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Abstract 

The current biopharmaceutical market is dominated by monoclonal antibody drugs. To 

keep up with the steadily growing market demand for this kind of biopharmaceuticals 

platform purification processes have been developed and intensively optimized. 

Established biopharmaceutical companies made large investments in large but quite 

inflexible stainless steel production sides. The emergence of more flexible and less capital 

binding single-use techniques allowed also smaller companies and a growing number of 

contract manufacturers to gain market shares. An increasing competition on the market 

leads to a constant search for cost, time and process optimization opportunities. In addition, 

the growing market of individualized medicine created a demand for more flexible and 

faster purification processes. One approach to save cost and rise the productivity of a 

process is to combine unit operations and create integrated process operations. The biggest 

impact of such a process is in early stages of the purification procedure. Against this 

background, process operations combining the harvest and capturing/purification of the 

molecule of interest (MOI) are of great interest. Typical examples for the combination of 

solid-liquid separation - during harvest - and an isolation of the MOI - during capturing and 

purification - are aqueous two phase systems (ATPS) or expanded bed adsorption (EBA) 

processes. Whereas ATPS requires immense development efforts and demands further 

purification processes to disparage introduced process contaminates, EBA is prone to 

fouling processes and is strongly limited in the maximum flow velocity which leads to 

limited process turnovers. Magnetic separation, as another representative of integrated 

purification tools, has the potential to satisfy the needs of the industry for a cost saving, fast, 

and flexible purification method. The combination of functionalized magnetic particles with 

high-gradient magnetic separation (HGMS) devices allows a capturing of the MOI direct 

from the cultivation broth in combination with an isolation and purification. The 

development effort of magnetic separation processes is low compared to ATPS and EBA 

operations. Ligands for the adsorption of MOIs can be used from common column 

chromatography processes and the variety of magnetic particles on the market is enormous. 

Furthermore, magnetic separation processes are well described for small-scale analytical 

methods. Besides the small development efforts, the process itself offers fast binding 

kinetics, due to batch adsorption processes, and nearly no limitations in flow velocity. The 

wide choice of particles and ligands make magnetic separation processes flexible and fast 
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to develop which saves costs. Maybe even more important are time and cost savings during 

production as well as a rise in productivity due to the reduction of process unit operations. 

However, the lack of suitable GMP-compliant HGMS devices prevented the application of 

magnetic separation processes in industrial-scale protein purification processes until now. 

Traditional designs of the separation matrix as well as insufficient sealing concepts could 

not meet the rigorous requirements of regulatory authorities for the pharmaceutical drug 

production. Essential for the introduction of a new device in a GMP regulated environment 

is besides the functionality also the proof of the cleanability. A complete cleaning and 

cleaning validation is required to prevent contaminations of the product and ensure the 

patients safety. The lack of GMP-compliant HGMS equipment has been tackled within a 

cooperation project of the company Andritz GmbH and the Karlsruhe Institute of 

Technology in the course of this doctoral thesis. Based on the idea of a ‘rotor-stator’ matrix 

design, which was developed and patented by Franzreb et al. over ten years ago, the first 

GMP-compliant high-gradient magnetic separator was developed and commercially 

launched at the beginning of 2017. The developed separation device is presented in section 

4.3.1. The main novelty is the completely reengineered sealing concept which allows 

effective cleaning and sterilization in place. Polyetheretherketone (PEEK) elements serve as 

sealing as well as spacers between the matrix elements providing a closed procedural space 

without any dead spaces. Furthermore, the chamber as well as valve blocks are designed to 

enable a self-draining of the device. In addition, high surface finishes prevent deposits and 

simplify the cleaning of the device. Two kinds of commercially available magnetic particles, 

Mag Prep magnetic particles with a mean diameter of 100 nm to 200 nm and M-PVA 

magnetic particles with a mean diameter of 1 µm to 3 µm, were used to access key 

performance data. Filter capacities of more than 270 g of Mag Prep magnetic particles until 

a 1 % breakthrough and even 430 g of M-PVA magnetic particles per liter of separation 

chamber volume could be observed. The separation capacity decreased only slightly when 

more viscous feedstock was used, leaving the main parameter influencing the separation 

capacity with the particle properties and not with the fluid phase. In addition, high particle 

recovery rates of over 99 % and process related performance figures for the process 

optimization could be determined. Based on this we conclude that the system is able to 

process more than 200 L crude feedstock per day and capture more than 1.6 kg target 

compounds.  

This process performance data had to be validated by the implementation of an industrial 

relevant protein purification process. The purification of a monoclonal antibody from 

Chinese Hamster Ovary cell culture was chosen to compare the magnetic separation process 

and the new device with a bench mark process from industry. Five consecutive purification 
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cycles were performed with constant yields of over 85 %, purities over 95 % and host cell 

protein reduction levels of more than 2.5 log. Process yields over 85 % can easily compete 

with the highly optimized platform processes whereas purities are expected to be slightly 

higher than 95 % in column based processes. The purity issue can be tackled with the 

further optimization of the wash protocol and choice of wash solutions. The main 

advantages were the enormous saving of time and process equipment for clarification 

procedures and column chromatography. By combining harvest and purification operations 

25 % of the overall process cost which are attributable with harvest operations can be 

saved. The comparison with column based processes showed a three times higher 

productivity for the magnetic separation process. In addition, the separation device could 

be used as an in situ product removal tool due to stable cell viabilities during the magnetic 

separation process.  

The main disadvantage of conventional magnetic separation processes is based in the batch 

mode binding process of the MOI to the magnetic particles. Only one equilibrium stage is 

used which results in low MOI loadings on the magnetic particles especially if the binding 

affinity is only moderate. High loadings are desired to process large batch volumes and use 

the magnetic particles as economically as possible. In order to approach these conditions, a 

cross-flow binding process is presented in section 4. Here, process magnetic particles and 

feedstock are moved counter currently in a two-stage batch binding process. It was possible 

to rise the yields from 74 % for a single stage batch adsorption process to nearly 100 % for 

the cross-flow process.  

Aside from the process development and optimization, the development of cleaning 

strategies and the validation of the cleaning process is essential for the production under 

GMP guidelines. Therefore, a cleaning in place procedure was developed for two model 

contaminants. For this model process hemoglobin solution and horse serum were used as 

contaminants and COSA CIP 92, an industrial cleaning agent based on sodium hydroxide and 

pure sodium hydroxide solution, were used for the cleaning of the system. The cleaning 

procedure delivered promising results leaving only a total of less than 2 mg of contaminants 

in the whole system. For the validation of the process a surface swabbing test with a 

connected total organic carbon (TOC) analytics were established and validated. The 

correlation between TOC content and the mass of the contaminants showed linear 

relationships over a wide range of concentrations. Furthermore, high recovery rates of the 

contaminants from the swabs could be achieved which enabled in combination the 

validation of the cleaning process.  
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The combination of characterization, process development and optimization as well as a 

successful cleaning validation of the first GMP-compliant HGMS device is a comprehensive 

approach to describe the new system and lays the foundation for a successful integration of 

magnetic separation processes in industrial biopharmaceutical purification processes. 
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Zusammenfassung 

Monoklonale Antikörperpräparate dominieren heutzutage den biopharmazeutischen 

Markt. Um mit dem stetig wachsenden Bedarf Schritt halten zu können wurden über die 

Jahre standardisierte Aufreinigungsverfahren entwickelt und verfeinert. Etablierte 

Konzerne haben durch immense Investitionen große, unflexible Produktionseinrichtungen 

geschaffen. Das Aufkommen von flexibleren und weniger kostenintensiven 

Einmalprodukten und Techniken ermöglichte es auch kleineren Unternehmen und einer 

steigenden Zahl von Auftragsproduzenten in den Markt einzusteigen. Die dadurch steigende 

Konkurrenz führt zu einem enormen Kostendruck und somit zu einer stetigen Optimierung 

von Prozesszeiten, Kosten und Ausbeuten. Zusätzlich führt der wachsende Markt für 

personalisierte Arzneimittel zu einem verstärkten Bedarf an flexiblen und schnellen 

Aufreinigungstechniken. Ein Ansatz um die Prozesskosten zu senken und die Produktivität 

zu steigern ist die Kombination bzw. Zusammenfassung einzelner Prozessschritte zu 

integrierten Prozessen. Den größten Nutzen hat diese Kombination von Prozessschritten zu 

Beginn des Aufreinigungsprozesses. Aufgrund dessen sind Verfahren von Interesse, welche 

die Zellernte mit der Isolation beziehungsweise der ersten Aufreinigung des Zielproduktes 

vereinen. Typische Beispiele für die Kombination von Fest-Flüssigtrennung, eingesetzt zur 

Zellernte, und der Isolation des Zielproduktes sind wässrige Zwei-Phasen-Systeme (ATPS) 

oder Expanded-Bed-Adsorption (EBA). Der Nachteil von ATPS-Systemen besteht in der 

aufwendigen Entwicklung geeigneter Systeme und der Einbringung prozessbedingter 

Verunreinigungen, die zur Ausbildung der Phasen von Nöten sind und anschließend durch 

zusätzliche Prozessschritte entfernt werden müssen. EBA hingegen ist anfällig für 

Alterungsprozesse des Mediums. Außerdem wird der Durchsatz des Prozesses stark durch 

die maximale Flussrate limitiert um ein Austragen des Mediums zu vermeiden. Als weiterer 

Vertreter integrierter Aufreinigungsmethoden hat die Magnetseparation das Potential die 

industrielle Nachfrage nach einem flexiblen, kostensparenden und schnellen Prozess zu 

befriedigen. Die Kombination aus funktionalisierten Magnetpartikeln mit hoch-gradienten 

Magnetseparation ermöglicht eine spezifische Aufreinigung des Zielproduktes direkt aus 

der Fermentationsbrühe. Der nötige Entwicklungsaufwand ist verglichen mit ATPS und EBA 

gering, da eine Vielzahl an funktionelle Gruppen bzw. Molekülen aus der 

Säulenchromatographie bekannt und umfassend beschrieben sind. Magnetische Partikel 

und Prozesse sind zusätzlich als analytische Technik weit verbreitet und somit ist eine 
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große Auswahl von Partikeln kommerziell erhältlich. Die Vorteile der Magnetseparation 

liegen neben dem geringeren Entwicklungsaufwand in den schnellen Prozesszeiten 

aufgrund der erwarteten kurzen Bindezeiten. Zusätzlich besteht nahezu keine Limitierung 

in den Flussraten. Die Auswahl an Magnetpartikeln und funktionellen Gruppen macht 

dieses Verfahren flexibel einsetzbar und ermöglicht eine schnelle und kostengünstige 

Prozessentwicklung. Des Weiteren können während der Produktion Zeit und somit auch 

Kosten eingespart werden, bei gleichzeitiger Steigerung der Produktivität durch 

Verringerung der Anzahl von Prozessschritten. Trotz all dieser Vorteile konnte sich die 

Magnetseparation bisher nicht als Aufreinigungsmethode im industriellen Umfeld 

durchsetzen. Dies ist vor allem auf das Fehlen geeigneter GMP-konformer 

Magnetseparatoren zurückzuführen. Herkömmliche Konstruktionen der Trennmatrix 

sowie unzureichende Dichtungskonzepte entsprachen nicht den strengen Anforderungen 

der Zulassungsbehörden für die pharmazeutische Arzneimittelherstellung. Wesentlich für 

die Einführung eines neuen Geräts in einer GMP geregelten Umgebung ist neben der 

Funktionalität auch der Nachweis der Reinigungsfähigkeit die für Magnetseparatoren meist 

nicht gegeben war. Der Nachweis der Reinigbarkeit und die Validierung dieses Prozesses 

ist erforderlich um die Sicherheit und Gesundheit der Patienten zu gewährleisten. Im 

Rahmen des Kooperationsprojektes der Andritz GmbH und des Karlsruher Instituts für 

Technologie sollte der Mangel an einem industriell einsetzbaren Magnetseparator behoben 

werden. Basierend auf einer ‚Rotor-Stator‘ Separationsmatrix, welche von Franzreb et al. 

bereits vor mehr als zehn Jahren entwickelt und patentiert wurde, konnte der erste GMP-

konforme Magnetseparator entwickelt werden, welcher seit Anfang 2017 kommerziell 

erhältlich ist. Der entwickelte Separator wird in Abschnitt 4.3.1 vorgestellt. Die wichtigste 

Neuerung ist das komplett überarbeitete Dichtungskonzept, welches eine effektive 

Reinigung und Sterilisation ohne Zerlegen des Apparates ermöglicht. PEEK-Elemente 

dienen sowohl als Abdichtung als auch als Abstandhalter zwischen den Matrixelementen 

und bieten so einen leicht zu reinigenden, geschlossenen Verfahrensraum ohne Toträume. 

Die Kammer sowie die Ventilblöcke sind so ausgelegt, dass eine Selbstentleerung des 

Gerätes möglich ist. Darüber hinaus verhindern hohe Oberflächengüten das Anlagern von 

Verunreinigungen und vereinfachen die Reinigung des Gerätes. Zur Bestimmung der 

Systemeigenschaften wurden zwei unterschiedliche kommerziell erhältliche 

Magnetpartikel verwendet. Zum einen Mag Prep Partikel, welche einen mittleren 

Durchmesser von 100 nm bis 200 nm aufweisen. Zum anderen wurden M-PVA Partikel 

verwendet. Diese besitzen laut Hersteller einen mittleren Durchmesser von 1 µm bis 3 µm. 

Es konnten maximale Filterkapazitäten von 270 g Mag Prep Partikeln bis zu einem 1 %igen 

Durchbruch erreicht werden. Die Filterkapazität für M-PVA Partikel lag mit 430 g pro Liter 
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Kammervolumen sogar deutlich höher. Die Verwendung viskoser Flüssigphasen führte zu 

etwas geringeren Filterkapazitäten, wobei der Haupt Einflussparameter auf die 

Separationseffizienz auf die Eigenschaften der Partikel zurückzuführen ist und nicht bei der 

Flüssigphase liegt. Hohe Partikelrückgewinnungsraten von über 99 % in Kombination mit 

prozessrelevanten Daten zu den Partikelbindkapazitäten ermöglichte es die Produktivität 

des Systems rechnerisch zu ermittelt und zu optimieren. Es zeigte sich, dass mehr als 200 L 

Fermentationsbrühe pro Tag prozessiert und dabei mehr als 1,6 kg Zielprodukt aufgereinigt 

werden können. 

Diese Produktivität sollte durch die Implementierung eines industriell relevanten 

Proteinreinigungsprozesses validiert werden. Zu diesem Zweck wurde ein 

Aufreinigungsprozess eines monoklonalen Antikörpers aus einer Zellkultur von 

Chinesischen Hamster Ovarien für den Magnetseparator entwickelt, um das neue Gerät mit 

einem Benchmark-Prozess aus der Industrie vergleichen zu können. Es konnten fünf 

Aufreinigungszyklen mit konstanten Ausbeuten von über 85 %, Reinheiten von über 95 % 

und einer Reduktion des Wirtszellproteins von mehr als 2,5 log-Stufen hintereinander 

durchgeführt werden. Die erreichten Prozessausbeuten von über 85 % können mit den 

intensiv optimierten Plattformprozessen mithalten, während die Reinheiten von 95 % bei 

säulenbasierten Prozessen etwas höher liegen dürften. Zur Verbesserung der Reinheit kann 

eine weitere Optimierung des Waschprotokolls und die Wahl optimierter Waschlösungen 

erwogen werden. Der Hauptvorteil des Magnetseparationsprozesses liegt allerdings in der 

enormen Zeit- und Materialersparnis durch die Kombination aus Produkternte und 

chromatographischen Prozessschritten. Durch die Kombination von Zellernte und 

Reinigung des Zielproduktes können bis zu 25 % der Gesamtprozesskosten eingespart 

werden, die durch Operationen in der Fest-Flüssig Trennung verursacht werden. Der 

Vergleich mit säulenbasierten Verfahren ergab zudem eine dreimal höhere Produktivität 

für den Magnetseparationsprozess. Darüber hinaus kann dieser Prozess aufgrund stabiler 

Lebendzellzahlen während des gesamten magnetischen Trennprozesses auch als in-situ 

Trennmethode eingesetzt werden. 

Der Hauptnachteil magnetischer Trennverfahren liegt in der Batchcharakteristik des 

Bindeschrittes des Zielmoleküls an die magnetischen Partikel. Bei diesem Prozess wird nur 

eine Gleichgewichtseinstellung erreicht, was zu einer geringen Beladung der Partikel mit 

Zielmolekül, insbesondere bei suboptimaler Bindungsaffinität, führt. Allerdings sind hohe 

Beladungen erwünscht. Zum einen können große so Volumina verarbeiten werden und zum 

anderen ist eine wirtschaftliche Nutzung der Partikel nur bei hohen Beladungen gegeben. 

Auf Grund dessen wurde ein Gegenstrom-Bindeprozess entwickelt, der in Abschnitt 2.6.2 
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vorgestellt wird. Bei diesem Verfahren werden magnetische Partikel und 

Fermentationsbrühe in einem zweistufigen Batch-Bindungsprozess im Gegenstrom bewegt. 

So war es möglich die Ausbeute von 74 % für einen einstufigen Prozess auf fast 100 % für 

den Gegenstromprozess zu steigern.  

Wie bereits angesprochen ist neben der Prozessentwicklung und Optimierung die 

Entwicklung von Reinigungsstrategien und dessen Validierung essentiell für eine 

Produktion unter GMP Richtlinien. Daher wurde für zwei Modellverunreinigungen ein CIP-

Verfahren (Cleaning in Place) entwickelt. Für diesen Modellprozess wurden 

Hämoglobinlösung und Pferdeserum als Kontaminanten verwendet. Als Reiniger kamen 

COSA CIP 92, ein industrielles Reinigungsmittel auf der Basis von Natriumhydroxid und 

reine 0,5 M Natronlauge zum Einsatz. Das Reinigungsverfahren lieferte vielversprechende 

Ergebnisse, da insgesamt weniger als 2 mg Verunreinigungen im gesamten System 

verblieben. Zur Validierung des Prozesses wurde ein Oberflächenwischtest mit 

nachgeschalteter Analyse des gesamten organischen Kohlenstoffes (TOC) validiert und 

verwendet. Die Korrelation zwischen dem TOC-Gehalt und der Konzentration der 

Kontaminanten zeigte lineare Zusammenhänge über einen weiten Konzentrationsbereich, 

zudem konnten hohe Rücklöseraten der Kontaminanten aus den verwendeten Tupfern 

erzielt werden, was die Validierung des Reinigungsprozesses ermöglichte. 

Die Kombination aus Charakterisierung, Prozessentwicklung und Optimierung sowie einer 

erfolgreichen Reinigungsvalidierung des ersten GMP konformen hochgradienten 

Magnetseparators ist ein umfassender Ansatz zur Charakterisierung und Inbetriebnahme 

des neuen Systems und legt den Grundstein für eine erfolgreiche Implementierung von 

Magnetseparationsprozessen in industriellen biopharmazeutischen 

Proteinaufreinigungsprozessen. 
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1 Introduction 

Magnetic separation processes as well as the concept of Biotechnology have been known 

for decades. The early uses of magnetic separation processes date back to the late 18th 

century. The first patent in the field of magnetic separation processes has been filed by 

William Fullarton describing a process to separate iron minerals in process streams in 1792 

[1,2]. With the development of new separation devices, the separation tasks became more 

complex. Until 1909 already 300 patents have been filed in the field of magnetic separation 

but it was the development of high-gradient magnetic separation (HGMS) devices in the 

1950s that expanded the range of applications [3]. Faster and more complex separation 

tasks were now possible [4,5]. High magnetic fields in combination with a magnetizable 

matrix such as steel wool placed in the field producing enormous field gradients enable 

HGMS devices to separate also weakly magnetic, or very small magnetic particles from feed 

streams [6]. This opened the application, for example, for waste water treatments but later 

on, during the 1980s, also in the fast growing field of biotechnology [5,7–10]. The term of 

biotechnology was firstly used by Erky in 1919 [11]. Modern biotechnology is based on the 

developments in the 1950s with the discovery of the DNA as genetic material, the 

production of the first antibody in 1975 as well as on the production of first recombinant 

insulin in 1978 [12–14]. Henceforth the biotechnology market has grown constantly. Today 

biopharmaceutical products are one of the main products in pharmaceutical industry with 

market shares of over 200 billion dollar and growth rates of 15 % [15]. Among the products, 

such as proteins, viruses or virus like particles, monoclonal antibodies (mAbs) are the 

blockbusters dominating the market with shares of 50 billion dollars [16,17]. mAbs are 

produced with highly optimized platform processes in large scales [18]. The process 

typically consists of two parts. First part is the production of the mAb by Chinese Hamster 

Ovary (CHO) in a defined cell culture process which is called ‘up-stream process’ (USP). For 

secreted products such as mAbs the cultivation is followed by a solid-liquid separation to 

isolate the product in the supernatant called ‘harvest’. The harvest operations are usually 

assigned to the USP and represent also the first purification step. The second part is the 

purification of the mAb by several orthogonal purification methods before it can be applied 
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as pharmaceutical drug substance. These process steps can be summarized under the term 

‘down-stream process’ (DSP)[19]. Each applied process step of the DSP increases the purity 

and concentration of the mAb but also add costs and reduce the overall yield of the process 

[20]. A possibility to meet the industry’s desire for cost reduction and to rise the 

productivity are integrated purification techniques such as expanded bed adsorption (EBA), 

aqueous two phase systems (ATPS) or HGMS [21]. These techniques combine classical 

purification steps in DSP such as clarification, concentration and purification. The 

boundaries between USP and DSP blur due to the integration of typical harvest process 

steps in the expanded bed adsorption or magnetic separation process.  

The development of magnetic separation processes in biopharmaceutical purification 

processes and applications are addressed in section 2.3. However, due to the lack of suitable 

GMP-compliant magnetic separation devices this technique has not found an application in 

GMP regulated industrial DSP processes yet. The guidelines under which a device has to be 

designed to be suitable for biopharmaceutical production and the validation process are 

outlined in section 2.7 and section 2.8, respectively. Based on the conclusions from these 

sections this work focusses on the characterization and validation of the first GMP-

compliant high-gradient magnetic separator in section 4 and in the following sections on 

the implementation of an integrated mAb purification process followed by the development 

and validation of cleaning routines. 
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1.1 Research Proposal 

This work is based on several doctoral theses performed under the guidance of Prof. 

Franzreb. Hoffmann [22], Meyer [23] as well as Ebner [24] worked on various topics of 

protein purification using different HGMS systems. The development of a new matrix design 

for a HGMS device by Franzreb et al., which was patented over a decade ago laid the 

foundation for the construction of a new type of HGMS devices [25]. The findings associated 

with this new design were published by Müller [26], who developed and used this separator 

design for protein purification studies from crude feedstocks. The work showed the 

superiority of the ‘rotor-stator’ matrix design when it comes to washing and recovery of 

magnetic particles. However, the lack of GMP-compliant separation equipment prevented 

the use of magnetic separation processes in biopharmaceutical industry. On the basis of this, 

the aims of this thesis are 

• Development of a GMP-compliant ‘rotor-stator’ high-gradient magnetic separator in 

cooperation with Andritz GmbH as industrial partner 

• Commissioning, characterisation and validation of the developed separation device 

• Development of protein purification processes via magnetic separation in small-

scale studies, scale-up to technique-scale and implementation in the new device 

• Development and validation of cleaning strategies for the new separator. 
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2 Fundamentals 

2.1 Protein Purification Processes  

A protein purification process typically consist of several unit operation with the aim to 

increase product concentration and purity while decreasing the process volume [27]. The 

determining factors in process development are therefore recovery of the product, 

robustness, scalability and efficiency of the process as well as availability of raw materials 

[28,29]. Four main process steps can be defined in a DSP: recovery followed by purification, 

polishing and formulation. Each process step consists of several unit operations (Figure 1).  

The boundary between the fermentation or USP and the DSP is usually set by the recovery 

of the product from the expression system, although this border is not totally fixed and more 

fluent especially by the rise of integrated purification techniques. Process operations for the 

recovery of a product depend strongly on the expression system used in USP. For 

Figure 1: Schematic overview of the stages during a protein purification process. In dark grey: main 
process steps process during a protein purification process with separation principles below the box and 
process operations above the box. The use of the purification techniques depends on the expression 
system (light grey) during the USP. Adapted from Hubbuch et al.[30]. 
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intracellular products a cell concentration is followed by cell disruption to release the 

product. From there on the process is comparable with products directly secreted in the 

supernatant [28]. Typical unit operations for the recovery of a product from solid 

components of the expression system are centrifugation followed by depth filtration [30]. 

Main challenges for the development of a centrifugation step are the small size and density 

differences of product and impurities and thus similar settling velocities. Since low solid 

contents are required for further unit operations multiple centrifugation steps might be 

required. After depth filtration, to remove last solid remains, the main purification task is 

performed by solid bed chromatography, which is also termed the ‘workhorse’ of DSP [31]. 

The separation principle is based on a reversible interaction of the molecule of interest 

(MOI) to a surface leading to the adsorption of the molecule. The mechanism of interaction 

is influenced by the biological function and the chemical structure of the MOI-surface 

combination [32]. Interactions typically used for target separation are for example 

hydrophobic, electrostatic, Van-der-Waals interactions, hydrogen bounds or a combination 

of these. Figure 2 provides an overview of the most commonly used chromatography 

methods. Purification is followed by the product polishing. Process or product related 

impurities like charge variants or product aggregates are removed by further 

chromatography steps during the polishing. Finally, the product is formulated in the final 

dosage form or in storage conditions. Techniques for this process step strongly depend on 

the dosage form.  

Figure 2: Overview of classical protein purification methodes using column chromatography [28].  
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In the following the purification process for mAbs is described in more detail because of its 

relevance for this work and especially for industry. Within the biopharmaceutical market, 

which has market shares above 200 billion dollars and a growth rate beyond 15%, mAbs 

are dominating as blockbusters and will do so for the next years with more than 50 

candidates currently in late-stage development [15,29,33–35]. The DSP of mAbs was subject 

of far-reaching optimization and standardization processes [34]. Today platform processes 

are established and used for purification which differ only in the polishing steps of the 

process (Figure 3). The solid-liquid separation by centrifugation and depth filtration is 

followed by protein A column affinity-chromatography for product recovery, concentration 

and purification. With this specific, highly selective process step main impurities such as 

culture media components, host cell proteins (HCPs) or DNA are removed and the product 

is concentrated. The interaction 

of the affinity ligand and the 

mAb is reversible by lowering 

the pH, followed by a low pH 

hold for virus inactivation. 

Further process steps are virus 

filtration and as polishing steps 

chromatographic separation 

technologies. The number of 

added process steps is 

dependent on the properties of 

the system. Whereas cation 

exchange chromatography 

(CEX) is mainly used in bind and 

elute mode, hydrophobic 

interaction (HIC) and anion 

exchange chromatography 

(AEC) are used in flow-through 

mode for further reduction of DNA, HCPs, leached protein A ligands and endotoxins 

[18,19,36,37].   

Figure 3: Examples for mAb purification platform processes. Blue 
boxes depict Genentech platform processes and green boxes 
Biogen platform process [29]. 
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2.2 Integrated Purification Processes 

The constant growing market of biopharmaceutical products and constant developments in 

fermentation creates a demand of new protein purification strategies in DSP. Established 

companies have tried to tackle the bottleneck in DSP by heavily investing in large 

production capacities of stainless steel plants. Standardization and platform processes have 

been established using structural similarities, which has improved productivity 

significantly [34]. The introduction of disposables and ready to use products as well as more 

flexible equipment have opened the biopharmaceutical production market also for smaller 

companies as well as for a growing number of contract manufacturers [38]. However, the 

cost for DSP remain with 50 – 80 % of the overall production cost high [30,39,40]. The cost 

contributions is shown in Figure 4. Therefore, it is of interest to combine the processes 

causing the highest cost in order to reduce overall cost.  

Aside from the economical factor of high costs, the use of multi-stage purification processes 

result in low process yields. Seven to nine process steps are often necessary for the 

purification of antibodies [41]. Each step will add cost and product loss. Even if each 

individual process step reaches yields of 90 % the overall process yield will be 43 % for 

eight process steps (Figure 5). An obvious approach is the reduction of process steps. The 

combination of process steps can be realized most effectively at the beginning of the DSP 

[30,42]. Different methods are known to combine the solid-liquid separation with the first 

product recovery and concentration step. Techniques such as ATPS, EBA or HGMS unite the 

UF/DF
3%

Harvest
25%

Prot A 
51%

AEX
9%

VRF
12%

Figure 4: Cost for goods during a large-scale mAb platform purification process broken down to process 
unit operations [18]. 
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ability to isolate the target molecule from a complex cultivation feed stream. A closer 

description of ATPS and EBA can be found in the following chapters. The principle of HGMS 

and the use of HGMS in downstream processing can be found in chapter 2.3. Rosa et al. [31] 

demand from these purification processes to be robust, reliable, easy to scale-up and of 

cause to be capable to remove process related impurities as prerequisite to be introduced 

as industrial process. Any processes meeting these requirements are extremely interesting 

because they offer a way to increase overall yield, lower requirements for capital 

investments and consumables, and most importantly, reduce process time [21,43].  

2.2.1 Expanded Bed Adsorption (EBA) 

From the described integrated purification unit operations in biopharmaceutical DSP EBA 

is closest related to common column chromatography. A bed of chromatographic media is 

expanded by an upwards directed fluid stream and this way allows to capture target 

biomolecules from complex particulate-containing feedstocks. For elution of the target 

molecules the flow direction is changed to execute the elution process step in a packed bed. 

By this method high concentration factors as known from regular column chromatography 

can be achieved [44]. Significant difference in physical properties of feedstock debris and 

chromatographic media are required for applying EBA. It is a challenge to ensure a stable 

Figure 5: Process yield in dependence of the number of process steps needed to reach the desired purity 
[169] 
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fluidized bed without risking a loss of chromatographic media from the column when feed 

streams containing for example cell or cell debris [45]. Furthermore, the generation of a 

stable expanded bed is prerequisite for economic use of EBA. It will minimize axial 

dispersion which leads to back mixing and reduces the theoretical stages and therefore, 

recovery rates [43,46,47]. Responsible for the creation of a stable fluidized bed is the 

combination of a size and density distribution of the particles and the flow velocity of the 

process. The use of small particles will lead to slow fluid velocities to avoid a discharge of 

the particles and therefore to long process times. Large particles require high flow rates for 

the fluidization. In this case short contact times limit the protein adsorption due to 

restricted diffusion into the chromatographic media. Hjorth describes the optimal size 

range of the media from 50 µm to 400 µm with a density between 1.1 and 1.3 g/mL to 

operate an EBA process economically [46]. A good overview of chromatographic media for 

EBA applications is given by Hubbuch et al. [43]. First applications using EBA in protein 

purification were described in the 1990s [48]. Since then EBA has shown its applicability 

for various products and feed streams and even entered industrial processes [49–51]. 

However, the small operation window of flow velocities, particle size and density make a 

successful scalability of EBA processes difficult. To ensure a homogeneous flow into the 

column in order to avoid channeling and back mixing is one of the biggest challenges in up-

scaling. Furthermore, fouling of the chromatographic media, due to its porous structure, 

leads to a shift in density distribution of the particle bulk and reduction of binding capacity. 

This in combination with the high sensibility to process changes and the restrictions in 

process velocity prevent wide application of this technique [52]. 

2.2.2 Aqueous Two Phase System (ATPS) 

An ATPS is a particle-free integrated purification method and therefore not susceptible to 

media fouling. The purification principle is based on the separation of target molecules, 

impurities, and solid components from the complex feedstock in different liquid phases 

[53]. The phase separation of the system with a high water content is achieved by mixing 

two solved hydrophilic polymers or a polymer- chaotropic salt combination. Above a critical 

concentration, temperature and ionic strength two phases form. The target separation is 

based on a complex interplay of the characteristics of the ATPS and the MOI [54]. Proteins 

are more likely to accumulate in the polymer phase, which is hydrophobic and less polar, 

whereas cells can be found at the phase boundary. The accumulation can be enhanced by 
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changing the characteristics of the ATPS, multistep processes or functionalization of the 

polymers [55]. Due to cost for functionalized polymers, recycling of ATPS components 

might be necessary for an economical operation. ATPS are known for more than 50 years in 

bio separation processes and many applications have been described from DNA 

purification, cell separation to antibody or enzyme purification. A collection of purification 

tasks and used ATPSs are described by Glyk et al. or Rosa et al. [31,56]. Drawbacks are 

elaborate investigations of suitable ATPS. Due to the poor understanding of the separation 

mechanism the development of new systems is mainly based on empirical analysis. 

Furthermore, the introduction of process impurities for phase separation such as poly-

ethylene glycol (PEG) and high salt concentrations require further purification steps 

[21,31,57]. 

2.2.3 ‘In Situ’ Product Removal 

A further approach for combining processes is to integrate purification techniques directly 

into fermentation processes. ‘In situ’ product removal (ISPR) is mainly used for low 

molecular weight products. Recently, due to the strong demands for new purification 

methods, ISPR is also described for high molecular weight products [21]. The idea is to 

integrate solid-liquid separation process operations directly into the fermentation. After the 

separation of the MOI the cell suspension is reintegrated into the process and fermentation 

is constantly continued. Aside from product removal ISPR offers further advantages. 

Product related impurities, inhibitors as well as toxic substances preventing an optimal 

fermentation process or damaging the product can be removed as well [58,59]. Techniques 

such as perfusion stirred-tanks or hollow-fibre bioreactors offer the possibility for constant 

product removal while proceeding with fermentation in order to create a continuous 

process [35,60]. These techniques are not selective to a MOI. In contrast to this, magnetic 

separation offers a selective product removal as well as an easy integration into the 

fermentation process equipment due to its batch binding character and can therefore be 

described not only as an integrated process but also as an ISPR process [59]. 
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2.3 Magnetic Separation in Biotechnology 

As mentioned, magnetic separation is known as integrated purification method as well as 

ISPR tool for a target orientated separation of molecules from fermentation processes. 

Beyond this, magnetic separation is applied in a wide variety in the field of biotechnology. 

The roots of the industrial use of magnetic separation are far older than the biotechnology 

industry. Magnetic separation processes have been known since the 1850s in the mining 

industry for the removal of strongly magnetic particles from feed streams such as iron ore 

magnetite. With the development of HGMS devices new applications like the removal of 

weakly or small magnetic particles in waste water treatment, chemical process recycling or 

the recovery of nonferrous low grade ores have been developed [3,4,61–63]. In 

biotechnology industry magnetic separation has been firstly used by Dunnill and Lilly in the 

1970s for the immobilization of enzymes and later on as bio-affinity adsorbents material 

for chromatographic bind and elute processes [8]. Today magnetic separation is mainly 

applied on a lab-scale basis for analytical purposes. Typical applications are DNA 

purification, cell sorting or labelling as well as enzyme immobilization [64–71]. The 

principle of HGMS processes is as simple as powerful. Small functionalized target-selective 

magnetic particles bind the MOI directly from crude unclarified cultivation broth [72]. 

Known and well described molecules from common chromatographic methods can be 

applied as functional ligands [73]. A simple stirring tank arrangement, for the incubation, 

prevent the system to get blocked by solids as it is known from common column based 

chromatography. The use of small and mainly non-porous magnetic particles minimizes the 

risk of fouling by pore blocking. Furthermore, the large surface areas provide high binding 

capacities and the non-porous character prevents limitations in binding kinetics caused by 

slow diffusion coefficients [73]. Magnetic particles are easy to separate after incubation via 

magnetic forces. This fast but gentle separation technique is not limited by flow velocities 

as seen for EBA or dependent on highly complex empiric process development as for ATPS 

[52]. After the recovery of the MOI, impurities are washed out of the system and the purified 

product is available [74]. Examples for the successful application of HGMS processes for 

processing a wide variety of molecules have been developed over the years. Comprehensive 

lists have been presented by Franzreb et al. [73], Safarik et al. [74] as well as Borlido et al. 

[75]. Even several studies have been published presenting approaches for the purification 

of industrially relevant products in relevant scales up to 100 L [76–79]. As a continuation of 

the list of Franzreb et al. an overview of magnetic separation processes used for protein 
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purification in scales larger than 20 mL feed solution or gram amounts of particles starting 

from 2006 is given in Table 1. Besides the list of protein purification processes via magnetic 

separation in millilitre-scale numerous studies dealing with this topic during the same time 

period in small-scales have been published [80–91]. This small selection of publications 

demonstrates the great relevance of magnetic separation in analytical scale. The by fare 

shorter list of publications concerning magnetic separation in larger scale illustrates the low 

impact of HGMS processes in academia and for these reasons it is not surprising that HGMS 

processes have not yet found an application in biopharmaceutical industry. This is mainly 

due to a lack of investments and research in this field caused by the dominance of column 

based purification processes. Therefore, suitable GMP-compliant separation equipment has 

to be developed in adequate scales and the prices of functional magnetic particles have to 

drop. Currently particle prices and production scales are oriented towards the 

comparatively small demand in bioanalytics leading to disproportional high prices 

[27,73,92,93]. 

Table 1: Protein purification studies using magnetic separation processes in scales larger than 20 mL or 
gramm amounts of magnetic particles from the year 2006 up to today  

System Adsorbent/ 

Ligand 

c0 cp Feed Yield Purity Reference 

Protease from B. 

licheniformis fermentation 

M-PGA/ 

bacitracin 

- 1.8 g/L 2.25 L 50 % - Käppler 

2009 [59] 

Gonadotropin (eCG) from 

horse serum 

M-PVA/ 

DEAP 

39-57 

IU/mL 

4 g/L 20 mL 79 % 1300 

IU/mg 

Müller 

2011 [94] 

Gonadotropin (eCG) from 

horse serum 

M-PVA/ 

affinity 

40 

IU/mL 

2 g/L 1 L 50 % 488 

IU/mL 

Müller 

2011 [95] 

Lactoferrine/Lactoperoxidase 

from crude whey 

M-PVA/ 

pAAc 

  2.5 g/L 2 L 49/58 %  - Brown 

2013 [96] 

Gonadotripin (eCG) from 

horse serum 

M-PVA/ 

DEAP 

30-43 

IU/mL 

4.5 g/L 4.6 L 80 % - Müller 

2014 [97] 

His-GFP from E.coli M-Silica/ 

EDTA 

8.5 g/L 22.3 g/L 1 L 93 % 96 % Fraga 

García 

2015 [79] 

 



Fundamentals 
________________________________________________________________________________________________________ 

13 
 

2.3.1 Theory of a Magnetic Separation Process 

Permanent magnetic materials are characterized by the phenomena that due to the 

movements of unpaired electrons in the orbitals of the atoms and coupling and rectification 

of the resulting microscopic moments throughout the Weiss’ domains a macroscopic 

magnetic moment results.  

In contrast to permanent magnetic materials a magnetic field with the strength H [A/m] 

around a conductor is caused by a current flow (I) in the conductor. If the resulting magnetic 

field around the conductor is superimposed by an external orthogonal magnetic field a 

power F is acting perpendicular on the conductor. The response of the material described 

as the magnetic induction or flux density B [Tesla]. 

𝐵 =
𝐹

𝐼 ∗ 𝐿
 

2.1 

In the case of a current-carrying coil the field strength around the conductor can be 

represented by equation 2.2: 

𝐻 = 𝐼 ∗
𝑛

𝐿
 2.2  

L describes the length of the conductor, whereas n is the number of windings. The direction 

of H equals the direction of the flux density. 

The linear relation between the flux density and the field strength can be described by 

equation 2.3 [98]:  

𝐵 = µ0 ∗ (𝐻 +𝑀) 2.3 

µ0 is the permeability in free space. Generally, the permeability depends on the medium and 

is often a non-linear function of H [99]. The magnetization M of a material is defined by this 

equation. 

𝑀 = 𝜅 ∗ 𝐻 2.4 

For all materials, exept ferro- and ferrimagnetic substances the magnetization is 

proportional to the field causing it. The proportionality factor, the susceptibility к, is defined 

by. 

𝜅 = µ𝑟 − 1 2.5 
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With equations 2. and 2. the magnetic induction of a material in an external field can be 

simplified to. 

𝐵 = µ0 ∗ µ𝑟 ∗ 𝐻 2.6  

The relative permeability µr is a material constant. Depending on the atomic structure as 

well as temperature all materials will show a magnetic behaviour which is more or less 

pronounced [98]. Materials can be classified according the value of constant µr. 

Paramagnetic materials have µr > 1 while diamagnetic materials have µr < 1. Paramagnetic 

materials increase an external magnetic field while diamagnetic materials weaken the 

surrounding field [100]. For ferro- and ferrimagnetic substances the susceptibility is not 

proportional to the external field but reaches a maximum and decreases for higher fields. 

Thus µr is generally a non-linear function of H. The linear relationship for dia- and 

paramagnetic substances can be seen if the magnetization is plotted versus the magnetic 

field strength (Figure 6A). In contrast to this the magnetization curve of a ferromagnetic 

material, never exposed to a magnetic field bevor, will show a strong dependency of the 

magnetization in correlation to the field strength. Increasing fields will eventually lead to a 

saturation effect where the material is completely magnetized reaching its saturation 

magnetization Ms. After removing the external field these substances will show a permanent 

magnetization known as remanent magnetization Mr (Figure 6B). A special case of 

paramagnetic behaviour can be seen for iron oxide crystals smaller than about 20 nm, 

Figure 6: (A) Magnetization curve of a diamagnetic substance (green line) and magnetization curve of a 
paramagnetic substance (black line). (B) Magnetization curve, and hysteresis loop of a ferromagnetic 
substance [100][170]. 
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described as superparamagnetic behaviour. For these particles saturation can be observed 

for magnetization but no remanence.  

The magnetic separation of a superparamagnetic particle in an external magnetic field for 

example is a physical separation based on an interplay between different forces [62,92]. On 

one side the magnetic force Fm acts on a magnetic particle depending on its magnetization, 

the volume V and the gradient of the magnetic field H [99,101]. 

𝐹𝑚 = µ0 ∗ 𝑉 ∗ 𝑀 ∗ ∇𝐻 2.7 

On the other side the magnetic fore has to dominate system related competing forces such 

as gravitational, fluid drag and diffusional forces. Additionally interparticular forces such as 

electrostatic forces may influence the separation by forming agglomerates which change 

the particle size or the separation behaviour by trapping different substances [7,62,101]. 

2.3.2 High-Gradient Magnetic Separation 

If the liquid phase and the type of magnetic particles used are fixed, the efficiency of 

separation depends solely on the strength of the magnetic field and its gradient. To achieve 

high field gradients HGMS has been developed [4,100]. The basic principle of HGMS can be 

described as deep filtration. A filtration matrix consisting of ferromagnetic stainless steel 

plates, steel wool or a stack of wire meshes is introduced in the separation chamber and an 

external magnetic field is applied. The wires de-homogenize the external field, concentrate 

Figure 7: Schematic illustration of the behaviour of the magnetic field lines in a single wire HGMS device 
[24]. 
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the magnetic field and thus create strong field gradients in the surrounding of the matrix 

elements, dragging magnetic particles to distinct regions of the matrix [28,102,103]. For a 

single wire the basic principle is illustrated in Figure 7. For the orientation of matrix 

elements, fluid flow direction and magnetic field three arrangements can be described 

(Figure 8). For the later described HGMS device the longitudinal configuration is crucial. In 

this case the fluid flow v and the magnetic field H are parallel and perpendicular to the 

separation matrix. The induced magnetic pols are located at the side facing the fluid flow as 

well at its backside. Particle separation will mainly occur at the front side of the matrix. 

Furthermore, transversal and longitudinal orientations are possible. Flow behaviour, 

magnetic field orientation and particle recovery areas can be seen in Figure 8. To describe 

the simplified separation efficiency for a magnetic particle onto a single wire HGMS device 

the ratio between magnetic velocity (νm) and the applied fluid velocity (ν0) can be applied. 

With the assumption that the Stockes equation is valid the magnetic velocity in the 

immediate vicinity of the wire can be considered as the maximum particle velocity caused 

by the magnetic field. 

𝜈𝑟 =
𝜈𝑚
𝜈0

=
2µ0(𝜅𝑝 − 𝜅𝑓)𝑀𝑤𝐻𝑏

2

9𝜂𝑎𝜈0
 

2.8 

Where µ0, M, H are described in 2.3.1, кp and кf are the susceptibility of the particle and the 

fluid. The fluid is also described by its viscosity η. Particle and wire size are given by its 

radius b and a. Executing a more detailed study on particle trajectories and capture in high 

gradient magnetic separation it can be derived, that for νr < 1 a fuzzy breakthrough 

Figure 8: Geometrical arrangements of separation matrix, fluid flow and magnetic field and magnetic 
particle recovery areas for each case. 
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behaviour can be expected and therefore an inefficient separation. In contrast, νr ≫ 1 results 

in sharp breakthrough and loading fronts [104,105].  

The first HGMS devices were constructed in the early 1970’s by Kolm for waste water 

treatment [106]. Since the first processes based on magnetic separation have been 

proposed for biotechnological applications a variety of designs have been published, 

however, none of them suitable for biopharmaceutical industry. The principle of applying 

HGMS processes for selective binding of bio-products is also known as high-gradient 

magnetic fishing (HGMF), emphasizing the target orientated separation (fishing) of MOI 

from crude process feeds [77]. 
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2.4 Magnetic Separation Devices  

Most magnetic separation devices in the field of biotechnology are small-scale and 

developed to solve a specific separation problem. Simple constructions using permanent 

magnets are mostly sufficient for small-scale applications. Using permanent magnets for 

these tasks has the advantage of low purchase price as well as no following cost due to 

power consumption and no need of a magnet cooling. Disadvantages are the fact that 

permanent magnets can’t be switched off as well as the limited separation volume, particle 

size and flow in this case. These devices are used mainly in scales up to 50 mL and for simple 

batch separations in lab-scale. A large number of devices is available for different 

applications [3]. For more complex and larger separation task, HGMS devices are used. 

These devices consist typically of a container filled with a ferromagnetic matrix providing 

high field gradients in an external magnetic field and large surface areas for the separation 

of magnetic particles. Prerequisite for the processing of solid as well as magnetic particles 

containing feed streams is a loose patch of matrix elements allowing non-magnetic 

components to pass the chamber unhindered and preventing clogging up [3]. The matrix 

usually consists of a filamentary construction, steel wool, layers of rolled or flat wire meshes 

or plate stacks. The matrix designs are manifold and mainly customized to the specific 

separation task but have generally showed good separation performances with over 90 % 

of captured magnetic particles [107–109]. The selection of the matrix determines the 

separation and recovery performance of magnetic particles as well as the cleaning of the 

system. Thin wires create high field gradients as well as large surface areas but the 

mechanical stability and cleanability must also be considered [4,62,73]. As for small-scale 

applications the magnetic field can be provided by a construction of permanent magnets. 

For larger separation volumes electro magnets have been preferred. Besides the magnetic 

fields, the simple on-off characteristics of electro magnets is an important factor. In return 

the higher investment as well as running cost due to a cooling system of the magnet have to 

be accepted [98]. A number of requirements for the successful construction of a HGMS 

device have been published[103]. Setchell gives a more general description of factors that 

have to be considered. Matrix size, space and magnetic field have to be adapted to the flow 

velocity and viscosity of the system. Furthermore, automatization, energy consumption and 

scalability are crucial factors for a successful device development. Franzreb et al. [73] have 

elaborated on key performance figures that a HGMS device should deliver in more detail. 

Magnetic fields of at least 0.3 T and separation capacities of 100 kg magnetic particles / m3 
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of chamber should be achieved. High particle separation efficiencies of over 99.9 % and 

resuspension efficiencies over 98 % are required for the successful application of a 

magnetic separation device. Moreover, parts directly linked to the separation task and also 

supporting equipment have to be considered. As an example, pumps shall provide the 

following features: capable to work with high contents of solids and easy to clean while still 

providing sufficient pump rates. A comprehensive overview of HGMS processes and HGMS 

devices is provided by Franzreb et al. [73]. All these devices have in common that they have 

never been intended to be used in industrial-scale processes of the biopharmaceutical 

industry. Due to strict regulation of the authorities for the production of pharmaceuticals, 

equipment must conform to a GMP-compliant process. None of the presented devices has 

met those requirements. The greatest potential for developments of a GMP-compliant 

device lies in the field of matrix optimization. Whereas good separation results have been 

achieved, the recovery of the particles and a cleaning friendly design have been paid less 

attention [110–112]. Wire meshes as well as steel wool matrix designs offer a multitude of 

places with low fluid velocities and hiding places for particles or contaminants. Besides the 

cleaning problems and the associated batch to batch contamination, particle losses are a 

critical economic factor due to high prices on the market [73,74,92]. Different approaches 

have been presented how to enhance the recovery and resuspension of magnetic particles. 

The simplest approach is a high flow rate and a circulation of the process fluid through the 

separation chamber. Further approaches are mechanical shaking of the separation 

chamber, which is certainly limited in consideration of an upscaling, and the combination 

of special surface coatings on the matrix with ultra-sonic devices. Such a combination 

showed promising results but is limited in upscaling due to the range of the ultra-sonic 

devices and the power input to the system [102,111,113,114]. To be able to provide a robust 

up-scale, the design of the matrix structure has been reconsidered by Franzreb et al.. A new 

approach has been presented with the ‘rotor-stator’ matrix concept [25]. The matrix 

consists of an alternating stack of densely perforated metal discs (Figure 9B). Every second 

disc is connected to an inner rotating shaft, whereas the other discs are mounted to the 

housing of the separation chamber. By rotating the inner shaft, shear forces can be 

introduced in the gap between the discs making the resuspension of particles and the 

cleaning of the system possible (Figure 9A). Several HGMS devices based on the ‘rotor-

stator’ principle have been built in various setups and scales. A broad range of applications 
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have proven the reliability of the system design in numerous purification processes and by 

different groups [72,77,79,95–97,115]. Simulations of the matrix design even led to an 

optimization of the whole structure of the matrix elements [116]. However, a GMP-

compliant and suitable for technical-scale separation processes version of a ‘rotor-stator’ 

has not been developed until the collaboration of Andritz GmbH and KIT. The consortium 

launched the first GMP-compliant ‘rotor-stator’ HGMS device at the beginning of 2017. The 

characterization, validation, cleaning and process development for the separation device is 

the major part of this work and will be addressed in chapters three to five. 

  

Figure 9: (A) Schematic example of the separation chamber of a ‘rotor-stator’ HGMS device. Stator matrix 
elements (yellow) are mounted to the housing of the chamber, rotor elements (blue) are connected to 
the inner rotation shaft. (B) Matrix element for the separation of the magnetic particels, densily 
perforated with holes to allow solid contaminants to pass unhindered through the chamber. 
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2.5 Magnetic Particles 

The limited choice of HGMS devices on the market face a vast range of commercially 

available magnetic particles in addition to numerous publications presenting custom-made 

magnetic particles. The choice of the optimal magnetic particle is crucial for a successful 

process development. An overview of the commercially available particles has been 

presented by Franzreb et al. [28], Kudr et al [117] as well as Olsvik et al. [117] and 

Berensmeier [118]. To select the optimal magnetic particle for the individual task from 

these inexhaustible variety of magnetic particles Franzreb et al. [28] have presented a 

guideline with key figures. Therefore, magnetic particles should be superparamagnetic to 

be easily redispersed after separation. This requires that they contain iron oxide crystals 

smaller than 20 nm. They should be not smaller than 500 nm in order to be easily separated 

with a magnetization saturation of at least 35 Am2/kg [73]. Beyond that the particles should 

be non-porous to prevent particle fouling if they get in contact with solutions containing 

crude solids. While the main advantage of porous particles is the high specific surface area 

available for functionalization. In this work only commercial available magnetic particles 

have been used whereas porous as well as non-porous particles have been applied. For the 

characterization of the new separation device polymer-coated magnetic particles (M-PVA 

magnetic particles, PerkinElmer chemagen Technologie GmbH, Baesweiler, Germany) as 

well as MagPrep Silica (Merck Milllipore, Darmstadt, Germany) were applied. MagPrep 

particles consist of monocrystalline magnetite with a thin silica coating. The mean diameter 

specified by the manufacturer is 100-200 nm. These magnetic particles show a saturation 

Figure 10: Scanning electron micrographs of (A) M-PVA chemagen magnetic particles, image taken in an 
enviamental scanning electron mocroscope mode in a magnification of 25600 and (B) Mag Prep magnetic 
particels image taken in a secondary electron microscope mode in a magnification of 12800 
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magnetization of 77.3 Am2/kg with a remanence of 25.6 Am2/kg (Figure 11C). The high 

remanence indicates that a superparamagnetic behaviour is not given for these particles. 

Due to their ‘magnetic memory’ these particles will tend to agglomerate as well as stick to 

metal surfaces after a magnetic field is removed. Due to the silica coating of the particles 

they are mainly used for DNA or RNA purification without further functionalization. 

MagPrep particles were successfully applied in protein purification processes, for example 

with protein A ligands in antibody purification processes with up to 100 L scales [76]. 

Chemagen M-PVA magnetic particles consist of magnetite crystals encapsulated in a 

polymer matrix of cross-linked polyvinyl alcohol which makes them hydrophilic. Two sizes 

of M-PVA particles are available. Particles with a particle size range of 0.5-1 µm and such 

with a size range of 1-3 µm. The later one were used for the presented work. A magnetic 

saturation of 30 Am2/kg with a remanence of 15 mAm2/kg which showed that these 

particles are practically superparamagnetic (Figure 10A). Chemagen M-PVA particles are 

available with a wide variety of functional groups for further ligand attachments. M-PVA 

particles have been used with all kinds of functionalization for various purification tasks 

Figure 11: (A,B) Enviromental scannin electron micrographs of Mag Sepharose magnetic particels in 
magnifications of 3200 fold and 200 fold magnetization, respectively. (C) Hysterese loop of Mag 
Sepaharose showing a saturation magnetization of 47 Am2/kg and a remanence of 6.6 Am2/kg. (D) 
Distribution sum and density distribution of Mag Sepahrose. 
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[94,96,119,120]. Mag Sepharose magnetic particles (GE Healthcare, Uppsala, Sweden) are a 

representative of porous magnetic particles. They consist of a highly cross-linked agarose 

matrix with magnetite inclusions. The mean diameter was determined as 54 µm and they 

are the largest particles used for this work. They exhibit a para-magnetic behaviour with a 

saturation magnetization of 47 Am2/kg and a remanence of 6.6 Am2/kg (Figure 11C). 

Despite their size, the particles are still easy to suspend after separation. The porous 

structure of the Mag Sepharose typically prolongs binding times caused by diffusion 

processes and makes these particles more prone to fouling effects. Adequate washing 

protocols have to be developed in order to avoid capacity losses due to pore blocking. On 

the other hand, the porous structure results in a large specific surface, leading to high 

binding capacities.  
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2.6 Magnetic Protein Purification Process and Process 

Optimization 

In the following section a typical protein purification process using an automated HGMS 

device is described. Magnetic separation processes in protein purification are determined 

by batch processes. In a first step the functionalised magnetic particles are mixed with the 

unclarified feedstock containing the MOI. The feedstock can either be from a natural source 

like whole blood or blood serum for instance or from a cell cultivation [121]. Typical 

cultivation feedstocks are CHO systems where the MOI typically will be expressed and has 

to be purified from the supernatant whereas in E.coli cultivations the product is typically 

intracellular and a cell lysis has to be performed before the purification [88,122]. The mixing 

of the magnetic particles and the feedstock is called binding step. It is performed in an 

external stirring vessel to ensure an adequate mixing and to process larger volumes than 

the separation chamber of the HGMS device is able to hold. The binding process is 

characterized by a batch adsorption process. During this process one equilibrium state is 

reached between protein adsorbed to the functionalised particles and the supernatant 

[109]. After the equilibrium is reached no further changes of the MOI concentration in the 

supernatant will occur. The binding can be described among others by the Langmuir 

adsorption model and fitted to the Langmuir isotherm equation 𝑞∗ =
𝑐∗∗𝑞𝑚𝑎𝑥

𝑘𝐷+𝑐
∗ . The amount 

of MOI adsorbed onto the particles after the equilibrium is reached is described by q*. qmax 

is the maximal loading of the particles and c* the concentration of the MOI in the supernatant 

in the equilibrium. kD is the equilibrium parameter and a direct measure for the stability of 

the binding. Smaller kD values represent higher binding affinities. The duration of the 

binding step is determined by the kinetic of the binding process which is dependent on the 

ligand on the particle and the MOI as well as the diffusion processes. For the optimization 

of process times it is recommended to perform small-scale binding studies. Following the 

binding process, the particle-feedstock suspension is pumped through the separation 

device while a sufficient magnetic field is supplied for the magnetization of the separation 

matrix. The magnetic particles will be separated at the matrix while the feedstock is 

displaced by a washing solution. To ensure adequate washing results, which means to 

reduce the level of contaminants such as cells, cell debris as well as HCP, DNA or loosely 

bound MOI, the magnetic field is removed. Moreover, an optimal mixing of the magnetic 
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particles and the wash solution is required. After every wash step the magnetic particles are 

recaptured at the matrix before replacing the fluid phase. Generally, several washing steps 

are required to reduce the level of impurities by several orders of magnitude, since this 

process is a dilution wash process. Appling a wash solution with low buffer capacities 

during the last washing step can support the following elution. To desorb the MOI from the 

magnetic particles the reversible bound between the molecule and the ligand has to be 

dissolved by a change in the condition of the fluid phase. The elution process step is 

executed in the same way then the washing steps. Several elution steps might be necessary 

to elute all MOI from the particles. The smallest possible elution volume and therefore the 

highest concentration of the MOI is limited by the size of the separation chamber. After 

elution the magnetic particles have to be cleaned from remaining product as well as hard to 

remove contaminants. Typically sodium hydroxide solutions or acids with pH values around 

two are applied [48,123]. Finally, the particles are suspended in a solution for storage of the 

particles and then recovered from the HGMS device for further use. The overall process time 

is mainly determined by the times for fluid exchanges and therefore by the pump speed. The 

pump speed is only limited by the separation performance. However, magnetic separation 

processes are by far faster than column based processes, due to fast binding kinetics. 

Together with the high pump speeds applicable, they are especially attractive for multicycle 

arrangements in process scale-up [28]. A comparison of the productivity of a column based 

process with a magnetic separation process can be found in section 5.6.7. 

2.6.1 Batch Adsorption Process and its Evaluation 

As described earlier, the magnetic separation purification process is based on batch 

adsorption processes. The selection of magnetic particles and the functionalization of the 

particles take a key position in the process. The estimation of yield and productivity of the 

process, under selected boundary conditions, can serve as a tool for the selection of suitable 

magnetic particles, type of functionalization, as well as process conditions. The binding 

process can be described by a mass balance (equation 2.9) and the Langmuir adsorption 

isotherm mentioned above. 

𝑐0 ∗ 𝑉𝑏𝑎𝑡𝑐ℎ − 𝑐∗ ∗ 𝑉𝑏𝑎𝑡𝑐ℎ = 𝑞∗ ∗ 𝑚𝑝 2.9 

Whereas c0, c* and q* are known from the Langmuir model, Vbatch describes the volume of the 

batch process and mp the amount of magnetic particles which is dependent on the specific 
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filter capacity σ and the separation chamber volume Vsep. The volume of the batch can also 

be described in dependence of the capacity ratio CR. 

𝑉𝑏𝑎𝑡𝑐ℎ =
𝜎 ∗ 𝑉𝑠𝑒𝑝 ∗ 𝑞𝑚𝑎𝑥

𝐶𝑅 ∗ 𝑐0
 

2.10 

CR represents the ratio between the theoretical maximum amount of target molecules 

which can be bound by the used mass of magnetic particles and the amount of target 

molecules provided in the actual batch volume. Either the batch volume determines the 

amount of magnetic particles that has to be used, or more likely, the amount of magnetic 

particles that can be separated and the CR required for the aimed yield determine the 

operable batch volume. With the expression for the mass balance, the isotherm and CR a 

dimensionless expression for 
𝑐∗

𝑐0
 can be found which results in a yield estimation. 

𝑐∗

𝑐0
=
1

2
∗ [1 −

𝑘𝐷
𝑐0

− 𝐶𝑅 + √4 ∗
𝑘𝐷
𝑐0

+ (𝐶𝑅 − 1 +
𝑘𝐷
𝑐0
)
2

] 

2.11 

and 

𝑌 = 1 −
𝑐∗

𝑐0
 

2.12 

As described by Franzreb et al. [124] two terms influence the yield. With increasing CR the 

yield will increase. To reach yields higher than 90 % it can be necessary to use larger 

amounts of particles than expected if the simple adoption CR = 1 is assumed. The ratio 
𝑘𝐷

𝑐0
 

between the Langmuir parameter kD and the initial MOI concentration in the batch c0 

describes in which section of the isotherm the binding will take place. If c0 >> kD (
𝑘𝐷

𝑐0
 << 1) 

the loading of the magnetic adsorbents approaches qmax and the required capacity ratio is 

close to its optimal value of CR = 1, if c0 < kD (
𝑘𝐷

𝑐0
 > 1) the loading of the magnetic adsorbents 

is less than half of qmax and capacity ratios CR > 2 will be required to reach acceptable yields. 

High values of 
𝑘𝐷

𝑐0
 are either caused by low concentrations of the MOI in the feedstock or a 

low binding affinity of the ligand and the MOI, which should lead to a review of the choice 

of ligand.  

Besides the yield the productivity P of the process is crucial.  

𝑃 =
𝑚𝑀𝑂𝐼

𝑡𝑐𝑦𝑐𝑙𝑒 ∗ 𝑉𝑠𝑒𝑝
 2.23 
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The productivity of a process is described by the amount of MOI (mMOI) produced in one 

cycle in relation to the time needed for the process tcycle and the volume of the device used. 

The time tcycle of the process includes the loading time as well as the operation time of the 

separator for the purification steps. The operation time consist of the times for washing, 

elution, cleaning of the particles, equilibration and recovery. While the loading time of the 

magnetic particle suspension into the separator is linearly dependent on its initial batch 

volume, the time needed for the remaining process steps is constant [125]. Furthermore, 

the process times are limited either by the maximum pump speed or the separation 

behaviour of the magnetic particles. Small particles or high viscous solutions could demand 

lower pump speeds to allow the magnetic particles to separate at the matrix of the device. 

The following case study shall illustrate the influence of the choice of system parameters. 

First of all, optimal process performance results are expected if the separation device is used 

close to the maximum filter capacity, which is defined by the 1 % breakthrough point. To 

reach optimal purities along with process yield and productivity optimal washing and 

elution conditions have to be maintained. It was shown that a maximum loading of 80 % of 

the maximal filter capacity still provides good washing results. The maximum loading 

strongly depends on the properties of the used magnetic particles (section 4.2). The first 

two variables of the process simulation are therefore fixed by the choice of magnetic 

particles (mp) and the scale of the separation device (Vsep). For the case study process data 

from a mAb purification using Mag Sepharose functionalized with a protein A ligand and 

system data from the later presented GMP-compliant HGMS device, MES 100 RS is applied 

(Table 2). The optimum process parameters are then determined by computing 

productivity, purity and yield for varying CR. The value of CR where the product of 

productivity and yield reaches is maximum value is the optimal process CR. The choice of 

the described product is based on the here presented case study. Due to the high affinity of 

the protein A affinity ligand-antibody binding complex, competing binding and therefore 

low purities do not appear to be significant. This is a derivation from the process evaluation 

described by Franzreb at al. [124] which is described above. 
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Table 2: Process and system data for the case study that is kept constand in all cases. 

  value abbreviation 

Volume of magnetic particles [ml] 480 mp 

MOI start concentration [g/L] 2.3 c0 

Maximum binding on particles [g/mL] 0.087 qmax 

Volume of the separator [L] 1 Vsep 

Process time without loading [min] 40 tcycle-tload 

Pump speed [L/min] 2.7  

 

Three cases are presented whereby the values from table 2 were kept constant and the kD 

value was varied from 0.01 g/L to 1 g/L causing different values for an optimal process CR 

and differing process yields. The third case elucidated the importance of 
𝑘𝐷

𝑐0
. The kD value of 

1 g/L was applied while demanding a process yield of at least 90 %. This leads to an 

inevitable adjustment of CR. As described the separation time of the process scales linear 

with the batch volume. The remaining process time including the time for load, wash, 

elution and recovery operation steps is assumed to be 40 min. The fixed value for kD in case 

1 (0.01 g/L) leads to a 
𝑘𝐷

𝑐0
 of 0.00435. The optimal process CR for the highest value of P*Y is 

1.1 leading to a Vbatch of 16.5 L and a purified amount of MOI of 36.7 g representing a yield 

of 96.8 % with an overall process productivity of 0.8 g/min*L (Table 3, Figure 12. For low 

kD values which corresponds with high affinities between der functionalisation on the 

magnetic particles and the MOI, CR values close to 1 are expected. For higher kD values such 

as kD = 1 and 
𝑘𝐷

𝑐0
 = 0.434 as presented in case 2 the ratio between magnetic particles and 

start batch has to be adapted in order to reach acceptable yields. As optimal CR 2.2 was 

determined which leads to a Vbatch of 8.25 L. However, yield will be rather low with 76.7 % 

(Table 3, Figure 13). To achieve yields over 90 % the CR has to be adjusted to five. 

Consequently, Vbatch drops to 3.6 L and the overall process productivity will be just 

0.18 g/min*L (Table 3, Figure 13). This illustrates the strong dependency of the batch 

purification process on the optimal choice of the magnetic particles and their 

functionalization. 
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Table 3: Process and system data for case 1: kD of 0.01 g/L is assumed leading to the parameters 
presented below for an optimal CR of 1.1.; case 2: kD of 1 g/L is assumed leading to the parameters 
presented below for an optimal CR of 2.2.; case 3: kD of 1 g/L is assumed leading to the parameters 
presented below for a CR of 5 due to the demanded yield of over 90 %. 

 

 
case 1 case 2 case 3 abbreviation 

Capacity Ratio 1.1 2.2 5 CR 

Equilibrium parameter [g/L] 0.01 1 1 kD 

Equilibriums concentration [g/L] 0.073 0.535 0.22 c* 

Volume of the processed batch [L] 16.50 8.25 3.63 Vbatch 

Protein produced per cycle [g] 36.75 14.56 7.55 mprot 

Total cycle time [min] 46.11 43.06 41.34 tcycle 

Productivity [g/(min*L)] 0.797 0.34 0.18 P 

Yield [%] 96.80 76.7 90.4 Y 

 

 

Figure 12: Yield and productivity and well as the product of yield and productivity as function of the CR 
for the first case (kD=0.01 g/L). The peak value for the product of yield and productivity indicates the 
optimum process CR 
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Figure 13: Yield and productivity and well as the product of yield and productivity in as function of the 
CR for the second case (kD=1 g/L). The peak value for the product of yield and productivity indicates 
the optimum process CR of 2.2 with a low process yield. Due to the expected yield >90 % the process 
has to be adapted. A CR of 5 achieves the expected yield at the expense of a lower productivity 
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2.6.2 Process Optimization by a multi-stage counter-current Process 

To take advantage of the fast binding kinetics and the short process times of the magnetic 

separation purification process, a multi-stage counter-current arrangement can be applied. 

As described one equilibrium stage is reached between the MOI adsorbed to the particles 

and MOI in the supernatant during the batch adsorption processes. The amount of MOI 

bound on the particles is dependent on the number of binding sides as well as on the 

concentration of MOI in the supernatant. Due to the ad- and desorption processes some part 

of the MOI will always remain in the supernatant. In order to bind the remaining MOI from 

the feedstock and raise the yield of the process further binding steps are required. In a batch 

adsorption processes this can be achieved using several reaction chambers R connected in 

a counter-current way [52]. Figure 14 illustrates a two-stage binding process schematically. 

Adsorbing particles and feedstock containing the MOI are moved in a counter-current flow, 

whereas both are contacted twice with each other. In reaction chamber R1 the fresh and 

unloaded particles q0 are in contacted with previously used process liquor and the unbound 

MOI from reaction chamber R2. The fresh particles are able to bind a further part of the MOI 

from the supernatant and an equilibrium is reached. Any unbound MOI is leaving the 

reaction chamber R1 with a concentration c1*. The preloaded particles are transferred from 

chamber R1 to chamber R2 with a loading q1. They are incubated with fresh process liquor 

with a MOI concentration c3. Do to the higher concentration of MOI a further binding on the 

particles takes place and second equilibrium concentration is reached in the reaction 

Figure 14: Scematic demonstration of a counter-current process to raise the yield of a batch adsorption 
process by increasing the number of binding steps  
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chamber R2. The concentration of the MOI will be c2* after the equilibrium is reached which 

is the initial concentration for R1. The twice loaded particles are eluted in the following and 

can be reused for the next process. Every reaction chamber Ri is described by its mass 

balance and an adsorption isotherm. 

𝑚 ∗ 𝑞𝑖−1 + 𝐿 ∗ 𝑐𝑖+1 = 𝑚 ∗ 𝑞𝑖 + 𝐿 ∗ 𝑐𝑖 2.34 

  

𝑞𝑖 =
𝑞𝑚𝑎𝑥 ∗ 𝑐𝑖
𝑘𝐷 + 𝑐𝑖

 2.45 

In these equations index i describes an arbitrary reaction chamber. The isotherm equation 

describes the loading q of the particles with the mass m of the MOI in dependency of the 

concentration c of the MOI in the volume L.  

As a case study the yield for the binding of equine chorionic gonadotropin (eCG) to Mag 

Sepharose functionalized with eCG-affinity ligands was numerically solved. A start 

concentration of the solution of 20 IU/mL was assumed. Furthermore, calculations used an 

initial particle loading of 0 IU/mL, a kD of 1 IU/mL and a maximum binding of 12 IU/mL. As 

expected, the yield of the process increase with higher particle concentrations and the 

number of process steps (Table 4). It becomes clear that high yields in a single binding step 

are only possible if a very high concentration of magnetic particles is used, corresponding 

to low productivities and purities. Practically, at least two binding steps are preferred, 

which facilitate already yields over 98 % with a particle concentration of 2 g/L. Any further 

increase in binding steps or particle concentration enables only a small increase in yield and 

is therefore economically not worth considering. 
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Table 4: Expected process yield in percent in dependence of the number of cross-flow steps performed 
and particle concentration 

Particle concentration [g/L] 1 step 2 steps 3 steps 4 steps 

0.5 28.05 28.57 28.57 28.57 

1 54.1 57.05 57.14 57.15 

1.5 75 84.87 85.68 85.71 

2 86.88 98.86 99.95 100 

2.5 92.06 99.66 99.99 100 

3 94.47 99.83 99.99 100 

3.5 95.81 99.89 99.99 100 

4 96.64 99.92 100 100 
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2.7 GMP in Process Equipment Development 

Good Manufacturing Practise along with a ‘Quality Risk Management’ is part of a 

‘Pharmaceutical Quality System’ which is meant to achieve quality and reliability in medical 

manufacturing processes. The Quality System includes all aspects influencing the product 

and is design to avoid any risk for the customer due to inadequate safety, quality or efficacy. 

Resulting from this, GMP or cGMP as it is called by the FDA, is just a small part of the overall 

quality system concerning the investigation and manufacturing of pilot-products, the 

technology transfers until the manufacturing of market relevant products as well as the 

quality control. The aim is the evaluation of the manufacturing and the protection of product 

and patient [126,127]. Eleven key components are defined by the European Commission for 

Health and Consumers Directorate-General as basic requirements: 

1. All manufacturing processes are clearly defined, systematically reviewed in the light 

of experience and shown to be capable of consistently manufacturing medicinal 

products of the required quality and complying with their specifications; 

2. Critical steps of manufacturing processes and significant changes to the process are 

validated; 

3. All necessary facilities for GMP are provided including: Appropriately qualified and 

trained personnel; Adequate premises and space; Suitable equipment and services; 

Correct materials, containers and labels; Approved procedures and instructions, in 

accordance with the Pharmaceutical Quality System; Suitable storage and transport; 

4. Instructions and procedures are written in an instructional form in clear and 

unambiguous language, specifically applicable to the facilities provided; 

5. Procedures are carried out correctly and operators are trained to do so; 

6. Records are made, manually and/or by recording instruments, during manufacture 

which demonstrate that all the steps required by the defined procedures and 

instructions were in fact taken and that the quantity and quality of the product was 

as expected. 

7. Any significant deviations are fully recorded, investigated with the objective of 

determining the root cause and appropriate corrective and preventive action 

implemented; 

8. Records of manufacture including distribution which enable the complete history of 

a batch to be traced are retained in a comprehensible and accessible form; 
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9. The distribution of the products minimises any risk to their quality and takes 

account of Good Distribution Practice; 

10. A system is available to recall any batch of product, from sale or supply; 

11. Complaints about products are examined, the causes of quality defects investigated 

and appropriate measures taken in respect of the defective products and to prevent 

reoccurrence [128]. 

This compilation illustrates that GMP guidelines covers significantly more than the 

adequate design of the process equipment. Only point three mentioned the importance of 

‘suitable equipment’ without further explanations. Therefore, more specific guidelines are 

published by the European Commission dealing specifically with the premises, equipment 

and the manufacturing of biological active substances as well as medicinal products for 

human use [129,130]. These guidelines provide lists of requirements for the design and the 

process development under GMP guidelines. Besides that, some examples for the practical 

implementation of these requirements are given. Suggested measures are the use of 

cleaning and sterilisation in place systems (CIP, SIP), an effective design of the draining 

system, the use of single-use components and closed single purpose systems to avoid cross-

contaminations. Superordinate part of all GMP development and production processes is a 

comprehensive and validated documentation system [131]. A good overview of the 

complexity of the quality assurance in biopharmaceutical production and the components 

of GMP in the EU as well as the USA are given by Müller et al. [126].  

Based on the developed GMP-compliant HGMS device the following section gives an 

introduction on equipment requirements which are mandatory for pharmaceutical DSPs. 

As described above, GMP guidelines cover the entire process of development and 

production including also the equipment design as a small part but the guidelines give not 

direct design criteria. Guidelines for the design of GMP-compliant process equipment can 

be found for example compiled specially for bioprocess equipment by the American Society 

of Mechanical Engineering (ASME), by the 3-A Sanitary Standards, Inc or the European 

Hygienic Engineering and Design Group (EHEDG). The last two institutions mainly deal with 

hygienic standards for the food industry. All these institutions have in common, that the 

provided reference books are costly.  

The overall development and construction of a new device for biopharmaceutical 

production is determined by the striving for optimal cleaning and sterilization results. All 

decisions on materials, construction or design elements are subordinated to the 
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cleanability. The specifications and suggestions supported by the ASME [132] and the 

EHEDG [133] have been taken into account in the design of the here used new magnetic 

separator as follows. As the overall goal was to design a clean device with a minimum of 

bioburden a CIP system has been installed. This requires that all surfaces, whether they are 

in contact with the product or not has to be cleanable. Surfaces which come in contact with 

product have to be for example free of any kind of imperfections, such as cracks. 

Furthermore, they have to be temperature, pressure as well as corrosion stable. It is crucial 

to ensure that all surfaces are resistant to chemical cleaning agents without any sign of 

corrosion and can withstand temperatures of 130 °C during the sterilization process. 

Therefore, preferred materials are 316 steel, stainless steel or higher alloy due to their 

homogenous, inert, non-absorbing, non-toxic and insoluble properties. The separation 

matrix of the new device as well as the head and the bottom part of the separation chamber 

is constructed from stainless steel taking further design criteria into account. Rank among 

these are the avoidance of horizontal areas, connection angels of 135 ° or less as well as 

radii of at least 3.2 mm to avoid low flow velocity areas, dead spaces to assure optimal 

draining and cleaning properties. The surface finish of at least 0.8 µm Ra and electro 

polished finish have been realized. O-ring sealing should be avoided in contact with the 

product to minimize dead spaces. Therefore, custom made PEEK sealing elements were 

constructed for sealing and spacing of the matrix elements. Polymers with product contact 

have to meet the same criteria as metal surfaces. Beside adsorption of product components 

and temperature resistance, leaching properties are of particular interest. When Polymers 

and steel are used together different expansion coefficients during the sterilization process 

has to be considered. In the here used separation device, this has been solved by a spring 

loading of the separation chamber with a pre-set tension to ensure tightness of the system 

at all temperatures. Further parts of the separator which are in contact with the product are 

for example the pump and the valve blocks. A hose pump is used which is a simple solution 

to avoid the contact of moving parts or seals with the product. The required tubing is a 

single-use product and therefore this solution is in accordance with GMP. The design of the 

valve blocks is also driven by the drainability and the avoidance of dead spaces. For this 

reason, diaphragm valves in a block construction are preferred. The separation device has 

two such valve blocks. One below and one on top of the separation chamber. All electrically 

powered components of a device have to be sufficiently sealed to prevent short circuits and 

in case of motors, leakage of lubricants. This was ensured by the spatial separation of 

production and system control area within the housing of the separation device. In addition, 
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also the housing of the device needs to have an easy-to-clean design, including a appropriate 

surface finish and corrosion-resistant material. Finally, production devices are design to be 

applied in a clean room. Due to the cost of clean rooms the footprint of the device should be 

as small as possible and if possible production relevant parts should be separated from the 

control unit to save space and shift the control unit outside of the clean room. This has not 

been realized with the MES 100 RS yet. However, the housing of the system consists of two 

parts, the control cabinet and the production side. Due to this, a separation seems to be easy 

to realize. In summary, it becomes clear that all parts of the design and construction are 

guided by the optimization of the cleaning of the system, which is the basis for the successful 

development of a cleaning protocol and the subsequent validation of the cleaning process. 
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2.8 Equipment Cleaning in Biopharmaceutical Production 

The development of cleaning strategies has to start with the idea of a new production device. 

The equipment design has to combine the application or operation with the simplest 

possible cleanability and maintainability [134]. Regulatory bodies, like the FDA, expect 

cleaning procedures to be established and validated since 1963. Since 1978 a cleaning 

procedure is also mandatory according to GMP guidelines [135]. In general, the 

development of a cleaning strategy consists of two main parts. The development and 

validation of the cleaning procedure itself and the development and validation of a suitable 

analytics [136]. The main task is to secure costumer safety by ensuring the product quality. 

The key component of a successful cleaning process development and validation is the 

documentation of the process. Written standard operation procedures are mandatory. They 

have to include all information concerning the use of the process equipment, all process 

fluids, responsibilities, cleaning and process methods and of cause cleaning criteria as well 

as acceptance criteria. Key questions like: What, Who, When, How, Where have to be 

addressed [134,137,138]. The documentation is needed to ensure the efficiency, 

effectiveness as well as consistency and reproducibility of the cleaning process. Cross-

contaminations of product batches as well as microbiological contamination but also 

contaminations of residual cleaning agents have to be avoided [139,140]. For the successful 

implementation of a cleaning process a comprehensive process understanding as well as 

the definition of the objective is essential. The nature of the impurities in combination with 

surfaces, cleaning agents and toxicity analysis make every process unique and therefore 

cleaning processes have to be adapted to every new task after performing a risk assessment 

[127].  

In general, the cleaning process can be carried out in three ways. A manual cleaning of the 

equipment includes normally a disassembling followed by a manual scrubbing of all parts 

with the cleaning agent. This process is susceptible to deviations due to human labour. In 

addition, the contact with cleaning agents includes risks for the health and safety of the 

workers. The second option is a disassembling and automated cleaning of the device. This 

is supposed to deliver consistent cleaning results but is still dependent on human labour as 

well as time for the disassembling process. These methods can be summarized under the 

term of ‘cleaning out of place’ (COP). Preferred by the regulatory body is the third option. 

‘Cleaning in place’ (CIP) implies the automated cleaning of the equipment without any 
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constructional changes. This process variant eliminates human error and improves safety 

for the workers. CIP processes deliver consistent cleaning results and usually reduce 

cleaning times and therefore process downtimes and cost [27,141]. 

2.8.1 Cleaning in Place (CIP) Process  

The cleaning process can be described as the physical removal of soilds, organic debris and 

particulates from the surface of the production device. Sanitization, which is not addressed 

here, would be the removal or elimination of vegetative bacteria cells [142]. As mentioned, 

most important for the successful development of a cleaning protocol is the knowledge 

about the kind of contaminants and their properties as well as the interactions to the surface 

of the device. The parameters related to the removal of impurities in a CIP process are 

described by Holst [143] as TACT, time, action, concentration and temperature of the 

process. The fluid flow rates and regime in the device or tubing can be taken as action. 

Turbulent flows, high fluid velocities and a total coverage of the surface are needed for a 

successful surface cleaning. The flow rates and coverage can be achieved in large equipment 

parts with spray balls if the device is not flooded completely. For common a combination of 

alkaline, acid and neutral cleaner with oxidizing or tensidic surfactants are used [140,141]. 

Based on this a cleaning protocol consist of three essential steps. A prerinse with water for 

injection (WFI) to remove free material, such as solids from the system. The prerinse is 

followed typically by an alkaline wash. Sodium hydroxide is used in concentrations between 

0.1 and 1 % with a temperature of 70-80 °C and contact times of 10 to 30 min. Alkaline 

washes are used to remove organic materials such as proteins, fats, or fatty acids. These 

cleaners can be boosted by the use of surfactants for better surface coverage and to increase 

the solubility of organic material. A further option is the addition of sodium hypochlorite as 

an oxidizer to increase the cleaning performance. The cleaning process is finalized by a WFI 

wash to remove all cleaning agents from the system. In some cases, it may be necessary to 

add an acid wash with e.g. nitric acid to the process. Acid cleaner are used to remove 

inorganic impurities such as iron oxide films ore milk stone [27,141]. The composition of 

the cleaning agents is not only dependent on the impurities. In most cases the concentration 

and the chemical configuration is determined by the surface materials of the device. High 

acid or salt concentrations might lead to corrosion of metal surface; oxidizer might influence 

the lifetime of polymer sealing. In addition, analytical techniques and sampling methods 
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have to be established and validated to prove the efficiency of the cleaning process and 

detect the absence of all cleaning agents after the cleaning process.  

2.8.2 Validation of a Cleaning Process  

The validation of the cleaning process is the documented proof of the efficiency of the 

developed process. This includes the validation of the cleaning process as well as the 

validation of the analytics used during the process. Like for the cleaning process knowledge 

about the process and the impurities is crucial during the validation. Analytical techniques 

can be divided into direct and non-specific techniques. Direct techniques allow a direct 

quantification of a specific contaminant but are time consuming in the development and 

execution as well as limited in information value if mixtures of contaminants are present. 

Typical examples of direct techniques are high performance liquid chromatography, protein 

assays, specific ELISA or DNA assays [136]. Non-specific techniques, such as the 

determination of the total organic carbon (TOC), offer low detection limits in the range of 

ppb and a ‘worst case’ scenario. All organic carbon will be detected from all sources such 

like cleaning agents, process contaminants or sampling aids and therefore deliver the 

highest possible contamination value [27,144]. Also fast and easy implemented methods 

like UV, pH or conductivity measurements provide information on the efficiency of the final 

water wash for example [137].  

The samples to be analyzed can be taken as rinse sample or direct surface swab sample. For 

the rinse sample the device is flooded after the cleaning process with an adequate solvent 

in order to solve all remaining impurities. Drawbacks are the low expected concentrations 

and the problem finding a solvent which is capable to solve the remaining impurities after 

the cleaning process. This solvent might be of a better use during the cleaning process. The 

sampling technique preferred by the regulatory bodies for the validation of a cleaning 

process is the direct surface swabbing. The dried surface is wiped off with a moist swab to 

physically remove remaining impurities and dissolve them for subsequent TOC analysis. 

Each sampling procedure must be validated per se. Therefore, the expected contaminants 

have to show a linear correlation in the TOC measurements over a broad range of 

concentrations. Furthermore, the dissolvability is to be determined from the swab. Values 

above 80% recovery should be aimed for [140]. Finally, the recovery of the impurities from 

the surfaces has to be a linearly correlated to the TOC values. Sampling technology in 

particular plays an important role and must always be carried out in the same way [145]. 
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After a successful validation of the cleaning process critical to clean areas of the process 

equipment have to be determined for later sampling. This can be done by a standard 

riboflavin test. The riboflavin test is a fluorescence test where the device is totally wetted 

with a riboflavin solution and cleaned afterwards. Critical areas can be determined due to 

the visible fluorescence of riboflavin if stimulated at a wavelength of 365 nm [146]. For the 

evaluation of the cleaning process, acceptance criteria for the maximum allowable carry-

over (MACO) of an active ingredient (AI) into the next process batch must be defined by a 

risk analysis. Early in a development process, a general limit like one half of the lethal dose 

for an animal (LD50) or the 10 ppm criteria can be used. The 10 ppm criteria means, that 

10 ppm of an AI is permitted in the smallest possible subsequent batch. A more precise 

criterion would be 0.001 of the minimum daily dose that may be found in the next product. 

This, however, requires advanced knowledge of the product and can be applied in later 

development stages [138,139].  

Only the combination of GMP-compliant design, development of adequate cleaning 

processes and a comprehensive documentation and validation of the cleaning process leads 

to a successful process development which is essential for modern biopharmaceutical 

production processes and especially necessary if the process equipment is challenged with 

crude cultivation feedstocks as the developed magnetic separation device in this work. 
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3 Overview of Publications  

This section provides an overview on the publications this thesis is based on. The 

publications are ordered chronologically as well as logically. The main topics of 

commissioning, characterization and validation of the first GMP-compliant HGMS device, 

the prove of applicability by implementation of an integrated mAb purification strategy and 

the optimization of a batch based process as well as the development and validation of 

cleaning routines for the device are addressed. 

The manuscript ‘Magnetic Separation on a New Level: Characterization and Performance 

Prediction of a cGMP Compliant ‘Rotor-Stator’ High-Gradient Magnetic Separator’ introduces 

the design of the GMP-compliant high-gradient magnetic separator ‘MES 100 RS’. Typical 

parameters characterizing the performance of the separator have been investigated, 

applying two commercially available types of magnetic particles. Beyond this, process 

prediction calculations were performed to demonstrate the potential of the device in down-

stream protein purification processes.  

The second manuscript, ‘One-step Integrated Clarification and Purification of a Monoclonal 

Antibody Using Protein A Mag Sepharose Beads and a cGMP-compliant High-gradient 

Magnetic Separator’, focuses on the process implementation of the separation device. A mAb 

purification process was chosen in order to compare the magnetic separation process with 

widely spread and fully optimized platform processes used in biopharmaceutical industry.  

In the third manuscript, ‘First Comprehensive View on a Magnetic Separation based Protein 

Purification Processes: from Process development to Cleaning Validation of a GMP-ready 

Magnetic Separator’, the previous disadvantages of magnetic separation processes, which 

prevented the industrial use, were addressed. Besides the optimization of batch adsorption 

processes as used in magnetic separation, the cleaning of the MES 100 RS was addressed. 

The development of cleaning strategies and the validation of the cleaning process are key 

elements of this manuscript and prerequisite for the manufacturing of biopharmaceuticals. 
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Magnetic Separation on a New Level: Characterization and Performance Prediction of a cGMP 

Compliant ‘Rotor-Stator’ High-Gradient Magnetic Separator 

Moritz Ebeler, Florian Pilgram, Kai Wolz, Gunnar Grim, Matthias Franzreb 

Biotechnology Journal DOI 10.1002/biot.201700448 

This work presents the first GMP-

compliant high-gradient magnetic 

separator for the use in 

biopharmaceutical protein 

purification processes. The 

separator is based on the ‘rotor-

stator’ matrix design, which is well 

described and used for various 

applications since the invention of the design almost ten years ago by Franzreb et al.. In 

order to meet GMP guidelines the design of the separator was completely reengineered. The 

main innovation is the sealing concept of the separation chamber. This allows working in a 

closed chamber which is in combination with the surface finish and the draining concept a 

prerequisite for the successful cleaning of the device. For the characterization of the device, 

specific separation performance data of two commercially available types of magnetic 

particles is introduced. Separation capacities of up to 400 g magnetic particles per litre 

volume of the separation chamber could be achieved. Beyond that, a full recovery and only 

negligible losses during ten resuspension and capturing cycles could be determined. Based 

on the characterization data a prediction of protein purification process performance is 

presented.  
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One-step Integrated Clarification and Purification of a Monoclonal Antibody Using 

Protein A Mag Sepharose Beads and a cGMP-compliant High-gradient Magnetic 

Separator 

Moritz Ebeler, Ola Lind, Nils Norrman, Ronnie Palmgren, Matthias Franzreb 

New Biotechnology DOI 10.1016/j.nbt.2018.02.007 

Based on the development of the 

previously described new GMP-

compliant magnetic separator a 

mAb purification process has been 

developed and conducted with this 

device. The process combines the 

typical process operations of solid-

liquid separation and purification 

of the mAb in one unit operation and serves as alternative for the widely used platform 

processes for antibody purification. Protein A functionalized Mag Sepharose particles were 

used to selectively bind a mAb directly from the cell culture. Five consecutive process cycles 

have been performed showing stable yields over 85 % with purities over 95 %. 

Furthermore, an HCP reduction of 2.5 log-scales has been determined and stable cell 

viability throughout the entire process was given. A comparison with the commonly used 

column based process revealed the clear productivity advantages of the magnetic 

separation process due to short process times resulting from fast mAb binding kinetics and 

high pump rates. 
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First Comprehensive View on a Magnetic Separation based Protein Purification 

Processes: from Process development to Cleaning Validation of a GMP-ready 

Magnetic Separator  

Moritz Ebeler, Florian Pilgram, Thomas Wellhöfer, Katrin Frankenfeld, Matthias Franzreb 

 

Based on the successful process implementation of a mAb purification process, the field of 

applications of the novel GMP-compliant magnetic separator has been expanded. A 

magnetic separation based purification process of eCG from horse serum has been 

developed and optimized in small-scale and transferred to technical-scale. The yield around 

80 % of the conventional magnetic separation bind and elute process could be increased by 

the introduction of a counter-currant process variant to nearly 100 %. The increase in yield 

has been achieved without changes in particle concentration or process batch sizes. 

Furthermore, the cleaning in place of the separator has been shown for two model 

contaminants. Beside the development of cleaning routines, the set-up and validation of the 

accompanying analytic was of particular importance.  

This publication presents for the first time a complete picture of a GMP-ready magnetic 

separation process in biopharmaceutical protein purification concerning the process 

device, process development and optimization as well as the cleaning and cleaning 

validation of the process equipment. 
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4.1 Abstract 

The growing market of biopharmaceuticals and the constant developments in upstream 

fermentation have generated a strong demand for new downstream purification methods. 

Magnetic separation in combination with functional magnetic particles has been known for 

many years as a promising candidate for a direct capturing tool in protein purification but 

the lack of suitable GMP-compliant purification equipment has prevented the launch of this 

technology in large scale bioprocessing. To tackle this bottle-neck, the principle of a ‘rotor-

stator’ high-gradient magnetic separator was fully redesigned to meet the rigorous 

requirements of modern cGMP biotechnology purification processes. In order to fulfill 

regulatory requirements, the separation chamber was reengineered to allow effective 

cleaning and sterilization in place while maintaining excellent separation capacities and 

efficiencies. Two kinds of commercially available magnetic particles were used to validate 

key performance data and determine system related parameters in order to calculate 

process performance figures for process optimization of the new magnetic separation 

device. With separation capacities of over 400 g of magnetic particles per liter of separation 

chamber volume and separation efficiencies as well as recovery rates over 99 %, the system 

is able to process more than 200 L crude feedstock per day and capture more than 1.6 kg 

target compounds. 

 

Keywords: direct capturing; downstream processing; GMP; high-gradient magnetic 

separation; industrial biotechnology 

 

Abbreviations: GMP, good manufacturing practice; HGMS, high-gradient magnetic 

separation; MP, magnetic particles; CIP, cleanable in place; SIP, sterilizable in place; PEEK, 

polyether ether ketone; EHEDG, European Hygienic Engineering and Design Group 
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4.2 Introduction 

The large-scale purification of biopharmaceuticals from of crude bioprocess feedstock and 

natural sources by conventional chromatography is often limited. Competing protein 

concentrations of sometimes over 50 g/L in serum or fermentation broth homogenates 

combined with high concentrations of particulate contaminants in the feedstock require 

elaborate multistep filtration and purification procedures. As a consequence, low yield, long 

processing times and high costs can be expected [18,60]. Alternatives are direct or 

integrated capturing methods. High-gradient magnetic separation (HGMS) is an elegant 

method combining classical purification process steps of solid-liquid separation, capturing 

and concentration in one-unit operation [73,92,147]. HGMS in combination with target-

selective magnetic particles (MP) enables protein purification directly from unclarified 

feedstocks [72]. Using small non porous MP prevents fouling due to pore blocking and 

provides large surface areas, resulting in high binding capacities and fast kinetics [73]. MP 

are easy to handle in a batch stirring tank arrangement for the binding step and fast to 

separate through magnetic force [124]. Magnetic separation has been known for many 

years in industries such as mining or water recycling [61,63,148]. HGMS systems were 

designed to recover micron-sized and weakly MP from dry and liquid feed streams. Fixed 

ferromagnetic matrices, such as filamentary rods, steel wool, thin wire meshes, plates, or 

pebble beds offer large surface areas while generating high field gradients when placed in a 

magnetic background field, making them suitable for the different separation tasks in the 

mentioned industries [4,73,148]. However, in the pharmaceutical industry, magnetic 

separation has not yet been used for purification processes on a commercial, industrial scale 

[73,92,93]. Magnetic separation of biomolecules is mainly employed on a lab scale for cell 

sorting, DNA purification and analytical applications [66,74,149]. Nevertheless, there are 

several studies dealing with the purification of commercially interesting biomolecules via 

magnetic separation on various scales [76–79]. For this purpose, custom-made prototype 

magnetic separators have been developed with a wide variety of approaches of shape, sizes 

and magnetic background field but still following the classical fixed matrix design. Rolled or 

staged wire meshes or filamentary rod constructions are favoured as a defined matrix 

structure [107–109]. The use of these matrix designs results in good separation 

performances with over 90 % of MP separation from the feed-streams, but the resuspension 

efficiency needed in order to wash and recover the MP from the system for further use has 

been mostly ignored. However, the complete recovery of the MP from the separator is 
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essential for economic reasons due to the high MP costs and also to avoid batch to batch 

contaminations [73,74,92]. Only a few approaches for enhanced MP recovery have been 

described, ranging from high flow rates by circulation of the process fluids over mechanical 

shaking of the system up to special coatings of the matrix in combination with ultra-sonic 

systems [111,113,114]. These approaches have been used in ml scale chamber volumes and 

face major difficulties in scale-up. To overcome disadvantages of the filamentary matrix 

structures such as irregular shapes and junction points that offer MP and impurities areas 

of low flow speeds, the matrix design itself has to be optimized. This was done with the 

development of the ‘rotor-stator’ matrix design [25]. The concept of the ‘rotor-stator’ 

magnetic separator is now known in various  setups and scales and has proven its broad 

range of application possibilities in numerous purification processes in different groups 

[72,77,79,115]. However, these processes have still not been developed past laboratory 

scale and are still suffering from the lack of suitable large scale GMP-conforming magnetic 

separation equipment. In this work, we present the first GMP-compliant high-gradient 

magnetic separator suitable for industrial use. The separator follows the concept of the 

established ‘rotor-stator’ high-gradient magnetic separator developed in our group 

previously [25]. Furthermore, we prove the applicability with performance data on 

separation efficiency as well as separation capacity for two commercially available MP. 

Additionally, we give an introduction to the process economics of the magnetic separator 

on the basis of dimensionless key figures describing the purification process in order to 

show the great potential of the new magnetic separator in a production environment.  
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4.3 Materials and Methods 

4.3.1 ‘Rotor-Stator’ High-Gradient Magnetic Separator  

Previous HGMS systems typically used filamentary wire meshes as a separation matrix in 

order to strengthen and concentrate the magnetic field as well as enlarge the separation 

area for MP. The drawback of this kind of matrix is the lack of cleanability as well as the 

problems associated with recovery of MP from the system. To overcome this difficulties, the 

‘rotor-stator’ matrix design was developed. The matrix consists of a stack of metal discs 

(Figure 15C). The discs are densely perforated with holes in order to pump the process 

solutions through. The metal ligaments between the holes serve as the separation matrix. 

These areas get highly magnetized to strongly attract MP in the magnetic field of the 

external electro magnet. The alternating connection of discs to a central rotatable shaft and 

to the housing of the separation chamber allows a fast rotation of every second disc, while 

the opposing discs form a stator which stands still (Figure 15B). This arrangement means 

that high shear forces for particle detachment, resuspension and mixing can be generated 

in the gap between the rotor and stator discs when required during washing and elution 

steps. However, existing models of ‘rotor-stator’ HGMS systems are not designed to meet 

GMP guidelines. An open matrix arrangement without a sealing concept to the inner shaft 

nor the surrounding chamber as well as the O-ring sealing at all chamber openings and 

metal-metal contacts create dead volumes and therefore pose high risk areas for the 

cleaning or sterilization of the device. Furthermore, the separation chamber, hose 

connections and valves are not designed to be self-draining. This effect is additionally 

reinforced by the surface and weld quality of the matrix and separation chamber. Finally, 

the housing of the separation device is not meant to be cleaned. In order to meet demanding 

requirements of industrial GMP-complaint equipment and develop a device which is 

cleanable (CIP) and sterilizable (SIP) in place, the design of the existing system was fully 

reengineered in a close cooperation between the company Andritz KMPT GmbH and the 

Karlsruhe Institute of Technology. This newly developed fully capsulated version of a ‘rotor-

stator’ magnetic separator (Figure 15A) meets common hygienic design standards such as 

3-A Sanitary Standards or EHEDG and is suitable for applications in clean rooms up to class 

7. All surfaces are cleanable and there is no hazard associated with leaching of components 

into the products. Surface finishes of at least 0.8 µm Ra with minimum radii of 3 mm and 
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electro polished matrix elements are additionally realized [133]. Metal-metal contacts are 

avoided and the system is designed to be fully self-draining as well as CIP and SIP 

compatible. The separator includes of a two-way hose pump with a maximum capacity of 

160 dm3/h. The fluid streams are controlled by two CIP and SIP enabled multi-port 

diaphragm valve blocks (GEMÜ, Ingelfingen-Criesbach, Germany) with six connections on 

the top and bottom of the system which are EHEDG certified. In this system, a switchable 

electro magnet generates the magnetic field for the separation of MP. The magnet consists 

of an aluminium winding coil generating a field strength of at least 0.25 Tesla at a power 

input of 3.6 kW. The impact of the matrix on the magnetic field inside the chamber was 

simulated by Multiphysics Modeling Software (COMSOL, Goettingen, Germany). The 

simulation of the field strength shows a magnetic induction up to 0.6 Tesla with the 

separation matrix installed and a macroscopically homogenous magnetic field over the 

whole length of the separation chamber. A water cooling jacket comprising the top and 

bottom lid as well as the inner bore of the magnet controls the temperature which is 

monitored by a Pt-100 element at the outer winding. The separation chamber has an inner 

volume of approximately one liter and contains the alternating stack magnetizable filter 

discs illustrated in Figure 15B. The discs are made from magnetizable stainless steel with 

an electro polished surface finish. The rotatable discs can be moved at 1500 rpm. Discs are 

Figure 15: (A) Annotated photograph of the ‘rotor-stator’ high-gradient magnetic separator MES 100 RS, 
including external stirring vessel for batch adsorption; (B) CAD drawing of the upper part of the separation 
chamber; (C) perforated separation matrix rotor disc; (D) schematic drawing of the separator including 
top and bottom valve block with indications of connected feed-streams and flow path 
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sealed to each other in order to provide a defined and closed process chamber. For this 

purpose, custom made PEEK elements were developed. The sealing is designed to avoid any 

dead spaces and reduce bypass flow around the discs. The inlet and outlet of the chamber 

allow a plug flow geometry as well as an optimal emptying of the chamber. All parts of the 

separator which are in contact with product are constructed to be sterilizable with 

superheated steam. To compensate for the extension of the disc stack and PEEK sealing due 

to temperatures of up to 125 °C during the sterilization the process chamber is equipped 

with pre-loaded springs at the top and bottom. In order to avoid O-ring sealing and the 

associated cleaning problems, a double acting mechanical seal is used as shaft sealing. The 

mechanical seal consists of non-magnetizable stainless steel to avoid any collection of MP; 

furthermore, the seal is sterilizable from both sides. Important system parameters such as 

temperature and pressure of the sealing liquid as well as core temperature of the magnet 

are monitored and displayed during the entire separation process. The maintenance 

requirements of the device are minimized by its design. Tubing can be easily connected via 

hose nozzles and due to the avoidance of grinding by using mechanical seals the system 

does not have to be disassembled frequently in order to replace wearing parts. To access 

the separation matrix, the separation chamber consisting of matrix discs, PEEK sealing, 

spring packs and a housing can be easily removed from the bore of the magnet in one piece. 

The system can be fully controlled and programmed from a human interface type Siemens 

TP1200 Touch integrated into the housing of the separator. The software is based on a 

Simatic S7 PLC interface programmed to be highly modular. The operator is flexible in the 

process design and execution. It is possible to choose from different operating modes such 

as a manual mode where the operator controls all functions in real time or a fully automated 

mode where the system runs purification protocols independently.  

4.3.2 Magnetic Particles 

Two commercially available MP were used to test the performance of the developed HGMS 

system: Chemagen M-PVA MP from PerkinElmer (Waltham, Massachusetts, United States) 

and MagPrep Silica MP from Merck Millipore (Darmstadt, Germany). The M-PVA particles 

consist of nano-sized magnetite particles surrounded by a matrix of cross-linked polyvinyl 

alcohol. According to the manufacturer, the mean diameter ranges from 1-3 µm. The 

saturation magnetization, determined with an alternating gradient magnetometer 

(Micromag 2900 Princeton Measurements) amounts to 29.6 ± 0.4 Am2/kg with a remanence 
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of 14.8 mA2/kg. MagPrep particles consist of monocrystalline magnetite with a thin silica 

coating. The mean diameter specified by the manufacturer is 100-200 nm. These particles 

have a saturation magnetization of 77.6 ± 3 Am2/kg and a remanence of 25.6 Am2/kg. The 

particle concentration of collected particle suspensions was determined gravimetrically by 

dry mass [79]. For concentrations lower than 0.2 g/L the concentration was determined by 

absorbance which is linearly dependent on concentration at a wavelength of 860 nm. In this 

case the samples were transferred to a microtiter plate and measured with a grid of 21 

measuring points in triplicates using a plate reader (EnSpire Multimode, PerkinElmer).  

4.3.3 Operating Procedure  

All operation protocols were programmed and executed via the integrated control panel. 

Feedstocks containing MP were stirred constantly to ensure a homogenous particle 

distribution. In order to test the maximum filter capacity of the magnetic separator, MP 

suspensions with a concentration of 22 g/L for M-PVA MP and 20 g/L for MagPrep MP were 

prepared with PBS (137 mM NaCl, 2.7 mM KCl and 12 mM Phosphate, pH 7.4) as liquid 

phase. A 35 % (w/w) sucrose solution was used to increase the viscosity of the feed 

solution. For separation capacity tests, an MP suspension was pumped at 2.2 dm3/min 

through the separator from the bottom valve block to the top (Figure 15D) while the electro 

magnet was switched on. Samples were drawn every 15 s and the particle concentration 

was determined. In order to test MP loss after resuspending and recapturing of MP, 90 g of 

M-PVA MP were loaded into the system. To perform a recirculation of particles as it occurs 

during buffer change or washing of the MP the system was flushed with two liters of the 

new buffer system. In the next step, the MP were resuspended by switching off the electro 

magnet and rotating of the central shaft with the connected discs at 1500 rpm for 30 s. For 

recapturing MP after suspension, the magnet was switched on again and MP were pumped 

through the system in a loop from the top to bottom valve block at 1.4 dm3/min for 30 s in 

order to collect all MP at the separation matrix. Samples were drawn from the effluent of 

every buffer change of ten consecutive process cycles. To recover MP from the chamber, the 

electro magnet was switched off and the particles were suspended by rotating the central 

shaft. Different recovery protocols were tested (data not shown). The lowest recovery 

volume, which represents the ideal case, was achieved by flushing the system from top to 

bottom with recovery buffer at 100 % pump speed and a rotator speed of 150 rpm. The first 
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two fractions contained two liters; for all following fractions the volume was reduced to one 

liter of buffer. 
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4.4 Results  

4.4.1 Separation Performance 

In this study, the performance of the new HGMS device was tested in regards to separation 

performance, recyclability and recovery of MP. For successful process development, crucial 

particle dependent parameters were investigated. Separation capacity of the filter matrix 

was determined by breakthrough experiments at a constant flow rate of 90 dm3/h. For M-

PVA MP, the average filter capacity until a 1 % breakthrough of the feed concentration was 

430 g of MP. Running the system at 90 dm3/h and 22 g/L feed particle concentration led to 

a separation duration of 8 min and 54 s. During this time, an average separation efficiency 

of 99.91 % was achieved. Separation of M-PVA MP from a feed solution with higher viscosity 

led to the slightly lower separation capacity of 395 g and less sharp breakthrough 

behaviour, resulting in a lower separation efficiency of 99.82 %. For the smaller MagPrep 

MP breakthrough was observed after separation of 270 g MP, within 6 min and 8 s. The 

average separation efficiency for this beads was 99.98 %, indicating a very sharp 

breakthrough behaviour (Figure 16A). The combined particle loss of the system during ten 

suspension and recapturing steps, representing a complete protein purification operation 

 

Figure 16: (A) Breakthrough curves for two kinds of commercial MP. Dots: Merck MagPrep MP; Inverse 
triangle: Chemagen M-PVA MP in 37 % (w/w) sucrose solution; Squares: Chemagen M-PVA MP. (B) 
Recovery volumes for two kinds of commercial MP. Y-axis: Fraction of MP in per cent of the total loaded 
amount. X-axis: Number of applied 1 L batches of recovery solution. In black bars, chemagen M-PVA 
MP and in grey Merck MagPrep MP. 
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including all washing, elution and regeneration steps, accounted for 0.3 % of the total 

loaded particle mass for M-PVA and 0.2 % for MagPrep MP. Finally, results from particle 

recovery experiments for the two kinds of MP are displayed in Figure 16B. Three recovery 

steps were needed to recover 99.6 % of the loaded M-PVA MP. Nearly all particles were 

found in the first two liters of the first step. No MP were detected in the drain of the fifth and 

subsequent recovery steps or in the separation chamber after dissembling. However, six 

recovery steps were required to recover 99.8 % of the MagPrep MP.  

4.4.2 Process Performance 

As a model system and in order to predict the performance of the new magnetic separation 

device data obtained by the use of commercial M-PVA MP (#IDA2_0118071) with 

covalently-bound iminodiacetic acid groups charged with Cu2+-ions were used to simulate 

the large scale purification of his-tagged green fluorescent protein (his-GFP). In lab-scale 

experiments, the particles showed a maximum binding for his-GFP directly from the 

unclarified E.coli cell lysate of qmax: 0.168 g/g with a kD of 0.063 g/L. For the following 

calculations the particle mass mp was set to 316 g, accounting for 80 % of the 1 % 

breakthrough for high viscous feedstocks. The separator volume Vsep is fixed at 0.98 L and 

the initial his-GFP concentration is set to 8 g/L. With a variation of the capacity ratio CR 

which involves a variation of Vbatch the equilibrium concentration c* can be calculated. As 

described, protein purification by MP in combination with a magnetic separation device 

uses a batch binding step in a stirred external tank. Consequently, the achievable protein 

loading of the MP depends on the remaining protein concentration in the supernatant after 

equilibrium is reached. This results in the known interrelation that high binding yields (low 

equilibrium concentrations left in solution) correspond to low protein loadings of the MP 

and vice versa. The equilibrium conditions are influenced by the ratio of the protein amount 

that can be bound by the mass of MP used and the protein amount offered in the feed volume 

of the batch. In previous publications we showed how this CR and the isotherm parameters 

of the considered purification task influence the predicted yield, purity and productivity of 

protein purification using magnetic separation [7] (see supporting information). 

Productivity and resulting yield of the described model process are illustrated in 

dependence of the CR in Figure 17. The yield increases up to 95 % in a linear manner up to 

a CR of approx. 1, after which the further yield increase is quite small with increasing CR. In 
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the case of MP with high target affinity, the productivity also reaches its maximum close to 

this point, in our case at a CR of 1.1, corresponding to a batch volume of approx. 5.5 dm³.  

To process the batch volume, a cycle time of 37 min has been experimentally determined. 

The cycle time is mainly influenced by the pump speed and includes the time for all process 

steps, such as loading, washing, elution, particle cleaning, equilibration and recovery. In 

summary, in the case of the described model system, a yield of 96.7 % is predicted with a 

productivity of 1.17 g/min*L. In 24 h the simulated process is able to treat 210 L of 

fermentation broth while capturing and purifying more than 1.6 kg of his-GFP. 

  

Figure 17: Dots: Yield; inverse triangle: Productivity; squares: Yield*Productivity as function of the 
capacity ratio CR for the target protein his-GFP. Yield*Productivity depending on CR indicates an optimal 
process point at CR 1.2. 
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4.5 Discussion 

The separation performance test with the novel GMP-compliant ‘rotor-stator’ magnetic 

separator revealed that separation capacity as well as breakthrough behaviour strongly 

depends on the properties of the MP. Decisive in this regard are the significant differences 

in size, magnetization and agglomeration properties. Despite the high magnetization, the 

size and weight of the MagPrep MP is crucial for the separation step. For protein purification 

processes, the particle amount loaded to the separator should not exceed 80 % of the 

maximum loading to ensure an optimal washing of the MP in the chamber. The viscous feed 

solution was chosen to simulate natural and sticky feedstocks such as blood serum. The 

shearing effect of the viscous feed solution resulted in a lower separation capacity as well 

as efficiency. Lower pump speeds should allow the particles to settle fast enough on the 

separation matrix and achieve separation results comparable to the ones with aqueous feed 

solutions. The separation device presented here meets or even exceeds ideal specifications 

for a magnetic separation device compiled by Franzreb et al. [73]. At the moment there is 

no comparable system on this scale on the market. Separation efficiencies are comparable 

to smaller systems optimized for particle separation without taking GMP guidelines and 

cleanability into account [79,113]. The outstanding MP recovery performance due to the 

matrix design allows an economic process design with optimal MP washing results during 

the process. Furthermore, theoretical results of the process simulation are in good 

correlation with process results for a his-GFP purification using a previous version of a 

‘rotor-stator’ magnetic separator from Gracìa et al. [79]. The simulation in combination with 

the results for the two strongly differing types of MP show the high efficiency and flexibility 

of the developed magnetic separator. Nevertheless, suitable MP have to be chosen carefully 

for every process. Besides the affinity and selectivity for the target molecule, the 

magnetization, size as well as size distribution, structure and availability are crucial factors. 
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4.6 Concluding Remarks 

In this work, a GMP-complained ‘rotor-stator’ high-gradient magnetic separator ready for 

the use in biopharmaceutical purification processes was introduced. The device, whose 

commercialization was launched at the beginning of the year 2017, allows the expansion of 

applications for magnetic separation from analytic and small laboratory scale to the 

integration of this elegant direct capturing tool to biopharmaceutical production processes. 

An approved matrix design combined with a reengineered separation chamber and an 

advanced sealing concept showed excellent separation capacities while overcoming 

difficulties in MP recovery and cleanability of previous designs of magnetic separators. It 

was shown that the breakthrough behaviour of MP is widely independent of the solution 

but strongly depends on the type of MP. Simulated operation data based on small scale 

experimental results showed promising process performance, capable of treating more 

than 200 L of crude fermentation broth a day with the direct capturing unit operation 

presented here.  
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5.1 Abstract 

Monoclonal antibodies dominate the biopharmaceutical market today. Typically, the 

purification process is performed by classical platform purification processes. High costs 

and rising demands require the development of efficient and flexible integrated purification 

processes. Until now, high-gradient magnetic separation as a direct capturing tool has been 

suffering from the lack of suitable GMP-compliant separation equipment for industrial 

purification processes. As a solution for this bottleneck we present a purification process 

for a monoclonal antibody directly from CHO cell culture by use of protein A functionalized 

magnetic particles and the first pilot-scale GMP-compliant ‘rotor-stator’ high-gradient 

magnetic separator. We perform five consequent purification cycles achieving constant 

yields of over 85 % and purities of over 95 %. Stable cell viabilities during the magnetic 

separation process enable integration of the device as an in situ product removal tool. A 

comparison with state-of-the-art protein A column-based purification processes reveals a 

three times higher process productivity per milliliter of applied resin and demonstrate the 

great potential of magnetic separation in downstream processing. 

 

Keywords: direct capturing; GMP; high-gradient magnetic separation; industrial 

biotechnology; mAb downstream processing 

 

Running Title: GMP pilot-scale mAb purification via HGMS 
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5.2 Introduction 

Biopharmaceuticals have grown to be among the main products of the pharmaceutical 

industry with a market above 200 billion dollars and a growth rate beyond 15% [150]. 

Monoclonal antibodies dominate the market as blockbusters and will do so for the next 

years with more than 50 candidates currently in late-stage development [17,34,35]. 

Established companies invested in large production capacities of stainless steel plants to 

keep up with the demands. Standardization and platform processes have been established 

using structural similarities, which has improved productivity significantly [34]. These 

technologies consist typically of a clarification using centrifuges and filtration methods 

followed by product capturing via protein A chromatography, virus inactivation and 

filtration, and finally one or two polishing steps by anion and or cation exchange column 

chromatography [18,29,151]. The use of disposables as well as more flexible equipment 

allowed also smaller companies and a growing number of contract manufacturers to set up 

more flexible production capacities and secure shares from the growing demands [152]. 

With rising markets for individualized medications and smaller dynamic production sites 

on the rise, high investment costs for large stainless steel capacities and traditional costs of 

down-stream purification methods have to be reconsidered [153]. One approach are 

integrated purification methods which combine classical process steps such as clarification 

and capturing to save time and costs and prevent product losses. Typical representatives 

are expanded bed adsorption (EBA) or aqueous two-phase systems (ATPS). Both process 

steps are well described and have proven their applicability in numerous examples. EBA 

offers the opportunity to process fermentation broth without clarification as capturing step 

but is often limited in throughput and prone to resin fouling [43,46,47]. ATPS as a particle-

free method is not susceptible to fouling and offers similar opportunities compared to EBA 

as capturing step for the separation of target proteins, impurities, and solids in different 

liquid phases. Drawbacks are elaborate investigations of suitable ATPS and the introduction 

of impurities for phase separation such as poly-ethylene glycol (PEG) and high salt 

concentrations in the purification process [21,31,153]. Another approach is to integrate 

clarification into fermentation processes. Techniques such as perfusion stirred-tanks or 

hollow-fiber bioreactors offer the possibility for constant product removal while 

proceeding with fermentation in order to create a continuous processes [35]. In recent 

years, high-gradient magnetic separation (HGMS) technology has emerged as an additional 

approach to whole-broth treatment. In combination with functionalized magnetic particles 
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(MP), the technology allows target-orientated capturing of the molecule of interest (MOI) 

directly from the fermentation broths. The technique has proven its benefits in numerous 

approaches [74,124]. In the analytical scale, HGMS is routinely used for cell sorting or DNA 

purification [66,103]. Easy scale-up from laboratory to preparative scale was proven by 

process examples as described by [76,97]. Advantages such as fast binding kinetics, short 

process times due to much higher flowrates than in column chromatography, and an easy 

adaption of MP amounts to batch sizes makes magnetic separation particularly interesting. 

Furthermore, HGMS batch adsorption approaches are easy to integrate in the fermentation 

process. This process variant has already been reported [21,59]. The use as in situ product 

removal (ISPR) tool creates new opportunities for integrated process operations. However, 

the lack of suitable cGMP-compliant HGMS equipment and limited availability of large 

quantities of MP prevented this technique from being used in biopharmaceutical production 

processes until today. Since the beginning of the year 2017, this gap has been closed by the 

development and commercialization of a cGMP-compliant ‘rotor-stator’ HGMS device. 

Previous non-GMP versions of ‘rotor-stator’ magnetic separators have been used for a wide 

range of purification tasks [72,79]. Technical details and validation data of the latest cGMP-

compliant version can be found elsewhere [125]. In this study, we prove the process-

relevant purification power of the combination of high-performance MP and the cGMP-

compliant HGMS device. Protein A Mag Sepharose were used to bind a monoclonal antibody 

(mAb) directly from CHO cell culture. A mAb was chosen as target molecule due to its 

relevance to industry and the possibility to show purification performances in comparison 

to well established platform antibody purification processes. Five purification cycles were 

performed using Protein A Mag Sepharose and the HGMS system to show the stability and 

robustness of the process combination. Purity, yield, and host cell protein (HCP) reduction 

level were determined and compared to common purification methods. 
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5.3 Materials and Methods 

5.3.1 Introduction of a Magnetic Separation Process 

A process scheme of a typical purification process using a HGMS system such as the MES 

100 RS and functionalized MP is described in Figure 18. Incubation of functionalized MP 

with fermentation broth, as the first process step, is performed externally in order to handle 

larger amounts of fluids. Fermentation broth can be, for example, unclarified CHO 

feedstocks or disrupted E.coli feedstocks. Also natural sources such as blood serum are 

possible. A constant mixing is required to avoid particle sedimentation.  

 

Figure 18: Process scheme of a HGMS process. Green boxes represent process steps conducted inside 
the HGMS device. Blue boxes represent process steps or fluid streams conducted in external vessels or 
leaving the device. 

After incubation, the feedstock-MP suspension is pumped into the HGMS system. MP with 

the bound MOI are separated by an external magnetic field at the magnetized separation 

matrix whereas the fermentation broth passes through the separation device. The magnetic 

separation can be described as a deep-bed filtration, selectively removing MP from 

fermentation broth [73]. After separation, MP are resuspended in a wash solution to remove 

weakly bound protein and impurities derived from the fermentation process. After every 

washing cycle, MP have to be rebound to the separation matrix in order to replace the liquid 

phase. The elution procedure typically also takes place in the HGMS device. Therefore, MP 
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are suspended in the elution buffer, which is collected after particle separation. Finally, MP 

have to be cleaned from heavily bound impurities, equilibrated and recovered from the 

HGMS device for further use or storage.  
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5.4 Materials 

Salts and chemicals for buffer preparation and pH adjustments were purchased from Merck 

(Darmstadt, Germany) in analytical grade. Mag Sepharose functionalized with protein A was 

used for small and pilot-scale purification experiments, HiTrap MabSelect SuRe column for 

bind and elute mAb titer analysis and two Superdex 200 Increase GL 5/150 columns for 

purity analysis (GE Healthcare, Uppsala, Sweden). Small-scale MP separation was 

performed using a MagRack 6 (GE Healthcare, Uppsala, Sweden). For all pilot-scale 

experiments, a ‘rotor-stator’ high-gradient magnetic separator (MES 100 RS) was used 

(Andritz KMPT, Vierkirchen, Germany). Before column analytics, all samples were 

centrifuged to ensure absence of solids.  

5.4.1 Magnetic Particles 

In this study, Mag Sepharose prototype (supplied by GE Healthcare, Uppsala, Sweden) were 

used for all experiments. The MP are based on a highly cross-linked agarose matrix with 

magnetite inclusions and have a mean diameter of 54 µm. Magnetic behaviour can be 

described as ferrimagnetic with a maximal magnetization of 47 Am2/kg and a remanence of 

14% determined by an alternating gradient magnetometer (Micromag 2900 Princeton 

Measurements). For purification of mAb from an unclarified crude CHO cell culture, the MP 

were functionalized with a protein A ligand by GE Healthcare (Uppsala, Sweden). 

5.4.2 ‘Rotor-Stator’ High-Gradient Magnetic Separator MES 100 RS 

The latest cGMP-compliant, commercially available version of a `rotor-stator` HGMS (MES 

100 RS) was developed in close cooperation of Karlsruhe Institute of Technology and 

Andritz KMPT GmbH. The unique design of the separation chamber together with an 

advanced sealing concept enables a pilot-scale production under GMP guidelines. The setup 

of the MES 100 RS consists of a two-way peristaltic pump with a maximal pump rate of 

2.7 L/min at the current setting. Two pressurized air-controlled valve blocks with six 

connections, one below and one above the separation chamber, control the process streams. 

The separation chamber is a one-liter cylinder surrounded by a water cooling jacket and an 

electro magnet, which generates a magnetic field of 0.25 T in the bore. Inside the separation 

chamber, a stack of perforated magnetizable stainless steel discs serves as separation 
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matrix. The holes within the discs allow process liquors to pass the separation chamber 

unhindered, whereas the metal ligaments between the holes get highly magnetized by the 

external magnetic field to strongly attract and separate MP. The discs are alternately fixed 

to an inner rotatable shaft (rotor-discs) or the outer housing (stator-discs). In order to 

detach MP from the matrix discs or to clean the separation chamber, the inner shaft together 

with the connected ‘rotor’-discs can be rotated at 1500 rpm to create shear forces in the gap 

between ‘rotor’- and ‘stator’-discs. Polyetheretherketone (PEEK) elements serve as spacers 

and sealing between the matrix elements. The MES 100 RS is controlled and programmed 

via an integrated graphical user interface. The software is highly flexible and offers the 

operator three different modes, from total automatic, semi-automatic to a complete manual 

control of the device. A closer description of the system setup, handling and performance 

can be found elsewhere Ebeler et al [125]. 
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5.5 Methods 

5.5.1 Cell Culture 

CHO cultivation was performed in the fed-batch mode using a ReadyToProcess WAVE 25 

Bioreactor and ActiPro cultivation media (GE Healthcare, Uppsala, Sweden) expressing the 

mAb applied here. Cell harvest was split into day 11 and 12 of the cell cultivation process. 

5.5.2 MAb Concentration Determination 

The mAb contents of all collected samples from small-scale binding studies and process-

scale experiments were analyzed by a MabSelect SuRe bind-and-elute method. For 

calibration, a pure mAb standard was used. All samples were centrifuged to ensure the 

absence of solids. A 1 mL HiTrap MabSelect SuRe column was equilibrated with 10 column 

volumes (CV) of PBS+0.05 % Tween 20 (137 mM NaCl, 2.7 mM KCl and 12 mM Phosphate, 

pH 7.4). 100 µL sample was injected to the column followed by a 5 CV wash with 

PBS+0.05 % Tween 20, a 3 CV elution using 0.1 M sodium phosphate pH 2.9 and a 5 CV 

equilibration step. The flowrate was kept constant at 1 mL/min. For detection, a 10 mm UV 

cell at a wavelength 280 nm was used.  

5.5.3 MAb Purity Determination 

The purity of the eluted samples was analyzed by size exclusion chromatography (SEC). 

Two coupled Superdex 200 Increase 5/150 GL columns (GE Healthcare, Uppsala, Sweden) 

were equilibrated with 2 CV 200 mM sodium phosphate pH 6.8. Either 5 µL in the case of 

elution fractions one and two, or 10 µL in the case of elution fraction three was injected at a 

flow rate of 0.5 mL/min. All peaks, from impurities and mAb, were integrated. The purity 

was calculated by dividing the area of the main peak by the total area of all peaks. 

5.5.4 Cell Viability Determination 

Samples for cell viability testing were drawn from fresh CHO cell culture after 30 min and 

60 min of incubation with MP and after processing the cell culture-MP-suspension with the 

magnetic separator. Cell counts were determined by a VI-Cell XR cell counter using VI-Cell 
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XR 2.0 software (Beckman Coulter Life Science, Krefeld, Germany). HCP levels were 

detected using a CHO HCP 3rd Generation ELISA kit (Cygnus Technology, Southport, North 

Carolina) customized for a GyrolabTM xP workstation (Gyros AB, Uppsala, Sweden) using 

Gyrolab Bioaffy 200 CD disks. 

5.5.5 Small-Scale Binding Studies 

Langmuir model-based maximal binding capacity Qmax and dissociation constant KD were 

determined for binding of the mAb onto Protein A Mag Sepharose by small-scale adsorption 

experiments. Varying amounts of functionalized MP (10-200 µL sedimented bed) were 

incubated with mAb containing CHO cell culture in 1.5 mL sample tubes at constant mixing 

for one hour. Subsequently, the MP were separated from the cell culture by magnetic 

separation and the solids were removed by centrifugation. The supernatant was analyzed 

for the mAb content by the MabSelect SuRe assay as described above. The bound protein 

amount was calculated by subtracting the protein concentration in the supernatant after 

binding from the initial concentration and calculating the protein loading of the MP by help 

of a mass balance. Equilibrium loading and concentration data were fitted using the 

Langmuir model. 

5.5.6 Pilot-Scale Magnetic Separation 

In the following, an exemplary sequence of a pilot-scale HGMS purification process is 

outlined. Five mAb purification runs from CHO cell culture were performed on two 

consecutive days in order to demonstrate process stability and reproducibility. On the first 

day, three batches were processed showing an mAb titer of 2.1 g/L. On the second day, the 

last two runs were performed with an mAb titer of 2.5 g/L. All buffer storage tanks were 

connected via tubing to the valve blocks as illustrated (Figure 19). Tubings were prefilled 

and the separation chamber was equilibrated using PBS to avoid air inclusions. At the outlet 

valves, sufficient containers for collecting wash and elution fractions for further analysis 

were provided.  
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Figure 19: Schematic flow sheet of the separator including the valve blocks and connections of the 
buffer solutions. 

For every purification process cycle, the available batch of 200 mL of Protein A Mag 

Sepharose was incubated with CHO cell culture in an external stirring vessel. No 

pretreatment of the feed was applied. A constant mixing was ensured for the time of 

incubation. During incubation, 1 mL samples were drawn after 0, 2, 5, 10, 20, 30, 40, 50, and 

60 min in order to monitor mAb uptake. After incubation, the MP-CHO cell culture 

suspension was passed through the separator at a flow rate of 2.2 L/min from valve 1 to 

valve 10. MP were collected at the separation matrix by applying a magnetic field while 

impurities were passed through the separator and collected for further analysis. MP were 

washed three times using 1.5 L PBS per wash. In the course of these washing steps, the 

remaining depleted cell culture feed in the separation matrix was completely replaced by 

PBS. During each washing step, the external magnetic field was switched off and the MP 

were resuspended in the new buffer system by rotating the inner shaft at 1500 rpm. To 

recollect the suspended MP, the external magnetic field was applied again and the process 

liquor was bypassed through the separation chamber from valve 6 to 8 for recollection of 

all MP before replacement of the liquid phase. The wash procedure was finalized by a wash 

step using pure water. For eluting mAb from MP, the separation chamber was filled with 1 L 

0.1 M sodium-acetate solution pH 2.9. Higher elution pH is often utilized in Protein A 

chromatography, but in this study it was of main interest to investigate product yields and 

secure that all mAb elutes off in one step. Elution pH optimization has therefore not been 
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included in this study. MP were resuspended as described for 5 min before recollection. In 

total, three elution steps were performed. After elution, MP were washed three times with 

PBS before three cleaning cycles with 0.1 M NaOH were performed. In order to reuse MP, 

they were equilibrated using PBS solution and recovered from the separator as described 

previously [125]. All process streams leaving the separator were collected and weighed. 

Eluates were adjusted to pH 5 by 3 M tris-base before storage at 4 °C until analytics were 

performed. MAb content of the feed, wash, elution and equilibration fractions was 

determined via the MabSelect SuRe assay. Purities of the elution fractions were determined 

by SEC. All process protocols were run in a semi-automatic mode in which the MES 100 RS 

runs all pre-programmed process steps such as loading MP, wash, elution or recovery 

independently.  
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5.6 Results and Discussion 

5.6.1 Small-Scale Binding Studies 

Small-scale binding studies with Protein A Mag Sepharose and mAb containing CHO cell 

culture were performed to test particle binding performance for the used mAb. Fitting the 

results to the Langmuir isotherm, a maximum binding capacity Qmax of 87 mg/mL and a KD 

of 0.06 mg/mL were determined (Figure 20A). Maximum binding capacity as well as 

equilibrium dissociation constant were in the top range of conventional protein A 

chromatographic resin [154]. Therefore, the presences of solid impurities as cells and cell 

debris seemed not to affect the binding capacity. However, the working capacity for the 

batch chromatography in this case is depended on the desired yield. To ensure minimal 

process losses, a yield of 98 % should be achieved and therefore low equilibrium 

concentrations must be adjusted. In the presented case, start concentrations of 2.5 mg/mL 

in the fifth cycle were obtained. As a consequence, the working binding capacity reduced to 

39.5 mg/mL. 

 

Figure 20: (A) Kinetics of the mAb binding on Protein A Mag Sepharose MP of the five process cycles. 
Over 90 % mAb binding in the first 10 min of the process. The binding equilibrium is reached after 
20 min. (B) Langmuir adsorption isotherm for the binding of a mAb in a cell culture to Protein A Mag 
Sepharose. A maximum binding capacity qmax of 87 mg/mL and a dissociation constant kD of 0.06 mg/mL 
have been determined. 
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5.6.2 Pilot-Scale Process Studies 

Five purification cycles of mAb containing CHO cell culture were performed using Protein A 

Mag Sepharose and the HGMS system to prove stable process results and reusability of MP. 

Start conditions of all cycles are displayed in Table 5. Variations of the actual feed volume 

were due to leftover from the previous purification cycle to avoid air being pumped into the 

system. Differences in mAb titer between cycles 1-3 and 4, 5 were caused by the ongoing 

fermentation process from day one to day two of the harvest. Feed volume and titer 

variations influenced the mAb loading on the MP.  

Table 5: Process feed volume, used particle amount, mAb titer in the feed, amount of mAb loaded to MP, 
and feed pumped through the separator for all five process cycles. 

  Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 

Feed volume [mL] 2766 2268 1980 2799 2305 

MP volume [mL] 200 200 200 212 170 

mAb titer [mg/mL] 2.1 2.1 2.1 2.5 2.5 

MP loading [mg/mL] 31 29 26 33 38 

Feed loaded [mL] 2258 2261 2995 2486 3039 

 

Values between 26 and 38 mg mAb/mL beads were calculated. During incubation of Protein 

A Mag Sepharose with mAb containing CHO cell culture, samples were taken to monitor the 

protein binding and adjust incubation duration. Figure 20B illustrates the mAb uptake 

during a period of 60 min for all five process cycles. The instant product binding of 

approximately 50 % was due to the batch adsorption process. All particles will be in instant 

contact with the mAb. As a consequence, short process times can be realized. After 10 min, 

already 95 % of the total binding took place, after 30 min, the equilibrium was reached. This 

time point represented the optimal start point for pumping the particle suspension into the 

separator. 

5.6.3 MAb Process Yield 

MAb mass and corresponding yield for all five process cycles and every process step are 

listed in Table 6. A nearly complete mAb binding from the CHO cell culture and negligible 
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losses during three washing cycles were observed due to the high affinity of the ligand and 

the excess of binding sites.  

Table 6: MAb mass and corresponding yields for all process fractions and cycles. 

  Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 

Process 
steps 

mAb 
[mg] 

Yield 
[%] 

mAb 
[mg] 

Yield 
[%] 

mAb 
[mg] 

Yield 
[%] 

mAb 
[mg] 

Yield 
[%] 

mAb 
[mg] 

Yield 
[%] 

Start 4657 100 4610 100 6047 100 5831 100 7107 100 

Flow-
through 0 0 0 0 0 0 0 0 37.2 0.5 

Wash 1-3 0 0 14.5 0.3 0 0 25.3 0.8 31.2 0.5 

Water 
wash 58 1.1 100.3 2.2 68 1.1 64.5 1.1 70.4 1 

Elution 1-3 4028 86.5 4319 93.7 5266 87.1 5000 85.8 6053 85.2 

 

The change of the buffer system to pure water led to mAb losses of 1 % to 2 % of the total 

yield. This step was necessary to bring the MP in a system with no buffering properties. By 

this, the following pH drop for elution took place more rapidly whereby smaller elution 

volumes could be applied. Marginal mAb amounts were detected in the flow-through of the 

fifth process cycle. This can be explained by the particle loading of 38 mg/mL in this cycle, 

which is close to the working capacity of the batch process explained above. However, 

constant high total elution yields of at least 85.2 % were achieved. Significantly more than 

60 % of the total elution yield was found in the first elution fraction, approximately 20 % in 

the second, and only around 5 % was found in elution fraction three (Figure 21A). 

Therefore, more than three elution fractions were not useful as they would lead to a dilution 

of the mAb without a significant increase in total mAb amount eluted. In this process, elution 

times of 5 min per elution were applied. Longer elution times should even shift mAb 

distribution to the first elution fraction and allow higher concentrations of the product as 

long as the dissociation equilibrium is not reached. 
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Figure 21: (A) Single yields for elution fractions 1-3 as well as total elution yield for all five process 
cycles. (B) Purity an HCP reduction level of the pool elution fractions from all five process cycles. 

MAb concentrations from CIP and equilibration fractions could not be detected due to pH 

conditions and the denaturation of antibodies. The amounts of mAb in these fractions were 

assumed to close the mass balance. Conventional purification processes show similar yields 

to this magnetic separation process. Although centrifugation and filtration steps for harvest 

of cell culture can reach yields of up to 98 % [155], they contribute to the product loss of 

conventional capturing process schemes. Together with a yield of approximately 90 % for 

the protein A column chromatography capturing steps, yields of 85-88 % can be estimated 

for the conventional capturing process [27]. The constant high elution yield of over 85 % 

showed the robustness of the HGMS process and the reusability of the MP. 

5.6.4 MAb Process Purity 

Eluates from all process cycles were analyzed by SEC. A typical SEC chromatogram from a 

mAb eluate fraction with a purity of 96.34% was observed (Figure 22A). From the 

chromatogram became obvious that small volumes of impurities of 3.36% of the total peak 

area were low molecular weight impurities that elute around 10 minutes (Figure 22B). This 

fraction includes impurities deriving from the fermentation process such as HCPs. A smaller 

fraction of approximately 0.3 % likely formed by antibody aggregates elutes directly prior 

to the main peak. The negligible small amount of aggregates in eluates from the magnetic 

separation purification process is an evidence for a product-gentle process. It is commonly 

reported that shear stress has an impact on aggregation behaviour [27]. 
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Figure 22: (A) A typical chromatogram for an elution sample from the mAb purification process. The 
impurity peaks and the main peak were integrated. The purity of mAb was calculated by dividing the 
area of the main peak with total area of impurity peaks and main peak. (B) The zoomed chromatogram 

For the reported process, shear forces due to particle suspension by the matrix discs seemed 

not to affect the product quality. Furthermore, high local product concentrations as 

occurring during elution from conventional column chromatography which favor antibody 

aggregation could not be observed during batch elution in magnetic separation processes. 

Constant high purities of over 95 % were reached in all process cycles (Figure 22). Although 

this magnetic separation process was performed for the first time, it showed comparable 

results regarding the purity of the product compared to common purification processes. For 

column protein A chromatography applied as capturing step in an industrial setting, purities 

above 95 % have been reported [18,123]. These processes, however, have been intensively 

optimized over the years in contrast to the magnetic separation process here presented. 

5.6.5 Cell Viability 

To access cell viability, samples were drawn from fresh CHO cell culture, after 30 and 60 min 

of incubation with MP and after passing it through the separator. Constant cell viability of 

93.5 % was obtained in all samples taken during the process which indicates that the cells 

were not influenced by the presence of MP, incubation conditions or shear stress during 

pumping through the separator. This makes the separator suitable for continuous 

harvesting operations as ISPR described for magnetic separation previously [21,59] or as 

an alternative for continuous perfusion or hollow-fiber reactors [35]. Furthermore, 

applications in large-scale cell separation are a possible scenario, due to the fact that 

magnetic separation is already routinely used in this field in laboratory scale [156]. 
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5.6.6 Host Cell Protein Reduction 

Stable HCP reductions of over 2.5 log reduction units and HCP/mAb weight fractions 

between 2430 and 1614 ppm in the elution fractions could be achieved (Table 7). These 

reduction levels are slightly lower than common reduction levels from conventional protein 

A resins in column chromatography where more than 3 log reduction units can be expected 

[157]. FDA has not specified an exact concentration for HCPs allowed in the final product 

but most biotech products reviewed positively by the FDA showed HCP concentrations 

between 1-100 ppm [158]. However, common mAb purification schemes include further 

chromatographic steps following protein A easily reducing the HCP level to the required 

levels. In addition, it should be possible to reach higher HCP reductions with the presented 

system by adding further wash steps to the protocol. The required additional process times 

due to more wash cycles would be only in a range of a few minutes per cycle.  

Table 7: HCP reduction and mAb concentration for the five pooled elutions of the HGMS mAb purification 
process. 

cycle mAb conc. [mg/ml] HCP conc. [ng/ml] Log reduction 

value HCP 

ppm 

Start feed cycle 1-3 2.1 1700682 
  

Start feed cycle 4,5 2.5 1796024 
  

1 1.26 2034 2.7 1614 

2 1.33 3232 2.52 2430 

3 1.60 3323 2.59 2076 

4 1.48 2819 2.63 1904 

5 1.79 3504 2.62 1957 

 

5.6.7 Overall Process Performance  

Looking at the process as performed in this case study, an obvious disadvantage was a 

rather low mAb concentration in the elution fractions, which is about 60 % to 70 % of the 

mAb concentration in the feed. This dilution was mainly caused by the system setup and the 

applied process parameters. First, each elution step volume was fixed to one liter, 
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corresponding to one time the size of the separation chamber. In the presented process, 

three elution cycles were carried out leading to an elution batch of three liters. Second, 

maximal performance of the system has not been reached during the trials due to the limited 

amount of affinity beads available. Only 200 mL of MP were used, corresponding to less than 

50 % of the working particle loading capacity of the separator. The maximum MP loading of 

the separator was approximately 600 mL for Mag Sepharose. In order to ensure optimal 

washing results, the working capacity should not exceed 80 % of the maximum loading 

capacity, which still would mean that more than double the amount of MP could be used 

resulting in at least a doubling of the product concentration. To demonstrate the advantages 

of the cGMP-compliant separator, a performance comparison of the HGMS purification 

process and a conventional column chromatography process is presented. The process data 

is based on the results of the case study as well as general rules for the design of magnetic 

protein purification processes presented by Franzreb et al. [124] and applied for the here 

presented separator by [125]. The maximum capacity of the used Protein A Mag Sepharose 

was determined to be 87 mg/ml, as described earlier. For the process performance 

calculations, a required binding yield of 95 % and a mAb start concentration of c0 = 2.5 g/L 

were assumed resulting in a working capacity of Q* = 58.8 mg/mL according to the 

measured isotherm. In comparison to our case study it should be noted that in order to 

optimize working capacity and productivity we reduced the aimed binding yield from 

practically 100% to 95%. With these numbers and a MP volume of 480 mL (80 % of the 

maximum capacity) a capacity ratio CR of 1.4 and in consequence a batch volume of 11.9 L 

can be determined. The estimated cycle time needed for this batch size includes the 

equilibration of the MP, particle loading to the separator, wash, elution, CIP, re-

equilibration, and recovery of the MP, summing up to 35 min. The process time does not 

include the incubation, since this process step is performed in an external stirring vessel 

and does not occupy the separator. With this process, a mAb production of 28.32 g per cycle 

with a concentration factor of 4 and an overall process productivity of 

𝑃 = 1.72 mg mAb/ml beads * minutes is reached. For comparison of the HGMS process to a 

column process data from a MabSelect Sure capturing step by a ReadyToProcessTM product 

(GE Healthcare, Uppsala, Sweden) were used. Equal amounts of chromatographic material, 

start batch, and working capacity were assumed. Furthermore, a flow velocity of 500 cm/h 

and a bed height of 20 cm were given. The process time with the given volumes for 

equilibration, bind, wash, elution, CIP, and re-equilibration sum up to 1 h and 48 min, which 

results in the same production as in the HGMS process with a concentration factor of 4.9 



One-step Integrated Clarification and Purification of a Monoclonal Antibody Using Protein 
A Mag Sepharose Beads and a cGMP-compliant High-gradient Magnetic Separator 
_______________________________________________________________________________________________________ 

80 
 

and a process productivity for the capturing step of 0.58 mg mAb/ml beads * minutes. The 

used cycle time for the conventional process does not include the time necessary for 

clarification of the fermentation broth, which is already included in the HGMS process. Even 

without taking into account this extra time, the HGMS process is nearly three times more 

productive due to its short process step times and fast sorption times which are performed 

in an external vessel and therefore do not occupy the HGMS system. 
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5.7 Conclusion 

The combination of commercially available Protein A Mag Sepharose with our GMP-

compliant magnetic separator, which is now commercially available too, opens new 

possibilities in down-stream processing. The combination has been used to replace several 

traditional process operations in harvesting, such as centrifugation and filtration and 

column chromatography for capturing by one-unit operation without a reduction in 

performance. In the presented process, the purification of a mAb from CHO cell culture 

reached average yields of 87.7 % and purities above 95 %. Furthermore, robustness of the 

process has been proven over five consecutive process cycles with constant high yield and 

purity. The direct purification of an antibody from CHO cell culture allows implementation 

of this process as an ISPR method. Cost and time savings due to the absence of single-use 

filters and process times for clarification offers a unique advantage of the magnetic 

separation process. In addition, productivity calculations predict the HGMS process being 

three times as productive as a comparable column process, even without taking into account 

the saved time for clarification. On the other hand, the presented process shows slightly 

lower reduction levels for HCP compared to the conventional purification process. 

Furthermore, the mAb concentration in the eluate will reach only around 8 g/L and 

therefore about half the concentration of conventional protein A columns. However, to our 

opinion the advantages of omitting clarification and increasing productivity while achieving 

comparable yields and purities clearly prevail the stated small disadvantages.  
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6.1 Abstract 

Magnetic separation processes are known as integrated bioanalytical protein purification 

method since decades and are well described. However, use of magnetic separation 

processes in a regulated industrial production environment has been prevented by the lack 

of suitable process equipment and prejudice against the productivity of the process and its 

qualification for cleaning-in-place (CIP) operation. With the aim of overcoming this 

prejudice, a comprehensive process development approach is presented, based on a GMP-

compliant magnetic separator, including an optimization of the batch adsorption process, 

implementation into a technical-scale and the development and validation of cleaning 

routines for the device. By the implementation of a two-step counter-current binding 

process it was possible to raise the yields of the magnetic separation process even for very 

low concentrated targets in a vast surplus of competing proteins, like the hormone equine 

chorionic gonadotropin (eCG) in serum, from 74 % to over 95 %. For the validation of the 

cleaning process a direct surface swabbing method combined with a total organic carbon 

analysis was established for the determination of two model contaminants. The cleanability 

of the process equipment was proven for both model contaminates by reliably meeting the 

10 ppm criteria.  

 

Keywords: direct capturing; cleaning validation; high-gradient magnetic separation; 

industrial biotechnology, process development, protein purification  
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6.2 Introduction 

Magnetic separation is known for many decades in biotechnological separation processes 

[8,64]. The basic principle is the selective adsorption of a molecule of interest (MOI) to 

magnetic particles (MP) functionalized with a target selective binding group. After 

adsorption, the MP can be separated by magnetic forces in order to isolate the MOI from the 

feedstock. In this manner integrated processes can be realized combining a solid-liquid 

separation with a capturing of the MOI [3,7,64]. Magnetic separation is a highly flexible 

technique that has been applied for various applications in biotechnology. Typically, 

magnetic separation is used for protein, enzyme or cell purification, recycling of 

immobilized enzymes, as well as cell labeling and sorting [65,66,69,70]. The use of MP is 

well established and routinely used in industry for analytical-scale processes [159]. For 

large-scale protein purification purposes magnetic separation is virtually unknown in 

industry although there have been most different applications and processes described in 

literature reaching from milliliter to 100 L scales [73,76,77,79,92]. The absence of magnetic 

separation techniques within bio-industry is mainly due to the lack of commercially 

available GMP-compliant high-gradient magnetic separation (HGMS) devices. This gap has 

now been filled with the commercialization of the first GMP-compliant HGMS device by the 

company Andritz GmbH at the beginning of 2017 [125]. The device allows direct capturing 

and purification of MOI from crude feedstocks such as cultivation broth or natural sources 

such as blood or blood serum [21,72]. By the reduction of process steps, higher yields as 

well as time and cost savings are expected [160]. As an example for the advantages of HGMS 

processes the purification of the glycoprotein eCG from pregnant mare serum has been 

studied recently. The conventional purification method of eCG is divided into two main 

sections. The first section comprises multiple precipitation steps. First, with 0.5 M 

metaphosphoric acid, followed by two additional precipitation steps with 50 % and 75 % 

(v/v) ethanol at 4 °C. In the second section, further purification is achieved by fixed bed 

chromatography and gel-filtration. In addition to the expected low yield of around 50 % due 

to high losses during precipitation and resolving, the consumption of solvents makes this 

process an economically and ecologically imperfect solution [161–164]. An alternative 

purification process via magnetic separation has been presented by Müller et al. saving 2/3 

of the solvent by using magnetic anionic exchange particles after a first precipitation 

procedure [78,94]. The yield of this process reached up to 79 %. However, due to the high 

conductivity of the raw material the ionic exchange magnetic separation process could not 
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be applied without a previous precipitation step. With the development of an affinity ligand 

for the specific binding of eCG and the functionalization of MP with this anti-eCG affinity 

ligand it was possible to avoid all precipitation steps and purify eCG directly from untreated 

serum. This purification process has been implemented in a small version of an automated 

non-GMP-compliant ‘rotor-stator’ HGMS device [95]. Purification and concentration factor 

exceeded the previously presented process. The drawbacks of the affinity based process 

were a lower yield of around 50 % and a loss of adsorbent binding capacity of over 30 % in 

30 process cycles. With this poor performance data the disadvantages of batch adsorption 

processes from crude feedstocks became clearly apparent. Harsh cleaning conditions as 

well as particle fouling due to the characteristics of the feedstock lowered the reusability of 

the MP. In addition, the batch adsorption process with only one equilibrium stage and low 

MOI concentration in the feed is responsible for the low yield. 

While there is an obvious potential for optimization of one stage batch adsorption HGMS 

processing, the lack of suitable large-scale GMP-compliant separation equipment and 

demonstrations of its cleanability represents another obstacle to a successful introduction 

of magnetic separation in industrial purification processes [73,93]. Cleanability – in the best 

case without disassembling but as automated routine in a CIP procedure – is an 

indispensable prerequisite for the industrial application of process equipment in 

biopharmaceutical industry and demanded by the FDA [126,130,134,135]. The basis for a 

successful cleaning of a process equipment is a GMP-compliant design. Besides the design 

of product-touching equipment parts following hygienic design regulations, the design of 

non-product-touching housings need to be taken into account as well [132,133]. A cleaning 

protocol has to be developed in order to ensure the quality of a product and avoid cross-

contaminations from batch-to-batch or from different active pharmaceutical ingredients 

(API), if used as multiproduct equipment [139,140]. Furthermore, validation of the cleaning 

process is of great importance. Two sampling methods for the cleaning validation of 

surfaces are recommended. From these two, the surface swabbing test is commonly 

preferred over the rinse sampling test. Defined parts of the surface are swabbed with a 

sampling swab followed by an analysis of the resolved contaminants. Other than specific 

analytical techniques such as high performance liquid chromatography or enzyme-linked 

immunosorbent assays (ELISA) also non-specific analytical methods gain importance 

[27,136]. Total organic carbon (TOC) analysis is simple to implement as it does not require 

the development of a dedicated method to identify specific contaminants. Furthermore, it 
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offers low detection limits in the range of ppb, and is less time consuming in the set-up and 

execution compared to more specific techniques [137,165,166].  

In this study, we optimize the approach of affinity based HGMS for eCG purification directly 

from crude feedstock to circumvent limitations of common techniques and proof the 

applicability of HGMS in modern biopharmaceutical purification processes. A 

comprehensive concept is presented, consisting: (i) of a scale-up of a magnetic separation 

process for the purification of eCG from laboratory- to technical-scale; (ii) the successful 

implementation of the process into the first commercial GMP-compliant ‘rotor-stator’ HGMS 

device; and (iii) a concept for the cleaning and cleaning validation of the device [125]. The 

process consists of a counter-current process variant which allows to increase the process 

yields without using larger amounts of MP. The accompanying cleaning validation of the 

device is conducted based on surface swab sampling tests and TOC analysis. With horse 

serum and hemoglobin solution, two highly concentrated model contaminants were used to 

validate the cleaning process. The comprehensive approach of a successful process 

implementation and optimization with the subsequent cleaning of the magnetic separation 

device has been carried out for the first time and illustrates the great potential of magnetic 

separation processes for a commercial protein purification in technical-scales. 
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6.3 Materials and Methods 

6.3.1 equine Chorionic Gonadotropin Purification Process 

eCG is a glycoprotein hormone consisting of two non-covalently bound subunits. The total 

weight of 60 kDa distributes among one α subunit with 16.96 kDa and one β subunit with 

43.72 kDa. The low pI of 1.8 is caused by a carbohydrate content of 45 % with 10 % of sialic 

acid. eCG is secreted in the endometrial cups and can be detected in mare serum between 

day 40 and day 130 of pregnancy with highest levels within the first days. Among other 

applications, eCG is used to regulate the reproductive activity of cows [167]. For this study, 

eCG purification serves as a model process to demonstrate the optimization potential of 

magnetic separation processes for low concentrated targets. 

Salts and chemicals for buffer preparation for the purification processes were purchased 

from VWR (Darmstadt, Germany) in analytical grade. Blood samples were taken from native 

Haflinger mares between day 50 and day 100 of pregnancy. Erythrocytes and fibrin were 

separated and the serum was stored at -20 °C until further use. Prior to storage, the average 

eCG concentration of 20 IU/mL was confirmed via an eCG-ELISA (fzmb GmbH, Bad 

Langensalzer, Germany) according the manufacturer’s instruction. Each sample was 

measured in six dilutions. For this study NHS activated Mag Sepharose (kindly provided by 

GE Healthcare, Uppsala, Sweden) was functionalized with the tailor-made anti-eCG affinity 

ligand developed by the Forschungszentrum für Medizintechnik und Biotechnologie (fzmb), 

Bad Langensalza, Germany for direct binding of eCG from crude feedstocks. The MP are 

based on a highly cross-linked agarose base matrix with magnetite inclusions. A mean 

diameter of 54 µm and a saturation magnetization of 47 Am2/kg with a remanence of 

6.6 Am2/kg were determined. For small-scale binding and recycling studies an automated 

liquid handling station (LHS) JANUSTM workstation equipped with a VarispanTM 4 fixed tip 

arm (Perkin Elmer, Waltham, Massachusetts, USA) as well as a magnetic separation support 

for 96-well flat bottom microtiter plates (Greiner Bio-One GmbH, Frickenhausen, Germany) 

were used. For milliliter-scale separation tasks a MagRack 6 (GE Healthcare, Uppsala, 

Sweden) was applied. 
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6.3.2  ‘Rotor-Stator’ High-Gradient Magnetic Separator (MES 100 RS) 

For pilot-scale separation processes the latest GMP-compliant version of a ‘rotor-stator’ 

high-gradient magnetic separator was used (MES 100 RS, Andritz KMPT GmbH, Vierkirchen, 

Germany). The heart of the separation device consists of a separation chamber surrounded 

by an electro magnet. The separation chamber contains a stack of densely perforated metal 

discs serving as matrix elements for the magnetic separation of the MP. The matrix discs are 

alternatingly mounted to the hosing of the chamber and to a central rotatable shaft. The 

shaft can be rotated with 1500 rpm creating shear forces in the gap between the matrix 

elements. As spacer and sealing between the matrix discs polyetheretherketone (PEEK) 

elements were used. Fluid streams are moved by a hose pump with a maximum speed of 

2.7 L/min and are controlled by two valve blocks, one below and one above the chamber. 

The valve blocks provide six hose nozzles for system fluid connections. The separation 

chamber as well as the valve blocks are designed to be self-draining. All system parts in 

contact with product streams were chosen according to recommendations and guidelines 

of the authorities. A detailed description and characterization of the separator can be found 

elsewhere [125,168]. 

6.3.3 Cleaning Validation Equipment 

Polyester Texwipe Alpha® swabs (ITW Texwipe, Kernersville, NC, USA) with a long handle 

were used to recover impurities from the surfaces of the separator. For resolving organic 

carbon related to the impurities from the swab, ultrapure water was acidified with 6 M 

phosphoric acid (Carl Roth GmbH & Co. KG, Karlsruhe, Germany) to a pH of 2. For the 

resolving and storage 15 mL reaction tubes (VWR international GmbH, Darmstadt, 

Germany) were pretreated twice with the resolving solution to reduce residual organic 

carbon. As model contaminants the described horse serum as well as hemoglobin (Sigma-

Aldrich Chemie GmbH, Taufkirchen, Germany) in a concentration of 50 g/L were used. As 

cleaning solution 0.5 M sodium hydroxide solution (Carl Roth GmbH & Co. KG, Karlsruhe, 

Germany) and COSA CIP 92 (kindly provided by Ecolab Deutschland GmbH, Monheim am 

Rhein, Germany) diluted with ultrapure water, according to the manufacturer’s protocol, 

were used.  
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6.3.4 Small-Scale Binding and Recycling Studies 

Maximum binding capacity Qmax and dissociation constant KD based on the Langmuir model 

were determined by small-scale adsorption studies on the LHS. Varying concentrations of 

functionalized MP (0.5 g/L – 6 g/L) were equilibrated in 100 mM phosphate buffer pH 7.4 

followed by the incubation with serum in a 96-well plate at a total volume of 200 µL. After 

one hour of constant mixing the MP were separated and the eCG concentration in the 

supernatant was analyzed via the eCG-ELISA. Equilibrium loading and concentration data 

were fitted using the Langmuir model. Adsorption studies were repeated in scale-up studies 

of 2 mL and 15 mL total volume with consistent particle concentrations.  

Long-term recycling studies were performed by the help of the LHS. 2.5 g/L MP were 

incubated with 200 µL serum for 30 min in a 96-well plate. The binding step was followed 

by four wash cycles with 100 mM phosphate buffer pH 7.4 and an incubation time of 2 min. 

For elution the last wash solution was replaced by 50 mM ammonium acetate pH 3 and 

incubated for 30 min. Between each step the MP were magnetically separated and the 

supernatant was completely replaced by the next solution. In total 30 bind and elute cycles 

were performed. Elution fractions were neutralized with 10 % ammonia and stored at 4 °C 

until eCG concentration determination via the eCG-ELISA. 

6.3.5 Small-Scale Purification Process 

Small-scale eCG purification processes were performed in two different modes. For the 

single step purification process (SSPP) 4 g/L functionalized MP were incubated with serum 

in two scales. In the first scale the MP were twice equilibrated with 2 mL of 100 mM 

phosphate buffer pH 7.4 before incubation with serum for 1 h and constant mixing at a total 

volume of 2 mL. After separation of the MP and removal of the supernatant eCG loaded MP 

were washed four times with 2 mL equilibration buffer. Elution was performed with 2 mL 

of 50 mM ammonium acetate solution pH 3 for 1 h. The eCG concentration of all fractions 

was determined via the eCG-ELISA. A scale-up of the SSPP was performed with a total 

volume of 10 mL. To reach higher eCG concentrations in the eluates, the elution volume for 

this study was reduced to 2 mL. The counter-current purification process (CCPP) (Figure 

23) was performed in the same scales and with the same particle concentration as the SSPP. 

Unused MP (M0) were incubated with serum that was already once in contact with MP (S1). 

This ‘preloaded’ MP (M1) were washed two times and subsequently incubated with fresh 
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serum (S0). After the second incubation step the MP (M2) were washed and eluted as 

described for the SSPP. The once used serum (S1) from the second binding step in the first 

process cycle was incubated again with unused MP (M0). In summary the MP and the serum 

are used in a two stage counter-current process where the serum is incubated once with 

‘preloaded’ MP and once with ‘unloaded’ MP. The MP were eluted after the second 

incubation and subsequently equilibrated for the next CCPP. In total four counter-current 

cycles were performed. All fractions were collected and their eCG concentrations were 

determined. 

 

Figure 23: Schematic illustration of a counter-current batch adsorption process. The feedstock is 
pumped countercurrently to the magnetic particles. Fresh feedstock (S0) is contacted with pre-loaded 
magnetic particles (M1) and subsequently used in a second binding process as once used feedstock (S1) 
with un-loaded magnetic particles (M0). The magnetic particles are washed in between the binding 
steps and washed as well as eluted after the second binding step.  

6.3.6 Technical-Scale Purification Process 

The technical-scale eCG purification from pregnant mare serum was executed as CCPP. The 

amount of functionalized Mag Sepharose available for this process was approximately 9 g. 

This amount corresponds to 70 mL of sedimented chromatographic resin. A particle 

concentration of 3 g/L was used. The incubation of the MP with the serum was conducted 

for 30 min in an external vessel with constant mixing. After the binding phase the 

suspension was pumped from the bottom valve block to the top. The MP were separated by 

the magnetized matrix elements and the once used serum was collected. Three wash steps 

with 1.5 L of wash solution each were executed. In each step, the solution being present in 

the separation chamber was displaced by new wash solution. The MP were resuspended by 

switching off the magnetic field and rotating the inner shaft with the connected matrix 

elements at 1500 rpm for 2 min. Afterwards, the MP were recaptured before replacing the 

process liquor. For all process steps the same buffer compositions as used for the small-

scale experiments were applied. A closer description of the system control of the rotor-

stator separator can be found elsewhere [168]. After the wash steps, MP were eluted with 
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1 L of elution buffer for 30 min by resuspending the MP in the separation chamber. Finally, 

the MP were equilibrated three times with 1.5 L of equilibration solution, in order to 

prepare them for the next binding step. The eluted MP were recovered from the system with 

the once used serum and incubated again for 30 min before the pre-loaded MP were 

separated and washed again. The twice used serum was disposed and the pre-loaded MP 

were recovered from the system with a batch of fresh serum. The fully loaded MP were 

washed, eluted and equilibrated as described, while the once used serum was used for the 

next particle recovery and binding step. In total four counter-current cycles were 

performed. 

6.3.7 Cleaning in Place Procedure and Cleaning Validation  

The cleaning process of a device used in biopharmaceutical production has to be considered 

early in the planning and construction phase. The equipment design is a significant factor 

for development of the cleaning process and decides if a CIP is possible. Automated cleaning 

protocols reduce downtimes for dis- and reassembling of process equipment, prevent 

human error and deliver consistent cleaning results. Therefore, it should always be aimed 

for a CIP. A CIP always includes a recorded standard operation procedure with details of the 

process steps to be carried out and the cleaning agents to be used. Furthermore, a validation 

and control of the process has to be established. The cleaning is achieved mainly by chemical 

action and can be supported by physical action if possible. Critical cleaning parameters that 

have to be considered are action time of the cleaning solution, temperature and 

concentration. A typical cleaning process consists of a pre-water wash, a hot alkali step 

supported by surfactants and a final rinse with water for injection (WFI).  

6.3.8 Total Organic Carbon Analytic  

The organic carbon content of the cleaning validation samples was determined by a Sievers 

M9 Total Organic Carbon Analyzer (GE Analytical Instruments, Manchester, United 

Kingdom). The TOC of the sample was oxidized and passed a CO2 permeable membrane for 

detection by a conductometry. The detection range was specified by the manufacturer from 

0.03 ppb to 50 ppm with a precision of ± 2 %. The calibration was linear in a range from 

carbon free samples up to 1.5 ppm carbon. 
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6.3.9 Method Validation 

A linear relation between the contaminants to be detected and the amount of TOC detected 

by the analytical method is required for a successful validation of the analytical methods. 

For the calibration of the TOC amount of the contaminants, varying concentrations of serum 

and hemoglobin were added to 12 mL of ultrapure water acidified with phosphoric acid. 

Additionally, two sample swab heads were added and the sample tube was vortexed at 

maximum speed for 30 sec.  

6.3.10  Extraction Efficiency from Sampling Swabs 

To determine the usability of the selected sample swabs, the amount of TOC that can be 

resolved from the sample swabs was determined. 200 µL of varying concentrations of 

contaminants were applied to both sides of one dry sample swab by a pipette and 

subsequently incubated with an additional sample swab head in the resolving solution as 

described.  

6.3.11  Recovery Efficiency from Separator Surfaces 

To verify the accuracy of the test method the amount of TOC that can be recovered from the 

surfaces of the separation chamber was quantified. Known concentrations of contaminants 

were applied to the surface of pre-cleaned matrix elements and evenly spread over one half 

of the element with the aid of a pipette. The contaminated elements were dried at 25 °C for 

1 h. One sample swab head was wetted in the resolving solution and the contaminated 

surface was swabbed in horizontal lines to ensure a total surface coverage. After the initial 

pass the swab was turned and the surface was swabbed with the fresh side of the swab in 

an orthogonal direction to the previous lines. After the second pass the head of the swab 

was transferred to the sample tube from which it was wetted and the procedure was 

repeated with a fresh dry sample swab. Both heads were incubated as described. The 

sample tubes were stored at -20°C until TOC analysis. 
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6.3.12  Cleaning Validation of the Separation Device 

To validate the CIP procedure for the separation device, the separation chamber was 

contaminated with two model impurities, followed by an automated cleaning routine with 

two different cleaning agents and a surface swabbing test with TOC analysis. The separation 

chamber was flushed with the impurities from the lowest valve connection at the bottom 

valve block to the highest at the top one. After the separation chamber was completely filled 

with solution, the central shaft with the connected matrix elements was rotated at 1500 rpm 

for 30 sec. The system was completely drained after contamination and three times flushed 

with 2 L of water. Between each new water batch, the central shaft was rotated with 

1500 rpm for 1 min. After the last water flush, the system was drained. The cleaning 

protocols with the cleaning agents, 0.5 M sodium hydroxide and COSA CIP 92, were carried 

out as follows. The separation chamber was flushed with 5 L of cleaning agent tempered to 

70 °C from the bottom to the top. The batch of cleaning agent was pumped in a loop through 

the system with a pump speed of 1.5 L/min from bottom to top while the central shaft was 

rotated with 1500 rpm for 10 min. This procedure was repeated three times with 

alternating the pump direction. After draining the last batch of cleaning agent the separation 

chamber was flushed three times with 2 L of ultrapure water. The water batches were 

looped and mixed as described for the cleaning agents for 1 min. After the cleaning 

procedure the separation chamber was drained and perfused with compressed air for 

drying. Subsequently the separation chamber was disassembled and swab samples were 

taken from the inside of the chamber cover and the hose nozzle of the cover as described 

for the method validation. Furthermore, samples were taken from the head of the central 

shaft, matrix elements at the top, in the middle and at the bottom of the matrix stack as well 

as from the hose nozzle at the bottom of the separation chamber.  
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6.4 Results and Discussion 

6.4.1 Small-Scale Binding and Recycling Studies 

The long-term stability and reusability of Mag Sepharose particles functionalized with a 

custom-made anti eCG-affinity ligand were determined in small-scale bind and elute studies 

with the help of an automated LHS. During 30 reuses comparable yields could be measured, 

indicating the stability of the affinity ligand against the applied low pH elution conditions, 

and that the magnetic particles aren’t prone to fouling and, despite their porous structure 

(Figure 24A). The number of cycles the MP can be reused without a significant decrease in 

binding capacity is a crucial economic factor for the overall process. The prices for MP as 

well as for the development and production of a tailor-made affinity ligand are high and 

determine the overall costs of the separation process [73]. In order to determine application 

related binding isotherm parameters, adsorption studies for eCG from horse serum onto 

functionalized MP were performed. Consistent results of the 200 µL as well as 2 mL and 

15 mL scales were observed, however besides the expected Langmuir isotherm shape with 

a steep slope at the beginning and saturation of binding capacity in case of higher 

equilibrium concentrations an unexpected feature shows. Even at high concentrations of 

adsorption particles applied, a fraction of around 20 % of the original eCG activity remains 

in solution (Figure 24B). Because the phenomenon occurs in different test series 

independent of used batch volume, we don’t believe in an experimental error but that the 

reason can be found in different variants of the protein eCG. Due to the high degree of 

glycosylation of this protein such variants are likely. It seems that not all of them bound with 

the same strength to the used affinity ligand. It appears that eCG variants with low affinity 

do not bind to the functionalized particles in a batch adsorption processes due to the low 

number of separation stages. In a column separation processes, with a higher number of 

equilibrium stages it might be possible to capture these variants. For this reason, in all 

further calculations two variants of eCG are considered, with 78 % of a binding variant and 

22 % of a non-binding variant. The fraction of 22 % non-binding eCG variant is substracted 

from all ELISA results of binding tests with serum, resulting in a corrected Langmuir 

isotherm which is shown in Figure 24B. Of course, economic optimization of the process 

would require the screening for new affinity ligand having the potential to bind all eCG 

variant, however, for the purpose of our investigations regarding process optimization and 
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cleaning validation, the available sorbents are as well suitable. The corrected Langmuir 

isotherm results in a maximum binding capacity of 16.9 IU/mg and a dissociation constant 

kD of 0.5 IU/mL by fitting the concentration data to the Langmuir model.  

 

Figure 24: (A) eCG eluate concentrations in relation to the concentration determined in the eluate of 
the first cycle for 30 reuses of the particles. (B) Corrected and original concentration data from eCG 
binding studies to anti-eCG functionalized Mag Sepharose fitted with the Langmuir model. A maximum 
binding capacity of 16.9 IU/mL and a dissociation constant of 0.5 IU/mL were determined 

Mass balances from single bind and elute cycles provided information about the predicted 

performance of the single step purification process (SSPP) operation mode of direct eCG 

purification from serum. Serum with an eCG concentration of 15.3 IU/mL corresponding to 

approx. 12 IU/mL of binding eCG was used for an SSPP with 4 g/L adsorbents, leading to a 

concentration of 2.7 IU/mL of binding eCG in the supernatant after binding. Three wash 

steps were performed showing low eCG concentrations followed by one elution step with a 

concentration of 10 IU/mL in the eluate. From the resulting mass balance it can be 

concluded that three wash steps and one elution step are sufficient to wash off weakly 

bound product and recover all bound eCG. The overall yield in the elution fraction of the 

SSPP operation mode reached 83 % with a closed mass balance. From the numbers it 

becomes clear that the major loss of eCG is unbound product in the supernatant. This is due 

to the batch mode character of the purification process, where only one equilibrium stage 

is applied, corresponding with the known trade-off between the product amount left in the 

supernatant and the loading capacity reached. To tackle the disadvantages of low MOI 

concentrations in combination with batch adsorption processes a CCPP was established in 

order to process maximum batch size with minimum use of MP and high yields. To predict 
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the expected yield in dependence of the used MP concentration of the CCPP the mass 

balance and the determined isotherm parameters are used to calculate the predicted 

concentrations and particle loadings. From the results of the simulations of the CCPP it can 

be concluded that a two stage process, with a MP concentration of 3 mg/mL should deliver 

very good yields of more than 95 %. CCPP cycles with 3 mg/mL MP concentration were 

executed in total volumes of 2 mL and 10 mL. One initial single bind and elute cycle to start 

the process and to produce a one-time treated serum and four counter-current cycles were 

performed (Figure 25). During these cycles, the yield increased constantly, starting with a 

value of 74.6 % in case of the initial binding and elute step to over 95.8 % yield in the full 

CCPP cycles three and four. Taking into account all five cycles, an overall yield of 91.4 % 

could be reached. The overall process yield will converge to the yield of the last cycles if 

performing more counter-current cycles and therefore approaches the value of the 

theoretically calculated optimal yield. 

 

Figure 25: Yield of the eCG elution fractions of the four pilot-scale CCPP cycles is plotted in black. eCG 
elution yields of small-scale CCPP cycles are plotted in grey. 

 

6.4.2 Pilot-Scale Process Studies 

The process sequence of small-scale eCG purification was up-scaled to a pilot-scale process 

including one initial SSPP and three full CCPP cycles. In Figure 25 the resulting eCG yields of 

the elution fractions are plotted. Although the scale of eCG purification was increased by a 
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factor of around 1000 and manual particle handling was replaced by a fully automated 

particle management within the developed magnetic separator the results are almost 

similar. The yield of the initial SSPP cycle with only one bind and elute step was rather low 

(47 %) while applying full CCPP cycles the yield quickly increases and yields above 95 % in 

the second and third pilot scale CCPP cycle were achieved. Approaching elution yields close 

to 100 % it also shows that the CCPP process achieved steady state operation and that 

elution conditions are sufficient for practically complete elution in the separator too. In 

conclusion, applying a two-step CCPP operation it was possible to increase the batch size 

which can be treated per cycle by reducing the required adsorbent concentration while 

simultaneously increasing the yield of the process. At the same time the CCPP operation also 

has some drawbacks, namely longer cycle times and an increased washing buffer 

consumption. However, short binding times, due to batch adsorption, and fast processing, 

due to high fluid velocities in the magnetic separation process, implicate that even a two or 

three step CCPP operation using magnetic adsorbents requires less process time than 

conventional column based chromatography while achieving a substantial gain in product 

yield. 

6.4.3 CIP Procedure Development and Cleaning Validation  

The two commonly used sampling techniques for cleaning validation are rinse and surface 

swab sampling whereby the surface swab technique is preferred by the FDA and therefore 

used as sampling method for the cleaning validation of the magnetic separator. The TOC 

analytic was chosen due to its variable applicability for different contaminants and high 

sensitivity. The TOC method is a non-specific analysis taking into account all organic 

contaminants. Therefore, it does not allow conclusions to be drawn regarding the type of 

carbon source. In return, this method is more flexible and does not require any complex 

method development as it would be required for a HPLC method for instance.  

6.4.4 Method Validation 

A linear relationship between the contaminant amounts applied to sample swabs and the 

measured TOC amount after conducting the resolving procedure is a prerequisite for the 

use of the chosen analytical method. For both contaminants, serum as well as hemoglobin 

solution, linear relationships were observed with proportional factors of 9.6 mg/mg for 
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serum and 2.75 mg/mg for hemoglobin (Figure 26A). Average recovery rates of 90 % for 

hemoglobin and 84 % for serum confirmed the chosen resolving procedure of the sample 

swabs, including mixing duration and resolving solution. In addition, the recovery of 

hemoglobin and serum from matrix elements which were spiked with contaminant 

amounts increasing from 0.01 mg to 2 mg showed a linear correlation over the tested range 

(Figure 26B).  

 

Figure 26: (A) Determination and validation of the accuracy of the chosen analytic for hemoglobin 
(inverted triangles) and serum (dots), y-axis: Hemoglobin and Serum amount applied to control, x-axis: 
Measured TOC after dissolving procedure. (B) Recovery efficiency of organic carbon from the matrix 
elements for hemoglobin (inverted triangles) and serum (dots), y-axis: TOC amount applied to matrix 
elements, x-axis: Measured TOC after swabbing and dissolving procedure. 

6.4.5 Cleaning of the Magnetic Separator 

The separation device was rinsed with two kinds of contaminants, horse serum as well as a 

50 mg/mL hemoglobin solution. Afterwards, an automated CIP protocol was conducted for 

each contaminant with two main cleaning agents. An industrial commercially available 

cleaner (COSA CIP 92) and 0.5 M sodium hydroxide solution were used. After the main 

cleaning step, the system was flushed with ultra-pure water until neutral pH was reached. 

Surface swab samples were taken at different places of the separation chamber and the 

validated TOC analytic was carried out. The TOC amounts recovered from selected parts of 

the separation chamber were converted to amounts of hemoglobin respectively serum, and 

multiplied with the total number of parts in the separation chamber as well as a recovery 

and safety factor of 0.73. The result is given as absolute values in milligram and additionally 
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as TOC concentrations which theoretically could be found in the following smallest 

production batch (Table 1).  

Table 8: Combined mass of hemoglobin or horse serum calculated from the recovered TOC values and the 
mean recovery values found after the cleaning process with COSA CIP 92 or 0.5 M sodium hydroxide on 
the equipment surface as well as the maximum TOC concentration for the smallest following batch. 

Contaminant Hemoglobin Horse serum 

Cleaning agent COSA CIP NaOH COSA CIP NaOH 

 mass 
[mg] 

TOC 
[ppb] 

mass 
[mg] 

TOC 
[ppb] 

mass 
[mg] 

TOC 
[ppb] 

mass 
[mg] 

TOC 
[ppb] 

Matrix elements 1.07 432 0.14 55.3 0.79 82.4 0.45 46.9 

Sealing 0.83 336.6 0.17 66.9 0.7 72.9 0.77 80.3 

Others 0.07 26.9 0.01 5.2 0.06 6.26 0.03 3.13 

Total 2.0 795.5 0.32 127.4 1.59 161.6 1.27 130.3 

 

The safety factor results from the lowest recovery factor found in the method validation. 

The measured TOC concentrations were taken as given, without taking into account that 

parts of the TOC signal might be remains of the cleaning agent. This explains the slightly 

higher total mass of hemoglobin and serum found after the cleaning process using COSA CIP 

92 compared to sodium hydroxide. COSA CIP 92 contains 10-20 % fatty alcohol ethoxylates, 

soap in a concentration of 5-10 % and 3-5 % alkylamine ethoxylates as additional carbon 

sources. The final washing procedure with ultra-pure water might lead to an incomplete 

removal off surfactants of the cleaning agent. The maximum amount of contaminants being 

carried to a following batch sum up to 2 mg for hemoglobin and COSA CIP 92 which is the 

highest amount of contaminates found in this study and therefore the worst case scenario. 

The smallest possible following batch size is given by the volume of the separation chamber 

with 1 L. Therefore, the maximum concentration of contaminants is 2 mg/L corresponding 

to 2 ppm. From this follows that the 10 ppm criterion is reached for all cases. Beyond that, 

the TOC content of all scenarios is below the allowed TOC level for WFI with 500 ppb which 

can be considered as an acceptable level, accept the TOC amount after the hemoglobin – 

COSA CIP 92 combination which was discussed already.  
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6.5 Conclusion 

In this work, counter-current operation as well as cleaning validation of a rotor-stator 

magnetic separator for protein purification is presented. As a model process direct capture 

of the hormone eCG from unclarified serum was chosen, due to the low MOI concentration 

in combination with a strong cleaning challenge resulting from contact of the equipment 

with whole serum. The main focus of the eCG purification process development was the 

optimization of the process yield. Superior purification performance using an eCG specific 

mAb ligand has been shown before and sufficiently discussed. In order to overcome the 

disadvantages of batch adsorption processes in case of low concentrated targets we present 

a CCPP strategy. This process, performed at pilot-scale, enabled an increase of process yields 

from about 80 % to almost 100 % without changes in MP concentration or a decrease in 

batch volume. Furthermore, in comparison to commonly used eCG purification strategies, 

the use of solvents for precipitation process steps could be completely avoided. The process 

has been successfully scaled-up from laboratory-scale to pilot-scale with the use of the 

presented GMP-compliant ‘rotor-stator’ HGMS device. Finally, an automated CIP procedure 

for this separation device was developed and validated successfully. The system was 

cleaned from horse serum as well as concentrated hemoglobin solution with a commercially 

available cleaning agent or sodium hydroxide solution in an automated process. For the 

validation of the cleaning process a surface swab test and TOC analytics were established 

and validated. Linear correlations for both contaminants and good recovery rates from the 

swabs could be realized. To the best of our knowledge, this work presents for the first time 

a complete magnetic separation process development, starting from small scale batch 

binding tests, over process scale-up and implementation of a fully automated GMP-ready 

magnetic separator to the cleaning validation of the equipment. Therefore, it can be seen as 

a first example of the implementation of a magnetic separation process into 

biopharmaceutical protein purification considering the whole range of industrial 

requirements.  
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7 General Conclusions and Outlook 

This doctoral thesis deals with the key aspects of a new GMP-compliant ‘rotor-stator’ high-

gradient magnetic separator. After accompanying the development and construction of the 

new device, the commissioning, characterisation and validation were a main part of the 

work. System parameters like separation capacity, recovery rates and reusability of 

magnetic particles were studied and quantified. First process prediction studies based on 

these system parameters showed encouraging promising results which had to be verified 

by implementing a protein purification process. This was done by the successful 

implementation of a mAb purification process using protein A functionalized magnetic 

particles along with the new separation device. Furthermore, a specific bottleneck of 

magnetic separation processes was addressed with the optimization of the eCG purification 

from horse serum. Lower affinities between ligand and MOI lead to lower protein loadings 

on the particles due to the batch adsorption process. Developing a multi-stage counter-

current process lead to a significant rise in yields. Finally, the development of CIP protocols 

and their validation was presented. The cleaning validation is a crucial factor in process 

equipment design and was demonstrated here for a magnetic separation device for the first 

time.  

The validation of the cleaning process employed a surface swabbing test with a following 

TOC analysis. For both model contaminants (horse serum and haemoglobin) linear 

relationships between the concentration of the contaminant and the TOC measured laid the 

foundation for the analytic technique. The TOC analytics is recommended by the FDA and 

has been preferred to a HPLC analytics due to its simpler and timesaving development, 

faster sample turnover and lower detection limit. The handling of the samples is still a point 

requiring further optimization. To resolve the samples from the swab, plastic sampling 

tubes were used. TOC solved from these tubes might increase the base line level of TOC and 

consequently might result in an increase of the detection limit. Special pre-cleaned glass 

tubes will lower the blank and thus also the detection limit. In this study plastic tubes have 

been used due to storage conditions. Time between sampling and analytic demanded 

freezing of the samples. Nevertheless, the cleaning protocol was carried out successful. 
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Protein masses below 2 mg were detected for the whole product touching the surface of the 

separation device. Even lower amounts were achieved by applying pure sodium hydroxide 

solution as cleaning agent. This effect can be attributed to the complex nature of the 

commercial cleaning agents which also contain organic substances traces of which might 

show up in the TOC analytics. The successful cleaning validation proved the GMP conform 

design of the new HGMS device. Above all the separation functionality of the GMP design 

was not compromised. Franzreb et al. [73] defined key parameters a magnetic separation 

device should meet. Among others these include a separation capacity of at least 100 kg 

particles/m3 chamber volume. This could be easily reached and exceeded with both types 

of magnetic particles tested, while maintaining separation efficiencies of 99.9 % and 

recovery rates above 98 %. The separation capacity experiments also reveal a high degree 

of independency of the filter capacity from the fluid phase. A viscous feedstock showed a 

slight reduction in separation capacity but no major impact. The choice of magnetic particle 

turned out to be quite significant. The small, highly magnetic Mag Prep particles showed 

lower filter capacities compared to the larger less magnetic M-PVA particles. In addition, the 

higher remanence and the back-mixing behaviour as well as the tendency to stick to 

surfaces of the smaller particles lead to more recovery cycles required to recover a sufficient 

amount of particles. Therefore, it is evident that the choice of particle is a decisive step for 

successful process development. Moreover, it has a major influence on the process 

performance of the presented magnetic separator. In addition to selecting the appropriate 

type of the magnetic particle the choice of the ligand binding the MOI is crucial. A major 

advantage of magnetic separation processes over ATPS systems is the availability of a large 

number of well described ligands omitting the need for expensive ligand screenings and 

developments. Nevertheless, the cost of magnetic particles is still high. However, it seems 

reasonable to expect that the increasing demand of magnetic particles for the 

implementation of large-scale purification processes will scale also the particle production 

and therefore drive down the costs.  

The successful development and implementation of a mAb purification process from cell 

culture using protein A functionalized Mag Sepharose proved the robustness, scalability and 

efficiency of this technique as requested for a successful process alternative by Shukla et al. 

[28]. The presented integrated mAb purification process showed stable yields over 85 % in 

all five consecutive process cycles. Furthermore, purities over 95 % could be shown by SEC 

for all elution fractions. As one of the major impurities, a 2.5 log reduction of HCP was 
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proven. Even without elaborate process optimization the presented magnetic separation 

process delivers process figures comparable to a highly optimized mAb platform 

purification process. Purity and HCP reduction levels might need some further 

improvements in the future. This should be easily possible by a wash buffer screening and 

adding further wash step. A disadvantage that must be taken into account is the lower 

elution concentrations when comparing magnetic separation to column chromatography. 

The minimal elution volume corresponds with the separation chamber volume. Therefore, 

one liter is the smallest possible elution volume for the new magnetic separator. In the 

presented process three elution steps were performed resulting in an elution volume of 

three liters for the mAb process. However, 60 % of the mAb eluted in the first fraction. This 

percentage has to be increased by longer elution times, but even in this case the achievable 

degree of elution is limited by the respective equilibrium conditions. For higher eluate 

concentrations new elution strategies have to be developed such as the temporary transfer 

and packing of the particles into a small external column for elution.  

The affinity purification of eCG from horse serum illustrated the disadvantage of batch 

adsorption processes when the binding affinity between ligand and MOI is not optimal. 

Lower binding affinities and low protein start concentrations leading to low protein 

loadings on the particles due to application of only one equilibrium stage. As a result, large 

amounts of particles or small batch volumes must be chosen for the process in order not to 

lose a substantial part of the product in the flow through. To partly overcome this challenge 

of batch wise processes a multi-stage counter-current binding process was applied and 

optimized. Due to the multiple use of magnetic particles in consecutive batch adsorption 

steps, more equilibrium stages could be realized and therefore more effective use of the 

binding capacity of the particles was made. However, the enhanced efficiency comes at the 

price of slightly longer process times. Due to fast binding kinetics in batch processes and 

nearly no limitation in flow velocities in the magnetic separation process longer process 

times are negligible in comparison with the gain of productivity.  

The described magnetic separation process can compete in regard of purity and yield with 

modern column based purification processes. In addition, further advantages have not been 

taken into account yet. The integration of several process steps like harvest, capturing and 

purification into a single process step opens up new possibilities in process design. Process 

operations like centrifugation and filtration for product harvest can be skipped completely. 

Even an integration of the magnetic separation process in the fermentation process should 
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be possible. The reduction of the number of unit operations goes along with a reduction of 

product losses and investment cost. 25 % of the production cost in a mAb process are due 

to harvest process operations. Therefore, the integration of harvest into the protein A step 

represents a unique opportunity for massive cost savings. Furthermore, the reduction of 

process times will have an influence on the labour cost.  

To summarize, this thesis discusses the opportunities a GMP-compliant high-gradient 

magnetic separator can offer in protein purification processes. For the first time ever a 

magnetic separation process, from design of the equipment over the process development 

until the cleaning in place and the cleaning validation, is described in one manuscript. This 

thesis demonstrates the possibility to integrate magnetic separation processes in 

biopharmaceutical production, which was previously prevented by the lack of suitable 

equipment conforming to GMP. However, this thesis can only lay a foundation, open up 

opportunities and arouse the interest of the industry. An industrial implementation is not 

possible within the university framework and it is now up to the industry to take up the idea 

of magnetic separation processes with the GMP-complaint equipment to develop new 

customized purification strategies. 
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[70] I. Šafařıḱ, M. Šafařıḱová, Use of magnetic techniques for the isolation of cells, J. 
Chromatogr. B Biomed. Sci. Appl. 722 (1999) 33–53. doi:10.1016/S0378-
4347(98)00338-7. 

[71] N. Bohmer, N. Demarmels, E. Tsolaki, L. Gerken, K. Keevend, S. Bertazzo, M. Lattuada, 
I.K. Herrmann, Removal of Cells from Body Fluids by Magnetic Separation in Batch 
and Continuous Mode: Influence of Bead Size, Concentration, and Contact Time, ACS 
Appl. Mater. Interfaces. 9 (2017) 29571–29579. doi:10.1021/acsami.7b10140. 

[72] G.N. Brown, C. Müller, E. Theodosiou, M. Franzreb, O.R.T. Thomas, Multi-cycle 
recovery of lactoferrin and lactoperoxidase from crude whey using fimbriated high-
capacity magnetic cation exchangers and a novel “rotor-stator” high-gradient 
magnetic separator, Biotechnol. Bioeng. 110 (2013) 1714–1725. 
doi:10.1002/bit.24842. 

[73] M. Franzreb, M. Siemann-Herzberg, T.J. Hobley, O.R.T. Thomas, Protein purification 
using magnetic adsorbent particles, Appl. Microbiol. Biotechnol. 70 (2006) 505–516. 
doi:10.1007/s00253-006-0344-3. 

[74] I. Safarik, M. Safarikova, No Title, Biomagn. Res. Technol. 2 (2004) 7. 
doi:10.1186/1477-044X-2-7. 

[75] L. Borlido, M. Azevedo, C. Roque, M.R. Aires-Barros, Magnetic separations in 
biotechnology., Biotechnol. Adv. 31 (2013) 1374–85. 
doi:10.1016/j.biotechadv.2013.05.009. 

[76] K. Holschuh, A. Schwämmle, Preparative purification of antibodies with protein A—
an alternative to conventional chromatography, J. Magn. Magn. Mater. 293 (2005) 
345–348. doi:10.1016/j.jmmm.2005.02.050. 

[77] J. Hubbuch, O.R.T. Thomas, High-gradient magnetic affinity separation of trypsin 
from porcine pancreatin, Biotechnol. Bioeng. 79 (2002) 301–313. 
doi:10.1002/bit.10285. 

[78] C. Müller, E. Heidenreich, M. Franzreb, K. Frankenfeld, Purification of equine 
chorionic gonadotropin (eCG) using magnetic ion exchange adsorbents in 
combination with high-gradient magnetic separation, Biotechnol. Prog. 31 (2015) 
78–89. doi:10.1002/btpr.2007. 

[79] P. Fraga García, M. Brammen, M. Wolf, S. Reinlein, M. Freiherr von Roman, S. 
Berensmeier, High-gradient magnetic separation for technical scale protein recovery 
using low cost magnetic nanoparticles, Sep. Purif. Technol. 150 (2015) 29–36. 
doi:10.1016/j.seppur.2015.06.024. 

[80] B.M. Alves, L. Borlido, S.A.S.L. Rosa, M.F.F. Silva, M.R. Aires-Barros, A.C.A. Roque, A.M. 
Azevedo, Purification of human antibodies from animal cell cultures using gum 
arabic coated magnetic particles, J. Chem. Technol. Biotechnol. 90 (2015) 838–846. 
doi:10.1002/jctb.4378. 

[81] X. Liu, Y. Guan, Y. Yang, Z. Ma, X. Wu, H. Liu, Preparation of superparamagnetic 
immunomicrospheres and application for antibody purification, J. Appl. Polym. Sci. 
94 (2004) 2205–2211. doi:10.1002/app.21168. 



 
References 
_______________________________________________________________________________________________________ 

112 
 

[82] C.S.M. Fernandes, R. dos Santos, S. Ottengy, A.C. Viecinski, G. Béhar, B. Mouratou, F. 
Pecorari, A.C.A. Roque, Affitins for protein purification by affinity magnetic fishing, J. 
Chromatogr. A. 1457 (2016) 50–58. doi:10.1016/j.chroma.2016.06.020. 

[83] L. Borlido, A.M. Azevedo, A.C.A. Roque, M.R. Aires-Barros, Potential of boronic acid 
functionalized magnetic particles in the adsorption of human antibodies under 
mammalian cell culture conditions, J. Chromatogr. A. 1218 (2011) 7821–7827. 
doi:10.1016/j.chroma.2011.08.084. 

[84] I.L. Batalha, A. Hussain,  a C. a Roque, Gum Arabic coated magnetic nanoparticles with 
affinity ligands specific for antibodies., J. Mol. Recognit. 23 (2010) 462–71. 
doi:10.1002/jmr.1013. 

[85] S.Z. Mirahmadi-Zare, A. Allafchian, F. Aboutalebi, P. Shojaei, Y. Khazaie, K. Dormiani, 
L. Lachinani, M.-H. Nasr-Esfahani, Super magnetic nanoparticles NiFe2O4, coated 
with aluminum–nickel oxide sol-gel lattices to safe, sensitive and selective 
purification of his-tagged proteins, Protein Expr. Purif. 121 (2016) 52–60. 
doi:10.1016/j.pep.2016.01.008. 

[86] L. Borlido, A.M. Azevedo, A.G. Sousa, P.H. Oliveira, A.C.A. Roque, M.R. Aires-Barros, 
Fishing human monoclonal antibodies from a CHO cell supernatant with boronic acid 
magnetic particles, J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 903 (2012) 163–
170. doi:10.1016/j.jchromb.2012.07.014. 

[87] J. Gao, Z. Li, T. Russell, Z. Li, Antibody affinity purification using metallic nickel 
particles, J. Chromatogr. B. 895–896 (2012) 89–93. 
doi:10.1016/j.jchromb.2012.03.019. 

[88] L. Borlido, L. Moura, A.M. Azevedo, A.C.A. Roque, M.R. Aires-Barros, J.P.S. Farinha, 
Stimuli-Responsive magnetic nanoparticles for monoclonal antibody purification, 
Biotechnol. J. 8 (2013) 709–717. doi:10.1002/biot.201200329. 

[89] Y. Cao, W. Tian, S. Gao, Y. Yu, W. Yang, G. Bai, Immobilization staphylococcal protein 
a on magnetic cellulose microspheres for IgG affinity purification., Artif. Cells. Blood 
Substit. Immobil. Biotechnol. 35 (2007) 467–80. doi:10.1080/10731190601188331. 

[90] Z. Sabatkova, M. Safarikova, I. Safarik, Magnetic ovalbumin and egg white aggregates 
as affinity adsorbents for lectins separation, 40 (2008) 542–545. 
doi:10.1016/j.bej.2008.02.003. 

[91] H. Qian, C. Li, Z. Lin, Y. Zhang, Colloids and Surfaces B : Biointerfaces Using thiophilic 
magnetic beads in purification of antibodies from human serum, 75 (2010) 342–348. 
doi:10.1016/j.colsurfb.2009.09.007. 

[92] L. Borlido, A.M. Azevedo, A.C.A. Roque, M.R. Aires-Barros, Magnetic separations in 
biotechnology, Biotechnol. Adv. 31 (2013) 1374–1385. 
doi:10.1016/j.biotechadv.2013.05.009. 

[93] W. Li, L. Yang, F. Wang, H. Zhou, H. Xing, X. Li, H. Liu, Gas-Assisted Superparamagnetic 
Extraction for Potential Large-Scale Separation of Proteins, Ind. Eng. Chem. Res. 52 
(2013) 4290–4296. 

[94] C. Müller, K. Wagner, K. Frankenfeld, M. Franzreb, Simplified purification of equine 
chorionic gonadotropin (eCG)––an example of the use of magnetic microsorbents for 
the isolation of glycoproteins from serum, Biotechnol. Lett. 33 (2011) 929–936. 
doi:10.1007/s10529-010-0512-5. 

[95] C. Müller, A. Preußer-Kunze, K. Wagner, M. Franzreb, Gonadotropin purification from 



 
References 
_______________________________________________________________________________________________________ 

113 
 

horse serum applying magnetic beads, Biotechnol. J. 6 (2011) 392–395. 
doi:10.1002/biot.201000380. 

[96] G.N. Brown, C. M?ller, E. Theodosiou, M. Franzreb, O.R.T. Thomas, Multi-cycle 
recovery of lactoferrin and lactoperoxidase from crude whey using fimbriated high-
capacity magnetic cation exchangers and a novel ?rotor-stator? high-gradient 
magnetic separator, Biotechnol. Bioeng. 110 (2013) 1714–1725. 
doi:10.1002/bit.24842. 

[97] C. Müller, E. Heidenreich, M. Franzreb, K. Frankenfeld, Purification of equine 
chorionic gonadotropin (eCG) using magnetic ion exchange adsorbents in 
combination with high-gradient magnetic separation, Biotechnol. Prog. 31 (2015) 
78–89. doi:10.1002/btpr.2007. 

[98] G.P. Hatch, R.E. Stelter, Magnetic design considerations for devices and particles used 
for biological high-gradient magnetic separation (HGMS) systems, J. Magn. Magn. 
Mater. 225 (2001) 262–276. doi:10.1016/S0304-8853(00)01250-6. 

[99] G.D. Moeser, K.A. Roach, W.H. Green, T. Alan Hatton, P.E. Laibinis, High-gradient 
magnetic separation of coated magnetic nanoparticles, AIChE J. 50 (2004) 2835–
2848. doi:10.1002/aic.10270. 

[100] M. Franzreb, Magnettechnologie in der Verfahrenstechnik wässriger Medien, 2003. 
http://bibliothek.fzk.de/zb/berichte/FZKA6916.pdf. 

[101] A. Ditsch, S. Lindenmann, P.E. Laibinis, D.I.C. Wang, T.A. Hatton, High-Gradient 
Magnetic Separation of Magnetic Nanoclusters, Ind. Eng. Chem. Res. 44 (2005) 6824–
6836. doi:10.1021/ie048841s. 

[102] C. Hoffmann, M. Franzreb, W.H. Höll, A Novel High-Gradient Magnetic Separator ( 
HGMS ) Design for Biotech Applications, 12 (2002) 963–966. 

[103] S. Setchell, Magnetic separations in biotechnology-a Review, Chem. Tech. Biotechnol. 
35 (1985) 175–182. http://www.ncbi.nlm.nih.gov/pubmed/23747736. 

[104] J. Watson, Theory of capture of particles in magnetic high-intensity filters, IEEE 
Trans. Magn. 11 (1975) 1597–1599. doi:10.1109/TMAG.1975.1058807. 

[105] J.H.P. Watson, Magnetic filtration, J. Appl. Phys. 44 (1973) 4209–4213. 
doi:10.1063/1.1662920. 

[106] H. Kolm, United States Patent, 3567026, 1971. 

[107] A. Pasteur, N. Tippkotter, P. Kampeis, R. Ulber, Optimization of High Gradient 
Magnetic Separation Filter Units for the Purification of Fermentation Products, IEEE 
Trans. Magn. 50 (2014) 1–7. doi:10.1109/TMAG.2014.2325535. 

[108] N.A. Ebner, T.J. Hobley, O.R.T. Thomas, M. Franzreb, Filter Capacity Predictions for 
the Capture of Magnetic Microparticles by High-Gradient Magnetic Separation, IEEE 
Trans. Magn. 43 (2007) 1941–1949. doi:10.1109/TMAG.2007.892080. 

[109] A. Heebøll-Nielsen, W.S. Choe, A.P.J. Middelberg, O.R.T. Thomas, Efficient inclusion 
body processing using chemical extraction and high gradient magnetic fishing, 
Biotechnol. Prog. 19 (2003) 887–898. doi:10.1021/bp025553n. 

[110] N.A. Ebner, C.S.G. Gomes, T.J. Hobley, O.R.T. Thomas, M. Franzreb, Filter Capacity 
Predictions for the Capture of Magnetic Microparticles by High-Gradient Magnetic 
Separation, IEEE Trans. Magn. 43 (2007) 1941–1949. 
doi:10.1109/TMAG.2007.892080. 



 
References 
_______________________________________________________________________________________________________ 

114 
 

[111] A. Heebøll-Nielsen, M. Dalkiaer, J.J. Hubbuch, O.R.T. Thomas, Superparamagnetic 
adsorbents for high-gradient magnetic fishing of lectins out of legume extracts, 
Biotechnol. Bioeng. 87 (2004) 311–323. doi:10.1002/bit.20116. 

[112] A. Heebøll‐Nielsen, S.F.L. Justesen, T.J. Hobley, O.R.T. Thomas, Superparamagnetic 
Cation–Exchange Adsorbents for Bioproduct Recovery from Crude Process Liquors 
by High‐Gradient Magnetic Fishing, Sep. Sci. Technol. 39 (2004) 2891–2914. 
doi:10.1081/SS-200028791. 

[113] H.C. Roth, A. Prams, M. Lutz, J. Ritscher, M. Raab, S. Berensmeier, A High-Gradient 
Magnetic Separator for Highly Viscous Process Liquors in Industrial Biotechnology, 
Chem. Eng. Technol. 39 (2016) 469–476. doi:10.1002/ceat.201500398. 

[114] A. Heebøll‐Nielsen, S.F.L. Justesen, T.J. Hobley, O.R.T. Thomas, Superparamagnetic 
Cation–Exchange Adsorbents for Bioproduct Recovery from Crude Process Liquors 
by High‐Gradient Magnetic Fishing, Sep. Sci. Technol. 39 (2004) 2891–2914. 
doi:10.1081/SS-200028791. 

[115] C. Müller, K. Wagner, K. Frankenfeld, M. Franzreb, Simplified purification of equine 
chorionic gonadotropin (eCG)––an example of the use of magnetic microsorbents for 
the isolation of glycoproteins from serum, Biotechnol. Lett. 33 (2011) 929–936. 
doi:10.1007/s10529-010-0512-5. 

[116] Y.S. Shaikh, C. Seibert, C. Schumann, M.J. Ferner, H. Raddatz, P. Kampeis, Optimizing 
a rotor-stator filter matrix for high-gradient magnetic separation of functionalized 
magnetic particles, Eng. Life Sci. 16 (2016) 465–473. doi:10.1002/elsc.201500115. 

[117] J. Kudr, Y. Haddad, L. Richtera, Z. Heger, M. Cernak, V. Adam, O. Zitka, Magnetic 
Nanoparticles: From Design and Synthesis to Real World Applications, 
Nanomaterials. 7 (2017) 243. doi:10.3390/nano7090243. 

[118] S. Berensmeier, Magnetic particles for the separation and purification of nucleic 
acids, Appl. Microbiol. Biotechnol. 73 (2006) 495–504. doi:10.1007/s00253-006-
0675-0. 

[119] C. Morhardt, B. Ketterer, S. Heißler, M. Franzreb, Enzymatic Direct quantification of 
immobilized enzymes by means of FTIR ATR spectroscopy – A process analytics tool 
for biotransformations applying non-porous magnetic enzyme carriers, "Journal Mol. 
Catal. B, Enzym. 107 (2014) 55–63. doi:10.1016/j.molcatb.2014.05.018. 

[120] A.S. Paulus, R. Heinzler, H.W. Ooi, M. Franzreb, Temperature-Switchable 
Agglomeration of Magnetic Particles Designed for Continuous Separation Processes 
in Biotechnology, ACS Appl. Mater. Interfaces. 7 (2015) 14279–14287. 
doi:10.1021/acsami.5b02642. 

[121] C. Müller, Preußer-Kunze, K. Wagner, M. Frarlzreb, Gonadotropin purification from 
horse serum applying magnetic beads, Biotechnol. J. 6 (2011) 392–395. 
doi:10.1002/biot.201000380. 

[122] S.M. O’Brien, R.P. Sloane, O.R.T. Thomas, P. Dunnill, Characterisation of non-porous 
magnetic chelator supports and their use to recover polyhistidine-tailed T4 lysozyme 
from a crude E . coli extract, J. Biotechnol. 54 (1997) 53–67. 

[123] A.A. Shukla, B. Hubbard, T. Tressel, S. Guhan, D. Low, Downstream processing of 
monoclonal antibodies—Application of platform approaches, J. Chromatogr. B. 848 
(2007) 28–39. doi:10.1016/j.jchromb.2006.09.026. 

[124] M. Franzreb, N. Ebner, M. Siemann-Herzberg, T. Hobley, O. Thomas, Product 



 
References 
_______________________________________________________________________________________________________ 

115 
 

Recovery by High-Gradient Magnetic Fishing, in: S. Shukla, A.A.; Etzel, M.R.; Gadam 
(Ed.), Process Scale Biosep. Biopharm. Ind., CRC Press, 2006: pp. 83–122. 
doi:10.1201/9781420016024.ch3. 

[125] M. Ebeler, F. Pilgram, K. Wolz, G. Grim, M. Franzreb, Magnetic Separation on a New 
Level: Characterization and Performance Prediction of a cGMP Compliant “Rotor-
Stator” High-Gradient Magnetic Separator, Biotechnol. J. (2017) 1700448. 
doi:10.1002/biot.201700448. 

[126] K.M. Müller, M.R. Gempeler, Quality assurance for biopharmaceuticals : An overview 
of regulations , methods and problems, 6865 (1996). 

[127] ICH Harmonised Tripatite Guideline, Quality Risk Management Q9, 2005. 

[128] European Commission, The Rules Governing Medicinal Products in the European 
Union, EU Guidelines for Good Manufacturing Practice for Medicinal Products for 
Human and Veterinary Use, 2013. 

[129] European Commission, The Rules Governing Medicinal Products in the European 
Union Volume 4 EU Guidelines for Good Manufacturing Practice for Medicinal 
Products for Human and Veterinary Use, 2016 1–5. 

[130] European Commission, The Rules Governing Medicinal Products in the European 
Union Volume 4 EU guidelines for Good Manufacturing Practice for Medicinal 
Products for Human and Veterinary Use, 2012. doi:ddg1.d.6(2012)860362. 

[131] European Commission, The Rules Governing Medicinal Products in the European 
Union Volume 4 Good Manufacturing Practice Medicinal Products for Human and 
Veterinary Use, 2010. 

[132] ASME, Bioprocessing Equipment, The American Society of Mechanical Engineers, 
New York, 2009. 

[133] G. Hauser, G.J. Curiel, H. Bellin, H. Cnossen, J. Hofmann, J. Kastelein, E. Partington, Y. 
Peltier, A. Timperley, Hygienic equipment design criteria, (2004) 16. 
doi:10.1016/0924-2244(93)90156-5. 

[134] ICH Harmonised Tripartite Guideline Good Manufacturing Practice Guide for Active 
Pharmaceutical Ingredients, 2000. 

[135] FDA Inspection Guides - Validation of Cleaning Processes, (1993) 1–8. 
http://www.fda.gov/ICECI/Inspections/InspectionGuides/ucm074922.htm. 

[136] I. Rubashvili, N. Karukhnishvili, K. Loria, N. Dvali, Validation of a Swab Sampling and 
HPLC Methods for Determination of Meloxacam Residues on Pharmaceutical 
Manufacturing Equipment Surfaces for Cleaning Validation, (n.d.) 1–13. 

[137] G. Sofer, J. Yourkin, Cleaning and Cleaning Validation in Process Chromatography, 
Bioprocess Int. (2007) 72–82. 

[138] Active Pharmaceutical Ingredients Comittee, Guidance on Aseptics of Cleaning 
Validation in Active Pharmaceuticals Ingridient Plants, 2014. 
doi:10.1002/ejoc.201200111. 

[139] S.L. Prabu, T.N.K. Suriyaprakash, Cleaning validation and its importance in 
pharmaceutical industry, Pharma Times. 42 (2010) 21–25. 

[140] A.H. Mollah, Cleaning validation for biopharmaceutical manufacturing at Genentech, 
BioPharm Int. 21 (2008) 36–41. 



 
References 
_______________________________________________________________________________________________________ 

116 
 

[141] Y. Chisti, M. Moo-Young, Clean-in-place systems for industrial bioreactors: Design, 
validation and operation, J. Ind. Microbiol. 13 (1994) 201–207. 
doi:10.1007/BF01569748. 

[142] R. Prince, Microbiology in Pharmaceutical Manufacturing, PDA. Davis Horwood 
International, 2008. https://books.google.de/books?id=4stqPgAACAAJ. 

[143] B. Holst, Developing a Cleaning Process : Cleaning in Development, J. GXP Complince. 
(2006) 1–14. 

[144] S.S. Sajid, M.S. Arayne, N. Sultana, Validation of cleaning of pharmaceutical 
manufacturing equipment, illustrated by determination of cephradine residues, Anal. 
Methods. 2 (2010) 397. doi:10.1039/b9ay00278b. 

[145] S. Lombardo, P. Inampudi,  a. Scotton, G. Ruezinsky, R. Rupp, S. Nigam, Development 
of surface swabbing procedures for a cleaning validation program in a 
biopharmaceutical manufacturing facility, Biotechnol. Bioeng. 48 (1995) 513–519. 
doi:10.1002/bit.260480514. 

[146] VDMA, Riboflavintest für keimarme oder sterile Verfahrenstechniken - 
Fluoreszenztest zur Prüfung der Reinigbarkeit, Pharmazie. (2007) 10. 

[147] O.R.T. Hubbuch, J; Matthiesen, D B; Hobley, T J; Thomas, High gradient magnetic 
separation versus expanded bed adsorption : a first principle comparison, (2001) 
99–112. 

[148] J. Oberteuffer, Magnetic separation: A review of principles, devices, and applications, 
IEEE Trans. Magn. 10 (1974) 223–238. doi:10.1109/TMAG.1974.1058315. 

[149] R.J.K. and L.J. George M. Whitesides, Magnetic separations in biotechnology, 
Biotechnol. Adv. 1 (1983) 144–148. 

[150] BioPlan Associates, Report and Survey of Biopharmaceutical Manufacturing Capacity 
and Production, 2015. 

[151] S. Aldington, J. Bonnerjea, Scale-up of monoclonal antibody purification processes, J. 
Chromatogr. B. 848 (2007) 64–78. doi:10.1016/j.jchromb.2006.11.032. 

[152] S.S. Farid, Process economics of industrial monoclonal antibody manufacture, J. 
Chromatogr. B. 848 (2007) 8–18. doi:10.1016/j.jchromb.2006.07.037. 

[153] N. Singh, A. Arunkumar, S. Chollangi, Z.G. Tan, M. Borys, Z.J. Li, Clarification 
technologies for monoclonal antibody manufacturing processes: Current state and 
future perspectives, Biotechnol. Bioeng. 113 (2016) 698–716. 
doi:10.1002/bit.25810. 

[154] R. Hahn, R. Hahn, R. Schlegel, R. Schlegel, A. Jungbauer, A. Jungbauer, C omparison of 
protein A af nity sorbents, Adsorpt. J. Int. Adsorpt. Soc. 790 (2003) 35–51. 

[155] W. Berthold, R. Kempken, Interaction of Cell-Culture with Downstream Purification - 
a Case-Study, Cytotechnology. 15 (1994) 229–242. 

[156] S. Miltenyi, W. Muller, W. Weichel, A. Radbruch, High gradient magnetic cell 
separation with MACS, Cytometry. 11 (1990) 231–238. 
doi:10.1002/cyto.990110203. 

[157] R. Hahn, K. Shimahara, F. Steindl, A. Jungbauer, Comparison of protein A affinity 
sorbents III. Life time study, J. Chromatogr. A. 1102 (2006) 224–231. 
doi:10.1016/j.chroma.2005.10.083. 



 
References 
_______________________________________________________________________________________________________ 

117 
 

[158] H. Simmerman, R.P. Donnelly, Defining Your Product Profile and, Bioprocess Tech. 
(2005) 32--40. 

[159] O. Olsvik, T. Popovic, E. Skjerve, K.S. Cudjoe, E. Hornes, J. Ugelstad, M. Uhlén, Magnetic 
separation techniques in diagnostic microbiology., Clin. Microbiol. Rev. 7 (1994) 43–
54. doi:10.1128/CMR.7.1.43. 

[160] G.E. Healthcare, Recombinant Protein Purification Handbook, Methods. 41 (2009) 1–
306. doi:10.1016/S0076-6879(05)09004-X. 

[161] B.B. Aggarwal, S.W. Farmer, H. Papkoff, F. Stewart, Allen, W. R., Purification and 
Characterization of the Gonadotropin Secreted by Cultured Horse Trophoblast Cells*, 
Endocrinology. 106 (1980) 1755–1759. doi:10.1210/endo-106-6-1755. 

[162] D. Gospodarowicz, H. Papkoff, A simple method for the isolation of pregnant mare 
serum gonadotropin., Endocrinology. 80 (1967) 699–702. doi:10.1210/endo-80-4-
699. 

[163] D. Gospodarowicz, Purification and Physicochemical Properties of the Pregnant Mare 
Serum Gonadotropin (PMSG), Endocrinology. 91 (1972) 101–106. 
doi:10.1210/endo-91-1-101. 

[164] H. Papkoff, S.W. Farmer, H.H. Cole, Isolation of a Gonadotropin (PMEG) From 
Pregnant Mare Endometrial Cups: Comparison with PMSG, Exp. Biol. Med. 158 
(1978) 373–377. doi:10.3181/00379727-158-40207. 

[165] S.S. Sajid, M.S. Arayne, N. Sultana, Validation of cleaning of pharmaceutical 
manufacturing equipment, illustrated by determination of cephradine residues, Anal. 
Methods. 2 (2010) 397. doi:10.1039/b9ay00278b. 

[166] S. Lombardo, P. Inampudi, A. Scotton, G. Ruezinsky, R. Rupp, S. Nigam, Development 
of surface swabbing procedures for a cleaning validation program in a 
biopharmaceutical manufacturing facility, Biotechnol. Bioeng. 48 (1995) 513–519. 
doi:10.1002/bit.260480514. 

[167] F. De Rensis, F. López-Gatius, Use of Equine Chorionic Gonadotropin to Control 
Reproduction of the Dairy Cow: A Review, Reprod. Domest. Anim. 49 (2014) 177–
182. doi:10.1111/rda.12268. 

[168] M. Ebeler, O. Lind, N. Norrman, R. Palmgren, M. Franzreb, One-step integrated 
clarification and purification of a monoclonal antibody using Protein A Mag 
Sepharose beads and a cGMP-compliant high-gradient magnetic separator, N. 
Biotechnol. 42 (2018) 48–55. doi:10.1016/j.nbt.2018.02.007. 

[169] G.E. Healthcare, Recombinant Protein Purification Handbook, (2010) 1–167. 

[170] A.S. Paulus, Continuous Bioseparation using Thermally Switchable Suspensions of 
Magnetic Micro Particles, 2016. 



 

118 
 

9 Appendix 

9.1 Supporting Information to Section 4 

In order to find the optimal working conditions with respect to maximum yield and purity 

various parameters can be applied to evaluate the performance of the new developed ‘rotor-

stator’ high-gradient magnetic separator. First the dimension less capacity ratio CR can be 

calculated.  

𝐶𝑅 =
𝑚𝑝 ∗ 𝑄𝑚𝑎𝑥

𝑐0 ∗ 𝑉𝑏𝑎𝑡𝑐ℎ
 

9.1 

 

Where mp is the mass of particles used, Qmax is the maximal loading, c0 is the initial 

concentration of target molecules and Vbatch is the volume of the batch. CR describes the ratio 

between the theoretical maximum amount of target molecules which can be bound by the 

MP mass used and the amount of target molecules provided in the actual batch volume.  

In reverse, using a given CR of e.g. 120 %, eq. 1 can be transformed in order to calculate the 

maximum batch size processable in dependence of a limiting factor, such as the available 

amount of magnetic particles or the filtration capacity σ of the device: 

𝑉𝑏𝑎𝑡𝑐ℎ =
σ ∗ 𝑉𝑠𝑒𝑝.𝑑𝑒𝑣𝑖𝑐𝑒 ∗ 𝑄𝑚𝑎𝑥

𝐶𝑅 ∗ 𝑐0
 

9.2 

  

As described by Franzreb et al. the yield increases with increasing CR values. To reach yields 

higher than 90 % it can be necessary to use larger amounts of particles than expected if the 

simple adoption C = 1 is assumed. The final yield Y of the process depends on the ratio of 

the starting concentration c0 of the target protein and the concentration of the target 

molecule in solution after the binding equilibrium was reached c*. 
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𝑌 = 1 −
𝑐∗

𝑐0
 

9.3 

With 

𝑐∗

𝑐0
=
1

2
∗ [1 −

𝐾𝐷
𝑐0

− 𝐶𝑅 + √4 ∗
𝐾𝐷
𝑐0

+ (𝐶𝑅 − 1 +
𝐾𝐷
𝑐0
)
2

] 

9.4 

  

Eq. 9.4 assumes that a simple Langmuir model 𝑄∗ =
𝑄𝑚𝑎𝑥∗𝑐

∗

𝐾𝐷+𝑐
∗  is used to describe the batch 

adsorption of the target protein onto the MP, including the Langmuir parameters Qmax and 

KD. Besides yield, the productivity of the separation device is of interest and can be defined 

as: 

𝑃 =
𝑚𝑡𝑎𝑟𝑔𝑒𝑡

𝑡𝑐𝑦𝑐𝑙𝑒 ∗ 𝑉𝑠𝑒𝑝.𝑑𝑒𝑣𝑖𝑐𝑒
 9.5 

  

Where mtarget describes the mass of purified target molecules, Vsep.device is the volume of the 

separation chamber, and tcycle is the required time for the process including the loading time 

as well as the operation time of the separator for the purification steps including washing, 

elution, cleaning of the particles, equilibration and recovery. While the loading time of the 

MP suspension into the separator is linearly dependent onto its initial batch volume, the 

time needed for the remaining process steps is constant. 
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9.2 Abbreviations 

Abbreviation Meaning 

AEC Anion exchange chromatography 

API Active pharmaceutical ingredients 

ASME American society of mechanical engineers 

ATPS Aqueous two phase system 

CCPP Counter-current purification process 

CEX Cation exchange chromatography 

CHO Chinese hamster ovary 

CIP Cleaning in place 

COP Cleaning out of place 

DSP Down-stream process 

eCG Equine chorionic gonadotropin 

EBA Expanded bed adsorption 

EHEDG European hygienic engineering and design group 

ELISA Enzyme-linked immunosorbent assays 

ESEM Environmental scanning electron microscope 

FDA Food and drug administration 

GMP/cGMP Good manufacturing practice  

HCP Host cell protein 

HGMF High-gradient magnetic fishing 

HGMS High-gradient magnetic separation 

HIC Hydrophobic interaction chromatography 

ISPR In situ product removal 

LHS Liquid handling station 

mAb Monoclonal antibody 

MOI Molecule of interest 

MP Magnetic particles 

M-PVA Magnetic polyvinyl alcohol 

PEEK polyetheretherketone 

SEM Secondary electron microscope 

SIP Sterilization in place 

SSPP Single step purification process 

TOC Total organic c 
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USP Up-stream process 

WFI Water for injection 
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