 Artifacts except Groups (i.e., Association

and TextAnnotation). This metamodule is domain-independent and is therefore

paradigm content. Artifacts is only dependent on Core. Five metamodules reference

the Artifact metamodule. Here may be further refactoring potential in reversing

these references to decouple the dependent metamodules from Artifacts. This would

make Artifacts an extension metamodule. Artifacts was factored out of Core due

to a horizontal split to separate language features. To make Core independent of

Artifacts, we made Relationship inherit from RootElement and removed the explicit

containment from De�nitions.

Groups This metamodule de�nes Groups and the Category concept. A Group is an Artifact

that groups values of a Category (i.e., FlowElements). It therefore has dependencies

to Flows and Artifacts and a transitive dependency to Core. It has no incoming

dependencies and is therefore a pure extension. We factored out Groups due to a

feature support extraction from Artifacts (dependencies to Flow were factored out).

To decouple Flows from Groups, we removed the reference from FlowElement to

CategoryValue. We made the opposing reference, which was derived and transient,

to a proper persistent reference.

Externals Externals provides capabilities to link external data and extend arbitrary data

into BPMN2 models. These are usually used by Tools (mostly diagram editors) to

store their tool-speci�c data, which the BPMN2 metamodel does not cover. Core

is the only dependency of the Externals metamodule. With no incoming depen-

dencies, this metamodule is a pure optional extension. Externals is the result of

an extension extraction from Core. We reversed the incoming references from the

BaseElement and De�nitions classes of Core and introduced a new container for the

now containerless classes. We further removed a redundant derived reference from

ItemDe�nition, which is now located in the Data metamodule, to decouple the class

from Externals.

Flows Flows is a basic metamodule that de�nes �ow sequences and abstract classes for

their elements. The only dependency of Flows is to Core. We extracted this meta-

module with a horizontal split to extract the respective concern. To decouple Flows

from the much more speci�c concern of Processes and to resolve the dependencies

layer violation, we removed the redundant derived reference from FlowNode to

Lane.

Data This metamodule de�nes data, abstractions for data in- and outputs, and many more

data related abstractions. The notion of data that the metamodule de�nes is general

26

2.4 BPMN2

enough to be considered a part of paradigm. As three classes can be part of a �ow,

it has inheritances on FlowElement and is dependent on the Flows metamodule. It

further has a transitive dependency on Core. We performed an horizontal split to

separate this metamodule.

Messaging Messaging de�nes abstractions for messages and their �ows in a domain-

independent way. It depends on the Data metamodule, as a Message can hold data. It

has a transitive dependency on Core. It is possible that there is more modularization

potential in this metamodule. The dependency to data could be inversed, to make

data an extension of messaging. This would make data a pure extension without

incoming dependencies. However, we do not have the necessary domain knowledge

to decide which dependency direction is better. We separated Messaging in scope of

horizontal splitting.

Gateways This metamodule introduces gateways, which can be used to fork �ows. The

gateways do not contain domain information and are therefore located in the

paradigm layer. It is only dependent on Flows. An abstract superclass inherits

from FlowElement and has several subclasses that de�ne concrete gateways. We fac-

tored out gateways with an extension extraction. However, it could be that �ows are

always used together with gateways. In this case, the modularization is unnecessary

and the two metamodules should be merged.

Correlations In the BPMN2 speci�cation [4] it is written that “Correlation is used to

associate a particular Message to an ongoing Conversation between two particular

Process instances.”. However, correlations are also used by FormalExpressions, which

are paradigm concepts. This and the abstract nature of the concept contributed to our

decision to assign the Correlations metamodule to the paradigm. The metamodule

only depends on the Message class. It further has transitive dependencies to Data

and Core. If Correlations is only seldomly used by Processes and FormalExpression,

there is more modularization potential here. To perform a feature support split

would decouple both metamodules from Correlations. We factored out Correlations

from Messaging in the scope of an extension extraction.

Services Although there is no explicit service class in BPMN2, the content of this meta-

module follows the BPMN2 speci�cation that proposes a Services package. It de�nes

Interfaces, which contain Operations, and service end points that can be externally

extended. These abstractions are general enough to �t the paradigm layer. This

metamodule depends on Messaging and transitively on Data, as an Operation may

have Messages and Data as input and output. It has a further transitive dependency

to Core. We created this metamodule due to horizontal decomposition.

Events The paradigm metamodule for events de�nes the basis on which the domain

metamodule builds upon. It de�nes the abstract superclass and concrete classes like

Start- and StopEvents. It depends on messaging, as Events can be the source and

target of MessageFlows. Thus, the Events superclass inherits from InteractionNode.

Transitive dependencies exist to Core, Data and Flows. We created the Events

27

2 Case Studies

metamodule due to a paradigm extraction, which separated it from its domain

counterpart.

Activities This metamodule de�nes the activities within a �ow. It is strongly coupled to

the Services module, as Activities contains several classes that reference Operations

and CallableElements as the represent or use services. Activities depends transitively

on Data, Flows and Messaging. Here is, again, potential modularization potential.

If service-oriented activities are not always used, they can be factored out. We

extracted this metamodule with an horizontal split. To resolve a dependency cycle

and a layer violation, we removed a redundant derived reference from Activity to

BoundaryEvent.

Resources A Process may be performed by a Resource. This metamodule contains the

domain-independent parts of the Resource concept. The metamodule depends on

Activities, as a ResourceRole, which connects a Resource and a Process, references

further activities that may be performed by a Resource. Resources also depends

transitively on Data and Core. We made resources an extension, as it is not essential

to de�ne Processes and Activities. We separated it from Commons and inverted

incoming dependencies from Activities.

Subprocesses Subprocesses are activities that contain an inner Process. This is achieved

by inheriting from FlowElementsContainer of the Flow metamodule. Subprocesses

has also transitive dependencies to Activities, Artifacts, and Messaging. We factored

it out with a horizontal split from Activities.

Looping The Looping metamodule enables loops in �ows. This modules depends on activ-

ities, as the Activities superclass can be extended by LoopCharacteristics. It is also

dependent on Events, as certain loops are able to throw multiple events. Looping

has transitive dependencies to Data and Core. We extracted Looping to make it

an extension of Activities, as it is a rather speci�c feature. As loops are a speci�c

activities, we decoupled Activities from Looping using dependency inversion. We

removed the containment from the Activity superclass to the LoopCharacteristics

superclass. As LoopCharacteristics was no longer contained anywhere, we created

a new container class. We made the container class a subclass of RootElement (i.e,.

using variant b of the referencing extension mechanism) to prevent model fragment-

ing. We could have also made LoopCharacteristics a subclass of RootElement, which

would have reduced complexity, as no new container class would have been needed.

As this has the potential to severely cluttered the set of RootElements in a De�nition,

we decided against it.

Expressions This metamodule implements informal and formal Expressions. FormalEx-

pressions may be executed by a simulator or interpreted by an analyzer. Many

concepts like Gateways, Subprocesses, Loops, Correlations and Resources use Ex-

pressions to express conditions. Thus, this metamodule depends on Gateways,

Subprocesses, Loops, Correlations and Resources It is further transitively dependent

on Data and Flows. As Expressions depends on so many advanced features, there is

28

2.4 BPMN2

more modularization potential. A drawback of the current stat of Expressions is by

using or reusing it, all its dependencies are required, even if they are not needed

by the user or reuser. It could be bene�cial, to perform several feature support

refactorings, to decouple the general concept of expressions from all the extended

metamodules. The metamodule was �rst created, when during the big vertical split

of the Commons. Expressions is a cross-cutting feature and many metamodules

depended on it. However, as it is not essential for de�ning BPMN2 models, we

conducted dependency inversion to make it a cross-cutting extension. We also made

the Expressions superclass a RootElement.

Domain The ∆ layer provides modeling abstractions for the domain of business pro-

cesses. It contains the view type implementing metamodules Processes, Collaborations,

Choreographies and Conversations. It further extends π metamodules by business process

speci�c content like events, auditing, monitoring, and human interactions.

Resources This metamodule contains the domain-speci�c part of the original Resource

concept. Its only purpose is to extend the Processes metamodule. As the Processes

module is ∆ content, this metamodule also belongs in ∆. Thus, it depends on the

Process metamodule and on the Resources metamodule of π . We performed depen-

dency inversion to decouple Process from Resources. We extracted the resulting

dependency in We used a split class refactoring to separate this dependency from

the ResourceRole class in order to achieve a paradigm extraction.

Resources.Human Resources.Human contributes human speci�c resource concepts. Its

only dependency is to the Resources metamodule of π , as it uses Performer as a

superclass. We created this metamodule, due to a horizontal split of the ∆ Resources

metamodule to separate the human speci�c content.

Expressions This metamodule implements a feature support of the π Expressions meta-

module for Events.Advanced of ∆. It extends two events with Expression support. As

the supported feature is part of ∆, this metamodule is also in ∆. It is, only dependent

on Expressions of π and Events.Advanced. At �rst we reversed the dependencies

from Events to Expressions, to make it an extension and to decouple Events from

Expressions. To decouple Expressions from Events, we created this metamodule

as feature support. We did this by splitting the Expressions superclass, which was

carrying the reversed dependencies.

Events.Advanced This metamodule holds Events that are too BPMN speci�c for the π
layer. It is, of course, dependent on the Events of π . It also depends on Activities, as

Boundary- and CompensateEvents reference the Activity superclass. It has transitive

dependencies to Core, Data, Services, and Messaging. We factored it out of Events

with a paradigm extraction.

Processes This metamodule de�nes the Process concept, which contains LaneSets, which

in turn contain Lanes. Processes is part of ∆, as it contains properties that are

domain-speci�c. However, if a concept that is similar to Processes should be de�ned

29

2 Case Studies

for another domain, all the classes of π that Processes uses can be reused. It depends

on Artifacts and Correlations, as a Process contains the Artifacts superclass and Cor-

relationSubscriptions. As mentioned earlier, here is further modularization potential.

This metamodule further depends on Services, as a Process is a CallableElement.

This metamodule is transitively dependent on Core, Data, and Flows. We separated

Processes due to horizontal decomposition. We reversed a reference from Process to

Collaboration, as Collaboration builds on the Process concept but not vice versa.

FlowElementsContainer from Flows is a superclass of Process. The FlowEle-

mentsContainer had a containment to the LaneSet class of Processes. To decouple

Flows from Processes, we pushed down the containment to the Process class. This

was possible, as the containment is not used in the other subclasses of FlowEle-

mentsContainer (Choreography and SubChoreography) as stated in the standard.

Having this containment at this point in the inheritance hierarchy was not only a

layer violation, but actually the unused feature of superclass smell.

Collaborations Collaborations are used to express the interaction between Processes. Thus,

the Collaboration class references the Process class. Collaborations has transitive

dependencies to Core, Services, Correlations, Messaging and Artifacts. We created

this metamodule in the initial horizontal decomposition. Further, we remove a

redundant reference from Collaboration to Choreography. This reference was used

to keep track of Choreographies that exist between the Processes of a Collaboration.

As these Choreographies can also be found by iterating over all Choreographies and

checking which Processes are involved, this utility reference can be replaced by a

helper method. This decoupled Collaboration from Choreographies and broke the

dependency cylce.

Choreographies Choreographies are used to de�ne the interaction between Processes in

a sequential way. Choreographies depends on Collaborations, as a Choreography

is a subclass of Collaboration. Further, the the Participants of a Collaboration

are referenced by the activities of a Choreography. Choreographies has transitive

dependencies to Flows, Correlations, Messaging and Artifacts. We created this

metamodule in the initial horizontal decomposition.

Conversations Conversations are used to give an overview of which participants (Pools)

interact with each other. It is dependent on Collaborations because of several depen-

dencies. A Conversation expresses the interplay between several participants; a par-

ticipant is a class from Collaborations. A Conversation may refer to Collaborations

between participants. Conversations is transitively dependent on Core, Correlations,

and Messaging. We created Conversations in the scope of the big horizontal split.

Instances of Conversation classi�ers were originally contained in Collaborations.

To decouple Collaborations from Conversations, we used dependency inversion and

created ConversationContainer as a container for all conversation speci�c �rst-class

concepts.

AuditingAndMonitoring BPMN2 does not de�ne abstractions for the modeling of auditing

and monitoring information. This metamodule encapsulates one speci�c extension

30

2.4 BPMN2

point for each of these two concepts. It is part of ∆, as Auditing and Monitoring are

business process concepts. It depends on Flows, as we created a common superclass

for Auditing and Monitoring classes there.

We extracted this metamodule into an extension, as Auditing and Monitoring are

seldomly used optional features. As already mentioned, we introduced the new su-

perclass FlowAnnotation in Flows, as a generic extension point for further extension

of Flow elements. We replaced containments to the Auditing and Monitoring classes

from Process and FlowElement by containments to FlowAnnotation. This decoupled

Processes and Flows from AuditingAndMonitoring.

It would have also been possible to simply make Auditing and Monitoring inherit

from RootClass. This would have reduced the complexity. However, this would also

clutter the RootClass containment in De�nitions.

Technically, these two classes are even redundant. Their purpose can also be ful�lled

by using the extension mechanism that is de�ned in Externals. As the existence

of Auditing and Monitoring does not violate the reference structure, we did factor

them out instead of removing them, as this would have skewed the internal validity

of the evaluation.

HumanInteraction HumanInteraction provides serveral types of Tasks that are performed

by humans. It is therefore dependent on Activities, as the Task and GlobalTask

classes are used as superclasses. HumanInteraction is transitively dependent on

Core. We created this metamodule in the scope of the initial horizontal split. It was

also horizontally split from the Resources.Human metamodule to separate resource

and task speci�c concepts.

FeatureModel Figure 2.13 shows the feature model of mBPMN2. All relations are required

relations. Therefore, we have omitted the explicit required labels. As the mBPMN2 occupies

only the π and ∆ layer, the feature diagram consists only of the ∆ layer. The non-abstract

metamodules of the π layer resulted in ∆ features.

Extensions and View Types are grouping features and are therefore mandatory. Pro-

cesses, Choreographies, Conversations and Collaborations are view types. Resources and

Human are no view types but extensions.

For the sake of clarity in the diagram, we do not show the feature model together with

the metamodule diagram. The two grouping features Extensions and View Types do not

have implementing metamodules. Neither has the root feature. The remaining feature

nodes represent language features, are implemented by exactly one metamodule and are

named like this feature.

Compared with the module diagram (see Figure 2.12), the number of features is less

than the number of metamodules. This is the case, as many metamodules are abstract and

many other metamodules are strongly coupled to them. The metamodules Core, Services,

Correlations, Artifacts, Flows, Data, and Messaging are abstract and therefore do not

implement language features. As mentioned in Section 2.4, by using dependency inversion,

some of these metamodules could be turned into extensions (e.g., artifacts and messaging).

This would result in further feature nodes in the feature model.

31

2 Case Studies

Expres-
sions

Processes

Collabo-
ration

Groups

Externals

Extensions

mBPMN2

Conver-
sations

View
Types

Choreogra
-phies

Auditing and
Monitoring

Gateways EventsActivities

Looping

Subpro-
cess

Resources

Human

Human
Expressions
for Events

Δ

Figure 2.13: mBPMN2 Feature Model

32

3 Evaluation Tool

As the evaluation tool is a very special purpose tool, there is no update site for comfortable

installation. The evaluation tool and its dependencies have to be installed manually.

An advantage of the manual installation is the explicit control over the versions of the

dependencies of the evaluation tool. This enables a more exact reproducibility of the

evaluation setup.

Eclipse The evaluation tool and its dependencies are Eclipse plugins. We developed and

used them with Eclipse Neon and Oxygen (4.7.2). We highly suggest using the

Modeling Tools Package of Eclipse, as it provides many dependencies like the EMF.

AET All AET plugins have to be imported. These should be obtained from our fork
1
.

Dependencies To get AET to compile, several plugins are required. The Generator Com-

position (GEKO) Framework has to be installed
2
. All Kieler Lightweight Diagrams

have to be installed
3

(Ptolemy is not needed). The Xcore SDK and m2e (Maven

Eclipse integration) have to be installed via the Eclipse releases update site. If any

Maven errors occur, Tycho connectors have to be installed. Import all AET plugins.

Evaluation Tool All plugin projects have to be imported from the git repository
4
.

Runtime Instance To enable the evaluation tool to read model �les, the respective plugins

also have to be imported that carry the metamodel and the model code. Finally, an

inner eclipse instance can be started. Within this instance, the evaluation tool can

be used.

1https://github.com/MishaStrittmatter/architecture-evaluation-tool
2http://build.se.informatik.uni-kiel.de/eus/geco/snapshot
3http://rtsys.informatik.uni-kiel.de/~kieler/updatesite/release_pragmatics_2016-07/
4https://github.com/kit-sdq/Metamodel-Reference-Architecture-Validation

33

https://github.com/MishaStrittmatter/architecture-evaluation-tool
http://build.se.informatik.uni-kiel.de/eus/geco/snapshot
http://rtsys.informatik.uni-kiel.de/~kieler/updatesite/release_pragmatics_2016-07/
https://github.com/kit-sdq/Metamodel-Reference-Architecture-Validation

4 Evaluation Data

4.1 Evolution Scenarios

In this section, we will present all evolution scenarios for the four case study metamodels.

The scenarios are marked with their scenario type: extension
+

, historical modi�cation
†
,

potential modi�cation
×

and generic modi�cation
◦
. We will not explicitly mention the

a�ected classes of generic modi�cation scenarios, as they consist only of one a�ected class

after which the scenario is named. In some scenarios it may seem that a�ected classes

are missing. In these cases, one a�ected class is strongly coupled (e.g., by containment or

inheritance) to the seemingly missing a�ected classes, so that these classes will be included

in the relevant subgraph anyway.

4.1.1 Palladio Component Model

For the PCM, we collected two historical extension scenarios, elven historical modi�cation

scenarios and one potential evolution scenario. The extension scenarios for the PCM

are optional extensions, i.e., they do not implement any core features of Palladio and are

therefore not delivered with a standard installation of the PCM. The extension scenarios

for the PCM are IntBIIS [3] and KAMP [9] (not to be confused with KAMP4aPS, which

is a standalone DSML). We chose them because they are up-to-date and heterogeneous

concerning the parts of the PCM they depend on. Figure 4.1 shows the module structure

of the PCM and these two extensions.

The �rst extension is the Integrated Business IT Impact Simulation (IntBIIS) [3] for mod-

eling and analyzing the performance of business processes and information systems. It

consists of one metamodule, 16 classes and has 21 inter-module dependencies that target 11

classes of the PCM. It builds mostly on the user behavior de�ning parts of the PCM. Trans-

ferred to the mPCM, it depends on the metamodules Identi�er, Base, Variables, Repository,

and Usage (π and ∆). Its metamodel modules are located at the ∆, and Ω layers.

The second extension is theKarlsruhe ArchitectureMaintainability Prediction (KAMP) [9]

for modeling modi�cations and analyzing their propagation on the software architecture

level. It consists of three metamodel modules, 62 classes and has 42 inter-module depen-

dencies that target 12 classes of the PCM. It builds on the structural parts of the PCM

that belong to π and ∆. Transferred to the mPCM it depends on the metamodel modules

Identi�er, Base, Repository, Software Repository, Composition (π and ∆). Its metamodel

modules are located at the ∆, Ω, and Σ layers.

We collected 11 historical modi�cation scenarios for the PCM from its changelog
1
. We

started with the most recent changes and selected the ones that actually changed the

1https://sdqweb.ipd.kit.edu/wiki/PCM_Changelog

35

https://sdqweb.ipd.kit.edu/wiki/PCM_Changelog

4 Evaluation Data

Modular metamodel

PCM

pcm

units

stoex
probfunctionidentifier

Extensions

bppcm
component internal dependencies field of activity annotations modification marks

KAMPIntBIIS

Figure 4.1: Metamodules of PCM extensions

structure of the metamodel and not just the genmodel, version numbers or namespaces.

We skipped repeated modi�cations of the same classes. In addition, there was one proposed

modi�cation in the changelog, that we consider as a potential evolution scenario. Table 4.1

shows extension, historic and potential evolution scenarios and their respective a�ected

classes. In the following, we present the evolution scenarios of the PCM.

The AttributeTypes† scenario changed types of attributes of NamedElement, Repository,

ExternalCallAction, EntryLevelSystemCall from UML types to Ecore types. In the CallAc-
tion† modi�cation scenario, the superclass of CallAction was changed from AbstractAction

to Entity, as CallAction is not intended to be used as a stand-alone Action. The CallAction

class is located in the behavior metamodel module of ∆. In the ComLinkResType† scenario,

a supertype of CommunicationLinkResourceType (of the Resources metamodule) was

changed to ResourceType (Resources) instead of ProcessingResourceType (Resources). The

LocalRoleConstraint† scenario added OCL constraints, which check if the referenced roles

belong to the component in which the calls/action is contained, to the classes Infrastruc-

tureCall, ResourceCall, and ExternalCallAction. The MultiAllocation× scenario aims to

enable 1:n mapping of AssemblyContext to AllocationContext by changing the multiplicity

of the respective reference. In the ProcResSpec† scenario, an inheritance relation was intro-

duced from ProcessingResourceSpeci�cation (Resources) to the Identi�er class (Identi�er).

Repository† is a sub-scenario of the AttributeTypes scenario, where only the Repository

was changed. The ResourceDemandingBehaviour† scenario made the ResourceDemand-

ingBehaviour inherit from Identi�er. The ResSign† scenario changed the multiplicity of

the parameter Reference of the ResourceSignature class. The SchedulingPolicy† scenario

removed the SchedulingPolicy Enum and created SchedulingPolicy class. In the SyncPoint†

36

4.1 Evolution Scenarios

Scenario Name A�ected Classes
IntBIIS

+
ScenarioBehaviour, CollectionDataType, NamedEle-

ment, Identi�er, Entity, AbstractUserAction, PCM-

RandomVariable, DataType, OpenWorkload, Com-

positeDataType

KAMP
+

AssemblyConnector, DataType, RequiredRole, Pro-

videdRole, Entity, RepositoryComponent, Role, Op-

erationProvidedRole, Interface, Signature, Connec-

tor, Identi�er

AttributeTypes
†

NamedElement, Repository, ExternalCallAction, En-

tryLevelSystemCall

CallAction
†

CallAction, AbstractAction, Entity

ComLinkResType
†

CommunicationLinkResourceType, ResourceType,

ProcessingResourceType

LocalRoleConstraint
†

InfrastructureCall, ResourceCall, ExternalCallAction

MultiAllocation
×

AssemblyContext, AllocationContext

ProcResSpec
†

ProcessingResourceSpeci�cation, Identi�er

Repository
†

Repository

ResourceDemandingBehaviour
†

ResourceDemandingBehaviour, Identi�er

ResSign
†

ResourceSignature

SchedulingPolicy
†

SchedulingPolicy

SyncPoint
†

SynchronisationPoint, Entity

UniqueCallTargets
†

InfrastructureCall, ResourceCall, Parametric-

ResourceDemand

Table 4.1: Evolution Scenarios of the PCM

scenario, a reference was created between the CallAction and the SynchronizationPoint

classes. The UniqueCallTargets† scenario introduced OCL constraints, which check if the

requested target is unique within the same action, to the InfrastructureCall, ResourceCall,

and ParametricResourceDemand classes.

4.1.2 Smart Grid Topology

The Smart Grid Topology metamodel has been stable since its initial release, so we cannot

deduce any modi�cation scenarios from its version history. Following the scenario col-

lection procedure, which we presented earlier, results in eight evolution scenarios (four

potential and four generic). Table 4.2 shows the potential scenarios and their respective

a�ected classes.

By the AbstractType× scenario, an abstract superclass is set in place for all types in

the TypeRepo. The NewCommEntity× scenario introduces a new type of communicating

device by adding a subclass to CommunicatingEntity. In the NewPhysicalConn× scenario,

an alternative to PhysicalConnection is created. As PhysicalConnection does not have an

abstract superclass that would be eligible for inheritance, the root class SmartGridTopology

37

4 Evaluation Data

Scenario Name A�ected Classes
AbstractType

×
Repository, NamedIdenti�er, SmartMeterType, NetworkNode-

Type, ConnectionType

NewCommEntity
×

CommunicatingEntity

NewPhysicalConn
×

PhysicalConnection, SmartGridTopology

SmartMeter
×

SmartMeter

Table 4.2: Evolution Scenarios of Smart Grid Topology (except Generic Scenarios)

has to also be modi�ed. The SmartMeter× scenario modi�es the SmartMeter class by

removing the aggregation attribute.

The scenarios Cluster, InputEntityState, OutputEntityState, and ScenarioResult are

generic and therefore not shown in the table.

4.1.3 KAMP4aPS

For the KAMP4aPS case study, we collected 18 evolution scenarios (10 potential and eight

generic). Table 4.3 shows the potential scenarios and their respective a�ected classes.

Scenario Name A�ected Classes
DocuApplication

×
ComponentDocumentationFiles, InterfaceDocumentation-

Files, StructureDocumentationFiles, ModuleDocumentation-

Files

DocumentationFiles
×

DocumentationFiles

FoAARepo
×

FieldOfActivityAnnotationRepository, Entity

MechanicalAssembly
×

MechanicalAssembly

Panel
×

Panel, Component, ComponentRepository

ParentEntity
×

Module, Interface, Entity

Plant
×

Plant

Ramp
×

Ramp, Component, MechanicalAssembly

Structure
×

Structure, Plant

TurningTable
×

TurningTable, Component, Module

Table 4.3: Evolution Scenarios of KAMP4aPS (except Generic Scenarios)

The scenario DocuApplication× consists of removing the redundant container relation

from all DocumentationFiles classes. In the DocumentationFiles× scenario Documentation-

Files is changed from an interface to an abstract class. The FoAARepo× scenario makes

FieldOfActivityAnnotationRepository an Entity. In the MechanicalAssembly× scenario the

class MechanicalAssembly is moved into the MechanicalComponents package. The Panel×

scenario change the reference from the Panel class to Component to point to Componen-

tRepository. In the ParentEntity× scenario the redundant or even dead reference to Entity

is removed from Module and Interface. The Plant× scenario adds structural features to

Plan. For example, the redundant plantName attribute could be removed, as it is already

38

4.2 Models

provided by its superclass. The Ramp× scenario consists of moving the Ramp to the Com-

ponent package and changing the superclass from MechanicalAssembly to Component,

as the Ramp is not a mechanical element. In the Structure× scenario, the redundant con-

tainer relation is removed from the abstract Structure class. In the TurningTable× scenario

Component is added to the superclasses of the TurningTable class.

The following scenarios are generic. For reasons of space we had to shorten the names

of some scenarios. In these cases, we put the name of the a�ected class into parentheses:

Arm, ConveyorBelt, EtherCATSlave, HWPropagation (ChangePropagationDueToHard-

wareChange), ModifyMicroSwitch (ModifyMicroSwitchModule), ModifyModule, Monos-

tableCylinder, SeedMods (KAMP4aPSSeedModi�cations).

4.1.4 BPMN2

The version jump from BPMN to BPMN2 (see [4]) was too big to extract any �ne-grained

historic modi�cation scenarios. Also, the maturity and complexity of the metamodel made

it hard to identify any potential modi�cation scenarios. For the BPMN2 case study, we

collected 23 generic evolution scenarios. These are ResAssignExp (ResourceAssignmentEx-

pression), ComplBehDef (ComplexBehaviorDe�nition), CorrSubscription (CorrelationSub-

scription), GlobBRuleTask (GlobalBusinessRuleTask), GlobChoreoTask (GlobalChoreogra-

phyTask), ParticipantAssoc (ParticipantAssociation), AdHocSubProc (AdHocSubProcess),

ImplThrowEvent (ImplicitThrowEvent), InOutBinding (InputOutputBinding), ItemAwa-

reElem (ItemAwareElement), Artifact, Auditing, BoundaryEvent, CategoryValue, Formal-

Expression, InteractionNode, LaneSet, ParallelGateway, PotentialOwner, Relationship,

Rendering, RootElement, and SequenceFlow.

4.2 Models

To evaluate themmUtil for the PCM, Smart Grid Topology, and KAMP4aPS case studies,

we collected all models that were available to us (611 PCM models, 28 Smart Grid Topology

models, 30 KAMP4aPS models).

The number of BPMN2 models is much higher, because, in contrast to the other case

studies, there is a public online repository with BPMN2 models
2
. For BPMN2, we have

collected 103 models from internal sources and 3739 from the repository. From all these

models, 46 models were invalid, could not be loaded and were therefore ignored by our

analysis.

To remove potentially sensitive information from the models from internal sources, we

preprocessed these models in the following way. We replaced �le names by numbers. We

censored model element names, labels, text annotations and documentation properties.

This loss of information is irrelevant to the evaluation, as this information is not required.

Instead, it is relevant which classes are instantiated. The resulting models can be found in

the GitHub repository.

2https://github.com/camunda/bpmn-for-research/tree/1416f6f2104ae597eafa3097946140ebc2136a53

39

https://github.com/camunda/bpmn-for-research/tree/1416f6f2104ae597eafa3097946140ebc2136a53

Bibliography

[1] Axel Busch, Robert Heinrich, Jörg Henss, Martin Küster, Sebastian Lehrig, Misha

Strittmatter, Max Kramer, Erik Burger, and Ralf H. Reussner. “Architectural View-

points”. In: Modeling and Simulating Software Architectures – The Palladio Approach.

Ed. by Ralf H. Reussner, Ste�en Becker, Jens Happe, Robert Heinrich, Anne Koziolek,

Heiko Koziolek, Max Kramer, and Klaus Krogmann. Cambridge, MA: MIT Press,

Oct. 2016. Chap. 3, pp. 37–73. url: http://mitpress.mit.edu/books/modeling-

and-simulating-software-architectures.

[2] Robert Heinrich, Sandro Koch, Suhyun Cha, Kiana Busch, Ralf Reussner, and Birgit

Vogel-Heuser. “Architecture-based change impact analysis in cross-disciplinary

automated production systems”. In: Journal of Systems and Software 146 (2018),

pp. 167–185. issn: 0164-1212. doi: https://doi.org/10.1016/j.jss.2018.08.058.

url: http://www.sciencedirect.com/science/article/pii/S0164121218301717.

[3] Robert Heinrich, Philipp Merkle, Jörg Henss, and Barbara Paech. “Integrating busi-

ness process simulation and information system simulation for performance pre-

diction”. In: Software & Systems Modeling 16.1 (2017), pp. 257–277. issn: 1619-1366.

doi: 10.1007/s10270-015-0457-1. url: http://dx.doi.org/10.1007/s10270-015-

0457-1.

[4] Object Management Group (OMG). Business Process Model And Notation Speci�ca-
tion (BPMN) – Version 2.0.2. Jan. 2014. url: http://www.omg.org/spec/BPMN/2.0.2/.

[5] Wolfgang Raskob, Valentin Bertsch, Manuel Ruppert, Misha Strittmatter, Lucia

Happe, Brandon Broadnax, Stefan Wandler, and Evgenia Deines. “Security of

Electricity Supply in 2030”. In: Critical Infrastructure Protection and Resilience Eu-
rope (CIPRE). Den Haag, Netherlands, Mar. 2015. url: https://publikationen.

bibliothek.kit.edu/1000056115.

[6] Ralf H. Reussner. “Parametrisierte Verträge zur Protokolladaption bei Software-

Komponenten”. PhD. Thesis. Department of Informatics, University of Karlsruhe,

2001.

[7] Ralf H. Reussner, Ste�en Becker, Jens Happe, Robert Heinrich, Anne Koziolek, Heiko

Koziolek, Max Kramer, and Klaus Krogmann. Modeling and Simulating Software
Architectures – The Palladio Approach. Cambridge, MA: MIT Press, Oct. 2016. 408 pp.

isbn: 9780262034760. url: http://mitpress.mit.edu/books/modeling- and-

simulating-software-architectures.

[8] Ralf Reussner, Ste�en Becker, Erik Burger, Jens Happe, Michael Hauck, Anne Kozi-

olek, Heiko Koziolek, Klaus Krogmann, and Michael Kuperberg. The Palladio Com-
ponent Model. Tech. rep. Karlsruhe: KIT, Fakultät für Informatik, 2011. url: http:

//digbib.ubka.uni-karlsruhe.de/volltexte/1000022503.

41

http://mitpress.mit.edu/books/modeling-and-simulating-software-architectures
http://mitpress.mit.edu/books/modeling-and-simulating-software-architectures
https://doi.org/https://doi.org/10.1016/j.jss.2018.08.058
http://www.sciencedirect.com/science/article/pii/S0164121218301717
https://doi.org/10.1007/s10270-015-0457-1
http://dx.doi.org/10.1007/s10270-015-0457-1
http://dx.doi.org/10.1007/s10270-015-0457-1
http://www.omg.org/spec/BPMN/2.0.2/
https://publikationen.bibliothek.kit.edu/1000056115
https://publikationen.bibliothek.kit.edu/1000056115
http://mitpress.mit.edu/books/modeling-and-simulating-software-architectures
http://mitpress.mit.edu/books/modeling-and-simulating-software-architectures
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000022503
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000022503

Bibliography

[9] Kiana Rostami, Johannes Stammel, Robert Heinrich, and Ralf Reussner. “Architec-

ture-based Assessment and Planning of Change Requests”. In: Proceedings of the 11th
International ACM SIGSOFT Conference on Quality of Software Architectures. QoSA

’15. Montreal, QC, Canada: ACM, 2015, pp. 21–30. isbn: 978-1-4503-3470-9. url:

http://dl.acm.org/citation.cfm?id=2737198.

[10] Misha Strittmatter and Michael Langhammer. “Identifying Semantically Cohesive

Modules within the Palladio Meta-Model”. In: Proceedings of the Symposium on Soft-
ware Performance: Joint Descartes/Kieker/Palladio Days. Ed. by Ste�en Becker, Wil-

helm Hasselbring, André van Hoorn, Samuel Kounev, and Ralf Reussner. Stuttgart,

Germany: Universitätsbibliothek Stuttgart, Nov. 2014, pp. 160–176.

42

http://dl.acm.org/citation.cfm?id=2737198

	2018,11_Titelbl.pdf
	TR_RefArch_Suppl.pdf
	Introduction
	Case Studies
	Palladio Component Model
	Smart Grid Topology
	KAMP4aPS
	BPMN2

	Evaluation Tool
	Evaluation Data
	Evolution Scenarios
	Palladio Component Model
	Smart Grid Topology
	KAMP4aPS
	BPMN2

	Models

