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The improvement of the dynamic behaviour of an elastic rotor which is supported by journal bearings represents an ongoing
field of research, whereby various modifications of the corresponding bearings and their geometry have been proposed in
literature. In order to suppress or at least to decrease unwanted oscillations due to negative effects of instability phenomena
of the ’oil-whirl’- and/or ’oil-whip’-type, a two-lobe bearing with an active geometry variation is suggested as an alternative
approach. A systematic investigation of the dynamic behaviour of a Jeffcott rotor, which is supported by the mentioned
bearing type, is performed by means of the associated spectral system.

1 Modelling

1.1 Pressure and Bearing Forces

The non-dimensional pressure Π in the two-lobe bearing is modelled according to the non-dimensional Reynolds equation
under consideration of the short-bearing approach (cf. [1]):
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The fluid-film-thickness H depends on the time-dependent geometry variation (controlled by D̂, δD, Ω), which corresponds
to a simultaneous back-and-forth motion of the upper and lower lobe. The non-dimensional coordinates of the journal are
given by (XB , YB). The bearing forces fx and fy are obtained via integration of the positive pressure values max(Π, 0) over
the journal’s surface. A detailed description of the bearing and the corresponding pressure modelling can be found in [2].

1.2 Jeffcott Rotor

With the determined bearing forces fx and fy the equations of motion of a perfectly balanced Jeffcott rotor with non-
dimensional rotor coordinates (XB , YB) can be obtained (time derivative denoted by: (..)′ = d/dτ ):
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A detailed description of the used parameters can be found as well in [2]. For the following analysis the most relevant
parameters are given by the rpm parameter ω and the bearing variation parameters D̂, δD and Ω.

1.3 Spectral System

As the time-varying bearing geometry enters the equations of motion (2) as a parameter, the system is exposed to parametric
as well as self-excitation, which can lead to quasi-periodic behaviour. Therefore, the associated spectral system is derived
according to the suggested method of Schilder et al. [3]. Like described in [4] the equations of motion are transformed to a
first-order system and an invariance equation for the torus function u

˜
(θ1, θ2) : T2 → R8 is set up. The invariance equation is

approximately solved by means of a Galerkin approach, whereby only the first harmonics are chosen as base functions:
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(θ2)ϕk(θ1) with [ϕ1, ϕ2, ϕ3]T = [1, sin(θ1), cos(θ1)]T , u
˜k

(θ2) : T1 → R8. (3)

Setting up the residual and performing the Galerkin projections leads to a system of 8×3 = 24 ordinary differential equations
in θ2, the spectral system. It is used to approximate the torus function u

˜
(θ1, θ2) and by association also the torus-manifold on

which the stationary system trajectories might be located. An equilibrium solution of the spectral system can thereby corre-
spond to periodic behaviour of the original system, whereas a periodic solution can correspond to quasi-periodic behaviour.
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2 Results

The spectral system is investigated for its stationary solutions and compared to simulation results of the original system.
Furthermore, an equilibrium continuation of the spectral system depending on the rpm parameter ω is performed.
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Fig. 1: Spectral Components (SC) of u
˜
∗(θ1, θ2) for σ = 0.05, η = 0.1, Γ = 0.1, da = 1, f = 1, ω = 2, D̂ = 0.2, δD = 0.3, Ω = 2.5.
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Fig. 2: Comparison of stationary rotor trajec-
tory for parameter-set from Fig. 1
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Fig. 3: Equilibria of the spectral system, i.e. the spectral components of the coordinate XR,
in dependence of ω for δD = 0 (left) and δD = 0.3 (right) for parameter-set from Fig. 1

Some exemplary integration results of the spectral system are given in Fig. 1, i.e. the different spectral components (SC)
associated with the corresponding base functions acc. to approach (3) are depicted. The different colours represent the
individual entries of the corresponding elements u

˜k
(k = 1, 2, 3). The detected equilibrium solution of the spectral system is

used to construct an approximation of the stationary trajectory, which is compared to the corresponding simulation result of
the original system (cf. Fig. 2). Although just the first harmonics have been chosen as base functions, the approximation via
the spectral system leads to qualitatively accurate results. In contrast to classical approaches of finding periodic solutions the
depicted approximation has been found through an equilibrium search of the spectral system.
In Fig. 3 an equilibrium continuation of the spectral system in dependence of the rpm parameter ω is shown. It is distinguished
between the two configurations without (δD = 0) and with geometry variation (δD 6= 0). In the case of a static geometry
the equilibrium solution loses its stability via a Hopf bifurcation (H) at ω ≈ 6 and stays instable for the remaining parameter
range. In contrast, the equilibrium solution of the system with geometry variation has a larger stable range at low values of ω
and in addition it even regains its stability with increasing rpm parameter at ω ≈ 16.

3 Conclusion

It has been shown that the periodic behaviour of the parametrically excited rotor system can be well approximated by means
of equilibria of the associated spectral system. Furthermore, a stabilizing effect of the geometry variation on the Jeffcot rotor
system has been detected via an equilibrium continuation of the spectral system, which of course highly depends on the chosen
values of D̂, δD and Ω.

References
[1] A. Z. Szeri, “Fluid film lubrication”, Cambridge University Press (2005).
[2] K. Becker and W. Seemann, “A Journal Bearing with actively modified geometry for extending the parameter-based stability range of

rotor dynamic systems”, International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (2016).
[3] F. Schilder, W. Vogt, S. Schreiber, and H.M. Osinga, “Fourier methods for quasi-periodic oscillations”, International journal for numer-

ical methods in engineering, 67(5), 2006.
[4] Becker, K. and Seemann, W. (2016), “Approximation of quasi-periodic solutions of a rotor in two-lobe bearings with time-varying

geometry”, Proc. Appl. Math. Mech., 16: 263–264. doi:10.1002/pamm.201610120



 

 

 

 

 

 

Repository KITopen 

 

Dies ist ein Postprint/begutachtetes Manuskript. 

 

Empfohlene Zitierung: 

 

Becker, K.; Seemann, W. 

Comparison of the original and the spectral system of an elastic rotor in two-lobe bearings 

with an active geometry variation. 

2017. Proceedings in applied mathematics and mechanics, 17.  

doi: 10.5445/IR/1000090324 

 

 

 

Zitierung der Originalveröffentlichung: 

 

Becker, K.; Seemann, W. 

Comparison of the original and the spectral system of an elastic rotor in two-lobe bearings 

with an active geometry variation. 

2017. Proceedings in applied mathematics and mechanics, 17 (1, SI), 363–364. 

doi:10.1002/pamm.201710151 

   

 

 

 

 

 

 

 

 

 

 

 

 

Lizenzinformationen: KITopen-Lizenz 

https://publikationen.bibliothek.kit.edu/1000090324
https://publikationen.bibliothek.kit.edu/1000090324
https://publikationen.bibliothek.kit.edu/1000090324
https://publikationen.bibliothek.kit.edu/1000090324
https://publikationen.bibliothek.kit.edu/1000090324
https://doi.org/10.1002/pamm.201710151
https://www.bibliothek.kit.edu/cms/kitopen-workflow.php



