
Machine Learning in Credit Risk Management: An
Empirical Analysis for Recovery Rates

Zur Erlangung des akademischen Grades eines

Doktors der Wirtschaftswissenschaften

(Dr. rer. pol.)

von der Fakultät für Wirtschaftswissenschaften

des Karlsruher Instituts für Technologie

genehmigte

DISSERTATION

von

M. Sc. Konstantin Heidenreich

Tag der mündlichen Prüfung: 18.12.2018
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Chapter 1

Introduction

In previous credit risk analyses, for example in a study by Virolainen (2004), recov-

ery rates have generally been assumed to be constant. However, the variation in the

recovery rates during the Great Financial Crisis of 2007 and 2008 has shown that

this assumption of a constant recovery rate is unrealistic. In the aftermath of the

2007/2008 financial crisis financial regulation has been enhanced by the implementa-

tion of the Basel accords.

The Basel II accord (Basel Committee on Banking Supervision, 2006) allows for

three different approaches in terms of calculating the credit risk exposures: (1) a stan-

dardized approach using the credit ratings assigned by credit rating agencies to com-

pute a risk-weighted asset basis for determination of the required minimum capital,

(2) a foundation internal ratings-based approach that allows that allows for the use

of internal estimates of the probability of default or (3) an advanced internal ratings-

based approach that uses internal estimates for the three risk parameters that relate to

credit risk exposure. Financial institutions using the advanced internal ratings-based

approach need to develop proprietary methods for estimating the key risk parameters

which include loss-given-default, the exposure at default and the probability of default.

Among the key elements of the Basel regulations are more advanced capital require-

ments for financial institutions. As outlined by Nazemi and Heidenreich (2017), the

required equity capital resulting from the determination of the capital requirements

is expensive for financial institutions to hold. Thus, more precise estimates of the

credit risk parameters can yield a significant economic value for financial institutions.

Further, more accurate recovery rate predictions are needed not only for calculating



regulatory capital requirements but also for estimating economic capital requirements

and would furthermore enable a more accurate pricing of financial instruments for trad-

ing and investment purposes.

While much attention has been paid to the probability of default in the literature,

the recovery rates have thus far been less well examined. Thus, the focus of this dis-

sertation is placed on the estimation of the recovery rates of U.S. corporate bonds,

estimates that would allow financial institutions and regulators to gain insights into

and to understand the modeling of recovery rates.

Altman and Kishore (1996) have stated that the industries with the highest av-

erage recovery rates are the public utilities and the chemical sectors. Furthermore,

they report that the size of the default issue, the time between issue and the default

date, and the original bond rating do not have a significant effect on recovery rates.

Altman et al. (2005) demonstrate a close relationship between the default rates and

the recovery rates, with Acharya et al. (2007) presenting evidence that defaulted firms

exhibit significantly lower recovery rates if the related industry is in distress. Further,

they show that defaulted firms in distressed industries are more likely to be restruc-

tured than to be acquired or liquidated. In a study by Jankowitsch et al. (2014)

bonds in a formal legal bankruptcy procedure are shown to exhibit lower recovery

rates than the bonds of firms undergoing an out-of-court restructuring. In addition,

the same authors demonstrated that senior bonds have, on average, higher recovery

rates than subordinated debt. Moreover, they find that the average recovery rate ex-

hibits substantial variation over time. Altman and Kalotay (2014) condition mixtures

of Gaussian distributions on instrument characteristics, borrower characteristics and

credit conditions, an approach that generates forecasts which are more accurate than

parametric regression-based methods during out-of-time estimation.

Qi and Zhao (2011) report that non-parametric methods, such as regression trees

and neural networks, outperform parametric methods. In a comparative study by

Loterman et al. (2012), non-linear techniques, such as neural networks and support

vector machines, were shown to perform significantly better than traditional linear

techniques. Yao et al. (2015) apply support vector methods to the prediction of the

recovery rates of corporate bonds. They show that support vector methods outper-

form more traditional modeling techniques such as linear regression. Moreover, they
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further report that predictive accuracy is not increased by standard transformations

of the recovery rate such as beta-transformation or log-transformation. Tobback et al.

(2014) show that incorporating macroeconomic variables improves predictive perfor-

mance significantly using two data sets relating to home equity and corporate loans.

Kalotay and Altman (2017) emphasize the importance of accounting for time variation

in recovery rate prediction and that, in particular, they show that conditional Gaussian

mixture models yield improved recovery estimates. Further, they outlined how the best

instrument-level forecasts often miss the association between default probability and

recovery rates, making them less suitable at the portfolio level.

Inspired by the good performance of non-parametric methods, such as regression

trees and support vector methods, discussed in the literature, further research relat-

ing to the performance of these techniques would appear to be timely. In particular,

least-squares support vector regression, two further variants of least-squares support

vector regression, ε-insensitive support vector regression and regression trees will be ex-

amined. By comparing the various performance measures determined for each model,

further insights into a particular models suitability for recovery rate prediction can be

obtained. As the performance benchmark, a traditional linear regression model is used.

A comprehensive review of the recovery rate literature may also reveal insights into

related areas, such as the recovery rate modeling relating to other assets such as bank

loans or credit card debt and modeling of the probability of the default of corporate

bonds. Based on a review of the literature, relevant explanatory variables will be iden-

tified and data relating to defaulted corporate bonds will be collected, cleaned up and

matched to the corresponding variables. An exploratory analysis of the data set will

also be presented. Additionally, the resulting coefficients of the linear regression model

will be studied with respect to their economic interpretation and the methodology for

choosing appropriate hyperparameters, used in relating to the machine learning tech-

niques, will be outlined.

In a second step, the issue of whether incorporating information from a broad range

of macroeconomic variables has increased predictive power compared to the literature,

in which only a few macroeconomic variables have been taken into account, will be

investigated. Data reduction techniques, such as principal component analysis (PCA),

autoassociative neural networks, kernel PCA and sparse PCA will be studied in order to

3



extract the macroeconomic factors. Moreover, methods such as gradient boosting (for

ranking the macroeconomic variables) and the least absolute shrinkage and selection

operator (for selecting the macroeconomic variables) will be investigated. Techniques

such as stability selection will be applied to account for multicollinearity during the

selection of the macroeconomic variables.

Another research question relates to whether the predictive performance of the ma-

chine learning techniques used in the literature can be increased by fusing the outputs

from multiple models based on fuzzy rules. We create a fuzzy rule base with a differ-

ential evolution algorithm which is able to cope with complex data and which allows

us to avoid the difficulties associated with higher dimensionality. Regarding the de-

fuzzification, we compare the performance of the maximum formula, the maximum of

maxima formula, the mean formula and the mean of maxima formula, and examine

whether the performance of the fuzzy models improves through the addition of the

principal components of 104 macroeconomic variables. In addition, the performance

of our prediction techniques after normalizing the macroeconomic variables with the

Box-Cox transformation will be examined.

The usefulness of machine learning techniques for out-of-time prediction will be in-

vestigated. With the exception of Altman and Kalotay (2014) and Kalotay and Altman

(2017), most studies have compared the performance of different modeling techniques

during cross-validation or through testing on a random portion of the dataset out-of-

sample. For practical purposes however, predictive capacity out-of-time is essential, so

that the out-of-time performance of the machine learning techniques will be compared

to more traditional statistical techniques. Furthermore, to the best of our knowledge,

there is no study which examines the importance of the explanatory variables in a

high-dimensional analysis for recovery rate prediction. Therefore, the determination of

which groups of variables add a greater predictive power to our models will allow us to

generate insights into what the actual drivers of recovery rates are. Finally, due to the

regulatory requirements illustrated above, it is interesting to examine the behaviour of

the recovery rates during times of macroeconomic stress.

This thesis contributes to the existing literature on recovery rate prediction of cor-

porate bonds in several ways. In Chapter 2, we contribute to the credit risk literature

in four ways. Whilst in the literature, such as in the work of Jankowitsch et al. (2014),
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only a small set of macroeconomic variables is utilized, we include of a broad range

of macroeconomic variables in our multi-factor framework. We show that including

the principal components of the macroeconomic variables relating to a wide range of

categories, such as lending conditions, micro-level conditions, business cycle conditions,

stock market conditions and international competitiveness, improves the predictive per-

formance of our models. Using sparse principal component analysis instead of principal

component analysis, the predictive capacity of our models is further increased and the

principal components are more easily interpretable. On examining the relative impor-

tance of macroeconomic variables for recovery rate prediction with gradient boosting,

we find that the credit spread of corporate bonds, the yields offered on corporate bonds,

the annual return of the Russell 2000 and the number of unemployed, are the most in-

formative variables. Adding the 20 most important macroeconomic variables from our

ranking by relative importance (with gradient boosting), we improve the performance

of easy to interpret models such as the linear regression and regression tree models.

Three contributions to the literature are made in Chapter 3. We present the first

study that applies fuzzy decision fusion models to corporate bond recovery rate predic-

tion and show that adding the principal components from 104 macroeconomic variables

improves the predictive accuracy of our models. Further, we test the application of the

Box-Cox transformation as a potential means of increasing the predictive capacity of

our models and find that our fuzzy models outperform previously suggested techniques,

such as the three variants of least-squares support vector regression, regression trees

and linear regression approaches.

In Chapter 4 we make four contributions to the existing credit risk literature. We

use high-dimensional data and we compare techniques, such as the stability selection,

the SparseStep algorithm and the MC+ algorithm, for selecting the most important

macroeconomic variables. We take alternative independent variables, such as text-

based variables, into account for our analysis. In contrast to the literature, such as

discussed in the work of Kalotay and Altman (2017), we find that machine learning

techniques, such as least-squares support vector regression, random forest, regression

tree and a sparse Gaussian process approximation using power expectation propa-

gation, outperform more traditional techniques such as linear regression and inverse

Gaussian regression out-of-sample and in intertemporal analysis. We examine the per-

mutation importance of the following groups of independent variables in predicting

5



recovery rates: seniority variables, industry variables, bond characteristics, news-based

measures, financial conditions, monetary measures, corporate measures, business cycle

measures, stock market conditions, international competitiveness and micro-level con-

ditions.

The remainder of this dissertation is based on three independent research papers.

In Chapter 2, the first paper (Improving corporate bond recovery rate prediction using

multi-factor support vector regressions) is presented. Chapter 3 concerns the second

paper (Fuzzy decision fusion approach for loss-given-default modeling). The third pa-

per (Intertemporal defaulted bond recovery prediction via machine learning) is the

subject of Chapter 4. We conclude with a summary of our results and a discussion

relating to potential further research.
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Chapter 2

Improving corporate bond recovery

rate prediction using multi-factor

support vector regressions

This chapter is joint work with Dr. Abdolreza Nazemi1 and Prof. Frank J. Fabozzi2

published in 2018 as: Improving corporate bond recovery rate prediction using multi-

factor support vector regressions, European Journal of Operational Research, 271(2),

664-675. https://doi.org/10.1016/j.ejor.2018.05.024

2.1 Introduction

Extended regulation of the financial industry as set forth in the Basel accords has

focused on the imposition of stricter (i.e., higher) capital requirements. According to

Schuermann (2004), calculation of expected loss is the product of three measures: ex-

posure at default, the probability of default, and the loss given default. Though the

probability of default has been the main focus of practitioners and researchers for cal-

culating the minimum capital requirement, loss given default has been comparatively

less investigated. As a result of the Basel II accord, the importance of loss given de-

fault, however, has increased substantially for banks and other financial institutions.

According to Loterman et al. (2012) the impact of loss given default on the re-

quired minimum capital is linear within the required framework of Basel II. Improved

1 School of Economics and Business Engineering, Karlsruhe Institute of Technology
2 EDHEC Business School, Nice, France



prediction models facilitate the calculation of more reasonable capital requirements and

enable more precise valuations of defaulted bonds for trading purposes. Equivalently,

since one minus the loss given default is the recovery rate, the focus in this paper is on

the recovery rate.

Traditionally, linear regression has been applied to predict recovery rates. Alt-

man and Kishore (1996) document that average recovery rates from utility companies

and chemical companies are significantly higher than in other industries. Cantor and

Varma (2004) study the determinants of recovery rates and find out that seniority and

security are the two most important exploratory variables. Exploring the relationship

between recovery rates and aggregate default rates, Altman et al. (2005) conclude that

recovery rates of corporate bonds are related to default rates, seniority and collateral

levels. Acharya et al. (2007) investigate how the distress of the industry of a defaulted

firm affects the recovery rate. A beta regression model to predict recovery rates of

bank loans is suggested by Calabrese and Zenga (2010). Bastos (2010) reports that the

predictive accuracy for regression trees is higher than for parametric models. Rösch

and Scheule (2014) propose a joint estimation approach for probabilities of default

and recovery rates. Altman and Kalotay (2014) suggest an approach to model the

distribution of recovery rates based on mixtures of Gaussian distributions conditioned

on borrower characteristics, instrument characteristics and credit conditions. Their

method outperforms parametric regressions as well as regression trees.

According to Jankowitsch et al. (2014) the significance of calculating precise fore-

casts of loss given default has been increased by the variability and volume of defaults

during the financial crisis of 2007/2008. Imprecise forecasts might have been unde-

tected and might have born less risk as less default events occurred.

In the paper, we use various factors such as instrument-specific characteristics,

industry-specific variables, and macroeconomic variables to forecast recovery rates. Al-

though traditional regression analysis has been used in the literature to project recov-

ery rates, two studies suggest that alternative statistical models can improve forecasts.

Loterman et al. (2012) compare 24 techniques for the prediction of recovery rates of

various debt instruments such as mortgage loans, corporate loans, and personal loans.

They show a clear tendency that non-linear models such as artificial neural networks

and support vector machines have a higher predictive capacity than traditional linear

8



techniques. Furthermore, they conclude that the predictive power of two-stage models

– a combination of non-linear and linear models – is on par with the predictive capac-

ity of non-linear models while two-stage models are more easily interpretable due to

the linear part of the model. Yao et al. (2015) forecast recovery rates of corporate

bonds using support vector techniques. They report that applying three alterations of

a least-squares support vector regression (LS-SVR) significant outperformance versus

traditional modeling techniques such as fractional response regression or linear regres-

sion is observed. Further, they argue that LS-SVR outperforms compared to traditional

approaches when segmenting the bonds by their seniority.

Motivated by the findings of Loterman et al. (2012) and Yao et al. (2015), we use

support vector regression (SVR) models to determine if the forecasts of these models im-

prove the forecasts relative to traditional linear regression analysis. In contrast to linear

regression, SVR allows one to model non-linearities by employing a non-linear kernel

function. The independent variables are implicitly mapped from the low-dimensional

input space into a high-dimensional feature space via the kernel function. By doing

so, the kernel function needs not be calculated explicitly. After mapping to the high-

dimensional linear space, SVR can provide more accurate predicts. The four SVR

models used are an ε-insensitive SVR, a LS-SVR, and two modified LS-SVR methods

to account for heterogeneity within the seniority classes. The out-of-sample forecasts

from these four SVR models are then compared to assess whether these models can

outperform the forecasts obtained from traditional regression analysis.

In addition to the use of alternative models to the traditional regression analysis,

we use a more extensive set of macroeconomic variables to forecast recovery rates. Our

suggested recovery rate models for U.S. corporate bonds contribute to Yao et al. (2015)

in several ways. They utilize only a small set of macroeconomic variables whereas we

make use of a broad range of macroeconomic variables with applying multi-factor SVR.

We compare the predictive performance using different data reduction techniques for

the 104 macroeconomic variables such as principal component analysis (PCA), SPCA,

NLPCA, KPCA and gradient boosting. Further, we investigate the relative importance

of these macroeconomic variables with gradient boosting to generate a ranking of the

macroeconomic variables.

Tobback et al. (2014) highlight the relevance of macroeconomic independent vari-
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ables when forecasting recovery rates of corporate loans and home equity loans. They

apply a linear regression, a regression tree, SVR and a two-stage model merging the

linear model with SVR. Including 11 macroeconomic variables improves the perfor-

mance of these models significantly. Moreover, Duffie et al. (2009) and Koopman et al.

(2011) argue that macroeconomic influences matter substantially for forecasting the

probability of default. Specifically, they show the influence of a latent and dynamic

frailty factor. Koopman et al. (2011) include the first 10 principal components of more

than 100 macroeconomic variables in their analysis to ensure that the fraily factors

represents only truly unobservable effects.

Numerous studies have considered a limited number of financial and macroeco-

nomic variables for the prediction of recovery rates. Most recovery rate research has

applied statistical or machine learning models, which cannot handle a large number

of predictors. For example, we need to iterate a stepwise-regression for 2104−1 times

for selecting the best set of macroeconomic variables, which is empirically impossible.

Because data-reduction techniques overcome this limitation we introduce four types of

principal component analysis techniques and the gradient boosting model to the recov-

ery rate modeling research. We merge 104 macroeconomic variables with bond-specific

data. We apply PCA to 104 macroeconomic variables capturing 96% of the dataset’s

variance in our analysis as variables in our models. Alternatively, we apply sparse PCA,

nonlinear PCA from an autoassociate neural network, and kernel PCA to obtain their

principal components. To the best of our knowledge, this is the first study comparing

different PCA techniques in credit risk analysis. In addition, we apply gradient boost-

ing to determine the relative importance of the macroeconomic variables in our analysis

and to enable a ranking of the 104 macroeconomic variables for recovery rate prediction.

We study the performance of machine learning techniques such as ε-insensitive SVR,

regression tree and three variants of LS-SVR in comparison to a more traditional lin-

ear regression approach. In particular, we include information from an extensive set

of macroeconomic variables in our analysis. Beyond that, we compare data reduction

techniques such as PCA, SPCA, NLPCA, KPCA, and gradient boosting to achieve

dimensionality reduction of the 104 macroeconomic variables. We have organized the

paper as followed. An outline of our multi-factor framework and the variables selected

is provided in the next section, Section 2.2.2. We also present the data-reduction tech-

niques we apply to the 104 macroeconomic variables.

10



We give a description of our choices of modeling techniques which are linear regres-

sion, regression tree and SVR in Section 2.3. In Section 2.4, we present an exploratory

analysis of our dataset which consists of 775 corporate bonds with default events be-

tween 2002 and 2012. In the middle part of Section 2.4 we demonstrate the increased

predictive accuracy of LS-SVR while comparing the out-of-sample performance of the

cross-validated models. Specifically, the addition of the principal components of 104

macroeconomic variables increases the models’ performance. We rank the macroe-

conomic variables applying gradient boosting and discuss the predictive performance

when adding the highest ranked macroeconomic variables in the final part of Section

2.4. We conclude our paper in Section 2.5.

2.2 Multi-factor framework

In the following section we give a description of our multi-factor framework, its indepen-

dent variables and its expansion by adding the principal components of macroeconomic

variables.

2.2.1 Selecting factors for modeling

In our framework the recovery rate rij for bond i of firm j is defined as follows:

rij = α + βcXci + βmXmi + βindXindj + εij (2.1)

where

Xci denotes a vector of instrument characteristics of bond i;

Xindj is a vector with the industry characteristics of the defaulted firm j, and;

Xmi is a vector of the macroeconomic variables for the year preceding the default

of the i-th observation.

The instrument characteristic included in the model are the bond’s seniority in the

capital structure, the amount of the bond’s trading volume, and a dummy variable

indicating defaults under Chapter 11 versus bonds that have been assigned a rating
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that is the equivalent of a default. For industry characteristics, we include a dummy

variable for the utility industry and two variables measuring whether the industry is

in distress. The first industry distress dummy variable is based on whether the perfor-

mance of the industry index was worse than -30% in the year preceding the default.

The second industry distress dummy variable is based on whether the sales growth in

the respective industry in the year preceding the default was negative. The macroeco-

nomic variables include (1) the number of defaulted bonds in the respective year, (2)

the value of a high-yield index, (3) the change in gross domestic product (GDP), (4)

the unemployment rate, and (5) the federal funds rate. The macroeconomic variables

are observed in the year preceding the default

The selection of variables is based on a thorough overview of the literature on the

determinants of recovery rates. The study by Altman and Kishore (1996) is one of

several studies that argue that recovery rates vary across industries. So, we include

industry dummies for the utility industry, the financial industry, the communications

industry, the cyclical consumer goods industry and the industrial industry. Among

others Cantor and Varma (2004) report an increased predictive capacity by taking the

seniority class of the debt instrument into account. If a default event occurs the claims

of the most senior bondholders are the first to be paid off while the claims of the ju-

nior/subordinated bondholders are the last be paid off. (Although studies find that the

absolute priority principle does not hold in the case of a Chapter 11 bankruptcy, senior

creditors do generally fair better than subordinated creditors.) According to Acharya

et al. (2007) both the performance of an industry index and the sales growth of the in-

dustry explain part of the variation in recovery rates. Moreover, Acharya et al. (2007)

have shown how industry distress dummy variables based on these two independent

variables have a statistically significant effect on the recovery rate. For example, an

industry that is in structural decline because of its reliance on an outdated technol-

ogy might experience negative impact on the recovery rates of the firm in that industry.

We use a variable found to be significant by Altman et al. (2005) as a proxy for the

volume of defaulted bonds: the number of defaulted bonds in the default year. The

current level of a high yield index is used as a proxy for the aggregated market default

rate, a significant independent variable reported by Cantor and Varma (2004). The

liquidity of the bond is a significant variable according to Jankowitsch et al. (2014); so

as a proxy for liquidity we include the aggregated trade volume of the defaulted bonds
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Figure 2.1: The steps for predicting the recovery rates

in the 30 days after the default. This corresponds to a liquidity premium.

2.2.2 Extension of the framework

As shown in Figure 2.1, we extended the basic framework of Model (1) by including the

principal components of 104 macroeconomic variables from a broad range of categories

such as stock market conditions, credit market conditions, international competitive-

ness, business cycle conditions, and micro-level conditions. The 104 macroeconomic

variables shown in Table 2.1 have been observed in the year preceding the respective

default. These principal components substitute the macroeconomic variables included

in Model (2). In using that many macroeconomic variables we differ from other stud-

ies using only a small number of macroeconomic variables for LGD modeling such as

Tobback et al. (2014).

2.2.2.1 Principal component analysis

For implementation purposes we use the dimensionality reduction toolbox from Van

der Maaten et al. (2007). The macroeconomic variables that are used to generate

the principal components are denoted as Xpcai with dimension 104× 1. They can be
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Table 2.1: Macroeconomic variables for principal components analysis

Financial Conditions

Total real estate loans Household obligations/income

Federal debt of non-fin. industry Total loans and leases, all banks

Total commercial loans Non-performing loans ratio

Total consumer credit outst. Non-performing loans ratio small banks

Commercial & industrial loans Net loan losses

Excess reserves of dep. institutions Total net loan charge-offs

Total borrowings from fed reserve Return on bank equity

Bank loans and investments Loan loss reserves

Household debt service payments Non-perf. commercial loans

Business cycle indicators

GDP growth Civilian employment

ISM manufacturing index Employment/population-ratio

Industr. production index Unemployed, more than 15 weeks

Uni Michigan consumer sentiment New orders: durable goods

Private fixed investments Final sales of dom. product

Real disposable personal income New orders: capital goods

National income Inventory/sales-ratio

Personal Income Capacity util. manufacturing

Manuf. industry output Change in private inventories

Consumption expenditure Capacity util. total industry

Manuf. industry production Inventories: total business

Expenditure durable goods Light weight vehicle sales

Government expenditure Non-farm housing starts

Gross private domestic investment Housing starts

Unemployment rate New houses sold

Total no unemployed New building permits

Weekly hours worked Final sales to domestic buyers

Stock Market Indicators

S&P 500 Russell 2000

S&P 500 Vol Russell 2000 Vol

Dow Jones industrial average Vol S&P small cap index

Nasdaq 100 S&P small cap index Vol

Nasdaq 100 Vol

International Competitiveness

Trade weighted USD (Dollar Index) Real exports goods, services

FX index major trading partners Balance on merchandise trade

Current account balance Real imports goods & services

Micro-level factors

Unit labor cost: manufacturing Effective federal funds rate

Unit labor cost: nonfarm business Corporate yield spread (baa seasoned bonds)

Total wages & salaries AAA corporate bond yield

Non-durable manufacturing wages 30 year mortgage rate

Management salaries BAA corporate bond yield

Durable manufacturing wages Volume defaulted bonds

Employment cost index: benefits PPI all commodities

Employee compensation index PPI industrial commodities

Employment cost index: wages & salaries PPI interm. energy goods

1 month commercial paper rate PPI crude energy materials

Treasury bond yield, 10 years PPI finished goods

3 month commercial paper rate PPI intermediate materials

Term structure spread

Monetary measures

M2 money stock Personal savings

CPI: all items less food Personal savings rate

Uni Michigan infl. expectations Gross saving

CPI: energy index GDP deflator, implicit

Corporate measures

Corp. profits Net corporate dividends

After tax earnings Corporate net cash flow
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presented in the following structure:

Xpcai = ΛFPCAi + ζi, i = 1, ..., N. (2.2)

We estimate the vector of factors FPCAi by using principal components analysis

(PCA) where Λ are the loadings.

Following Koopman et al. (2011) the factors FPCAi from the observed macroeco-

nomic variables are estimated by minimizing the objective function:

min
FPCA,Λ

V (FPCA,Λ) = (N)−1

N∑
i=1

(Xpcai − ΛFPCAi)
′(Xpcai − ΛFPCAi) (2.3)

We have standardized and normalized the macroeconomic variables to obtain an

unconditional unit variance for n = 1, ..., N . The observed macroeconomic variables are

denoted by a 104× 1 vectorXpcai = (xpcai1, ..., xpcai104)′. Using SX′X = N−1
∑

iXpcaiX
′
pcai

as the sample covariance, equation (2.3) can be transformed to a maximization problem

of the following form:

max
Λ

tr(Λ′SX′XΛ)

s.t. Λ′Λ = IR

(2.4)

With Λ̂ as normalized eigenvectors for the R largest eigenvalues of SX′X the principal

components estimator results as:

ˆFPCAi = X ′pcaiΛ̂ (2.5)

The independent variables ˆFPCAi that are found to capture more than 96% of

the variance of the observed macroeconomic variables, are then used as inputs to our

models in the empirical analysis. We replaced the five single macroeconomic variables

with the principal components of 104 macroeconomic variables. So, by including the

principal components of the 104 macroeconomic factors our framework is extended to:

rij = α + βcXci + βindXindj + βpi ˆFPCAi + εij (2.6)
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2.2.2.2 Sparse principal component analysis

Having 104 macroeconomic variables with non-zero factor loading in PCA makes it

difficult to interpret the economic meaning of each PC. Fortunately, elastic net regu-

larization of PCA, as outlined by Zou et al. (2006), produces a more robust estimate of

factors loadings. By applying an L1 and an L2 penalty to the coefficients of the PCA

regression formulation, sparse principal components can be estimated. Therefore, we

use SPCA as presented by Zou et al. (2006) to identify the influence of our 104 macroe-

conomic variables. We implement SPCA using the SpaSM toolbox by Sjöstrand et al.

(2012). Effectively, we have a regression-like framework of PCA with an elastic net

regularization:

{Λ̂, B̂} = arg min
Λ,B
‖X −XBΛ′‖2 + δ‖B‖2 + λ‖B‖1,

s.t. Λ′Λ = IR

(2.7)

where λ denotes the Lasso regularization coefficient and δ denotes the Ridge regular-

ization coefficient. B denotes the elastic net regularization loadings and Xpcai denotes

the 104× 1 vector Xpcai = (xpcai1, ..., xpcai104)′ of macroeconomic variables.

Denoting Λ̂ as normalized eigenvectors for the R largest eigenvalues from the PCA

solution in 2.1.2, we calculate the estimated value of the independent variables, denoted

by ˆSPCA, as follows:

ˆSPCAi = X ′pcaiB̂
′Λ̂ (2.8)

2.2.2.3 Nonlinear principal component analysis

To account for nonlinear relationships between the 104 macroeconomic variables we

also investigate the performance of nonlinear principal component analysis (NLPCA).

One class of NLPCA that has proved successful is autoassociative neural networks as

introduced by Kramer et al. (1991). Building on this work, Hsieh et al. (2007) intro-

duce an inconsistency index as information criterion to avoid overfitting in the choice

of hyperparameters.

An autoassociative neural network has one input layer, three hidden layers, and

one output layer. Hence, the number of hidden neurons in the middle hidden layer

is restricted to the number of bottleneck neurons, which are effectively the principal

components. The mean squared error (MSE) between the input layer and the output

layer is minimized. In the process, the nonlinear principal components in the middle
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hidden layer, that is the bottleneck layer, are calculated.

We implement the autoassociative neural network for NLPCA with the neumatsa

toolbox by Hsieh et al. (2006). To avoid overfitting we use the inconsistency index

as described by Hsieh et al. (2007) as the information criterion for cross validation to

determine the weight decay and the number of hidden neurons in the first hidden layer.

2.2.2.4 Kernel principal component analysis

Another nonlinear dimensionality reduction technique is kernel principal component

analysis (KPCA) as introduced by Schölkopf et al. (1997). An advantage of KPCA in

comparison to autoassociative neural networks and other methods for nonlinear PCA

is that no nonlinear optimization is necessary for KPCA. So, there is no danger of

finding a solution that is a local minimum because KPCA constitutes an eigenvalue

problem as in a standard PCA.

According to Schölkopf et al. (1997), KPCA uses a nonlinear transformation φ(X)

from the original feature space to a higher-dimensional feature space. Then, standard

PCA is performed in the higher-dimensional feature space. The calculation does not

require one to explicitly calculate the mapping φ(X) but only requires one to calculate

the dot product φ(X)φ(X)T . Consequently, any kernel function such as polynomial

kernels, radial basis functions, and sigmoid kernels can be used for the implicit map-

ping. We process our data using the KPCA toolbox from Wang (2012). We choose the

radial basis function as kernel.

2.3 Corporate bond recovery rate modeling

In this section we present the models we use for the empirical analysis reported in

Section 2.4. In what follows, we let X denote the matrix of features that is composed

of the vector of instrument characteristics Xci, the vector of industry characteristics of

the defaulted firm Xindj, and either the vector of macroeconomic variables Xmi (Model

(2)) or the vector of principal components of a large set of macroeconomic variables

(Models (3)-(6)).
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2.3.1 Support vector regression

As shown by Bellotti and Crook (2009) and Danenas and Garsva (2009), support vector

machines are a helpful tool in the domain of credit risk. To the best of our knowledge

only one study, Yao et al. (2015), has attempted to predict corporate bond recovery

rates using support vector techniques. As outlined by Chalup and Mitschele (2008),

support vector techniques are promising techniques for finance applications because of

their ability to deal with non-linear input data. So, LS-SVR as a ”kernelized” version

of the traditional linear regression might yield a higher predictive capacity.

As shown by Aizerman et al. (1964), Mercer’s theorem allows a computationally

efficient calculation of a kernelized problem. To make use of Mercer’s Theorem an

appropriate kernel function has to be chosen. As stated by Chalup and Mitschele

(2008), the only prerequisites a kernel has to fulfill are to be positive semi-definite and

to represent a similarity measure between pairs of input samples. More specifically, we

use the Radial Basis Function kernel in the following form:

K(Xi, Xj) = exp

(
−||Xi −Xj||2

2σ2

)
(2.9)

2.3.1.1 Least-squares support vector regression

We use three different LS-SVR models. The first one is that proposed by Suykens and

Vandewalle (1999). w is the weight vector of the independent variables while b is the

intercept. The regularization parameter C scales the error terms u2
i and φ(X) denotes

the kernel function for the feature mapping. Using a quadratic loss function, the model

is defined as:

min J(w, b, ui) =
1

2
||w||2 +

C

2

N∑
i=1

u2
i

s.t. ri = wTφ(Xi) + b+ ui, i = 1, ..., N,

(2.10)

A solution to the problem can be found by solving the dual form of the Lagrangian

function with αi as the Lagrangian multiplier of the following form:

L(w, b, ui, αi) = J(w, ui)−
N∑
i

αi(w
Tφ(Xi) + b+ ui − ri) (2.11)
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A solution of the dual form based on the Karush-Kuhn-Tucker condition can be

obtained with the following linear equation system.(
0 eT

e K̄

)
∗

(
b

α

)
=

(
0

r

)
(2.12)

where e = (1, ...., 1)T denotes a N×1 unit vector, r = (r1, ...., rN)T is the target vector,

α = (α1, ...., αN)T constitutes the Lagrangian multipliers and K̄ = K + 1
C

I with the

identity matrix I and the dimension N ×N . So, the final estimated regression model

is

f(X) =
∑
i

α∗iK(Xi, X) + b∗ (2.13)

2.3.1.2 Least-squares support vector regression with different intercepts

for seniority classes

We enhanced the LS-SVR model to hopefully improve its predictive accuracy in two

ways based on Yao et al. (2015). First, we allow for different intercepts bs for S different

seniority classes. So we assume there is some kind of homogeneity within the seniority

classes that can be represented by the different intercepts.

min J(w, bs, usj) =
1

2
||w||2 +

1

2

S∑
s=1

b2
s +

C

2

S∑
s=1

ns∑
j=1

u2
sj

s.t. ri = wTφ(Xsj) + bs + usj, j = 1, ..., ns, s = 1, ..., S

(2.14)

The corresponding Lagrangian function results in the following formula.

L(w, bs, usj, αsj) = J(w, bs, usj)−
S∑
s=1

ns∑
j=1

αsj(w
Tφ(Xsj) + bs + usj − rsj) (2.15)

where W represents a block diagonal matrix. The dual form emerges in the following

optimization problem

min
1

2
αTKα +

1

2
αTWα +

1

2C
αTα− yTα (2.16)
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2.3.1.3 Semiparametric least-squares support vector regression

We also construct a model which assumes the impact from the different seniority classes

is linear. The dummy variables for the seniority classes are zsj and β is is a vector of

fixed effects for the seniority of the respective group.

min J(w, b, ui) =
1

2
||w||2 +

1

2
βTβ +

1

2
b2 +

C

2

S∑
s=1

nk∑
j=1

u2
sj

s.t. ri = wTφ(Xi) + βT zsj + b+ usj, j = 1, ..., ns, s = 1, ..., S

(2.17)

For this case the Lagrangian function is obtained as

L(w, b, usj, αsj) = J(w, b, usj)−
S∑
s=1

ns∑
j=1

αsj(w
Tφ(Xsj) + b+ βT zsj + usj − rsj) (2.18)

Accordingly, with Zij = zTsjzsj and V as a N × N -matrix of ones, the dual form

gives

min
1

2
αTKα +

1

2
αTZα +

1

2
αTVα +

1

2C
αTα− yTα (2.19)

2.3.1.4 ε-insensitive support vector regression

Using an ε-insensitive loss function the problem is defined in the following form:

min
w,b,ui,u∗i

1

2
wTw + C

N∑
i=1

ui + C

N∑
i=1

u∗i

s.t. wTφ(xi) + b− ri ≤ ε+ ui,

ri −wTφ(xi)− b ≤ ε+ u∗i ,

ui, u
∗
i ≥ 0, i = 1, ..., N.

(2.20)

where w are the weights of ε-SVR, b is the bias, yi are the targets, C are the costs,

N is the number of observations, ui and u∗i are the errors, and ε is the threshold for

tolerated errors.
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2.3.2 Regression tree

While SVR has been found by Yao et al. (2015) to exhibit good predictive performance,

its explicative capacity is generally low. One class of machine learning methods that

has been found to deliver very good predictive performance as well as an easy-to-

understand model is the regression tree. Both Qi and Zhao (2011) and Tobback et

al. (2014) have used regression trees successfully for LGD modeling. Two other ad-

vantages of the regression tree are that it can be used to model non-linearity and it

exhibits a relatively robust behavior against outliers. For these reasons, we apply the

classification and regression technique (CART) algorithm as defined by Breiman et al.

(1984) for the creation of the regression tree model.

2.3.3 Linear regression as benchmark

To investigate whether support vector techniques provide superior predictive ability

compared to more traditional approaches, we include a linear regression model as

benchmark model. Therefore, we include the following linear regression model for the

purpose of comparability as a basic benchmark for the SVR models we propose in this

paper:

rij =α + βc(bond characteristics)ci

+ν(industry distress variables)indj

+ζ(Principal Components of many macroeconomic variables)i + εij,

εij ∼ N(0, σ2)

(2.21)

2.4 Empirical analysis of recovery rates’ prediction

In the following, we explain the dataset that we use in this study and describe the

results of our empirical analysis.

2.4.1 Dataset

The initial dataset consists of 794 bonds where, during the period 2002-2012, the is-

suer filed for a Chapter 11 bankruptcy petition or was assigned a rating by Standard

& Poor’s of ”D” or ”SD”. This rating agency assigns a rating of ”D” if the obligor is

in default or in breach of an imputed promise and a rating of ”SD” (selective default)
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if it believes an obligor rated is in default on one or more of its financial obligations

including rated and unrated financial obligations. The recovery rates have been ob-

served sequentially and the panel of observed recovery rates is unbalanced. The bonds

have been identified using S&P Capital IQ. All bonds are denominated in US dollars

and have a total par value not less than USD 5 million and have no embedded options.

The recovery rates are calculated as average volume-weighted prices in the 30 days

after the default based on data from TRACE. One macroeconomic variable (number

of bonds defaulted) and the industry variables are obtained from Bloomberg, while the

macroeconomic variables are found using the database from the Federal Reserve Bank

of St. Louis (FRED, Federal Reserve Economic Data).

The companies that issued these bonds can be assigned to the following industries:

industry, consumer discretionary, consumer staples, telecommunications, raw materi-

als, utilities, energy, financial services and information technology. We excluded 19

bonds because of one of the following criteria: corrupted data, no matching industry

found or a company type other than private or public. As a result, the final sample

consists of 775 defaulted bonds.

The average recovery rate for the 775 defaulted bonds in the sample is 40.64% and

the sample standard deviation is 29.67%. Recovery rates for companies in an industry

that are in distress are much lower than the overall average recovery rate. To avoid

having very small seniority classes, the two classes with the fewest observations, ju-

nior subordinate and subordinate, are combined. The average recovery rates within

the seniority classes comply with the expectation that senior creditors do better: Se-

nior secured bonds have the highest recovery rate of 67.77% followed by the senior

unsecured. Accordingly, senior subordinated bonds exhibit the second lowest average

recovery and subordinated bonds exhibit the lowest average recovery rate of 7.96%.

The frequency distribution across the different seniority classes is shown in Figure 2.2.

2.4.2 Experimental set-up

To decide on the number of principal components, we checked the predictive perfor-

mance with the number of principal components between 1 and 15 for each variant

of PCA. Based on that, we included the first 8 principal components for PCA and
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Figure 2.2: Relative frequency distribution of the recovery rates for each seniority class

SPCA. Allowing 20 non-zero loadings for each principal component and using a δ of

0.01, we checked the robustness of our results for SPCA using a grid search for δ and

the number of non-zero loadings. The hyperparameters for the autoassociative neural

network that we use for NLPCA are chosen by the built-in routine in the neutmatsa

toolbox by Hsieh et al. (2006). By using the inconsistency index defined by Hsieh

et al. (2007) for cross validation, we reduce the danger of overfitting. For KPCA we

follow the suggestion by Wang (2012) and use five times the average distance between

one data point and its nearest neighbor as width σ of the radial basis function kernel

as defined in Section 2.3.1.

The procedure for choosing the hyperparameters and training the different models

is the following. To avoid numerical problems during the LS-SVM computation, the

independent variables are scaled to the interval [0,1] according to Hsu et al. (2003).

To maintain interpretability of the regression coefficients, we do not scale the variable

for the linear regression. For the selection of the model hyperparameters, a ten-folds

cross validation (i.e., procedure for assessing the accuracy and validity of a statistical

model) is carried out on 70% of the data set. These training data are randomly strati-

fied for their seniority ranks while creating the partitions for the cross validation. The

remaining 30% of the data set is used as out-of-sample test set.

During the cross validation, a grid search for the three hyperparameters C, γ and
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ε of the ε-insensitive loss function is carried out in the intervals [2−2 to 20], [2−1 to

23] and [2−3 to 23]. For the quadratic loss function the hyperparameters C and γ are

searched for in the intervals [2−4 to 25] and [2−4 to 23]. For each training set partition,

the respective model is trained and the performance of the resulting model is evaluated

on the respective validation partition. The performance metrics obtained during the

ten cross validation parts are averaged for each model configuration to determine the

best model’s hyperparameters.

As performance metrics, the root mean squared error (RMSE), the coefficient of

determination (R2), the adjusted coefficient of determination (adj. R2) and the mean

absolute error (MAE) are used.

2.4.3 Empirical modeling results

In Table 2.2 we provide an overview of the different model specifications we investigate

based on the entire dataset of 775 corporate bonds. The dependent variable is the

defaulted bond’s recovery rate. The independent variables we use in model (1) are

the instrument characteristics. In model (2) we added the macroeconomic variables.

We add the first eight principal components obtained from the 104 macroeconomic

variables in model (3). In model (4) we add sparse principal components instead of

principal components and in model (5) we add nonlinear principal components from

an autoassociative neural network. We add the kernel principal components in model

(6).

In the linear regression model specification in Table 2.2 the seniority ”senior se-

cured” is the omitted dummy variable. Therefore, the negative signs of the seniority

dummies and the highly significant coefficients decreasing with lower seniorities are in

agreement with the expectation that senior creditors do better than subordinated cred-

itors. This result confirms the observations found in the literature (see, for example,

Cantor and Varma (2004)). The dummy variable indicating defaults under Chapter 11

is significantly negative in all three models. This is in accordance with the evidence

from Jankowitsch et al. (2014) that recovery rates are lower in formal legal procedures

than in informal restructurings.

In Table 2.3, bond characteristics, such as the seniority class, and the industry vari-
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Table 2.2: The results of the various regression specifications.

In this table the dependent variable is the recovery rate of the respective bond. The independent variables we have

used in model (1) are basic variables of our model. In model (2) we added our five macroeconomic variables. In model

(3) we remove the macro factors added in specification (2) and instead, we add the first eight principal components

of 104 macroeconomic variables. The respective t-statistics for each factor are presented in parentheses. Statistical

significance on the 99% level is indicated with ***, significance on the 95% level is indicated with ** and significance

on the 90% level is marked with *.

Variable Basic(1) MacroAdded(2) MacroPCAdded(3)

Intercept 77.1162*** 71.48*** 66.3534***

(19.405) (4.1264) (17.1303)

UtiInd 11.8588** 10.9264** 2.2108

(2.1962) (2.074) (0.4536)

Financial 7.2244** 9.252*** 6.0282*

(2.1655) (2.6049) (1.716)

TelCom -6.8601* -4.3032 1.5956

(-1.8344) (-1.2071) (0.3683)

Cons.-Cycl -6.7359** -5.7899* -4.9462*

(-2.0687) (-1.9048) (-1.7098)

Industrial 4.6507 -1.92 -6.1048*

(1.1272) (-0.4875) (-1.6582)

SenUn -25.0701*** -27.3017*** -26.9766***

(-6.935) (-8.1016) (-8.4175)

SenSub -31.1246*** -30.5833*** -33.0093***

(-7.5117) (-7.9154) (-9.0752)

Subord -50.192*** -52.6569*** -51.0351***

(-5.704) (-6.4527) (-6.6178)

TraVol 0.08** 0.06** 0.05*

(2.492) (2.0594) (1.7191)

IndDis1 -13.9111*** -0.8917 8.3057***

(-5.3438) (-0.2851) (2.7442)

IndDis2 -3.1224 3.613 8.5264***

(-1.2479) (1.3818) (3.1228)

VolDef -0.0152***

(-4.0398)

HYInd -1.1484**

(-2.3144)

δ GDP -57.7252

(-0.7102)

Unempl. -1.1122

(-0.5173)

FedFunds 3.6028*

(1.8378)

Chapter 11 -18.6811*** -24.4498*** -22.1121***

(-8.923) (-11.1681) (-10.442)

PC1 -1.9397***

(-12.9835)

PC2 -0.2686

(-1.4646)

PC3 3.074***

(9.114)

PC4 0.657

(1.4531)

PC5 4.5167***

(6.9153)

PC6 3.5963***

(4.9279)

PC7 -0.29

(-0.2428)

PC8 -2.3131**

(-2.3172)

Adj. R2(in-sample) 0.2532 0.3597 0.4350

RMSE (in-sample) 25.4280 23.4689 22.0006

MAE (in-sample) 20.4347 18.8939 17.1903

AIC 7.24E+03 7.13E+03 7.03E+03

BIC 7.30E+03 7.21E+03 7.13E+03

# of observations 775 775 775
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ables (model (1) of Table 2.2) are included as independent variables. For model (2),

the predictive capacity of all models is substantially higher than in the models that

do not include the macroeconomic variables. The performance of recovery rate models

for defaulted corporate bonds improves by including macroeconomic variables, which

is consistent with the findings of previous studies (see, for example Qi and Zhao (2011)).

Table 2.3: Cross validation results of the various models specifications

This table shows the performance measures from cross validation and the respective standard deviations for the models
using the independent variables from Table 2.2 for the respective model. The best value for each measure for the
respective model is underlined. (LS-SVR: Least Squared Support Vector Regression; LS-SVR DB: Least Squared
Support Vector Regression with Different Intercepts; SP LS-SVR: Semi-Parametric Least Squared Support Vector
Regression; ε-insensitive: ε- Support Vector Regression; Lin. Reg.: Linear Regression; Reg. Tree: Regression Tree;
model (1): Basic; model (2): MacroAdded; model (3): PCA;

Model (1) Width Cost ε RMSE σRMSE R2 σ
R2 Adj. R2 σ

Adj.R2 MAE σMAE

LS-SVR 1 2 - 24.2090 2.2567 0.3074 0.1215 0.2956 0.1236 18.8966 1.6605

LS-SVR DB 1 2 - 24.2038 2.2621 0.3075 0.1228 0.2957 0.1249 18.8734 1.6611

SP LS-SVR 0.125 2 - 24.2094 2.4916 0.3065 0.1372 0.2947 0.1396 18.5942 1.8053

ε-insensitive 0.5 1 8 26.6061 1.4174 0.1856 0.0509 0.1717 0.0517 21.4026 0.8100

Lin. Reg. - - - 25.9796 2.1534 0.2076 0.0902 0.1941 0.0917 20.9037 1.5771

Reg. Tree - - - 26.3648 1.8742 0.1918 0.1083 0.1780 0.1102 20.0172 1.5113

Model (2) Width Cost ε RMSE σRMSE R2 σ
R2 Adj. R2 σ

Adj.R2 MAE σMAE

LS-SVR 1 2 - 20.2195 2.9789 0.5176 0.1176 0.5061 0.1204 14.2705 1.8932

LS-SVR DB 1 2 - 20.2071 2.9729 0.5182 0.1172 0.5067 0.1200 14.2371 1.9047

SP LS-SVR 0.0625 2 - 18.7271 3.8730 0.5811 0.1556 0.5711 0.1593 12.5029 2.1687

ε-insensitive 0.5 1 2 24.7691 1.6096 0.2924 0.0788 0.2756 0.0807 19.8137 0.8192

Lin. Reg. - - - 24.2165 2.5732 0.3072 0.1329 0.2907 0.1361 19.5817 2.0272

Reg. Tree - - - 20.9705 4.0059 0.4738 0.2031 0.4613 0.2079 13.9913 2.3063

Model (3) Width Cost ε RMSE σRMSE R2 σ
R2 Adj. R2 σ

Adj.R2 MAE σMAE

LS-SVR 2 2 - 19.4190 3.2283 0.5534 0.1270 0.5410 0.1305 13.1500 1.6915

LS-SVR DB 2 1 - 19.1872 2.9316 0.5647 0.1118 0.5525 0.1149 13.3208 1.6199

SP LS-SVR 0.25 2 - 17.8687 2.5052 0.6271 0.0660 0.6167 0.0679 11.9189 1.2164

ε-insensitive 0.5 1 0.5 25.4568 1.6978 0.2559 0.0413 0.2351 0.0425 19.7850 0.9350

Lin. Reg. - - - 22.6437 2.4562 0.3919 0.1283 0.3749 0.1319 17.7387 2.1046

Reg. Tree - - - 21.5982 2.9164 0.4500 0.1486 0.4346 0.1528 14.6812 1.8214

Table 2.4: This table reports the Eigenvalues and the explained variances for the first eight

principal components.

PCs 1 2 3 4 5 6 7 8

Eigenvalue 46.9395 29.0396 13.5668 4.9622 2.2578 1.6081 0.9691 0.8570

Cumulative Explained Variance 45.13% 73.06% 86.10% 90.87% 93.04% 94.59% 95.52% 96.35%

For all three performance metrics, the three LS-SVR models show distinctive out-

performance compared to the linear regression model for all three performance metrics,

a finding that is consistent with Loterman et al. (2012) and Yao et al. (2015) 3. Among

3Because in many cases multiple bonds of the same issuer default at the same time, the draws are
not independent. To check our results for robustness, we deleted all bonds of the same issuer with
the identical seniority and the identical default date from the dataset. SP LS-SVR still outperforms
the other prediction methods and the predictive accuracy is increased when adding the principal
components of many macroeconomic variables.
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the three tested LS-SVR techniques, the semiparametric LS-SVR yields the best re-

sults with an adjusted R2 of 57.11% which is almost twice the adjusted R2 of 29.07% of

the linear regression model. Both the standard LS-SVR and the LS-SVR with differ-

ent intercepts for the seniority classes have adjusted R2-values of 50.61% and 50.67%,

respectively, also an impressive outperformance in comparison to the standard linear

regression model. However, in assessing performance, it must be recognized that the

LS-SVR models also have a slightly higher variance for the performance metrics, indi-

cating that there might be a higher risk of overfitting.

In Figure 2.3 we present the graphics of the first two principal components cal-

culated from the 104 macroeconomic variables shown in Table 2.1 with the procedure

described in Section 2.2. The financial crisis years, 2007 and 2008, are shaded in Figure

2.3. Including the principal components of the macroeconomic variables improves the

predictive capacity of our models significantly. As can be seen from Figure 2.4, the

predictive capacity in the linear regression model increases steadily until the eighth

principal component. Moreover, the first eight principal components capture more

than 96% of the variance of the underlying dataset. As can be seen in Table 2.4, the

first three principal components explain 45%, 28% and 13% of the variance within

the macroeconomic variables. Notably, among the 10 variables with the highest com-

munalities in the first 8 principal components are five stock market related variables.

Furthermore, the yield on BAA ranked corporate bonds and the inflation expectation

by the University of Michigan have the highest and third-highest communalities. As

the loadings of the macroeconomic variables are small and it is difficult to identify

the most important effects, we apply SPCA to generate principal components that are

easier to interpret. The first sparse principal component is most heavily influenced by

the number of non-performing loans, the number of bank loans, and the fed funds rate.

Real imports, final sales and the PPI of energy goods are the variables with the biggest

influence on the second sparse principal component. We find the highest adjusted R2

by including the first eight principal components. Therefore, we include the first eight

principal components from the 104 macroeconomic variables in our analysis in model

(3).
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Figure 2.3: The first two principal components from 104 macroeconomic variables
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Figure 2.4: Adjusted R2 for different numbers of principal components in model (3)
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For the linear regression the adjusted R2-value increases to 37.49%, almost twice

the value reported for basic model. For the best model, the semiparametric LS-SVR,

the adjusted R2-value is 61.67%. Using the independent variables from model (3), the

semiparametric LS-SVR significantly outperforms all the models without the principal

components of the 104 macroeconomic variables, while all LS-SVR models also out-

perform the linear regression significantly.

As can be seen in Table 2.5, applying SPCA and NLPCA for the dimensionality

reduction of the 104 macroeconomic variables in models (4) and (5) does not yield a

big increase in the out-of-sample prediction quality compared to using PCA. For both

compression techniques, semiparametric LS-SVR yields the highest adjusted R2-value

while the other LS-SVR produce the next best results. The regression tree outperforms

linear regression and ε-insensitive SVR, which shows the least predictive ability. Semi-

parametric LS-SVR yields a higher adjusted R2-value of 62.99% for SPCA compared

to 61.67% using PCA while it yields an adjusted R2-value of 57.82% in conjunction

with NLPCA. For the other models, making use of SPCA produces similar results to

PCA. NLPCA clearly performs worse than PCA using the other weaker models. In

particular, for the linear regression the adjusted R2-value is only 32.13%.

Table 2.5: Cross validation results of the various models specifications

This table reports the performance measures from cross validation and the respective standard deviations for the
models using Sparse PCA (model 4), Nonlinear PCA (model 5) and Kernel PCA (model 6) for compressing the 104
macroeconomic variables. The best value for each measure for the respective model is underlined.

Model (4) Width Cost ε RMSE σRMSE R2 σ
R2 Adj. R2 σ

Adj.R2 MAE σMAE

LS-SVR 2 4 - 18.9951 3.2835 0.5729 0.1230 0.5610 0.1264 12.7290 1.7750

LS-SVR DB 2 2 - 18.9638 3.0633 0.5752 0.1125 0.5634 0.1157 12.9353 1.6615

SP LS-SVR 0.125 2 - 17.5549 3.2682 0.6400 0.1073 0.6299 0.1103 11.6208 1.9986

ε-insensitive 0.5 1 0.5 25.2802 1.7137 0.2661 0.0440 0.2456 0.0452 19.6622 0.9289

Lin. Reg. - - - 22.6129 2.4942 0.3936 0.1292 0.3767 0.1328 17.7487 2.1379

Reg. Tree - - - 21.7079 3.7579 0.4389 0.2118 0.4233 0.2177 14.8254 2.2962

Model (5) Width Cost ε RMSE σRMSE R2 σ
R2 Adj. R2 σ

Adj.R2 MAE σMAE

LS-SVR 1 32 - 20.4330 3.2829 0.5034 0.1432 0.4895 0.1472 13.8473 1.9292

LS-SVR DB 1 32 - 20.4325 3.2829 0.5034 0.1432 0.4896 0.1472 13.8465 1.9295

SP LS-SVR 0.0625 2 - 18.4743 4.0089 0.5897 0.1704 0.5782 0.1751 12.3010 2.2192

ε-insensitive 8 1 8 26.3330 1.7148 0.2028 0.0573 0.1805 0.0589 20.7718 0.9375

Lin. Reg. - - - 23.5879 2.6100 0.3397 0.1405 0.3213 0.1444 18.9135 2.0685

Reg. Tree - - - 21.8709 1.6671 0.4380 0.1129 0.4223 0.1161 14.5870 1.1100

Model(6) Width Cost ε RMSE σRMSE R2 σ
R2 Adj. R2 σ

Adj.R2 MAE σMAE

LS-SVR 2 2 - 19.1139 3.0554 0.5670 0.1209 0.5549 0.1242 12.9988 1.7264

LS-SVR DB 2 2 - 19.0078 3.0530 0.5716 0.1195 0.5597 0.1228 12.8598 1.7052

SP LS-SVR 0.0625 2 - 18.1092 2.4079 0.6159 0.0701 0.6052 0.0720 12.0776 1.2780

ε-insensitive 0.5 1 0.25 25.0548 1.7068 0.2788 0.0497 0.2587 0.0511 19.5388 0.9042

Lin. Reg. - - - 22.1141 2.1365 0.4216 0.1107 0.4055 0.1138 17.0671 1.7958

Reg. Tree - - - 21.3519 1.9414 0.4631 0.1202 0.4481 0.1235 14.6925 1.4584

This empirical analysis suggests that by regularizing PCA with the elastic net, as

done in SPCA, the predictive accuracy is increased. From a bias-variance tradeoff
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perspective, the decrease in variance more than offsets the increase in bias. Moreover,

SPCA has several advantages, among which there are computational efficiency, more

interpretability in higher-dimension data, high explained variance, and recognition of

important variables.

Reducing the dimensionality of the data with KPCA in model (6) as reported in

Table 2.5 shows the predictive accuracies that are very similar to the predictive ca-

pability using standard PCA. Compared to SPCA, we see a lower adjusted R2-value

of 60.52% for the semiparametric LS-SVR while for linear regression, regression tree,

and ε-insensitive SVR the adjusted R2-values are slightly higher using KPCA for di-

mensionality reduction. In comparison to the other nonlinear dimensionality reduction

technique, NLPCA, preprocessing with KPCA yields higher adjusted R2-values for all

prediction methods.

2.4.4 Ranking the macroeconomic variables with gradient boost-

ing and enhanced prediction

Gradient boosting as introduced by Friedman (2001) does not rely on a single strong

regression model but on an ensemble of weak-base learners. Each base learner is a

regression tree as presented in Section 2.3.4. The target for each additional regression

tree is to be maximally correlated to the current negative gradient. Consequently, in

each iteration an additional base learner is trained on the error of the ensemble gener-

ated so far.

Using the squared error loss function, we apply the LS Boost algorithm presented by

Friedman (2001). Gradient boosting machines are highly robust against outliers, miss-

ing values, and inclusion of irrelevant predictors. Moreover, they generate competitive

predictions, especially for noisy data. Furthermore, gradient boosting machines allow

the ranking of a large number of independent variables by their relative importance.

The variables’ ranking by gradient boosting can identify new macroeconomic variables

not widely used in prior studies. We apply MATLAB’s built-in predictorImportance

function for the evaluation of each variable’s importance. In doing so, MSE in the

parent node is compared to the total MSE of the two child nodes. This way of ranking

variables also follows the approach to measuring a variable’s influence suggested by

30



Breiman et al. (1984). We use a grid search with a ten-folds cross validation for our

choice of the learning rate, the number of trees, and the minimum leaf size of a base

learner when building the gradient boosting machine.

From the results reported in Table 2.6, we can gain several insights from the

gradient-boosting machine analysis of the macroeconomic variables considered in this

paper. There are three groups of independent variables that exhibit significant relative

importance. Among the 20 variables with the highest relative importance there are six

micro-level factors which are all interest rate related. As can be seen from Table 2.6,

the credit spread, the term spread, and the levels of corporate bond and government

bond yields have a meaningful impact on the analysis. Moreover, seven stock-market

related variables are of particular importance. Four business cycle variables show con-

siderable informativeness. The predictiveness of the variables Housing starts, New

orders of capital goods, and the University of Michigan consumer sentiment are char-

acteristic of leading macroeconomic indicators in a prediction task while also normally

lagging macroeconomic measure such as the number of unemployed has a noteworthy

importance in the gradient boosting machine analysis.

Table 2.6: Relative variable importances (RVIs) of the 104 macroeconomic variables

This table reports the descriptive statistics of the 20 macroeconomic variables that have the biggest relative importance (RVI score) in

the gradient boosting framework outlined in section 2.4.4 in the order of their importance.

Variable Category Unit Mean Std. Dev. Min Max

Corporate yield spread Micro-level factors Percent 3.523428 1.2846 1.56 6.01

BAA corporate bond yield Micro-level factors Percent 6.567655 0.6559 5.78 9.59

AAA corporate bond yield Micro-level factors Percent 5.211637 0.5247 3.27 6.58

Russell 2000 return Stock Market Indicator Index -0.09999 0.2116 -0.458 0.5731

Total no unemployed Business Cycle Indicators Millions 4.293238 1.3521 2.381 6.635

S&P 500 Volatility Stock Market Indicator Percent 0.255854 0.1484 0.0582 0.8481

Treasury bond yield, 10 years Micro-level factors Percent 3.375077 0.7813 1.47 5.2

Term Structure Micro-level factors Percent 2.278518 1.0414 -0.57 3.82

S&P 500 return Stock Market Indicator Index -0.12578 0.2032 -0.449 0.4323

Wilshire small cap volatility Stock Market Indicator Percent 0.319144 0.1714 0.0899 0.873

Nasdaq 100 return Stock Market Indicator Index -0.06714 0.2392 -0.479 0.606

Dow Jones industrial average Vol Stock Market Indicator CBOE Vol Index 26.34508 10.456 9.77 68.71

Housing starts Business Cycle Indicators Thousands of units 890.884 509.62 478 2273

Uni Michigan consumer sentiment Business Cycle Indicators Index 1st Quarter 1966=100 70.28389 9.1778 55.3 97.1

Nasdaq 100 Vol Stock Market Indicator Percent 30.14825 10.533 13.79 74.66

Russell 2000 Volatility Stock Market Indicator Percent 0.324417 0.1729 0.1059 0.9058

FX index major trading partners International Competitiveness Index March (1973=100) 77.67859 4.8613 68.835 105.4

Total borrowings from fed reserve Financial Conditions Billions of Dollars 73.45302 77.772 0.01 437.53

New orders: capital goods Business Cycle Indicators Billions of Dollars 57.85661 7.0022 46.324 69.04

Number of defaulted bonds Micro-level factors Number 750.0503 468.7891 55.0000 1369.0000

The volatilities of all three major US equity market indices and the Wilshire small

cap index exhibit significant informativeness according to the ranking of macroeco-

nomic variables. Yet, it does not seem that they have been examined in the recovery
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rate literature yet. Housing starts and the University of Michigan consumer sentiment

also seem to be two interesting indicators. These highly ranked variables have not been

investigated in the literature and as two leading economic indicators they add economic

interpretability to any forecasting model. For a number of variables, the ranking from

gradient boosting confirms the variable choices of the present literature. Among the

most informative variables in our ranking are the corporate yield spread (a variable

used in Cantor et al. (2004)), the term structure (a variable used in in Jankowitsch et

al. (2014)), and the equity market indices’ returns (as used in Altman et al. (2005),

Yao et al. (2015) and Cantor et al. (2004)).

Interestingly, while in literature such as in Qi et al. (2011) or Jankowitsch et al.

(2014) usually the short end of the interest rate curve (rank 83) is examined, in our

analysis we find that the 10-year Treasury yield among the most informative variables.

Several popular variable choices such as GDP growth (rank 61), as for example in-

cluded by Altman et al. (2005), and the unemployment rate (rank 76) , for example

included in Yao et al. (2015), are not among the 20 most informative variables. How-

ever, the number of unemployed, which is highly correlated to the unemployment rate,

is among the most informative variables. We use the number of defaulted bonds in the

year before the default as a proxy for the default rate, which is often included in the

literature such as in Qi et al. (2011). The number of defaulted bonds exists in the list

of informative macroeconomic variables.

In model (7) we added the 20 variables that have been identified as most informa-

tive by gradient boosting to the bond data from our base model (1). The results are

reported in Table 2.7. This modification yields the highest R2-values for the LS-SVR

(56.70%), LS-SVR with different biases (56.75%), the regression tree (48.10%), and the

linear regression (42.82%). The predictive performance for semiparametric LS-SVR is

generally close to the accuracies of the PCA techniques, only lagging behind semi-

parametric LS-SVR when SPCA is employed. Selecting macroeconomic variables by

gradient boosting is useful because it significantly enhances the predictive accuracies

of models that are easy to interpret, such as the regression tree and the linear regression.
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Table 2.7: Cross validation results of the model selecting macroeconomic variables. The

best value of each measure for the respective model is underlined.

This table reports the performance measures from cross validation and the respective standard deviations for the
models using gradient boosting to select the 20 most informative macroeconomic variables.

Model (7) Width Cost ε RMSE σRMSE R2 σ
R2 Adj. R2 σ

Adj.R2 MAE σMAE

LS-SVR 1 4 - 18.7160 3.3805 0.5855 0.1259 0.5670 0.1315 12.1433 1.7244

LS-SVR DB 1 4 - 18.7064 3.3718 0.5860 0.1253 0.5675 0.1308 12.1227 1.7161

SP LS-SVR 0.0625 2 - 17.8390 2.5920 0.6291 0.0628 0.6126 0.0655 11.9428 1.3672

ε-insensitive 0.5 1 2 24.3329 1.9425 0.3164 0.0967 0.2860 0.1010 19.1144 1.0587

Lin. Reg. - - - 21.5054 1.9363 0.4526 0.0979 0.4282 0.1023 16.4414 1.6507

Reg. Tree - - - 20.4652 2.9565 0.5031 0.1588 0.4810 0.1659 13.7896 1.8602

2.5 Conclusions

The recovery rate is a key parameter in the Basel II/III accords and it is one of the

main risk factors in pricing financial products and contracts related to credit risk. In

this paper, we study the performance gain by using support vector techniques, lin-

ear regression, and regression tree for predicting recovery rates of defaulted corporate

bonds with different explanatory variables. A LS-SVR model with different biases

for the different seniority classes exhibited very similar predictive performance to the

standard LS-SVR. A semiparametric LS-SVR model which takes the seniority indicator

dummies as linear input showed significant outperformance, not only versus the linear

regression model, but also in comparison to the standard LS-SVR approach. We find

that the SVR approaches outperform the linear regression in terms of out-of-sample

adjusted R2, RMSE, and MAE. The recovery rate literature has applied models that

can only handle a limited number of independent variables.

This paper contributes to the literature on corporate bond recovery rate prediction

in four ways. First, in contrast to the literature, which used a few macroeconomic

variables in predicting recovery rate, the empirical evidence confirmed that by adding

the principal components derived from 104 macroeconomic measures from a broad

range of categories such as stock market conditions, lending conditions, international

competitiveness, business cycle conditions, and micro-level conditions the predictive

capacity of our models increased. Second, using SPCA instead of PCA, the predictive

capacity of the models increases, while the results using NLPCA and KPCA instead

of PCA are mixed. Furthermore, SPCA allows a better interpretability of the princi-

pal components. Third, we ranked a large set of macroeconomic variables by gradient

boosting, from best to worst, based on their overall predictive power of recovery rate.

The analysis indicates that the most informative macroeconomic variables in predicting
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recovery rates of U.S. corporate bonds are the credit spread of corporate bonds, the

yields offered on corporate bonds, the annual return of the Russell 2000, and the num-

ber of unemployed. We introduced new macroeconomic variables not commonly used

in prior research, for example housing starts, orders of capital goods, and stock market

volatility. Fourth, adding the 20 most informative variables to the base model increases

the predictive accuracy of models, that are easy to interpret, such as the regression

tree and the linear regression as well as three of the four types of LS-SVR. Overall the

empirical results of this study show that including a large number of macroeconomic

variables yields better estimates of the recovery rate.
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Chapter 3

Fuzzy decision fusion approach for

loss-given-default modeling

This chapter is joint work with Dr. Abdolreza Nazemi1, Farnoosh Fatemi Pour2, and

Prof. Frank J. Fabozzi3 published in 2017 as: Fuzzy decision fusion approach for loss-

given-default modeling, European Journal of Operational Research, 262(2), 780-791.

https://doi.org/10.1016/j.ejor.2017.04.008

3.1 Introduction

According to Basel II and Basel III Accords, banks in the G20 countries need to hold

capital requirements for managing their risk based on expected loss. There are three

key parameters in the Internal Rating Based (IRB) advanced approach for calcula-

tion of expected loss. These parameters are probability of default, loss-given-default

(LGD), and exposure at default. Consequently after the Basel II accord, LGD has

become a much more vital measure for financial institutions, especially banks. There-

fore, financial institutions need reliable LGD predictions. In this paper, we propose

a new method for prediction of LGD based on fuzzy rule-based models and ensem-

ble methods incorporating a broad range of macroeconomic variables that provide a

significant increase in performance measures compared to methodologies proposed in

the literature. In our proposed model, a fuzzy rule-based model is trained using a

differential evolution algorithm to dynamically weight ensemble members and combine

their decisions to obtain the final output. The differential evolution algorithm is used

1 School of Economics and Business Engineering, Karlsruhe Institute of Technology
2 Departments of Computer and Electrical Engineering, Ferdowsi University of Mashhad, Iran
3 EDHEC Business School, Nice, France



to be able to better cope with complex data and avoid the curse of dimensionality in

creating fuzzy rule-based models.

Using multiple models to analyze the data provide different insights about the same

data. Decision fusion is the combination of multiple decision makers. Fusing the deci-

sions made by multiple different decision makers enables one to benefit from multiple

views instead of one. For this reason, we fuse the results of multiple techniques includ-

ing a linear regression model, four types of support vector regression (SVR) techniques

and a decision tree in our fuzzy rule-based model.

In this paper, we make three contributions to the literature: First, fuzzy decision

fusion models are applied to modeling LGD of corporate bonds for the first time. Sec-

ond, the technique we propose improves predictive accuracy of our models by adding

the principal components derived from 104 macroeconomic variables. Finally, in order

to improve the predictive accuracy of the models, Box-Cox transformation of macroe-

conomic variables is tested. We show that fuzzy decision fusion models outperform

all types of SVR techniques, decision trees and regression in both terms of prediction

accuracy and interpretability.4

The remainder of the paper is organized as followed. A review of the techniques

used in the literature to predict LGD on debt obligations is provided in Section 3.2.

In Section 3.3, we present the models we propose and in Section 3.4 we describe the

data used. We then present the empirical results in Section 3.5. Section 3.6 concludes

the paper.

3.2 Literature review

Two types of predictive models have been applied in the literature: parametric and

non-parametric. Among the parametric models, the most popular are linear regression

models that have shown robustness and effectiveness in LGD prediction and expla-

nation. Zhang and Thomas (2012) report poor out-of-sample performance for linear

4 As Gacto et al. (2011) note, interpretability is the capacity to express the behavior of the real
system in an understandable way. In the approach we propose, a fuzzy rule-based model is used for
weighting the base models described in Section 3.3.
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regression and survival regression for modeling LGD of personal loans. Calabrese

and Zenga (2010) propose a beta regression model to predict recovery rates of loans.

Leow and Mues (2012) apply a two-stage model with a combination of a probability

of repossession model and a haircut model for the LGD of residential mortgage loans.

Jacobs and Karagozoglu (2011) apply a beta-link generalized linear model to predict

LGD. Loterman et al. (2012) compare the predictive accuracy of 24 techniques for

the prediction of LGD in different datasets. They find that the predictive accuracy of

non-parametric techniques such as support vector machines and artificial neural net-

works are higher than the typical linear regression models. Bellotti and Crook (2012)

build several models for retail credit cards LGD such as the tobit model, decision

tree model and ordinary least squares (OLS) model. Parametric methods had weak

results for LGD modeling in their study. The main advantage of parametric models

is their interpretability, but they usually have weak prediction power in LGD modeling.

Hartmann-Wendels et al. (2014) predicted the LGD for defaulted leasing contracts

from three German leasing companies. They reported that out-of-sample LGDs esti-

mation is necessary for appropriate risk management. In their large sample, model

trees outperformed other methods. Yang and Tkachenko (2012) applied different para-

metric and non-parametric techniques for modeling exposure at default and LGD for

commercial borrowers. Bastos (2010) applied a regression tree and parametric frac-

tional response regression for modeling LGD of bank loans. He empirically demon-

strates the better prediction capability of regression trees using a data set consisting

of 374 defaulted loans. Gürtler and Hibbeln (2013) introduced several improvements

for LGD of defaulted bank loans. Park and Bang (2014) considered different factors

of defaulted mortgages such as borrower characteristics, foreclosure auction process,

seniority, housing type, housing market cycle and submarkets for the LGD modeling

of residential mortgages in Korea. Park and Bang (2014) report that the recovery rate

mean for senior mortgages is significantly higher than the subordinated claims and

show the effects of housing market cycles on LGD.

Altman et al. (2005) studied the relation between LGD and aggregate default rates

on corporate bonds from 1982 to 2002. They find that LGDs of corporate bonds are

related to default rates, seniority and collateral levels. Moreover, they report the cor-

porate bond market variables explain more variation in the LGD than macroeconomic

factors. Cantor and Varma (2004) show that seniority, security, industry and macroe-
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conomic factors are correlated to LGD. Analyzing 3,751 US corporate bonds and loans

for the period 1985-2008, Qi and Zhao (2011) report that neural networks outperform

parametric models. Altman and Kalotay (2014) propose an approach based on the

mixtures of Gaussian distributions to forecasting the distribution of ultimate recover-

ies on defaulted loans and bonds. Their method outperforms parametric regressions as

well as regression trees as a non-parametric benchmark. They present more evidence

of industry-driven effects on the forecasting of the distribution of LGD.

Yao et al. (2015) predict LGD for corporate bonds employing three different types

of SVR techniques and parametric methods. They report the performance of SVR is

significantly higher than parametric techniques such as a fractional response regression

or a multiple linear regression. Applying parametric and non-parametric methods for

predicting LGD for corporate bonds, Nazemi et al. (2018a) mention that SVR tech-

niques exhibit significantly higher predictive performance than a regression model and

decision tree techniques.

Duffie et al. (2009) and Koopman et al. (2011) report the influences of macroeco-

nomic variables for the probability of default calculation. Cantor and Varma (2004)

report that macroeconomic variables are important variables in LGD estimation. An-

alyzing UK data for major retail credit cards, Bellotti and Crook (2012) find that OLS

models that include macroeconomic variables have the best performance for estimating

LGD. Investigating the importance of macroeconomic independent variables in retail

loans LGD datasets, Leow et al. (2014) find that macroeconomic variables are able to

improve the performance of models. Tobback et al. (2014) report that the inclusion of

macroeconomic variables can improve the prediction of LGD for corporate loans and

revolving credit. Bruche and Gonzalez (2010) state that firms that defaulted during

recessions recover less and the number of defaulting firms rises in this period. Chen

(2010) mentions that LGD during the recessions of 1982, 1990, 2001, and 2008 are

more than average. Nazemi et al. (2018a) find that by incorporating the principal

components derived from macroeconomic variables, the predictive performance of all

SVR techniques, as well as the linear regression, increases significantly.

Significantly lower recovery rates for defaulted firms if the industry of defaulted

firms is in distress were reported by Acharya et al. (2007). However, Mora (2015)

shows that (1) macroeconomic variables are important factors in LGD for corporate
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bonds, (2) industries which are more dependent on the global and national economies

have lower recovery rates when the stock market drops, and industries whose sales are

more related to GDP growth recover less during macroeconomic downturns.

Both industry works and academic papers (such as Loterman et al. (2012), Qi and

Zhao (2011)) sometimes use the non-parametric regression in LGD modeling. As of

this writing, there is no industry practice and academic research that has implemented

a fuzzy fusion approach for LGD modeling. Moreover, previous studies have not con-

sidered many macroeconomic variables in LGD analysis. This paper aims to fill these

gaps in LGD modeling.

Table 3.1 summarizes studies on LGD modeling for corporate bonds.

Our LGD modeling for corporate bonds is close to that proposed by Yao et al.

(2015), who investigate SVR techniques and 13 other algorithms for LGD modeling in-

corporating four macroeconomic variables. Studying the LGD of US corporate bonds

for the period from 1985 to 2012, they reported that SVR techniques significantly

outperform other methods. Moreover, logistic and beta transformations of LGD do

not improve prediction accuracy. This paper has three main contributions compared

to Yao et al. (2015) and the existing literature on LGD. First, fuzzy decision fusion

models are applied to modeling LGD for the first time. However, we show that fuzzy

decision fusion models have significantly higher predictive accuracy compared to all

types of SVR models used by Yao et al. (2015). Second, we propose improving pre-

dictive accuracy of our LGD models by adding the principal components derived from

104 macroeconomic variables. Finally, we apply the Box-Cox transformation to the

macroeconomic variables in order to improve the predictive accuracy of our model.

3.3 Fusion-based loss-given-default modeling

This section details our proposed approach. The proposed approach uses different

types of regressors including SVR, regression tree, and OLS regression as base models

and trains a fuzzy rule base to combine their results effectively in order to make a

prediction of LGD as reported in Section 5. We begin by describing the base models.

Then the proposed fuzzy rule-based model is described in detail.
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Table 3.1: Overview of models in literature, focusing on US corporate bond.

Acharya et al. (2007)

Data 1982-1999, Various debt instruments of 300 issuers from S&P/PMD database

Models Linear regression

Highest R-square 0.68

Main finding Industry conditions at the time of default are important determinants of creditor recoveries

Altman & Kalotay (2014)

Data 1987-2011, 4720 debt instruments (which 60% are bonds)

Models Mixture of Gaussian

Highest R-square -

Main finding Mixtures of Gaussian outperform

Bastos (2014)

Data 1987-2010, 4630 loans and bonds from Moody’s URD

Models Parametric regressions, regression tree

Highest R-square -

Main finding Fractional response regression outperform (long horizons), regression tree (short horizons)

Cantor & Varma (2004)

Data 1983-2003, about 1100 issuers for both loans and bonds

Models Regression

Highest R-square -

Main finding Specify important factors that impact recovery rates

Jacobs & Karagozoglu (2011)

Data 1985-2008, Corporate loans and bonds

Models Beta-link generalized linear model

Highest R-square 0.6119

Main finding Determine important factors in ultimate LGD

Jankowitsch et al. (2014)

Data 2002-2010, 2235 event/bond combinations

Models Linear Regression

Highest R-square 0.66

Main finding Determine important factors in LGD modeling

Mora (2015)

Data 1970-2008, 4422 instruments

Models Regression

Highest R-square 0.546

Main finding The macroeconomic factors act differentially at the industry level

Qi & Zhao (2011)

Data 1985-2008, 3751 loans and bonds from Moody’s URD

Models RT, NN, fractional response regression, Inverse Gaussian Regression

Highest R-square 0.576

Main finding Non-parametric methods outperform

Renault & Scaillet (2004)

Data 1981-1999, 623 bonds from S&P / PMD database)

Models Kernel estimation, Nonparametric, Monte Carlo

Highest R-square -

Main finding Important factors for LGD, recovery rates are far from being beta distributed

Rösch & Scheule (2014)

Data 1982-2009, 1,653 bonds default and recovery events

Models Tobit

Highest R-square -

Main finding Bond ratings, bond issue characteristics, bond issuer characteristics and macroeconomic variable

explain default probabilities and LGDs

Yao et al. (2015)

Data 1985-2012, 1413 bonds from Moody’s URD

Models Regression, Fractional Response Regression, Support Vector Regression, Two-stage Model

Highest R-square 0.7006

Main finding LS-SVR outperform, standard transformations of LGD do not improve prediction accuracy
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3.3.1 Support vector regression

Nazemi et al. (2018a) and Yao et al. (2015) have attempted to predict corporate bond

LGD using SVR techniques. Chalup and Mitschele (2008) argue that such techniques

are promising for finance applications because of their ability to deal with nonlinear

input data. Consequently, least-squares SVR (LS-SVR) as a ”kernelized” version of

the traditional linear regression is likely to yield a higher predictive capacity.

As demonstrated by Aizerman et al. (1996), Mercer’s theorem enables a computa-

tionally efficient calculation of a kernelized problem. Therefore, an appropriate kernel

function has to be chosen. The only prerequisites a kernel has to fulfill are to be posi-

tive semi-definite and to represent a similarity measure between pairs of input samples,

as explained by Chalup and Mitschele (2008). In particular, in all SVR models we use

the radial basis function kernel in the following form:

K(xi, xj) = exp

(
−||xi − xj||

2

2σ2

)
(3.1)

3.3.1.1 Least-squares support vector regression

In the following, we make use of three different LS-SVR models that we implement in

MATLAB. At first, we use the original LS-SVR set-up as proposed by Suykens and

Vandewalle (1999), where ω is the feature vector while b denotes the intercept. The

regularization parameter C normalizes the error terms u2
i and φ(x) is the kernel function

for mapping the features into the higher dimensional space as defined in equation (3.1).

N is the number of defaulted bonds while i is the number of the respective bond. The

model with a quadratic loss function is defined as:

min J(w, b, ui) =
1

2
||w||2 +

C

2

n∑
i=1

u2
i

s.t. lgdi = wTφ(Xi) + b+ ui, i = 1, ..., N

(3.2)

where Xi is explanatory variables for the LGD model that they consist of bond charac-

teristics, industry distress variables and principal components of macroeconomic vari-

ables.
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From Yao et al. (2015) we build two modifications of a LS-SVR. We model K differ-

ent seniority classes with different intercepts bk. We suppose there is some commonality

within the seniority classes that can be modeled by using different intercepts.

min J(w, bk, ukj) =
1

2
||w||2 +

1

2

K∑
k=1

b2
k +

C

2

K∑
k=1

nk∑
j=1

u2
kj

s.t. lgdi = wTφ(Xkj) + bk + ukj, j = 1, ..., nk, k = 1, ..., K

(3.3)

We also build a model wherein we map the influence of the different seniority classes

to be linear. zkj denotes the dummy variables for the seniority classes and β denotes

the fixed effect for each seniority class.

min J(w, b, ui) =
1

2
||w||2 +

1

2
βTβ +

1

2
b2 +

C

2

K∑
k=1

nk∑
j=1

u2
kj

s.t. lgdi = wTφ(Xkj) + βT zkj + b+ ukj, j = 1, ..., nk, k = 1, ..., K

(3.4)

where ω is the parameter vector of the associated explanatory variables for the LGD

model. When using an ε-insensitive loss function our optimization problem becomes

the following:

min
w,b,ui,u∗i

1

2
wTw + C

N∑
i=1

ui + C
N∑
i=1

u∗i

s.t. wTφ(Xi) + b− lgdi ≤ ε+ ui,

lgdi − wTφ(Xi)− b ≤ ε+ u∗i ,

ui, u
∗
i ≥ 0, i = 1, ..., N.

(3.5)

where ω denotes the weights of ε-SVR, b is the intercept, lgdi denotes the LGD, C is

the regularization parameter, ui and u∗i are the predicted errors, and ε is the threshold

for tolerated errors.

3.3.2 Regression tree

The basic idea of tree construction is to find subsets with maximum homogeneity or

cases that are located in a subset belonging only to one class of a target variable. At

each splitting step, tree algorithms split cases with independent variables that have

maximum homogeneity. The reduction of impurity that the split obtains is defined as

the quality of a split as:
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4i = i(v)− [π(l)i(vl) + π(r)i(vr)] (3.6)

where i() is impurity, π(l) and π(r) denote the proportions of observations that are

sent to the left child node (vl) or right child node (vr). In fact, tree algorithms select

the variable that allows for the best quality of a split. Finally, classification trees label

leaf nodes corresponding to the majority class of target variables. Regression trees

fit ŷi equal to the mean value of the dependent variable of observations at the leaf.

The main advantages of the regression tree are that they are (1) easy to understand,

(2) exhibit relatively robust behavior against outliers, and (3) are capable of modeling

nonlinearity.

3.3.3 Linear regression as a benchmark

We apply a linear regression model to analyze the LGD of US corporate bonds.5 Two

different model configurations regarding the covariates are tested. In the first model the

instrument specific variables, which are the seniority and the trading volume, are taken

into account. In this model, industry specific variables indicating whether the respec-

tive industry was in a state of distress in the year preceding the default are also used.

In another model we add the principal components calculated from the 104 macroeco-

nomic variables capturing 96% of the variance within the original macroeconomic data.

We propose the following linear regression model:

loss-given-default =α + ζ(bond characteristics) + γ(industry distress variables)

+ψ(Principal Components of many macroeconomic variables) + ε,

ε ∼ N(0, σ2)

(3.7)

3.3.4 Fuzzy decision fusion

Assume we have k different sources which are trained using d training datasets which

are not necessarily independent. Suppose hi(x) is the output of decision maker i about

the incoming data x, in which i = 1, . . . , k. A decision-fusion based model uses a

function, g(x), to combine the results of the base models and the output is used to

make the final decision. Therefore, the decision about the input data x is made in the

5 We use the built-in implementations from MATLAB for both linear regression and the regression
tree.
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following form:

F(x)=g(H(x)) (3.8)

In this function, H(x) is the vector containing the outputs of the base models. H(x) =

[h1(x), h2(x), . . . , hk(x)]

Decision fusion-based models seek to find the function g which suitably combines

the base models. One of the most often used combination functions found in the

literature is the following weighted linear combination

F(x)=
∑k

i=1Wihi(x) (3.9)

In this formula, Wi is the weight assigned to the ith model. In the linear combination,

we aim to find the best weights for the models. This could be applied at either the

training phase (static methods (Burduk and Walkowiak, 2015)) or the execution phase

(dynamic methods (Britto Jr et al., 2014; Dos Santos et al., 2008)). Dynamic methods

have shown higher accuracy in the literature due to their focus on the input data for

weighting models (Jurek et al., 2014).

Fuzzy decision fusion (Loskiewicz-Buczak et al. (1994)) can be applied as a com-

biner for the fusion of the outputs of base models. One of the main benefits of using

fuzzy logic is its ability to avoid crisp boundaries and its power in handling uncertainty.

In this paper we propose to train a fuzzy rule base which dynamically weights base

models regarding the data being analyzed.

Two phases are typically involved in the generation of fuzzy rules from numerical

data: how to partition a pattern space into fuzzy subspaces and how to define a fuzzy

rule for each fuzzy subspace (Nozaki et al. (1996)). First, the pattern space is parti-

tioned into some fuzzy subspaces. After this, one or more rules are defined for each

subspace created. Each rule makes a decision about any data taking into considera-

tion only the corresponding subspace. For making the final decision, the outputs of

all rules are suitably combined. One of the basic methods for partitioning the input

space is the simple fuzzy grid method (Ishibuchi et al. (1992)). This method suffers

from the disadvantage that the performance of the final rule base directly depends on

the chosen parameters for the partition sizes. Another disadvantage of this method

is that the number of generated rules might be enormous, especially in the case of
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high-dimensional and complex data.

In this paper, we implement the differential evolution (DE) algorithm in MATLAB

to create the fuzzy rule base in order to avoid the curse of dimensionality for fuzzy rule-

based models and generate an appropriate number of rules forming a high performing

rule base. DE, an optimization algorithm proposed by Storn et al. (1997), iteratively

optimizes a candidate solution seeking to find the globally optimized solution. In the

proposed methods, the same defuzzification formula which is selected for making the

final decision of the fuzzy rule base is used as the quality measure in the DE algorithm.

The partitioning of the input space is fully done by DE optimization algorithm. We

fix the number of generated rules in the DE algorithm.

The final constructed rule base contains R rules in the following form:

if x is C1 then [w1
1, w

1
2, . . . , w

1
k]

if x is C2 then [w2
1, w

2
2, . . . , w

2
k]

. . .

if x is CR then
[
wR1 , w

R
2 , . . . , w

R
k

]
(3.10)

where k is number of sources and Cr, r = 1, . . . , R is the center for rth rule. [wr1, w
r
2, . . . , w

r
k]

is the vector of weights that the rth rule assigns to the base models. Figure 3.1 shows

the steps for creating the fuzzy rule base.

When unseen data arrive and must be analyzed, its membership value to each rule

is calculated. Membership value of each data to each rule is calculated as the inverse

of the distance from the center of the rule indicated by the antecedent part of the rule.

Several defuzzification formulas can be used in order to get the final results from the

fuzzy rule base. We use four different types of defuzzification formula: maximum for-

mula, maximum of maximums, mean formula, and mean of maximum formulas. Below

we describe each.

Maximum formula: A rule with maximum membership value is selected and the

vector of weights provided by the selected rule is used for fusing the results of the base

models as:
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Figure 3.1: The steps for creating fuzzy rule base

F (x) =
ωrmax ∗H(x)∑k

i=1 ω
rmax
i

(3.11)

where H(x) = [H1(x), H2(x), . . . , Hk(x)].

Maximum of maximums: A rule with maximum membership value is selected to

provide the final output for the data in this type of defuzzification. The output of the

rule is the result of the source with maximum weight as:

F(x)=Hargmax (ωrmax ) (x) (3.12)

Mean formula: With this type of defuzzification, the mean result of different rules

for each data is selected as the final decision in the following form:

F (x) =

∑R
i=1 ω

ri ∗H(x)

k ∗R
(3.13)

Mean of maximums formula: The mean result of different rules for each data is

selected as the final decision. Each rule provides its output as the result of base model
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with maximum weight as:

F (x) =

∑
Hargmax (ωrmax ) (x)

R
(3.14)

In this way we dynamically weight base models and benefit from fusion of all base

models instead of selecting only one.

3.4 Data

In our initial dataset we obtained 794 U.S. default events from the Standard & Poor’s

Capital IQ database that occurred from 2002 to 2012. Then we filtered for events

when the issuer filed for a bankruptcy under either Chapter 7 or Chapter 11 under

the U.S. bankruptcy code. Moreover, we included bonds of issuers that Standard &

Poor’s had assigned a rating of ’D’ (default) or ’SD’ (selective default). We restrict our

analysis to straight bonds denominated in US dollars and have a face value of at least

USD 5 million. Based on TRACE data the respective recovery rates are calculated

as volume-weighted average trading prices in the 30 days following the default. Our

macroeconomic variables are obtained from the Federal Reserve Bank of St. Louis

(FRED, Federal Reserve Economic Data). The number of defaulted bonds, industry

and stock variables are retrieved from Bloomberg.

The issuers of the bonds in our dataset operate in the following wide range of

industries: utilities, energy, financial services, information technology, industry, con-

sumer discretionary, consumer staples, raw materials and telecommunications. Eigh-

teen bonds were excluded from our dataset for one of the following reasons: the data

were corrupt, no industry could be retrieved or the company type was neither private

nor public. As a consequence, 776 defaulted bonds remained for our analysis. Table 3.2

presents the frequency and the descriptive statistics for each industry. The frequency

and summarized statistics of all seniorities are listed in Table 3.3. The frequency and

density of recovery rates for all observations are shown in Figure 3.2.
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Table 3.2: Descriptive Statistics of recovery rates across industry characteristics

Industry # of defaults # of firms Median Mean Std. Dev.

Utilities 31 7 63,37 64,15 24,18

Financials 269 18 25,92 36,55 25,87

Materials 43 16 35,89 41,51 27,51

Communications 120 23 22,42 38,35 35,59

Consumer, cycl. 190 58 31,14 38,34 26,73

Consumer, non-cycl. 27 17 27,56 36,36 30,38

Energy 22 12 45,05 53,09 25,92

Technology 8 3 45,67 51,05 34,15

Industrial 66 28 55,51 52,12 36,34

Overall 776 128 32,97 40,58 29,67

Table 3.3: Descriptive Statistics of recovery rates for each seniority

Subord SenSub SenUn SenSec Total

Mean RR 7.96% 34.23% 39.11% 67.77% 40.58%

σ 6.58% 31.97% 27.34% 32.37% 29.69%

q0.1 1.78% 2.14% 9.42% 10.32% 5.91%

q0.25 2.06% 7.08% 16.41% 49.48% 15.51%

Median RR 4.32% 24.13% 30.59% 74.03% 32.97%

q0.75 15.61% 53.67% 62.69% 94.00% 65.58%

q0.9 17.22% 84.09% 77.58% 101.29% 84.68%

# of Values 11 96 601 68 776

% of Values 1.42% 12.37% 77.45% 8.76% 100%
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Figure 3.2: The frequency and density of recovery rates (RR)

3.5 Experimental results

We apply a stratified sampling strategy in order to have the same ratios of different

bond seniorities in each split of the cross validation. A five folds cross validation is

executed for the selection of the SVR hyperparameters. Following Hsu et al. (2003), we

scaled explanatory variables to the interval [0,1] for preventing computation problems

in the LS-SVM fitting. To ensure the robustness of the results, the performance metrics

are obtained from the five folds cross validations. The cross validation performance

metrics, the root mean squared error (RMSE), the adjusted coefficient of determination

(Adj. R2) and the mean absolute error (MAE) on the testing sets are reported.

The included variables have been chosen based on a review of the literature. For

the basic model (1) the explanatory variables Xi are the bond characteristics and dum-

mies indicating industry distress. In particular, we include the seniority class of the

bond in the capital structure, the amount of the bond’s trading volume and dummy

variables for each of the following sectors: utility, financial, telecommunication, con-

sumer cyclical and industrial. Moreover, we include two variables measuring whether

the respective industry is in distress. One industry distress variable indicates whether
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industry’s sales growth in the year before the default was negative. The other industry

distress variables indicates whether the performance of the industry index in the year

before the default was worse than -30%.

We include the extensive range of macroeconomic factors such as credit market

factors, stock market indices, international competitiveness, financial conditions, busi-

ness cycle conditions and micro-level factors shown in Table 4. We add the principal

components derived from these macroeconomic measures to our model. Moreover, as

the historical distributions of the macroeconomic factors are not necessarily normal, in

order to improve the performance of LGD model each factor distribution is modelled

by a Box-Cox transformation. We check the prediction accuracy of six base models

with the different number of principal component of macroeconomic variables from 1

to 20. Between these 20 iterations, the best base model has the highest adjusted R-

squared with eight principal components of macroeconomic factors. In model (1) we

considered the bond characteristics as independent variables. In models (2) and (3) we

added the first eight principal components of more than 100 macroeconomic variables

but in model (2) we use the Box-Cox transformation.

Box and Cox (1964) present how to transform a variable to approximately normal

distribution. They defined the following transformation:

Transformed MacroFactor=


(MacroFactorλ−1)

λ
λ 6= 0

log(MacroFactor) λ = 0
(3.15)

where λ is the unknown power transformation parameter. The fuzzy rule base is trained

using the DE algorithm which is set to generate 15 rules. We ran the algorithm by

setting different values to the number of rules from 5 to 40. Between all the 36 values in

this range, the mean best results were obtained by the value of 15. Each rule refers to

one partition in the input space and specifies a weight for each base model. Four types

of defuzzification formulas defined in Section 3.3 –maximum formula, maximium of

maximums formula, mean formula, and mean of maximum formula –are used to train

the four types of fuzzy rules. The different results are compared. In order to apply the

algorithm, all six base algorithms are trained and the final trained model is then stored.

Table 3.5 provides the mean and standard deviations of R2, Adj. R2, RMSE and
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Table 3.4: Macroeconomic and financial predictor variables for principal components

Equity indexes and respective volatilities

S&P 500 S&P 500 Vol

Russell 2000 Russell 2000 Vol

Nasdaq 100 Nasdaq 100 Vol

S&P small cap index S&P small cap index Vol

Dow Jones industrial average Vol

Cost of resource and capital

PPI interm. energy goods PPI crude energy materials

PPI industrial commodities PPI all commodities

PPI finished goods PPI intermediate materials

AAA corporate bond yield BAA corporate bond yield

Corporate yield spread Bank prime loan rate

30 year mortgage rate S&P small cap index

Effective federal funds rate Term structure spread

1 month commercial paper rate 3 month commercial paper rate

Wages/cost factors

Employment cost index: wages & salaries Employment cost index: benefits

Employee compensation index Total wages & salaries

Management salaries Durable manufacturing wages

Non-durable manufacturing wages Unit labor cost: non-farm business

Unit labor cost: manufacturing

Profitability measures

Net corporate dividends Corp. profits

Corporate net cash flow After tax earnings

Business cycle and macro indicators

New building permits Housing starts

New houses sold Non-farm housing starts

New orders: durable goods New orders: capital goods

Inventory/sales-ratio Capacity util. manufacturing

Change in private inventories Capacity util. total industry

Inventories: total business Light weight vehicle sales

Final sales to domestic buyers Real GDP

Civilian employment Employment/population-ratio

Unemployment rate Unemployed, more than 15 weeks

Total no unemployed Weekly hours worked

Private fixed investments Real disposable personal income

ISM manufacturing index Industr. production index

Uni Michigan consumer sentiment Final sale of dom. product

National income Personal Income

Manuf. industry output Consumption expenditure

Manuf. industry production Expenditure durable goods

Government expenditure Gross private domestic investment

M2 money stock CPI: all items less food

Personal savings Personal savings rate

Gross saving Uni Michigan¡ infl. expectations

CPI: energy index GDP deflator, implicit

International Competitiveness

Real exports goods, services Real imports goods & services

Balance on merchandise trade Trade weighted USD (Dollar Index)

FX index major trading partners Current account balance

Financial Conditions

Total loans and leases, all banks Total commercial loans

Total consumer credit outst. Total net loan charge-offs

Total borrowings from federal reserve Total real estate loans

Household obligations/income Commercial & industrial loans

Non-performing loans ratio Non-performing loans ratio small banks

Non-perf. commercial loans Net loan losses

Bank loans and investments Household debt service payments

Federal debt of non-fin. industry Loan loss reserves

Excess reserves of dep. institutions Return on bank equity
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MAE for the five folds cross-validation. The best performing model according to each

metric is underlined in Table 3.5. Although all of the performance metrics listed above

are useful measures, the most popular is the coefficient of determination R2 or Adj.

R2 to compare model performance.

The Adj. R2 of the basic model varies from about 2% to 29%. It can be observed

that the maximum defuzzification fuzzy has the best accuracy performance in terms

of R2, Adj. R2 and RMSE. This result is also consistent with the findings in Yao

et al. (2015), Hartmann-Wendels et al. (2014), Qi and Zhao (2011), Loterman et al

(2011) and Bastos (2010) who showed that non-parametric models outperformed the

parametric models for LGD prediction.

Table 3.6 presents p-values of right side the Mann-Whitney U test for difference

of Adj. R2 and pair wise t-tests for RMSE and MAE differences between model (3)

compared to model (1) and model (2). From the table it can be seen that there is sig-

nificant outperformance for all advanced models compared to the 10 basic models for

all performance metrics. Leow et al. (2014), Bellotti and Crook (2012), and Tobback

et al (2014) report that the adding of macroeconomic factors improves the predictive

performance of the LGD models.

Investigating the effects of the Box-Cox transformation of macroeconomic factors

in LGD models, we find the performance of all fuzzy models become noticeably worse

if the Box-Cox transformation is not made. However, Yao et al. (2015) report logistic

and beta transformations of LGD do not improve prediction accuracy of SVR models.

On the other hand, the prediction accuracy of the regression model was improved by

using the Box-Cox transformation significantly.

In Tables 3.7 and 3.8 we provide the t-values of paired t-tests for differences between

the RMSE and MAE between the different models with the independent variables of

model (3) and model (2). Also, the p-values of the left side Mann-Whitney U test for

difference of Adj. R2 between the different model configurations are reported in Table

3.7 and 3.8. Fuzzy models have higher out-of-sample prediction accuracies compared

to SVR models, regression trees and OLS regressions when applied to LGD modeling

of US corporate bonds. In model (3), the mean for the maximum defuzzification ap-

proach in the fuzzy rule-based model illustrates higher predictive accuracy compared
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Table 3.5: Performance measures from cross validation and the respective standard devia-

tions for the models. The independent variables we have used in model (1) are basic variables

of our model. In model (2) and (3), we add the first 8 principal components of 104 macroe-

conomic variables but in model (2), we use Box-Cox transformation. The best performing

model according to each metric is underlined. (Reg. Tree: Regression Tree; Lin. Reg.: Linear

Regression; ε− insensitive: ε- Support Vector Regression; LS-SVR: Least Squared Support

Vector Regression; LS-SVR DB: Least Squared Support Vector Regression with Different In-

tercepts; SP LS-SVR: Semi-Parametric Least Squared Support Vector Regression; Max DE

Fuzzy: Maximum DE Fuzzy; Mean of Max DE Fuzzy: Mean of maximums DE Fuzzy; Max

of Max DE Fuzzy: Maximum of maximums DE Fuzzy; Mean DE Fuzzy)

Model (1) R2 σR2 Adj. R2 σAdj.R2 RMSE σRMSE MAE σMAE

Reg. Tree 0.2543 0.5136 0.2330 0.0305 25.8343 0.0296 21.3529 0.4832

Lin. Reg. 0.1725 0.2639 0.1490 0.0164 27.2167 0.0160 23.0692 0.2291

ε− insensitive 0.0217 0.5318 0.0164 0.0365 29.7410 0.0354 24.3843 0.2440

LS − SV R 0.2267 0.3955 0.2046 0.0239 26.3105 0.0232 21.3177 0.3161

LS − SV R DB 0.2287 0.3910 0.2067 0.0236 26.2754 0.0229 21.2836 0.3139

SP LS − SV R 0.2343 0.4939 0.2125 0.0296 26.1780 0.0288 21.3155 0.3943

MaxDE Fuzzy 0.2980 0.4526 0.2781 0.0260 25.0656 0.0259 20.3001 0.4942

MeanofMaxDE Fuzzy 0.2730 0.4927 0.2523 0.0288 25.5084 0.0280 20.2374 0.3703

MaxofMaxDE Fuzzy 0.2765 0.4861 0,2558 0.0284 25.4479 0.0277 20.9918 0.3088

MeanDE Fuzzy 0.2955 0.5277 0.2754 0.0305 25.1099 0.0296 20.2581 0.4507

Model (2) R2 σR2 Adj. R2 σAdj.R2 RMSE σRMSE MAE σMAE

Reg. Tree 0.4113 0.6713 0.3791 0.0366 22.9507 0.0347 15.7887 0.5954

Lin. Reg. 0.4019 0.1279 0.3693 0.0070 23.1395 0.0066 18.4335 0.1211

ε− insensitive 0.1875 0.6078 0.1432 0.0386 26.9657 0.0366 21.4519 0.2823

LS − SV R 0.5475 0.4048 0.5228 0.0192 20.1247 0.0182 13.8080 0.2025

LS − SV R DB 0.5539 0.4110 0.5296 0.0194 19.9814 0.0184 13.7305 0.2052

SP LS − SV R 0.6334 0.5277 0.6133 0.0227 18.1117 0.0215 12.4752 0.3047

MaxDE Fuzzy 0.6473 0.5044 0.6303 0.0210 17.7632 0.0200 12.1853 0.4147

MeanofMaxDE Fuzzy 0.6425 0.5499 0.6252 0.0232 17.8843 0.0221 12.2273 0.2589

MaxofMaxDE Fuzzy 0.6524 0.3777 0.6356 0.0156 17.6365 0.0149 12.3118 0.4490

MeanDE Fuzzy 0.6425 0.3676 0.6251 0.0154 17.8883 0.0147 12.1763 0.4640

Model (3) R2 σR2 Adj. R2 σAdj.R2 RMSE σRMSE MAE σMAE

Reg. Tree 0.4336 0.4915 0.4175 0.0254 22.5137 0.0247 15.1820 0.5507

Lin. Reg. 0.3734 0.2352 0.3555 0.0128 23.6840 0.0124 18.7640 0.1435

ε− insensitive 0.1663 0.4577 0.1425 0.0287 27.3179 0.0279 21.7560 0.2093

LS − SV R 0.5172 0.3894 0.5035 0.0186 20.7865 0.0181 14.9632 0.2993

LS − SV R DB 0.5381 0.3867 0.5249 0.0181 20.3322 0.0176 14.4175 0.3162

SP LS − SV R 0.6492 0.6281 0.6392 0.0256 17.7132 0.0249 11.9941 0.3891

MaxDE Fuzzy 0.6602 0.5869 0.6438 0.0240 17.4332 0.0229 11.8842 0.5871

MeanofMaxDE Fuzzy 0.6621 0.6892 0.6457 0.0283 17.3832 0.0270 11.7114 0.4764

MaxofMaxDE Fuzzy 0.6617 0.5088 0.6453 0.0208 17.3983 0.0198 12.0072 0.4217

MeanDE Fuzzy 0.6597 0.4430 0.6432 0.0182 17.4495 0.0173 11.7981 0.5213
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Table 3.6: Paired t-test for differences of the RMSE and MAE between the respective

models comparing the models using independent variables model (3) in Table 4 with the

models using independent variables from models (1) and (2) in Table 4. The p-values of the

right side Mann-Whitney U test for difference of Adj. R2 between the same models report.

A small p-value indicates that the model (3) Adj. R2 of related technique is higher than

the model (1) or (2) and a p-value nearby 1 indicates that the model (3) Adj. R2 of related

technique is significantly lower than the model (1) or (2). Statistical significance on the 99%

level is indicated with ** and significance on the 95% level is indicated with *.

Model (1) Reg. Tree Lin. Reg. ε− insensitive LS − SV R LS − SV R DB

RMSE -9.7969** -101.1875** -13.4966** -38.2998** -42.086**

MAE -18.6766** -99.2179** -21.5918** -49.6014** -47.6485**

Adj. R2 0.00397** 0.00397** 0.00397** 0.00397** 0.00397**

Model (1) SP LS − SV R Max DE Fuzzy MeanOfMax DE Fuzzy MaxOfMax DE Fuzzy Mean DE Fuzzy

RMSE -46.0092** -31.9176** -25.6815** -35.2149** -32.4535**

MAE -46.592** -22.9743** -30.7784** -46.0412** -28.493**

Adj. R2 0.00397** 0.00397** 0.00397** 0.00397** 0.00397**

Model (2) Reg. Tree Lin. Reg. ε− insensitive LS − SV R LS − SV R DB

RMSE -1.0237 9.4929** 4.154* 6.5802** 3.8881*

MAE -1.2916 8.6686** 7.7986** 15.0589** 10.8452

Adj. R2 0.2103 1(**) 0.8889 0.9921(**) 0.8452

Model (2) SP LS − SV R Max DE Fuzzy MeanOfMax DE Fuzzy MaxOfMax DE Fuzzy Mean DE Fuzzy

RMSE -2.5936 -2.3624 -2.022 -2.079 -5.1372**

MAE -5.2204** -2.3962 -2.659 -2.0798 -3.512*

Adj. R2 0.2738 0.2103 0.1111 0.1548 0.1111
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to the other SVR models.

Table 3.9 presents the five variables with the biggest influence on the first eight prin-

cipal components of the 104 macroeconomic variables. The first principal component

mainly incorporates housing indicators. As our sample period includes the financial

and housing crisis of 2007/8 we can interpret the first principal component as a crisis

indicator. The second principal component mainly incorporates information about the

real economy from an output perspective while the third principal component includes

mainly information about corporate profits. The fourth component is driven mainly

on interest rates and inflation variables although a mix of variables contributes to the

fifth component. The sixth principal component includes mostly by the stock markets

and the other principal components are a mix of macroeconomic variables. However,

it is difficult to interpret the large number of economic indicators that are entering the

model.

As we do not have access to the database of other researchers, it is not possible to

compare predictive abilities of our results with their results. We show that the fuzzy

decision fusion approach has higher prediction accuracy than SVR models used by Yao

et al. (2015). For example, best performance of our proposed model on the dataset

with principal components of macroeconomic variables is for Mean of Max DE fuzzy

with R-squared 0.662. The corresponding best performance for single models is for SP

LS-SVR with R-squared 0.649. The closest LGD distribution from the study Loterman

et al. (2012) to our data set is their fifth data set. They reported non-parametric meth-

ods outperform for LGD analysis and the highest R-squared value is 0.3486. Loterman

et al. (2012) reported that the best model for the distribution of a certain shape may

not necessarily be the best for other distributions. As our LGD distribution is different

from the study by Yao et al. (2015), we cannot say that fuzzy fusion techniques would

have better prediction accuracy than SVRs for their data. However, this improvement

also comes with some practical limitations. As mentioned before, all base models are

needed to be trained and stored before training the fuzzy model. The number of rules

in the rule base is also one of the parameters which needs to be tuned in advanced. This

limitation could be overcome, not omitted by using some more advanced algorithms

which tune the number of rules along with training the fuzzy rule base.
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Table 3.7: Paired t-tests for differences of the RMSE and MAE between the different models

with the independent variables of model (3) in Table 3.5. For RMSE and MAE the value of

the t-statistic is positive when the model in the row is better than the model in the respective

column. The p-values of the left side Mann-Whitney U test for difference of Adj. R2 between

the same models are reported. A small p-value indicates that the Adj. R2 of the model of

the related row is higher than the Adj. R2 of the model of related column and vice versa.

Statistical significance on the 99% level is indicated with ** and significance on the 95% level

is indicated with *.

RMSE 1 2 3 4 5 6 7 8 9

Reg. Tree (1)

Lin. Reg. (2) -0.62

ε− insensitive (3) -12.97** -16.13**

LS − SV R (4) 6.80** 22.52** 28.25**

LS − SV R DB (5) 7.07** 23.06** 27.99** 16.52**

SP LS − SV R (6) 10.63** 23.83** 26.41** 12.41** 11.90**

MaxDE Fuzzy (7) 11.82** 28.15** 30.92** 18.89** 18.44** 7.45**

MeanofMaxDE Fuzzy (8) 11.36** 23.34** 27.44** 11.80** 11.25** 4.96** -1.63

MaxofMaxDE Fuzzy (9) 13.45** 40.98** 31.73** 22.74** 22.45** 5.18** 1.68 2.04

MeanDE Fuzzy (10) 13.06** 40.95** 32.30** 21.54** 20.99** 2.14 -1.74 -0.03 -17.81**

MAE 1 2 3 4 5 6 7 8 9

Reg. Tree (1)

Lin. Reg. (2) -10.09**

ε− insensitive (3) -16.90** -18.95**

LS − SV R (4) 5.67** 42.80** 56.16**

LS − SV R DB (5) 5.89** 43.11** 54.64** 11.90**

SP LS − SV R (6) 8.64** 42.26** 46.83** 23.22** 23.61**

MaxDE Fuzzy (7) 9.62** 34.49** 35.82** 11.83** 11.75** 2.86*

MeanofMaxDE Fuzzy (8) 10.60** 76.31** 47.92** 16.06** 15.18** 1.54 -0.27

MaxofMaxDE Fuzzy (9) 8.32** 33.57** 34.43** 10.83** 10.52** 1.82 -1.31 -0.73

MeanDE Fuzzy (10) 8.51** 31.28** 36.63** 12.10** 11.84** 3.27* 0.12 0.34 2.11

Adj. R2 1 2 3 4 5 6 7 8 9

Reg. Tree (1)

Lin. Reg. (2) 1(**)

ε− insensitive (3) 1(**) 1(**)

LS − SV R (4) 0.004** 0.004** 0.004**

LS − SV R DB (5) 0.004** 0.004** 0.004** 0.075

SP LS − SV R (6) 0.004** 0.004** 0.004** 0.004** 0.004**

MaxDE Fuzzy (7) 0.004** 0.004** 0.004** 0.004** 0.004** 0.274

MeanofMaxDE Fuzzy (8) 0.004** 0.004** 0.004** 0.004** 0.004** 0.210 0.5

MaxofMaxDE Fuzzy (9) 0.004** 0.004** 0.004** 0.004** 0.004** 0.210 0.421 0.727

MeanDE Fuzzy (10) 0.004** 0.004** 0.004** 0.004** 0.004** 0.273 0.5 0.790 0.579
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Table 3.8: Paired t-tests for differences of the RMSE and MAE between the different models

with the independent variables of model (2) in Table 3.5. For RMSE and MAE the value of

the t-statistic is positive when the model in the row is better than the model in the respective

column. The p-values of the left side Mann-Whitney U test for difference of Adj. R2 between

the same models are reported. A small p-value indicates that the Adj. R2 of the model of

the related row is higher than the Adj. R2 of the model of related column and vice versa.

Statistical significance on the 99% level is indicated with ** and significance on the 95% level

is indicated with *.

RMSE 1 2 3 4 5 6 7 8 9

Reg. Tree (1)

Lin. Reg. (2) -5.41**

ε− insensitive (3) -15.07** -21.13**

LS − SV R (4) 6.25** 23.61** 99.73**

LS − SV R DB (5) 8.21** 29.19** 82.93** 23.58**

SP LS − SV R (6) 15.01** 24.89** 34.32** 13.71** 12.53**

MaxDE Fuzzy (7) 17.42** 28.71** 38.94** 17.00** 15.99** 7.46**

MeanofMaxDE Fuzzy (8) 15.42** 23.28** 28.43** 11.77** 10.82** 3.81* 0.44

MaxofMaxDE Fuzzy (9) 18.83** 36.69** 45.63** 21.63** 21.03** 4.12* 0.69 -0.11

MeanDE Fuzzy (10) 21.46** 44.41** 43.44** 20.54** 19.97** 2.46 -0.19 -0.47 -1.02

MAE 1 2 3 4 5 6 7 8 9

Reg. Tree (1)

Lin. Reg. (2) -12.93**

ε− insensitive (3) -30.57** -26.14**

LS − SV R (4) 1.137 31.94** 60.06**

LS − SV R DB (5) 2.16 32.77** 58.36** 18.49**

SP LS − SV R (6) 28.30** 36.30** 59.18** 30.39** 26.35**

MaxDE Fuzzy (7) 13.90** 27.43** 34.71** 15.49** 13.56** 0.68

MeanofMaxDE Fuzzy (8) 20.81** 32.93** 43.91** 23.01** 20.78** 3.60* 1.64

MaxofMaxDE Fuzzy (9) 25.32** 34.49** 52.64** 27.88** 24.60** -0.53 -0.86 -5.25**

MeanDE Fuzzy (10) 23.29** 29.89** 44.11** 23.81** 22.05** 2.18 0.59 -1.39 4.02*

Adj. R2 1 2 3 4 5 6 7 8 9

Reg. Tree (1)

Lin. Reg. (2) 0.789

ε− insensitive (3) 1(**) 1(**)

LS − SV R (4) 0.004** 0.004** 0.004**

LS − SV R DB (5) 0.004** 0.004** 0.004** 0.274

SP LS − SV R (6) 0.004** 0.004** 0.004** 0.004** 0.004**

MaxDE Fuzzy (7) 0.004** 0.004** 0.004** 0.004** 0.004** 0.210

MeanofMaxDE Fuzzy (8) 0.004** 0.004** 0.004** 0.004** 0.004** 0.210 0.655

MaxofMaxDE Fuzzy (9) 0.004** 0.004** 0.004** 0.004** 0.004** 0.111 0.421 0.274

MeanDE Fuzzy (10) 0.004** 0.004** 0.004** 0.004** 0.004** 0.274 0.726 0.5 0.845

57



T
a
b
le

3
.9
:

T
h

e
fi

v
e

va
ri

ab
le

s
w

it
h

th
e

b
ig

ge
st

in
fl

u
en

ce
on

ea
ch

of
th

e
8

p
ri

n
ci

p
al

co
m

p
on

en
ts

V
a
ri

a
b

le
P

C
1

V
a
ri

a
b

le
P

C
2

N
o
n

p
er

fo
rm

in
g

L
o
a
n

s
to

T
o
ta

l
L

o
a
n

s
0
.1

3
9
8

R
ea

l
G

ro
ss

D
o
m

es
ti

c
P

ro
d

u
ct

,
3

D
ec

im
a
l

-0
.1

8
0
3

H
o
u

si
n

g
S

ta
rt

s:
T

o
ta

l:
N

ew
P

ri
v
a
te

ly
O

w
n

ed
H

o
u

si
n

g
U

n
it

s
S

ta
rt

ed
-0

.1
3
9
6

R
ea

l
F

in
a
l

S
a
le

s
o
f

D
o
m

es
ti

c
P

ro
d

u
ct

-0
.1

6
5
3

N
ew

P
ri

v
a
te

H
o
u

si
n

g
U

n
it

s
A

u
th

o
ri

ze
d

b
y

B
u

il
d

in
g

P
er

m
it

s
-0

.1
3
7
8

P
ro

d
u

ce
r

P
ri

ce
In

d
ex

b
y

C
o
m

m
o
d

it
y

In
te

rm
ed

ia
te

E
n

er
g
y

-0
.1

6
5
0

H
o
u

si
n

g
S

ta
rt

s:
T

o
ta

l:
N

ew
P

ri
v
a
te

ly
O

w
n

ed
H

o
u

si
n

g
U

n
it

s
S

ta
rt

ed
-0

.1
3
6
7

R
ea

l
im

p
o
rt

s
o
f

g
o
o
d

s
a
n

d
se

rv
ic

es
-0

.1
6
4
8

N
ew

O
n

e
F

a
m

il
y

H
o
u

se
s

S
o
ld

:
U

n
it

ed
S

ta
te

s
-0

.1
3
5
7

P
ro

d
u

ce
r

P
ri

ce
In

d
ex

b
y

C
o
m

m
o
d

it
y

In
d

u
st

ri
a
l

C
o
m

m
o
d

it
ie

s
-0

.1
6
3
8

V
a
ri

a
b

le
P

C
3

V
a
ri

a
b

le
P

C
4

IS
M

M
a
n
u

fa
ct

u
ri

n
g
:

P
M

I
C

o
m

p
o
si

te
In

d
ex

-0
.2

2
9
0

M
o
o
d

y
’s

S
ea

so
n

ed
A

a
a

C
o
rp

o
ra

te
B

o
n

d
Y

ie
ld

0
.2

5
8
9

C
o
rp

o
ra

te
P

ro
fi

ts
A

ft
er

T
a
x

(w
it

h
IV

A
a
n

d
C

C
A

d
j)

-0
.2

0
8
7

U
n

iv
er

si
ty

o
f

M
ic

h
ig

a
n

In
fl

a
ti

o
n

E
x
p

ec
ta

ti
o
n

0
.2

3
5
8

C
o
rp

o
ra

te
P

ro
fi

ts
A

ft
er

T
a
x

(w
it

h
o
u

t
IV

A
a
n

d
C

C
A

d
j)

-0
.2

0
2
7

1
0
-Y

ea
r

T
re

a
su

ry
C

o
n

st
a
n
t

M
a
tu

ri
ty

R
a
te

0
.2

2
7
7

H
o
u

se
h

o
ld

F
in

a
n

ci
a
l

O
b

li
g
a
ti

o
n

s
a
s

a
p

er
ce

n
t

o
f

D
is

p
o
sa

b
le

P
er

so
n

a
l

In
co

m
e

0
.1

9
9
3

G
ro

ss
S

a
v
in

g
-0

.2
0
3
2

C
o
m

m
er

ci
a
l

a
n

d
In

d
u

st
ri

a
l

L
o
a
n

s,
A

ll
C

o
m

m
er

ci
a
l

B
a
n

k
s

0
.1

9
7
3

3
0
-Y

ea
r

C
o
n
v
en

ti
o
n

a
l

M
o
rt

g
a
g
e

R
a
te

0
.1

9
7
4

V
a
ri

a
b

le
P

C
5

V
a
ri

a
b

le
P

C
6

N
A

S
D

A
Q

1
0
0

In
d

ex
0
.3

4
1
4

M
o
o
d

y
’s

S
ea

so
n

ed
B

a
a

C
o
rp

o
ra

te
B

o
n

d
Y

ie
ld

0
.5

7
9
2

M
o
o
d

y
’s

S
ea

so
n

ed
B

a
a

C
o
rp

o
ra

te
B

o
n

d
Y

ie
ld

-0
.3

0
9
7

N
A

S
D

A
Q

1
0
0

In
d

ex
-0

.5
2
3
4

T
er

m
S

tr
u

ct
u

re
-0

.2
0
5
3

V
o
l

S
&

P
5
0
0

-0
.2

1
2
6

U
n

iv
er

si
ty

o
f

M
ic

h
ig

a
n

In
fl

a
ti

o
n

E
x
p

ec
ta

ti
o
n

-0
.2

0
4
3

R
u

ss
el

l
2
0
0
0

V
o
l

1
m

-0
.1

8
1
5

P
ro

d
u

ce
r

P
ri

ce
In

d
ex

b
y

C
o
m

m
o
d

it
y

fo
r

C
ru

d
e

E
n

er
g
y

M
a
te

ri
a
ls

-0
.1

7
8
7

C
B

O
E

N
A

S
D

A
Q

1
0
0

V
o
la

ti
li
ty

In
d

ex
-0

.1
7
8
0

V
a
ri

a
b

le
P

C
7

V
a
ri

a
b

le
P

C
8

U
n

iv
er

si
ty

o
f

M
ic

h
ig

a
n

In
fl

a
ti

o
n

E
x
p

ec
ta

ti
o
n

0
.3

2
0
3

P
er

so
n

a
l

S
a
v
in

g
R

a
te

0
.2

7
2
6

T
o
ta

l
B

o
rr

o
w

in
g
s

o
f

D
ep

o
si

to
ry

In
st

it
u

ti
o
n

s
fr

o
m

th
e

F
ed

er
a
l

R
es

er
v
e

-0
.2

7
0
8

C
o
rp

o
ra

te
P

ro
fi

ts
A

ft
er

T
a
x

(w
it

h
o
u

t
IV

A
a
n

d
C

C
A

d
j)

-0
.2

5
6
7

P
er

so
n

a
l

S
a
v
in

g
0
.2

2
3
6

C
o
rp

o
ra

te
P

ro
fi

ts
A

ft
er

T
a
x

(w
it

h
IV

A
a
n

d
C

C
A

d
j)

-0
.2

5
4
4

P
er

so
n

a
l

S
a
v
in

g
R

a
te

0
.2

1
8
4

R
u

ss
el

l
2
0
0
0

V
o
l

1
m

-0
.2

5
1
5

N
o
n

p
er

fo
rm

in
g

C
o
m

m
er

ci
a
l

L
o
a
n

s
to

C
o
m

m
er

ci
a
l

L
o
a
n

s
-0

.1
8
4
0

V
o
l

S
&

P
5
0
0

-0
.2

4
1
3

58



The performance of all techniques improves by adding principal components of

macroeconomic variables to the LGD model as explanatory variables in model (2) and

model (3). For example, the Adj. R2 of regression model increases from 15% to 36%

just by adding the principal components of macroeconomic factors.

3.6 Conclusions

To the best of our knowledge, there is no study that applies and compares fuzzy tech-

niques for predicting the LGD of corporate bonds. In this paper, we compare the

predictive performance of fuzzy techniques with SVR methods, regression trees and

OLS regressions to predict corporate bond LGD. Fuzzy rule-based models have shown

to be strong function approximators. Our findings suggest that fuzzy rule-based mod-

els are more accurate than other methods identified in the literature for predicting

LGD for defaulted corporate bonds. Adding the principal components derived from

104 macroeconomic measures improve the predictive accuracy of the SVR and fuzzy

models. We use a meta heuristic DE algorithm to create an optimized fuzzy rule

base with an appropriate number of rules to deal with the complex benchmark data.

Moreover, although the Box-Cox transformation of macroeconomic factors improves

the accuracy of the regression model, it does not improve the performance accuracy of

fuzzy techniques.

The results reported in this paper suggest more accurate ways for computing the

regulatory capital required by Basel Accords for banks searching for a more precise

method to predict LGD for corporate bonds.
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Chapter 4

Intertemporal defaulted bond

recoveries prediction via machine

learning

This chapter is joint work with Dr. Abdolreza Nazemi1 and Prof. Frank J. Fabozzi2

from the unpublished working paper with the same title.3

4.1 Introduction

Under the advanced internal ratings-based approach the Basel II/III accords allow fi-

nancial institutions to use their own estimates for the credit risk parameters. Thus,

accurate and reliable estimates of the credit risk parameters probability of default,

recovery rate, and exposure at default are needed. Traditionally, in credit risk anal-

ysis much attention has been paid to the probability of default while the recovery

rate has been set to constant values not taking into account its time variation and its

cross-sectional variation. In particular, the time variation of recovery rates has been

neglected in the literature.

The most recent studies have examined out-of-sample or in-sample settings to an-

alyze the determinants of recovery rates. According to Kalotay and Altman (2017)

the applicability of out-of-sample estimation to the field of recovery rate prediction is

questionable. In particular, k-fold cross validation is commonly used for performance

1 School of Economics and Business Engineering, Karlsruhe Institute of Technology
2 EDHEC Business School, Nice, France
3 Section 4.6 is not part of this working paper.



measurement. During k-fold cross validation the dataset is randomly divided into k

subsamples. Each subsample is used for out-of-sample prediction once while the respec-

tively remaining k -1 subsamples are used for training. The performance measurement

is obtained as average of the predictions for the k -th subsample.

Even though both out-of-time and out-of-sample estimation make a distinction be-

tween training and testing data, out-of-sample estimation for recovery rate prediction

suffers from two shortcomings. First, as the dataset is randomly divided into partitions

during out-of-sample estimation it is likely that there observations used for training

the model that have occured after the observations used for testing the model. So,

the data-generating process is assumed to be time invariant. Second, it is questionable

whether the recovery rates of two defaulted bonds issued by the same company are

independent of each other. Considering the case when two bonds from the same issuer

have defaulted at the same time, only during out-of-time estimation these two bonds

are together either both in the training set or both in the test set. We address these

challenges by comparing a wide range of statistics and machine learning methods such

as inverse Gaussian regression, random forest, sparse power expectation propagation,

and support vector regression not only for out-of-sample but also for out-of-time pre-

diction of recovery rates on defaulted corporate bonds.

There has been increasing application of machine learning techniques to finance

since the turn of the century.4 The volume, variety, velocity, and veracity of available

financial data have increased for several reasons such as improvements in computa-

tional and storage power. Moreover, the rise of the Internet has made available large

sets of data that allow researchers to use and merge them for different purposes and to

automatically store the associated data for many financial transactions.

This study includes a large number of macroeconomic variables relating to corporate

bond recovery recovery rates. We compare selection techniques such as the stability

selection, the MC+ algorithm, and the SparseStep algorithm for selecting the subset of

the macroeconomic variables which is most related to the recovery rate. This paper is

the first study that compares these econometrics and machine learning methods in em-

pirical finance. Furthermore, we extend our analysis to include alternative data sources

4 See, for example, Fuster et al. (2017), Kleinberg et al. (2017), Jean et al. (2016), Manela et al.
(2017), Gu at al. (2018), and Giannone et al. (2017).
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such as text-based measures from front-page articles of the Wall Street Journal as inde-

pendent variables. By including text-based measures of investors’ uncertainty we add

further macroeconomic and uncertainty information. Our study is the first paper to

use uncertainty measures from news for the prediction of corporate bond recovery rates.

In this study, we contribute to the recovery rate literature in four ways. First, in

addition to present a machine learning framework for out-of-sample recovery rate pre-

diction, this study evaluates the intertemporal prediction performance of a wide range

of parametric and non-parametric techniques that surprisingly have attracted less at-

tention than out-of-sample prediction in the literature. Our findings demonstrate that

machine learning techniques deliver superior predictive performance compared to tra-

ditional techniques not only out-of-sample but also out-of-time.

Second, we include news-based variables as an alternative group of independent

variables in our analysis. By incorporating these text-based variables, we show that

news-based variables are significant drivers for recovery rate estimation. Third, we em-

ploy high-dimensional data and select the most informative macroeconomic variables

using several selection techniques. By comparing the out-of-sample performances of

these techniques, we find that the new machine learning method (SparseStep) outper-

form other methods. Lastly, we investigate the importance of the groups of variables

by ranking all independent groups of variables with a random forest.

We organize the remainder of the paper as follows. A review of the literature is

presented in Section 4.2. In Section 4.3 we describe the models and selection algo-

rithms we applied. We describe the data we used in Section 4.4 and we present our

empirical results in Section 4.5. We investigate the behaviour of recovery rates under

macroeconomic stress in Section 4.6. Our paper is concluded in Section 4.7.

4.2 Literature review

Krüger and Rösch (2017) study the downturn loss-given-default employing the quan-

tile regression technique for both in-sample and out-of-sample estimation. Nazemi

and Fabozzi (2018) report that support vector regression techniques outperform other

methods for predicting recovery rates of U.S. corporate bonds in an out-of-sample study.
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Altman and Kishore (1996) show that the defaulted debt from public utilities (70%)

and chemical, petroleum, and related products (63%) exhibits the highest average re-

covery rates. Moreover, they find that controlling for the seniority the original rating

of a defaulted bond has no impact on the recovery rate. Acharya et al. (2007) docu-

ment that creditors recover less if the industry of the defaulted firm is in distress. In

particular, they show on a dataset from 1982 to 1999 that defaulted corporate bonds

in distressed industries exhibit 10% to 15% lower average recovery rates. Altman et al.

(2005) find that default rates, seniority, and collateral levels are important determinants

of recovery rates of corporate bonds. Focusing on the macroeconomic determinants of

recovery rates they find that while there is a significant negative relationship between

realized default rates and recovery rates, other macroeconomic variables such as the

growth rate of the gross domestic product and the return of the stock market have only

weak correlation with the average recovery rate.

Altman and Kalotay (2014) introduce a modeling approach based on mixtures of

Gaussian distributions conditioned on borrower characteristics, instrument character-

istics, and credit market conditions. They show that the forecasts generated by this

method are more accurate than parametric regression-based forecasts during out-of-

time estimation. Jankowitsch et al. (2014) examine the recovery rates of defaulted

bonds while paying special attention to the trading microstructure around various

types of default events in an in-sample study. They find that (1) high trading volumes

on the default day and the following 30 days with reduced trading activity after this

time period and (2) bond characteristics (e.g. coupon, CDS availability, and covenants)

have a significant impact on market-based recovery rates in an in-sample analysis.

Qi and Zhao (2011) find that non-parametric techniques such as regressions trees

and neural networks outperform parametric methods both in-sample and out-of-sample

for the prediction of corporate bonds’ recovery rates. Yao et al. (2015) argue that ac-

counting for the heterogeneity of bond seniorities within least squares support vector

techniques enhances their predictive capacity for recovery rates of corporate bonds in

an out-of-sample estimation.

Bastos (2014) illustrates how ensembles of models derived from the same regression

method yield more accurate forecasts of recovery rates than a single model. In partic-
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ular, using bootstrap aggregation (bagging) to build an ensemble of regression trees,

he shows that his results are valid for both corporate bonds and loans both during

out-of-sample estimation and cross validation.

Chen (2010) states that the average values of recovery rates during the recessions

(1982, 1990, 2001, and 2008) were smaller than during economic upswings. Bruche and

Gonzales-Aguado (2010) argue that in recessions more firms default while the average

recovery rate decreases. They propose an econometric model incorporating the credit

cycle as unobserved Markov chain to account for time variation in the probability of

default and the recovery rate. They conclude that the time-variation in recovery rate

distributions amplifies risk.

Calabrese and Zenga (2010) suggest a beta regression model for the estimation of

bank loans recovery rates. Hartmann-Wendels et al. (2014) forecast recovery rates

on a dataset of defaulted leasing contracts provided by three German leasing compa-

nies. In their study model trees outperform regression-based approaches out-of-sample.

They emphasize the importance of out-of-sample estimation for appropriate risk man-

agement. Cheng and Cirillo (2018) investigate a nonparametric survival approach to

estimate the recovery rate and recovery time of private loans.

Mora (2015) argues that macroeconomic conditions do matter for recovery rate

prediction. She shows how recovery rates in different industries are impacted by

macroeconomic conditions in different ways. Studies such as Cantor and Varma (2004),

Acharya et al. (2007), Qi and Zhao (2011), Jankowitsch et al. (2014), and Yao et al.

(2015) use only a few macroeconomic variables. Nazemi and Fabozzi (2018) investi-

gate the relationship between recovery rates of corporate bonds and macroeconomic

variables out-of-sample. They implemented the least absolute shrinkage and selection

operator (LASSO) for determining the most relevant macroeconomic variables from a

comprehensive macroeconomic data set to recovery rates. The models including the

macroeconomic variables selected by LASSO outperform the models including a few

macroeconomic variables which are typically used in the literature on recovery rates.

Compelled by the sparse literature on out-of-time estimation of recovery rates

Kalotay and Altman (2017) investigate the time variation of recovery rates. Com-

paring cross-sectional and intertemporal predictive performance they conclude that
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machine learning techniques such as the regression tree fail to outperform traditional

techniques such as inverse Gaussian regression in an intertemporal setting. Further,

applying conditional mixture models they improve estimates of expected credit losses

by taking the time variation of the recovery rate distribution into account. A fast

maximum-likelihood approach for the estimation of conditional mixtures of distribu-

tions enables their analysis.

Our study is similar to the recent work of Kalotay and Altman (2017) published

in this journal. In contrast to their research, we find that machine learning techniques

outperform also during intertemporal prediction. Furthermore, we include text-based

variables in the analysis, select the most informative predictors from 182 macroeco-

nomic variables, and investigate the permutation importance of the groups of explana-

tory variables.

4.3 Corporate bond recovery rate modeling

In this section, a description of the modeling techniques this study uses for recovery

rate prediction and for the selection of macroeconomic variables is provided. We use

the built-in implementations in MATLAB for the models presented in 4.3.1-4.3.4.

4.3.1 Linear regression as benchmark

For comparing the out-of-time and out-of-sample performance of our machine learning

techniques with more statistical methods, we include a traditional linear regression

model as a benchmark model. Thus, we estimate the following linear regression model

for the recovery rate rijn of bond i in industry j at the time of default of the n-th bond

to serve as a benchmark for our machine learning models:

rijn =α + βc(instrument-specific variables)i

+ν(industry distress variables)jn

+η(news-based variables)n

+ζ(macroeconomic variables)n

+εijn εijn ∼ N(0, σ2)

(4.1)
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We control for the instrument-specific variables with dummy variables for the indus-

try, the seniority, the coupon type, and the instrument type. The industry distress

variables indicate whether the performance of the industry index was worse than -30%

and the sales growth was negative in the year preceding the default. The news-implied

volatility variables are text-based measures capturing uncertainty and disaster risk.

The various methodologies for selecting the macroeconomic variables will be presented

in section 4.2.7.

4.3.2 Inverse Gaussian regression

Due to its popularity in recovery rate modeling in studies such as Qi and Zhao (2011)

and Kalotay and Altman (2017), we also consider inverse Gaussian regression. In do-

ing so, the recovery rates are transformed from the interval (0,1) to (-∞,∞) using the

inverse Gaussian cumulative distribution function. These transformed recovery rates

are then regressed on the independent variables as described for the case of ordinary

linear regression. Finally, the estimated values are transformed back from (-∞,∞) to

(0,1) using the Gaussian distribution function.

4.3.3 Regression tree

One class of machine learning methods that has been found to deliver very good predic-

tive performance as well as an easy-to-understand model is the regression tree. Qi and

Zhao (2011), Kalotay and Altman (2017), and Nazemi and Fabozzi (2018) have used

regression trees successfully for LGD modeling. Two other advantages of the regression

tree are that it can be used to model non-linearity and it exhibits a relatively robust

behavior against outliers. For these reasons, we apply the classification and regression

technique (CART) algorithm as defined by Breiman et al. (1984) for the creation of

the regression tree model.

4.3.4 Random forest

Breiman (2001) introduces random forest as a model that is more robust and has a

better predictive capacity out of sample than the regression tree. Random forest is
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an improvement of bagging, which trains a large number of regression trees and then

predicts the average of the trees’ predictions. Better performance and reduced variance

of the predictions are the advantages of bagging compared with regression trees. In a

random forest, a random subset of explanatory variables is selected for each regression

tree. The random forest has three tuning parameters: The minimum leaf size of the

trees, the number of trees, and the number of explanatory variables used for each tree.

We use one third of all explanatory variables for each tree in accordance with the de-

fault value from Breiman (2001). The number of trees and the minimum leaf size are

determined by ten-fold cross validation on the training set.

4.3.5 Semiparametric least-squares support vector regression

Suykens and Vandewalle (1999) introduced a least-squares version of the support vector

machine classifier. Enticed by the promising results from a study by Nazemi and

Fabozzi (2018), we make use of a semiparametric least-squares support vector regression

(SP LS-SVR) model which assumes the impact from the S different seniority classes

to be linear.5 The parameter C regularizes the quadratic errors u2
sj while N denotes

the number of defaulted bonds and W denotes the weight vector of the independent

variables. The kernel function for the feature mapping into the higher dimensional

space is defined as φ(Xi) while the kernel matrix K is defined as K(Xi, Xj) = φ(Xi) ·
φ(Xj). β is a vector of fixed effects for the seniority of the respective group and the

dummy variables for the seniority classes are denoted by zsj.

min J(W, b, ui) =
1

2
||W ||2 +

1

2
βTβ +

1

2
b2 +

C

2

S∑
s=1

ns∑
j=1

u2
sj

s.t. ri = WTφ(Xi) + b+ βT zsj + usj, j = 1, ..., ns, s = 1, ..., S

(4.2)

The Lagrangian function of this optimization problem evaluates to

L(W, b, usj, αsj) = J(W, b, usj)−
S∑
s=1

ns∑
j=1

αsj(W
Tφ(Xsj) + b+ βT zsj + usj − rsj) (4.3)

Therefore, with V denoting a N × N -matrix of ones and Zij = zTsjzsj, the dual

formulation is

5 We implement SP LS-SVR in MATLAB.
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min
1

2
αTKα +

1

2
αTZα +

1

2
αTVα +

1

2C
αTα− rTα (4.4)

4.3.6 Power expectation propagation

According to Bui et al. (2017), Gaussian processes are flexible distributions over func-

tions that are used for a wide range of applications such as regression, representation

learning, and state space modeling. Bui et al. (2017) introduce a unifying frame-

work for sparse Gaussian process pseudo-point approximation using power expectation

propagation.6 Their novel approach to sparse Gaussian process regression, a power

expectation propagation framework, subsumes expectation propagation and the sparse

variational free energy method into a unified framework for pseudo-point approxima-

tion.

In particular, if power expectation converges, its updates are equivalent to the

original expectation propagation procedure while substituting the Kullback-Leibler di-

vergence minimization with an alpha-divergence minimization. As alpha → 0, the

power expectation propagation solution becomes the minimum of a variational free

energy approach. In contrast, when alpha = 1, the solution from the original expecta-

tion propagation approach is recovered. Bui et al. (2017) show that their innovative

algorithm for Gaussian process regression outperforms both expectation propagation

and variational free energy approaches. To the best of our knowledge, our paper is the

first to apply sparse power expectation propagation in credit risk.

4.3.7 Selection of macroeconomic variables

In this study’s analysis, we include 182 macroeconomic variables to account for time

variation in the recovery rates due to macroeconomic changes. A broad range of vari-

ables from categories such as international competitiveness, as well as stock market,

credit market, micro-level, and business cycle conditions are taken into consideration.

We compare three methods to select the most informative macroeconomic variables:

The stability selection, the SparseStep algorithm, and the MC+ algorithm.

6 We use the MATLAB implementation from Bui et al. (2017) of the algorithm for power expec-
tation propagation.
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4.3.7.1 Least absolute shrinkage and selection operator

Tibshirani (1996) introduces LASSO, a regularized least squares method imposing

a penalty on the L1 norm of the regression coefficients. The LASSO estimates the

regularized coefficients B̂ as follows:

{B̂} = arg min
B
‖r −XB‖2

2 + λ‖B‖1 (4.5)

where λ denotes the non-negative LASSO regularization coefficient and B denotes the

LASSO regularization loadings and Xn denotes the N × 1 vector Xn = (x1, ..., xN)′ of

macroeconomic variables. By selecting a subset of the macroeconomic variables and

eliminating the rest of the variables, the resulting model becomes more interpretable

and exhibits a higher out-of-sample predictive accuracy than the complete model. In

particular, Nazemi and Fabozzi (2018) have noted that recovery models with macroe-

conomic variables selected by LASSO outperform models with few macroeconomic

variables.

As shown by Meinshausen and Bühlmann (2010), the variable selection by a LASSO

regression can change with a small perturbation of the data. To address this issue,

they introduce stability selection, which entails subsampling and evaluating the se-

lection probability of each variable. Using stability selection, the variable selection

is conducted repeatedly on random samples of the dataset and the number of times

each variable is selected during this process is counted. Only the variables that have

been selected with a higher relative frequency than the specified counting proportion

are ultimately selected.7 The main goal of this approach is to model high-dimensional

data through a stable selection of the macroeconomic variables that capture the most

information for recovery rate estimation. We check the robustness of the LASSO vari-

able selection by applying stability selection with a counting proportion equal to 0.6.

4.3.7.2 SparseStep

Van den Burg et al. (2017) present the SparseStep algorithm. While LASSO penalizes

the L1 norm the SparseStep algorithm imposes a penalty on the counting norm L0.

Van den Burg et al. (2017) apply the following approximation to the counting norm

7 We make use of the scikit-learn package in Python for the stability selection algorithm.
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L0:

‖βl‖0 ≈ β2
l

β2
l + γ2

(4.6)

where γ denotes a positive constant, βl denotes the l -th coefficient, and p is the number

of independent variables. To arrive at a sparse solution the approximation to the exact

counting norm L0 is added for regularization:

{β̂} = arg min
β
‖r −Xβ‖2

2 + λ

p∑
l=1

β2
l

β2
l + γ2

(4.7)

While LASSO is a biased estimator the SparseStep algorithm yields unbiased estimates

of the parameter vector. Further, Van den Burg et al. (2017) argue that SparseStep

often outperforms earlier approaches such as ridge regression or LASSO in both model

fit and prediction accuracy.8

4.3.7.3 MC+ algorithm

Zhang (2010) introduces MC+ for penalized variable selection in high-dimensional lin-

ear regressions.9 This method is based on two elements: a minimax concave penalty

and a penalized linear unbiased selection algorithm. While the LASSO estimates are

biased, MC+ provides nearly unbiased estimates. Zhang (2010) outlines the theoretical

and empirical advantages of MC+ compared to LASSO; in particular, the increased

selection accuracy of MC+ in a simulation setting.

4.3.8 Ranking variables by permutation importance

Altmann et al. (2010) outline how the conventional feature importance from random

forests based on the mean decrease of impurity is biased towards categorical predictors

with a large number of categories. In particular, they show that permutation impor-

tance is an importance measure that does not suffer from this bias.10 Permutation

importance is based on the mean decrease in accuracy and is computed as the differ-

ence between the baseline R2 of the model and the R2 of the model when one variable’s

( or group of variables’) values are permuted randomly. Strobl et al. (2008) show that

8 For the SparseStep algorithm we make use of package ’sparsestep’ in R.
9 We use the package ’plus’ in R for the MC+ algorithm.

10 We use the implementation of permutation importance from the Python package ’pimp’.
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permutation importance suffers from a bias towards correlated variables. Building

groups of variables instead of investigating the importance of each variable on its own

enables us to generate a ranking that will suffer less from the multicollinearity inherent

to our high-dimensional data. Following Gregorutti et al. (2015) we adjust the im-

portance of each group by dividing it by the number of variables in the respective group.

4.4 Data

As illustrated in Figure 4.1, we merge several data sources such as S&P Capital IQ,

Bloomberg, Federal Reserve Bank of St. Louis, and news from front-page article of the

Wall Street Journal to analyze the recovery rate of U.S. corporate bonds in this study.

Our initial data set consists of 2080 bonds that have defaulted between 2001 and 2016

retrieved from the S&P Capital IQ database (Capital IQ). The bond data are retrieved

from S&P Capital IQ. All bonds are denominated in US dollar. Industry variables are

retrieved from Bloomberg (BBG). A default event occurs when a company files for a

Chapter 11 bankruptcy petition or is assigned a rating of ’D’ (meaning that the debtor

is in default) or ’SD’ (selective default) by Standard Poor’s. The issuers of our bonds

can be assigned to the following industries: industry, consumer discretionary, consumer

staples, telecommunications, raw materials, utilities, energy, financial services and in-

formation technology.

Evidence of the importance of macroeconomic variables in credit risk management

can be found in the literature such as in Bruche and Gonzales-Aguado (2010), Cantor

and Varma (2004), Chava et al. (2011), Jankowitsch et al. (2014), Ludvigson and

Ng (2009), Mora (2015), and Nazemi and Fabozzi (2018). We have used the database

from the Federal Reserve Bank of St. Louis (FRED, Federal Reserve Economic Data)

complemented by aggregate default data from Fitch to retrieve 182 macroeconomic

variables used in credit risk literature, such as in Acharya et al. (2007), Cantor and

Varma (2004), Jankowitsch et al. (2014), Mora (2015), and Nazemi and Fabozzi (2018).

The macroeconomic data are retrieved between 2000 (one year before the start of the

recovery rate observation period) and 2016. The macroeconomic variables are listed in

Appendix A.

The last data source for recovery rate estimation is news from front page articles
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of the Wall Street Journal. We merge our dataset with news-based measures of uncer-

tainty reported by Manela and Moreira (2017). The word frequency data yielded by

this process is regressed on the volatility index VXO with a support vector machine

to generate a news-implied uncertainty measure. Thus, they incorporate a measure

of the investors’ mood that goes beyond commonly used hard data. The relationship

between investors’ uncertainty and implied volatility is robust also when controlling for

realized stock market volatility. Indeed, their work is based on the premise that news

reflects the interest of readers and that the words used by the business press express

the concerns of the average investor. They classify the texts to determine the sources

of uncertainty within the news by applying commonly used text-analysis methods such

as WordNet and WordNet::Similarity. We use the monthly time series data to gauge

investors’ uncertainty.

We exclude one bond from our analysis, because the data was corrupt. The re-

maining 2079 bonds exhibit an average recovery rate of 45.57% and a sample standard

deviation of 35.04%, as illustrated in Table 4.1. We combine the seniority classes,

junior subordinate and subordinate, into one class because these two classes contain

the fewest observations. In general, the expectation (senior creditors have the high-

est recovery rate) regarding the average recovery rates within the seniority classes is

met. Subordinated bonds exhibit the lowest average recovery rate at 8.15%, while

senior subordinated bonds have the second lowest average recovery rate. Accordingly,

senior secured bonds have the highest average recovery rate at 61.91%. Moreover, de-

faulted bonds from the utility sector have the highest average recovery rate, whereas

defaulted bonds from the telecommunications sector have the lowest average recovery

rate (71.61% vs. 18.54%).

The histogram of the relative frequency of the observed recovery rates in our sample,

presented in Figure 4.2, exhibits two peaks. The class between 0% and 10% contains

approximately 640 defaulted bonds. There is another peak in distribution at the class

of values between 60% and 70%. However, the observed distribution does not appear

to be a bimodal distribution.
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Figure 4.1: Data sources for the target variable and the explanatory variables
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Figure 4.2: Relative frequency of the recovery rates for the defaulted U.S. corporate bonds

from 2001 to 2016.
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Table 4.1: Descriptive statistics of the recovery rates for all bonds (Panel A), across seniority

classes (Panel B) and across industries (Panel C). We report the mean, standard deviation

(Std), 10th percentile (p10), first quartile (p25), median, third quartile (p75), 90th percentile

(p90), and number of bonds (#).

Mean Std p10 p25 Median p75 p90 #

Panel A

All bonds 45.57 35.04 5.00 10.00 43.50 71.96 95.57 2079

Panel B: Recovery rates across seniority

Senior Unsecured 46.25 34.51 7.50 10.00 48.00 71.00 95.41 1715

Senior Subordinated 24.10 28.34 0.50 2.25 15.50 36.00 72.33 158

Subordinated 8.15 11.98 0.13 0.13 3.00 12.50 18.00 21

Senior Secured 61.91 35.28 5.00 30.00 70.25 94.75 101.15 185

Panel C: Recovery rates across industry

Utilities 71.61 27.24 38.50 48.25 80.00 94.96 103.08 105

Financials 56.76 34.36 10.00 10.00 67.97 81.95 98.11 1059

Materials 29.95 31.88 1.43 7.50 15.50 48.69 72.58 115

Telecommunication 18.54 24.86 1.04 3.25 10.50 19.50 53.95 124

Consumer Cyclical 31.61 28.31 2.26 5.63 24.56 51.38 74.00 282

Consumer Non-cyclical 39.51 34.78 0.75 7.63 27.00 81.50 82.80 33

Energy 20.08 21.06 1.00 4.66 11.38 29.16 53.75 94

Technology 34.75 33.46 2.00 5.75 23.75 65.31 85.68 74

Industrial 34.69 30.21 3.81 11.00 22.25 48.00 82.50 156

4.5 Empirical analysis of recovery rates’ prediction

First, we examine the relation between news and the recovery rate. Second, we inves-

tigate the recovery rate estimation in out-of-sample and out-of-time (intertemporal)

settings. Finally, we rank the groups of explanatory variables based on their permuta-

tion importance for recovery rate prediction.

4.5.1 Analysing the news’ impact on recovery rates

Table 4.2 presents an overview of the linear regression specifications based on the entire

dataset of 2079 corporate bonds. The recovery rate of the defaulted U.S. corporate

bond is the dependent variable. Model (1) incorporates the text-based measures to se-

niority dummies, industry variables, and bond characteristics as independent variables.

In contrast, model (2) considers the seven macroeconomic variables selected through

stability selection, in addition to seniority, industry, and bond variables. Finally, we

combine the independent variables from models (1) and (2) in model (3).

Adding the text-based measures for uncertainty instead of the selection of seven

macroeconomic variables to the basic independent variables yields an improved in-
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sample fit (adj. R2 of 45.36% compared to 44.62%). Combining both groups of vari-

ables in (3) generates a further improvement of in-sample fit to an adj. R2 of 48.26%.

We show the significance of three out of five text-based measures of news implied

volatility even when controlling for the effects of macroeconomic variables in (3).

We, moreover, add five text-based sources of uncertainty as measures for investors’

uncertainty in model (3). Five categories of text can be identified as origins of uncer-

tainty in our analysis: government, intermediation, stock markets, war, and unclassi-

fied. We observed that uncertainty-related intermediation has a significantly negative

impact in models (1) and (3). The most frequent word counts in the intermediation

category are the following: financial, business, bank, credit, and loan. Intermediation-

related uncertainty primarily spikes during financial crises and periods of bank failures.

Thus, the observed negative impact on recovery rates is in accordance with the intu-

itive expectation of lower recovery rates during times of financial distress.

News-related uncertainty from the unclassified category has a significantly negative

coefficient in both models (1) and (3). The most frequently occurring words in the

category unclassified are: U.S., Washington, gold, special, and treasury. The occur-

rence of the terms ’gold’ and ’treasury’ indicates macroeconomic uncertainty, as these

assets are often regarded as safe havens. Assuming that recovery rates are lower in

an environment with increased macroeconomic uncertainty, this interpretation of the

category unclassified would explain the significantly negative coefficient of this source

of uncertainty.

News-related uncertainty from the government category is the only source of un-

certainty that exhibits a significantly positive coefficient in our analysis. The most

frequently occurring words in this category are: tax, money, rates, government, and

plan. These terms do not necessarily bear a negative connotation. For instance, the

prospect of tax cuts or a more expansive fiscal policy might increase uncertainty in

news from the government category. Thus, the expectation of positive government

policies is one possible explanation for the significantly positive impact on recovery

rates in our analysis.

Stock-market-related uncertainty is represented most frequently through the follow-

ing words: stock, market, stocks, industry, markets. With uncertainty about financial
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crises already reflected by highly significant intermediation-related uncertainty, we ob-

served that stock-market-related uncertainty possesses a negative but insignificant co-

efficient in models (1) and (3). Furthermore, there was minimal variance in war-related

uncertainty over our observation period and thus, it is not a significant determinant in

the linear regression analysis.

Overall, considering the significance of three out of the five text-based measures,

even when controlling for macroeconomic effects in model (3), there appears to be a

time-varying influence of investors’ mood on recovery rates. Hence, we can conclude

that the effect measured by the text-based measures of uncertainty possess additional

predictive power for recovery rates, and are not simply mirroring the already known

significance of macroeconomic variables for recovery rate prediction.

4.5.2 State-of-the-literature out-of-sample recovery rate pre-

diction

We used two different prediction settings in this study: First, we predicted out-of-

sample by randomly stratifying the dataset for the seniority classes. After using a ten-

folds cross validation to select the hyperparameters based on the root-mean-squared

errors (RMSEs) on the training set (70% of the data), we predicted out-of-sample on

the test set (30% of the data). This way, we are able to determine the optimal number

of trees and minimum leaf size for the random forest, as well as the cost C and the

kernel width γ for the SP LS-SVR. We follow the recommendation from Bui et al.

(2017) to use α=0.5 for an MSE loss when applying their power expectation propaga-

tion approach.

Table 4.3 demonstrates that machine learning techniques outperform traditional

statistical techniques during out-of-sample predictions. Using a random partition of

70% of the dataset as the training set we are able to mitigate the risk of overfitting.

In addition to evaluating a wide range of prediction methods, we compare the perfor-

mance using stability selection, the SparseStep algorithm, and the MC+ algorithm to

select the most important macroeconomic variables.

Without regard for the selection technique used to determine the macroeconomic
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Table 4.2: This table presents the results of the linear regression specifications. The recovery

rate of the respective bond is the independent variable. In (1) we add the news-based measures

to seniority dummies, industry variables, and bond characteristics as independent variables.

In contrast, in (2) we consider the macroeconomic variables selected by stability selection in

addition to the seniority dummies, industry variables, and bond characteristics. In (3) we

add the combination of text-based measures and the selection of macroeconomic variables

to the base model. The respective t-statistics for each variable are presented in parentheses.

Statistical significance at the 99% level is indicated with ***, significance on the 95% level is

indicated with ** and significance on the 90% level is marked with *.

Variable (1) (2) (3)

Intercept 38.1582*** 46.0907*** 33.1257***

(11.8707) (18.5324) (8.0126)

Government 31.7482*** 39.6178***

(10.9206) (11.7446)

Intermediation -3.579*** -6.1713***

(-3.2054) (-3.9478)

Securities Markets -0.646 -0.822

(-0.3849) (-0.4804)

War 4.4547 -11.011

(0.5826) (-1.2071)

Unclassified -1.392*** -0.547**

(-6.3147) (-2.2647)

Manufacturers: Inventories to Sales Ratio 61.4796*** 50.183**

(2.9021) (2.3043)

Number of Civilians Unemployed for Less Than 5 Weeks -0.0167*** -0.0148***

(-3.6623) (-3.1979)

30-Year Conventional Mortgage Rate 8.2292*** 10.0959***

(5.8475) (7.0106)

3-Month Commercial Paper Minus Federal Funds Rate -5.7185** 4.2306

(-1.9842) (1.3994)

Light Weight Vehicle Sales: Autos & Light Trucks -0.1929 1.294*

(-0.3101) (1.9188)

Nonfarm Business Sector: Unit Labor Cost -1.4842*** -1.3715***

(-3.8899) (-3.5514)

Trade Weighted U.S. Dollar Index: Major Currencies -1.1194*** -1.2015***

(-6.6632) (-7.1092)

Adj. R2 0.4536 0.4462 0.4826

RMSE 25.7603 25.9202 25.0247

MAE 19.9213 20.1421 19.2381

AIC 1.95E+04 1.95E+04 1.93E+04

BIC 1.96E+04 1.96E+04 1.95E+04

Number of bonds 2079 2079 2079

Seniority Yes Yes Yes

Industry Yes Yes Yes

Bond Characteristics Yes Yes Yes
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variables, all four machine learning techniques (i.e. regression tree, a power expectation

propagation approach, SP LS-SVR, and random forest) outperform the two traditional

techniques in both performance evaluation metrics, RMSE and MAE. Independent of

which selection technique is applied, random forest exhibits the best predictive out-of-

sample performance. Moreover, for all six prediction techniques, applying SparseStep

for macroeconomic variable selection yields the best predictive accuracy. Thus, in

determining that selecting the macroeconomic variables using SparseStep instead of

LASSO increases predictive accuracy, we improve upon the study from Nazemi and

Fabozzi (2018), which uses LASSO to select the macroeconomic variables. Lastly, the

difference between the two remaining selection techniques, MC+ and stability selec-

tion, is modest.

The lowest RMSE (20.6838) is observed when selecting the macroeconomic variables

with SparseStep and using random forest for prediction. Using SP LS-SVR (20.9890)

and the power expectation propagation approach (21.2664) decreases the predictive

accuracy slightly. Moreover, regression tree (best RMSE 22.4956) has the lowest pre-

dictive power of the machine learning techniques. Among the traditional approaches,

inverse Gaussian regression has a minor advantage in predictive capacity compared

with linear regression for all three selection techniques. Applying SparseStep for the

macroeconomic variables’ selection yields the lowest RMSE for linear regression and

inverse Gaussian regression. For this reason, we use SparseStep during out-of-time

prediction.

Although comparability of the performance measures across datasets is limited, our

results for out-of-sample estimation are in accordance with the best results in the lit-

erature. For example, the lowest RMSE reported by Yao et al. (2015) is 0.2136 for

SP LS-SVR during an out-of-sample prediction study. Moreover, Nazemi and Fabozzi

(2018) report the lowest RMSE of 0.1750 for LS-SVR with different intercepts for each

seniority class during a ten-folds cross validation. The lowest RMSE during a 12-folds

cross validation in a study conducted by Kalotay and Altman (2017) is 0.27 for the

regression tree.

In summary, during out-of-sample estimation, all four machine learning techniques

outperform the two traditional approaches (i.e. linear regression and inverse Gaussian

regression) irrespective of which selection technique is utilized. While this relationship
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is documented within literature, such as in Qi and Zhao (2011), Yao et al. (2015),

Kalotay and Altman (2017), and Nazemi and Fabozzi (2018), the literature on cor-

porate bonds’ recovery rate for out-of-time prediction is sparse. In the following, we

address this gap within the literature.

Table 4.3: This table shows the performance measures from out-of-sample prediction on the

testing set which is a random partition of the dataset (30%) while the remaining 70% of the

dataset were used for training and determining the hyperparameters during cross validation.

(SP LS-SVR: Semi-Parametric Least-Squares Support Vector Regression; Lin. Reg.: Linear

Regression; Reg. Tree: Regression Tree; PEP: Sparse Gaussian Process Approximation with

Power Expectation Propagation; RF: Random Forest; IG: Inverse Gaussian Regression)

SparseStep MC+ Stability Selection

Model RMSE MAE RMSE MAE RMSE MAE

SP LS-SVR 20.9890 13.2027 20.9971 13.5843 21.4105 13.5146

Lin. Reg. 24.8969 18.9199 25.1544 19.2876 25.2331 19.3116

Reg. Tree 22.4956 14.0037 22.5373 14.4637 23.3830 14.8230

PEP 21.2664 14.0712 21.3650 13.8618 21.2667 13.8177

RF 20.6838 13.2145 20.7231 13.2625 21.0394 13.5151

IG reg. 24.0352 17.9865 24.2890 18.1841 24.4879 18.2376

4.5.3 Intertemporal prediction of the recovery rate

In a second step, we predict out-of-time. As outlined by Kalotay and Altman (2017),

out-of-time prediction addresses several issues. Kalotay and Altman (2017) argue that

considering the likelihood of time variation in recovery rates to report out-of-sample

performance on a random split of the dataset is less appropriate. Instead, they empha-

size the importance of accounting for time variation in recovery rates. In particular,

testing out-of-time performance ensures that only the sample points observed before

the default event are used for training. Furthermore, only investigating out-of-time

performance prevents data points from the same issuer and the same exposure being

a part of both the training and test sets.

We train our models (including the data) until 2011, and use data from the re-

mainder of the sample period (from 2012 to 2016) as a test set. Following Kalotay

and Altman (2017), for ease of comparison, we draw a sample of 100 bonds from the

test set and calculate the average recovery rate on this sample, weighting the bonds
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equally. This procedure is repeated 10,000 times. Moreover, we repeat this analysis

over time. Starting with the training set from 2002 to 2011, we add an additional year

of data to the training set until we reach the end of the dataset, using training data up

to 2014. The bonds from the two years following the training period are used as test

set, whereby we sample nine bonds from the respective two-year period and repeat this

step 2,000 times.

The out-of-time performance of our models is presented in Table 4.4.11 The bonds

from 2001 to 2011 are used as a training set while the bonds from 2012 to 2016 are

used as test set for sampling.

Again, machine learning techniques outperform the traditional approaches for all

prediction techniques. In particular, the predictive accuracy of inverse Gaussian re-

gression and linear regression decreases significantly. In contrast to out-of-sample pre-

diction, random forest is the worst performing machine learning technique for out-

of-time prediction with an RMSE of 13.5294. The power expectation propagation

approach yields the lowest RMSE of 2.6887 while SP LS-SVR (4.2736) and regression

tree (5.1717) exhibit slightly lower predictive capacity.

Table 4.5 depicts the out-of-time performance of our models when retraining the

models each year. Starting with a training set that includes bonds until 2011, we ex-

tend the training set with new bonds each year and use the bonds from the following

two years as the test set for sampling. For instance, in the first step, we use the bonds

from 2001 to 2011 as the training set and the sample from the 2012-2013 bonds for

prediction. In the next iteration, we extend our training set to include the bonds from

2012 and use the bonds from 2013 and 2014 for sampling.

Based on RSME and MAE, the best performing model is the power expectation

propagation approach (RMSE of 11.7634), followed by SP LS-SVR (13.1569) and re-

gression tree (13.7023). However, the prediction performance on the quantiles of the

recovery rate distribution offers further insight. While the power expectation prop-

agation approach is the best performing model in terms of RMSE and MAE, it has

11 As we yield the most accurate predictions with SparseStep during out-of-sample prediction, we
report only the results obtained from applying SparseStep for macroeconomic variable selection during
out-of-time prediction. The results using MC+ and stability selection are consistent with the results
reported for SparseStep. These results are not reported here, but are available from the authors.
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the lowest percentage deviation among all techniques for only the 1st-, 5th-, and 75th-

percentiles. In contrast, regression tree has the lowest percentage deviation for the

10th- (deviating 127.4%) and 25th- (deviating 34.36%) percentiles, while SP LS-SVR

has the lowest percentage deviation for the median (5.05%), and random forest has the

lowest percentage deviation for the 90th-percentile (deviating -1.56%).

Whereas Kalotay and Altman (2017) report their lowest RMSE (6.8) for out-of-time

estimation without retraining for a mixture model with bagging, we report lower RM-

SEs of 2.7 for the power expectation propagation approach and 4.3 for the SP LS-SVR.

The results are similar for out-of-time prediction when retraining the models annually.

Each of our three best-performing machine learning techniques (i.e. the power expec-

tation propagation approach (RMSE: 11.8), the SP LS-SVR (RMSE: 13.2), and the

regression tree (RMSE: 13.7)) outperform their best-performing technique, i.e. a mix-

ture model with bagging (RMSE: 15.5). Comparing our best techniques with those

of Kalotay and Altman (2017), ours outperform theirs for the median and the higher

percentiles (75% and 90%), but not for the lower percentiles (1%, 5%, 10%, and 25%).

More traditional approaches, such as linear regression and inverse Gaussian regres-

sion, experience significant deterioration during the out-of-time prediction compared

with Kalotay and Altman’s (2017) out-of-sample performance. In contrast, the pre-

dictive accuracy of the machine learning techniques, such as the power expectation

propagation approach and SP LS-SVR, does not decline when switching from out-of-

sample estimation to out-of-time estimation.

Table 4.6 reports the average performance measures across all time steps, as well

as presents the predictive performance for each of the four two-year-ahead sub-periods

following the respective period used for training each model. Hence, we are able to

demonstrate the consistency of our modeling approaches.

4.5.4 Permutation importance of groups of explanatory vari-

ables

In the following, we investigate the permutation importance of each group of vari-

ables for the performance of the random forest at recovery rate prediction. We build
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Table 4.4: This table shows the performance measures from out-of-time prediction sam-

pling from the testing set (from 2012 to 2016) while the data from 2001 to 2011 are used

for training and determining the hyperparameters during cross validation. The SparseStep

algorithm is used to select the most informative macroeconomic variables. (SP LS-SVR:

Semi-Parametric Least-Squares Support Vector Regression; Lin. Reg.: Linear Regression;

Reg. Tree: Regression Tree; PEP: Sparse Gaussian Process Approximation with Power Ex-

pectation Propagation; RF: Random Forest; IG: Inverse Gaussian Regression)

SparseStep

Actual IG reg. Lin. Reg. Reg. Tree SP LS-SVR PEP RF

Mean 32.4095 76.7641 78.2838 37.1176 36.2062 34.1537 45.7951

Std 2.1677 1.3181 1.5030 1.6219 0.7990 0.9622 0.8272

1% 27.4195 73.7258 74.8435 33.3696 34.3637 31.9405 43.9059

168.88% 172.96% 21.70% 25.33% 16.49% 60.13%

5% 28.8675 74.6184 75.8140 34.4713 34.9157 32.5985 44.4500

158.49% 162.63% 19.41% 20.95% 12.92% 53.98%

10% 29.6229 75.0592 76.3542 35.0428 35.1853 32.9160 44.7320

153.38% 157.75% 18.30% 18.78% 11.12% 51.01%

25% 30.9674 75.8629 77.2716 36.0258 35.6595 33.4930 45.2336

144.98% 149.53% 16.33% 15.15% 8.16% 46.07%

50% 32.4085 76.7598 78.2634 37.1102 36.2066 34.1568 45.7914

136.85% 141.49% 14.51% 11.72% 5.39% 41.29%

75% 33.8399 77.6559 79.2965 38.2048 36.7370 34.8010 46.3507

129.48% 134.33% 12.90% 8.56% 2.84% 36.97%

90% 35.2057 78.4484 80.2251 39.1859 37.2386 35.3864 46.8660

122.83% 127.88% 11.31% 5.77% 0.51% 33.12%

RMSE 44.4119 45.9333 5.1717 4.2736 2.6887 13.5294

MAE 44.3545 45.8743 4.7300 3.8397 2.1923 13.3856
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Table 4.5: This table shows the performance measures from out-of-time prediction when

all models are retrained every year. Starting with a training set including bonds until 2011

we extend the training set with new bonds each year and use the bonds from the following

two years as test set. So, in the first step we use the bonds from 2001 to 2011 as training

set and sample from the bonds from 2012 and 2013. In the next iteration, we extend our

training set to include the bonds from 2012 and use the bonds from 2013 and 2014 as test set.

The SparseStep algorithm is used to select the most informative macroeconomic variables.

(SP LS-SVR: Semi-Parametric Least-Squares Support Vector Regression; Lin. Reg.: Linear

Regression; Reg. Tree: Regression Tree; PEP: Sparse Gaussian Process Approximation with

Power Expectation Propagation; RF: Random Forest; IG: Inverse Gaussian Regression)

SparseStep

Actual IG reg. Lin. Reg. Reg. Tree SP LS-SVR PEP RF

Mean 35.4642 65.1487 64.5576 42.6204 37.5660 40.493 46.4706

Std 13.2443 6.5806 6.8764 11.2331 4.1321 8.16991 4.1480

1% 8.7095 49.2976 48.9102 19.8052 28.2487 17.6113 37.4106

466.02% 461.57% 127.40% 224.34% 102.21% 329.54%

5% 13.8126 53.8581 53.2014 25.3224 30.9192 24.9364 40.0503

289.92% 285.17% 83.33% 123.85% 80.53% 189.96%

10% 17.3750 56.3814 55.5540 28.7439 32.4446 29.5408 41.3762

224.50% 219.74% 65.43% 86.73% 70.02% 138.14%

25% 25.7049 60.8349 59.8974 34.5368 34.9132 36.1703 43.6340

136.67% 133.02% 34.36% 35.82% 40.71% 69.75%

50% 35.8299 65.3895 64.6008 41.6541 37.6385 41.4314 46.3077

82.50% 80.30% 16.26% 5.05% 15.63% 29.24%

75% 44.5556 69.8571 69.2250 50.2680 40.3493 45.8537 49.1103

56.79% 55.37% 12.82% -9.44% 2.91% 10.22%

90% 52.6980 73.5200 73.5126 57.9349 43.0418 49.7292 51.8733

39.51% 39.50% 9.94% -18.32% -5.63% -1.56%

RMSE 33.0883 32.6534 13.7023 13.1569 11.7634 17.2256

MAE 29.7743 29.2172 11.0205 10.6562 9.41088 13.9478
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Table 4.6: This table shows the performance measures for each two-year ahead subperiod

from out-of-time prediction when all models are retrained every year. The first column shows

the last year that is included in the training set. # of bonds denotes the number of bonds in

each two-year ahead period which is used as test set for sampling. Starting with a training

set including bonds until 2011 we extend the training set with new bonds each year and use

the observations from the following two years as test set. So, in the first step we use the

observations from 2001 to 2011 as training set and the bonds from 2012 and 2013 as test set.

In the next iteration, we extend our training set to include the bonds from 2012 and use the

bonds from 2013 and 2014 as test set. The SparseStep algorithm is used to select the most

informative macroeconomic variables. (SP LS-SVR: Semi-Parametric Least-Squares Support

Vector Regression; Lin. Reg.: Linear Regression; Reg. Tree: Regression Tree; PEP: Sparse

Gaussian Process Approximation with Power Expectation Propagation; RF: Random Forest;

IG: Inverse Gaussian Regression)

SparseStep

# of bonds IG reg. Lin. Reg. Reg. Tree SP LS-SVR PEP RF

2011 30 RMSE 28.4971 29.8182 9.2928 7.8582 8.4563 9.3318

MAE 27.6984 28.9866 7.3983 6.3000 6.8337 7.6770

2012 32 RMSE 17.8793 16.8617 12.3584 12.1457 9.5560 9.6305

MAE 15.6871 14.6412 9.9761 9.7989 7.6453 7.7579

2013 59 RMSE 30.3518 28.3460 16.6306 9.5900 11.4688 15.9382

MAE 28.1792 26.1179 13.5029 7.6879 9.2671 13.6061

2014 45 RMSE 48.2324 47.8334 15.3412 19.7783 16.0980 27.4414

MAE 47.5327 47.1232 13.2046 18.8379 13.8974 26.7500
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11 groups of independent variables, as detailed in Appendix A: industry, bond char-

acteristics, seniority, news, and the macroeconomic variables which are separated into

the following groups: financial conditions, micro-level factors, business cycle, monetary

measures, corporate profitability (on a macro level), international competitiveness, and

stock market. We scale the permutation importance of each group such that the impor-

tance of the most important group of variables equals 100. We subsequently examine

the importance ranking of the groups of variables for the U.S. corporate bonds that

defaulted between 2001 and 2016.

As illustrated in Table 4.7 and Figure 4.3, bond characteristics are the most im-

portant group of variables for recovery rate prediction in our analysis. Thus, the

significance of bond characteristics determined by Jankowitsch et al. (2014) is further

confirmed in our study. The importance of the seniority of the defaulted bond (ranked

second, 30.7945) is in accordance with the significance of the seniority reported in the

literature, such as in Cantor and Varma (2004) and Jankowitsch et al. (2014). More-

over, the importance of stock market indicators (ranked third, 14.3448) confirms the

significance of the return on the market index, as reported by Cantor and Varma (2004).

Interestingly, the group of news variables is ranked higher than the industry vari-

ables (9.5908 compared with 6.1447). The literature has paid little attention to vari-

ables that indicate international competitiveness, which rank fourth in our analysis

with an importance of 13.2206. Having an importance of 2.9321, business cycle vari-

ables, including regularly used variables such as GDP growth and the unemployment

rate (e.g. by Yao et al. (2015)), rank second to last in our analysis.

Micro-level factors such as the fed funds rate and the term structure which were

reported to be significant by Jankowitsch et al. (2014), and were also considered by

Qi and Zhao (2011), are ranked seventh in our analysis with an importance of 4.5070.

However, among the macroeconomic variables, micro-level factors constitute the group

with the third-highest rank. Financial conditions and monetary measures have not

been investigated in the literature, but are also not important in our ranking for the

entire dataset (3.4836 and 2.2154, respectively). Ours is the first study to examine

news variables as independent variables for recovery rate prediction.

The industry of the defaulted bond has been found to be an important determinant
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of recovery rates by Altman and Kishore (1996). Furthermore, Acharya et al. (2007)

have introduced two industry distress dummy variables indicating negative sales growth

of the respective industry and a performance of the industry index worse than - 30% in

the preceding year. These industry distress dummy variables are part of the industry

group in our analysis. In our analysis however, industry variables have an importance

of 6.1447 and rank only sixth.

Table 4.7: Ranking groups of variables by permutation importance for all defaulted bonds

from 2001 to 2016

Rank Entire dataset Importance

1 Bond Characteristics 100.0000

2 Seniorities 30.7945

3 Stock Market Indicators 14.3448

4 International Competitiveness 13.2206

5 News 9.5908

6 Industry 6.1447

7 Micro-Level Factors 4.5070

8 Corporate Profitability (Macro) 4.3065

9 Financial Conditions 3.4836

10 Business Cycle 2.9321

11 Monetary Measures 2.3154

4.6 Macroeconomic stress testing

4.6.1 Motivation and literature

To the best of our knowledge, there do not exist any studies modeling recovery rates

under macroeconomic stress. At best, studies make simplifying assumptions regarding

the recovery rates under macroeconomic stress or use other simplifying heuristics for

modeling the recovery rate part in a credit risk stress test. As a constant recovery

rate, as it is assumed by Virolainen (2004), seems rather unrealistic in a situation of

macroeconomic stress, there might be interesting implications for the behavior of the

recovery rate under stress.

There are several studies stress testing default probabilities that provide insight for
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Figure 4.3: Ranking of the permutation importance of the groups of independent variables

for the full period from 2001 to 2016, scaled such that the biggest importance equals 100.
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our analysis. Bellotti and Crook (2013a) include macroeconomic variables in a survival

analysis model for the probability of default in a large set of credit card accounts.

They show that the addition of macroeconomic covariates as time series increases the

model fit and yields a modest improvement in predictions of default on an out-of-

sample test set. They also state that this model is suitable for stress tests. In a later

study, Bellotti and Crook (2013b) present discrete time survival models of default rates

for credit cards incorporating behavioral data about the credit card holders as well as

macroeconomic conditions during the credit card lifetime. They perform the stress tests

applying Monte Carlo simulation on the Cholesky decomposition of the macroeconomic

variables. They conclude that the Value-at-Risk from their stress test result seems

to be on average in line with other studies. Further, Bellotti and Crook (2013b)

employ a logistic survival model to estimate a dynamic model of default for retail

credit data. For the derivation of the macroeconomic factors they extract the principal

components of the macroeconomic input variables. To demonstrate the influence of the

macroeconomic factors (PCs) on their model they apply Monte Carlo Simulation to

simulate the macroeconomic factors used as input for their PD estimation model. These

macroeconomic factors are drawn from the historical distribution of the respective

factors. The main finding from Bellotti and Crook (2013b) is that their proposed

methodology is sufficient to produce realistic looking loss distributions, that is loss

distributions with a long tail.

4.6.2 Value at Risk models and stress testing

According to Alexander and Sheedy (2008) the empirical Value-at-Risk (VaR) is very

popular in the industry. Apart from the assumption that returns are independent and

identically distributed it makes no assumptions about the distribution of past returns.

VaRα is the loss that should not be exceeded in more than α-% of the cases. So,

following Bellotti and Crook (2013b) VaR can be calculated as the average recovery

rate that is predicted at the α-percentile of simulated macroeconomic data, denoted as

macroeconomic dataα:

VaRα =
1

N

N∑
i=1

(Ri(·, ·,macroeconomic dataα)) (4.8)

where Ri denotes the respective regression model for prediction of sample i : LS-SVR,

SP-SVR or linear regression. The macroeconomic data are the macroeconomic vari-

ables selected by LASSO. We standard normalize each macroeconomic data series. For
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performing the stress test we draw 10000 random values from the standard normal

distribution for each macroeconomic model component as we observe convergence of

the Monte Carlo Simulation for this number of draws. The Conditional Value-at-Risk

(CVaR), which is also known as expected tail loss, is defined as the expected loss

conditional on exceeding the VaR:

CVaRα =
1

N × α× 10000

N∑
i=1

α×10000∑
a=1

(Ri(·, ·,macroeconomic dataa)) (4.9)

where a denotes the index passing through all samples of simulated macroeconomic

data below the α-quantile. That is, the expected value of all empirical recovery rates

below VaR. In particular, it is important to notice that the key metric for evaluating the

applicability of our method is different in stress tests from ordinary forecasts because

one prefers erring on the side of caution during a stress test while during regular

forecasting accuracy measures such as mean squared error or mean absolute error are

used. The 5%-quantile and the 10%-quantile of the simulated macroeconomic model

components are applied as macroeconomic shocks. We have controlled for negative

influences of variables in a linear regression model and use the 90%-quantile respectively

the 95%-quantile for the respective macroeconomic data. As performance measures of

our analysis we examine the Value at Risk (VaR) and the conditional VaR (CVaR) of

the recovery rates.

4.6.3 Comparison of our stress testing results

We determine the hyperparameters of the LS-SVR and the semiparametric LS-SVR in

a five-folds cross validation on the training set. We extract the principal components

of the 182 macroeconomic variables in our training set. We include the seven first

principal components so that more than 95% of the variance among the 182 macroeco-

nomic variables is explained. LASSO selects 26 non-zero loadings within the training

set, while we allow for a maximum of 30 non-zero loadings. All calculations for this

analysis are conducted in MATLAB.

As can be seen in Table 4.8 for both methods of extracting the macroeconomic

information SP LS-SVR predicts higher recovery rates than LS-SVR. The lowest pre-

dictions of the recovery rate under stress are yielded by the models including the first

seven principal components of all macroeconomic variables. In contrast, the models
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Table 4.8: Comparing the stress measures from semiparametric LS-SVR, LS-SVR and linear

regression. We vary the extraction method for the macroeconomic factors between PCA and

LASSO. The most adverse conditions from the simulated principal components are included

at the 0.1-quantile respectively the 0.05-quantile. If the factor has a negative coefficient,

when regressed on the recovery rate within the training set, the 0.9-quantile respectively the

0.95-quantile are used.

RR PCA LASSO

SP-SVR LS-SVR linReg SP-SVR LS-SVR linReg

VaR0.1 12.0812 4.1172 15.0167 18.9258 10.4730 17.4870

CVaR0.1 7.5695 0.8418 8.9156 10.2388 2.9559 8.9948

SP-SVR LS-SVR linReg SP-SVR LS-SVR linReg

VaR0.05 6.6261 0.1355 9.3791 9.1339 1.7119 9.2371

CVaR0.05 6.1365 0.1008 5.5118 6.5550 0.4772 4.6298

using LASSO to select the macroeconomic variables generate predictions under macroe-

conomic stress in a reasonable corridor.

Under the stress testing rules and capital plan rules of the Dodd-Frank Act, the

Board of Governors of the Federal Reserve System (Board of the Fed) is required to

conduct an annual stress test for large bank holding companies and other non-bank fi-

nancial companies determined by the Financial Stability Oversight Council for Federal

Reserve supervision (Federal Reserve, 2012, 2014a, 2014b, 2016). For this purpose,

each year a baseline scenario, an adverse scenario, and a severely adverse scenario are

defined by the Federal Reserve.

We train our models using the bond-specific variables along with the macroeconomic

variables selected by the Board of the Federal Reserve. For the stress scenario, we use

the severely adverse stress scenarios as outlined by the Board of the Federal Reserve

in their supervisory scenarios report at the beginning of each year. The variables with

their respective values in the severely adverse stress scenario are presented in Table 4.9.

For the calculations of VaR and CVaR we substitute the α%-quantiles of the simulated

macroeconomic data with the values of the macroeconomic data under the severely

adverse stress scenarios. Due to the fact that it is difficult to find a sensible performance

benchmark for macroeconomic stress tests we compare our results inducing simulated

macroeconomic stress with our results using the stress scenarios of the Federal Reserve.
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The results of the stress tests implemented as described above are presented in Table

4.10. Linear regression is not able to handle the macroeconomic stress well as it predicts

a VaR of 83.05% which is too high compared with the out-of-sample average recovery

rate of 32.57% without macroeconomic stress. The VaR of 7.61% from the SP LS-

SVR using the variables and scenarios defined by the Federal Reserve is lower than

all VaR measures but the VaR0.05 from SP LS-SVR with PCA following our approach

simulating macroeconomic stress. Overall, the VaR values calculated by using the Fed

variables and scenarios compare well to the values calculated by our approach with

simulated macroeconomic stress.

4.7 Conclusions

The recovery rate is a key risk parameter in credit risk. Although a substantial amount

of literature examines out-of-sample recovery rate estimation for corporate bonds, the

majority of approaches suffer from two primary shortcomings: First, the assumption

of a time invariant recovery rate distribution is unrealistic. Second, assuming the inde-

pendence of a sample when multiple defaulted bonds from the same issuer are part of

both the training and test sets creates unrealistically accurate predictions. Therefore,

it is essential to examine the estimation of this risk factor for defaulted U.S. corporate

bonds in an intertemporal setting.

In this study, we investigate the recovery rate prediction of defaulted corporate

bonds between 2001 and 2016 in an intertemporal set-up to address these issues. We

find that machine learning techniques outperform traditional approaches, such as in-

verse Gaussian regression and linear regression, during out-of-time predictions. In par-

ticular, employing a semiparametric least-squares support vector regression, a power

expectation propagation approach, regression tree, or random forest yields significantly

higher predictive out-of-time accuracy than the statistical techniques.

We use news-based measures that are developed based on a text-based analysis of

news to examine the relationship between the news and the recovery rates of bonds.

Interestingly, we find that investors’ uncertainty about the government, intermediation,

and the economy are significant drivers of recovery rates.

A broad range of macroeconomic variables are included in our analysis, and we
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Table 4.10: The predictions of all three models under the severely adverse stress scenarios

as defined by the Board of Governors of the Federal Reserve System. We define the VaR as

the average prediction under the severely adverse stress scenario.

RR SP-SVR LS-SVR linReg

VaR 7.6130 11.2718 83.0530

investigate three techniques for the selection of the most informative macroeconomic

variables. We find that selecting the macroeconomic variables with innovative machine

learning techniques, such as the SparseStep algorithm, yields a modest improvement

in the predictive performance of our models. Lastly, in regard to the permutation

importance of the groups of macroeconomic variables, we find that bond characteristics,

seniority dummy variables, and stock market indicators are the most important groups

of variables for corporate bonds’ recovery rate prediction.
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Chapter 5

Conclusion

The Basel II/III accords allow for an internal calculation of the credit risk parameters

to estimate the risk-weighted assets. Thus, the importance of forecasting the credit

risk parameters, including probability of default, exposure at default and recovery

rates, has increased. As recovery rates have undergone relatively less examination, the

improvement of corporate bond recovery rate prediction is the focus of this dissertation.

In Chapter 2 we compare the predictive performance of machine learning tech-

niques, such as the three least-squares support vector techniques, ε-insensitive support

vector regression and the regression tree approach, with the more traditional linear

regression approach. A semiparametric least-squares support vector regression model

which utilizes seniority dummies as linear inputs increases the predictive accuracy

compared with the standard least-squares support vector regression model and linear

regression. In our analysis we also consider macroeconomic variables which are not

commonly used in the literature such as housing starts, orders of capitals goods, and

stock market volatility.

Compared to recovery rate models in the credit risk literature that include only a

few macroeconomic variables, we demonstrate that the addition of a high-dimensional

array of 104 macroeconomic variables increases the predictive power of our models. We

compare different data reduction techniques for use with these 104 macroeconomic vari-

ables, including PCA, kernel PCA, sparse PCA, nonlinear PCA and gradient boosting.

In doing so, we show that applying sparse PCA not only allows for better interpretabil-

ity of the principal components, but also increases the models’ predictive capacity.

Ranking the macroeconomic variables using gradient boosting reveals that the credit



spread of corporate bonds, the yields offered on corporate bonds, the annual return of

the Russell 2000 and the number of unemployed, are the macroeconomic variables with

the highest relative importance. Adding the 20 most informative macroeconomic vari-

ables from the gradient boosting analysis improves the predictive performance of those

models which are easy to interpret, such as the linear regression and the regression tree.

In Chapter 3 we introduce fuzzy decision fusion models for corporate bond recov-

ery rate prediction in a comparative study with four types of support vector regression

techniques, a linear regression model and a regression tree. For the creation of the fuzzy

rule base we apply the differential evolution algorithm. We show that fuzzy rule-based

models outperform the models discussed in the literature for corporate bond recovery

rate prediction. Adding the principal components of 104 macroeconomic variables in-

creases the predictive capacity of our models. Further, the Box-Cox transformation

of the macroeconomic variables is tested. This transformation does not result in an

improved predictive capacity of the fuzzy techniques even though it yields an improve-

ment in the predictive performance of the regression techniques.

In Chapter 4 we compare machine learning techniques for recovery rate prediction

with statistical approaches, such as inverse Gaussian regression and linear regression,

in an intertemporal set-up. We show that machine learning techniques, such as the

regression tree, semiparametric least-squares support vector regression, a power ex-

pectation propagation approach and random forest, outperform more traditional ap-

proaches during out-of-time prediction. We consider news-based variables, which are

developed based on the analysis of text, as explanatory variables for the recovery rate

prediction. In our analysis, we find that three out of five news-based measures are

significant determinants of recovery rates in our analysis.

We compare stability selection, the SparseStep algorithm and the MC+ algorithm

for selecting the macroeconomic variables. We demonstrate that selecting the macroe-

conomic variables with the SparseStep algorithm produces a modest improvement in

predictive accuracy, irrespective of the prediction technique applied. Investigating the

permutation importance of each group of variables in our high-dimensional analysis

we find that bond characteristics, seniority dummies and stock market indicators are

the most important groups of variables for recovery rate prediction. Examining the

behaviour of recovery rates under macroeconomic stress we find that, while semipara-
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metric least-squares support vector regression yields reasonably low predictions, linear

regression produces predictions that are unrealistically high under the severely adverse

stress scenario defined by the Federal Reserve.

There remain several interesting research questions that are beyond the scope of

this dissertation:

What is the optimal modeling approach for the integration of the forecasts for the

probability of default and the recovery rate?

Altman et al. (2005) state that there is a strong link between the market default

rate and the aggregate recovery rate. Kalotay and Altman (2017) emphasize the corre-

lation between the probability of default and recovery rates and outline a first approach

to modeling the probability of default and the recovery rate at the same time. It is

worthwhile investigating whether more sophisticated techniques are applicable in the

context of this integrated modeling approach.

Are point estimates sufficient for regulatory and valuation purposes?

This thesis deals with the forecast of recovery rates exclusively in terms of point

estimates. For example, approximating sparse Gaussian processes with power expec-

tation propagation allows to generate confidence intervals for the point predictions.

Distributional predictions might show substantial value for both risk and trading ap-

plications as well as stress testing.

Does the heterogeneity of industry sectors have an impact on the recovery rate

beyond the influence of industry dummy and industry distress variables?

Taking into account the heterogeneity of industry sectors, building sector-specific

models and including explanatory variables for certain industries might add predictive

power to existing approaches, including investigation of: the return of commodities

such as oil and natural gas for the energy sector, the term structure and variables mea-

suring alternative central bank operations for the financial sector, durable goods orders

for the manufacturing sector and phone part orders for the telecommunications sector.

Moreover, including recent industry sector recovery rates in place of the dummy vari-
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ables would enable accounting for time variation and structural changes within a sector.

Are there any other drivers of recovery rates?

The use of alternative financial data could help to increase the predictive capac-

ity of machine learning techniques for recovery rate prediction. The examination of

rating changes might allow us to differentiate between companies operating in a sys-

tematically risky environment and companies that have experienced downward credit

migration. The degree of industry segmentation might be helpful to the estimation

of buying interest in a defaulted company. Considering the entire U.S. economy as

a network of inter-industry customer and supplier relationships, a centrality measure

for the position of the defaulted company in the network might provide additional in-

sights. Corporate financial data such as the default barrier, the long term debt ratio

and the profitability ratio could add further predictive capacity to the techniques pre-

sented in this dissertation. However, recovery datasets with a sufficient size are hard

to find. Adding the corporate data mentioned above would have decreased the size of

our dataset from 2079 bonds to 506 bonds.
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Meinshausen, N., Bühlmann, P. (2010). Stability selection. Journal of the Royal

Statistical Society: Series B (Statistical Methodology), 72(4):417–473.

Moody’s GlobalCreditResearch (2011). Still no silver bullets. Moody’s Investor Service.

Mora, N. (2015). Creditor recovery: The macroeconomic dependence of industry equi-

librium. Journal of Financial Stability, 18:172–186.

Nazemi, A., Pour, F. F., Heidenreich, K., Fabozzi, F. J. (2017). Fuzzy decision fusion

approach for loss-given-default modeling. European Journal of Operational Research,

2(262):780–791.

102



Nazemi, A., Heidenreich, K. (2017). Artificial intelligence techniques for credit risk

management. In Intelligent Computational Systems: A Multi-Disciplinary Perspective.

Bentham Science Publishers, 268-293.

Nazemi, A., Heidenreich, K., Fabozzi, F. J. (2018a). Improving corporate bond recovery

rate prediction using multi-factor support vector regressions. European Journal of

Operational Research, 2(271):664–675.

Nazemi, A., Fabozzi, F. J. (2018). Macroeconomic variable selection for creditor re-

covery rates. Journal of Banking & Finance, 89:14–25.

Nazemi, A., Heidenreich, K., Fabozzi, F. J. (2018b). Intertemporal defaulted bond

recovery prediction via machine learning. Working Paper, EDHEC Business School.

Nazemi, A., Heidenreich, K. (2018). High-dimensional analysis of macroeconomic vari-

ables’ impact on recovery rates and an application to macro stress testing. Working

Paper.

Nozaki, K., Ishibuchi, H., Tanaka, H. (1996). Adaptive fuzzy rule-based classification

systems. IEEE Transactions on Fuzzy Systems, 4(3):238–250.

Park, Y. W., Bang, D. W. (2014). Loss given default of residential mortgages in a low

ltv regime: Role of foreclosure auction process and housing market cycles. Journal of

Banking & Finance, 39:192–210.

Qi, M. and Zhao, X. (2011). Comparison of modeling methods for loss given default.

Journal of Banking & Finance, 35(11):2842–2855.

Renault, O., Scaillet, O. (2004). On the way to recovery: A nonparametric bias free

estimation of recovery rate densities. Journal of Banking & Finance, 28(12):2915–2931.
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