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Abstract: The design and field test of a novel sensor system based in autonomous wireless 
sensors to measure the temperature of the heat transfer fluid along a borehole heat 
exchanger (BHE) is presented. The system, by means of two specials valves, inserts and 
extracts miniaturized wireless sensors inside the pipes of the borehole, which are carried by 
the thermal fluid. Each sensor is embedded in a small sphere of just 25 mm diameter and  
8 gr weight, containing a transceiver, a microcontroller, a temperature sensor and a power 
supply. A wireless data processing unit transmits to the sensors the acquisition 
configuration before the measurements, and also downloads the temperature data measured 
by the sensor along its way through the BHE U-tube. This sensor system is intended to 
improve the conventional thermal response test (TRT) and it allows the collection of 
information about the thermal characteristics of the geological structure of subsurface and 
its influence in borehole thermal behaviour, which in turn, facilitates the implementation of 
TRTs in a more cost-effective and reliable way. 
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1. Introduction 

In recent years the growth in the number of air conditioning systems driven by ground source heat 
pumps (GSHP) or geothermal heat pumps (GHP) is estimated between 10% and 30% each year [1]. 
The air conditioning systems based on ground heat exchange can provide both heating and cooling 
while reducing the electrical consumption and increasing the efficiency of the system [2]. Commercial 
vendors claim that geothermal systems in residential applications can save homeowners 40 to 70% in 
heating costs and 30 to 50% in cooling costs compared to conventional systems [3], and those claims 
seems to be in good agreement with the results shown in the literature. Urchueguia et al. [2] showed a 
heating cost reduction of 43% and a cooling cost reduction of 37% in a real experiment carried out 
over a whole year. 

A geothermal heat pump is a heat pump which uses the subsurface as source or sink of heat, being a 
more convenient energy source. The most remarkable effect of the use of ground heat exchange 
through a borehole heat exchanger (BHE) is the reduction of electrical energy consumption, compared 
with the consumption of the standard technology based on air heat exchange. Therefore, CO2 
emissions associated with the use of electric power decreases substantially [4,5]. The European 
Community and other international agencies, as the U.S. Department of Energy or the American 
International Energy Agency, are considering GSHP in the field of “heat production from  
renewable sources”. 

Additionally, it has been demonstrated that energy efficiency potential improvement in air 
conditioning systems based on GSHP can be as large as 30%, by performing a proper management of 
the different equipment making up the air conditioning system [6]. Moreover, this energy efficiency 
potential improvement can reach up to 60% of power consumption by applying decoupling techniques 
between air conditioning production and demand [7]. Maximum efficiency will be achieved when 
every component is optimized for the foreseen thermal demand, including BHE. 

The BHE length needed for a given output power greatly depends on subsurface characteristics, 
such as temperature, particle size and shape, moisture content, and heat transfer coefficients. Due to 
these factors the completion of a thermal response test (TRT), determining ground thermal properties, 
is very important. Correct sizing of the BHE is a cause for design concern. Key points are building 
load, borehole spacing, borehole fill material and site characterization. Over-sizing carries a much 
higher penalty than in conventional applications. The importance of having TRT techniques is 
illustrated by the initiative of the Energy Conservation through Energy Storage (ECES), Implementing 
Agreement (IA) of International Energy Agency (IEA), to launch in 2006 the Annex 21, Thermal 
Response Test [8].  

The TRT was first developed in Sweden and the USA in 1995 [9,10] and is currently used in many 
countries for sizing BHEs [11]. The standard TRT consists in injecting a certain heat load inside the 
BHE and measuring changes in the input and output temperature of the circulating fluid. A lot of effort 
has been put on accurate calculation of subsurface thermal conductivity and borehole thermal 
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resistance from the TRT data using both, analytical or numerical models [12-16] and laboratory 
experiments. Moreover, a sensible aspect of the measuring process is to keep constant the heat 
injection or extraction. Recent studies seem to suggest that, under some circumstances, the uncertainty 
of the heat injection rate can produce a significant uncertainty related to the analysis of thermal 
conductivity for a typical TRT [17]. 

The impact of ambient temperature in TRT measurements has also been studied, and it has been 
proposed a method to filter this effect in the results of conventional TRT [18]. The standard TRT 
assumes that the subsurface structure is homogeneous but, in real GHP installations, that is the 
exception and not the rule. The knowledge of the subsurface geological structure may have some 
importance for a proper sizing of the BHE length in order to minimize the deployment costs, especially 
for large GHP systems [19]. For instance, using this information it could be possible to stop the 
boreholes before they reach a weakly conductive layer, and use more shorter boreholes instead of 
fewer long boreholes, increasing the system efficiency and reducing the deployment costs, With this 
idea in mind, several works have explored alternative methods to perform TRT but measuring the 
temperature distribution along the U-tubes. Hurtig et al. [20], Acuña [21,22] and Fujii et al. [23,24] 
measured the temperature along the U-tube inner side by using optical fiber temperature sensors based 
on Raman scattering. Fujii found a good agreement between the calculated thermal conductivity and 
the local geological and groundwater conditions. However, the optical equipment required by this 
technique is sophisticated and expensive, and the procedure for introducing the optical fiber inside 
BHE is relatively complex and delicate. Moreover, the use of this kind of optical equipment is limited 
because a trade-off between distance, time and temperature resolutions is required [21]. 

Rohner et al. [25] have developed an electronic sensor probe equipped with temperature and 
pressure sensors that can be introduced inside the BHE to acquire temperature profiles along one of the 
two U-tubes. Once recovered, the probe can dump the data to a personal computer. This method is 
based on a measurement of the geothermal gradient and assumes that the terrestrial heat flow is known 
at the area where the test is performed. The application of the method is therefore limited because 
detail heat flow maps with sufficient heat flow measurements are not available in many regions of the 
world including, for example, parts of the US and Canada. In this work, a novel wireless sensor system 
for measuring the thermal fluid temperature inside pipes during a TRT is presented. It is based on a 
small, wireless and low-power autonomous sensor. Once configured, this sensor can be easily 
introduced inside the BHE and it flows with the thermal fluid along the whole U-tube length. After 
extraction, the sensor establishes a wireless connection with a laptop computer and downloads all the 
measured thermal data. The sensor dynamically measures the BHE temperature profile during the heat 
injection, providing extremely valuable information for TRTs that is currently not been provided by 
any other technique with such a high spatial, temperature and time resolution. Moreover, only one 
probe is required to get the temperature profile, and it can be reused several times to perform new 
measurements even in different GHP facilities. 

2. System Architecture 

The aim of the sensor system is to determine the spatial and temporal behaviour of the fluid 
temperature along the BHE, so it is necessary to measure the temperature of the fluid flowing through 
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the pipe along the entire length. To do so, miniature temperature probes are introduced inside the BHE 
tube to measure the temperature at specified intervals. The required system features are: integration 
capability into standard TRT equipment, easiness of use of the sensor system (configuration, 
acquisition and data storage) and complete independence between spatial resolution, temporal 
resolution and sampling time. To meet these requirements it will be used “autonomous wireless smart 
sensors” technology. This technology simplifies both the autonomous sensor configuration and data 
downloading steps performed by the operator because they are based on specific software. Moreover, 
it will also facilitate the mechanical sensor handling because the absence of electric terminals and the 
sphere watertightness. Besides that, it includes a simple and cost-effective temperature sensor, based 
on Pt100, that will allow to eliminate the dependence between spatial, temporal and temperature 
resolution shown by other sensor systems, as those based on fiber optics. 

The sensor system includes the autonomous sensor, the software for sensor configuration, storage 
and processing of the thermal data, and two special valves for insertion and extraction of the 
autonomous sensor into the BHE pipe. The sensor has to be inserted manually in the U-tube using the 
special valves each time the user wants to measure a temperature profile. 

Figure 1 presents a schematic of the sensor system in a BHE installation; the hydraulic system 
comprises a water tank, a circulation pump and two valves for the insertion and extraction of the 
autonomous temperature probes. A laptop runs the program for TRT configuration, acquisition and 
analysis of the temperature data. Finally, a set of small 25 mm diameter balls contains the electronic 
circuitry of the autonomous temperature probes. 

Figure 1. Schematic of BHE and sensor system. 

 
 
Also, a set of sensors monitor several variables during the running of TRT, such as the flow of 

water that circulates, the inlet and outlet water temperature of BHE, the temperature of the tank, as 
well as the pressure in the pipes. 
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2.1. Autonomous Sensor 

The autonomous sensor is the key component of the sensor system. It is an electronic device that 
measures the thermal evolution of an elementary volume of water along the BHE pipe. Its size must be 
as small as possible so they can move easily through the pipes carried by the water flow but, at the 
same time, its size has to be enough for containing an acquisition system, temporary storage and 
unloading capability of temperature data. To achieve these functions, an electronic circuit has been 
designed based on the CC1010 transceiver that can be packaged in a polioxymethylene (POM) sphere 
with diameter smaller than 25 mm. It has been designed a 4-layer PCBs for mounting all the necessary 
components, (see Figure 2). The characteristics of the autonomous sensor are:  

• Temperature range: 0–40 °C 
• Resolution temperature: <0.05 °C  
• Accuracy temperature: ±0.05 °C  
• Sampling interval: 0.1–25 s  
• Sampling capacity: 1,000 samples 

The mode of operation of the autonomous sensors is as follows: First, the control system selects an 
available probe and changes its status from low-power to configuration mode. Then, the parameters of 
sampling are transferred to the probe, and the probe is inserted into the BHE water flow. The probe 
automatically starts the process of acquiring and storing water temperature at fixed intervals. Once the 
travel along the whole BHE pipe is completed, the probe is extracted, the temperature data are 
downloaded to the control system and the probe goes to low-power mode. 

Figure 2. Autonomous sensor inside the POM sphere (left) and detail of the electronic circuitry (right). 

 

In order to accurately determine the position of the sensor inside the pipe, it is needed to ensure that 
the sensor is carried by the water flow at the same speed. This is achieved by controlling that the 
density of the sphere that constitutes the probe is very close to the density of the thermal fluid. In most 
cases the thermal fluid is water, so the spherical probe of 25 mm diameter has been engineered for a 
total weight of 8.2 gr, thus its density is exactly 1.002 gr/cm3. Under these circumstances, knowing the 
flow rate and the pipe internal diameter (32 mm) is immediate to calculate the speed of the 
autonomous probe and, consequently, its position. Experimental tests have demonstrated that, under 
these circumstances, the error in determining the probe position along the tube is less than 2% for all 
the flow rates considered (700–1,300 L/h). The probe has been tested until a pressure of 4 atmospheres, 
but its elevated wall thickness/radius ratio (wall thickness is 1.5 mm and radius is 12.5 mm, so ratio is 
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12%) and its spherical shape suggest that it can operate properly under much more elevated pressures. 
The key factor for success in using these autonomous probes lies in the duration of the power supply. 
Each probe carries a battery type button 3 V and 68 mAh, which guarantees the proper functioning of 
the probes during more than a year for the duty cycle they perform. The management of work and rest 
cycles and the use of 14.7456 MHz and 32.768 kHz crystals during periods of wireless communication 
and capture temperature, respectively, are fundamental to achieve the duration theoretically calculated. 

Moreover, the electronic circuit in which the temperature sensor is integrated has also been 
designed to minimize consumption and maximize the miniaturization and precision, using an energy 
management protocol that keeps the autonomous sensor on low-power state except during the short 
periods of configuration, acquisition and data download. 

The temperature sensor element is a planar Pt100 from TC Direct®, A-class according to  
IEC 60751, mounted on a ceramic substrate of size 2 × 2 × 0.4 mm. The polarization current was set to  
1 mA, and it is provided by a power source based on a MAX9004 low-power operational amplifier IC. 
Output signal conditioning is performed by a MAX4197 instrumentation amplifier IC, as illustrated in 
Figure 3. Both ICs are enabled by a shutdown signal that keeps the electronic circuit in a low-power 
state when is not acquiring temperature data. The shutdown signal is controlled by the power 
management system implemented on the sensor microcontroller. 

Each sensor is individually calibrated by means of a thermal bath FRIGITERM 600038 from 
PSELECTA®. A high accuracy thermal probe Pt100 from TC Direct®, class 1/10 according to  
IEC 60751, is used as reference. The use of an AGILENT U3402A high precision digital multimeter 
provides the required accuracy for proper calibration. 

Figure 3. Block diagram of temperature conditioning circuit. 

 

The microcontroller inside the transceiver is responsible for management of communications, data 
acquisition and power management. The firmware developed has four states: “power down”, 
“configuration”, “in acquisition” and “download”. 

The autonomous sensor is in “power down” state while waiting to be used for a measurement. A 
reset signal wakes-up the microcontroller and sets its state to “configuration”. In this state, a wireless 
communication session is established between the autonomous sensor and the PC to identify the sensor 
and to configure it to make the measurements. The protocol is very simple in order to achieve high 
energy efficiency and power savings. The configuration messages are short and the acknowledgments 
are minimized. This is possible because distances between transceivers are very small, so error rate is low. 
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Additionally, since the autonomous probe is continuously moving along the tube while performing 
the temperature measurements, the response time of the element used as temperature sensor (Pt100) 
must be precisely known to correlate with the values of temperature measuring point. According to the 
experimental measurements, the response time is quite small, being 0.5 s to reach 66% of the final 
temperature, and 1.5 s to reach 90%. The autonomous sensor speed depends on the flow rate and the 
pipe section and, for the flow rates considered, its value is between 24 cm/s (flow rate of 700 L/h) and 
45 cm/s (flow rate of 1,300 L/h). This means that during the time required for the temperature sensor 
to stabilize, the autonomous probe has travelled 70 cm (worst case, 45 cm/s × 1.5 s). Given than, 
typically, the temperature change along 70 cm inside a borehole is very small, it can be considered that 
this effect is negligible and temperature measurement error is only dependent on the sensor resolution. 

4. Field Tests 

A 30 m deep borehole with a polyethylene (PE100) U-pipe of 30 m length has been drilled on the 
main campus of the Universidad Politécnica de Valencia. Both pipes are kept 100 mm far away by 
installing polyethylene separators every 2 m deep. The BHE length is modest because of budget 
constraints, but it is deep enough to test the sensor system and to evaluate novel methods and analysis 
techniques. The diameter of borehole is 160 mm and the geological profile presents five layers with the 
piezometric surface at 3 m depth. The well was filled with grout after U-pipes insertion. A 3 kW 
electric heater and a circulation pump, allow us completed injection test of heat, while input and output 
temperatures (accuracy of 0.1 °C) and water flow (accuracy of 1%) are recorded. Figure 7(a) presents 
an image of the field test installation. 

Figure 7. Image of the field test installation (a) and detail of the insertion/extraction valves (b). 

 
(a)  (b) 

By means of special valves, the autonomous sensor can be inserted (and extracted) into (from) the 
BHE pipes while the water is flowing during a TRT. Figure 7(b) shows an image of these special 
valves in the BHE installation. It is needed to remark that these special valves are the only difference 
between the BHE used in this study and a “real” BHE. This fact is very important because it means 
that this technique can be applied to any BHE installation just by adding the insertion/extraction valves, 
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an easy modification that can be done at a much reduced cost. These special valves are just 
commercial PVC ball valves modified, and they do not change at all the flow rate. The modification 
consists on the lateral attachment to the BHE pipe and the blockage of one side of the internal valve 
chamber. The modified valves are reusable in different BHE installations, so they have a small impact 
on the total instrument cost. 

On January 20, 2011, during a heat injection test of 2 kW and 2 h after the start, the autonomous 
sensor was inserted into the U-tube of 30 m. The sensor was configured to acquire the temperature 
every meter and the flow was set to 725 L/h. Figure 8 shows the data acquired by the autonomous 
sensor along the pipe. The geological subsurface structure is also illustrated. 

Figure 8. Thermal data as a function of borehole deep (a) and comparison with geological 
subsurface structure (b). 

 
(a)     (b) 

As can be seen from the Figure 8, this technology provides information that cannot be obtained with 
such a high spatial, temperature and time resolution by any other technique. It is observed that most of 
the heat transfer is produced in the first section of the BHE tube (0–12 m), where the subsurface is 
composed of clays and peat. In the following section (12–25 m) the heat transfer is much reduced, 
coinciding with a zone of gravels. Finally, the heat transfer in the last section (>25 m) is almost null. 
Although the experimental data seems to suggest some correlation between the geological materials and 
heat transfer, the existence of this correlation cannot be confirmed because the thermal conductivity of 
each layer is not known. Additional work has to be performed in order to validate this correlation. 
However, it has to be remarked that the objective of this research work is not to perform a complete 
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geothermal study of this BHE facility but to demonstrate the proper operation of the developed 
instrument and to show its capabilities regarding TRTs. It can also be observed that the heat transfer in 
the downwards direction is greater than in the upwards direction, according to other experiments as those 
performed by Acuña et al. [22], because the thermal difference between the heat fluid and the ground is 
smaller, and, possibly, because it can be some direct heat transfer between both U-tubes [22]. So, from 
this experiment it can be concluded that, regarding the heat transfer, the most efficient section is the first 
(from 0 to 12 m). It can also be concluded that the heat transfer efficiency from 25 m downwards is 
extremely small. This heat transfer analysis is of great interest for the right sizing of the BHE 
installations. For instance, in this case the autonomous sensor measurements show that it is very 
inefficient to install BHE longer than 25 m. This kind of information can produce an important increase 
in system efficiency and, as a consequence, a significant reduction of deployment costs. 

5. Conclusions 

The design of more efficient GSHP systems tailored to subsurface conditions requires new tools and 
methods for calculating thermal subsurface properties, especially in the case of large BHE systems [19]. 
For the expansion of these systems it is essential to develop simpler and more economic methods in 
both, time and money, regarding BHE sizing. The sensor system presented in this work contributes to 
this issue by offering the possibility of measuring BHE thermal properties inside the U-tubes 
dynamically, while performing the TRT. Moreover, the sensor system is easily portable and installed, 
and small in size.  

It has been verified in both laboratory and field tests, that it is possible to insert and extract the 
small probes, containing a miniaturized acquisition system, for temperature monitoring of the water 
flowing along the pipes of the BHE. The probes are properly configured by wireless transmission. The 
probe completes the acquisition along the whole U-tube and, also by wireless transmission, downloads 
the acquired data to a PC. The data collected and recorded provides information about heat exchange 
efficiency as a function of borehole depth. This information is extremely valuable for the right sizing 
of BHE. It allows the study and quantification of subsurface effects usually hidden for conventional 
TRTs, such as underground water flows, the effects of convective layers, etc. Additionally, this sensor 
system offers a spatial resolution lower than 1 m, allowing the optimization of BHE installations in 
geological areas where the geologic subsurface structure varies with depth significantly. This cannot 
be done using other techniques that offer a worse spatial resolution [22]. 

Finally, the data provided by the wireless sensor system opens the door to detailed quantitative 
assessment of the subsurface thermal conductivity as function of depth. Additional work needs to be 
done in the future because this method has still a large potential for further development.  
This additional work concerns the development of new TRT models and analysis tools adapted to the 
thermal data provided by this novel instrument.  
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