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Summary 

The anterior cruciate ligament (ACL) has an important function for the knee joint stability. 

Therefore, tearing of the ACL leads to a severe impairment of the human locomotor system, including 

a reduction of knee joint stability and knee joint functionality. Accompanied by a potentially long-lasting 

reduction of the activity level in locomotion tasks of daily life and sports. The incidence of ACL tears 

reached 42 per 100,000 inhabitants in German hospitals in 2016. Furthermore, an increasing amount of 

ACL tears was determined in recreational athletes in recent decades. 

In the ACL tearing scenario further biological structures of the knee joint (i.e. menisci, collateral 

ligaments, and joint cartilage) can get concomitantly injured. Therefore, tears of the ACL can negatively 

impair the knee joint homeostasis to a high extent. This impaired joint homeostasis shall get restored by 

the surgical reconstruction of the ACL and the subsequent rehabilitation program. Although 

reconstruction techniques improved in recent years, there is no guarantee that the injured and 

reconstructed individuals achieve a symptom-free daily life and the pre-injury sports level. Additionally, 

the earlier onset of degenerative joint diseases (i.e. knee osteoarthritis) in ACL reconstructed individuals 

represents a challenging field for the prospective quality of life and activity level.  

ACL injured and reconstructed individuals receive a post-surgical rehabilitation program, which 

aims to recover the knee joint stability and functionality. Current criteria for return-to-sports 

recommendations represent the time-period since the reconstruction of the ACL and the knee joint 

functionality in clinical physical examination (i.e. Lachman test). However, these criteria bear the risk 

that knee joint functionality is not determined comprehensively enough, as hardly any information about 

knee joint functionality in locomotion tasks of daily life and sports are detected. 

The necessity of activity-specific functional tests as well as the combination of various 

functional tests to determine knee joint functionality was widely described and discussed. Accordingly, 

for assessment of dynamic functionality one-legged jumps for distance have established since the 1980s. 

However, these tests are not applied standardized in the clinical and rehabilitative field. Although one-

legged jumps for distance represent a high-demanding locomotion task, it seems not sufficient to rely 

on the results of these tests alone, to give an adequate rating of functionality for the return to pre-injury 

sports. Knee joint stability and functionality is determined by numerous factors in a complex framework. 

Furthermore, the locomotor system has various strategies of functional adaptations, depending on the 

musculoskeletal impairments. To meet these requirements in functional testing, a test battery should 

have the claim of a comprehensive approach and should be applied repetitively over the rehabilitation 

cycle. Singular measurement of the knee joint functionality at the time point of potential return-to-sports 

seems not to be adequate. By repetitive comprehensive functional testing, important data can be 

collected, which provide a broader picture of the state of the knee joint functionality. According to the 
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detected functional deficiencies, the rehabilitation program can be specifically adapted. This could 

benefit to counteract the early manifestation of musculoskeletal imbalances and to better prepare the 

individuals for the return to sports. 

The whole thesis comprises eight main chapters. In Chapter 1 the preface and the outline of the 

thesis are depicted. In Chapter 2 the entire theoretical background of the thesis is described by the 

elaboration of the state of research, including all anatomical fundamentals and the wide range of 

consequences that can occur due to ACL tears. Furthermore, the current state of functional testing and 

common return-to-sports concepts after ACL reconstructions are briefly described. Out of the deduced 

research gaps, the purpose of the thesis is motivated and specifically depicted in Chapter 3. Therein, the 

main research questions of this thesis are embedded in the synthesis of the theoretical findings of Chapter 

2. Chapter 3 is finalized by the summarized illustration of the conducted studies, which were conducted 

to reach the purpose of the thesis, which was to analyze the knee joint functionality in ACL reconstructed 

subjects comprehensively over the rehabilitation cycle. 

The following Chapter 4 contains the general methodology of the main study. In this main study, 

a comprehensive test battery was applied to ACL injured and reconstructed subjects at four test sessions. 

T1 was before the reconstruction; T2 seven weeks, T3 three months, and T4 four months after the ACL 

reconstruction. To meet the requirement of a comprehensive approach, knee joint functionality was 

assessed and analyzed in functional clinical tests (passive range of motion in knee flexion and knee 

extension, leg circumference measurements), in activities of daily living (straight gait over flat ground, 

straight gait over uneven ground, walking up and downstairs, and walking turns), and in sport-specific 

functional performance tests (unilateral and bilateral jumping tests, isometric force tests). Besides 

kinematic and kinetic parameters, special attention lied on the side-to-side relationship of the legs (leg 

symmetry index) in the examination of the knee joint functionality. Additionally, standardized 

questionnaires/scores were applied (Knee Injury and Osteoarthritis Outcome Score and Tegner Activity 

Score), to determine self-evaluated knee joint functionality and psychometric properties, as the influence 

of the knee joint injury on the quality of life, and the current activity level. After data acquisition, knee 

joint functionality was analyzed intra-individually over the investigation period up to six months after 

ACL reconstruction. Furthermore, the results of the ACL reconstructed subjects at T4 were compared 

to anthropometrically-matched healthy control subjects.  

Because the reproducibility of turning gait locomotion was recently not described in literature, 

this topic was examined in a methodological pre-study, which is also part of this thesis (Chapter 5). 

Therein, in relation to the parameters general locomotion strategy, ground contact times, medio-lateral, 

and vertical ground reaction forces, it could get shown that turning locomotion was performed 

reproducible at different testing times at different days. Due to these findings, turning tasks were 

determined valid for inclusion into the main study as additional daily locomotion task. 
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Selected results of the main study, which were included in this thesis, are depicted in Chapter 6 

and 7. 

Chapter 6 comprises the analyses of the functional clinical tests, the sport-specific functional 

performance tests, and the results of the questionnaires/scores. Therein, a general pattern of the knee 

joint functionality over the investigation period was found in the majority of the analyzed parameters. 

Initially, a strong reduction of the functionality was found from T1, before the reconstruction, up to T2, 

seven weeks after the reconstruction. Afterwards the functionality increased in the majority of the 

parameters up to six months after ACL reconstruction. However, in average, the level of functionality 

of the healthy control group could not get reached. This course of functionality emerged as well in the 

functional clinical tests, the self-evaluated knee joint functionality and the activity level. Out of this 

results and findings, it was concluded that the ACL injured and reconstructed subjects of this study did 

not reach the level of the matched control group and, thus, did not achieve their pre-injury activity level. 

Additionally, strong variances of the results were found. This gave indication for a very individual 

healing and rehabilitation process. 

The results, findings, and conclusions of the analyses of these functional tests were supported 

by the descriptive analyses of the turning gait locomotion (Chapter 7). Therein, in the half of all analyzed 

turning locomotion conditions tendencies of kinematic and kinetic adaptations were detected. Kinematic 

adaptations mainly occurred in increased knee joint flexion over the entire stance phase. Tendencies of 

kinetic adaptations emerged inconsistent, with overloading and underloading of the 

injured/reconstructed and the non-injured leg, short- (T2), mid- (T3), and long-term (T4) after the 

reconstruction compared to the healthy control group. 

The findings of the studies are summarized in the general discussion (Chapter 8) and discussed 

according to the recovery of full knee joint stability and functionality, the return to pre-injury sports, 

and the potential manifestations of the respective adaptation and compensation mechanisms. Therein, it 

could get concluded that the analyses and findings confirmed that ACL injured and reconstructed 

showed wide-spread deficiencies of the knee joint functionality even six months after the reconstruction. 

These deficiencies emerged on various levels, as besides deficits in biomechanical parameters in daily 

living and sports locomotion tasks, psychological constraints were found, manifested in a reduced 

quality of life at six months after reconstruction. The general discussion leads to the conclusions and 

practical implications of this thesis. Therein, it was stated that due to the complexity of the reduced 

functionality, a general release in sports of reconstructed ACL individuals is not recommended. For this 

reason, it is indicated to enhance rehabilitation programs. By a standardized assessment of the knee joint 

functionality over the rehabilitation cycle, essential knowledge can be acquired and, thus, rehabilitation 

programs can be adapted more specifically, according to the detected individual functional deficits. 

Additionally, in relation to the results of the functional tests a better time-point for the return to pre-

injury sports can be determined. Finally, potential manifestations of functional adaptations, which can 
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lead to musculoskeletal imbalances and disorders, can be detected and treated earlier. Thus, this could 

help to counteract the earlier onset of degenerative joint diseases. 

Therefore, this thesis provides comprehensive knowledge about the course of knee joint 

functionality over the rehabilitation cycle and, hence, important findings and contributions for a general 

enhancement of rehabilitation programs after ACL tear and surgical reconstruction. 
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Zusammenfassung 

Das vordere Kreuzband hat eine wichtige Funktion für die Kniegelenksstabilität. Daher führt 

ein Riss des vorderen Kreuzbandes zu schwerwiegenden Beeinträchtigungen für den menschlichen 

Bewegungsapparat dar, insbesondere durch eine starke Reduktion der Kniegelenksstabilität und 

Kniegelenksfunktionalität. Dies geht einher mit einer potentiellen lang andauernden Reduzierung des 

Aktivitätsmaßes in alltäglichen und sportlichen Bewegungen führen kann. Im Jahr 2016 lag die 

Inzidenzrate in Deutschland bei etwa 42 pro 100.000 Einwohner. Weiterhin wurde in den letzten 

Jahrzehnten eine Zunahme von vorderen Kreuzbandrupturen bei Freizeitsportlern festgestellt. 

Im Verletzungsszenario des vorderen Kreuzbandes können weitere biologische Strukturen des 

Kniegelenks (Menisken, Seitenbänder, Gelenkknorpel) begleitend verletzt oder stark beeinträchtigt 

werden. So führen Verletzungen des vorderen Kreuzbandes zu einer erheblichen Beeinträchtigung der 

Kniegelenkhomöostase. Diese soll durch die operative Rekonstruktion und die nachfolgende 

Rehabilitation wiederhergestellt werden. Obwohl sich die Rekonstruktionstechniken in den letzten 

Jahren stark verbessert haben, kann nicht gewährleistet werden, dass die verletzten Personen wieder 

einen beschwerdefreien Alltag erlangen und das sportliche Niveau von vor der Verletzung erreichen 

können. Zusätzlich spielt das lebenszeitlich frühere Auftreten von degenerativen Gelenkerkrankungen, 

(z.B. Gonarthrose) bei den kreuzbandverletzten Personen eine gewichtige Rolle für die zukünftige 

Lebensqualität und das prospektive Aktivitätsniveau.  

Kreuzbandverletzte Personen erfahren postoperativ ein Rehabilitationsprogramm, das auf die 

Wiedergewinnung der Kniegelenkstabilität und Kniegelenksfunktionalität abzielt. Bei der Rückkehr auf 

ein sportliches Aktivitätsniveau bilden derzeit zumeist die Zeitdauer seit der operativen Rekonstruktion 

und die Kniefunktionalität in klinischen Tests (z.B. Lachman-Test) die entscheidenden Kriterien. Diese 

Kriterien bergen allerdings das das Risiko, dass die Funktionalität des Kniegelenks nicht umfassend 

genug gemessen wird, da so kaum Informationen über die Kniegelenksfunktionalität in alltäglichen und 

sportlichen Bewegungen erhoben werden. 

Die Notwendigkeit von aktivitätsspezifischen funktionellen Tests sowie die Kombination 

verschiedener funktioneller Tests, zur Bestimmung der Kniegelenksfunktionalität wurde hinreichend 

beschrieben. So hat sich die Bestimmung der dynamischen Funktionalität über Einbeinweitsprünge seit 

den 1980er Jahren etabliert. Diese Tests werden allerdings nicht standardisiert im klinischen und 

rehabilitativen Bereich eingesetzt. Obwohl Einbeinweitsprünge eine anspruchsvolle sport-spezifische 

Bewegung darstellen, scheint es aber auf Basis dieser Tests alleine nicht ausreichend zu sein, eine 

adäquate funktionale Einschätzung für eine Rückkehr in den Sport zu geben. Die Kniegelenkstabilität 

und Kniefunktionalität werden durch zahlreiche Faktoren in einem komplexen Gefüge bestimmt. Zudem 

bestehen vielschichtige Anpassungsmöglichkeiten des Bewegungsapparats auf Grund 

muskuloskeletaler Einschränkungen. Um diesen komplexen Anforderungen gerecht zu werden, sollte 
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daher eine funktionelle Testbatterie den Anspruch der Ganzheitlichkeit haben und mehrfach über den 

Rehabilitationsverlauf durchgeführt werden. Einmalige Messungen der Kniegelenksfunktionalität zum 

Zeitpunkt des potenziellen Wiedereintritts in den Sport erscheint nicht ausreichend. Stattdessen können 

durch wiederholtes umfassendes funktionelles Testen, wichtige Daten erhoben werden, die ein breiteres 

Bild über den Status der Kniegelenksfunktionalität liefern. In Bezug zu den erhobenen funktionellen 

Defiziten, kann dann das Rehabilitationsprogramm spezifisch angepasst werden. So kann der 

frühzeitigen Manifestierung muskuloskeletaler Dysbalancen entgegengewirkt und die Personen besser 

auf die Rückkehr in den Sport vorbereitet werden.  

Die gesamte Dissertation umfasst neun Hauptkapitel. Kapitel 1 enthält ein Vorwort sowie einen 

Überblick der Dissertation. In Kapitel 2 ist der gesamte theoretische Hintergrund der Dissertation durch 

die Aufarbeitung des gegenwärtigen Forschungsstandes dargestellt. Darin sind alle wichtigen 

anatomischen Zusammenhänge sowie die weitreichenden Konsequenzen, die durch vordere 

Kreuzbandverletzungen entstehen können, beschrieben. Weiterhin, sind der gegenwärtige Stand des 

funktionellen Testens sowie gängige Konzepte zur Rückkehr in den Sport nach vorderen 

Kreuzbandverletzungen kurz beschrieben. Aus den abgeleiteten Forschungslücken, wird in Kapitel das 

Ziel dieser Dissertation motiviert und spezifisch dargestellt. Darin werden die Hauptforschungsfragen 

in die Synthese der theoretischen Grundlagen aus Kapitel 2 eingebettet. In Kapitel 3 wird abschließend 

durch eine Darstellung aller Studien, die durchgeführt wurden, um das Ziel der Dissertation zu erreichen, 

nämlich die Kniegelenksfunktionalität von kreuzbandverletzten Probanden über den 

Rehabilitationsverlauf zu analysieren.  

Das folgende Kapitel 4 beinhaltet die gesamte Methodik dieser Haupt-Studie. In dieser Haupt-

Studie wurde mit kreuzbandverletzten Probanden eine umfassende funktionelle Testbatterie an vier 

Testzeitpunkten durchgeführt. T1 wurde vor der Rekonstruktion durchgeführt. T2 sieben Wochen, T3 

drei Monate und T4 sechs Monate nach der Rekonstruktion. Um den Anspruch der Ganzheitlichkeit der 

Testbatterie zu gewährleisten wurde die Kniegelenksfunktionalität bei klinischen Tests (passives 

Bewegungsausmaß in Knieflexion und Knieextension, Umfangsmessungen am Bein), bei 

Alltagsbewegungen (Gehen in der Ebene, Gehen mit Unebenheiten, Treppen Gehen und Kurven Gehen) 

und bei sport-spezifischen Tests (unilaterale und bilaterale Sprungtests, isometrische Krafttests) 

gemessen und analysiert. Neben kinematischen und kinetischen Parametern, lag ein besonderes 

Augenmerk bei der Untersuchung der Kniegelenksfunktionalität auf dem Seitigkeitsverhältnis der Beine 

(Bein-Symmetrie-Index). Zudem wurden standardisierte Fragebögen/Scores eingesetzt (Knee Injury 

and Osteoarthritis Outcome Score und Tegner Activity Score), um die selbsteingeschätzte Funktionalität 

und den Einfluss der Kniegelenkverletzung auf den Alltag und die Lebensqualität der Probanden sowie 

das gegenwärtige Aktivitätsniveau zu erfassen.  

Auf Basis der erhobenen Parameter der Testbatterie wurde die Funktionalität des Kniegelenks 

in intraindividuellen Analysen über den Untersuchungszeitraum bis sechs Monate nach der 
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Kreuzbandrekonstruktion analysiert. Zusätzlich wurden die Ergebnisse der kreuzbandverletzten 

Probanden an T4 mit anthropometrisch gemachten Kontrollprobanden verglichen.  

Da die Reproduzierbarkeit des Kurven Gehens bisher noch nicht in der Literatur beschrieben 

war, wurde dies in einer methodischen Vorstudie, die Teil dieser Arbeit ist (Kapitel 5), überprüft. Darin 

konnte, an Hand der Faktoren Lokomotionsstrategie, Bodenkontaktzeiten und medio-lateraler sowie 

vertikaler Bodenreaktionskraft, bestätigt werden, dass die Lokomotion des Kurven Gehens bei 

Gesunden über den Tagesverlauf reproduzierbar ausgeführt wird. Auf Grund dieser Ergebnisse wurde 

das Kurvengehen als weitere zu untersuchende Alltagsbewegung in die Testbatterie der Haupt-Studie 

eingeschlossen. 

Ausgewählte Ergebnisse der Haupt-Studie, die Einklang in diese Dissertation fanden, sind in 

Kapitel 6 und 7 beschrieben und dargestellt. 

Kapitel 6 beinhaltet dabei die Aufarbeitung der klinischen Tests, der sport-spezifischen Tests 

sowie die Ergebnisse der Fragebögen/Scores. Darin zeigte sich bei den meisten analysierten Parametern 

der sport-spezifischen Tests ein einheitliches Muster der Kniegelenksfunktionalität über den 

Untersuchungszeitraum. Zunächst wurde eine starke Reduktion der Funktionalität von T1, vor der 

Rekonstruktion, zu T2, sieben Wochen nach der Rekonstruktion, festgestellt. Daraufhin verbesserte sich 

die Funktionalität in den meisten Parametern bis sechs Monate (T4) nach der Kreuzbandrekonstruktion. 

Jedoch wurde im Mittel das Funktionalitätsniveau der gesunden Kontrollgruppe nicht erreicht. Dieser 

Verlauf der Funktionalität zeigte sich auch in den klinischen Tests, in der selbsteingeschätzten 

Kniegelenksfunktion und im Aktivitätsniveau. Aus diesen Ergebnissen wurde geschlossen, dass die 

kreuzbandverletzten Personen dieser Studie das Niveau der gemachten Kontrollgruppe nicht erreichten 

und demnach auch nicht ihr Vorverletzungsniveau. Zusätzlich wurde eine große Varianz der Ergebnisse 

festgestellt, was zusätzlich für einen sehr individuellen Heilungs- und Rehabilitationsprozess spricht.  

Die Ergebnisse und Schlussfolgerungen der Analyse der funktionellen Tests wurden durch die 

deskriptive Analyse des Kurvengehens gestützt (Kapitel 7). Darin wurden in der Hälfte der 

Kurvengehbedingungen, Tendenzen kinematischer und kinetischer Anpassungen festgestellt. Die 

kinematischen Anpassungen prägten sich hauptsächlich durch eine erhöhte Knieflexion über die 

Standphase aus. Die kinetischen Anpassungen zeigten uneinheitlich, eine Über- oder Unterbelastung 

des verletzten und nicht verletzten Beines, sowohl frühzeitig nach der Rekonstruktion (T2), als auch 

mittel- (T3) und längerfristig (T4), im Vergleich zu der gesunden Kontrollgruppe. 

Die Ergebnisse dieser Studien werden in einer allgemeinen Diskussion (Kapitel 8) 

zusammengeführt und vor dem Hintergrund der vollen Wiederherstellung der Kniegelenksfunktion, des 

Rückkehrs in den Sport auf das Vorverletzungsniveau und möglicher Manifestationen jener Anpassung- 

und Kompensationsmechanismen diskutiert. Darin wurde geschlossen, dass die durchgeführten 

Analysen bestätigten, dass kreuzbandverletzte Personen ein breit gefächertes Defizit der 

Kniegelenksfunktionalität auch noch sechs Monate nach der Rekonstruktion zeigen. Dies prägte sich 
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auf mehreren Ebenen aus, da neben biomechanischen Defiziten in Alltags- und Sportbewegungen auch 

persönliche Defizite gefunden wurden, manifestiert in einer reduzierten Lebensqualität. Diese 

Diskussion führt schließlich zu den Schlussfolgerungen und praktischen Implikationen dieser 

Dissertation. Darin wurde festgehalten, dass auf Grund der Komplexität der reduzierten Funktionalität, 

eine generelle Freigabe von Personen mit vorderen Kreuzbandverletzungen in den Sport nach sechs 

Monaten nicht generalisiert empfohlen werden sollte. Aus diesem Grund gilt es, 

Rehabilitationsprogramme stets weiter zu verbessern. Durch die standardisierte Erhebung der 

Kniegelenksfunktionalität über den Rehabilitationsverlauf, könnten daher wichtige Erkenntnisse 

gewonnen werden und so die Rehabilitationsprogramme, entsprechend individueller funktioneller 

Defizite, adaptiert werden. Zusätzlich kann auf Basis von Funktionalitätstests ein besseres Maß für den 

Wiedereintritt in den Sport gefunden werden. Abschließend könnten frühzeitig Manifestationen 

funktioneller Adaptationen, die zu muskuloskeletalen Dysbalancen führen können, erkannt und 

behandelt werden. Dies könnte helfen dem lebenszeitlich früheren Beginn degenerativer 

Gelenkerkrankungen frühzeitig entgegenzuarbeiten. 

Daher liefert diese Dissertation umfassende Erkenntnisse über den Verlauf der 

Kniegelenksfunktionalität über den Rehabilitationszeitraum und damit einen wichtigen Beitrag zur 

generellen Verbesserung von Rehabilitationsprogrammen nach Kreuzbandrupturen und deren 

operativen Rekonstruktionen. 
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 General Introduction 

1.1 Preface 

Injuries of biological structures of the human body can occur throughout someone’s entire 

lifetime. Especially, injuries of ligaments can occur in nearly any situation of daily life, however, more 

frequently while performing in sports or physical activities, as a consequence of accidents and due to 

high-demanding working situations (BAHR & KROSSHAUG 2005; MYKLEBUST et al. 2003). 

As ligaments generally have a passive joint stabilizing function in the human body, tearing of 

ligaments results in a wide range of consequences, such as loss of the joint’s function, joint instability 

or adaptations of locomotion processes due to the joint’s loss of function (WHITING & ZERNICKE 2008). 

Ligamentous injuries within a joint can influence the individual lifestyle not only in form of a reduction 

of physical activities or sports, but also with regard to a general reduction of the quality of life (QoL) 

and the activities of daily living (ADL), short- and long-term after the injury (BIEN & DUBUQUE 2015). 

Reasons therefore lie in the fact that injuries of stabilizing ligaments in the most important joints 

can lead to further pathologic changes in surrounding biological structures within the joint, the whole 

musculoskeletal system or they can lead to changes in activity and general locomotion due to chronic 

diseases. Summarized, the consequences of such ligamentous injuries within a joint contribute to a 

deterioration of the joint’s interior homeostasis, which consequently intensifies pathologic processes 

(VON LÜBKEN et al. 2008). Depending on the severity of ligamentous injuries and potential concomitant 

injuries of surrounding biological structures, joint homeostasis can be influenced to a smaller or larger 

extent, which consequently also has an impact on the rehabilitative outcome and the time of 

rehabilitation (VON LÜBKEN et al. 2008). 

The knee joint is the biggest joint of the human body and is one of the most important joints for 

human locomotion. In locomotion processes, the knee joint has important function for transmitting load 

between the ground and the pelvis in the most economical way. Additionally the knee joint is essential 

for all motions induced by the legs, with flexion, extension and internal and external rotation. Within 

the knee joint, the anterior cruciate ligament (ACL) functions as an important structure for knee joint 

stability, in order to prevent hyperextension of the tibia in relation to the femur and for limiting internal 

and external rotation of the knee joint. 

Due to the importance of the ACL for knee joint stability one has to be aware of the fact that 

injuries of ACLs, isolated or in combination with injuries of surrounding biological structures (e.g. the 

Menisci), can lead to far-reaching consequences within the knee joint and the entire lower limbs. If the 

knee joint’s function is not fully recovered, changes can range from chronic knee joint instability, 

enlarged odds ratio of earlier onset of knee osteoarthritis (OA) in life-time, pathologic changes in the 
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general locomotion processes up to a general reduction of the activity level, which is mostly associated 

with a reduction of the quality of life (QoL) (MANSSON et al. 2011; MYKLEBUST et al. 2003; 

MYKLEBUST & BAHR 2005; RUDOLPH et al. 2000; WEXLER et al. 1998). Such a manifested knee 

deficiency led in 46% of reconstructed individuals to reduce the sports and activity level and in 26% to 

impairments in daily work (MYKLEBUST et al. 2003). Injury-induced changes in the individual life 

situation, due to long or general drop-out from sport or work as well as a described general reduction of 

the activity level due to ACL deficiency are still major concerns after ACL tears and reconstruction 

(ANDERSSON 1993; DANIEL et al. 1994, 1995; ENGSTRÖM 1994; HAWKINS et al. 1986; MANSSON et al. 

2011; NOYES et al. 1983a; ROI et al 2006; ROOS 2005; SCHMIDT-WIETHOFF & DARGEL 2007; 

SÖDERMAN et al. 2002). 

Besides these individual consequences, ACL tearing also leads to a variety of socio-economic 

problems, because apart of competitive athletes, an increasing number of recreational athletes have been 

affected in recent years (FEDERAL HEALTH MONITORING OF GERMANY 2016). In Germany, there were 

about 35,000 ACL tears registered in hospitals in 2013, leading to a cumulative incidence of about 42 

ACL tears per 100,000 inhabitants per year. The ACL tear, the subsequent surgical reconstruction and 

the pre- and post-surgical rehabilitation process lead to longer working incapacities compared to the 

average working incapacity of all diseases in Germany (FEDERAL HEALTH MONITORING OF GERMANY 

2016). Additionally, the average age of 38.4 years of ACL reconstructed individuals requiring stationary 

rehabilitation in 2012 was remarkably lower than the general average of all diseases, which was 51.7 

years for requirement of stationary rehabilitation (FEDERAL HEALTH MONITORING OF GERMANY 2016). 

These results imply that along with the individual consequences, tears of the ACL have an enormous 

influence on a national socio-economic and healthcare system, resulting in long-term working 

incapacities in association with high treatment costs (FEDERAL HEALTH MONITORING OF GERMANY 

2016; NUNEZ et al. 2012; MATHER et al. 2013). These social and economic impacts are amplified by 

acute and chronic diseases, potentially occurring as consequences of ACL tears, like knee OA 

(MANSSON et al. 2011; MYKLEBUST et al. 2003; ØIESTAD et al. 2009; ROOS 2005; WEXLER et al. 1998). 

In particular, occurring chronic knee instabilities, concomitant injuries of the Menisci, and manifested 

compensation strategies can induce an earlier onset of OA in both legs compared to individuals without 

such a ligamentous knee injury, where about 50% show evidence of knee OA within five to 20 years 

after the initial ACL tear (FITHIAN et al. 2002; LOHMANDER et al. 2004, 2007; MYKLEBUST et al. 2003; 

ØIESTAD et al. 2009; ROOS 2005; VON PORAT et al. 2004; WHITING & ZERNICKE 2008). Consequently, 

artificial joint replacement with endoprosthesis and a complete inability to work might be required 

potentially earlier in lifetime. Such subsequent chronic diseases or long-term follow-up consequences 

show that ACL tears and the related consequences can increase the individual burden throughout the 

whole lifetime. 
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The rising amount of ACL tears, the described consequences to other biological structures, or 

the general reduction of the QoL or performance in physical activities prospectively show that the 

enhancement of knee joint rehabilitation after ACL tears and reconstructions aiming for a full recovery 

of the knee joints’ function is still a substantial scientific field to give contribution to the improvement 

for the general outcome after ACL tears (ROOS 2005). This has been amplified in recent years by the 

challenging field of full restoration of knee function and by the aim to find the best individual 

rehabilitation program to ensure full knee stability, knee joint functionality, symptom-free performance 

in activities of daily living and the return to pre-injury sports on the pre-injury intensity level. However, 

although the patients’ torn ACL was reconstructed many individuals develop chronic knee joint 

instabilities and suffer from chronic degenerative joint diseases or as well sustain to a high rate a 

secondary ACL rupture at the reconstructed leg or a ACL tear at the contralateral leg (BIEN & DUBUQUE 

2015; ØIESTAD et al. 2009; PATERNO et al. 2010; PINCZEWSKI et al. 2007; ROOS 2005; RUDOLPH et al. 

2000; SALMON et al. 2005; WRIGHT et al. 2007). Even if individuals successfully return to pre-injury 

sports and activity level, a re-injury rate of ACL reconstructed individuals can be quantified by 10% to 

30% (LEYS et al. 2012; PATERNO et al. 2010; SHELBOURNE et al. 2009). This shows that the general 

prospect that individuals can get reintegrated in pre-injury sports is generally not achievable even for 

young competitive athletes (ARDERN et al. 2011; ARDERN et al. 2012; BIAU et al. 2007; KVIST et al. 

2005; MANSSON et al. 2011; VON PORAT et al. 2004). Out of all athletes, who suffered from ACL tears 

and underwent an ACL reconstruction, it appeared that only one third is able-bodied to return to pre-

injury sports up to one year post-reconstruction (ARDERN et al. 2011, 2012). Even two to seven years 

after ACL reconstruction, less than 50% have returned to their pre-injury sports on the pre-injury activity 

level (ARDERN et al. 2011, 2012). Nonetheless, rehabilitation protocols and functional recovery 

improved in recent decades, as in the middle of the 1980s only 14% without surgical reconstruction 

could return to the pre-injury sports level and all of the examined reconstructed had to significantly 

reduce their sports-level or had to discontinue from any sports activity due to chronic knee joint 

instability (HAWKINS et al. 1986). 

However, the majority of studies conducted in the field of examining functionality after ACL 

reconstruction were mainly designed as cross-sectional studies at specific time points pre- and/or post-

reconstruction (ARDERN et al. 2012; DE FONTENEY et al. 2015). Therefore, the main purpose of this 

thesis, as the first one of its kind, was to conduct a longitudinal study with multiple test sessions from 

pre-reconstruction throughout the rehabilitation cycle up to six months post-reconstruction. This study 

design enables to describe the course of functionality fine-grained and comprehensively by its 

combination of the subjects’ functional self-evaluation, objective functional clinical tests, biomechanical 

analyses of activities of daily living, and functional performance tests (FPTs) of recreational athletes in 

a mixed sample from pre- to six months post-reconstruction with four test sessions. 
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Due to the short- and long-term consequences caused by ACL tears, this thesis shall help to 

contribute knowledge to the wide field of rehabilitation after ACL tears and reconstructions. 

Furthermore, this thesis aims to provide deeper insights in the functional state of the ACL reconstructed 

subjects at various, specific time points over the rehabilitation process up six months post-

reconstruction. 

1.2 Outline of the Thesis 

This thesis comprises six main chapters. The subsequent chapter (Chapter 2) provides the 

relevant theoretical background for a clear deduction of the thesis’ purposes and research questions. This 

includes a brief description of the knee joint anatomy with the functional role of the ACL (Section 2.1), 

the ACL tearing mechanisms (Section 2.2), the descriptions of the commonly applied ACL 

reconstruction techniques (Section 2.3), and explanations of functional changes that appear as 

consequences of ACL tears and reconstructions (Sections 2.4 and 2.5), which represent the main 

challenges in ACL rehabilitation. This content is based on the findings and conclusions of scientific 

studies of the last decades, aiming at the examination of an enhancement of post-reconstructive outcome 

of individuals with ACL tears. This theoretical background serves as the basis of the clear and 

transparent deduction of the general research questions and the general purposes of this thesis (Section 

2.7). The theoretical Chapter 2 is followed by the elaboration of the general methodology of the 

conducted studies of this thesis in Chapter 3. 

Further on, the Chapters 4 to 6 include the illustration of specific results and findings of the 

conducted studies. Therewith, these Chapters contain all relevant content of data acquisition and data 

interpretation as source of the novel information of this thesis. These results and findings are built up in 

the structure of scientific research articles. The first (Chapter 4) and second (Chapter 5) study were 

published in the international peer-reviewed journals Gait and Posture and PloS one. The publication 

of the latter study (Chapter 6) is in preparation. Besides the subsequent listing of the full titles of the 

included studies of this thesis, an overview of the studies is illustrated in Figure 5 (Section 3.3): 

- Chapter 5 – Study I: 

Reproducibility of Spatio-Temporal and Dynamic Parameters in Various, Daily Occurring 

Turning Conditions. 

KRAFFT FC, ECKELT M, KÖLLNER A, WEHRSTEIN M, STEIN T & POTTHAST W. (2015). Gait 

and Posture, 41: 307-312. 
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- Chapter 6 – Study II: 

How Does Functionality Proceed in ACL Reconstructed Subjects? – Proceeding of 

Functional Performance from Pre- to Six Months Post-ACL Reconstruction. 

KRAFFT FC, STETTER BJ, STEIN T, ELLERMANN A, FLECHTENMACHER J, EBERLE C, SELL 

S, POTTHAST W. (2017). PloS one, 12(5): e0178430. 

- Chapter 7 – Study III: 

Analysis of Daily Occurring Turns in ACL Reconstructed Subjects from Pre- to Six Months 

Post-ACL Reconstruction. 

KRAFFT FC, STETTER BJ, POTTHAST W, ELLERMANN A, FLECHTENMACHER J, EBERLE C, 

SELL S & STEIN T. (2018). 
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 Theoretical Background 

This chapter comprises the theoretical background of the thesis. The theoretical background 

serves as the basis for the deduction of the thesis’ purposes and research questions (Chapter 3). Besides 

a brief anatomical and functional description of the ACL (Section 2.1), the ACL injury mechanisms 

(Section 2.2), as well as common and established ACL reconstruction techniques, the objectives of a 

surgical ACL reconstruction are presented (Section 2.3). Afterwards, the manifold somatic and 

behavioral consequences (Sections 2.4, 2.5, and 2.6), occurring after ACL tears and surgical ACL 

reconstructions are described. After this detailed elaboration of all essential theoretical background, in 

the subsequent Chapter 3, the research questions is deduced (Section 3.1) out of the presented knowledge 

and the overall scope of this thesis is presented to complete the theoretical part of this thesis. 

2.1 Anatomy and Function of the ACL 

Anatomy of the ACL 

The ACL is embedded in the articular capsule of the knee joint and represents one of the most 

important structures for maintaining knee joint stability. It has its origin in the fossa intercondylaris in 

between both femur condyles at the posterior part of the inner surface of the lateral femoral condyle 

(Figure 1) (DUHTON et al. 2006). The ACL runs anteriorly, medially, and distally from the femoral 

attachment to the anterior surface of the midtibial plateau (Figure 1) (DUHTON et al. 2006; WHITING & 

ZERNICKE 2008). 

The ACL consists of two main bundles, the anteromedial bundle and the posterolateral bundle, 

and has a non-regular cross-sectional shape (BERNARD et al. 1997; DUHTON et al. 2006). The fibers of 

the ACL fan out as they approach the tibial attachment (BERNARD et al. 1997; DUHTON et al. 2006). 
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Figure 1. Knee Joint Anatomy. Left: Ventral view of the knee joint with the illustration of the Fossa 

Intercondylaris, the Anterior Cruciate Ligament, and the Midtibial Plateau. Right: Dorsal view of the knee joint 

with the specific illustration of the Fossa Intercondylaris and the Anterior Cruciate Ligament (modified from 

NETTER 2000). 

Function of the ACL 

In its joint stabilization function, the ACL primarily controls and limits the anterior translation 

of the tibia in relation to the femur. Hence, the ACL limits the anterior tibial translation relative to the 

fixed femur and works as restraint for posterior movement of the femur on the fixed tibia. Additionally, 

the ACL functions as limitation of the internal rotation of the knee joint, especially when the leg is close 

to full extension, and furthermore as a restraint to external rotation and varus-valgus angulation of the 

knee joint, especially under weight-bearing conditions. During anterior tibial translation, 75% of the 

anterior forces are accepted by the ACL at full knee extension and 85% at 90° knee flexion angle. 

(BEARD et al., 1996; BEYNNON et al. 1997; DUHTON et al. 2006; EGLOFF et al., 2011; MATSUMOTO et 

al. 2001; PETERSEN & RENSTRÖM 2001; WHITING & ZERNICKE 2008). 

Because the ACL receives nerve fibers from the tibial nerve, including certain receptors, the 

ACL has an additional, essential function for the detection of joint position and joint locomotion besides 

its joint stabilization function. There are receptors that are sensitive to stretching of the ACL (Ruffini 

receptors), for rapid movements (Vater-Pacini receptors), and for detection of tension in the ACL (Golgi-

like tensions receptors). Furthermore, free-nerve endings are embedded in the ACL, which function as 

nociceptors with sensitivity for pain. (DUHTON et al. 2006; HAUS & HALATA 1990; KENNEDY et al. 

1982; LÜBKEN et al. 2008; ZIMNY et al. 1986). 

Fossa intercondylaris 

Anterior Cruciate Ligament 

Midtibial plateau 
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2.2 Mechanisms of ACL Tears 

There are two main ACL tearing mechanism, which are characterized by isolated high knee 

valgus loads or combined high knee valgus loads and excessive external tibial rotation. Furthermore, the 

ACL tears in hyper extension situations of the knee, characterized by large anterior displacement of the 

tibia in relation to the femur with combined internal tibial rotation, as it for instance occurs in one-legged 

landings (Figure 2). (DEMORAT et al. 2004; FUKUDA et al. 2003; HEWETT et al. 2005; IRELAND 2002; 

MARKOLF et al. 1995; MCLEAN et al. 2004; MEYER & HAUT 2008; NAGANO et al. 2009; OLSEN et al. 

2004; WHITING & ZERNICKE 2008) 

 
Figure 2. ACL Tearing Mechanism. Comparison of body alignment and muscle activity in a safe knee joint 

position and in the position of no return, which highly increases the risk of an ACL tear (IRELAND 2002). 

Tearing of the ACL can occur in non-contact situations or under contact (IRELAND 2002). Non-

contact tearing of the ACL typically occurs in knee valgus overload situations, in which the foot is in a 

fixed position on the ground, the tibia externally rotated, the knee close to full extension, and the knee 

then collapses into a valgus position (Figure 2) (IRELAND 2002; MYER et al. 2005). Typically, this injury 

mechanism occurs in sports where high moments in the knee are produced, such as ski alpine, basketball 

or football (IRELAND 2002; SCHMIDT-WIETHOFF & DARGEL 2007). 

Tearing under contact especially happens during the interaction with an opponent in game 

sports. The ACL tears in contact situations, because a high force is acting to the knee joint, as it is 

common in contact sports such as football, team handball and martial arts, as especially judo (KOSHIDA 

et al. 2010; MYKLEBUST et al. 2003). Therein, for instance an opponent player impacts the lateral aspect 
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of the knee joint, causing high valgus loadings in combination with internal rotations (WHITING & 

ZERNICKE 2008). However, non-contact tearing of the ACL occurs remarkably more often than injuries 

induced by contact (BODEN et al. 2000; IRELAND 2002).  

Factors, which encourage the tearing mechanisms, can be extrinsic, such as environmental 

influences (e.g. ground surface, footwear, opponent player) or intrinsic, such as anatomical risk factors, 

like anatomical high knee valgus alignment (ALENTORN-GELI et al. 2014; ARENDT et al. 1999; BODEN 

et al. 2000; EBSTRUP et al. 2000; IRELAND 2002; NOYES et al. 1983a; NOYES et al. 1983b; POSTHUMUS 

et al. 2011; SERPELL et al. 2012; WHITING & ZERNICKE 2008). ACL tears occur more frequently in 

sports or physical activities, but as well in ADLs, while working or in accidents (HÖHER 2007). Because 

of generally wider pelvis, greater flexibility, less-developed musculature, hypoplastic vastus medialis 

obliquus, more narrow femoral notch, genu valgum, and greater external tibial torsion, which produces 

relatively greater valgus- and internal rotation moments, women have a greater predisposition for ACL 

tears and a two to four times higher injury risk than men (ARENDT et al. 1999; IRELAND 2002; MCLEAN 

et al. 2004; MESSINA et al. 1999; POSTHUMUS et al. 2011; PRODROMOS et al. 2007; SERPELL et al. 2012; 

SIGWARD & POWERS 2007; WALDÉN et al. 2011; WHITING & ZERNICKE 2008). 

After having diagnosed ACL ruptures, it is important to precisely identify the injury mechanism 

to ensure whether concomitant injuries of other biological structures have occurred (e.g. Menisci, 

collateral ligaments) within the knee joint. Such concomitant injuries of other or surrounding biological 

structures within the knee joint, consequently, highly influence the selection of injury treatment and the 

general rehabilitative outcome with a higher predisposition of prospective degenerative changes of the 

knee joint the more biological structures are additionally injured (ANDRIACCHI & MÜNDERMANN 2006; 

ROOS 2005). 

2.3 Indications, General Aims and Techniques of ACL Reconstruction 

Indications of Surgical Reconstruction 

Especially, in athletes performing in competitive or recreational sports, including cutting or 

pivoting movements, with the aim to return to their pre-injury sports and pre-injury activity level and, 

additionally, in individuals with clear signs of knee joint instability, surgical reconstruction of the torn 

ACL is indicated and recommended (ERNST et al. 2000; KOSTOGIANNIS et al. 2007; LEWEK et al. 2003; 

SCHMIDT-WIETHOFF & DARGEL 2007; WHITING & ZERNICKE 2008). A chronic deficient knee joint 

leads to a progressive knee joint dysfunction manifested by recurring situations of instability. 

Consequently, a chronically instable knee joint increases the risk of secondary injuries of the 

reconstructed ACL, of the Menisci or the joint cartilage, what would highly increase the probability of 
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chronic degenerative changes at the knee joint (DANIEL et al. 1994; HAWKINS et al. 1986; MCHUGH et 

al. 1994; NOYES et al. 1983a; WROBLE & BRAND 1990). 

Aims of Surgical Reconstruction 

Generally, a surgical reconstruction of the ACL aims to restore the natural biological structure 

of the ACL and therewith to restore the entire knee joint homeostasis. The surgical reconstruction shall 

prevent and reduce the risk of knee joint instability. As mentioned before, it has been shown that changes 

in a substantial structure of a joint lead to pathologic changes of other attached substantial joint 

structures, which can lead to a deterioration of the entire joint function (FREMEREY et al. 1998; KESSLER 

et al. 2008; REIDER et al. 2003; VON LÜBKEN et al. 2008). Furthermore, the surgical restoration shall 

ensure to prevent secondary injuries of the reconstructed ACL, injuries of concomitant surrounding 

structures like the Menisci, the joint cartilage and the collateral ligaments of the knee joint and to enable 

individuals to regain full knee joint stability and functionality, to reach a higher probability of a safe 

return to all ADLs and to pre-injury sports and sports-level with a reduced risk of re-rupture of the 

reconstructed ACL (HOLSGAARD-LARSEN et al. 2014; KESSLER et al. 2008; TASHMAN et al. 2004). 

However, even though the surgical reconstruction aims for full functional knee joint recovery, 10% to 

30% of all reconstructed individuals suffer from a re-rupture of the reconstructed ACL (SHELBOURNE 

et al. 2009; PATERNO et al. 2010; LEYS et al. 2012). This shows that ACL reconstruction alone does not 

guarantee full functional recovery of the knee joint. Instead, full recovery of the knee joint depends, 

besides a successful surgical reconstruction, on a successful functional rehabilitation with the recovery 

of muscular strength and neuromuscular capabilities. 

Reconstruction Techniques 

Various possibilities with regard to graft types for the reconstruction of a torn ACL exist. They 

reach from bone-patellar tendon-bone autografts, to M. gracilis and M. semitendinosus hamstrings 

autografts, quadriceps tendon autografts or to smaller amounts allografts from other sources, such as 

cadavers (ANDERSON et al. 2016; GOBBI & FRANCISCO 2006; SCHMIDT-WIETHOFF & DARGEL 2007; 

WHITING & ZERNICKE 2008). Two graft types have been established in ACL reconstruction in recent 

years: The bone-patellar tendon-bone (BPTB) autografts and hamstring tendon (HT) grafts of the M. 

gracilis and M. semitendinosus tendons (Figure 3) (ANDERSON et al. 2016; AUNE et al. 2001; GOBBI & 

FRANCISCO 2006; SCHMIDT-WIETHOFF & DARGEL 2007; WHITING & ZERNICKE 2008).  
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Figure 3. Arthroscopic Illustration of the Torn and Reconstructed ACL. Left: Arthroscopic Picture of a teared 

ACL. Right: Arthroscopic picture of a reconstructed ACL with semitendinosus-tendon autograft. (ARCUS SPORTS 

CLINICS, Pforzheim) 

As the BPTB autografts have bone plugs at each end of the graft, these grafts enable good 

fixation to the femoral and tibial attachment sites (ANDERSON et al. 2016). However, individuals 

reconstructed with BPTB autografts have reported a higher number symptoms at the harvested side, 

higher kneeling pain and a higher incidence of mild OA in comparison to individuals where the autograft 

was harvested from the hamstring muscle tendons, even at ten years after reconstruction (AUNE et al. 

2001; BIAU et al. 2006; MAGNUSSEN et al. 2011; MOHTADI et al. 2011; PINCZEWSKI et al. 2007; 

SPINDLER et al. 2004; WHITING & ZERNICKE 2008). As reconstructions with the HT autografts result in 

lower morbidity at the donor site, this reconstruction technique has established itself for reconstructing 

the ACL in recent years even though, due to the absence of bone plugs in these autografts, the initial 

integrity of attachment site fixation is reduced (AUNE et al. 2001; PINCZEWSKI et al. 2007; SCHMIDT-

WIETHOFF & DARGEL 2007; WHITING & ZERNICKE 2008). Therefore, HT autografts are commonly 

fixed to the distal femur with a button and to the proximal tibia with a screw (Figure 4). 

 
Figure 4. ACL Reconstruction Technique. Fixation of the hamstrings tendon autograft at the distal femur (button) 

and the proximal tibia (screw) (modified according to ARCUS SPORTS CLINICS, Pforzheim) 

Button fixation at the distal femur 

Screw fixation at the proximal 

tibia 



THEORETICAL BACKGROUND 

 

 
12 

Although aspired, even optimal reconstruction does not guarantee that individuals can fully 

return to pre-injury sports on pre-injury level (GOBBI & FRANCISCO 2006). To regain full knee joint 

functionality and stability the individuals need, besides a successful reconstruction, a well-steered 

rehabilitation program including a high intrinsic motivation and willingness for successful completion 

of the rehabilitation program along with the self-confidence to regain full functionality (GOBBI & 

FRANCISCO 2006). 

2.4 Consequences of ACL Tears 

General Consequences 

General consequences emerging by ACL tears and the subsequent reconstruction are manifold 

and widespread. They range from concomitant or subsequent impairments of other biological structures 

of the knee joint, over neuromuscular changes in the knee joint and the injured leg, up to consequences 

in ADL, recreational activities and sport-specific movements, as well as to psychological consequences, 

which have an impact on the general QoL. These consequences will be described in the subsequent 

chapter and serve as conclusive theoretical content for the deduction of the thesis’ purposes and the 

research questions. 

Consequences to Other Biological Structures of the Knee Joint 

Consequences of ACL tears to other biological structures of the knee joint occur in the form of 

concomitant injuries of these structures in the ACL injury situation, such as tearing of the medial 

collateral ligament (MCL) and/ or the medial Meniscus. Generally, it can be said, that the tear of the 

ACL leads to changes of the normal femoral and tibial gliding and rolling mechanism in the knee joint 

(ANDRIACCHI & MÜNDERMANN 2006; ENGEBRETSEN et al. 1993; GILLQUIST & MESSNER 1999; 

MYKLEBUST & BAHR 2005; ROOS 2005; WEXLER et al. 1998). Such collateral injuries increase the risk 

of concomitant or subsequent injuries of the Menisci and the joint cartilage (ROOS 2005; WEXLER et al. 

1998). Furthermore, besides direct concomitant injuries, secondary injuries or chronic diseases of 

biological structures (e.g. knee OA) occur with high incidence due to the ACL tear and a subsequently 

insufficient rehabilitation of the knee joint because of chronic knee joint instabilities (ENGEBRETSEN et 

al. 1993; ØIESTAD et al. 2009; ROOS 2005; WEXLER et al. 1998; WHITING & ZERNICKE 2008). Due the 

ACL tearing situation, bone bruises at tibial plateau are evident in 80% to 90% of the injured knee joints, 

which alongside with the ACL tear lead to acute chondral changes (ENGEBRETSEN et al. 1993; 

MYKLEBUST & BAHR 2005). Progression of such chondral changes to OA was reported to range between 

48% and 92% within five and 20 years after the ACL injury (FINK et al. 2001; GILLQUIST & MESSNER 
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1999; KANNUS & JÄRVINEN 1988; MCDANIEL & DAMRON 1983; LOHMANDER et al. 2007; MCHUGH et 

al. 1994; MYKLEBUST et al. 2003; NOYES et al. 1983a; ØIESTAD et al. 2009; ROOS et al. 1995; ROOS 

2005; SOMMERLATH et al. 1991; VON PORAT et al. 2004). 

As the ACL is a major structure for knee joint stabilization, tearing of the ACL should never be 

evaluated in isolation. This means, it is always indicated to determine whether other biological structures 

that function as additional indispensable parts of a joint were also damaged during the ACL injury 

situation. Especially, due to the ACL injury mechanisms, with its isolated or combined pivoting, valgus 

or hyperextension overload in the knee joint, it frequently occurs that tears of the ACL are accompanied 

by injuries of other knee joint structures, such as the Menisci, the MCL or the lateral collateral ligaments 

(LCL), the joint cartilage, the subchondral bone, and the bone spongiosa (ENGEBRETSEN et al. 1993; 

MYKLEBUST & BAHR 2005; WHITING & ZERNICKE 2008). Such concomitant or subsequent injuries can 

highly influence the reconstructive and rehabilitative outcome, reduce the success of full rehabilitation 

of knee joint functionality and increase the risk of prospective development of chronic degenerative 

changes at the knee joint, such as knee OA (FAUDE et al. 2006; GILLQUIST & MESSNER 1999; KANNUS 

& JÄRVINEN 1988; KEAYS et al. 2003; LOHMANDER et al. 2004; LOHMANDER et al. 2007; MYKLEBUST 

& BAHR 2005; Roos 2005; SOMMERLATH et al. 1991; VON PORAT et al. 2004). 

Therefore, it is important to detect potential concomitant injuries, because joint homeostasis can 

only be restored or maintained if all structures are in a good and balanced condition. Normally, 

impairment of one structure, acute or chronic, always has needs to be compensated by other structures 

(ANDRIACCHI & MÜNDERMANN 2006). Failure or degradation of one structure gradually leads to a 

degeneration of other structures and therewith to a general impairment of the joint homeostasis, because 

every structure has essential functions for the joint homeostasis and cannot be totally replaced or 

compensated by the associated concomitant structures of a joint (ANDRIACCHI & MÜNDERMANN 2006; 

NOYES et al. 1992; ROOS 2005). Therefore, it is decisive to restore and recover the injured structures 

within a joint in the best way possible, for maintaining joint homeostasis and for preventing prospective 

degenerative changes in the joint. To reach such a joint homeostasis again, if possible at all, it is 

necessary to enhance rehabilitation processes along with a good acute surgical reconstruction treatment. 

Therefore, in the field of functional ACL rehabilitation it is not only sufficient to restore the ACL with 

a graft. It seems essential to recover all locomotion influencing systems to regain pre-injury joint 

condition in the best way possible. Therefore, knee joint rehabilitation after ACL tears is a challenging 

field, because full joint recovery is generally not achievable at all. This is underlined by various studies 

with the purpose of enhancing knee joint rehabilitation and return-to-sports concepts (BEYNNON et al. 

2002; NARDUCCI et al. 2011; NEETER et al. 2006; REIMAN & MANSKE 2009; VON PORAT et al. 2004). 

Such studies showed that in almost all ACL injured and deficient knees higher loads on soft tissue 

structures or changes in the functionality of the legs, e.g. as altered joint mechanics, were detected 

(ERNST et al. 2000; KEAYS et al. 2003; MYKLEBUST et al. 2003; NEETER et al. 2006; NOYES et al. 1992; 
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ROOS 2005). This leads, especially to higher knee adduction moments in the knee joints, which clearly 

indicates that higher loads on the medial component of the knee joint occur (HURWITZ et al. 2002; 

SCHIPPLEIN & ANDRIACCHI 1991; SHARMA et al. 1998). Such overload of the medial compartment in 

the knee joint leads inevitably to a destructive way within the knee joint, with a general shift of load to 

the medial compartment of the knee joint, which highly accelerates the onset of knee OA in lifetime 

(BALIUNAS et al. 2000; HURWITZ et al. 2000; NOYES et al. 1992; PRODROMOS et al. 1985; ROOS 2005; 

SCHNITZER et al. 1993; SCHIPPLEIN & ANDRIACCHI 1991; SHARMA et al. 1998). Such degenerative 

changes lead to further individual and socioeconomic problems with a general reduction of the QoL 

(FELSON et al. 1987; HURWITZ et al. 2000). As a mid-term consequence, the whole process of joint 

impairment is encouraged and as long-term consequence a total artificial knee joint replacement often 

unavoidable (JORDAN et al. 2003). On basis of the depicted general consequences with immense 

individual compensations and adaptations in movements of daily life, it is shown that the rehabilitation 

after ACL injuries is still a substantial scientific field. Results and findings out of such studies provide 

knowledge to further enhance the rehabilitation program after ACL reconstruction for reaching the best 

individual functional outcome. 

Consequences for the Afferent and Efferent Sensory Systems and Types of Instability 

Adjacent to the described potential concomitant injuries of other biological structures of the 

knee joint, ACL injuries are always accompanied by neuromuscular deficiencies (NEEDLE et al. 2017; 

ROOS 2005). Within the ACL various sensory receptors are embedded, which have an important function 

for the sensory feedback of joint position detection during locomotion (BONSFILLS et al. 2008; DHILLON 

et al. 2012; ROOS 2005; ROOS et al. 2011; VON LÜBKEN et al. 2008). A tear of the ACL leads to 

impairments or total disruptions of these receptors and their neurological pathways, which alters 

somatosensory signals and leads to a decrease of the afferent input to the central nervous system (CNS) 

(BIEN & DUBUQUE 2015; BONSFILLS et al. 2008; DHILLON et al. 2012; ROOS et al. 2011; VON LÜBKEN 

et al. 2008). Consequently, the impaired afferent and efferent sensory pathways result in a prolonged 

altered motor output (LEPLEY et al. 2013; NEEDLE et al. 2017; PIETROSIMONE et al. 2012). These 

alterations result in a deficiency of the legs’ whole sensorimotor system, because afferent pathways and 

sensory receptors are disrupted or impaired by the tear of the ACL and additionally, afferent receptors 

of the remaining structures of the joint are also immensely influenced (HARRISON et al. 1994; 

HOGERVORST & BRAND 1998; VON LÜBKEN et al. 2008; MCHUGH et al. 2002). Consequently, these 

alterations of the sensorimotor system lead to an altered proprioception in the joints, altered postural 

control strategies, and reduced strength capacities in the legs alongside with a potential reduced ability 

of the sensorimotor system to adequately prepare and react to unanticipated events and loads, occurring 

in ADLs, physical activities and sports (BONSFILLS et al. 2008; HOUCK et al. 2007a; HOUCK et al. 2007b; 

ROOS et al. 2011). These neuromuscular changes generally lead to a degradation of the proprioception 



THEORETICAL BACKGROUND 

 

 
15 

and the kinesthesia, along with increased nociceptor activity associated with pain and effusion (HOPKINS 

& INGERSOLL 2000). As a consequence it was found that such changes in the sensorimotor system and 

the high adaptation potential of the CNS lead to adjustments in the motor cortex subsequently to 

ligamentous knee joint injuries to maintain the joint’s function (KAPRELI et al. 2009; SWANIK 2015; 

WIKSTROM et al. 2013). These consequences and changes in the sensorimotor system can lead to 

impairments of motor control and motor output and are one reason for the prolonged entire knee joint 

instability and the low functional state after ACL tears (KAPRELI & ATHANASOPOULOS 2006; NEEDLE 

et al. 2017). Because of the changes in the sensitivity of the afferent receptors, it can be assumed that an 

ACL tear may lead to a reorganization of the CNS and may result in general changes in activation 

patterns of sensorimotor cortical areas (KAPRELI et al. 2009). Such adaptation processes might lead to 

general reorganizations or impairments of the joint function, because due to these facts the ability to 

activate the joints’ stabilizing musculature is decreased, which in contrast results in greater demands for 

the CNS (HOPKINS & INGERSOLL 2000). All these changes and adaptation processes consequently 

enhance the loss of functionality of the joint, increase the probability of joint instability, and therewith 

lead to a general insecurity in motion (NEEDLE et al. 2017). An impaired neuromuscular system is an 

important factor, which emphasizes the knee joint instability and low functionality, occurring during 

movements (VON LÜBKEN et al. 2008). This is confirmed by the fact that deficits in the neuromuscular 

control and significant or pronounced side-to-side differences of the legs’ biomechanics are considered 

as major reasons for re-rupture of the reconstructed ACL (FREMEREY et al. 2000; HEWETT et al. 2005; 

KNOLL et al. 2004a; VAIRO et al. 2008). Therefore, it is underlined that an intact sensorimotor system is 

crucial for the correct interior detection of body position, postural stability and general body movements, 

which makes the recovery of the sensorimotor system an essential part of the post-surgical rehabilitation, 

as an non-intact sensorimotor system makes a symptom-free return to physical activity and sports 

unlikely (HARRISON et al. 1994; WIKSTROM et al. 2013).  

The surgical reconstruction of the ACL and the subsequent rehabilitation program shall 

overcome these neuromuscular deficiencies. However, this is generally not achieved, resulting in the 

phenomenon that some individuals remain stable, so called copers, and some remain instable, so called 

non-copers, after surgical or non-surgical treatment of the torn ACL (LEWEK et al. 2003; RUDOLPH et 

al. 2000). 

An instability, which is induced by the described deficiencies of the sensorimotor system, is 

declared as functional instability (VON LÜBKEN et al. 2008). Because it was found that pain fibers and 

mechanoreceptors can be determined in the reconstructed ACL no earlier than four to twelve months 

after surgical reconstruction, it can be assumed that neuromuscular recovery takes more time than the 

regain of muscle mass acting around the knee (GOERTZEN et al 1992; SHIMIZU et al. 1999). 

Summarized, one main factor for knee joint instability after ACL tears and reconstructions 

results from a deficient sensorimotor system because sensory pathways of the ACL are impaired and 
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disrupted and simultaneously the afferent and efferent nervous pathways of the remaining joint 

structures are impaired (Hogerborst & Brand, 1998; LEPLEY et al. 2013; NEEDLE et al. 2017; VON 

LÜBKEN et al. 2008; PIETROSIMONE et al. 2012). 

Besides functional instability, there also appears a mechanical instability, which is described as 

giving way-syndrome (VON LÜBKEN et al. 2008). Such a mechanical instability is caused by the hyper 

mobility of the tibia in anterior direction in relation to the femur resulting in yielding or subluxation of 

the tibiofemoral joint, leading to pain and joint effusion or at worst to a re-rupture of the reconstructed 

ACL (FITZGERALD et al. 2000; FRANK & JACKSON 1997; VON LÜBKEN et al. 2008; RUDOLPH et al. 

2000). This mechanical instability occurs due to the general deficiency of the legs’ musculature, which 

is additionally essential for knee joint stabilization. 

The surgical reconstruction of the ACL aims to remodel the ACL’s morphologic structure with 

all embedded sensory receptors, which shall restore the pre-injury state of the knee joint with the 

recovery of the overall joint stability, the regain of full functionality and the reduction of the risk to 

develop knee OA prospectively (DHILLON et al. 2012; TASHMAN et al. 2004; ERNST et al. 2000; 

KESSLER et al. 2008). This surgical reconstruction shall therefore overcome the functional and 

mechanical knee joint instability, along with a restoration of the joint homeostasis to realize a full 

recovery of knee joint function and thus enlarge the potential to return to an active lifestyle on pre-injury 

level without symptoms of knee joint instability and insecurity (ERNST et al. 2000).  

In relation to ACL rehabilitation programs, this means that for the recovery of the afferent and 

efferent pathways every passive or active movement activates a huge amount of receptors. The afferent 

signals are initially interconnected and transmitted in the CNS where a correction signal is generated 

before an efferent signal is transmitted to the knee joint. This implies that early mobilization of the knee 

joint after the reconstruction is beneficial for the probability of reaching full recovery and reorganization 

of the afferent and efferent pathways and all neuromuscular signal processing prospectively. Therefore, 

it can be concluded, that by active and passive movement exercises the neuromuscular deficits can be 

reduced. (BARTLETT & WARREN 2002; BOUET & GAHÉRY 2000; LEPHART et al. 1996; MELNYK et al. 

2007) 

Depending on the studies, it has been reported that recovery of neuromuscular capacities can 

take a long time. It has been shown that one, two, or even more years after ACL reconstruction, 

individuals, when returning to normal physical activities, still have sensorimotor deficits in the injured 

leg compared to the uninjured leg in activities such as jumping or squatting (CASTANHARO et al. 2011; 

COLBY et al. 1999; PATERNO et al. 2007; RUDROFF 2003). This shows how pronounced and individually 

different the neuromuscular deficits emerge, how much time the recovery of the neuromuscular 

pathways necessitates and how long the neuromuscular deficits after ACL tear and reconstruction can 

persist.  
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Therefore, it is reasonable to include sensorimotor monitoring in a comprehensive determination 

of functionality after ACL injury and reconstruction throughout the rehabilitation process, because it 

contributes important insights about the state of recovery of knee joint functionality. This appears 

because not all locomotion organization processes recover on the same timeline, and neuromuscular 

capabilities have decisive influence on the functional outcome of ACL reconstructed individuals. 

Muscular Consequences 

Initially after the reconstruction, the knee joint has to be immobilized to a large extent to prevent 

an overload of the implanted graft. It has been established that during the early phase of rehabilitation, 

bracing results in fewer problems with swelling, lower prevalence of hemarthrosis and wound drainage, 

and less pain than without bracing (BEYNNON et al. 2005b; YOUNG et al. 1987). Besides, the primary 

reason for bracing the knee in the early phase after reconstruction, secondarily, the individuals shall get 

assisted in the prevention of flexion contractures and the implanted graft shall get protected by 

preventing full knee extension and flexion, as full knee extension provokes high stress on the ACL graft 

(BEYNNON et al. 2005b; YOUNG et al. 1987). Nonetheless, bracing the knee cannot prevent muscular 

atrophy associated with muscular weakness in the injured limb (ROOS et al. 2011; SUTER & HERZOG 

2000). As the knee joint’s range of motion (ROM) is limited in knee extension by the brace, the M. 

quadriceps is in a shortened position and therefore more liable to atrophy than its antagonists (KANNUS 

et al. 1992; YOUNG et al. 1987). Thigh muscle atrophy is present post-operatively both, in the knee 

extensors and the knee flexors muscles (THOMAS et al. 2013; THOMAS et al. 2016; YOUNG et al. 1987). 

Additionally, it was identified that weaknesses in the hip and core muscles occur simultaneously, which 

underlines the general low state of the injured leg’s musculature and, consequently, serves as a predictor 

of increased perspective lower extremity injury risk (IRELAND 2002; LEETUN et al. 2004; POWERS 

2010). 

Due to the repetitive occurring of before-mentioned situations of instability of the knee joint 

after ACL tears and reconstructions, the individuals tend to reduce their general activity level, which 

additionally encourages the muscular weakness and the process of muscular degradation. Consequently, 

the individuals’ feeling of insecurity in movements is enlarged (RUDOLPH et al. 2001). However, such 

a reduction in the activity level further supports the reduction of the muscle mass, muscular weakness, 

and leads therewith to a reduction of the legs’ muscular strength (KANNUS et al. 1992). The reduction 

in muscular strength was described to appear larger than 10% in the side-to-side difference of the legs 

even after knee joint rehabilitation (ARANGIO et al. 1997; ERNST et al. 2000; KEAYS et al. 2003; LEWEK 

et al. 2002; MATTACOLA et al. 2002; PFEIFER & BANZER 1999; RISBERG et al. 1999; URBACH et al. 

2001; WOJTYS & HUSTON 2000). 

As knee joint stability depends on a good muscular state of the involved muscles, individuals 

with low muscular function show a high degree of knee instability and low functionality of the knee 
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joint (STERGIOU et al. 2007). Although it has been shown that the ability to generate high M. quadriceps 

moments is important for maintaining stability, it is insufficient for maintaining knee joint stability 

alone. Although it was described that copers and non-copers both had good M. quadriceps strength, the 

non-copers were not able to stabilize their knee joint (EASTLACK et al. 1999; RUDOLPH et al. 2000; 

LEWEK et al. 2003). However, there is consensus that deficiencies and weaknesses of the M. quadriceps 

after ACL tear and reconstructions emerge and can manifest in the future (MCHUGH et al. 2002; YASUDA 

et al. 1992). A manifestation of the reduction in muscular strength is considered as an essential factor 

for impaired return to sports on pre-injury level (LEPLEY et al. 2015; PATERNO et al. 2007). Related to 

that, it was claimed that ACL reconstructed individuals should reach a peak M. quadriceps moment in 

the reconstructed leg of 85% compared to the uninjured leg (CASTANHARO et al. 2011). 

In this context, it was described that the Hamstrings-Quadriceps-Ratio (HQ-Ratio) plays an 

important role for evaluating the recovery of the legs’ musculature, although, there is no full consensus 

on whether Quadriceps or Hamstrings musculature is more responsible for functional stability (KEAYS 

et al. 2003). One clear reason for these pronounced deficiencies of the M. quadriceps is related to the 

fact that in the 1990s and the beginning of the 21st century the patellar tendon was commonly used as 

autograft. As the patellar tendon function is to transfer muscular strength of the quadriceps to the lower 

leg, with its insertion at the Tuberositas Tibiae, it is reasonable that the removal of parts of this tendon 

leads to pain at the notch and to deficiencies in the acting muscle. Because nowadays mainly parts of 

the hamstrings are commonly used as autograft, in particular a combination of parts of the tendons of 

the M. semitendinosus, M. gracilis or M. semimembranosus, deficiencies in the M. quadriceps are 

reduced (AUNE et al. 2001). In contrast, the Hamstrings muscles show increased deficiencies at the donor 

site (AUNE et al. 2001). 

The described changes in the muscular level show that the regain of muscular mass and muscular 

capabilities is essential for the functional rehabilitation after ACL tears and reconstructions and for the 

return to pre-injury sports and activity levels (LEPLEY et al. 2015; PATERNO et al. 2007). However, due 

to the before-mentioned neuromuscular deficiencies, it is suggestable that the regain of muscular 

capabilities is not sufficient alone for the recovery of knee joint stability. As the neuromuscular and 

muscular capabilities are coherent systems and cannot be considered separately in terms of rehabilitation 

of an important structure, such as the ACL, rehabilitation should always include exercises and training 

programs that aim to recover as many systems involved as possible. However, there is a lack of 

knowledge of the effectiveness of different training and rehabilitation programs. Because it is such a 

complex framework of coherent systems, which is responsible for maintenance of knee joint 

functionality and stability, and accordingly the recovery of these different systems does not follow a 

uniform but a very individual course, it is reasonable to monitor and screen individuals after an ACL 

tear more comprehensively. Only with a comprehensive monitoring of functionality with all its 
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determining factors, deficiencies and, hence, reasons for potential instabilities or a low level of 

functionality can be detected adequately. 

As it is essential for the recovery of neuromuscular capacities to re-mobilize the impaired knee 

joint in a specific adequate way as soon as possible after the reconstruction, early re-mobilization is also 

helpful for a good recovery of the legs’ musculature. This appears, because all movements, executed 

passively or actively, train the recovery of the coherent neuromuscular and muscular systems. Therefore, 

along with passive movement exercises, active training of the thigh musculature as early as possible 

after the reconstruction is essential to control and limit the extent of the muscular atrophy as good as 

possible. Additionally, the early re-mobilization helps to support the immediate recovery of the 

neuromuscular system, because a large number of afferent receptors are activated. Such afferent signals 

are transmitted in the central nervous system (CNS) and therefore lead to a re-organization of the 

locomotion relevant sensory pathways. Therefore, active and passive movement exercises help the 

whole sensorimotor system to reduce the neuromuscular deficit. (BARLETT & WARREN 2002; BOUET & 

GAHÉRY 2000; LEPHART et al. 1996; MELNYK et al. 2007; PFEIFER & BANZER 1999) 

Summarized, due to the beneficial impact on the locomotion system, an early post-reconstructive 

re-mobilization can help to support ACL reconstructed individuals in the rehabilitation process to reach 

less-deficient individual functional outcome. Therefore, early re-mobilization should start immediately 

after the tear or reconstruction with passive joint motions by a therapist or a therapeutic machine. Such 

passive joint motions are described to be beneficial in order to maintain the knee joint’s ROM, which is 

seen as essential basement to reach a better functional outcome (NOYES et al. 1987). 

2.5 Functional Consequences, Performance Deficiencies and Return to Sports 

The described consequences of an ACL tear to collateral biological structures of the knee joint, 

to the neuromuscular system as well as to muscle morphology, have influence on the performance in 

ADLs, in recreational activities and in sport-specific movements. This is due to the fact that for a 

successful and economic performance of movements all involved biological structures and the whole 

locomotion system should be in a good state. This is essential because imbalances in morphology as 

well as in the locomotion system can lead to general or specific adaptation or compensation mechanisms, 

on a morphologic and a behavioral level. Consequently, such compensation or adaptation mechanisms 

can lead to a continuous cascade of deterioration in the involved or collateral morphologic structures of 

the respective joints. Therefore, if the described impairments of the concomitant biological structures 

and the locomotion’s sub-systems are not recovered, movements can hardly be performed on a pre-

injury state, and performance on pre-injury activity level and in pre-injury sports can hardly be achieved 

(MYKLEBUST et al. 2003). Functional deficits emerge in a reduced ROM of the knee joint in 44%, 

instability of the knee joint in 26%, reduced muscular strength of the lower extremities in 25% and joint 
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effusion in 23% of ACL reconstructed individuals seven to eleven years after ACL injury (MYKLEBUST 

et al. 2003). Such imbalances of the biological structures and the locomotion systems alongside with 

persistent functional deficits, lead to higher odds ratios of re-ruptures of the reconstructed ACL and 

higher probabilities of prospective degenerative changes at the involved or uninvolved joint of the 

contralateral leg (MYKLEBUST et al. 2003; PATERNO et al. 2010). This becomes also apparent, as the 

majority of the individuals are younger than 30 years when tearing their ACL. Therefore, a rupture of 

the ACL is to a great amount responsible for an earlier onset of knee OA associated with pain, functional 

impairments and a reduction of the quality of life (QoL) at the age of 30 to 50. (LOHMANDER et al. 2004; 

LOHMANDER et al. 2007; VON PORAT et al. 2004). As, additionally, 10 to 30% of the individuals, who 

returned to pre-injury sports and pre-injury activity level, suffer from a secondary knee injury, and as 

the risk of an ACL in the sound leg remains high, the achievement of full functional recovery is one of 

the main challenges for rehabilitation after ACL reconstruction (BIEN & Dubuque 2015; BJORKLUND et 

al. 2009; SHELBOURNE et al. 2009; PATERNO et al. 2010; LEYS et al. 2012). 

As a good state of the before mentioned components is essential for movement executions, wide 

consequences can emerge for the performance in ADLs, recreational and sports activities by ACL tears 

and reconstructions if the movement determining components, morphologically or functionally, are not 

fully recovered (BJORKLUND et al. 2009). This underlines the high importance of a well-balanced post-

reconstructive rehabilitation process for the ACL reconstructed individuals, aiming for the best 

achievable individual functional outcome. 

To determine functionality after ACL tears and reconstructions adequately, scientists and 

clinicians have been trying to develop functional tests for a valid determination of functionality since 

the 1980s (NOYES et al. 1983b; FITZGERALD et al. 2000; WHITING & ZERNICKE 2008) Depending on the 

studies’ specificity there is a variety of possible approaches to analyze the functionality of the legs. This 

can be done by self-evaluation (ROOS et al. 1998; TEGNER & LYSHOLM 1985) of reconstructed 

individuals, by applying functional clinical tests (PETERSEN & ZANTOP 2013), by analyses of functional 

performance tasks (FITZGERALD et al. 2000; NARDUCCI et al. 2011), or by analyses of ADLs 

(BERCHUCK et al. 1990; WEXLER et al. 1998). With these approaches specific movement conditions or 

movement situations of daily living are being analyzed. These conditions or situations can be static or 

dynamic and are deduced of a specific viewpoint (i.e. self-evaluation, clinician, and scientist). 

Respectively, depending on each approach, functionality is interpreted out of the objectives of the 

applied tests. Therefore, to cover the issue of functionality more comprehensively, it seems advisable to 

include combinations of tests of different approaches determining functionality after ACL tears and 

reconstructions. The necessity for and importance of functional analyses from a more holistic and 

comprehensive approach was underlined and described recently (NARDUCCI et al. 2011). 

Anyway, with the help of recently and formerly conducted studies, some tests have been 

established for assessing functionality post-ACL tears and reconstructions. 



THEORETICAL BACKGROUND 

 

 
21 

Testing in relation to functionality was conducted from various perspectives. These are 

specifically described subsequently, as the main purpose of this thesis was to monitor and evaluate 

functionality with a comprehensive approach including the subjects’ self-evaluations, functional clinical 

tests, FPTs, and analyses of ADLs. 

Functional Clinical Tests 

In hospitals or surgeries especially, clinicians and therapists evaluate the knee function with 

established functional clinical tests. These are convenient to conduct and give insight into certain 

important parameters of an injured joint, such as measurements of joint flexibility with, for instance, 

passive ROM testing. However, in order to apply these tests properly, the tester should be experienced 

with the tests’ procedure for reduction of intra- and inter-tester variance in the measurements. Such 

functional clinical tests are commonly used by surgeons and therapists to release ACL reconstructed 

individuals back to pre-injury sports and training after a specific time period (PETERSEN & ZANTOP 

2013). Regarding the functional clinical tests, it is described that mostly Lachman tests (81.7%) are 

applied, followed by ROM measurements (78.4%), and pivot shift testing (60.1%) (PETERSEN & 

ZANTOP 2013). Anyway, by applying these tests, functionality is rather evaluated from a passive or a 

static approach than out of a dynamic perspective, meaning, an examiner evaluates the injured and non-

injured leg while executing passive movements with the patients’ legs. 

Nonetheless, by applying these functional clinical tests, the joint’s functionality is assessed. 

However, joint functionality and stability is not only determinable by a free ROM and the absence of 

hyper mobility or anterior-posterior laxity of the tibia in relation to the femur. It was described that after 

ACL tear and reconstruction, atrophy of the legs’ musculature occurred and therewith pronounced 

deficiencies in the legs’ strength capabilities. However, a good state of the legs’ musculature should also 

be included in assessing the functionality, if a comprehensive approach shall be achieved even from a 

clinical point of view (MCHUGH et al. 2002; THOMAS et al. 2016). Therefore, measurements of the legs’ 

circumferences at standardized positions provide substantial information about the musculatures’ state 

of recovery (SØDERBERG et al. 1996). 

Due to the fact that low knee joint functionality and instability occur in various situations, 

especially while performing ADLs, recreational or sports activities, it seems not sufficient to mainly rely 

on functional clinical tests to assess the state of functional recovery of an individual’s knee and to give 

valid return-to-sports recommendations. Instead, it is advised that assessments of functionality under 

dynamic conditions are included in functional testing to give a more comprehensive picture of each 

individual’s respective functional state. To achieve the objective of comprehensive analyses of knee 

joint functionality after ACL reconstructions, functional clinical tests should be accompanied by tests of 

the functional performance in dynamic situations. In various studies, tests of specific FPTs have been 
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established, especially jumping tests, in recent decades (BARBER et al. 1990; NARDUCCI et al. 2011; 

NOYES et al. 1991). 

Functional Performance Tests 

For enhanced qualitative and quantitative analyses of the legs’ functionality after ACL 

reconstructions, out of respective studies some FPTs were deduced as appropriate in recent years 

(BARBER et al. 1990; REIMAN & MANSKE 2009; NARDUCCI et al. 2011; NOYES et al. 1991; TEGNER et 

al. 1986). Dynamic demanding testing tasks, represented by FPTs, give deeper insights into the 

functional state of the ACL reconstructed subjects and enable to determine the level of leg functionality 

(NARDUCCI et al. 2011). Especially, various one-legged jumping (OLJ) tasks, such as vertical jumping, 

jumping for distance, and timed jumping have been established, whereas the OLJ is the most frequently 

applied test isolated or in combination with other FPTs (ALMANGOUSH & HERRINGTON 2014; BARBER 

et al. 1990; ERNST et al. 2000; GUSTAVSSON et al. 2006; KVIST 2004; LENTZ et al. 2009; MYER et al. 

2008; NARDUCCI et al. 2011; NOYES et al. 1991; TEGNER et al. 1986). Jumping tasks are described to be 

suitable for assessing functionality in a dynamic demanding task, because the interaction of muscular 

and neuromuscular systems is required for good performances of jumps and for realizing stability after 

landing (ORISHIMO et al. 2010). Such a multi-dimensional interaction of motion determining systems is 

required in jumping during take-off and especially in the landing situations. Take-off situations are 

appropriate to analyze the capabilities of force or impulse generation of the legs in a dynamic situation, 

as this represents the most important factor for realizing take-off from the ground and reaching a high 

performance outcome. Additionally, assessments of landing situations are adequate to get insight into 

and information on how ACL reconstructed individuals compensate for high loads, emerging in landing 

of jumps, and which locomotion strategies are applied to provide whole body stabilization, which is 

similar to demands athletes have to tolerate during competitive sports (GOKELER et al. 2009; 

OBERLÄNDER et al. 2012; OBERLÄNDER et al. 2013; ORISHIMO et al. 2010; RUDOLPH et al. 2000). 

Therefore, jumping tasks generally represent a valid tool for assessing functionality, locomotion and 

neuromuscular control in high-demanding movement situations. Therefore, jumping tasks were often 

applied to discriminate in relation to performance outcomes between an injured and non-injured leg or 

in comparison to healthy individuals (BARBER et al. 1990; EASTLACK et al. 1999; GUSTAVSSON et al. 

2006; ITOH et al. 1998; REID et al. 2007; RUDOLPH et al. 2000; TEGNER et al. 1986). 

From studies examining functionality by dynamical FPTs, it has been established that a jumping 

ability of 85% to 90% of the injured compared to the non-injured leg is defined as normal and as a 

potential criterion to release ACL reconstructed individuals back to pre-injury sports (ERNST et al. 2000; 

GUSTAVSSON et al. 2006; MUNRO & HERRINGTON 2011; NOYES et al. 1991; ORISHIMO et al. 2010; 

RISBERG et al. 1995; RUDOLPH et al. 2000). In the respective studies, jumping tasks were sometimes 

combined with other FPTs, such as (one-legged) lunges, shuttle run tests, side step tests, and assessments 
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of muscular strength in knee flexion and extension situations (BJORKLUND et al. 2009; NARDUCCI et al. 

2011; REIMAN & MANSKE 2009). Combinations of one-legged jumping tasks, such as triple or crossover 

hop tests, were not generally conducted in the mentioned studies, but at least in 44% of the evaluated 

studies (ALMANGOUSH & HERRINGTON 2014). In these studies, various deficits and deficiencies were 

detected in the injured as well as in the reconstructed leg. These deficits were identified in comparison 

to the non-injured, healthy leg or in comparison to healthy control group subjects at various time-points 

after the ACL reconstruction. Deficits in the injured leg emerged to be higher than 50% compared to the 

non-injured leg. Therefore, it was concluded that a deduction of leg deficiencies in relation to absolute 

performance values in jumping tasks, such as the jumping distance, is not sufficiently sensitive and 

decisive for a gradual or a fine-grained determination of functional deficits (RUDOLPH et al. 2000). 

Furthermore, it was assumed that even a combination of various one-legged jumping tasks is not 

sensitive enough for a comprehensive detection of functional limitations (NOYES et al. 1991). 

Specifically, to deduce functionality more decisive in relation to task-specific functionality, it is 

suggestable to evaluate an individual’s functionality not only in terms of the performance outcome 

results, such as jumping distance, but rather in terms of the parameters, which are most relevant for the 

determination of an outcome result of the performed task. Therefore, in FPTs as jumping, parameters, 

such as the distribution of generating forces or moments in each leg during take-off and the distribution 

of load compensations during the landing situations, seem to be more valid for the evaluation of leg 

functionality, because these parameters provide insight into the parameters, which determine the 

outcome result (COLBY et al. 1999). This assumption is supported, because it was described that ACL 

reconstructed individuals reached with the reconstructed leg a jumping distance in OLJs of 85% of the 

non-injured leg, but in contrast, showed substantial deficiencies in the knee joints’ ROM in the 

reconstructed leg compared to the non-injured leg. Furthermore, although peak ground reaction forces 

(GRFs) did not differ between the legs, 40% of the individuals reduced their peak extension moments 

in the reconstructed compared to the non-injured leg during OLJs. Such a reduced peak moment in the 

knee joint had to be compensated by the hip and ankle joints, where higher peak moments in the 

reconstructed leg occurred (ORISHIMO et al. 2010). Accordingly, although ACL reconstructed 

individuals had been designated as fully rehabilitated, compensation strategies during one-legged 

landing were detected, targeting at load reductions in the reconstructed knee joint, which was specifically 

realized by a more erect knee joint position in the landing situation (DECKER et al. 2002). 

Consequently, it can be assumed that testing of functional performance should include various 

approaches of dynamic situations and performance determining parameters to detect functionality as 

comprehensively and detailed as possible. Furthermore, if examining jumping tasks in order to 

determine the functionality in a dynamic situation, it is indicated to include detailed analyses of the 

landing situations in a comprehensive analysis of functionality. 
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However, although some studies examined a pre- and post-reconstructive state of functionality 

in relation to FPTs, especially in the performance of OLJs, there is no study yet with the objective to 

comprehensively examine functional performance in dynamic tasks from pre- to six months post-

reconstruction with multiple session.  

NARDUCCI et al. (2011) underlined the necessity of studies with a more comprehensive approach 

of functional testing within one year after ACL reconstruction because no valid functional performance 

test battery exists, which would provide a more specific and particularized picture of functionality. Such 

a comprehensive analysis of functionality would, however, support therapists and clinicians in applying 

a better adjusted individual rehabilitation program and thereof, better deduced recommendations for 

return-to-sports in relation to each specific individual functional state (BEYNNON et al. 2002; 

GUSTAVSSON et al. 2006; MURPHY et al. 2003). 

As described before, muscular capabilities are deficient due to muscular atrophy after ACL tears 

and reconstructions (THOMAS et al. 2016). Hence, it was assumed that for a comprehensive analysis of 

functionality, jumping tasks, as representatives for high-demanding dynamic tasks, should at least be 

combined with measurements of isolated force generation of the legs in static conditions. Such strength 

testing of the legs’ musculature shall help to get deeper insights into the strength capabilities of the legs’ 

musculature, especially in the post-reconstruction phase up to six to eight months after reconstruction, 

where most individuals achieve to return to pre-injury sports (KEAYS et al. 2000). As it is described that 

the strength capabilities of the legs are essential for the recovery of full knee joint functionality and for 

providing full knee joint stability after ACL reconstructions, a combination of dynamic and static testing 

of muscular capabilities reveals valid basis for a comprehensive assessment of the functionality of the 

legs. Additionally to jumping tasks, the measuring of isolated strength capabilities of the legs’ 

musculature from an isometric or isokinetic approach is established for revealing strength relationships 

between the legs of healthy or impaired individuals (ARAMPATZIS et al. 2004; DELITTO et al. 1988; 

FITZGERALD et al. 2000; KEAYS et al. 2000; SNYDER-MACKLER et al. 1993; THOMAS et al. 2013; 

WIGERSTAD-LOSSING et al. 1988). 

Studies, which mainly included strength testing into functional test batteries, conducted rather 

isokinetic tests in recent years (THOMAS et al. 2013). However, it was described that in isokinetic testing 

differences between the measured and the resultant knee joint moment arms occurred, and the angular 

displacement of the dynamometer differed from the angular motion during knee extension situations 

(ARAMPATZIS et al. 2004, 2005; HERZOG 1988). This leads to the conclusion that isometric testing seems 

more adequate for examining isolated muscular strength than isokinetic testing and thus were applied in 

studies with ACL injured individuals for determining force capacity of the injured and non-injured leg 

(FITZGERALD et al. 2000). 
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Summarized it can be stated, that to really give a comprehensive picture of functionality, 

assessments of functional clinical tests, such as ROM measurements and leg circumference 

measurements, should be accompanied by dynamic and isolated FPTs. On the one hand, this gives 

insights into the passive functionality of the knee joint and the state of muscular atrophy, and on the 

other hand, into the recovery of functionality in dynamic movement situations and into the recovery of 

strength capabilities in isolated static and dynamic situations. The combined analyses of all these 

situations and the revealing parameters lead to a more comprehensive picture of functionality. However, 

to actually reach the claim of full comprehensive analysis of functionality, it seems absolutely essential 

to analyze ADLs, accordingly. As ADLs are executed every day to great extents, compensations or 

adaptations in daily activity locomotion can result in low functionality prospectively, due to the potential 

manifestation of the individual compensation strategies. As described in the FPTs, such compensation 

strategies in ADLs mainly appear as over-loading of the non-injured leg and, respectively, an under-

loading of the injured leg. Such adaptation processes in locomotion can lead to and accelerate a gradual 

deterioration of the biological structures of joint and therewith enhance the general impairment of the 

whole joint’s functionality.  

Activities of Daily Living 

As described, for a comprehensive elaboration of functionality after an ACL tear, it seems, not 

sufficient to mainly rely on the knee joint functionality in performance of dynamic sport-specific 

movements, such as jumping, or on the outcome of functional clinical tests. Certainly, sport-specific 

movement tasks (i.e. jumping) are highly-demanding and require a well-balanced and well-developed 

level of functionality for their successful realization. As described earlier, this makes dynamic FPTs 

appropriate for examining the functionality after ACL tears. Alongside, functional clinical tests give 

information on the state of recovery of each individuals’ knee joint in a static or passive movement 

situation. 

However, as normal life is characterized to a large extent by specific, daily occurring ADLs, 

compensations and adaptations in the locomotion of ADLs can lead to far-reaching consequences to the 

biological structures of a joint. A general approach for the interpretation of asymmetries in ADLs, as 

gait, is based on the support and the mobility of each leg and because even in healthy subjects 

asymmetries in ADLs were found (POLK et al. 2017; SADEGHI et al. 2000).  

Therefore, such functional consequences, in terms of adaptations or compensations of the 

locomotion process, can develop acute or chronic, in form of degenerative diseases, such as knee OA, 

due to acute or manifested abnormal or unbalanced loading situations between the legs (ANDRIACCHI & 

DYRBY 2005; BERCHUCK et al. 1990; HALL et al. 2012; KNOLL et al. 2004b; WEXLER et al. 1998). 

Apparently, in ADLs, single loads are not on the same level like in sport-specific movements. However, 

the high number of repetitions of ADL movements throughout a day, in combination with potential shifts 
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of loading within a joint throughout these movements, can result in a variety of problems for individuals 

with ACL tears and can encourage the framework of degenerative joint diseases (HALL et al. 2012). 

Such compensations in form of a shift of load in ACL reconstructed individuals can be apparent even a 

long time after the injury and reconstruction. 

Such unequal or unbeneficial load ratios between the injured and the non-injured legs were 

detected in straight ahead gait due to abnormalities of gait locomotion induced by the deficient ACL 

(ANDRIACCHI & DYRBY 2005; BERCHUCK et al. 1990; GARDINIER et al. 2012). Such a pathologic 

unbalanced load ratio will lead to a slight but significant overload of the formerly non-injured leg. This 

is described as one major reason for the high incidences of subsequent injuries or impairments of other 

biological structures of the knee joint, such as the Menisci, the joint cartilages, as well as the higher odds 

ratio to develop knee joint degeneration in chronic knee OA, prospectively (ANDRIACCHI & DYRBY 

2005; DANIEL et al. 1994; HALL et al. 2012; HAWKINS et al. 1986; MCDANIEL & DAMRON 1983). Since 

the biological structures of a joint need a certain load for their well-being, over-loading as well as under-

loading can engage pathologic degenerative processes of the biological structures of the knee joints and 

of the entire leg as well (DANIEL et al. 1994; MCHUGH et al. 1994; WEXLER et al. 1998; ZABALA et al. 

2013). Therefore, isolated under-loading of the injured or reconstructed knee is no key for regaining full 

knee joint functionality and does not recover the knee joint homeostasis. But changing of the load 

distribution in the knee joint, in direction to a higher internal knee adduction moment, increases the risk 

for developing knee OA by a factor of six with each 1% increase of this moment (MIYAZAKI et al. 2002). 

Walking on flat ground is the ADL mainly performed throughout a day. Straight ahead gait was 

analyzed in various studies with ACL reconstructed or ACL deficient subjects at various times after the 

ACL reconstruction (ANDRIACCHI & DYRBY 2005; BERCHUCK et al. 1990; DEVITA et al. 1997; 

GARDINIER et al. 2012; HALL et al. 2012; WEXLER et al. 1998). Therein, the subjects with ACL 

deficiencies showed a general reorganization of their gait locomotion to reduce demands and loads to 

the knee extension musculature (i.e. M. quadriceps femoris) in terms of decreased internal knee extensor 

moments and reduced knee flexion angles throughout the whole stance phase of a gait cycle (BERCHUCK 

et al. 1990; CHMIELEWSKI et al. 2001; DEVITA et al. 1997; GARDINIER et al. 2012; RUDOLPH et al. 1998; 

WEXLER et al. 1998). Associated with the reduction of demands to the M. quadriceps femoris, loads to 

the reconstructed ACL are reduced. BERCHUCK and colleagues characterized this phenomenon as 

quadriceps avoidance gait. Such movement adaptations were found in 57% (WEXLER et al. 1998) to 

75% (BERCHUCK et al. 1990) of the subjects with ACL deficiency even up to two years after the ACL 

tear. This quadriceps avoidance gait emerges to reduce the load and the stress to the reconstructed or 

deficient ACL by reducing the internal knee extension moment to avoid excessive anterior translation 

of the femur, which would be provoked by intense M. quadriceps femoris activation (BERCHUCK et al. 

1990; GARDINIER et al. 2012; GEORGOULIS et al. 2003; HALL et al. 2012; RUDOLPH et al. 1998; 

TIMONEY et al. 1993; WEBSTER et al. 2005; WEXLER et al. 1998). This described quadriceps avoidance 
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gait was not only seen in ACL reconstructed individuals, but also in non-reconstructed non-copers (ACL 

deficiency after non-surgical treatment of ACL tear), who reduced their knee ROM and the knee joint 

moments in the sagittal plane as stiffening strategy for maintaining knee joint stability (GARDINIER et 

al. 2012; LEWEK et al. 2003). Therefore, it is assumed that such a compensation strategy for knee joint 

stabilization negatively influences the long-term outcome of joint functionality and therewith represents 

another main factor for the high incidence of the earlier onset of knee OA after ACL tears compared to 

non-injured individuals, independently of whether the ACL tear was treated by a reconstruction or non-

surgical therapy (GEORGOULIS et al. 2003; LEWEK et al. 2003; ZABALA et al. 2013). In contrast, there 

are also chronic ACL deficient individuals, who do not develop the quadriceps avoidance gait (KNOLL 

et al. 2004a; Knoll et al. 2004b; ROBERTS et al. 1999; RUDOLPH et al. 1998). As in the FPTs, these 

findings show that there do not exist generalizable recovery processes, which provides a clear rationale 

to analyze functionality after ACL tears and reconstructions as comprehensively as possible. 

Additionally, as further potential adaptation process due to ACL tears in ADLs, a lower knee 

adduction moment was detected during straight gait and stair ascending and descending in the 

reconstructed knees in comparison to the non-injured contralateral leg (WEBSTER et al. 2012; ZABALA 

et al. 2013). As the knee adduction moment is lower in the reconstructed knee, it consequently has to be 

higher in the non-injured knee joint. The knee adduction moment is directly associated with the load 

distribution between the medial and lateral compartment of the knee joint (SCHIPPLEIN & ANDRIACCHI 

1991; SHARMA et al. 1998). Therefore, a higher knee adduction moment results in a higher load on the 

medial compartment. Higher loads on the medial compartment of the knee joint are directly related to 

an enhanced risk for development of knee OA (MIYAZAKI et al. 2002; SCHIPPLEIN & ANDRIACCHI 1991; 

SHARMA et al. 1998). Thus, over-loading of the non-injured knee joint as well as under-loading of the 

reconstructed knee joint can lead to an acceleration of the knee OA processes in the injured or 

reconstructed knee joint as well as in the non-injured knee joint (MIYAZAKI et al. 2002; ZABALA et al. 

2013).  

These described adaptation and compensation mechanisms due to the ACL tear show that the 

ACL injured and reconstructed subjects do not generally recover to a normal movement locomotion, as 

it was detected in the described abnormal gait patterns. Such locomotion adaptations were not even seen 

in straight ahead walk immediately or short-term after ACL reconstruction but also from half a year up 

to two years after ACL reconstruction (BERCHUCK et al. 1990; DEVITA et al. 1997; HOOPER et al. 2002; 

TIMONEY et al. 1993; WEXLER et al. 1998). 

Accordingly, some studies also examined locomotion of ACL reconstructed subjects during 

walking up and down stairs (ZABALA et al. 2013). However, as straight ahead walking patterns are 

widely examined, analyses of more strenuous or complex ADLs, such as walking stairs or turning, are 

underrepresent. 
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In summary, it has been shown that most subjects with reconstructed ACL tears and ACL 

deficiency adapt their gait pattern by reducing load to the reconstructed or impaired ACL and by 

changing kinematic gait patterns in the ADLs straight ahead gait, and ascending and descending stairs 

(GARDINIER et al. 2012; HALL et al. 2012; WEBSTER & FELLER 2011; SCANLAN et al. 2010; TASHMAN 

et al. 2004; ZABALA et al. 2013). Such adaptations of the locomotion patterns in ADLs and recreational 

activities were apparent even though sufficient or insufficient muscular capabilities were detected in the 

examined individuals (DEVITA et al. 1992; GARDINIER et al. 2012). However, as it was shown that not 

all individuals with ACL tears and chronic or acute ACL deficiency develop the quadriceps avoidance 

gait pattern (HALL et al. 2012), it is assumable that rehabilitation of ADL remains very individual. 

This leads to the conclusion that due to the described alterations in the movement patterns on a 

dynamic and kinematic level, it seems absolutely reasonable to examine additional ADLs in ACL 

reconstructed subjects, to figure out if in these ADLs, pathologic movement adaptations occur as well 

or if such functional adaptations of locomotion patterns only appear during straight locomotion tasks 

(GEORGOULIS et al. 2003; ZABALA et al. 2013). The results and findings of movement analyses of these 

ADLs shall contribute important knowledge to the comprehensive analysis of functionality after ACL 

reconstructions. Therein, the analyses of various daily occurring movements alongside with functional 

clinical tests and FPTs lead to a more differentiated picture of functionality in ACL reconstructed and 

healthy subjects. Inclusion of ADLs, therefore, strongly enlarges the comprehensive approach of 

determination functionality, because ADLs require knee joint functionality for different demands than 

FPTs. Hence, with a comprehensive testing of various ADLs, variations or adaptations in locomotion 

patterns can be detected more detailed, and it can be analyzed whether recovery of full functionality in 

ADLs and all other settings of an active life is achievable with currently applied post-surgical treatment 

methods. 

Leg Symmetry 

As the detailed description of various approaches for determining knee functionality showed, it 

seems not sufficient to mainly rely on absolute performance values in the evaluation of functionality. 

Therefore, it has been established to calculate the relationship of the performance parameters between 

the legs, the so-called leg symmetry index (LSI) (BARBER et al. 1990; FITZGERALD et al. 2000; NOYES 

et al. 1983a; NOYES et al. 1991; GUSTAVSSON et al. 2006; NARDUCCI et al. 2011). Out of recently 

conducted studies, it has been shown that there are task-specific symmetry levels in static and dynamic 

movement conditions, which make a fully recovered knee joint function definable and help for the 

evaluation of functional recovery as well as the determination of a potential return to pre-injury sports 

(MYER et al. 2008; NEETER et al. 2006; ROHMAN et al. 2015; SHELBOURNE & KLOTZ 2006). Such 

definitions of healthy or normal symmetry levels for an evaluation of the functional recovery levels are 

drawn out of recently and formerly detected LSI levels of healthy, injured, and reconstructed individuals 
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(BARBER et al. 1990; MYER et al. 2008; NOYES et al. 1991). Identifications and understandings of side-

to-side asymmetries or deficiencies in performance parameters or performance outcome results of ACL 

reconstructed individuals help to assess and compare functional imbalances, which is helpful for the 

modification of rehabilitation protocols (ORISHIMO et al. 2010). Nonetheless, one should not rely only 

on the LSI results, as a reduction in a performance parameter in the non-injured can lead to an increase 

in the LSI, even though the injured and reconstructed leg has not enhanced its performance outcome 

parameters. Therefore, absolute performance outcome parameters and LSIs should always be taken into 

account simultaneously in comprehensive analyses of knee joint functionality. However, the LSIs can 

be used as valid parameters for the evaluation of functionality, because LSIs provide direct information 

on how pronounced deficits appear between the injured and non-injured leg (FITZGERALD et al. 2000). 

This is in particular recommended in the evaluation of FPTs, such as jumps (NOYES et al. 1991) or 

strength testing (SNYDER-MACKLER et al. 1993), where leg symmetry levels of 85% or higher in females 

and males irrespective of the sports and activity level have been established to define normality (BARBER 

et al. 1990; MYER et al. 2008; NOYES et al. 1991; SNYDER-MACKLER et al. 1993). Nonetheless, although 

LSIs are valid measures of functionality, less than 50% of studies reported LSIs of the reconstructed leg 

in comparison to the non-reconstructed leg (ALMANGOUSH & HERRINGTON 2014). And finally, LSIs 

provide better comparability between various FPTs, as all tested tasks can get analyzed in relation to the 

same parameter, what additionally relieves essential information on the relative deficit of the injured 

and reconstructed leg compared to the non-injured leg, according to the emerging deficit in each 

respective test. 

2.6 Psychological Consequences on Quality of Life 

Besides the importance of the morphological and functional recovery after an ACL tear and 

subsequent reconstruction, it has been described that full recovery of the functionality and return to pre-

injury sports can be better achieved, if reconstructed individuals have a positive self-conception and a 

positive attitude in relation to their injury, in combination with high motivation and self-responsibility 

with regard to the participation of the ambulatory and self-exhibited rehabilitation exercises (EVERHART 

et al. 2015; FITZGERALD et al. 2000; TE WIERKE et al. 2013). Accordingly, psychological as 

physiological impairments and imbalances immediately lead to functional deficiencies, which are seen 

as predispositions for subsequent ACL injuries and earlier onset of knee OA in lifetime (BEYNNON et 

al. 2005a; CHMIELEWSKI et al. 2008; DANIEL et al. 1994; EVERHART et al. 2015; HAWKINS et al. 1986; 

HERTEL et al. 2005; KANNUS & JÄRVINEN 1989; LOHMANDER et al. 2004; MALETIUS & MESSNER 1999; 

MCDANIEL & DAMRON 1983; PATERNO et al. 2010; TE WIERKE et al. 2013). As testing of functional 

performance tasks is highly specific in relation to the analyzed task (AAGAARD et al. 1996; GIBOIN et 

al. 2015; KRAEMER et al. 2002), functionality can also be assessed out of the ACL reconstructed 
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individual’s view by scores or questionnaires. In combination with functional testing, this enables to 

detect a comprehensive overview of the functional level of an individual. 

Therefore, self-evaluative questionnaires contribute important information to the extent of 

functional impairments, as a general reduction of the sports and activity level or injury-induced long or 

general drop-out from activity or sports has shown to negatively affect an ACL reconstructed 

individual’s QoL and remain major concerns after ACL tears (Dekker et al. 1993; MANSSON et al. 2011; 

ROI et al. 2006; SÖDERMAN et al. 2002; VON PORAT et al. 2004). The extension of information about 

functional impairments is enabled by including various situations of daily life, which immensely 

enlarges the comprehensive picture of functional state of an individual (ROOS et al. 1998). 

The importance of including self-evaluative questionnaires and scores in the analysis of 

functionality is underlined by the fact that the psychovitality of individuals who returned to sports was 

higher than in those who had to cease from all sports activities after ACL tear and reconstruction (GOBBI 

& FRANCISCO 2006). Furthermore, many ACL reconstructed individuals suffer from functional 

impairments and the resulting reduction of social activities and a decrease of emotional well-being (VON 

PORAT et al. 2004), which is also detectable by such scores and questionnaires. In line, individuals with 

greater fear of a repetitive tear of the reconstructed ACL return less often to pre-injury sports and sports 

levels compared to individuals with less fear of re-injury (KVIST et al. 2005). 

For the detection of social and functional deficits, a variety of questionnaires and scores exist 

(ROOS et al. 1998). However, it appears that the Knee Injury and Osteoarthritis Outcome Score (KOOS) 

is best fitting for the requirements of a comprehensive analysis of functionality after a knee injury (ROOS 

et al. 1998). Due to its variety of questions the KOOS provides the most decisive and fine-grained results 

in relation to the individual state of knee joint functionality due to the knee injury (ROOS et al. 1998). 

Other self-evaluative questionnaires and scores appear to be rather specific (ROOS et al. 1998). For 

instance, the Lysholm Score (TEGNER & LYSHOLM 1985) is mainly focused on short-term consequences 

and cumulates symptoms and function in one score, the Western Ontario and McMaster Universities 

Osteoarthritis Index (WOMAC) (BELLAMY et al. 1988) has its focus on the evaluation of long-term 

consequences (ROOS et al. 1998). In contrast, the KOOS enables, besides its wide variety of questions, 

a separate analysis of all included sub-categories (pain, symptoms, ADL, sport and recreation function, 

knee related QoL), which allows a more specific detection of individual functional deficiencies (ROOS 

et al. 1998). The wide scope of the KOOS implies that the inclusion of this self-evaluative questionnaire 

provides meaningful insights into the functionality of ACL reconstructed individuals. Therefore, it is 

indicated to include at least one questionnaire for the self-evaluation of knee joint functionality into a 

comprehensive evaluation of functionality after a knee injury or chronic disease. 
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 Synthesis of Findings, Research Question and Scope of the 

Thesis 

3.1 Synthesis of Findings 

Summarizing chapter 2.1 to 2.6, it can be concluded that tears of the ACL can lead to a variety 

of morphologic and behavioral consequences, which support and enhance the development of the knee 

joint instabilities and the loss of the knee joint function post-operatively (HARRISSON et al. 1994). These 

consequences can lead in isolation or in combination to functional imbalances short-, mid- and long-

term after the reconstruction, which can contribute to an increased risk of musculoskeletal disorders and 

chronic degenerative joint diseases.  

Summarized, after ACL tears and reconstructions, generally, alterations can occur, 

- In associated biological structures of the injured knee joint, as well as in impairments of the 

whole injured and non-injured leg (e.g. atrophy of the legs’ musculature, destruction and 

degeneration of the Menisci as well as knee oa). 

- In the performance or the performance level in sport-specific movements (e.g. jumping, 

running, cutting maneuvers). 

- In daily living locomotion tasks (e.g. walking or walking up- and downstairs). 

- In psychological consequences, which can highly influence the somatic and behavioral 

rehabilitation (e.g. reduction of the quality of life or a lower activity level). 

Even though reconstruction techniques and rehabilitation programs have improved in recent 

years, full recovery of the knee joint functionality cannot generally be ensured and guaranteed in ACL 

reconstructed subjects. Instead, limitations in ADLs, in recreational activities, and sports can persist 

short-term or long-term after the ACL tears and the subsequent reconstructions or sometimes even for 

the entire life-time (BOERBOOM et al. 2000; HARTIGAN et al. 2010). Therefore, a main goal of all 

therapeutic and rehabilitative treatment after ACL reconstructions is to regain full functionality of the 

knee joints in ADLs, recreational activities and sports and to prevent the onset of chronic joint diseases, 

such as knee OA (BEYNNON et al. 2005a; MURPHY et al. 2003; TEGNER et al. 1986). 

Although, many studies were conducted in recent years to contribute their results and findings 

to the enhancement of knee joint rehabilitation after ACL tears, there is no consensus on the optimal 

rehabilitative approach, the optimal detection of knee joint functionality post-operatively, and the 

determination of the best time to return to pre-injury sports or activities (BEYNNON et al. 2005a). 

Therefore, the conduction of studies to enhance the rehabilitation after ACL tears and reconstructions 

remains an important, substantial field of investigations. 
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Although there could not be found any consensus, the major aims of rehabilitation programs are 

defined by the desire and the purpose of the reconstructed individuals to regain full knee joint 

functionality and stability in all situations of daily life and to return in pre-injury sports and activities on 

pre-injury intensity level (BEYNNON et al. 2005a; MURPHY et al. 2003). However, due to insufficient 

recovery processes, many reconstructed individuals develop chronic knee joint instabilities, chronic joint 

diseases, or suffer from re-rupture or secondary injuries of the knee joint (PINCZEWSKI et al. 2007; 

RUDOLPH et al. 2000; SALMON et al. 2005; WRIGHT et al. 2007). Due to this short- and long-term 

consequences, which can be the result of an incomplete rehabilitation process, many individuals 

experience a reduction of the overall QoL and a return to pre-injury sports and activities is unattainable 

(BEYNNON et al. 2005a; MURPHY et al. 2003). Furthermore, therapists and clinicians mainly rely on the 

time period after a surgical reconstruction as major criterion to assume that an individual is functionally 

recovered and can get released back to sports (BARBER-WESTIN & NOYES 2011; PETERSEN & ZANTOP 

2013). However, to release ACL reconstructed individuals back to pre-injury sports without any 

functional testing, has a high risk to overstrain the potentially insufficient recovered reconstructed knee 

joint. Overstraining the knee joint could lead to a higher potential of a re-rupture or of secondary injuries 

of the injured knee joint or contralateral non-injured knee joint. 

Present functional testing of ACL reconstructed individuals, for determination of knee joint 

functionality, is dominated by conducting functional clinical tests, such as the Lachman test or testing 

of the joint’s passive ROM. The results of these functional clinical tests, along with the passed time 

since the reconstruction, are used as major criteria to release an ACL reconstructed individual back in 

pre-injury sports and activities. Assessments of muscular strength testing or the application of other 

FPTs are underrepresent for the decision making. (PETERSEN & ZANTOP 2013) 

This shows that conducting FPTs in the post-reconstructive process has not been established in 

the past years. However, as FPTs provide important insight into the level of functionality while 

performing dynamic demanding movements, it is absolutely suggestable to motivate therapists and 

clinicians to integrate FPTs in the assessment of functionality after an ACL tear and reconstruction. As 

the level of functionality changes in relation to the state of recovery, it is additionally indicated to 

consequently conduct the functional testing repetitively into the rehabilitation process. By such a 

functional testing, knee joint functionality could be detected more precisely and detailed, which would 

help to detect a clearer picture of the individual’s state of functionality. 

Therefore, it is assumable that it is of great value to establish screening procedures, detecting 

the functional state of the knee joint of ACL reconstructed individuals more comprehensively at certain 

stages of the rehabilitation cycle. Such a comprehensive analysis of functionality would provide a very 

specific and fine-grained individual picture of the functionality. The detected results and findings would 

be beneficial for therapists to adapt the respective rehabilitation programs more specifically, according 

to the individual functional deficits. Furthermore, to detect the course of functionality over the 
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rehabilitation cycle more detailed and comprehensively, would help to obtain important knowledge on 

the general development of various aspects and parameters of knee joint functionality. Overall, such an 

approach in the detection of functionality could beneficially support a more individually controlled 

rehabilitation program with a potentially better functional outcome of the ACL reconstructed 

individuals. All these findings and results shall help to determine the complex framework of knee joint 

functionality more specifically. Such specific analyses of the functional state are of great interest to 

better determine the point in time when ACL reconstructed individuals have reached the same functional 

level as healthy individuals, which is assumed essential for a symptom-free performance in ADLs and 

the safe return to pre-injury sports and activities on pre-injury intensity level with a reduced risk of re-

ruptures (GUSTAVSSON et al. 2006). 

3.2 Purpose and Research Questions 

Deduced of this findings, the main purpose of the thesis is to examine the knee joint functionality 

of ACL injured and reconstructed subjects with a comprehensive approach at multiple times from pre-

reconstruction up to six months post-reconstruction. Additionally, in order to determine if the ACL 

reconstructed subjects have regained the pre-injury level of functionality, their results will be compared 

to the results of matched healthy control subjects at six months post-reconstruction. With this purpose, 

important knowledge over the course and the development of functionality should be determined. This 

knowledge shall contribute to enhance post-reconstructive rehabilitation processes by a more 

individually steered functional rehabilitation program and to better detect the time for releasing 

individuals back in pre-injury sports and activities. 

Out of the purpose, the main research questions of the thesis were deduced: 

(1) How does knee joint functionality proceed in functional clinical tests, functional 

performance tasks and activities of daily living in ACL reconstructed subjects from pre- to 

six months post-ACL reconstruction? 

(2) How does the ACL reconstructed subjects’ self-evaluated knee joint functionality proceed 

from pre- to six months post-reconstruction? 

(3) What level of knee joint functionality do ACL reconstructed subjects reach in functional 

clinical and functional performance tests compared to matched healthy control subjects at 

six months post-ACL reconstruction? 

(4) Do ACL reconstructed subjects show functional alterations and compensation strategies in 

activities of daily living compared to matched healthy control subjects at six months post-

ACL reconstruction. 
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3.3 Scope of the Thesis 

To reach the purpose and address the research questions, the thesis comprises the results and 

findings of a methodological pre-study (Chapter 4) as well as selected analyses, results and findings of 

the thesis’ main study (Chapters 5 and 6). 

The pre-study’s purpose was to examine the reproducibility of three daily occurring turns, in 

relation to the spatio-temporal parameter ground contact time and the dynamic parameters vertical and 

medio-lateral GRF components. This pre-study was conducted as an examination of the reproducibility 

of turning locomotion was lacking in scientific literature. However, for an inclusion of these daily 

occurring turns into the test battery of the main study, it was essential to bear warranty that the conducted 

turning conditions are reproduced reliable and, thus, turning movements are in the performance 

independent of the applied test setting. 

After finalizing this pre-study, the main study of this thesis was conducted. Therein, a 

longitudinal study with four test sessions was designed, including a test battery, aiming for a 

comprehensive evaluation of the knee function by combining the subjects’ functional self-evaluation 

with biomechanical analyzes of ADLs and FPTs (Chapter 4). The methodology of this main study is 

subsequently described in detail (4.1 to 4.5). This shall give an overview over the whole scope of the 

main study of this thesis. However, as the conduct of the whole test battery led to an extensive amount 

of data, not all results of all conducted tests could be analyzed and embedded in the framework of this 

thesis. Therefore, only the results of the subjects’ self-evaluation, the functional clinical tests, and the 

FPTs, as well as the results and findings of the analysis of two daily occurring turns (90° and 180° 

turning conditions) could have been integrated into the scope of the thesis. Figure 5 gives a general 

overview of the thesis’ structure and illustrates the included studies, which were embedded in this thesis. 
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Figure 5. General Structure of the Thesis. Overview of the research process of the conducted pre-study (Chapter 5) 

and the sub-studies of the main study (Chapter 6 and 7), which were included in the framework of the thesis. All 

studies were conducted in the BioMotion Center of the Institute of Sports and Sports Science at the Karlsruhe 

Institute of Technology. 

Pre-Study 

Reproducibility of Spatio-Temporal and Dynamic Parameters in Turning Gait. 

Krafft, Eckelt, Köllner, Wehrstein, Stein & Potthast (2015). Reproducibility of spatio-temporal and dynamic 

parameters in various, daily occurring, turning conditions. Gait Posture, 41: 307-312. Doi 

10.1016/j.gaitpost.2014.09.007. 

Main Study 

Comprehensive Monitoring from Pre- to Six Months Post-ACL Reconstruction 

Development of Functionality in Functional Performance Tests from Pre- to Six Months Post-ACL 

Reconstruction. 

Krafft, Stetter, Stein, Ellermann, Flechtenmacher, Eberle, Sell & Potthast (2017). How does functionality proceed in 

ACL reconstructed subjects? – Proceeding of functional performance from pre- to six months post-ACL 

reconstruction. PlosOne. 12(5): e0178430. Doi 10.1371/journal.pone.0178430. 

Developments in Turning Gait Locomotion from Pre-to Six Months Post-ACL Reconstruction. 

Krafft, Stetter, Stein, Ellermann, Flechtenmacher, Eberle, Sell & Potthast (2018). Functional Adaptations in Daily 

Occurring Turns in ACL Reconstructed Subjects (In preparation). 
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 General Methodology 

This methodological chapter comprises five sections. The first section gives an overview of the 

general methodology of the main study (Section 4.1), including the sample characteristics and all applied 

measurement methods, which were used to record and assess the movement tasks of the test battery. 

These tested movement tasks, which were conducted at each test session with all subjects of the ACL 

group and the control group (CG) are described in detail (Sections 4.2 to 4.5). The general methodology 

described in this Chapter 4 represents mainly the general description of the entire methodology of the 

conducted main study. The specific methodology of the conducted pre-study is described in the Methods 

section (Section 5.3) of Chapter 5, wherein the study and its findings are presented. The specific 

methods, as well as the specific results and findings from specific tests that were part of the main study, 

are analyzed separately and described in Chapters 6 and 7. 

All tasks of the applied test battery were conducted in the biomechanical movement analysis 

laboratory, BioMotion Center, at the Institute of Sports and Sports Science at the Karlsruhe Institute of 

Technology. The realization of the main study was approved by the ethics committee of the State 

Medical Council of Baden-Württemberg (Stuttgart, Germany)1. Furthermore, all subjects, who 

participated in the study, provided written informed consent for the study participation. 

4.1 Methodology of the Main Study 

Sample 

20 subjects with unilateral tears of the ACL were included for the measurements of the thesis’ 

main study (Table 1). The subjects with ACL tears were acquired in cooperation with the Ortho-

Zentrum, Karlsruhe2 and the ARUCS Sports Clinics, Pforzheim3. All subjects with ACL tears received 

a uniform reconstruction technique with a combined semitendinosus and gracilis autograft, via the 

double-bundle technique, resulting in quadruple-bundle autografts (SCHMIDT-WIETHOFF & DARGEL 

2007). The ACL autograft was fixed to the distal femur with a button and to the proximal tibia with a 

screw (Figure 4). Healthy control subjects were matched to the ACL injured subjects by the matching 

                                                      

 

1 Ethik-Kommission der Landesärztekammer Baden-Württemberg, Jahnstr. 40, 70597 Stuttgart 

(www.aerztekammer-bw.de/ethik) 
2 Ortho-Zentrum, Orthopädische Gemeinschaftspraxis, Waldstr. 67, 76133 Karlsruhe (www.ortho-zentrum.de). 
3 ARCUS Sportklinik, Rastatter Str. 17-19, 75179 Pforzheim (www.sportklinik.de). 
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factors: sex, age, height, body mass and pre-injury activity level, determined by the Tegner Activity 

Score (TAS) (Table 1). 

Table 1. Study Sample.  

 
Age           

[yr] 

Height       

[cm] 

Mass             

[kg] 

Body-mass index 

[kg/m2] 

Activity Level 

(TAS) 

ACL group 32.0 ± 13.8 174.6 ± 9.2 73.3 ± 8.8 24.2 ± 3.5 6.4 ± 1.4 

Control group 33.3 ± 13.4 175.4 ± 10.4 74.7 ± 8.4 24.4 ± 2.6 6.0 ± 1.4 

Mean values and standard deviations (SD) of the age, the anthropometric parameters body height [cm], body mass 

[kg], the Body-Mass-Index [kg/m2], and the activity level determined with the Tegner Activity Score (TAS) of the 

ACL group subjects and the matched healthy control group subjects. TAS in the ACL group subjects is related to 

the pre-injury activity level. 

Analysis of the homogeneity of the variances of both groups revealed no significant differences 

in the matching factors: age (F=0.003, p=0.955), height (F=0.342, p=0.562), body mass (F=0.005, 

p=0.945) and activity level (F=0.361, p=0.552). 

Before the movement analyses were conducted, all ACL group and CG subjects had to complete 

personal questionnaires, consisting of subjects’ specific questions, participation criteria, declaration of 

consent and subjects’ personal specifications (Appendix 10.1). 

Study Design 

The ACL injured and reconstructed subjects had to attend at four test sessions up to about six 

months after ACL reconstruction (Figure 6). Time periods between the test sessions were set according 

to the generally applied rehabilitation program after ACL tears and reconstructions of the German Health 

insurance system (see paragraph Rehabilitation Program in this Section).  
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Figure 6. Study Design. Mean days (d) and standard deviations between the test sessions of the ACL reconstructed 

subjects. T1 was at about seven weeks after the ACL tear, immediately before the ACL reconstruction surgery. T2 

was at about six to seven weeks after the ACL reconstruction surgery. T3 was about three months and T4 was 

about six months after the ACL reconstruction surgery. 

Rehabilitation Program 

After the surgical reconstruction of the torn ACL, all subjects received a standardized 

rehabilitation program according to the German Health Insurance System.  

The rehabilitation program can be generally separated into three main stages and was monitored 

in this study by activity diaries, the subjects had to keep in between the test sessions: 

- Low-intensity (passive) activities up to 6 weeks after reconstruction. Including 

physiotherapy with lymphatic drainage, passive movement exercises (by machine or a 

therapist), sensorimotor training, weight-bearing exercises, and isometric training under 

therapists’ supervision. 

- Medium-intensity activities with muscular and balance training up to three months post-

ACL-reconstruction. Including physiotherapy with lymphatic drainage, passive movement 

exercises, independent strength training, balance training, and activities and sports without 

pivoting movements (e.g. cycling, crawl swimming, (nordic) walking). 

- Medium-to-high-intensity activities, including intense strength training, if possible, up to 

six months after reconstruction under self-responsibility. Additionally, sports training 

(without pivoting movements) and slight return to pre-injury sports and sports-level with 

jumps, intense cycling and strength training. 

Overall, the stages were adaptable and variable according to the rehabilitative functional state 

of an individuals’ knee joint. Such a stepwise, 3-staged structure is common in rehabilitation programs 

after ACL reconstructions (WHITING & ZERNICKE 2008). The summarized rehabilitation program with 

the applied exercises and training program as well as the performable activities and sports of the ACL 

subjects of this study is presented in detail in the Appendix 10.5. 
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Data acquisition 

Data acquisition took place in the movement analysis laboratory of the BioMotion Center of the 

Institute of Sports and Sports Science of the Karlsruhe Institute of Technology with all the ACL injured 

and reconstructed subjects and all the healthy CG subjects at each test session. 

In advance to the movement analyses, specific anthropometrics of all subjects were measured in 

relation to the user manual of the ALASKA modelling system (HÄRTEL & HERMSDORF 2006) (Figure 

8; Table 8 Appendix 10.3). Afterwards, 42 retro-reflective spherical markers (Diameter 19 mm, 

lightweight super-spherical markers; Qualisys AB, Gothenburg, Sweden4) were attached to model-

specific anatomical landmarks using double-sided tape according to a modified version of the multi-

body model, ALASKA Dynamicus 9 (HÄRTEL & HERMSDORF 2006; ALASKA, Advanced Lagrangian 

Solver in Kinetic Analysis, Institute of Mechatronics, Chemnitz University of Technology, Germany5). 

(Figure 7; Table 10 Appendix 10.4) 

 
Figure 7. Marker Set. Left: Frontal view and Right: Dorsal view of a subject with the attached 42 retro-reflective 

spherical markers (diameter 19 mm) according to the ALSAKA Dynamicus 9 model (HÄRTEL & HERMSDORF 2006). 

                                                      

 

4 Qualisys AB, Kvarnbergsgatan 2, 41105 Göteborg, Sweden, www.qualisys.com. 
5 Institute of Mechatronics, Chemnitz University of Technology, Reichenheiner Str. 88, 09126 Chemnitz, 

Germany, www.ifm-chemnitz.de. 
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Kinematics of all tested movement tasks (FPTs and ADLs) were recorded by a three-

dimensional (3D) Motion Capture (MoCap)-System, consisting of 13 3D Infrared-Tracking-Cameras 

(200 Hz; VICON® Oxford, UK; 12 MX13 cameras and 1 MX3 camera). The cameras were installed in 

the laboratory to reach a measurement volume, which covered an area of about 15 square meters. 

For an optimal tracking of the attached markers, each marker has to be trackable by at least two 

cameras in each location of the measurement volume. Prior to the dynamic movements, one static trial 

in the Neutral Subtalar Position was recorded to capture the neutral position of all joints. Movement 

kinetics were captured with two 3D force plates (FP) (1000 Hz; 90 x 60 cm; AMTI®, model ORG 6,  

Advanced Mechanical Technology, Watertown, MA, USA), which were linked to the MoCap-

System for simultaneous data acquisition. 

After capturing the respective movement trials, in the post-recording process, the kinematic data 

had to be reconstructed and labelled to receive gap-free trajectories of the multi-body model throughout 

the whole movement trial. Gaps of the marker trajectories were filled by software-implied algorithms 

applying the pattern fill or spline fill technique. This data pre-processing was conducted with the 

software Vicon Nexus® (Version 1.8.5; Oxford, UK).  

For the calculation of kinematic data (e.g. joint angles), kinetic data (e.g. GRFs), as well as the 

inverse dynamics (e.g. joint torques), all movement files were processed with the Dynamicus Alaska 

Modeller studio software (Version 9.3, Institute of Mechatronics, Technical University Chemnitz, 

Germany). Before processing the Vicon movement files with the Dynamicus Alaska Modeller studio 

software, processing of the data with Matlab was essential (Version R2017a; The MathWorks® Inc., 

Natick, Massachusetts, USA). Matlab processing was necessary, to prepare the captured movement files 

along with the anthropometric data for calculation of the inverse dynamics with the ALASKA 

Dynamicus 9 model (HÄRTEL & HERMSDORF 2006).  

By employing the multi-body model, subject-specific re-modelling of the recorded movements 

is enabled. By this re-modelling process, in combination with the recording of marker data (kinematics) 

and before measured subject-specific anthropometric data (Figure 8; Table 8 Appendix 10.3), individual 

subject-specific modelling is enabled in relation to subject-specific anthropometry (ROBERTSON et al. 

2004). 
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Figure 8. Anthropometric Landmarks and Parameters. Landmarks and parameters of the anthropometric 

measurements, which were conducted at each test session before the markers were attached, according to the 

ALASKA Dynamicus model (HÄRTEL & HERMSDORF 2006) 

By a combination of such a 3D movement analysis with 3D FPs, all kinematic and kinetic 

parameters of a movement can be sampled and quantified. This combined setting represents the gold 

standard of human movement analysis and represents the base for the inverse dynamics approach. The 

combined recording of kinematic and dynamic data, along with inertial properties of the movement, 

enables the indirect determination of forces and moments acting in the respective joints by the closed 

inverse dynamics approach (ROBERTSON et al. 2004). Therein, three-dimensional kinetic data, i.e. 

moments and forces acting in the joints, are computed. These kinetic data are calculable because the 

application point of the GRF to the foot, the so so-called center of pressure (COP), is known by the 

recordings of the FPs. In combination with the kinematic and GRF data, specific kinetic data acting in 

the respective joints, for instance the knee or the hip joint, can be computed by applying Newtonian 

mechanics (ALDERSEN & ELLIOT 2009). By computing the inverse dynamics, it is possible to measure 

the net effect of all internal forces and moments that acted across several joints (ROBERTSON et al. 2004). 
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Data Processing 

For determination of knee joint function in all conducted tests, the measured performance 

outcome parameters of each leg were initially measured and analyzed separately. Such isolated 

measurements of the legs’ performances enable the calculation of exact performance relationships 

between the legs. Such an isolated analyses of the legs’ performances and, thereof, the calculable leg 

symmetry index (LSI) are established methods for determining and assessing functionality in healthy 

and diseased samples (AUGUSTSSON et al. 2004; BARBER et al. 1990; EASTLACK et al. 1999; 

FITZGERALD et al. 2000; ITOH et al. 1998; JERRE et al. 2001; JURIS et al. 1997; NOYES et al. 1991; 

RUDOLPH et al. 2000). The calculation of the LSIs, means, standard deviations (SDs), and 95% 

confidence intervals (CIs) of the relevant parameters were computed with Microsoft Office Excel 

(Versions 2013 and 2016; Microsoft Corporation, Redmond, Washington, USA). Out of the means, the 

LSIs for all relevant parameters were calculated.  

For the calculation of the LSIs in the ACL group subjects, the performance outcome of the ACL 

teared leg was divided by the performance outcome of the non-injured leg: 

𝐿𝑆𝐼𝐴𝐶𝐿 =
𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝐴𝐶𝐿 𝑡𝑒𝑎𝑟𝑒𝑑 𝑙𝑒𝑔

𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑢𝑛𝑖𝑛𝑗𝑢𝑟𝑒𝑑 𝑙𝑒𝑔
 

For the calculation of the LSIs in the healthy CG subjects, the performance outcome of the non-

dominant leg was divided by the performance outcome of the dominant leg: 

𝐿𝑆𝐼𝐶𝐺 =
𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑛𝑜𝑛 − 𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑡 𝑙𝑒𝑔

𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑡 𝑙𝑒𝑔
 

The calculation of the LSIs yielded unit-free results and provided information about the relative 

difference of the performance of the injured leg in comparison to the non-injured leg in the ACL group 

subjects and of the performance of the non-dominant leg in comparison to the dominant leg in the healthy 

CG, respectively (BARBER et al. 1990; FITZGERALD et al. 2000; NOYES et al. 1991). 

Leg dominance was determined in advance by self-evaluation of all subjects with three 

questions, which are established for determining leg dominance and were selected according to 

CHAPMAN et al. (1987). These questions were included in the subjects’ personal specifications-

questionnaire (Section 10.1). Therein, the foot dominance query consisted of the questions: 

- Which foot is preferred to kick a ball? 

- Which leg is rather preferred in single-leg jumping tasks? 

- Which leg is more stable in single-leg balance tasks? 
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Statistical Analyses 

All descriptive statistics (means, SDs, and 95% CIs) were calculated with Microsoft Excel 2013 

and 2016. Calculations of inferential statistics in the ACL group subjects between the test sessions and 

between the ACL group subjects and the healthy CG subjects were employed with the statistical analysis 

software SPSS 22 and SPSS 24 (IBM, Armonk, NY, USA).  

Therein, to calculate inferential statistics of the analyzed parameters in the ACL group subjects 

over the test sessions, one-way analysis of variance with repeated measures (RM-ANOVA) were 

employed. If the RM-ANOVA revealed significant differences, Holm-Bonferroni corrected post-hoc t-

tests for dependent samples were employed to determine statistical differences between the four test 

sessions (HOLM 1979). Comparison of data between the ACL group subjects at six months post-

reconstruction (T4) and the healthy CG subjects were calculated by using t-tests for independent samples. 

The level of significance was set a priori for all statistical calculations at p ≤ 0.05. 

For prevention of over-interpreting statistical significance values, a magnitude or size of an 

effect was expressed by the computation of effect sizes. For the size of an effect, for the RM-ANOVAS 

partial eta squared (𝜂𝑝
2) and for the t-tests COHEN’s d was calculated (COHEN 1992). According to 

COHEN (1992), large effects are indicated by 𝜂𝑝
2 = 0.14, medium-sized effects by 𝜂𝑝

2=0.06, and small 

effects by 𝜂𝑝
2=0.01. In terms of COHEN’s d, large effects are indicated by d = 0.8, medium-sized effects 

by d = 0.5 and small effects by d = 0.2. 

4.2 Questionnaires and Scores 

Questionnaire for Self-Administered Evaluation of the Knee Functionality 

Various approaches exist for the self-administered evaluation of a current state of functionality 

after knee injuries or chronic knee joint diseases with questionnaires or scores. Examples are the 

Lysholm Score (TEGNER & LYSHOLM 1985), the WOMAC (BELLAMY et al. 1988) or the KOOS 

(KESSLER et al. 2003; ROOS et al. 1998). 

In this study, the KOOS was applied. The KOOS’ construct and content validity, as well as its 

test-retest reliability (interclass correlation coefficient (ICC) > 0.75) were proven. Hence, the KOOS is 

a valid and established assessment tool for self-administered self-evaluation of knee function after knee 

injuries or chronic knee joint diseases (ROOS et al. 1998; ROOS et al. 2003). In the present study, the 

validated German version of the KOOS was applied (KESSLER et al. 2003). 

In general, the KOOS consists of five dimensions or sub-categories (Symptoms & Stiffness, Pain, 

activities of daily living, sport and recreation function, and knee-related quality of life). Each sub-

category consists of a certain amount of function related questions. Each question contains standardized 

options of reply (Likert boxes) and each reply is linked with a certain score, ranging between 0 (no 
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symptoms or problems) and 4 (heavy symptoms or problems). For calculation of the overall score of a 

sub-category, the points related with each reply of each sub-category were cumulated and divided by 

the maximal reachable scores of each-subcategory. Therewith, each sub-category, as well as the whole 

questionnaire is standardized and normalized to a maximal reachable score of 100. A score of 100 

indicates that a subject has no symptoms or restrictions of functionality in any sub-category. A score of 

0 indicates extremely severe problems or limitations by the knee injury or the disease. The calculation 

of the score of each sub-category can be expressed with the following equation (ROOS et al. 1998): 

𝑆𝑐𝑜𝑟𝑒𝑠𝑢𝑏−𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 = 100 −
𝐴𝑐𝑡𝑢𝑎𝑙 𝑟𝑎𝑤 𝑠𝑐𝑜𝑟𝑒 ∙  100

𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑟𝑎𝑤 𝑠𝑐𝑜𝑟𝑒
 

This specific rating approach for analyzing the results of this score, represents a great benefit of 

the KOOS. By this procedure, the whole score is comparable with all its sub-categories and, furthermore, 

all the sub-categories can be compared among each other. Additionally, as each sub-category only 

consists of questions that correspond to a specific topic (e.g. symptoms or pain), ceiling effects are 

reduced (Appendix 10.2). 

Questionnaire for Assessment of the Pre-injury and Current Activity Level 

Besides the KOOS, for assessing the pre-injury activity level and the current activity level at 

each respective test session, the TAS was applied and had to be completed by all subjects prior to the 

measurements (TEGNER & LYSHOLM, 1985). The TAS enables each individual to the self-administered 

rating of the current activity level from 0 (sick leave or disability pension because of knee problems) to 

a maximal reachable score of 10 (Competitive sports: soccer – national and international elite). This 

score for self-administered evaluation of the activity level is established in the scientific community and 

was widely included in several studies (LEITER et al. 2014; TEGNER & LYSHOLM, 1985). The complete 

version of the TAS is presented in the Appendix 10.2. 

4.3 Functional Clinical Tests 

Functional clinical tests are applied and used to determine the function of a specific joint 

(HIRSCHMANN & MÜLLER 2015). In this study, passive ROM measurements in knee flexion and knee 

extension situations, according to JANDA (2002), were conducted for the analyses of the function of the 

thigh’s major musculature. Therein, the subjects had to lie in prone position for measurements of passive 

knee flexion ROMs and in supine position, with the leg hanging over the edge of an examination couch, 

for measurements of passive knee extension ROMs. To reduce inter-rater-variances, the ROM 

measurements were conducted at each test sessions by the same examiner. Each ROM measurement was 
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conducted three times, to calculate the average value out of the three measurements and to reduce intra-

rater variances. Assessments of knee ROM after ACL injuries and reconstructions provide essential 

information of the knee joint’s state of recovery, as it was described that deficiencies of the passive 

ROM after ACL tears and reconstructions occur (ERNST et al. 2000). Furthermore, deficiencies of the 

ROMs during knee joint flexion and extension are seen as a determining limiting factor for all 

movements and the prospective level of knee joint functionality, especially in FPTs (ERNST et al. 2000). 

Additionally, to assess changes of the thigh musculature of an external viewpoint, leg circumference 

measurements at four standardized positions, according to SØDERBERG et al. (1996), were conducted. 

The circumference measurement positions at the leg were: the joint line (JL), 5cm below the joint line 

(I5), 5cm (S5), and 15cm (S15) above the joint line (Figure 9). 

 

Figure 9. Landmarks of the Leg Circumference Measurements. The circumference of the thigh was measured at 

5 cm (S5) and 15 cm (S15) superior of the joint line. The circumference of the knee joint was measured directly at 

the joint line (JL) and the circumference of the shank 5 cm (I5) inferior of the joint line. (SØDERBERG et al. 1996) 

Furthermore, all circumference measurements were conducted at all test sessions by the same 

examiner. Subsequently, to reduce intra-rater variances, the means out of three circumference 

measurements at each landmark were calculated. 

In contrast to other conducted studies, instrumented measurements of the knee joints’ 

anteroposterior laxity, which was often conducted as a measure of an objective determination of knee 

joint laxity with the KT-1000 arthrometer (MEDmetric® Corp., San Diego, California, USA), were not 

conducted. As recent studies have shown that instrumented based measurements of the knee joint laxity 

in relation to the anterior drawer test with the KT-1000 arthrometer is strongly dependent on the 

examiner’s experience, and even then, only moderate to low inter- and intraclass correlation coefficients 

were able to be revealed (ICCs < 0.60) (SERNERT et al. 2001; WIERTSEMA et al. 2008). Furthermore, the 

often described definition of pathologic anteroposterior laxity of 3mm and larger is untenable, because 

such laxities were also found in individuals who had functionally stable or asymptomatic knee joints 
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(MYKLEBUST et al. 2003). Therefore, it has been shown that measurement of anteroposterior laxity with 

the KT-1000 arthrometer is no adequate or valid test for instrumented monitoring of functional stability, 

as no neuromuscular abilities are taken into account (VERGIS et al. 1997). 
 

 

4.4 Functional Performance Tests 

For comprehensive monitoring and evaluation of the subjects’ knee functionality, dynamic 

movement situations have to be included into a test battery besides functional clinical tests. Such 

demanding dynamic movements can be operationalized by FPTs. As FPTs provide certain insight into 

specific movement determining components, some testing tasks have been established for assessment 

of leg functionality in recent years. In individuals with ACL tears and surgical reconstruction of the torn 

ligament, different jumping tasks have been established for assessing functionality under dynamic 

conditions (ALMANGOUSH & HERRINGTON 2014; BARBER et al. 1990; ERNST et al. 2000; GUSTAVSSON 

et al. 2006; KVIST 2004; LENTZ et al. 2009; MYER et al. 2008; NARDUCCI et al. 2011; NOYES et al. 1991; 

TEGNER et al. 1986). 

In the present study, three different FPTs were conducted with all subjects at each test session: 

- One-Leg jumps for distance (OLJs) 

- Counter Movement Jumps (CMJs) 

- Isometric force tests. 

These FPTs were chosen, because the functionality of the legs can be assessed out of three 

various viewpoints. Firstly, to analyze the one-legged functionality in a dynamic movement task (OLJs). 

Secondly, to analyze the legs’ functionality in a bilateral movement task (CMJs), and thirdly, to analyze 

the thigh musculatures’ ability to generate force in an isolated static contraction situation (Isometric 

force tests). With the combination of these three tests, which are, subsequently, described in detail, a 

comprehensive approach for assessment of the legs’ functionality in specific movement tasks is 

achieved. 

One-Leg Jumps for Distance 

OLJs for distance were conducted most frequently in studies examining the level of functionality 

of subjects with reconstructed or non-reconstructed tears of the ACL (ALMANGOUSH & HERRINGTON 

2014; BARBER et al. 1990; ERNST et al. 2000; GUSTAVSSON et al. 2006; KVIST 2004; LENTZ et al. 2009; 

MYER et al. 2008; NARDUCCI et al. 2011; NOYES et al. 1991; RUDOLPH et al. 2000; TEGNER et al. 1986). 

The construct validity and sensitivity of OLJs as a measure of function was assessed in various studies 

(BJORKLUND et al. 2009; COLBY et al. 1999; FITZGERALD et al. 2000; GUSTAVSSON et al. 2006; NEETER 

et al. 2006; NOYES et al. 1991; PATERNO & GREENBERGER 1996; PETSCHNIG et al. 1998; REID et al. 
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2007). In OLJs, the subjects’ purpose is to maximize the horizontal distance between take-off and 

landing position (ENOKA 2002). The main factors for a good realization of this task are the displacement 

of the center of mass (COM) and the leaning of the whole body during take-off and landing situation, as 

leaning forward during take-off and backward at landing increases the jumping distance due to the fact 

that the leaning processes add distance to the displacement of the COM (ENOKA 2002). During the 

execution of the OLJs for distance, the subjects had to realize jump-off and landing with the same leg 

akimbo (Figure 10). A jump was considered valid when the landing was stable. Stable landing was 

obtained when the subjects did not move their landing foot on the floor and the contralateral leg did not 

have any contact to the floor after landing. If stable landing could not be realized, the jump was repeated. 

All subjects had to perform three valid jumps. If a subject was not able to perform OLJs in general or 

could not fulfill the validation criteria, because of insecurity or instability, the performance outcome of 

the three jumps was graded with a jumping distance of 0cm. For determination of functionality, the net 

jumping distances (realized jumping distance from tiptoe at jump-off to heel at landing) of the injured 

legs were divided by the net jumping distances of the non-injured legs for the calculation of the LSIs 

(BARBER et al. 1990; DE FONTENEY et al. 2015; EASTLACK et al. 1999; FITZGERALD et al. 2000; 

GOKELER et al. 2009; GUSTAVSSON et al. 2006; HARTIGAN et al. 2010; LENTZ et al. 2009; MYER et al. 

2008; NOYES et al. 1991; ORISHIMO et al. 2010; PETSCHNIG et al. 1998; REID et al. 2007; ROHMAN et 

al. 2015; SERNERT et al. 1999; TEGNER & LYSHOLM 1985). In previous studies, which established OLJs 

as measure of determination of knee functionality after ACL injuries, an 85% (BARBER et al. 1990; 

NOYES et al. 1989) to 90% (JURIS et al. 1997; PETSCHNIG et al. 1998; RISBERG et al. 1995) jumping 

distance of the injured leg compared to the non-injured leg was determined as decisive factor to declare 

the knee functionality of ACL reconstructed individuals as normal. 
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Figure 10. Jumping Tasks of the Test Battery. Left: One-legged jumping task for distance akimbo. In this task, 

the subjects had to jump-off and land stable on the same leg. The task was performed with both legs separately. 

Right: Bilateral counter movement jumping task akimbo. The subjects had to jump-off and land stable on both 

force plates. The jumping task was determined valid, if each foot was placed separately on one force plate during 

the jump-off and landing phase. 

Vertical Counter Movement Jumps 

Vertical CMJs are established dynamic performance tests to examine the subjects’ maximum 

performance of the legs in a bilateral dynamic situation. CMJs have to be performed with the aim to 

reach maximum vertical height. The jumping movement starts from an upright erect position, followed 

by a downward squatting movement by flexing at the knee, the hips and the ankle joint (ENOKA 2002). 

(Figure 10) This downward movement is followed by a rapid extension of the legs, leading to take-off 

from the ground (ENOKA 2002). This jumping strategy is named countermovement, because the 

movement starts in the opposite direction. However, the primary goal of this initial opposite directed 

movement is, to maximize the upward directed vertical velocity at take-off, which leads to higher 

performance outcomes compared to jumping movements without initial countermovement (ENOKA 

2002). Because of this movement execution, CMJs are a representative of movements with benefits of 

the stretch-shortening cycle (LINTHORNE 2001). As many human movements, such as running and 

jumping, require preliminary muscular actions in the opposite direction before a movement in the desired 

directions is achieved, CMJs are valid for the examination of the legs’ functionality. The subjects of this 

study were advised to place each foot separately on one isolated FP. Such a testing procedure allows to 

assess the subject’s legs kinetic and kinematic movement patterns independently. (HARMAN et al. 1990; 

LINTHORNE 2001) 
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Isometric Force Tests 

The static muscular capabilities of the muscles involved in knee flexion and knee extension were 

measured under isometric conditions with a custom-made adjustable dynamometer rigid chair, equipped 

with a strain-gauge system (linear range, 0–2000 N; 1000 Hz; sensitivity, 3.6 mV/N; Figure 11). The 

muscular capabilities of both legs were assessed, in flexion and extension conditions with the knee at 

90° and 110° (0° indicated a straight leg) (FITZGERALD et al. 2000; KUBO et al. 2004). The subjects were 

seated with a hip flexion of 90°. The tested leg was fixed in position with a strap around the malleoli. 

For each knee angle and type of contraction, two maximum voluntary contractions with 1-min rest 

periods were performed in a block-randomized order. The subjects were asked to produce their maximal 

force as fast as possible and to maintain the contraction between 3–5 s. The subjects received 

standardized verbal encouragement throughout every trial. To minimize extraneous body movements, 

straps were applied firmly across the shoulders, chest and stomach. Additionally, the subjects had to 

cross their arms over their chest to avoid any contribution of the trunk in force generation. The recorded 

signal was filtered through a digital fourth-order low-pass Butterworth filter, by using a cutoff frequency 

of 10 Hz. The trial with the highest absolute peak force was used for further analysis. Peak force (Fmax), 

peak rate of force development (RFDmax), and RFD in 0–200 ms (RFD200max) were determined, and the 

LSIs for each of these parameters were calculated (AAGAARD et al. 2002). 

 
Figure 11. Isometric Force Test. This figure presents the testing condition under 90° knee flexion angle. The 

subjects were fixed to the rigid chair with seat belts around the chest and the stomach. The backrest was fixed 

perpendicular to the seat. The subjects had to cross the arms over their chests to prevent any support of the arms 

during the force measurements. The strap, which was connected to the force sensor (strain-gauge system), was 

fixed around the ankle joint in horizontal extension to the force sensor. This ensured a stable knee angle position 

throughout the contraction. The subjects had to perform maximum voluntary contractions against the resistance 

of the fixed strap under isometric conditions. By changing the direction of the strap, force capacities were 

detectable under isometric knee flexion and isometric knee extension situation with the same measurement device. 
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4.5 Activities of Daily Living 

To reach the claim of a comprehensive approach of the whole test battery, it is inevitable to 

include analyses of ADL into a functional testing along with the before-mentioned functional clinical 

tests and the FPTs. This is essential due to the fact that an ACL tear can lead to variations, adaptations 

and compensations of the locomotion processes in all types of movements. Unnatural or unbalanced 

manifestations or adaptations of movements lead to unbalanced, pathological loads to the biological 

structures of the lower body, especially to the joints of the legs. Such unbalanced load situations in the 

legs induce and support the onset and progress of pathologies and chronic diseases (i.e. knee OA) of 

musculo-skeletal structures (ALTMAN et al. 1986; HURWITZ et al. 2000; HURWITZ et al. 2002). 

Consequently, due to ACL tears the biological structures of the injured as well as of the non-injured leg, 

especially in the knee joint, are at high risk to develop the most common degenerative chronic joint 

disease, which is knee OA (ALTMAN et al. 1986; HURWITZ et al. 2000; HURWITZ et al. 2002).  

Therefore, the described study design of the thesis included various ADLs for examining 

potential adaptation mechanisms in the legs out of various viewpoints: 

- Straight ahead gait over flat ground with self-selected gait velocity and with 5km/h (± 10%). 

- Straight ahead gait over uneven ground with gait velocity of 5 km/h (± 10%). (Figure 12) 

- Walking stairs upwards and downwards with self-selected gait velocity. (Figure 12) 

- Walking turns of 90°, 180° and turns as if avoiding an obstacle with self-selected gait 

velocity (Figure 12). 

As mentioned earlier (Section 3.3), in the scope of this thesis, only the results of the 90° and 

180° turns were integrated in the framework of this thesis (Chapter 7). In all recorded ADLs, for an 

objective sampling of the individual locomotion patterns, any restrictions that could influence the 

individual locomotion pattern were excluded besides stepping with each foot separately on each force 

plate and to control the gait velocity in the straight ahead walking task. Generally, in the main study, the 

turns were conducted with the same method as the methodological pre-study (Chapter 5). 
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Figure 12. Illustrations of the Tested Activities of Daily Living. Left: Straight ahead gait over uneven ground. 

The subjects had to walk with 5 km/h over a tilted force plate. The force plate tilted in anterior, posterior, medial, 

or lateral direction after walking through a light barrier. The subjects saw the direction of tilting one stride 

before the foot was placed onto the tilted force plate. Middle: Stair walking task. The subjects had to walk up 

and down a standard stairway with a self-selected gait velocity in their own walking rhythm. Right: Walking 

turns. The subjects had to walk three types of daily occurring turns (90°, 180°, and if avoiding an obstacle) 

clockwise and counter-clockwise at a self-selected gait velocity with their individual locomotion strategy. 
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 Study I:  

Reproducibility of Spatio-temporal and Dynamic Parameters 

in Various, Daily Occurring, Turning Conditions 

Slightly modified version of the published paper. 

KRAFFT FC, ECKELT M, KÖLLNER A, WEHRSTEIN M, STEIN T & POTTHAST W. (2015). Reproducibility 

of spatio-temporal and dynamic parameters in various, daily occurring, turning conditions. Gait and 

Posture, 41, 307-312. 

5.1 Abstract 

Objective. This study aims to assess the test-retest reproducibility of specific spatio-temporal 

(foot placement, foot contact time) and dynamic (resultant horizontal and vertical ground reaction force) 

gait parameters of three different, everyday occurring, turning conditions. The subjects were tested at 

two subsequent days. Out of this setting the purpose of this study is to clarify, if turning locomotion is 

stable when performed at different test occurrences. Methods. Eight subjects completed three different 

daily occurring turning conditions along turns with a given walking velocity of 5 km/h (± 10 %). Subjects 

had to complete the turns three times clockwise and counter clockwise. The measurements were 

recorded with a 3D motion analysis system (Vicon®) and two force sensitive platforms (AMTI®), 

connected to the motion analysis system. Results. The analysis yields for most of the parameters and 

turning conditions ICCs from good (𝒓 = 0.72; p = .06) to high (𝒓 = 0.96; p < .01) magnitude for the 

measured spatio-temporal and dynamic parameters. Conclusions. Based on our findings it can be 

assumed that locomotion strategies, related to the measured gait parameters of common daily turning 

tasks, are stable and reproducible. 
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5.2 Introduction 

Clinical gait analysis is often used to detect influences of musculoskeletal disorders or diseases 

on human gait (LAROCHE et al. 2011). In order to identify and assess gait abnormalities it is necessary 

to determine previously healthy people’s gait characteristics. Therefore, it is mandatory to examine the 

reproducibility of the human gait in different testing sessions (SEKIYA & NAGASAKI 1998). An 

understanding of potentially emerging differences is required to distinguish gait abnormalities from 

physiologic variabilities (SEKIYA & NAGASAKI 1998). Along with straight ahead movement tasks, daily 

life also necessitates to cope with various turning conditions (HARBOURNE & STERGIOU 2009). Turning 

or curve walking locomotion is a substantial field in gait research (COURTINE & SCHIEPPATI 2003; HASE 

& STEIN 1999; HICHEUR et al. 2005; IMAI et al., 2001; SREENIVASA et al., 2008). However, previous 

studies focused on locomotion strategies while turning or walking a curve, such as the ankle rotation 

during foot placement (COURTINE & SCHIEPPATI 2003; HASE & STEIN 1999) or the relation between 

head tilt, head rotation, and trunk rotation to initiate a turn (HASE & STEIN 1999; HICHEUR et al. 2005; 

IMAI et al. 2001; SREENIVASA et al. 2008). All these studies report a higher complexity of gait during 

turning conditions compared to straight ahead walking. Hence, an inclusion of turning tasks into gait 

analysis provides the opportunity for a more comprehensive gait assessment. Because of the higher 

complexity of turning tasks, such an analysis could possibly reveal movement abnormalities even if 

straight ahead walking tasks do not show any abnormalities. So far, there is no study on the 

reproducibility of turning gait tasks in any setting. Therefore, we investigated the gait reproducibility 

during turning tasks of young, healthy subjects by assessing spatio-temporal and dynamic parameters in 

a test-retest-design. 

5.3 Methods 

Subjects 

Eight healthy male subjects [1.85 m ± 0.03 m, 79.4 kg ± 7.9 kg, 24.5 y ± 2.2 y] participated in 

our study. Written informed consent was obtained after approval of the test-protocol by the Institutional 

Review Board. Six of eight subjects were right-handed and declared the left leg as dominant for postural 

and force specific tasks. Handedness was measured referring to OLDFIELD (1971) and footedness 

referring to CHAPMAN et al. (1987). 

Assessment 

Spatio-temporal and Ground Reaction Force (GRF) parameters during turning gait were 

assessed in an experimental and comparative setting. The subjects were instructed to walk three different 

turns at a predetermined gait velocity on two subsequent days. The turns should represent typical, daily 
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occurring turns, such as turning by 90° (90), turning by 180° (180), and turning as if avoiding an obstacle 

(O) (Figure 13). 

 
Figure 13. Types of Curve Walking Conditions. Left: 180° turn (180). Middle: 90° turn. Right: Turning as if 

avoiding an obstacle (O); Arrows mark both tested walking directions 

The turning gait pathways were marked on the floor of the laboratory. All turns had to be walked 

clockwise and counter-clockwise to determine eventual effects on the locomotion strategies depending 

on the walking direction. The subjects had to complete three valid trials for each turn and each walking 

direction, so that each subject had to complete 18 valid trials. Validation was defined as walking with a 

velocity of 5 km/h (± 10 %), measured via light barriers, and placing each foot fully on one FP. Failing 

in the defined performance led to a repetition of the failed trial. Subjects could freely choose which foot 

was placed as first and second step on the FPs. The study was conducted with a 3D motion analysis 

system (Vicon®; 200Hz) and two FPs (AMTI®; 1000Hz). Data were analyzed with the software Vicon 

Nexus® (Version 1.7.1). The subjects had to walk the six turning conditions in a block randomized order 

(three trials of one turning condition as one block) to exclude learning effects from one condition to 

another.  

To evaluate the reproducibility of turning locomotion the following parameters were measured: 

- Ground contact time for each step on FPs. 

- Maximal vertical GRF during stance phase normalized to bodyweight (BW) [N/kg]. 

Vertical direction was defined as z-axis in the Cartesian Coordinates System. 

- Maximal horizontal GRF during stance phase normalized to BW [N/kg]. Sideway direction 

(medio-lateral) was defined as y-axis in the Cartesian Coordinates System. 

- Foot placed first and second on FPs. 

Both feet were measured and analyzed separately.  

AMTI Force Plates 
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Statistics 

For assessment of the test-retest reproducibility the Intraclass Correlation Coefficients (ICCs) 

of the above mentioned variables were calculated between the two testing sessions for each turn and 

both walking directions. Hence, ICCs were calculated for the identic turning condition (type and 

orientation) between the two testing sessions and for first and second step separately. Statistical analysis 

was conducted with SPSS 20. In consistency with other gait analysis studies (HASE & STEIN 1999; 

LAROCHE et al. 2011) ICCs > 0.70 were defined as good correlation coefficients. To calculate mean 

ICCs, the ICCs were 𝑧-transformed using Fisher’s transformation (LYNCH 2013). Subsequently the mean 

values were calculated in the 𝑧-domain, followed by retransformation of the mean 𝑧-values into mean 

ICCs. 

5.4 Results 

Analysis of the ground contact times revealed ICCs higher than 𝑟 = 0.82 (p ≤ .02) for eleven of 

twelve tested conditions. In one condition (90 right 1st foot) a lower ICC (𝑟 = 0.64; p = .10) was found. 

Mean ICC of the ground contact time across all conditions is high (𝑟 = 0.90) (Table 2). 



 

 

 
 

 

Table 2. Correlation-Coefficients of the Turning Locomotion Conditions. Intraclass Correlation-coefficients (ICCs) and p-values of the ground contact time of the 1st (leading 

leg) and 2nd foot (trailing leg) contact and the maximal resultant vertical and horizontal (medio-lateral) ground reaction force (GRF) normalized to bodyweight [N/kg] from test 

to retest. 

 
180 left 180 right 90 left 90 right O left O right  

1st foot 2nd foot 1st foot 2nd foot 1st foot 2nd foot 1st foot 2nd foot 1st foot 2nd foot 1st foot 2nd foot Mean 

 
ICC p ICC p ICC p ICC p ICC p ICC p ICC p ICC p ICC p ICC p ICC p ICC p ICC 

Ground 

Contact 

Time 

0.86 .01 0.93 <.01 0.92 <.01 0.90 <.01 0.83 .02 0.95 <.01 0.64 .10 0.82 .02 0.96 <.01 0.95 <.01 0.89 <.01 0.85 .01 0.90 

Vertical 

GRF 

0.78 .04 0.91 <.01 0.95 <.01 0.39 .28 0.89 <.01 0.85 <.01 0.89 <.01 0.67 .08 0.85 .02 0.84 .02 0.95 <.01 0.78 .04 0.84 

Horizontal 

(medio-

lateral) 

GRF 

0.45 .24 0.86 .01 0.85 .01 0.83 .02 0.40 .28 0.75 .04 0.90 <.01 0.28 .35 0.58 .16 0.89 <.01 0.91 <.01 0.72 .06 0.76 
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The analysis of the vertical GRF revealed ICCs of 𝑟 ≥ 0.78 (p ≤ .04) in ten of twelve conditions. 

In two conditions (180 right 2nd foot; 90 right 2nd foot) lower ICCs were found. The mean ICC of the 

vertical GRF was high as well (𝑟 = 0.84) (Table 2). Analysis of the ICCs for the horizontal GRF revealed 

ICCs of 𝑟 ≥ 0.72 (p ≤ .06) in eight of twelve conditions. Four conditions (180 left 1st foot; 90 left 1st 

foot; 90 right 2nd foot; O left 1st foot) had ICCs below the defined threshold value for good correlations. 

Nonetheless, the mean ICC for the horizontal GRF was still above the level for good correlation (𝑟 = 

0.76) (Table 2). The statistical results are supported by the progessions of vertical and horizontal force 

over time (Figure 36; Appendix 10.6), which exhibit qualitatively highly similar profiles. Moreover, the 

results showed, that most of the subjects walked the left directed turns as spin turns (Figure 14). In 

contrast, the analysis of the right-directed turns revealed no clear preference for spin or step turn strategy 

while turning. These findings of the turning strategy were stable across the two testing sessions (Figure 

14). 

 
Figure 14. Distribution of performed turning strategy. Count of subjects performed step or spin turns at the 

respective test sessions. Dark grey represents the test session and light grey the retest session.
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5.5 Discussion 

To our best knowledge, there is no study on the reproducibility of turning locomotion in different 

turning conditions. Hence, the purpose of this study was to evaluate the reproducibility of turning 

locomotion via specific spatio-temporal and dynamic gait parameters during different, daily occurring 

turns in a test-retest design. Our results showed mean ICCs for the ground contact time, the horizontal 

and the vertical GRF on a high level (𝑟 ≥ 0.76) over all conditions. Additionally, the turning strategy 

results also support a high reproducibility, as the observed locomotion strategy between left and right 

directed turns was stable over both testing sessions (Figure 14). Based on our sample and measured 

parameters, we therefore conclude that turning tasks can be reproducibly performed although turning is 

a more complex movement than straight ahead walking (COURTINE & SCHIEPPATI 2003; HASE & STEIN 

1999; HICHEUR et al. 2005; IMAI et al. 2001; SREENIVASA et al. 2008). The conducted study has, 

however, some limitations. The informative value is limited by the number and the health characteristics 

of the subjects. Therefore, the generalizability of our results might be limited. Accordingly, further 

studies should consider larger sample sizes and subjects with varying health characteristics to overcome 

these potential limitations. Nevertheless, our study provides a starting point for the investigation of the 

reproducibility of human’s turning gait and could serve as a baseline for future measurements of turning 

locomotion. 
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 Study II:  

How Does Functionality Proceed in ACL Reconstructed 

Subjects? – Proceeding of Functional Performance from Pre- 

to Six Months Post-ACL Reconstruction 

Slightly modified version of the published paper. 

KRAFFT FC, STETTER BJ, STEIN T, ELLERMANN A, FLECHTENMACHER J, EBERLE C, SELL S & 

POTTHAST W. (2017). How does functionality proceed in ACL reconstructed subjects? – Proceeding of 

functional performance from pre- to six months post-ACL reconstruction. PlosOne, 12(5): e01078430. 

6.1 Abstract 

Objective. This is the first study examining functionality of subjects with anterior cruciate 

ligament (ACL) tears and a subsequent reconstruction comprehensively by multiple test sessions from 

pre- to six months post-reconstruction. The purpose was to evaluate if a generally applied rehabilitation 

program restores functionality to levels of healthy controls. Methods. Subjects with unilateral tears of 

the ACL were compared to matched healthy controls throughout the rehabilitation. 20 recreational 

athletes were tested: T1 (preoperative), 6 weeks after tear; T2, 6 weeks, T3, 3 months and T4, 6 months 

post-reconstruction. At all test sessions, subjects self-evaluated their activity level with the Tegner 

activity score and their knee state with the Knee Injury and Osteoarthritis Outcome Score. Passive range 

of motion during knee flexion and extension and leg circumference were measured as functional clinical 

tests. Bilateral countermovement jumps, one-leg jumps for distance and isometric force tests in knee 

flexion and extension with 90° and 110° knee angle were conducted as functional performance tests. 

For determination of functionality, leg symmetry indices (LSIs) were calculated by dividing values of 

the injured by the non-injured leg. Results. In the ACL group, most LSIs decreased from T1 to T2, and 

increased from T2 and T3 to T4. LSIs of the ACL subjects remained lower than LSIs of healthy controls 

at 6 months post-reconstruction in nearly all parameters. Self-evaluation of the ACL subjects showed, 

additionally, that the activity level was lower than the pre-injury level at 6 months post-reconstruction. 

Low LSIs and low self-evaluation indicate that knee joint functionality is not completely restored at 6 

months post-reconstruction. Conclusions. The study shows that multiple comprehensive testing 

throughout the rehabilitation gives detailed images of the functional state. Therefore, the functional state 

of ACL reconstructed individuals should be evaluated comprehensively and continuously throughout 
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the rehabilitation to detect persisting deficiencies detailed and adapt rehabilitation programs individually 

depending on the functionality. 

6.2 Introduction 

Tears of the anterior cruciate ligament (ACL) can lead to chronic knee instability and a loss of 

joint function (DANIEL et al. 1994; EASTLACK et al. 1999; RUDOLPH et al. 2000). Common treatment of 

the torn ligament in industrial countries – e.g. Germany and USA (FEDERAL HEALTH MONITORING OF 

GERMANY 2016; LENTZ et al. 2009) – is the surgical reconstruction of the torn ligament. After the 

reconstruction a long-term rehabilitation process is required, which, however, does not ensure full 

stability and functionality of the knee joint in activities of daily living (ADL) and in sports activities. 

Thus, ACL ruptures, can highly influence the quality of life (QoL) and the subsequent ability to engage 

in sports on pre-injury level (DANIEL et al. 1994; EASTLACK et al. 1999; LENTZ et al. 2009; MYER et al. 

2008; MYKLEBUST et al. 2003; THE MARS GROUP 2010; WILLIAMS et al. 2001). 

ACL tears lead to thigh muscle atrophy (MCHUGH et al. 2002, THOMAS et al. 2016). Thigh 

muscle atrophy contributes to joint instability, because the muscles and ligaments surrounding the knee 

are crucial for knee stability and functionality during sports activities (EASTLACK et al. 1999; 

MYKLEBUST et al. 2003; WALDÉN et al. 2011) and for maintaining stability and compensation of 

unexpected situations or postural balance disturbances in ADL (AAGAARD et al. 2002; LORENTZON et 

al. 1989; THOMAS et al. 2016). Additionally, the sensory feedback from the mechanoreceptors of the 

torn ACL is deficient, which besides alters joint and locomotion biomechanics and therewith contributes 

instability processes (LORENTZON et al. 1989; WILLIAMS et al. 2001). 

Studies of the last three decades show that the development of knee joint instabilities are 

multifactorial and therefore, no consensus about the origin and persistence of instabilities in elite and 

recreational athletes could be achieved (BARBER et al. 1990; DE FONTENEY et al. 2015; EASTLACK et 

al. 1999; FITZGERALD et al. 2000; GOKELER et al. 2009; GUSTAVSSON et al. 2006; HARTIGAN et al. 

2010; LENTZ et al. 2009; LI et al. 1996; NARDUCCI et al. 2011; ORISHIMO et al. 2010; PETSCHNIG et al. 

1998; PHILIPS et al. 2000; REID et al. 2007; RUDOLPH et al. 2000; TEGNER & LYSHOLM 1985; WILK et 

al. 1994). Due to the ACL tear, the injured leg as well as the non-injured leg can get influenced, resulting 

in a pathologic asymmetry level between the legs (ALMANGOUSH & HERRINGTON 2014; DE FONTENEY 

et al. 2015). However, it seems that task-specific symmetry levels in static and dynamic situations exist. 

Furthermore, symmetry levels are essential for full recovery of knee joint functionality and a safe return 

in ADL and sports activities (NEETER et al. 2006; MYER et al. 2008; ROHMAN et al. 2015; SHELBOURNE 

& KLOTZ 2006). In order to quantify the symmetry level as a measure of knee joint functionality, the 

leg symmetry index (LSIs) is an established method (DE FONTENEY et al. 2015; HEWETT et al. 2005; 

MYER et al. 2008; ROHMAN et al. 2015; SHELBOURNE & KLOTZ 2006). To date no study investigated 
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detailed functional characteristics of ACL reconstructed subjects longitudinally up to six months post-

reconstruction by combining functional clinical tests, functional performance tests (FPTs) and 

questionnaires for functional self-evaluation. However, in long-term knee rehabilitation it is helpful to 

measure deficits of functionality repetitively from various viewpoints in order to develop more 

individualized rehabilitation programs for a high functional outcome. Furthermore, objective parameters 

determining functionality should be monitored and taken into consideration before ACL reconstructed 

individuals get released in pre-injury sports. Hence, it is necessary to understand how the specific 

biomechanical components, determining and limiting knee function (i.e. passive range of motion 

(ROM), muscular and neuromuscular capabilities in dynamic and static conditions), develop during the 

recuperation process after ACL reconstruction (FITZGERALD et al. 2000; GUSTAVSSON et al. 2006; 

LENTZ et al. 2009; LORENTON et al. 1989; ROHMAN et al. 2015). This is underlined by the results of 

various authors, which suggest a comprehensive assessment of functionality after ACL reconstruction 

from various viewpoints, instead of one specific viewpoint (i.e. the combination of different types of 

one-legged jumps (OLJs)) (ALMANGOUSH & HERRINGTON 2014; FITZGERALD et al. 2000; 

GUSTAVSSON et al. 2006; MYKLEBUST et al. 2003; NARDUCCI et al. 2011; NEETER et al. 2006; 

PETERSEN & ZANTOP 2013; PETSCHNIG et al. 1998; REID et al. 2007; SERNER et al. 1995; SHELBOURNE 

& KLOTZ 2006; TEGNER & LYSHOLM 1985). Such comprehensive assessments provide a broader picture 

of the knee joint functionality and can therefore help to gauge functional deficits more accurate. 

Accordingly, comprehensive studies should combine objective measures for both, clinical outcome and 

functional knee performance, along with functional self-evaluation of the ACL reconstructed subjects. 

With functional clinical tests (e.g. measurements of the knee’s passive ROM) the functionality of the 

knee is assessed under passive conditions (SØDERBERG et al. 1996; JANDA 2002). By functional 

performance tests (e.g. OLJs), the functionality of the knee joint is measured under specific dynamic 

conditions (BARBER et al. 1990). Thereby, the subjects need to generate active motor commands based 

on sensory information about the state of their body and the environment to coordinate the movements. 

Complementary, by self-evaluative questionnaires the subjects’ self-reflection about the knee 

functionality is assessed, which provides individual, examiner independent data from the subject’s point 

of view (ROOS et al. 1998). 

Therefore, the purpose of this study was to examine the functional state of ACL reconstructed 

subjects comprehensively by the combination of self-evaluating questionnaires, functional clinical as 

well as static and dynamic FPTs and in comparison to matched healthy control subjects. The 

implementation of such a test battery, along with a close monitoring of four test sessions up to six months 

post-reconstruction, will enable a more detailed understanding of the functional development of the knee 

status during rehabilitation. Therewith, a fine-grained picture of the subjects’ functional state at a 

specific time in the rehabilitation cycle can be provided. Such information can help clinicians and 

therapists to determine the functional knee state more comprehensively and to obtain more accurate 
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criteria for decision making during the rehabilitation process (FITZGERALD et al. 2000; GUSTAVSSON et 

al. 2006; RUDOLPH et al. 2000; LENTZ et al. 2009; NARDUCCI et al. 2011; NEETER et al. 2006; ORISHIMO 

et al. 2010; REID et al. 2007). As ACL tears and reconstructions highly impact knee function, we 

hypothesized that in the post-reconstruction phase, subjects will gradually regain task-specific LSIs 

during the rehabilitation phase but will not reach the LSIs of healthy control subjects up to six months 

post-reconstruction. 

6.3 Methods 

Sample 

Subjects with tears of the ACL (n = 20) and healthy control subjects (n = 20), without any history 

of leg injuries, participated in the study (Table 3). Inclusion criteria was that the subjects had unilateral 

tears and underwent uniform ACL reconstruction technique with a combined semitendinosus and 

gracilis autograft, via the double-bundle technique (SCHMIDT-WIETHOFF & DARGEL 2007). Exclusion 

criteria were concomitant severe injuries of the Menisci or the collateral ligaments of the knee joint. 

Inclusion criteria of the control subjects was that they did not had any history of leg injuries. Control 

subjects were excluded if they had any leg injuries and if they did not fulfill the matching criteria. The 

control subjects were matched to the ACL subjects according to: sex, age, height, body mass, and 

activity level before the ACL tear, as determined using the TAS. The study was approved by the ethics 

committee of the State Medical Council of Baden-Württemberg (Stuttgart, Germany). All subjects 

provided written informed consent for their study participation. 

Table 3. Sample Characteristics. Means and standard deviations. 

 Age [yr] Height [cm] Mass [kg] 
Body-mass 

index [kg/m2] 

Activity Level 

(TAS) 

ACL group 32.0 ± 13.3 174.7 ± 9.0 73.2 ± 8.7 24.1 ± 3.4 6.4 ± 1.4 

Control group 33.3 ± 13.4 175.4 ± 10.4 74.7 ± 8.2 24.4 ± 2.6 6.0 ± 1.4 

Mean values and standard deviations (SD) of the ACL subjects and the control subjects. ACL, anterior cruciate 

ligament; TAS, Tegner activity score; TAS in the ACL group subjects is related to the pre-injury activity level. 

Study Design 

As indicated in the introduction, a comprehensive understanding of the development of different 

components of knee function after ACL reconstruction is missing. Therefore, the study was designed as 

a longitudinal non-randomized controlled trial to evaluate an existing and commonly applied 

rehabilitation program after ACL reconstruction in a chronologically and functionality detailed manner. 

Therewith, it is assumable to identify possible time effects between or within parameters determining 
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knee function and in comparison with healthy subjects. Accordingly, the ACL reconstructed subjects 

were tested at four different test sessions over a period of seven to eight months. The first test was 

performed preoperatively, immediately before the reconstruction and about seven weeks after the ACL 

tear (T1). All following tests were postoperative (T2-T4). T2 was about seven weeks, T3 was 

approximately three months and T4 approximately six months after ACL reconstruction. The control 

subjects attended only one test session. The test design was aligned to the three main stages of the 

rehabilitation process (Figure 15). 

 
Figure 15. Study Design. Mean days (d) and standard deviations between the test sessions of the ACL 

reconstructed subjects. T1 was at about six to seven weeks after the ACL tear, immediately before the ACL 

reconstruction surgery. T2 was at about six to seven weeks after the ACL reconstruction surgery. T3 was about 

three months and T4 was about six months after the ACL reconstruction surgery. 

Test Battery 

In the conducted test battery questionnaires for self-evaluation of the knee function, functional 

clinical tests and FPTs were combined. The selection of the tests should give a comprehensive image of 

the knee function and enables also good feasibility for practical implementations. 

Questionnaires 

We included questionnaires for self-evaluation of the knee function and the activity level in the 

test battery to receive independent data of the subjects’ view about the influence of the ACL injury to 

their general life. All subjects completed two questionnaires: The Knee Injury and Osteoarthritis 

Outcome Score (KOOS), for self-evaluation of the subjects’ knee function (KESSLER et al. 2003; ROOS 

et al. 1998). The KOOS consists of the sub-categories Pain, Symptoms, Activities of daily living, Sport 

and recreation function, and Knee-related quality of life. The whole questionnaire as all sub-categories 

are standardized to maximum reachable score of 100 (ROOS et al. 1998). For assessment of the subjects’ 

pre-injury and current activity levels, the TAS was applied (TEGNER & LYSHOLM 1985).  
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Functional Clinical Tests 

In addition to the questionnaires we included functional clinical tests in the test battery to 

measure the subjects’ knee functionality under static conditions. As functional clinical tests, leg 

circumference (LC) and passive ROMs of the knee joint were assessed. The LC was measured at four 

specific landmarks (SØDERBERG et al. 1996): the joint line (JL), and 5 cm (S5) and 15 cm (S15) superior 

and 5 cm inferior (I5) to the joint line. The passive ROM of the knee joint was assessed three times 

during flexion prone and extension supine (JANDA 2002). All ROM measurements were conducted by 

the examiner with a manual goniometer. The measurements were conducted at each leg separately to 

calculate the LSIs. Means of the three measurements were calculated for further analyses and for 

calculation of the LSIs.  

Functional Performance Tests 

Finally, we included FPTs, wherein subjects in contrast to the functional clinical tests need to 

actively generate motor commands to coordinate their movements. Subjects performed three 

countermovement jumps (CMJs) akimbo. The highest jump was used for analysis (SERNERT et al. 1999; 

TEGNER & LYSHOLM 1985). While performing the CMJs, the subjects stood with each leg on a separate 

FP (AMTI, 1000 Hz). Jumping height (absolute value), acceleration impulse during take-off (LSI) and 

the deceleration impulse during landing (LSI) were analyzed. Additionally, the subjects performed three 

one leg jumps (OLJs) for distance akimbo, with each leg. The subjects had to jump off and land on the 

same leg. Landing had to be stable with no movement of the landing foot and no ground contact of the 

contralateral leg. Landing pose had to be maintained for 3s. Jumps with the largest distance were used 

for LSI calculations of the jumping distances and acceleration impulses during take-off. Both jumping 

tests were applied to compare the functional state of the ACL reconstructed subjects in a one-legged and 

a bilateral movement. 

The static muscular capabilities of knee flexion and knee extension musculature were measured 

under isometric conditions with a custom-made adjustable dynamometer rigid chair, equipped with a 

strain-gauge system (linear range, 0–2000 N; 1000 Hz; sensitivity, 3.6 mV/N). Isometric force tests were 

applied to get isolated information of the capabilities of the knee flexion and extension musculature. 

Isometric strength testing was applied because the reliability of isokinetic testing is reduced over higher 

ROMs, which is caused by the shift of the joint axes of the dynamometer in relation to the anatomical 

joint axes in isokinetic testing (ARAMPATZIS et al. 2004, 2005; HERZOG 1988). The muscular capabilities 

of both legs were assessed, in flexion and extension with knee angles of 90° and 110° (0° indicated a 

straight leg) (KUBO et al. 2004). The subjects were seated with a hip flexion angle of 90°. The tested leg 

was fixed in position with a strap around the malleoli. For each knee angle and type of contraction, two 

maximum voluntary contractions with 1-min rest periods were performed in a block-randomized order. 
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The subjects were asked to produce their maximal force as fast as possible and to maintain the 

contraction between 3–5 s. The subjects received standardized verbal encouragement throughout every 

trial. To minimize extraneous body movements, straps were applied firmly across the shoulders, chest 

and stomach. Additionally, the subjects had to cross their arms over their chest to avoid any contribution 

of the trunk in force generation. The recorded signal was filtered through a digital fourth-order low-pass 

Butterworth filter, by using a cutoff frequency of 10 Hz. The trial with the highest maximum force was 

used for further analysis. Maximum force (Fmax), maximum rate of force development (RFDmax) and 

RFD in 0–200 ms (RFD200max) were determined, and the LSIs for each of these parameters were 

calculated (AAGAARD et al. 2002). 

Rehabilitation Program 

All subjects received a standardized post-surgical rehabilitation program, according to the 

German health insurance system. This consists of three stages: The first stage consists of low-intensity 

(passive) activities up to six weeks post-reconstruction. Including physiotherapy with lymphatic 

drainage, passive movement exercises (by machine or therapist), sensorimotor training, weight-bearing 

exercises, and isometric training under therapists’ supervision. The second stage consists of medium-

intensity activities with muscular and balance training up to three months post-reconstruction. Including 

physiotherapy with lymphatic drainage, passive movement exercises, independent strength training, 

balance training, and activities and sports without pivoting movements (e.g. cycling, swimming, (nordic) 

walking). The third stage consists of medium-to-high-intensity activities. Including intense strength 

training, if possible, up to six months post-reconstruction. As well, sports training (without pivoting 

movements) and slight return to pre-injury sports and sports-level with jumps, intense cycling, and 

strength training. All stages were adaptable according to the rehabilitation state of the individuals’ knee 

joint. Such a stepwise, 3-staged structure is common in rehabilitation after ACL reconstruction 

(WHITING & ZERNICKE 2008). The summarized rehabilitation program of the ACL subjects, including 

the applied exercises and training as well as the performable activities and sports, is presented in the 

Appendix 10.5. 

Data analysis 

LSIs were calculated for all parameters by the related discrete values of the injured leg divided 

by the non-injured leg in the ACL subjects and by the non-dominant leg divided by the dominant leg in 

the control subjects, respectively. LSIs provide comparable results between all subjects. An LSI of 1.0 

indicates that the performance of both legs was equivalent. LSIs are a widely used method to compare 

results between the legs and for determining functionality (BARBER et al. 1990; DE FONTENEY et al. 

2015; EASTLACK et al. 1999; FITZGERALD et al. 2000; GOKELER et al. 2009; GUSTAVSSON et al. 2006; 

HARTIGAN et al. 2010; LENTZ et al. 2009; MYER et al. 2008; NOYES et al. 1991; ORISHIMO et al. 2010; 
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PETSCHNIG et al. 1998; REID et al. 2007; ROHMAN et al. 2015; SERNERT et al. 1999; TEGNER & 

LYSHOLM 1985).  

Statistics 

Firstly, with Microsoft Office Excel 2013 means and 95% confidence intervals were calculated 

for the results of the questionnaires, for the LSIs of the functional clinical tests, and the LSIs and absolute 

values (jumping height in CMJs) of the FPTs. Afterwards, calculations for statistical interferences were 

conducted with IBM SPSS 22 (IBM, Armonk, NY, USA). First, Kolmogorov-Smirnov, and Mauchly’s 

tests were used to confirm the normality and sphericity of the data distribution. Greenhouse-Geiser 

estimates were used to correct for violations of sphericity. 

Variations in the analyzed parameters for the ACL group over time (T1–T4) were assessed using 

one-way analysis of variance with repeated measures (RM-ANOVA). If the RM-ANOVA revealed a 

significant variation, the HOLM-BONFERRONI corrected post-hoc t-test for dependent samples was 

employed to determine statistical differences between the four test sessions (HOLM 1979). Data of T4 in 

the ACL group were compared to the results of the control group, by using a t-test for independent 

samples in order to identify differences between control subjects and ACL subjects six months post-

reconstruction. Effect sizes were calculated using partial eta squared for the RM-ANOVAs (𝜂𝑝
2) and 

COHEN’s d for the t-tests. According to COHEN (1992), large effects are indicated by 𝜂𝑝
2=0.14, medium-

sized effects by 𝜂𝑝
2=0.06, and small effects by 𝜂𝑝

2=0.01. In terms of COHEN’s d, large effects are indicated 

by d=0.8, medium-sized effects by d=0.5 and small effects by d=0.2. The level of significance for all 

calculations was set a priori at P≤0.05. 

6.4 Results 

Questionnaires 

KOOS Questionnaire 

The KOOS questionnaire was applied to examine the functional knee state from various 

viewpoints (symptoms & stiffness, pain, ADL, sports and recreational activities, and QoL) from the 

subjects’ self-evaluative view. 

RM-ANOVA revealed a significant variation in symptoms & stiffness (F(3,51)=8.90, P<0.01, 

𝜂𝑝
2=0.34), pain (F(3,51)=8.60, P<0.01, 𝜂𝑝

2=0.34), ADL (F(3,51)=7.39, P<0.01, 𝜂𝑝
2 = 0.30), sports and 

recreational activities (F(3,51)=20.86, P<0.01, 𝜂𝑝
2 =0.55) and QoL (F(3,51)=14.13, P<0.01, 𝜂𝑝

2=0.45). Post-

hoc analysis revealed significantly lower scores at T2 than at T3 in all subcategories. The ACL subjects 

had significantly lower scores at T4 than the control subjects in all subcategories. (Table 4) 
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Summarized, the ACL subjects evaluated their knee function higher at three months compared to six 

weeks after reconstruction. However, up to six months no further increase of the score was determined 

and it remained lower than the healthy control groups’ score. 



 

 

 
 

 

Table 4. Mean results and standard deviations of the Knee Injury and Osteoarthritis Outocme Scores’ (KOOS) subcategories. 

Results (means and standard deviations of all subjects) of the subcategories of the KOOS questionnaire of the ACL subjects (T1–T4) and the control group (CG). The subcategories 

are “symptoms & stiffness” (7 items), “pain” (9 items), “activities of daily living” (ADL; 17 items), “sports and recreational activities” (5 items), and “quality of life related to 

the knee injury” (QoL; 4 items). The maximum possible score in the KOOS was 100, indicating no symptoms. Significant differences (P≤0.05) with COHEN’s d between test sessions 

are illustrated in the last column. 

Subcategory T1 T2 T3 T4 Control Group Significant Differences 

Symptoms &  

Stiffness 
60.9 ± 19.9 55.0 ± 19.8 70.7 ± 15.0 74.3 ± 18.7 94.8 ± 8.1 

T2/T3: T(17)=1.25, P=0.01, d=0.92 

T4/CG: T(38)=4.40, P<0.01, d=1.39 

Pain 73.3 ± 13.3 70.6 ± 10.9 83.0 ± 7.6 84.1 ± 14.1 98.7 ± 3.7 

T2/T3: T(17)=5.88, P<0.01, d=1.08 

T4/CG: T(38)=4.39, P<0.01, d=1.39 

ADL 79.4 ± 16.5 78.1 ± 16.6 88.4± 16.0 91.4 ± 10.9 100 ± 0.0 

T2/T3: T(17)=3.55, P<0.01, d=0.72 

T4/CG: T(38)=3.46, P<0.01, d=1.09 

Sports &  

Recreational Activities 
41.0 ± 18.2 36.3 ± 23.1 60.4 ± 24.4 69.0 ± 24.0 99.5 ± 1.5 

T2/T3: T(17)=6.45, P<0.01, d=1.06 

T4/CG: T(38)=5.53, P<0.01, d=1.84 

QoL 38.5 ± 15.5 40.3 ± 21.5 56.3 ± 22.8 59.6 ± 22.1 97.8 ± 2.6 

T2/T3: T(17)=5.85, P<0.01, d=0.79 

T4/CG: T(38)=7.31, P<0.01, d=2.31 
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TAS Questionnaire 

RM-ANOVA revealed a significant variation in the TAS (F(4,76)=48.87, P<0.01, 𝜂𝑝
2=0.72). The 

ACL subjects had a significantly lower activity level at T1 than before the tear (T(19)=10.13, P<0.01, 

d=3.17). After reconstruction (T2), the activity level increased significantly up to T4 (T(19)=4.47, 

P<0.01, d=1.36). At T4, the activity level was still significantly lower than the pre-injury activity level 

(T(19)=8.72, P<0.01, d=2.01) and the activity level of the control subjects (T(38)=5.71, P<0.01, d=1.81) 

(Figure 16). 

 
Figure 16. Results of the Tegner Activity Score. Mean activity level and 95% confidence intervals of the ACL 

subjects (T1–T4) and the control subjects, assessed with the Tegner activity score (TEGNER & LYSHOLM 1985). Test 

sessions with significant (P≤0.05) differences are marked with an asterisk (*). 

Functional Clinical tests 

Leg Circumference 

RM-ANOVA only revealed a significant variation in the LSILC at S15 (LSILCS15) (F(3,51)=8.42, 

P<0.01, 𝜂𝑝
2=0.33). The ACL subjects had significantly lower LSIsLCS15 at T2 than at T1 (T(19)=4.53, 

P<0.01, d=1.02) and significantly higher LSILCS15 at T3 than at T2 (T(17)=4.73, P<0.01, d=0.69). At all 

other landmarks (JL, S5, I5), no significant variations in LC could be found. In addition, the ACL 

subjects had significantly higher LSILC values at JL (T(38)=2.29, P=0.03, d=0.73) and I5 (T(38)=2.21, 

P=0.03, d=0.70) and significantly lower LSILC at S15 (T(38)=6.07, P<0.01, d=1.92) at T4 than the 
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control subjects. No differences were detected at S5 between the ACL subjects at T4 and the control 

subjects (Figure 17). 

Summarized, at six months post-reconstruction the knee joint area of the reconstructed leg is 

still thicker compared to the non-injured knee joint and in the middle of the thigh the circumference of 

the reconstructed leg is clearly reduced compared to the non-injured leg. 

 
Figure 17. Results of the Leg Symmetry Indices (LSIs) of Leg Circumference Measurements. Mean LSIs and 

95% confidence intervals of leg circumference measurements of the ACL subjects (T1-T4) and the control subjects. 

All subjects stood upright during the measurements. The legs’ circumference were  measured at the joint line (JL), 

and 5cm (S5) and 15cm (S15) superior and 5cm inferior (I5) to the joint line (SØDERBERG et al. 1996). Test sessions 

with significant (P≤0.05) differences are marked with an asterisk (*). 

Passive ROM 

RM-ANOVA revealed a significant variation for knee flexion (F(3,51)=31.65, P<0.01, 𝜂𝑝
2=0.65) 

but no variations for knee extension (F(3,51)=3.19, P=0.05, 𝜂𝑝
2=0.16). Post-hoc analysis showed that 

during knee flexion, the LSIROM was significantly lower at T2 than at T1 (T(19)=4.59, P<0.01, d=0.99), 

and significantly higher at T3 than at T2 (T(17)=7.39, P<0.01, d=1.20) and at T4 than at T3 (T(17)=3.75, 

P<0.01, d=0.69). In the ACL subjects at T4, the LSIROM during flexion (T(38)=3.89, P<0.01, d=1.23) 

and during extension (T(38)=2.65, P<0.01, d=0.84) was significantly lower compared to the control 

subjects. At T4, the deficit in the passive ROM of the injured legs was 3.5% in flexion and 2.3% in 

extension, compared to the non-injured leg (Figure 18). Regarding the passive ROM results, it is 

apparent that in knee flexion the ROM increases from six weeks post-reconstruction up to six months 
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post-reconstruction. However, the side-to-side deficit in ACL reconstructed subjects remains significant 

compared to the healthy control subjects at six months post-reconstruction. 

 
Figure 18. Results of the Leg Symmetry Indices (LSIs) of the Range of Motion Measurements. Mean LSIs and 

95% confidence intervals of the range of motion (ROM) measurements. ROM was measured during knee flexion 

in prone position and knee extension in supine position in the ACL subjects (T1-T4) and the control subjects (CG) 

(JANDA 2002). Test sessions with significant (P≤0.05) differences are marked with an asterisk (*). 

Functional Performance Tests 

Counter Movement Jumps (CMJ) 

RM-ANOVA revealed a significant variation for jumping heights (F(3,33)=5.88, P=0.01, 

𝜂𝑝
2=0.35). Jumping heights were significantly higher at T3 than at T2 (T(11)=2.25, P=0.04, d=0.73) and 

at T4 than at T3 (T(17)=2.77, P=0.01, d=0.35). The jumping heights were significantly higher in the 

control subjects than in the ACL subjects at T4 (T(38)=2.08, P=0.04, d=0.66). In the ACL subjects, 

jumping heights increased by 50.8% from T2 to T4. The deficit in jumping heights in the ACL subjects 

at T4 compared to the control subjects was 22.9% (Figure 19).  
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Figure 19. Results of the Counter Movement Jumps (CMJs). Mean jumping heights and 95% confidence 

intervals of the ACL subjects (T1-T4) and control subjects (CG) of the CMJs. Test sessions with significant 

(P≤0.05) differences are marked with an asterisk (*). 

RM-ANOVA revealed a significant variation in the LSIs for the acceleration impulse during 

take-off (LSICMJto) (F(3,33)=6.33, P=0.01, 𝜂𝑝
2=0.37). The LSICMJto was significantly lower at T2 than at 

T1 (T(12)=2.21, P=0.05, d=0.50) and significantly higher at T3 than at T2 (T(11)=3.21, P=0.01, d=0.53) 

and at T4 than at T3 (T(17)=3.10, P=0.01, d=0.45). The ACL subjects had a significantly lower LSICMJto 

at T4 than the control subjects (T(38)=2.81, P=0.01, d=0.89). The deficit in the acceleration impulse 

during take-off in the injured leg compared to the non-injured leg was 41% at T4. 

RM-ANOVA revealed no significant variation of the LSIs of the deceleration impulse during 

landing (LSICMJla) in the CMJs (F(3,33)=1.76, P=0.20, 𝜂𝑝
2=0.14). The LSICMJla of the ACL subjects was 

significantly lower at T4 than the LSICMJl the of the control subjects (T(38)=3.16, P<0.01, d=1.00). In 

the ACL subjects, the deceleration impulse during landing was 37% lower in the injured leg than in the 

non-injured leg at T4. (Figure 20) 
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Figure 20. Leg Symmetry Indices (LSIs) of Acceleration Impulses during Take-off and LSIs of Deceleration 

Impulses during Landing of the Counter Movement Jumps (CMJs). Mean LSIs and 95% confidence intervals of 

the acceleration and deceleration impulses of the CMJs. The acceleration impulses were measured during take-

off and the deceleration impulses during landing of the ACL subjects (T1-T4) and the control subjects (CG). Test 

sessions with significant (P≤0.05) differences are marked with an asterisk (*). 

Summarized, although the jumping height and the LSIs of the acceleration impulse during take-

off increased up to six months post-reconstruction, the ACL subjects had not reached the level of the 

healthy controls in jumping height and the LSIs of the acceleration impulses during take-off and 

deceleration impulses during landing. 

One-Leg Jumps (OLJ) 

RM-ANOVA revealed a significant variation of the LSIs of the jumping distances (F(3,45)=13.43, 

P<0.01, 𝜂𝑝
2=0.47). The LSIs of the jumping distance dropped from T1 to T2 (T(16)=3.32, P=0.01, 

d=0.78). From T2 to T3 (T(15)=3.56, P=0.01, d=0.79) and from T3 to T4 (T(16)=3.66, P<0.01, d=0.98) 

significant increases of the LSIs for jumping distance were detected. The LSI of the jumping distance 

was significantly lower in the ACL subjects at T4 compared to the control subjects (T(38)=2.50, P=0.02, 

d=0.79). In the ACL subjects, the jumping distance of the injured leg was 25.1% lower compared to the 

non-injured leg at T4 (Figure 21). 

RM-ANOVA revealed a significant variation in the LSI for the acceleration impulse during 

take-off in the ACL subjects (LSIOLJto) (F(3,45)=12.22, P<0.01, 𝜂𝑝
2=0.45). The LSIs of acceleration 

impulse dropped from T1 to T2 (T(16)=3.32, P<0.01, d=0.80). From T2 to T3 (T(15)=3.56, P<0.01, 
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d=0.87) and from T3 to T4 (T(16)=3.66, P<0.01, d=0.99) significant increases of the LSIs of 

acceleration impulses were detected. However, the LSIOLJto in the ACL subjects at T4 was significantly 

lower compared to the control subjects (T(38)=3.30, P<0.01, d=1.04). The acceleration impulse of the 

injured leg was 17% lower compared to the non-injured leg at T4 (Figure 22). 

Summarized, the LSIs of the jumping distances and of the take-off impulses increased in the 

ACL subjects up to six months post-reconstruction, however, remained lower than the LSIs of the 

healthy control subjects. 

 
Figure 21. Leg Symmetry Indices (LSIs) of Jumping Distances of the One Leg Jumps (OLJs). Mean LSIs and 

95% confidence intervals of the jumping distances of the OLJs of the ACL subjects (T1-T4) and the control subjects 

(CG). Test sessions with significant (P≤0.05) differences are marked with an asterisk (*). 
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Figure 22.Leg Symmetry Indices (LSIs) of the Acceleration Impulses during Take-off of the One Leg Jumps 

(OLJs). Mean LSIs and confidence intervals of the acceleration impulses during take-off of the OLJs of the ACL 

subjects (T1-T4) and the control subjects (CG). Test sessions with significant (P≤0.05) differences are marked 

with an asterisk (*). 

Isometric Force Tests 

The LSIs of Fmax (LSIFmax), RFDmax (LSIRFDmax) and RFD200max (LSIRFD200max) are given in the 

Appendix (Table 9 Appendix 10.7). Therein, all conditions where the LSIs differed significantly are 

listed, including effect sizes of the post-hoc t-tests. Figure 23 shows exemplary results of the LSIs for 

Fmax, RFDmax and RFD200max during knee flexion and knee extension at 90°. The results of the 110° 

condition showed similar trends. 

RM-ANOVA revealed a significant variation in LSIFmax at 90° flexion (F(3,45)=12.11, P<0.01, 

𝜂𝑝
2=0.45) and 110° flexion (F(3,33)=4.96, P<0.01, 𝜂𝑝

2=0.31) as well as 90° extension (F(3,45)=7.38, P<0.01, 

𝜂𝑝
2=0.33) and 110° extension (F(3,39)=14.06, P< 0.01, 𝜂𝑝

2=0.52). The ACL subjects showed significantly 

lower values for LSIFmax in all flexion and extension conditions at T2 compared to T1. Except for 110° 

flexion from T3 to T4, all other flexion and extension conditions showed significant increases in the 

LSIFmax from T2 to T3 and from T3 to T4. The LSIFmax in the ACL subjects at T4 were significantly 

lower than those of the control subjects at 90° and 110° knee flexion as well as 90° and 110° knee 

extension. The deficit of Fmax in the injured leg compared to the non-injured leg was between 25% (110° 

extension) and 51% (110° flexion) at T4. 

RM-ANOVA revealed a significant variation in LSIRFDmax in the ACL subjects at 90° flexion 

(F(3,57)=3.28, P=0.03, 𝜂𝑝
2=0.16) as well as at 90° extension (F(3,57)=3.28, P=0.01, 𝜂𝑝

2=0.29) and 110° 
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extension (F(3,51)=4.45, P=0.01, 𝜂𝑝
2=0.21). The LSIRFDmax was significantly lower in all tested conditions 

at T2 compared to T1 (Table 9; Section 10.6). At 110° and 90° knee extension, significantly higher 

LSIRFDmax was found at T4 compared to T3. The LSIRFDmax in the ACL subjects at T4 were significantly 

lower than those of the control subjects at 90° and 110° knee flexion as well as 90° and 110° knee 

extension. The deficit in RFDmax in the injured leg compared to the non-injured leg was between 18% 

(90° extension) and 44% (110° flexion) at T4. 

RM-ANOVA revealed a significant variation in LSIRFD200max at 110° knee flexion (F(3,48)=3.28, 

P=0.03, 𝜂𝑝
2=0.17) and 110° knee extension (F(3,51)=4.19, P=0.02, 𝜂𝑝

2=0.20). LSIRFD200max was 

significantly lower at T1 compared to T2 as well as significant higher at T4 compared to T3. The 

LSIRFD200max in the ACL subjects at T4 were significantly lower than those of the control subjects at 90° 

and 110° knee flexion as well as 90° and 110° knee extension (Table 9; Section 10.6). The deficit in 

RFD200max in the injured leg compared to the non-injured leg was between 19% (90° extension) and 40% 

(90° flexion) at T4. 

Summarized, the LSIs of all parameters of the isometric tests dropped from pre- to post-

reconstruction time. Afterwards the LSIs increased in the knee flexion and extension conditions up to 

six months post-reconstruction. This was especially seen in the LSIsFmax over all testing conditions, but 

not in all testing conditions for LSIsRFDmax and LSIsRFD200max. All LSIs of the analyzed strength 

parameters were lower six months after reconstruction compared to the healthy control subjects. 
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Figure 23. Leg Symmetry Indices (LSIs) of the isometric force parameters in 90° flexion and 90° extension 

condition. Exemplary results of mean LSIs 95% confidence intervals of the maximum force (Fmax), maximum rate 

of force development (RFDmax) and maximum rate of force development of the initial 200ms of contraction 

(RFD200max) in 90° knee flexion and 90° knee extension conditions. Detailed results of the LSIs of all analyzed 

parameters and significant differences of all parameters between the test sessions are given in the Appendix (Table 

9 Appendix 10.7). Test sessions with significant (P≤0.05) differences are marked with an asterisk (*) in Fig. 22 

and are mentioned in the Results section of the manuscript. 

6.5 Discussion 

This was the first study investigating specific components, determining and limiting knee 

function, after ACL reconstruction. This was implemented by the combination of self-evaluating 

questionnaires, functional clinical tests as well as static and dynamic functional FPTs from pre- to six 

months post-reconstruction with four test sessions. With this study design a more detailed understanding 

of the course of the functional state of the knee during the rehabilitation process was enabled. On a 

macroscopic level this study revealed three main findings: Firstly, the LSIs decreased after the ACL tear 

and reconstruction, indicating that the injured leg loses functionality from pre- to post-reconstruction. 

Secondly, the LSIs increased from six weeks post-reconstruction up to six months post-reconstruction, 

and thirdly, the LSIs of the ACL group subjects remained lower compared to the LSIs of the control 

subjects at six months post-reconstruction. 

The reduction of the LSIs from pre- to post-reconstruction was significant in almost all tested 

parameters. This primarily shows the influence of the ACL tear and reconstruction on joint function in 

clinical tests and FPTs as well as the impact of the ACL tear of the individuals’ QoL, which could be 
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derived by the low self-evaluated knee function. Besides the low self-evaluated state, the low 

performance in the functional clinical tests and FPTs are not unexpected as the important role of the 

ACL for knee joint functionality is undeniably described (MYER et al. 2008; RUDOLPH et al. 2000; THE 

MARS GROUP 2010). The increase of functionality, according to the rising LSIs, in almost all parameters 

from six weeks post-reconstruction up to three and six months post-reconstruction shows that the 

analyzed rehabilitation programs enhance functionality in the reconstructed leg although the ACL group 

subjects did not reach the level of the control subjects in nearly all of the conducted tests. These results 

are discussed in details in the subsequent sections.  

Functional Clinical Tests 

Despite the enhancement of the LSIs, they remained on a lower level in nearly all parameters at 

six months post-reconstruction compared to the healthy control group subjects. These lower LSIs were 

seen in the functional clinical tests and the FPTs. The reduced LSIs of the LC measurements at S15 

show, that the thigh musculature was still atrophied in the ACL group. Such thigh atrophy was described 

before and can be explained by the traumatic rupture and the subsequent neuromuscular changes in the 

injured leg (MCHUGH et al. 2002; THOMAS et al. 2016; LORENTZON et al. 1989). Additionally, the ACL 

subjects show reduced LSIs for passive ROM in knee extension and flexion compared to the control 

subjects six months post-reconstruction independently of the increasing LSIs in passive ROM over the 

four test sessions. Such knee ROM deficits in dynamic and static conditions were described previously 

(GOKELER et al. 2009; ORISHIMO et al. 2010), as well as the importance of full ROM recovery, especially 

in knee flexion, for full knee joint recovery in dynamic movements (HEWETT et al. 2005; WALDÉN et 

al. 2011). As both parameters have not recovered up to six months post-reconstruction, it is not 

surprising that the ACL group subjects show pronounced LSI deficiencies in the FPTs. 

One-Legged and Bilateral Jumps 

LSI deficiencies were apparent in the dynamic jumping FPTs compared to the control subjects, 

at six months post-reconstruction. Although the LSIs of jumping distances in the OLJs increased up to 

six months post-reconstruction, the ACL subjects showed pronounced LSI deficits for jumping distance 

compared to the control subjects. The ACL subjects could only realize a jumping distance with the 

injured leg of 74.9% of the non-injured leg. As it is described that a minimum of 85% should get reached 

before the performance of the reconstructed leg is declared normal (BARBER et al. 1990; DE FONTENEY 

et al. 2015; GUSTAVSSON et al. 2006; KUBO et al. 2004; LENTZ et al. 2009; MYER et al. 2008; ORISHIMO 

et al. 2010; REID et al. 2007; PETSCHNIG et al. 1998; RUDOLPH et al. 2000; TEGNER & LYSHOLM 1985; 

WILK et al. 1994), the results of our study yielded remarkable deficits in one-legged jumping 

performance in the reconstructed leg and therewith no normal symmetry level of the ACL reconstructed 

subjects. 
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These one-legged movement deficits were underlined by the bilateral CMJs performance, where 

the jumping height was reduced by 23.9 % compared to the control subjects. In contrast to unilateral 

OLJs for distance or height (BARBER et al. 1990; DE FONTENEY et al. 2015; GOKELER et al. 2009; 

GUSTAVSSON et al. 2006; KUBO et al. 2004; ORISHIMO et al. 2010; PETSCHNIG et al. 1998; REID et al. 

2007; RUDOLPH et al. 2000; TEGNER & LYSHOLM 1985; WILK et al. 1994), bilateral CMJs are 

underrepresented in studies evaluating the functional outcomes after ACL tears. However, the evaluation 

of CMJs provides important information about the injured leg influences to the performance of bilateral 

movements. Especially, by the consideration of the acceleration impulse during take-off and the 

deceleration impulse during landing. These impulses provide general information about the ability to 

generate, apply and compensate for forces over a specific time in order to realize a specific task. 

Although, the LSIs of the impulse parameters of the ACL subjects also improved over time, the 

LSIs of the acceleration impulse during take-off and the deceleration impulse during landing were lower 

than the LSIs of the control subjects at six months post- reconstruction, indicating a clear asymmetrical 

loading pattern. This asymmetrical load pattern was seen as a 41% lower acceleration impulse during 

take-off in the injured leg compared to the non-injured leg. This demonstrates a shift of load generation 

to the non-injured leg during take-off. This results also in a reduced overall take-off impulse, which 

explains the reduced jumping heights in the CMJs. During bilateral landing of the CMJs the deceleration 

impulse in the injured leg was 37% lower than in the non-injured leg, implying as well a shift of load 

compensation to the non-injured leg. Surprisingly, in the OLJs, the ACL subjects showed only a 17% 

deficit in the acceleration impulse during take-off in the injured compared to the non-injured leg. This 

deficit in acceleration impulse during take-off was lower in the OLJs than in the CMJs. This 

demonstrates that during take-off in bilateral CMJs, the ACL subjects shifted more load to their non-

injured leg than the relative leg deficit was in the unilateral OLJs. 

Collectively, the results of these parameters lead to the conclusion that besides deficits between 

the legs in the functional clinical tests in dynamic performance remarkable deficiencies, especially in 

bilateral jumping, in the injured leg compared to the non-injured leg at six months post-reconstruction 

exist. Similar compensation strategies involving the non-injured leg in jumps have been described in 

OLJs before, but not in CMJs (GOKELER et al. 2009; ORISHIMO et al. 2010). The results implicate that 

for comprehensive evaluation and monitoring of knee joint functionality one leg movement tasks should 

be supplemented by bilateral movement tasks, such as CMJs. The results of the functional clinical tests 

and the FPTs demonstrate how essential comprehensive test batteries are, including clinical tests and 

FPTs, for determining leg deficiencies more graduate and for providing a comprehensive state of the 

knee functionality. 
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Isometric Force Tests 

The deficiencies in the reconstructed leg in the jumping tasks are underlined by deficiencies of 

the reconstructed leg in the isometric force tests. Herein, the LSIs improved from about six weeks post-

reconstruction up to six months post-reconstruction. However, the LSIs of the ACL subjects were 

reduced compared to the control subjects’ LSIs in Fmax, RFDmax and RFD200max at six months post-

reconstruction. 

RFD200max is important for the rehabilitation process evaluation because during movements such 

as postural balance corrections in everyday life or jumping in intense sports, contraction times of up to 

200ms are required. These contraction times are shorter than the time normally needed to reach maximal 

isometric force, which is between 300 and 500ms (AAGAARD et al. 2002; THOMAS et al. 2016). 

The developments of Fmax in comparison to RFDmax and RFD200max indicate that neuromuscular 

adaptation processes recover on a higher level in comparison to adaptations of the legs’ muscle volume 

up to six months post-reconstruction. In flexion and extension condition, Fmax shows a stepwise increase 

of the leg strength with every test session, without reaching the level of the control group at six months 

post-reconstruction. Especially in knee extension, the RFD does not show such a time effect. In 

particular in RFD200max there is no difference in the ACL group compared to the control group in test 

sessions three and four. As RFD is in general strongly related to efferent neuromuscular capacities, it 

appears that the RFD deficits are not that pronounced than the deficits in maximum force generation 

(AAGAARD et al. 2002). In contrast, the maximum force, which is substantially reduced in the ACL 

group compared to the healthy control group, is strongly related to the muscle volume. This result is in 

accordance to the analyses of the LCs. It was found, that at the fourth test session the circumference of 

the thigh in the area of the biggest muscle belly (S15) stayed reduced in the injured leg compared to the 

non-injured leg and additionally the relative circumference of the injured leg in the ACL group was 

reduced compared to the control subjects. 

Deficits between the ACL subjects and the control subjects six months post-reconstruction were 

observed under knee flexion and extension conditions and at knee angles of 90° and 110°. The injured 

leg deficits compared to the non-injured leg of the ACL group subjects were between 25% (110° 

extension) to 51% (110° flexion) in Fmax, between 18% (90° extension) to 44% (110° flexion) in RFDmax, 

and between 19% (90° extension) to 40% (90° flexion) in RFD200max. These deficiencies are higher than 

those reported in the literature (LENTZ et al. 2009). 

The deficits in comparison to the control group could be explained by a deficiency of the 

hamstrings muscles, which could be caused by the graft removal of tendons of hamstrings muscles. This 

was underlined by the more prominent deficiency in the injured leg during flexion than during extension. 

Thus, the deficient passive ROM during flexion was associated with deficiencies in isolated flexion 

force generation in the injured leg along with deficiencies in the FPTs. Due to the importance of flexion 
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capabilities in dynamic performance tasks and the agonistic function of the hamstrings to the ACL 

(HEWETT et al. 2005; WALDÉN et al. 2011), it appears that these limitations in ROM in knee flexion and 

in generating forces could be an explanation for the shift of load to the non-injured side in bilateral CMJs 

and the performance discrepancy in the unilateral OLJs (GOKELER et al. 2009; ORISHIMO et al. 2010) 

and the generally reduced functionality compared to the control group subjects even at six months post-

reconstruction. 

Limitations 

The sample consisted of subjects of both genders with a wide range of age and different pre-

injury activity levels. Additionally, depending on the functional state, the subjects could perform 

activities beyond institutional therapeutical rehabilitation to a variable extent. The ability to perform 

autonomous therapeutic-independent training is strongly associated with the functional status and the 

intrinsic motivation of ACL reconstructed individuals. Higher training loads typically result in a higher 

functional state, due to the fact that the structures determining functionality, get positively influenced 

by an increased amount of training. Depending on the purposes, these issues need to be controlled in 

future studies. Due to the reason that this study aimed to draw a general picture of the functional outcome 

after ACL reconstruction we did not restrict the inclusion criteria of the sample in relation to the 

mentioned criteria. Nonetheless, more homogenous samples could lead to more specific results in 

relation to the drawn sample. 

Practical Implications 

The results of this study imply that detailed analyses of specific components, determining and 

limiting knee function, monitored repetitively after ACL reconstruction, improves the understanding of 

the recovery process of knee functionality. Therefore, the applied test battery enables clinicians and 

therapists to detect functionality very detailed, which provides a quantitative base for adapting the 

rehabilitation program more individually in relation to the respective individual functional state. This 

helps to achieve the best rehabilitative outcome of the ACL reconstructed individuals. In contrast, 

functional performance testing at one specific time point after reconstruction, as well as placing reliance 

only on functional clinical testing or the time period after reconstruction seems not adequate for 

determining functionality of ACL reconstructed individuals (PETERSEN & ZANTOP 2013). Moreover, 

the results of this study show that clinicians and therapists have to be aware of limited restoration of 

knee functionality of ACL reconstructed subjects in comparison to healthy control subjects up to six 

months after reconstruction. Therefore, caution is advised before individuals get released in pre-injury 

sports and further training recommendations are essential.  
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Conclusions 

Summarized it can be stated that functionality of the ACL reconstructed subjects follows a 

uniform course, with a decrease from immediately pre-reconstruction time to six weeks post-

reconstruction and a subsequent increase of functionality up to three and six months post-reconstruction. 

This shows that the applied common rehabilitation program enhances knee joint functionality up to six 

months post-reconstruction. However, at six months post-reconstruction the ACL reconstructed subjects 

have not reached the functional state of healthy control subjects in hardly any parameter, not even in 

their self-evaluated functional knee state and their self-determined activity level.  

Accordingly, our general hypothesis was confirmed, namely, that the functionality of the ACL 

reconstructed subjects of this study could not be called ‘normal’ from subjective and objective 

viewpoints at six months post-reconstruction. 



 

 

 
83 

 Study III:  

Analyses of Daily Occurring Turns in ACL Reconstructed 

Subjects from Pre- to Six Months Post-ACL Reconstruction. 

Unpublished manuscript. In preparation for publication. 

KRAFFT FC, STETTER BJ, STEIN T, ELLERMANN A, FLECHTENMACHER J, EBERLE C, SELL S & 

POTTHAST W. (2018). ACL Reconstructed Subjects Show a Variety of Functional Adaptations in 90° 

and 180° Turns from Pre- to Six Months Post-ACL Reconstruction. 

7.1 Abstract 

Objective. Functional adaptations in sagittal joint kinematics and kinetics were detected in straight 

locomotion tasks, such as gait, in ACL reconstructed subjects. These aim to increase knee joint stability 

and reduce loads to the implanted autograft. However, manifestations of such functional adaptations 

could contribute to the framework of accelerated onset and progression of musculoskeletal disorders 

and chronic degenerative joint diseases. Therefore, the purpose of this study was to examine potential 

functional adaptations strategies of ACL reconstructed subjects in 90° and 180° turns by analyzing 

general locomotion strategies, and sagittal plane kinematics and kinetics. Methods. 20 subjects with 

unilateral tears of the ACL ((32 ± 13.3 yrs.; ACL group), reconstructed with the same reconstruction 

technique, and 20 matched healthy controls (33.3 ± 13.4 yrs.; CG) performed 90° and 180° turns at four 

test sessions: T1 (6 wks. pre-reconstruction), T2 (7 wks. post-reconstruction), T3 (3 mos. post-

reconstruction), and T4 (6 mos. post-reconstruction). Kinetics were detected by two 3D force plates 

(1000Hz). Kinematics were sampled with a 3D Motion Capture-System (200Hz). Inverse kinematics 

and dynamics were computed using the full-body Dynamicus 9 model. The subjects were free in the 

turning strategy (step or spin turn strategy) to perform the respective turns and free in the selection of 

the leading and trailing leg (injured or non-injured leg). Results. The general locomotion strategy 

showed a preference of the step turn strategy in the ACL group and to prefer the injured/reconstructed 

legs as leading legs with increasing time after the reconstruction. Increased knee flexion was found in 

most turning locomotion conditions in the ACL group at T4 compared to the CG. Additionally, 

tendencies of kinetic adaptations were detected in increased knee flexion and increased knee extension 

moments in various characteristics. These appeared mostly in turning conditions, wherein tendencies of 

kinematic adaptations were found. In the leading legs of the spin turns solely knee extension moments 

were detected over the whole stance phase, which appeared to be increased by 130% compared to the 



STUDY III 

 

 

 
84 

peak knee extension moments detected in the leading and trailing legs of the step turns and the trailing 

legs of the spin turns. Conclusions. The general locomotion strategy seemed to have recovered on an 

acceptable level, as the ACL group showed a preference of the step turn strategy like the CG and healthy 

subjects. However, tendencies of isolated and accompanied functional kinematic and kinetic adaptations 

were found in the ACL group even at three and six months after reconstruction similar to those detected 

in straight ahead gait. Due to the large individual variances, appearing in various characteristics of 

functional adaptations in turning locomotion, it was concluded that more specific consideration of 

individual functional adaptations in activities of daily living should be taken into account in the 

rehabilitation process. This should support a comprehensive rehabilitation process to receive fully 

recovered knee joints and to prevent manifestations of such functional kinematic and kinetic adaptations. 

7.2 Introduction 

Gait analyses with the objective to examine functional adaptations of ACL reconstructed 

individuals were conducted in various studies during straight locomotion tasks, as straight gait and stair 

ascent and descent (ANDRIACCHI & DYRBY 2005; BERCHUCK et al. 1990; HALL et al. 2012; KNOLL et 

al. 2004b; LEWEK et al. 2002; WEXLER et al. 1998; ZABALA et al. 2013). Therein, specific functional 

adaptations were detected in ACL reconstructed subjects. These adaptations occurred during straight 

ahead gait in ACL reconstructed subjects in terms of load reductions to the reconstructed knee by 

reducing the activity of the M. quadriceps. Such adaptation processes were found in the immediate post-

reconstruction phase, at six months after reconstruction and up to two years after reconstruction 

(BERCHUCK et al. 1990; DEVITA et al. 1997; HOOPER et al. 2002; TIMONEY et al. 1993; WEXLER et al. 

1998). This phenomenon was designated as quadriceps avoidance gait (BERCHUCK et al. 1990). Loads 

shall get reduced to the implanted graft straight gait by the quadriceps avoidance gait (BERCHUCK et al. 

1990; WEXLER et al. 1998; ZABALA et al. 2013). Such load reductions are beneficial in the immediate 

subsequent phase after the ACL reconstruction, to protect the implanted graft of inappropriate stress. 

However, unbalanced loading situations even long-term after the reconstruction (ZABALA et al. 2013), 

led to the assumption that compensation strategies could generally manifest prospectively. If so, 

adaptation processes would lead to chronic pathologic overloading processes of the non-injured leg 

alongside with a concomitantly chronic load reduction of the reconstructed leg or a complete 

transformation of the load compensation strategies (OBERLÄNDER et al. 2012). Imbalanced load 

situations are generally disadvantageous during movements and lead inevitably to an accelerated onset 

of joint cartilage degeneration and chronic knee osteoarthritis (ANDRIACCHI & DYRBY 2005; DANIEL et 

al. 1994; HALL et al. 2012; HAWKINS et al. 1986; LOHMANDER et al. 2007; MCDANIEL & DAMRON 

1983; SCHIPPLEIN & ANDRIACCHI 1991; SHARMA et al. 1998). 

However, ADLs contain various locomotion tasks besides the widely examined straight 
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locomotion tasks. Such movements can be characterized by different locomotion characteristics (e.g. 

walking turns) compared to the cyclic alternating locomotion in straight locomotion tasks (COURTINE 

& SCHIEPPATI 2003; HASE & STEIN 1999; HICHEUR et al. 2005; IMAI et al. 2001; SREENIVASA et al. 

2008). As various types of turns occur frequently throughout the day and due to the versatile 

characterization of the general turning locomotion strategies (COURTINE & SCHIEPPATI 2003; HASE & 

STEIN 1999; HICHEUR et al. 2005; IMAI et al. 2001; SREENIVASA et al. 2008), it was assumed that 

analyses of daily turns would provide valuable knowledge about potential adaptation strategies of ACL 

reconstructed subjects. Due to the specific characterization of turns, with their typical changing of the 

movement direction, turning locomotion requires different demands to the locomotion system, as those 

required for straight locomotion tasks (COURTINE & SCHIEPPATI 2003; HASE & STEIN 1999; MUELLER 

et al. 1995; SALSICH & MUELLER 2000). In particular, these variations occur in terms of differed head 

and trunk orientations to initiate and realize a turn (COURTINE & SCHIEPPATI 2003). Such differed head 

and trunk movements influence the general locomotion of the lower body, as for example the inner leg 

of a turn has a reduced stride length compared to the outer leg and one leg acts as leading leg, meanwhile 

the contralateral leg acts as trailing leg (COURTINE & SCHIEPPATI 2003). Therefore, turns represent a 

different kind of movement class, where naturally imbalanced locomotion demands between the legs 

occur. This leads to the fact that each leg provides different contributions and has separate locomotion 

and loading demands for the realization of turns (COURTINE & SCHIEPPATI 2003; HASE & STEIN 1999). 

These facts outline the clear difference in the general locomotion compared to consistently 

balanced, alternating straight locomotion tasks. This led to the assumption that locomotion altering 

injuries, as ACL tears, could lead to functional adaptations in the general turning locomotion, which 

could potentially diverge from those described for straight ahead movements.  

Therefore, to enlarge a comprehensive approach of functional analysis in ACL reconstructed 

subjects, adaptations and compensations due to ACL tears should not only concentrate on straight 

locomotion tasks. Additionally, existing studies, which investigated functionality in straight gait 

(BERCHUCK et al. 1990; WEXLER et al. 1998) or walking stairs (ZABALA et al. 2013), were designed as 

cross-sectional studies, analyzing functionality at a specific time-point after the reconstruction. 

Longitudinal studies, analyzing potential functional adaptations in turns, with a close monitored design 

from pre- to six months post-reconstruction, are missing. 

Therefore, the purpose of the study was to analyze turning locomotion of 90° and 180° turns in 

ACL reconstructed subjects from pre- to six months post-ACL reconstruction and in comparison to a 

matched healthy control group (CG), with the aim to examine: 

(1) The influence of ACL tears and reconstructions on the general locomotion strategy. 

(2) The sagittal plane joint kinematics of ACL reconstructed subjects, who performed the turns 

with a uniform locomotion strategy at a respective test session. 
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(3) The sagittal plane joint kinetics of ACL reconstructed subjects, who performed the turns 

with a uniform locomotion strategy at a respective test session. 

7.3 Methods 

Sample 

Subjects with ACL tears (n = 20) and healthy control subjects (n = 20), without any history of 

leg injuries, participated in the study (Table 5). Subjects were included, who sustained unilateral tears 

and underwent uniform ACL reconstruction techniques with a combined semitendinosus and gracilis 

autograft, via the double-bundle technique (SCHMIDT-WIETHOFF & DARGEL 2007). Exclusion criteria 

were concomitant severe injuries of the Menisci or the collateral ligaments in the knee joint. Inclusion 

criteria of the control subjects were the absence of any leg injuries and the fulfillment of the matching 

criteria to the respective ACL injured subject. The control subjects were matched to the ACL subjects 

according to: sex, age, height, mass and pre-injury activity level (Tegner Activity Score). The study was 

approved by the ethics committee of the State Medical Council of Baden-Württemberg (Stuttgart, 

Germany). All subjects provided written informed consent for their study participation. 

Table 5. Sample Characteristics. 

 Age [yr] Height [cm] Mass [kg] 
Body-mass 

index [kg/m2] 

Activity Level 

(TAS) 

ACL group 32.0 ± 13.3 174.7 ± 9.0 73.2 ± 8.7 24.1 ± 3.4 6.4 ± 1.4 

Control group 33.3 ± 13.4 175.4 ± 10.4 74.7 ± 8.2 24.4 ± 2.6 6.0 ± 1.4 

Mean values and standard deviations (SD) of the age, the anthropometric parameters body height [cm], body 

mass [kg], the Body-Mass-Index [kg/m2], and the activity level determined with the Tegner Activity Score (TAS) 

of the ACL group subjects and the matched healthy control group subjects. TAS in the ACL group subjects is 

related to the pre-injury activity level. 

Rehabilitation Program 

All subjects received a standardized post-surgical rehabilitation program, according to the German 

health insurance system. This consists of three stages: 

(1) Low-intensity (passive) activities up to six weeks post-reconstruction. Including 

physiotherapy with lymphatic drainage, passive movement exercises (by machine or 

therapist), sensorimotor training, weight-bearing exercises, and isometric training under 

therapists’ supervision.  

(2) Medium-intensity activities with muscular and balance training up to three months post-

reconstruction. Including physiotherapy with lymphatic drainage, passive movement 
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exercises, independent strength training, balance training, and activities and sports without 

pivoting movements (e.g. cycling, swimming, (nordic) walking). 

(3) Medium-to-high-intensity activities. Including intense strength training (if possible) up to 

six months post-reconstruction. Sports training (without pivoting movements) and slight 

return to pre-injury sports and sports-level with jumps, intense cycling, and strength 

training. 

All stages were adaptable according to the rehabilitation state of the individuals’ knee joint. 

Such a stepwise, three-staged structure is commonly applied in the rehabilitation cycle after ACL 

reconstructions (WHITING & ZERNICKE 2008). The summarized rehabilitation program of the ACL 

subjects, including the applied exercises and training as well as the performable activities and sports, is 

presented in the Appendix 10.5. 

Study Design 

The study was designed as a longitudinal non-randomized controlled trial to evaluate an existing 

and commonly applied rehabilitation program after ACL reconstruction in a chronologically and 

functionality detailed manner under the considerations of daily occurring turns. Therewith, possible time 

effects between or within parameters determining knee function and in comparison with healthy subjects 

should be detected. Accordingly, the ACL reconstructed subjects were tested at four different test 

sessions over a period of seven to eight months (Figure 24). The first test was performed preoperatively, 

immediately before the reconstruction and about seven weeks after the ACL tear (T1). All following 

tests were postoperative (T1-T4). T2 was about seven weeks, T3 was approximately three months and 

T4 approximately six months after ACL reconstruction. The test design was aligned to the three main 

stages of the rehabilitation process. The control subjects attended one test session.  

 
Figure 24. Study Design. Mean days (d) and standard deviations between the test sessions of the ACL 

reconstructed subjects. T1 was at about six to seven weeks after the ACL tear, immediately before the ACL 

reconstruction surgery. T2 was at about six to seven weeks after the ACL reconstruction surgery. T3 was about 

three months and T4 was about six months after the ACL reconstruction surgery. 
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Testing Task 

According to KRAFFT et al. (2015), two daily occurring turns (Figure 25) were analyzed. All subjects 

had to perform 90° and 180° turns in clockwise (right orientated) and counter-clockwise (left orientated) 

direction at a self-selected gait velocity (Figure 25). This methodological setting resulted in four turning 

conditions:  

- 180° turn left (counter-clockwise) 

- 180° turn right (clockwise) 

- 90° turn left (counter-clockwise) 

- 90° turn right (clockwise) 

 
Figure 25. Types of Analyzed Turning Conditions. Left: 180° turn clockwise and counter-clockwise. Right: 90° 

turn clockwise and counter-clockwise. Arrows mark both tested walking directions. The subjects had to walk with 

a self-selected gait velocity and with their own locomotion strategy. 

The performance of these types of turns had been proven reliable in healthy subjects, in terms 

of the general locomotion strategy (Step/spin turn; leading/trailing leg), the ground contact times of the 

turning steps, as well as the vertical and medio-lateral GRFs (Chapter 5) (KRAFFT et al. 2015).  

Data Acquisition and Data Processing 

The turning gait pathways (Figure 25) were marked on the floor of the movement analysis 

laboratory, BioMotion Center at the Institute of Sports and Sports Science at the Karlsruhe Institute of 

Technology. All turns had to be walked clockwise (right orientated) and counter-clockwise (left 

orientated) to determine eventual effects to the locomotion strategies depending on the walking 

direction. All subjects had to walk at a self-selected gait velocity to analyze the turning gait in a setting, 

which represents daily life conditions as appropriate as possible. Self-selected gait velocities were 

applied to reduce influential effects of external study conditions, which could change an individual’s 

locomotion behavior in their turning movements. All subjects had to complete three valid trials for each 

turn. Validation was defined by placing each foot fully on one FP. Failing in the defined performance 

led to a repetition of the failed trial. Subjects had been free in their choice, which foot acted as leading 

AMTI Force Plates 
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leg and as trailing leg for the realization of the turns. The subjects had to walk the four turning conditions 

in a block randomized order to exclude learning effects from one condition to another. 

Data were captured with the 3D motion analysis system (200 Hz; Vicon®, Oxford, UK; 12 

MX13 cameras and 1 MX3 camera), which was linked to two 3D FPs (1000 Hz; AMTI®, Watertown, 

Massachusetts, USA). For an optimal tracking of the subjects’ movements, 42 retro-reflective spherical 

markers (Diameter 19 mm, lightweight super-spherical markers; Qualisys AB, Gothenburg, Sweden) 

were attached to model-specific anatomical landmarks using double-sided tape, according to a modified 

version of the multi-body model, ALASKA Dynamicus 9 (HÄRTEL & HERMSDORF 2006). (Figure 7; 

Table 9 Appendix 10.4) Data were pre-processed with the software Vicon Nexus® (Version 1.8.5, 

Oxford, UK) to receive gap-free trajectories of the attached markers. Before the calculation of the 

kinematics and the inverse dynamics were enabled, data were post-processed with Matlab (Version 

R2017a; The MathWorks® Inc., Natick, Massachusetts, USA). Subsequently, kinematics and joint 

kinetics were employed by the multi-body model of ALASKA Dynamicus 9 (HÄRTEL & HERMSDORF 

2006). This modelling process enables the subjects-specific calculation of loads in each joint during 

movements by the inverse dynamics approach (ROBERTSON et al. 2004). 

Data Analyses 

For analyses of the general locomotion strategies, firstly, it was determined if the subjects 

performed the turns with a step turn or with a spin turn strategy (HASE & STEIN 1999). In the 

performance of the step turn strategy the outer leg acts as leading leg, while the inner leg acts as trailing 

leg (Figure 26A, 26B). Performing the spin turn strategy, the inner leg acts as leading leg while the outer 

leg acts as trailing leg (Figures 26C, 26D). 

For analyses of the locomotion strategies in relation to foot placement, all trials with the same 

foot placement strategy were summed up at each test session. Because the subjects could freely decide 

to walk each turn with a spin or a step turn strategy, subjects could arbitrary choose the turning strategy 

at each test session. This led to the fact that a differing quantity and a differing selection of subjects 

performed the respective turns with the same locomotion technique at each test session. Therefore, the 

results were analyzed in relation to homogenous foot placement strategies in the 90° and 180° turn, 

leading to four potential turning strategies (Figure 26). 
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Figure 26. Turning Strategies. Feasible turning locomotion strategies during the 90° and 180° turning conditions. 

A: 90° turn performed with the step turn strategy and the injured leg as leading leg. B: 90° turn performed with 

the step turn strategy and the non-injured leg as leading leg. C: 180° turn performed with the spin turn strategy 

and the injured leg as leading leg. D: 180° turn performed with the spin turn strategy and the non-injured leg as 

leading leg. Both turns could have been performed with a step or a spin turn strategy by the ACL reconstructed 

and healthy control subjects. 

Parameters 

Gait velocities and ground contact times of the leading and trailing leg were determined as 

spatio-temporal parameters. 

For examination of functional adaptations, sagittal plane kinematics (knee flexion angles) and 

kinetics (internal knee flexion moments and internal knee extension moments) were analyzed in the 

injured/reconstructed and non-injured legs of the ACL group and compared to the non-dominant and 

dominant legs of the CG, respectively. 

Specifically, in kinematics, the mean local maximum (peak) in the early stance phase, the 

loading response phase, and the mean local minimum knee flexion angles in the terminal stance phase 

were analyzed (KIRTLEY 2006; PERRY 2003). Furthermore, the mean knee flexion excursion was 

examined, as a measure of the range of sagittal knee joint movement throughout the stance phase. The 

sub-phases of the stance phase were defined according to PERRY (2003) (Figure 27). In kinetics, the 

maximum knee flexion and knee extension moments were analyzed in the stance phase. Knee angles 

and knee moments were normalized to 100% of the stance phase for each leg. 
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Figure 27. Gait Events in Straight Gait. In this figure the different phases of the whole stance phase are 

illustrated. First phase, loading response, is composed of the heel-strike situation and the loading response of the 

leg, wherein the load acting after placing the foot is absorbed. The mid-stance phase is characterized by a unipedal 

situation, wherein a forward movement is performed by the load-bearing foot. In the terminal stance phase the 

unipedal stance phase ends and the heel is lifted from the ground. During the whole phase the main load is 

accepted by the forefoot. The pre-swing phase indicates the finalization of the stance phase by lifting the toes off 

the ground, whereas the contralateral leg is in the loading response phase. The red line indicates the resultant 

ground reaction force vector. (Figure modified according to PERRY 2003) 

Data analyses with focus on the sagittal plane, were considered as one major adaptation 

parameter in the immediate pre- and post-reconstruction phase, because with these parameters stress and 

load to the implanted autograft can be operationalized. This method was established through studies, 

which detected functional adaptations in terms of reduced quadriceps activations during straight ahead 

gait of ACL reconstructed subjects, concluding that these functional adaptations reduce stresses and 

loads to the reconstructed ACL (ANDRIACCHI & DYRBY 2005; BERCHUCK et al. 1990; WEXLER et al. 

1998). 
 

Statistical Analysis 

Microsoft Office Excel 2013 was used for the calculation of means and SDs. Means of knee 

angles and knee moments in the sagittal plane were calculated for all subjects, who performed the 

respective turn with the same locomotion strategy at each test session. Exemplary, all subjects who 

performed the 90° turn with the step turn strategy using the injured/reconstructed leg as leading leg, 

were grouped for the calculation of means. Thus, because the subjects were free in their choice, how to 
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perform the turns, exceedingly few subjects performed the turns with a uniform locomotion strategy 

throughout all test sessions. Therefore, the subjects, included in a specific group with a uniform 

locomotion strategy, varied at each test session. This led to the fact, that calculations of inferential 

statistics were unfeasible with the standard methods normally used for the computation of potential 

statistical differences (RM-ANOVA, t-test), as it was for instance applied to the results of the FPTs 

(Chapter 6). 

7.4 Results 

General Locomotion Strategy 

Initially, the general locomotion strategies of the turns were analyzed. Therein it was 

distinguished, if the subjects performed the turns with a step or a spin turn strategy. Additionally, it was 

examined if the performed turning strategy was exerted with the injured/reconstructed leg or the non-

injured leg as leading or trailing leg. Furthermore, the spatio-temporal parameters, mean gait velocities 

of the different turning locomotion conditions and the mean ground contact times of the turning steps, 

were taken under consideration in the analyses of the general locomotion strategy. 

90° Turns 

Analyzing the distributions (in counts) of the general locomotion strategies (Figure 28), it was 

found that the ACL group and the CG performed the 90° turns at each test session more often with the 

step turn strategy than with the spin turn strategy. Preference of the step turn strategy reached 60% at 

T1, 62.5% at T2, 53% at T3, 55% at T4, and 57.5% in the CG. Applying the step turn strategy, the 

injured/reconstructed legs (ACL group: T1: 54%; T3: 68%; T4: 64%) and the non-dominant legs (CG: 

56%) were used more often as leading legs at most test sessions. Solely at T2, the ACL group performed 

the step turns equally with the injured/reconstructed or the non-injured legs as leading legs. Accordingly, 

in the spin turns the injured/reconstructed legs were used more often as leading legs at T1 (56%), T3 

(59%), and T4 (67%) than the non-injured leg. Except at T2, where the spin turns were performed 

equally with the reconstructed or non-injured legs as leading legs. The CG showed a preference of 67% 

to perform the spin turns with the non-dominant legs as leading legs. This led to a uniform trend, 

determined in both locomotion strategies: after the ACL group subjects performed the step and spin turn 

strategies equally with the injured/reconstructed and non-injured legs as leading legs at T2, it appeared 

that the ACL group subjects increasingly used the injured/reconstructed legs as leading legs at T3 and 

T4. This resulted in a majority of two-thirds in favor to perfrom the 90° turns with the 

injured/reconstructed legs as leading legs at T3 and T4. Similar distributions were found in the CG in 

favor to perform the turns with the non-dominant legs as leading legs. 
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Figure 28. General Locomotion Strategy in 90° Turns. Distributions (in counts) of the turning locomotion 

strategies (step or spin turn strategy) in the 90° turns. LL = leading leg; TL = trailing leg. T1 (light grey), T2 

(medium grey), T3 (grey), and T4 (dark grey) represent the test sessions of the ACL group. The cross-striped bars 

indicate the distributions of the control group. 

180° Turns 

Analyzing the general locomotion strategies in the 180° turns (Figure 29), as in the 90° turns, 

preferences of the step turn strategy compared to the spin turn strategy occurred at most test sessions in 

the ACL group and as well in the CG. The ACL group showed a preference of the step turn strategy of 

65% at T1, of 61% at T3, of 52.5% at T4, and of 62.5% in the CG. At T2, the ACL group performed 

the 180° equally with the step and the spin turn strategy. 

In the 180° step turns it was found that the ACL group performed the turns equally or more 

often with the non-injured legs as leading legs at T1 (50%) and at T2 (55%). However, the ACL group 

preferred the injured/reconstructed legs as leading legs at T3 (65%) and T4 (70%). The CG showed a 

slight preference to perform the 180° step turns with the dominant legs as leading legs (52%). 

In the spin turn strategy the same pattern occurred. The ACL group showed equal or preferred 

use of the non-injured legs as leading legs at T1 (50%) and at T2 (55%). In contrast, the ACL group 

performed the 180° spin turns more often with injured/reconstructed legs as leading legs at T3 (64%) 

and at T4 (63%). The CG showed a slight preference to perform the 180° spin turns with the non-

dominant legs as leading legs (53%). As in the 90° turns, the ACL group subjects increased the 

preference to perform the 180° turns with the injured/reconstructed legs as leading legs with increasing 

time after the reconstruction. This resulted in a 70% majority to perform the step turn strategy with the 

injured/reconstructed legs as leading legs and a 63% majority to perform the spin turn strategy with the 

injured/reconstructed legs as leading legs. In contrast, the proportion regarding the selection of the 

leading legs was nearly balanced in both turning locomotion strategies in the CG.  
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Figure 29. General Locomotion Strategy in 180° Turns. Distributions (in counts) of the turning locomotion 

strategies (step or spin turn strategy) in the 180° turns. LL = leading leg; TL = trailing leg. T1 (light grey), T2 

(medium grey), T3 (grey), and T4 (dark grey) represent the test sessions of the ACL group. The cross-striped bars 

indicate the distributions of the control group. 

Gait Velocities 

90° Turns 

Gait velocities increased in the step turn and the spin turn strategy from T1 to T4. The 90° step 

turns were performed with a mean gait velocity of 4.26 km/h, if the injured/reconstructed legs acted as 

leading legs and with a mean gait velocity of 3.97 km/h, if the non-injured legs acted as leading legs at 

T1. The gait velocities increased up to 4.71 km/h (leading leg injured/reconstructed) and 4.99 km/h 

(leading leg non-injured) at T4. The CG performed the 90° step turns slightly slower, with gait velocities 

ranging in average between 4.52 km/h (leading legs non-dominant) and 4.50 km/h (leading legs 

dominant). 

If the 90° turns were performed with the spin turn strategy, average gait velocities of 4.43 km/h 

(leading legs injured/reconstructed) and 4.09 km/h (leading legs non-injured) were reached in the ACL 

group at T1. The gait velocities increased up to 4.49 km/h (leading legs injured/reconstructed) and 4.83 

km/h (leading legs non-injured) at T4. The CG showed in the 90° spin turns slightly reduced mean gait 

velocities compared to the ACL group. The mean gait velocities of the CG ranged between 4.56 km/h 

(leading legs non-dominant) and 4.35 km/h (leading legs dominant). (Figure 30) 
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Figure 30. Mean Gait Velocities [km/h] with standard deviations of the 90° Turns. Test sessions T1 to T4 

represent the mean gait velocities with standard deviations of the ACL group and the control group (CG), while 

performing the 90° turns with step (white bars) or spin (Black Bars). LL = leading leg; LL IN = Leading leg 

injured/reconstructed; LL NI = leading leg non-injured; LL ND = leading leg non-dominant; LL DO = leading 

leg dominant. 

180° Turns 

In the 180° turns, the gait velocities increased, as in the 90° turns, in the ACL group from T1 to 

T4 (Figure 31). Performing the 180° turns with the step turn strategy, the mean gait velocities ranged in 

the ACL group between 3.74 km/h (leading legs non-injured) and 4.02 km/h (leading legs 

injured/reconstructed) at T1. The gait velocities increased over the subsequent test sessions up to 4.55 

km/h (leading legs injured/reconstructed) and 4.45 km/h (leading legs non-injured) at T4. The CG 

performed the 180° step turns slightly higher mean gait velocity, ranging between 4.61 km/h (leading 

legs non-dominant) and 4.71 km/h (leading legs dominant). 

If the ACL group performed the 180° turns with the spin turn strategy, increases of the gait 

velocities were found similar as for the step turn strategy with increasing time after the ACL tears. The 

mean gait velocities of the ACL group ranged between 3.95 km/h (leading legs non-injured) and 4.12 

km/h (leading legs injured/reconstructed) at T1 and increased up to 4.43 km/h (leading legs non-injured) 

and 4.58 km/h (leading legs injured/reconstructed) at T4. Accordingly, the CG performed the 180° spin 

turns with mean gait velocities, ranging between 4.19 km/h (leading legs dominant) and 4.39 km/h 

(leading legs non-dominant). 
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Figure 31. Mean gait velocities [km/h] with standard deviations of the 180° turns. Test sessions T1 to T4 

represent the gait velocities of the ACL group. CG the gait velocities of the control group. LL = leading leg; TL = 

trailing leg; LL IN = Leading leg injured/reconstructed; LL NI = leading leg non-injured; LL ND = leading leg 

non-dominant; LL DO = leading leg dominant. 

Ground Contact Times 

90° Turns 

Considerations of the mean ground contact times showed a relative homogenous pattern in the 

ACL group, especially at T3 and T4 and in the CG (Figure 32). At these test sessions, the mean ground 

contact times of the leading and the trailing legs ranged between 700 ms and 800 ms. However, 

tendencies of prolonged ground contact times were found in the trailing leg at T1, performing the step 

turn strategy, independently if the injured/reconstructed or non-injured leg acted as trailing leg. 

Furthermore, prolonged ground contact times of the trailing legs were found at T2, performing the spin 

turn strategy. Additionally, it appeared that the ground contact times were slightly reduced during the 

performance of the step turn strategy compared to the spin turn strategy in the leading and trailing legs 

in the ACL group from T2 to T4 and as well in the CG. 
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Figure 32. Mean ground contact times (GCT) in milliseconds [ms] with standard deviations of the 90° turns. 
Test sessions T1 to T4 represent the GCTs of the ACL group. CG the GCTs of the control group. LL = leading leg; 

TL = trailing leg; LL IN = Leading leg injured/reconstructed; LL NI = leading leg non-injured; LL ND = leading 

leg non-dominant; LL DO = leading leg dominant. Red framed bars and red letters indicate the 

injured/reconstructed legs.  

180° Turns 

In the 180° turns, tendencies of prolonged mean ground contact times appeared, performing the 

step turn strategy at T1 and T2 (Figure 33). Afterwards, in contrast, the ground contact times showed 

more homogenous characteristics with lower variances at T3 and T4. However, across all test sessions 

and both turning strategies, it was found that the mean ground contact times of the leading legs appeared 

to be reduced performing the step turn strategy than the spin turn strategy. It appeared that the mean 

ground contact times of the trailing legs were prolonged, performing the step turn strategy at T4. The 

CG showed in the 180° turns lower mean ground contact times in the leading legs, performing the step 

turn strategy compared to the spin turn strategy. The mean ground contact times of the trailing legs 

appeared to be on the same level in the step as in the spin turn strategy in the CG. 
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Figure 33. Ground contact times (GCT) in milliseconds [ms] with standard deviations of the 180° turns. Test 

sessions T1 to T4 represent the GCTs of the ACL group. CG the GCTs of the control group. LL = leading leg; TL 

= trailing leg; LL IN = Leading leg injured; LL NI = leading leg non-injured; LL ND = leading leg non-dominant; 

LL DO = leading leg dominant. Red framed bars indicate the injured/reconstructed legs. 
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Kinematics 

General Findings 

The descriptive analyses of the sagittal plane kinematics were focused on distinctive features in 

relation to peak knee flexion angles in the early stance up to 50% of the stance phase as well as in the 

late mid-stance phase. An exemplary illustration of a knee flexion angle curve over the stance phase is 

presented in Figure 34. 

 
Figure 34. Knee Flexion Angles of the Injured/Reconstructed Legs in the 90° Step Turns. Mean graphs of the 

knee flexion angles of the injured/reconstructed legs of the ACL group acting as leading legs in the 90° step turns. 

The knee flexion angles of the injured/reconstructed legs were compared to the non-dominant legs of the control 

group (CG). T1 is illustrated by the magenta-colored line, T2 by the red-colored line, T3 by the blue-colored line, 

and T4 by the green-colored line. The black-colored line represents the knee flexion curve of the CG. Shaded areas 

represent the standard deviations. Positive values indicate knee flexion angles, negative values indicate knee 

extension angles. The blue box illustrates the early stance phase up to 50% of the stance phase. The green box 

illustrates the terminal phase (According to PERRY et al. 2003). 

Increased knee flexions appeared in 50% of all analyzed turning locomotion conditions. These 

occurred over the whole stance phase or pronounced in the early stance phase up to 50% of the stance 

phase. These increased knee flexions appeared in the injured/reconstructed and non-injured legs and 

when acting as leading or trailing legs. Furthermore, these increased knee flexions showed tendencies 

to appear in the ACL group at all test sessions compared to the CG. The tendencies of kinematic 

adaptations are described in detail, according to their various specific characteristics. 
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In particular, the ACL group subjects showed tendencies of increased knee flexions over the whole 

stance phase at all test session, in the: 

- Injured legs, acting as trailing legs in 90° step turns and the 180° step turns. (Figure 

37 Appendix 10.8) 

Tendencies of increased knee flexions were found in the ACL group subjects in the early stance phase 

up to 50% of the stance phase, but not in the terminal phase, at all test sessions, in the: 

- Injured legs, acting as leading and trailing legs in 90° spin turns. (Figure 38 Appendix 

10.8) 

- Non-Injured legs, acting as leading legs and trailing legs in 90° step turns (Figure 39 

Appendix 10.8). 

- Non-Injured legs, acting as leading and trailing legs in the 90° spin turns (Figure 40 

Appendix 10.8). 

Furthermore, the ACL group showed tendencies of increased knee flexions over the whole stance phase 

from T1 to T3, which diminished up to T4 compared to the CG. These characteristics were found in the: 

- Injured legs, acting as leading legs in 90° and 180° step turns (Figure 41 Appendix 

10.9). 

- Injured legs, acting as trailing legs in the 180° spin turns (Figure 42 Appendix 10.9).  

The remaining analyzed turning locomotion conditions showed a congruent course of knee flexion over 

the whole stance phase at all test sessions compared to the CG: 

- Non-injured legs, acting as leading and trailing legs in 180° step turns. (Figure 43 

Appendix 10.10) 

- Non-injured legs, acting as leading and trailing legs in 180° spin turns. (Figure 44 

Appendix 10.10) 

- Injured legs, acting as leading legs in 180° spin turns. (Figure 45 Appendix 10.10) 

According to the presented overview of the kinematic findings, some results are, subsequently, described 

in detail. Especially, these results, wherein tendencies of functional adaptations appeared in the ACL 

group at all four tests sessions compared to the CG. This detailed analyses were divided, on the one side 

in the adaptations of the injured/reconstructed leg and on the other side in the adaptations of the non-

injured leg.  
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Tendencies of Increased Knee Flexions at all Test Sessions 

Injured/Reconstructed Legs  

The ACL group showed tendencies of kinematic adaptations in the injured/reconstructed legs, 

when acting as leading legs, in the 90° spin turns, at all test sessions compared to the CG. Furthermore, 

tendencies of kinematic adaptations occurred in the injured/reconstructed legs, when acting as trailing 

legs in the 90° and 180° step turns and the 90° spin turns. 

In the 90° and 180° step turns, increased knee flexions occurred in the trailing legs over the 

whole stance phase. Specifically, the ACL group subjects showed in the injured/reconstructed legs, 

acting as trailing legs, mean peak knee flexion angles in the early stance phase, which ranged from 22.8° 

to 29.4° from T1 to T3. At T4, the mean peak flexion angles appeared to be 27.2° in the 90° step turns 

and 22.7° in the 180° step turns. These knee flexion angles tended to be increased compared to the non-

dominant legs, acting as trailing legs, in the CG (90° step turn: 18.4°; 180 step turn: 22.7°). Additionally, 

mean peak knee flexion angles in the terminal stance phase ranged in the injured/reconstructed legs of 

the ACL group in both turning conditions from 14.2° to 21.9° from T1 to T3. At T4, the mean peak knee 

flexion angles showed the lowest mean knee flexion angles of all test sessions in the 90° step turns 

(13.9°) and the 180° step turns (16.0°). However, these knee angles remained on a higher level as the 

mean peak knee flexion angles detected in the CG (90° step turn: 8.6°; 180° step turn: 10.5°). (Table 6; 

Figure 37 Appendix 10.8) 

In the 90° spin turns, tendencies of increased knee flexions occurred in the early stance phase 

up to 50% of the stance phase at all test sessions, equally if the injured/reconstructed legs acted as 

leading or as trailing legs. In contrast, in the late terminal stance phase, no mentionable differences of 

the mean knee flexion angles were found. The analyses of the leading leg situations in the early stance 

phase revealed tendencies of increased mean peak knee flexions, ranging from 31.5° (T1) to 39.9° (T3) 

and 36.3° (T4). These mean peak knee flexion angles occurred to be increased compared to the non-

dominant legs of the CG (26.5°). In the trailing legs, the mean peak knee flexion angles of the early 

stance phase ranged from 38.9° (T1) to 44.9° (T3) and 36.1° (T4), which tended to be increased 

compared to the CG (25.2°). (Table 6; Figure 38 Appendix 10.8) 

Non-Injured Legs 

Additionally, tendencies of kinematic adaptations occurred in the non-injured legs during 

turning locomotion at all test sessions compared to the CG. These appeared in the ACL group in the 90° 

step turns and in the 90° spin turns, in the leading and trailing legs. Specifically, these kinematic 

adaptations occurred in the early stance phase up to 50% of the stance phase, but not in the terminal 

stance phase.  
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In the 90° step turns, the mean peak knee flexion of the leading legs ranged from 21.7° (T1) to 

28.9° (T2) and 26.6° (T4). These appeared to be increased compared to the dominant legs of the CG 

(20.9°), acting as leading legs. Additionally, the mean peak knee flexion angles of the trailing legs 

ranged from 26.8° (T1) to 25.0° (T3) and 23.8° (T4). These knee flexion angles appeared to be increased 

compared to the trailing legs of the CG (19.8°) in the 90° step turns. (Table 6; Figure 39 Appendix 10.8) 

In the 90° spin turns, the mean peak knee flexion of the trailing legs ranged from 33.4° (T1) to 

41.6° (T3) and 31.9° (T4). These appeared to be increased compared to the dominant legs of the CG 

(21.9°), when acting as leading legs. Additionally, the mean peak knee flexion angles of the trailing legs 

ranged from 34.9° (T1) to 39.6° (T3) and 40.5° (T4). These knee flexion angles appeared to be increased 

compared to the trailing legs of the CG (25.2) in the 90° spin turns. (Table 6; Figures 40 Appendix 10.8) 

Tendencies of Increased Knee Flexion from T1 to T3 

Besides the described adaptations, which occurred at all test sessions, there occurred three 

turning locomotion conditions, wherein tendencies of increased knee flexion were detected over the 

entire stance phase from T1 to T3. These increased knee flexions diminished at T4 and approached the 

level of the CG at T4. These phenomena were detected isolated in the injured legs, when acting as 

leading legs in the 90° and 180° step turns and when acting as trailing legs in the 180° spin turns. (Table 

6; Figures 41 and 42 Appendix 10.9) 

Tendencies of Equal Knee Flexions from T1 to T4 and Compared to the CG 

The analyses of the remaining turning locomotion conditions revealed homogeneous knee 

flexion angle courses over the whole stance phase in the ACL group at all test sessions and compared 

to the CG. These tendencies of unaffected sagittal kinematics appeared in the ACL group solely in the 

non-injured legs, in the leading and trailing legs. Therein, no increased knee flexion angles were found 

in the early stance or the terminal stance phase in the ACL group at all test sessions compared to the 

CG. (Table 6; Figures 43 to 45 Appendix 10.10). 

  



STUDY III 

 

 

 
103 

Table 6. Mean Knee Flexion Angles in the Early Stance and Terminal Stance Phase in the Analyzed Turning 

Locomotion Conditions. 

Turning Condition 
Stance 
Phase 

T1 T2 T3 T4 CG 

9
0

° 
S

te
p

 T
u

rn
 LL injured/reconstructed 

ES 26.2 (6.4) 26.6 (8.9) 25.5 (5.3) 22.2 (5.5) 22.3 (5.6) 

TS 17.7 (4.2) 21.2 (6.4) 15.6 (4.6) 9.7 (3.2) 9.9 (5.3) 

LL non-injured 
ES 21.7 (5.0) 28.9 (5.3) 26.2 (5.9) 26.6 (5.1) 20.9 (3.2) 

TS 8.9 (5.5) 10.3 (4.7) 9.2 (4.1) 9.3 (4.3) 7.3 (5.6) 

TL injured/reconstructed 
ES 22.8 (7.1) 29.4 (4.4) 25.0 (7.1) 27.2 (4.8) 18.6 (7.1) 

TS 16.0 (8.2) 20.3 (7.0) 14.2 (6.8) 13.9 (6.6) 8.5 (8.3) 

TL non-injured 
ES 26.8 (13.9) 26.6 (4.4) 25.0 (5.5) 23.8 (5.1) 19.8 (6.2) 

TS 11.6 (12.3) 9.1 (4.5) 8.8 (3.9) 8.2 (3.7) 8.5 (5.3) 

9
0

° 
S

p
in

 T
u

rn
 LL injured/reconstructed 

ES 32.3 (21.3)  33.4 (18.8) 39.9 (22.5) 36.3 (26.1) 26.5 (12.8) 

TS 17.5 (7.3) 18.2 (5.9) 18.5 (8.2) 11.4 (4.8) 12.6 (4.4) 

LL non-injured 
ES 33.4 (29.3) 28.5 (21.9) 41.6 (28.6) 31.9 (25.2) 21.9 (5.5) 

TS 8.5 (2.8) 8.0 (2.7) 10.2 (2.6) 8.4 (3.3) 9.7 (5.6) 

TL injured/reconstructed 
ES 38.9 (24.6) 34.3 (16.1) 44.9 (21.6) 36.1 (24.6) 25.2 (6.3) 

TS 17.5 (7.0) 18.2 (6.9) 15.8 (4.6) 11.2 (5.5) 10.9 (8.2) 

TL non-injured 
ES 34.9 (17.2) 35.7 (23.8) 39.6 (19.7) 40.5 (21.5) 26.8 (5.4) 

TS 8.1 (4.5) 8.8 (3.9) 9.8 (4.2) 8.3 (2.9) 8.3 (5.9) 

1
8

0
° 

S
te

p
 T

u
rn

 LL injured/reconstructed 
ES 27.0 (6.1) 30.9 (13.1) 26.4 (5.8) 24.3 (4.8) 26.4 (13.1) 

TS 18.9 (5.3) 18.4 (6.6) 17.9 (5.8) 12.6 (3.9) 13.0 (4.5) 

LL non-injured 
ES 22.5 (5.7) 27.5 (4.6) 25.6 (5.2) 25.8 (5.4) 23.7 (4.7) 

TS 10.8 (5.5) 11.7 (6.0) 8.8 (2.1) 10.7 (4.2) 10.8 (4.9) 

TL injured/reconstructed 
ES 24.7 (15.3) 26.8 (4.7) 23.0 (5.8) 22.7 (6.4) 18.7 (7.6) 

TS 20.4 (8.5) 21.9 (6.1) 17.0 (3.9) 16.0 (6.8) 10.5 (6.3) 

TL non-injured 
ES 20.8 (5.5) 28.0 (15.2) 22.6 (6.0) 22.5 (6.0) 30.1 (21.5) 

TS 13.4 (4.7) 12.7 (5.1) 12.9 (5.3) 11.7 (3.2) 12.2 (5.0) 

1
8

0
° 

S
p

in
 T

u
rn

 LL injured/reconstructed 
ES 23.4 (7.1) 30.4 (12.7) 23.4 (7.3) 22.8 (5.3) 21.7 (6.8) 

TS 16.2 (6.4) 22.1 (6.5) 16.3 (7.6) 16.6 (5.7) 14.6 (5.7) 

LL non-injured 
ES 24.4 (7.9) 25.2 (6.8) 31.4 (18.0) 23.9 (5.8) 21.5 (6.0) 

TS 14.0 (8.1) 16.5 (6.8) 14.5 (3.5) 14.1 (4.3) 13.4 (5.6) 

TL injured/reconstructed 
ES 25.4 (9.5) 27.4 (4.4) 27.0 (13.5) 23.3 (6.5) 23.6 (4.6) 

TS 17.1 (10.1) 22.7 (6.4) 14.1 (5.6) 15.9 (6.5) 11.4 (6.9) 

TL non-injured 
ES 24.7 (7.1) 25.6 (8.6) 24.9 (4.1) 24.4 (5.9) 22.5 (7.1) 

TS 8.7 (5.1) 9.7 (5.0) 11.7 (3.7) 7.6 (3.5) 11.8 (5.0) 

Mean peak flexion angles with standard deviations in brackets of the turning locomotion conditions. In the first 

column the analyzed turning locomotion condition is mentioned (LL = Leading leg; TL = Trailing leg). The second 

column presents the respective analyzed stance phases (ES=Early stance phase; TS = Terminal stance phase). 

The third (T1) to sixth column (T4) represents the mean peak flexion angles at ES or LMS of the ACL group at all 

test sessions. The latter column (CG) contains the mean peak knee flexion angles in ES and LMS of the Control 

Group. All values represent means in degrees [°]. Rows marked in red indicate the turning locomotion conditions 

with increased knee flexions compared to the CG at all test sessions. Rows marked yellow indicate turning 

locomotion conditions with increased knee flexions from T1 to T3, but balanced knee flexions compared to the CG 

at T4. Rows marked in green indicate the turning locomotion conditions with no stronger differences in the ACL 

group compared to the CG at all test sessions. 

Kinetics 

General Findings 

In the descriptive analyses of the sagittal plane kinetics, two main characteristics of the moment-

time curves emerged: firstly, moment-time curves, showing knee flexion moments in the early stance, 

which switched in the mid-stance phase to knee extension moments (Figure 35A). These characteristic 
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appeared in the leading and trailing legs of the step turns and in the trailing legs of the spin turns. The 

second emerging characteristic of the moment-time curves was characterized by appearing solely knee 

extension moments in a double-peaked pattern over the whole stance phase (Figure 35B). These 

characteristics of the moment over time curves, were determined solely for the spin turns in the leading 

legs.  

 

 
Figure 35. Exemplary Moment-Time Curves with Alternating Knee Flexion Moments in Early Stance and Knee 

Extension Moments in Terminal Stance (A) and Double-Peaked Pattern Knee Extension Moments (B). Herein, 

90° step turn locomotion performed with the injured/reconstructed legs as leading legs (A) and 90° spin turn 

locomotion performed with the non-injured legs as leading legs (B) are presented. Mean graphs of the knee 

moments normalized to bodyweight, of the injured/reconstructed legs of the ACL group at the four test sessions 

(T1 to T4) and the non-dominant legs of the control group (CG). T1 is illustrated by the magenta-colored line, T2 

by the red-colored line, T3 by the blue-colored line, and T4 by the green-colored line. The black-colored line 

illustrates the knee flexion course of the CG. Shaded areas represent the standard deviations. Positive values 

indicate knee flexion angles, negative values indicate knee extension angles.Positive values indicate knee extension 

moments, negative values indicate knee flexion moments. Shaded areas represent the standard deviations. In the 

left graph, the blue box illustrates the early stance phase, the green box the terminal stance phase (According to 

PERRY 2003). In the right graph, the grey box illustrates the first peak in the early stance phase and the black box 

illustrates the second peak in the terminal stance phase of the double-peaked moment-time curves, appearing in 

the leading legs of the spin turns. 

A 

B 
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Therefore, the analyses of the kinetics in the turning locomotion situations were focused on 

distinctive features in relation to peak knee flexion moments in the early stance phase as well as peak 

knee extension moments in the terminal stance phase in all step turn locomotion conditions and in the 

trailing leg situations of the spin turn strategy (Figure 35A). In the leading legs of the spin turns, the 

analyses were focused on both appearing peaks of the mean knee extension moment curves during the 

stance phase (Figure 35B).  

Besides the differed characteristics of the moment-time curves of the leading legs, in the spin 

turns compared to all other tested turning locomotion conditions, higher mean knee extension moments 

were detected in the leading legs of the spin turns. In the spin turns, mean peak knee extension moments 

appeared to be in the ACL group in average 1.8 Nm/kg BW (Range = 1.3-2.4 Nm/kg BW) in the early 

stance phase and 3.2 Nm/kg BW (Range = 2.7-4.3 Nm/kg BW) in the terminal stance phase at T4. This 

revealed increased mean knee extension moments in average of 29% in the early stance phase and of 

129% in the terminal stance phase in the leading legs during the spin turns compared to the peak mean 

knee extension moments detected in the leading and trailing legs in the step turns or the trailing legs in 

the spin turns. 

To reach the purpose to detect potential functional adaptation strategies in turning locomotion, 

the kinetic data were clustered according to specific characteristics of functional adaptations and 

according to kinematic findings previously detected. Generally, the subsequently described tendencies 

of kinetic adaptations were obtained in the leading and trailing legs in the tested turning locomotion 

conditions: 

- Tendencies of kinetic adaptations in turning locomotion conditions, showing also kinematic 

adaptations. 

- Tendencies of no kinetic adaptations in turning locomotion conditions, showing kinematic 

adaptations. 

- Tendencies of kinetic adaptations in turning locomotion conditions, showing no kinematic 

adaptations. 

- Tendencies of no kinetic adaptations in turning locomotion situations, showing also no 

kinematic adaptations. 

According to the presented overview of the kinetic findings, the results are, subsequently, 

described in detail. Therein, special focused lied on results, where tendencies of functional kinetic 

adaptations appeared in the ACL group at six months post-ACL reconstruction (T4) compared to the 

CG. 
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Kinetic Adaptations in Turning Locomotion Conditions, Showing also Kinematic Adaptations 

Overall, it was found that two thirds of the analyzed turning locomotion conditions, showing 

kinematic adaptations at all test sessions or in the first three test sessions, additionally, showed 

tendencies of kinetic adaptations at six months post-ACL reconstruction compared to the CG. These 

tendencies of kinetic adaptations occurred in both legs and appeared in the following turning locomotion 

conditions: 

- Injured legs, acting as leading legs in the 90° and 180° step turns. 

- Injured legs, acting as trailing legs in the 90° step turns and 90° spin turns. 

- Non-injured legs, acting as leading legs in the 90° step turns. 

- Non-injured legs, acting as trailing legs in the 90° and 180° spin turns. 

These listed turning locomotion conditions showed different characteristics of the sagittal knee moments 

in comparison to the CG. Therefore, the subsequent analysis was separated according to the detected 

characteristics of kinetic adaptation. 

Tendencies of kinetic functional adaptations appeared in increased knee flexion moments in the 

early stance phase accompanied by reduced knee extension moments in the terminal stance phase in the: 

- Injured legs, acting as leading and trailing legs in the 90° step turns (Figure 46; 

Appendix 10.11). 

- Non-injured legs, acting as trailing legs in the 180° spin turns (Figure 47; Appendix 

10.11). 

Therein, the ACL group subjects showed mean knee flexion moments in the early stance phase, ranging 

from 0.7 Nm/kg BW (Injured legs as trailing legs in 90° step turns) to 1.8 Nm/kg BW (Non-injured legs 

as trailing legs in 180° spin turns) at T4. These mean knee flexion moments were increased by 50% 

(Non-injured legs as trailing legs in 180° spin turns) to 250% (Injured legs as trailing legs in the 90° step 

turns) compared to the CG. The knee extension moments, acting in the terminal stance phase, ranged in 

the ACL group between 0.5 Nm/kg BW (Non-injured legs as trailing legs in 180° spin turns) and 1.3 

Nm/kg BW (Injured legs as trailing legs in 90° step turns) at T4. These mean knee extension moments 

were reduced by 33% (Injured legs as leading and trailing legs in the 90° step turns) to 45% (Non-injured 

legs as trailing legs in the 180° spin turns) compared to the CG. (Table 7; Figures 46 and 47 Appendix 

10.11) 

Furthermore, tendencies of kinetic adaptations occurred at T4 compared to the CG, in terms of 

no differences in the knee flexion moment in the early stance, but tendencies of increased knee extension 

moments in the terminal stance phase. These appeared in the following conditions: 

- Injured legs, acting as leading legs in the 180° step turns (Figure 48; Appendix 10.11). 

- Injured legs, acting as trailing legs in the 90° spin turns (Figure 49; Appendix 10.11). 
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- Non-injured legs, acting as leading legs in the 90° step turns (Figure 48; Appendix 

10.11). 

In these turning locomotion conditions the mean knee flexion moments in the early stance phase were 

on an equal level in the ACL group at T4 (Mean = 0.5 Nm/kg BW; Range = 0.4-0.6 Nm/kg BW) 

compared to the CG (Mean = 0.6 Nm/kg BW; Range = 0.4-0.8 Nm/kg BW). The mean knee extension 

moments in the terminal stance phase ranged from 1.6 Nm/kg BW (Injured legs as leading legs in the 

180° step turns) to 2.1 Nm/kg BW (Non-injured legs as leading legs in 90° step turns) in the ACL group 

at T4. These mean knee extension moments were increased compared to the CG by 33% (Injured legs 

as leading legs in the 180° step turns) to 54% (Injured legs, acting as trailing legs in the 90° spin turns). 

(Table 7; Figures 48 and 49, Appendix 10.11). 

Lastly, the non-injured legs, acting as trailing legs in the 90° spin turn showed yet another 

tendency of kinetic adaptations that were accompanied by kinematic adaptations at T4 compared to the 

CG. Therein, the ACL group subjects showed mean knee flexion moments of 0.7 Nm/kg BW and mean 

knee extension moments of 1.7 Nm/kg BW. These mean knee flexion moments in the early stance phase 

appeared to be increased compared to the CG by 250%. In the knee extension moments in the terminal 

stance phase, however, tendencies of no differences occurred in the ACL group at T4 compared to the 

CG. (Table 7; Figure 50, Appendix 10.11) 

No Kinetic Adaptations in Turning Locomotion Conditions, Showing Kinematic Adaptations 

There also occurred turning locomotion conditions, where no form of kinetic adaptations were 

found in the sagittal plane, although kinematic adaptations were found in these respective turning 

locomotion conditions. These phenomena occurred in the: 

- Injured legs, acting as leading legs in the 90° spin turns (Figure 52; Appendix 10.12). 

- Injured legs, acting as trailing legs in the 180° step turns (Figure: 51, Appendix 10.12) 

and the 180° spin turns (Figure 52, Appendix 10.12). 

- Non-injured legs, acting as trailing legs in the 90° step turns (Figure 51; Appendix 

10.12). 

Therein, mean knee flexion moments of the early stance phase appeared to be 1.5 Nm/kg BW in the 

ACL group at T4 and 1.6 Nm/kg BW in the CG. In the ACL group the mean knee flexion moments 

ranged between 0.9 Nm/kg BW (Non-injured legs as trailing legs in 90° step turns) and 1.8 Nm/kg BW 

(Injured legs as leading legs in the 90° spin turns). The mean knee extension moments in the terminal 

stance phase reached 1.8 Nm/kg BW in the ACL group at T4 and as well in the CG. The mean knee 

extension moments ranged between 0.7 Nm/kg BW (Injured legs as trailing legs in 180° step turns) and 

3.2 Nm/kg BW (Injured legs as leading legs in the 90° spin turns) in the ACL group at T4. (Table 7; 

Figures 51 and 52, Appendix 10.12) 
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Tendencies of Kinetic Adaptations in Turning Locomotion Conditions, Showing no Kinematic 

Adaptations 

Tendencies of kinetic adaptations were found in turning locomotion conditions, wherein the 

kinematic analyses revealed no tendencies of adaptations. These phenomena occurred solely in the 

leading legs in two spin turning conditions: 

- Injured legs, acting as leading legs in the 90° spin turns (Figure 53, Appendix 10.13). 

- Non-injured legs, acting as leading legs in the 180° spin turns (Figure 53, Appendix 

10.13). 

In one condition (Non-injured legs as leading legs in the 90° spin turns) both peaks of the mean extension 

moments (Peak 1 = 2.4 Nm/kg BW; Peak 2 = 4.3 Nm/kg BW) were increased in the ACL group at T4 

compared to the CG (Peak 1 = 1.9 Nm/kg BW; Peak 2 = 3.5 Nm/kg BW). In the other turning locomotion 

condition (Injured legs as leading legs in the 180° spin turns), both peaks of the mean knee extension 

moment curves (Peak 1 = 1.7 Nm/kg BW, Peak 2 = 2.7 Nm/kg BW) were reduced in the ACL group at 

T4 compared to the CG (Peak 1 = 3.0 Nm/kg BW; Peak 2 = 3.7 Nm/kg BW). (Table 7; Figure 53, 

Appendix 10.13). 

Tendencies of no Kinetic Adaptations in Turning Locomotion Conditions, Showing also no 

Kinematic Adaptations 

The last group of turning locomotion conditions is gathered under the finding that, besides the 

analyses of the kinematics revealed no tendencies of adaptations, the analyses of the kinetics also 

revealed no tendencies of adaptations in the ACL group at T4 compared to the CG. These findings 

appeared solely in the non-injured legs, when: 

- Acting as leading legs in the 180° step turns (Figure 54, Appendix 10.14) and the 180° 

spin turns (Figure 55 Appendix 10.14). 

- Acting as trailing legs in the 180° step turns (Figure 54 Appendix 10.14). 

In detail, in both step turn locomotion conditions, mean knee flexion moments in the early stance phase 

reached 0.8 Nm/kg BW in the ACL group at T4. The same mean knee flexion moments were detected 

in the CG in the early stance phase. The mean knee extension moments in the terminal stance phase 

reached 1.9 Nm/kg BW in the leading legs and 1.2 Nm/kg BW in the trailing legs of the 180° step turns. 

Accordingly, the CG showed mean knee extension moments on a similar level (leading legs: 1.7 Nm/kg 

BW; trailing legs: 1.4 Nm/kg BW). In the 180° spin turn locomotion conditions, both peaks of the mean 

knee extension moments curves were on an equal level between the ACL group at T4 and the CG. The 

first peak appeared to be 1.3 Nm/kg BW in the ACL group as in the CG. The second peak reached 2.7 
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Nm/kg BW in the ACL group and 2.9 Nm/kg BW in the CG. (Table 7; Figures 54 and 55, Appendix 

10.14). 

Table 7. Results of the Mean Knee Flexion Moments (MKF) and the Mean Knee Extension Moments (MKE) in 

the Analyzed Turning Locomotion Conditions in the ACL Group and the Control Group. 

Turning Condition Moments T1 T2 T3 T4 CG 
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rn
 LL injured/reconstructed 

MKF 0.7 (1.0) 0.9 (1.1) 1.5 (1.5) 1.0 (1.4) 0.5 (1.0) 

MKE 1.6 (1.7) 1.6 (1.0) 1.0 (1.8) 1.2 (1.3) 1.8 (1.3) 

LL non-injured 
MKF 0.7 (1.0) 0.8 (0.8) 0.5 (0.6) 0.6 (0.9) 0.4 (1.1) 

MKE 1.5 (1.2) 1.6 (0.6) 1.6 (1.4) 2.1 (1.1) 1.5 (1.5) 

TL injured/reconstructed 
MKF 0.5 (0.7) 0.4 (0.5) 0.5 (1.0) 0.7 (1.1) 0.2 (0.1) 

MKE 1.8 (1.4) 2.1 (1.8) 1.6 (1.2) 1.3 (1.2) 1.9 (1.3) 

TL non-injured 
MKF 0.2 (0.9) 1.0 (1.0) 0.6 (0.6) 0.9 (0.8) 0.8 (0.9) 

MKE 1.6 (1.2) 1.5 (1.4) 1.8 (0.8) 1.4 (0.9) 1.2 (1.0) 
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 LL injured/reconstructed 

MKE1  2.5 (2.3) 2.3 (2.3) 1.7 (2.1) 1.9 (2.6) 

MKE2 2.6 (0.3) 3.8 (1.6) 3.5 (1.4) 3.2 (1.1) 3.4 (2.2) 

LL non-injured 
MKE1 1.2 (2.6) 2.8 (1.9) 1.6 (1.6) 2.4 (2.0) 1.9 (1.6) 

MKE2 2.8 (2.4) 4.2 (1.0) 3.5 (0.9) 4.3 (0.9) 3.5 (1.4) 

TL injured/reconstructed 
MKF 0.9 (0.6) 0.5 (0.7) 0.7 (0.5) 0.4 (0.4) 0.7 (0.7) 

MKE 1.0 (1.0) 2.4 (2.1) 1.3 (0.3) 1.9 (0.9) 1.3 (1.0) 

TL non-injured 
MKF 1.0 (0.5) 0.5 (0.4) 0.8 (0.6) 0.7 (0.7) 0.2 (0.4) 

MKE 1.1 (0.6) 2.1 (0.6) 1.7 (0.7) 1.6 (0.6) 1.9 (1.8) 
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 LL injured/reconstructed 
MKF 0.9 (0.9) 1.6 (1.3) 0.5 (0.5) 0.6 (0.7) 0.8 (1.1) 

MKE 1.2 (0.8) 1.7 (1.8) 1.7 (1.2) 1.6 (0.7) 1.2 (0.8) 

LL non-injured 
MKF 0.5 (0.7) 0.3 (0.7) 0.4 (0.4) 0.3 (0.3) 0.2 (0.5) 

MKE 1.1 (0.9) 1.5 (0.5) 1.9 (0.7) 1.9 (0.9) 1.7 (1.1) 

TL injured/reconstructed 
MKF 1.5 (1.8) 0.8 (1.0) 0.7 (0.9) 0.5 (0.7) 0.9 (1.0) 

MKE 0.8 (1.4) 0.6 (1.0) 1.4 (1.0) 1.3 (1.2) 1.3 (0.9) 

TL non-injured 
MKF 1.5 (1.4) 1.9 (1.7) 0.9 (1.0) 1.2 (0.9) 1.4 (1.5) 

MKE 0.8 (0.9) 0.5 (0.8) 1.0 (0.7) 0.7 (0.5) 0.8 (1.1) 
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LL injured/reconstructed 
MKE1 3.1 (2.1) 1.8 (2.0) 2.0 (2.5) 1.7 (1.4) 3.0 (1.8) 

MKE2 4.1 (1.2) 3.1 (1.4) 3.0 (1.6) 2.7 (1.1) 3.7 (2.0) 

LL non-injured 
MKE1  1.7 (2.2) 1.7 (2.5) 1.2 (2.4) 1.3 (2.2) 

MKE2 1.0 (1.4) 3.1 (1.7) 3.0 (2.1) 2.7 (1.9) 2.9 (2.2) 

TL injured/reconstructed MKF 3.2 (1.1) 1.7 (0.9) 1.7 (1.1) 2.2 (1.6) 2.2 (1.9) 

TL non-injured 
MKF 0.9 (0.6) 1.8 (0.7) 1.8 (1.0) 1.8 (0.7) 1.2 (0.9) 

MKE 1.1 (1.3) 0.3 (0.7) 0.3 (0.7) 0.5 (0.8) 0.9 (0.8) 

In the first column the analyzed turning locomotion condition is shown (LL = Leading leg; TL = Trailing leg). The 

second column presents the respective moments that acted throughout the stance phases (MKF = Knee flexion 

moment; MKE = Knee extension moment) in Newtons per bodyweight [N/kg BW] If solely knee extension moments 

with a double-peaked pattern acted over the stance phase, the first peak knee extension moment is indicated by 

MKE1 and the second peak mean extension moment by MKE2. The third (T1) to sixth column (T4) represents the 

mean peak flexion angles at ES or LMS of the ACL group at all test sessions. The latter column (CG) contains the 

mean peak knee flexion angles in ES and LMS of the Control Group. All values represent means in degrees [°]. 

Rows marked in red indicate the turning locomotion conditions with tendencies of kinetic adaptations in the ACL 

group at T4 compared to the CG, where also kinematic adaptations were found. Rows marked in orange indicate 

turning locomotion conditions with tendencies of kinetic adaptations in the ACL group at T4 compared to the CG, 

where no tendencies of kinematic adaptations were found. Rows marked yellow indicate turning locomotion 

conditions with no tendencies of kinetic adaptations in the ACL group at T4 compared to the CG, although 

tendencies of kinematic adaptations were found. Rows marked in green indicate the turning locomotion conditions 

with no tendencies of kinetic adaptations in the ACL group at T4 compared to the CG, where also no kinematic 

adaptations were detected. 
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7.5 Discussion 

The purpose of this study was to analyze potential functional adaptations in 90° and 180° turns 

in ACL reconstructed subjects from pre- up to six months post-ACL reconstruction and in comparison 

to a healthy CG. In order to determine functional adaptations during turning steps, general turning 

locomotion strategy, as well as sagittal plane kinematic and kinetic parameters were analyzed. 

In particular, it was examined, if the ACL tears and reconstructions generally affected the 

selection of the locomotion strategy (step or spin turn). Furthermore, if the knee flexion angles, the 

internal knee flexion moments and the internal knee extension moments showed tendencies of functional 

adaptations during the stance phase. 

Special focus was placed on the sagittal plane, due to previously described functional plane in 

ACL teared and reconstructed subjects in straight locomotion tasks (BERCHUCK et al. 1990; DEVITA et 

al. 1997; HOOPER et al. 2002; TIMONEY et al. 1993; WEXLER et al. 1998). These adaptations purposed 

to reduce loads to the reconstructed knee joints and were described beneficial short-term after the 

reconstruction (GARDINIER et al. 2012). However, mid- and long-term manifestations of unequal load 

situations could contribute to imbalances in the legs, which prospectively can result in an accelerated 

onset and progress of musculoskeletal disorders and chronic degenerative joint diseases (ALTMAN et al. 

1986; HURWITZ et al. 2000; SHARMA et al. 1998). This originates due to overloading of one leg and, 

thus, the inevitably load reduction of the contralateral leg.  

General Locomotion Strategy 

The analyses of the general locomotion strategies showed that the 90° and the 180° turns were 

performed more frequently with the step turn strategy than with the spin turn strategy in the ACL group 

at the test sessions and as well in the CG.  

Therefore, it appeared that the general locomotion was not strongly affected by the ACL tears 

and reconstructions. This was suggested, because a preference of the step turn strategy seems rather 

normal. As HASE & STEIN (1999) described that healthy subjects generally perform turns more often 

with a step turn strategy than with a spin turn strategy. General preference of the step turn strategy was 

assumed to originate in its easier performance and more stable realization (HASE & STEIN 1999). The 

easier and more stable characteristics of the step turn strategy is provided by a wider base of support, 

while changing the movement direction, compared to the spin turn strategy (HASE & STEIN 1999). 

Therewith, control of the COM is maintained easier during step turns (HASE & STEIN 1999), which was 

suggested as one major reason to prefer the step turn strategy over the spin turn strategy in the ACL 

group before and after reconstruction. Recovery of normal turning locomotion was also strengthened by 

the turning gait velocities and the mean ground contact times of the turning steps. Therein, the velocities 
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and ground contact times tended to be increased at T2, however, decreased up to T3 and T4 onto the 

level of the CG. 

Conspicuously, the ACL group acted in the 90° and 180° turns, in the step as in the spin turn 

strategy, more often with the injured/reconstructed legs as leading legs in all but one test session. This 

was an unexpected finding, as it was described that in the leading legs higher demands are required 

during turning locomotion compared to the trailing legs (HASE & STEIN 1999). Only in the 180° spin 

turns, the ACL group performed the turns more often with the non-injured legs as leading legs at the test 

session short-term after the reconstructions (T2). However, this characteristic diminished up to three 

(T3) and six (T4) months after ACL reconstruction, where the ACL group again acted more often with 

the injured/reconstructed legs as leading legs. 

However, the reduction to perform the 180° spin turns with the reconstructed legs as leading 

legs in the 180° spin turns at about seven weeks after reconstruction (T2) was suggested beneficial to 

reduce demands to the recently reconstructed ACL. This was assumed, because in the spin turn strategy 

demands to the leading legs are higher compared to the step turn strategy (HASE & STEIN 1999). These 

higher demands are defined by the fact that in the spin turn strategy the body spins on the leading legs, 

while simultaneously producing breaking forces (HASE & STEIN 1999). Furthermore, the orientation into 

the new direction of the turn is mainly conducted by an axial rotation of the leading legs (HASE & STEIN 

1999). Due to these higher demands to the leading legs, it was suggested beneficial to perform 180° spin 

turns more frequently with the non-injured legs as leading legs short- and mid-term after the 

reconstruction, instead of exposing the reconstructed legs to unbeneficial high demands. In contrast, the 

injured/reconstructed legs were used again more frequently as leading legs in the 180° spin turns at three 

and six months after reconstruction. Therefore, although higher demands are required of the leading legs 

(HASE & STEIN 1999), it did not seem to pose a general hindrance to use the injured/reconstructed legs 

as leading legs. Consequently, this could put the injured/reconstructed legs at higher risks to get 

overloaded in turning locomotion. However, activities of daily living, such as turning, do not to provoke 

loads comparable to high-intensity movements, as jumping. Therefore, it was suggested that the use of 

the injured/reconstructed legs as leading legs might not lead to any kind of unbeneficial symptoms that 

could induce a general prevention to perform 180° spin turns with the injured/reconstructed legs as 

leading legs. Nonetheless, the high repetition of daily locomotion tasks could accumulate slight 

overloading in single steps to high overloading at the end of the day. 

In conclusion, although the injured/reconstructed legs were used as leading legs and the ACL 

group subjects generally returned to a normal turning locomotion, it was assumed that the ACL 

reconstructed subjects have not fully recovered their turning locomotion up to six months post 

reconstruction. Therefore, analyses of the kinematics and kinetics were essential for deeper analyses of 

potential functional adaptations during turning locomotion. 
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Tendencies of Kinematic Adaptations 

The analyses of the sagittal kinematics revealed tendencies of kinematic adaptations in increased 

knee flexions in the early stance phase up to 50% of the stance phase or even over the entire stance 

phase. These appeared in half of all analyzed turning locomotion conditions and at all test sessions. 

These findings occurred in the injured/reconstructed and the non-injured legs and almost exclusively in 

the 90° step and spin turn conditions. Such generally increased knee flexions led to low knee flexion 

excursions in the sagittal plane over the whole stance phase. In three further conditions, deeper flexed 

knee joints appeared from T1 to T3 but recovered up to T4 onto the level of the CG.  

Such deep flexed knee joints throughout the stance phase were described to be caused by heavy 

intra-articular knee joint effusions, joint-tissue derangements, or muscle inhibitions due to pain, induced 

by the tear and the reconstruction (DEVITA et al. 1997; GARDINIER et al. 2012; KNOLL et al. 2004a; 

TORRY et al. 2000). Consequently, these symptoms can lead to increased hamstring activity and 

decreased quadriceps activity, which induces generally more flexed knee joint positions (CHILDS et al. 

2004; KNOLL et al. 2004a; TORRY et al. 2000). In line, increased knee flexion in the early stance was 

also described as potential adaptation strategy due to adaptations in the step prior to the turning step. 

This step is described as a complex and demanding situation, as meanwhile demands are required, which 

are similar to those of stopping movements (HASE & STEIN 1999; LYON & DAY 1997). Such demands 

require high stability of the knee joint, what, consequently is maintained by increased knee joint flexion. 

Furthermore, such bended knee positions during gait were also described in patients with knee OA 

(CHILDS et al. 2004). Consequently, these strategies seem to reduce stresses and loads to the 

reconstructed ACL and alongside seem to increase stability to the reconstructed knee joints by 

preventing pivoting movements in the knee joint with these stabilization strategies (BERCHUCK et al. 

1990; KNOLL et al. 2004a; WEXLER et al. 1999). 

Due to the beneficial function of these adaptations to reduce loads and increase stability to the 

knee joints, this adaptation strategy seems indicated in ACL injured and reconstructed subjects, 

especially short-term after the tear or the reconstruction. However, as these tendencies of kinematic 

adaptations only recovered in three conditions to the level of the healthy CG at six months after 

reconstruction, it was suggested that such kinematic adaptations bear the risk to manifest. As increased 

knee flexions also emerged in gait adaptations of individuals with knee osteoarthritis (CHILDS et al. 

2004), it may be of crucial interest to prevent manifestations of these adaptation strategies. This is 

underlined by the fact that it was assumed that such functional kinematic adaptation strategies in straight 

locomotion tasks should recover up to six months after reconstruction (DEVITA et al. 1997; KNOLL et al. 

2004b). 

In contrast, the kinematic analyses of the 180° step and spin turns revealed in all but one 

condition no kinematic differences in the ACL group at T4 compared to the CG. Resulting into the same 

general characteristics of the knee flexion courses and the same peak mean knee flexion angles in the 
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early stance and the late-mid stance phase between the ACL group and the CG. This was an oppositional 

finding compared to the increased knee flexions detected in the 90° turns.  

However, concordant to the analyses of the general locomotion strategy, it was concluded that, 

although some results could lead to the interpretation of full knee joint recovery, some other results 

showed still kinematic adaptations at six months after ACL reconstruction. This was an indication for a 

very task-specific and individual recovery of knee joint functionality after ACL reconstructions, because 

subjects showed, for instance, a recovered general locomotion strategy, but beyond functional 

adaptations in the knee joint kinematics. 

Tendencies of Kinetic Adaptations 

Besides tendencies of functional kinematic adaptations, there occurred also tendencies of kinetic 

adaptations. These appeared in terms of differed knee flexion and knee extension moments in the ACL 

group compared to the CG in both legs in the step turns and in the trailing legs of the spin turns. In the 

leading legs of the spin turns, a generally differed characteristic of the knee moments emerged, with 

exclusively acting knee extension moments over the whole stance phase. Therein, as well tendencies of 

kinetic adaptations occurred, alongside with generally higher detected peaks in the moment-time 

characteristics. Mean peak knee extension moments in the leading legs during the spin turns appeared 

to be increased up to 130%. As internal knee extension moments produce high stress to the implanted 

autograft (BERCHUCK et al. 1990; GARDINIER et al. 2012; ZABALA et al. 2013), the detected increase of 

the knee extension moments during spin turns could produce high stress to the implanted graft. 

Therefore, it was assumed unbenenficial to perform the spin turns with the injured/reconstructed legs as 

leading legs short- and mid-term after ACL reconstruction. However, as these knee extension moments 

lead to high tension in the thigh’s musculature, they could contribute to increase the knee joint stability 

to withstand the occurring loads to the leading legs, especially the axial rotational loads, in the 180° 

turns (HASE & STEIN 1999). In contrast, by stiffening the knee joint the rotational movement as the 

rotational loads are mainly transferred to and accepted by the adjacent joints, especially the hip joint 

(OBERLÄNDER et al. 2012). Consequently, this bears the risk to overload the hip joints (DEVITA et al. 

1992). As the characteristics of the mean knee extension moments appeared in the contralateral non-

injured legs as well as in the CG, it was assumed that these findings are no functional kinetic adaptation 

of the ACL reconstructed subjects, it rather seems to be a task-specificity of the sagittal kinetics in the 

leading legs during the performance of spin turns. 

Furthermore, specific kinetic adaptations of the trailing legs can occur due to the fact that in 

turning locomotion, movement velocity is slowed down in the turning steps performed by the leading 

legs (HASE & STEIN 1999). In the subsequent trailing steps, the velocity is increased again, which 

requires segmental accelerations in the lower limbs (HASE & STEIN 1999). These accelerations require 

inevitably high demands of the trailing legs. Such high acceleration demands tend to provoke higher 
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loads to the knee joint. Therefore, the subjects seemed to reduce stress to the reconstructed ACL by a 

deeper flexed knee joint position throughout the stance phase to withstand the higher loads by a 

concomitant activation of the quadriceps and hamstrings musculature (GARDINIER et al. 2012; TORRY 

et al. 2000).  

Generally, the kinetic adaptations were categorized, according to previously detected tendencies 

of kinematic adaptations. Therefore, tendencies of kinetic adaptations were detected in turning 

locomotion conditions, wherein also tendencies of kinematic adaptations were detected. Furthermore, 

tendencies of kinematic adaptations occurred in turning locomotion conditions, wherein no tendencies 

of kinematic adaptations occurred. Additionally, in some turning locomotion conditions no tendencies 

of kinetic adaptations occurred, although tendencies of kinematic adaptations were detected previously 

and, finally, turning locomotion conditions were found, wherein neither tendencies of kinetic 

adaptations nor tendencies of kinematic adaptations were found. 

In the largest part (nearly 50%) of all analyzed turning locomotion conditions, tendencies of 

kinetic adaptations were detected at six months post-reconstruction, wherein also tendencies of 

kinematic adaptations were found. These tendencies of kinetic adaptations appeared in comparison to 

the CG, in increased knee flexion moments in the early stance accompanied by reduced knee extension 

moments in the terminal stance, in equal knee flexion moments in the early stance accompanied by 

increased knee extension moments in the terminal stance, and in increased knee flexion moments in the 

early stance accompanied by equal knee extension moments in the terminal stance. 

The reductions of the knee extension moments support the suggestion of persistent reductions 

of quadriceps activations after ACL reconstruction to reduce loads to the implanted autograft and 

increase knee joint stability, as it was described in straight locomotion tasks (BERCHUCK et al. 1990; 

GARDINIER et al. 2012; WEXLER et al. 1998).  

Although, in most turning locomotion conditions combined functional kinetic and kinematic 

adaptations were found in the ACL group at T4 compared to the CG, it additionally appeared that 

functional kinetic adaptations can also occur with the absence of kinematic adaptations and vice versa. 

Furthermore, there appeared some turning locomotion conditions, wherein neither kinetic nor kinematic 

adaptations occurred in the ACL group at T4 compared to the CG. Alongside, tendencies of notable 

prolongations of the knee flexion moment phases and shortening of the knee extension moment phases 

were found at three and six months after reconstruction compared to the CG. Because a concomitant 

activity of the quadriceps and hamstrings musculature provides higher stability to the knee joint 

(GARDINIER et al. 2012; TORRY et al. 2000), the prolongation of acting knee flexion moments seem to 

be an additional adaptation strategy, aiming to increase the duration of knee flexion moments and 

therewith to shorten the duration of knee extension moments in the stance phase, resulting in load 

reductions to the reconstructed ACL. However, this bears the risk to overload adjacent joints, as the hip 

or ankle joints of the ipsilateral leg or the joints of the contralateral leg (OBERLÄNDER et al. 2012). 



STUDY III 

 

 

 
115 

Additionally, a general transformation of the locomotion process by changing the direction of the ground 

reaction force vectors could lead to higher risks of prospective injuries or deficiencies of the injured and 

non-injured legs (OBERLÄNDER et al. 2012). 

These kinetic findings underlined the complexity and variety of functional knee joint recovery 

in ACL reconstructed subjects, which ranged between clear tendencies of kinetic and kinematic 

adaptations and the full absence of any tendencies of kinetic and kinematic adaptations. This strengthens 

the conclusion of a highly task-specific and individually-centered recovery of knee joint functionality 

in ACL reconstructed subjects. Such heterogeneous functional adaptations after ACL tears were also 

described by GARDINIER et al. (2012). Therefore, it was assumed that the functional outcome might be 

highly associated by potential concomitant injuries, and/or an inadequate morphologic and functional 

recovery in the rehabilitation process. Therefore, adaptation of rehabilitation programs, according to 

individual functional deficiencies and task-specific deficiencies should be implemented in ACL 

rehabilitation. 

Conclusions and Practical Implications 

Depending on the descriptive analyses of the data of this study, it can be stated that ACL 

reconstructed subjects showed tendencies of functional kinematic and kinetic adaptations in the 

reconstructed leg even at three and at six months after the ACL reconstruction. Although, it was found 

that functional adaptations can show large individual variances, it was assumed that the general purpose 

of the detected functional kinematic and kinetic adaptations aimed to reduce loads to the injured and 

reconstructed knee joints in the performance of turns, similar as it was detected in straight locomotion 

tasks (BERCHUCK et al. 1990; GARDINIER et al. 2012; WEXLER et al. 1998). 

It appeared that these adaptations occurred in both, 90° and 180° turns, performed with the step 

and the spin turn strategy. However, the findings of this study revealed that the spin turn strategy in 

general seemed to be more disadvantageous and unbeneficial for ACL injured and reconstructed knee 

joints. This is due to the high internal knee extension moments detected in the leading legs in this turning 

strategy. Therefore, the practical implication of these results is to sensitize the ACL reconstructed 

subjects in avoiding the spin turn strategy and to encourage and train them to perform turns by applying 

the step turn strategy at least up to six months after ACL reconstruction.  

Furthermore, it was found that functional adaptations, in terms of increased knee flexions over 

the stance phase, also occurred in patients with knee osteoarthritis (CHILDS et al. 2004). Hence, the 

reduction of functional adaptations in ADLs is indicated to reduce onset and process of degenerative 

joint diseases, which are caused by an imbalanced or unfunctional loading of the knee joints during the 

movements (ANDRIACCHI & MÜNDERMANN 2006). The kinetic data of this study support these findings, 

as certain imbalanced loadings of the injured/reconstructed and non-injured knee joints have been 

detected in various characteristics in this study. 
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It was assumed that these functional adaptations have certain grades of specificity. In particular, 

the injured/reconstructed legs showed wide ranged standard deviations occurred for most of the 

kinematic and kinetic variables. In contrast, in the non-injured legs, reduced standard deviations 

appeared in the 90° and 180° turns compared to the injured/reconstructed legs. 

In association, as the general rehabilitation programs after ACL reconstructions are focused on 

maximizing neuromuscular and strength recovery aiming for a most likely return to pre-injury sports 

(WHITING & ZERNICKE 2008), the findings of this study additionally imply that exercises, specifically 

aiming to reduce imbalances in locomotion strategies of ADLs should also find inclusion in generally 

applied post-surgical rehabilitation programs. 

Limitations 

In this study, the ACL injured and reconstructed subjects could freely choose the respective 

locomotion strategy to perform the turns at each test session. Consequently, this led to a varying amount 

of subjects performed the same locomotion strategy at each test session, with only a little amount of 

subjects performing all turns with the same locomotion strategy over all four test sessions. The varying 

amount of subjects within a specific group, performing the same turn with the same turning strategy at 

a test session, led to limited generalization of the data. Due to this, additionally, no inferential statistics 

could be calculated, which reduced the level of statistical interpretation of the analyzed data. Therefore, 

in future studies more standardized study protocols should be conducted. 

Nonetheless, by the results and findings of this study, general and specific descriptions of 

potential functional adaptations due to ACL tears and subsequent ACL reconstructions, in non-straight 

locomotion tasks of daily life, here specifically of daily occurring turns, were described for the first time. 

This study, especially, the embedded methodological approach, as well as, the results and deduced 

findings, can provide the basis further investigations in the field of daily living activities. 
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 General Discussion, Summary, and Conclusions 

Due to the conducted research in the field of ACL reconstructions and rehabilitation, ACLs can 

get reconstructed successfully with high odds and a good rehabilitative outcome (IRELAND 2002). The 

level and progress of recovery, however, depends on a variety of concomitant circumstances, as potential 

concomitant injuries of other biological structures of the knee joint (BIEN & DUBUQUE 2015). Moreover, 

wide-spread individual functional adaptations and imbalances were detected in motions even long time 

after the injury (BIEN & DUBUQUE 2015; KOSTOGIANNIS et al. 2007; LOHMANDER et al. 2004). 

Manifested functional imbalances represent a crucial fact to accelerate the onset and progression of 

chronic degenerative diseases at the involved joint after an ACL tear (BIEN & DUBUQUE 2015; 

CASTANHARO et al. 2011; DE FONTENEY et al. 2014; DECKER et al. 2002; ERNST AL. 2000; ORISHIMO 

et al. 2010; PATERNO et al. 2007). In some cases people even had to generally reduce their activity level 

or suffered from a strong quality of life reduction after sustaining an ACL tear and a subsequent surgical 

reconstruction (KVIST et al. 2005; TE WIERKE et al. 2013). Others suffered from secondary ruptures of 

the ACL, injuries of the sound contralateral leg, or severe concomitant injuries (BIEN & DUBUQUE 2015; 

PATERNO et al. 2010; PINCZEWSKI et al. 2007; SALMON et al. 2005; WRIGHT et al. 2007). These 

concomitant circumstances and developments can highly influence the framework of adequate or 

inadequate functional knee joint rehabilitation. Consequently, a complete return to pre-injury sports is 

generally not achieved and the injury can lead to a decremental reduction of sports activities, recreational 

activities and the overall quality of life.  

Therefore, as the present thesis purposed, it is indicated to determine and examine functionality at 

various time points after ACL tear and reconstruction in the best possible comprehensive way. This 

approach aims to detect functional deficiencies or adaptations more individual and to deduce more 

adequate individual-based rehabilitation programs in relation to the subjects’ individual deficits. This 

more individualized rehabilitation programs of ACL reconstructed individuals aim to reach a better 

individual functional outcome (BIEN & DUBUQUE 2015; FITZGERALD et al. 2000; GARDINIER et al. 

2012; GUSTAVSSON et al. 2006; HEWETT et al. 2005; MANDELBAUM et al. 2005).  

A comprehensive determination of functional adaptations and deficits is enabled by 

comprehensive test batteries, which are applied at various time points. As different movements require 

a variety of demands to the locomotion system, it may not be sufficiently to determine functionality or, 

especially, return-to-sports criteria by one specific test (i.e. One leg jumps) or a specific movement class 

(i.e. different types of jumps, strength tests) at one specific time point after the ACL reconstruction 

(BIEN & DUBUQUE 2015; NARDUCCI et al. 2011). 

Hence, the present thesis purposed to add and provide important knowledge in terms of functional 

adaptations during the post-surgical half-year rehabilitation phase by a comprehensive test battery, 
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which combined (1) the determination of subjects’ self-administered evaluation of functionality, (2) the 

determination of functionality in functional clinical tests, (3) the determination of functionality in 

dynamic high-demanding tasks, and (4) the determination of functionality in activities and movements 

of daily life. To reach this purpose, results and findings of self-administered questionnaires and scores, 

specifically the Knee Injury and Osteoarthritis Outcomes Score (KOOS) and the Tegner Activity Score 

(TAS), two functional clinical tests (Knee ROM, Leg circumference), various functional performance 

tests (Counter movement jumps (CMJ), One leg jumps for distance (OLJ), isometric force tests), and 

the analyses of two daily, occurring turns (90° and 180° turns) were included in this thesis. The test-

specific developments over the rehabilitation cycle up to six months after ACL reconstruction are 

subsequently discussed, starting with the functional clinical tests, followed by the functional 

performance tests (FPTs), the activities of daily living (ADLs), and finalized by the injury related self-

concept of the subjects. 

8.1 Deficits in Functional Clinical Tests 

Functional clinical tests are applied to assess the functionality of a joint by passive physical 

examination of a joint or a structure’s function (HIRSCHMANN & MÜLLER 2015). Therefore, in this 

thesis, leg circumference measurements were conducted according to SØDERBERG et al. (1996) to 

generally measure potential atrophies of the thigh’s musculature. Furthermore, examination of passive 

ROM measurements of knee flexion and knee extension were conducted according to JANDA (2002) to 

assess potential impairments and limitations of the joint capsule. 

Passive knee joint ROM measurements are established in screening procedures of clinicians and 

therapists to determine knee joint functionality and before individuals can get released in pre-injury 

sports and activities (PETERSEN & ZANTOP 2013). In terms of knee joint functionality it was described 

that a recovery of the knee joint’s ROM is decisive for full recovery of the knee joint functionality in all 

dynamic movements (HEWETT et al. 2005; MAYR et al. 2004; WALDÉN et al. 2011). Furthermore, 

recovery of full knee joint ROM is essential for the prevention of early onset of degenerative joint 

diseases (MAYR et al. 2004). Thus, it is indicated to include ROM measurements in a comprehensive 

functional testing after ACL tears and reconstructions. 

The passive ROM measurements in the study of this thesis revealed ROM flexion deficits on a 

higher level than during passive knee extension situation. Moreover, the LSIs of knee flexion did not 

recover on the level of the CG up to six months after ACL reconstruction. Impaired knee joint ROMs 

were described recently in ACL reconstructed individuals short- and mid-term after the reconstruction 

(BIAU et al. 2006; HARNER et al. 1992; GOKELER et al. 2009; LI et al. 2011; ORISHIMO et al. 2010).  

The detected more pronounced deficit of the knee flexion ROM could be explained by an 

impaired function of the knee flexion musculature due to the removal of the semitendinosus and gracilis 
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tendon graft at the harvest site (MOHTADI et al. 2011). As these tendons add valuable work in the knee 

flexion force generation, removal of these tendon parts seem to lead to pronounced flexion deficits (BIAU 

et al. 2006). Nonetheless, despite no differences occurred in post-operative knee joint stability after 

reconstructing the torn ACL with a hamstring tendon (HT) or a bone patellar-tendon bone (BPTB) 

autograft, reconstructions with a HT autograft seemed to result in fewer post-surgical symptoms, 

especially in a reduction of knee pain (BIAU et al. 2006). However, knee joint ROM deficits were 

described in general as one predetermination for reduced functions of thigh’s flexion musculature and 

were also described as prerequisite for limitations of the knee joint during dynamic movements (HURLEY 

1997). As it was also found that the knee extension ROM was impaired, this led to the assumption that 

the knee joint capsule was still deficient at six months after ACL reconstruction. 

In conclusion, due to the ACL tear and the subsequent reconstruction the joint capsule was 

impaired in its function. This could be caused by knee joint swelling, joint tissue derangement, or muscle 

inhibition due to pain, which all together reduced the ROM of the knee joint (BIAU et al. 2006; HURLEY 

1997; KNOLL et al. 2004a; MAYR et al. 2004). Thus, in relation to the data of the underlying study, it 

was concluded that the knee joints were not fully recovered in their passive motion function compared 

to the CG at six months post-reconstruction. Therefore, this reduced knee joint function might 

predetermine deficiencies in dynamic movements or movement components, due to the knee joints 

function in maintaining and transmitting loads in low- and high-intensity locomotion tasks (HURLEY 

1997). 

Alongside, the atrophy of the thighs’ muscular bulks underlined that the femoral musculature 

showed in general an incomplete morphologic recovery at six months post-reconstruction. This thigh 

atrophy was described already and can be explained by the traumatic rupture, the subsequent 

neuromuscular changes in the injured leg, and the impaired knee joint capsule (HURLEY 1997; KNOLL 

et al. 2004a; MAYR et al. 2004; MCHUGH et al. 2002; THOMAS et al. 2016; LORENTZON et al. 1989). 

Therefore, out of the conducted functional clinical tests it was concluded that well morphologic 

prerequisites are essential for a symptom-free and safe return in pre-injury activities on a recreational or 

competitive level. Hence, from the viewpoint of the functional clinical tests, the ACL group of this study 

did not reach the functional clinical level of the CG at six months after ACL reconstruction. This 

incomplete recovery on a morphologic level, can inevitably lead to incomplete general functional 

recovery and as well result in higher predispositions of prospective impairments and chronic 

degenerative changes at the injured and reconstructed knee joint. 
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8.2 Reduced Functionality in Functional Performance Tests 

Overall applied tests to determine functionality in specific FPTs a general tendency was found, 

which was characterized as follows: The leg symmetry level dropped in all FPTs from the pre-

reconstruction test session to the test session at seven weeks after the ACL reconstruction under the level 

of the pre-reconstruction state. Afterwards, an increase of the leg symmetry was found in all applied 

functional tests. Nonetheless, the established leg symmetry level of 85% to 90%, which was considered 

relevant to declare full knee joint recovery and for a safe return in pre-injury sports on pre-injury level, 

especially in jumping tasks (BARBER et al. 1990; JURIS et al. 1997; GUSTAVSSON et al. 2006; 

ÖSTENBERG et al. 1998; RISBERG et al. 1995), was hardly reached in means of any analyzed parameter. 

The respective results of each applied FPT are subsequently discussed separately. 

Reconstructed Leg Deficiencies in One Leg Jumps for Distance 

OLJs for distance or the combination of various one-legged jumping tasks are the FPTs most 

frequently conducted and most widely accepted in studies determining functionality at various time 

points after the reconstruction and as criteria for determination of return-to-sports in ACL reconstructed 

subjects (ALMANGOUSH & HERRINGTON 2014; BARBER et al. 1990; ERNST et al. 2000; GUSTAVSSON 

et al. 2006; KVIST 2004; LENTZ et al. 2009; MYER et al. 2008; NARDUCCI et al. 2011; NOYES et al. 1991; 

RUDOLPH et al. 2000; TEGNER et al. 1986). Out of the conducted studies, LSIs of 85% (BARBER et al. 

1990; NOYES et al. 1989) to 90% (JURIS et al. 1997; PETSCHNIG et al. 1998; RISBERG et al. 1995) of the 

performance of the reconstructed legs compared to the performance of the non-injured legs have 

established as criteria for full recovered knee joint functionality and to release ACL reconstructed 

subjects back in pre-injury sports. This convention was deduced of studies by analyzing functionality in 

isolated or combined one-legged jumping tasks (BARBER et al. 1990; NOYES et al. 1991). 

Following the 85% or 90% convention, this thesis showed that the ACL group did not reach in 

average a jumping distance of at least 85% with the injured/reconstructed legs compared to the non-

injured legs, in the OLJs at none of the test sessions up to six months after ACL reconstruction. In 

average, the ACL group reached in the reconstructed legs only a jumping distance 75% compared to the 

non-injured legs at six months after ACL reconstruction. Although in average 85% could not get 

reached, some subjects reached even higher LSIs. Moreover, enhancement of the LSIs could get shown 

in the ACL group with increasing time after the ACL reconstruction up to six months post-

reconstruction. These findings indicated that the applied rehabilitation programs enhanced the level of 

functionality in OLJs with increasing time after the reconstruction, but not up to the level of a healthy 

CG. Due to the general acceptance of OLJs to determine functional recovery, this finding alone could 

have led to the suggestion that the knee joints of the ACL reconstructed subjects are not fully recovered 

in dynamic one-legged movements at six months after ACL reconstruction. 
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Besides the detected deficits in jumping distance, analyses of the LSIs of the acceleration 

impulse during take-off in the OLJs revealed further deficits in the leg functionality of the ACL group 

compared to the CG. These results underlined the findings of the jumping distance deficits in the ACL 

reconstructed subjects. Considering these results, again, an increase of the mean LSI of the acceleration 

impulse was detected in the ACL group. However, it remained significantly lower in the ACL group at 

six months post-reconstruction compared to the CG, although the ACL group reached an acceleration 

impulse of about 80% in the reconstructed leg compared to the non-injured leg. The CG reached nearly 

a balanced level of the acceleration impulses during take-off in the OLJs between the non-dominant and 

dominant legs. 

Both results implied that the ACL group of this study, could generally not reach the symmetry 

level of the healthy CG in the analyzed parameters of the OLJs. Furthermore, the symmetry level, which 

is established in literature as return-to-sports criteria or achievable functional recovery, could also not 

get reached (BARBER et al. 1990; JURIS et al. 1997; NOYES et al. 1989; PETSCHNIG et al. 1998; RISBERG 

et al. 1995). 

Therefore, as practical implication of the OLJ results, it was concluded that in relation to the 

jumping distance data, the ACL group subjects did not recover on a symmetry level as the healthy CG. 

Therefore, due to these functional adaptations, this might indicate that releasing the subjects on pre-

injury activity levels at six months post-reconstruction could bear high risks of prospective impairments, 

diseases and knee joint limitations. Nonetheless, some subjects reached even higher LSIs than the 

average scores of the ACL group, which provided a first indication that the functional rehabilitation did 

not follow a uniform course. Instead, it rather seemed that functional rehabilitation and recovery 

proceeded very individually, depending on concomitant injuries, age while tearing the ACL and 

adherence to the rehabilitation program. 

Reconstructed Leg Deficiencies in Bilateral Counter Movement Jumps 

The results and findings of the OLJs were underlined by the analyses of the bilateral CMJs. 

Moreover, the examination of the CMJs revealed results that supported the suggestion that the ACL 

reconstructed subjects did not reach the leg symmetry, the knee joint functionality and the performance 

level of matched healthy controls up to six months after ACL reconstruction. These findings confirmed 

the consideration that releasing the ACL reconstructed subjects to pre-injury activity level should not 

only depend on the time period after the reconstruction and functional clinical tests. Instead, it is 

recommended to include dynamic FPTs, to determine the level of dynamic knee joint functionality, in a 

return-to-sports decision at six months after ACL reconstruction. 

This assumption was deduced, because in the bilateral CMJs, it was found that the general 

performance parameter (jumping height) remained about 23% lower in the ACL group at six months 
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after reconstruction compared to the matched healthy CG, although an increase of the jumping height 

was found in the ACL group from seven weeks to six months after ACL reconstruction. 

Besides the overall reduced jumping heights in the ACL group, the deficiencies of the 

reconstructed legs in the analyses of the LSIs of the acceleration impulses during take-off and the 

deceleration impulses during landing appeared to be remarkable in the CMJs. The leg-to-leg deficits 

reached in the reconstructed legs in the acceleration impulse during take-off and the deceleration impulse 

during landing about 40% at six months after ACL reconstruction. Although, the LSIs of the acceleration 

and deceleration impulses increased over time after the ACL reconstruction, the ACL group showed 

remarkable deficits in the LSIs of the take-off and landing impulses compared to the CG. 

These results showed that there occurred strong shifts of loading to the non-injured leg, in terms 

of force generation, in the take-off situation and, in terms of load acceptance, in the landing situation 

during the bilateral movement of the CMJs. As a result, the main load during take-off and landing was 

generated and accepted by the non-injured legs. Interestingly, the shift of general loading during take-

off to the non-injured leg appeared to be appreciably higher during the CMJs than the deficit appeared 

in the isolated one-legged jumping situation during the OLJs. In the OLJs, where the subjects had to 

generate a one-legged take-off impulse for maximizing jumping distance, the reconstructed legs showed 

a take-off impulse deficit of about 20% at six months after reconstruction. In contrast, in the CMJ 

situation, where the main work is characterized by a simultaneous bilateral vertical take-off impulse, the 

ACL group subjects showed in the reconstructed leg a deficit of 40% in load generation in the take-off 

situation at six months after reconstruction, including an immense overloading of the non-injured leg. 

Therefore, these findings indicated that in bilateral movements the ACL group subjects showed strong 

functional adaptations in the CMJs at six months after reconstruction. This led to the assumption that 

these adaptation strategies could be one decisive factor to highly increase the risk of injuries of the sound 

contralateral leg. This was supported by the findings that load asymmetries in the legs during bilateral 

jumping are a crucial factor for an increased risk of injuries (ARENDT & GRIFFIN 2000; HERZOG et al. 

1989) and in healthy subjects, normally, none or only slight leg asymmetries exist in bilateral vertical 

jumping (STEPHENS et al. 2007). 

In conclusion, the presented data of the CMJs confirmed and supported the functional deficits 

found in the analyses of the OLJs. Even more, by the simultaneous separate analyses of both legs during 

the bilateral CMJs, it was found that during simultaneous bilateral movements the ACL reconstructed 

subjects showed a strong shift of load to the non-injured leg, which inevitably leads to severe 

overloading of the non-injured leg.  

Out of both jumping analyses it can be stated that the ACL group subjects did in average not 

recover on the functional level of the healthy CG subjects although an enhancement of the knee joint 

functionality was detected with increasing time after the ACL reconstruction. Therefore, due to the 

findings of the unilateral and bilateral jumping analyses it can be stated that it is not indicated to release 
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the ACL reconstructed subjects back to pre-injury sports and intensity level. Especially, in sports with 

high repetitions of jumping and landing situations, such strong shifts of load bear and increase the risk 

of prospective injuries or degenerative damage at the reconstructed and/or non-injured legs (ROOS 

2005).  

This led to the practical implication that further training programs are necessitated to increase 

the level of functionality in the reconstructed legs in sport-specific movements, as one-legged or bilateral 

jumping and, furthermore, functional testing over the rehabilitation cycle is essential to detect potentially 

pronounced functional deficits of the legs. By detecting specific data of functionality repetitively over 

the post-surgical rehabilitation cycle, a more-individualized adaptation of rehabilitation programs would 

be enabled. 

Reconstructed Leg Deficiencies in Isometric Force Tests 

Alongside to the before discussed findings of the jumping tasks, the examination of the 

maximum voluntary force generation under isometric conditions revealed, as well, reconstructed leg 

deficiencies in the ACL group compared to the healthy CG: These appeared to be on a comparable level 

or even more pronounced as the results of the jumping tests. Hence, these results further confirmed and 

strengthened the findings deduced from the jumping tests. 

As in the jumping tests, the LSIs of the mean force capabilities (peak voluntary force generation 

and peak rate of force developments) dropped clearly from pre- to post-reconstruction. Afterwards, the 

LSIs of the force capabilities enhanced with increasing time after the reconstruction. However, none of 

the LSIs of the analyzed parameters reached in average the level of the healthy CG. It was concluded 

that, in line with the deficits of the force generating and load compensation deficits under dynamic 

conditions, the force capabilities of the ACL reconstructed subjects, as representatives of isolated static 

force generation situations, did not reach the side-to-side level of the CG as well. In the CG, the side-

to-side ratio of the analyzed force components (Fmax, RFDmax, and RFD200max) of the legs was balanced 

or slightly increased, in favor of the non-dominant side. Moreover, these detected reconstructed leg 

deficits of the ACL group in this study appeared to be higher than those detected in previous studies, 

especially in the flexion condition (LENTZ et al. 2009; NEETER et al. 2006). 

The ACL group in this study showed reconstructed legs deficits compared to the non-injured 

legs, ranging in average between 42% and 51% in peak voluntary force generation (Fmax) during flexion 

and between 25% and 27% during extension condition at six months post-reconstruction (Table 11 

Appendix 10.7). In the RFDmax, reconstructed leg deficits ranged compared to the non-injured leg 

between 34% and 44% during flexion conditions and between 18% and 31% during extension conditions 

at six months post-reconstruction (Table 11 Appendix 10.7). Finally, in the RFD200max, reconstructed leg 

deficits compared to the non-injured legs ranged between 39% and 40% in flexion conditions and 

between 19% and 34% in extension conditions at six months after the ACL reconstruction (Table 11 
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Appendix 10.7). However, as the ACL group subjects were reconstructed with a HT autograft and they 

showed pronounced deficits in the knee flexion ROMs compared to the extension ROM deficits, it was 

plausible that in the isolated isometric flexion force generation more pronounced deficits occurred 

compared to the knee extension situation. 

Moreover, as the static circumference measurements of the thighs’ muscular bulks revealed 

pronounced morphologic side-to-side deficits of the thighs’ musculature in the ACL group and 

compared to the CG, the results of the isometric force tests led to the assumption that the force generating 

capabilities, which are mainly determined by neuromuscular components (HERZOG 2006), were 

deficient on a multi-modal level in the ACL group compared to the CG at six months after ACL 

reconstruction.  

Due to the fact that in sports fast movements, as sprint running and cutting, occur, which require 

rapid contraction times of 50 ms to 250 ms, recovery of the RFD up to the level of the healthy CG 

subjects seems absolutely relevant before indicating that an ACL reconstructed subject is fully recovered 

in force generating capabilities, which are essential for sports participation (AAGAARD et al. 2002; 

THOMAS et al. 2016). As the ACL group did not reach the side-to-side ratio of the CG in RFDmax and 

especially in RFD200max, which is realized during the initial 200ms of maximum voluntary contraction, 

it was assumed that in relation to the examination of the isometric force tests in this study, a return to 

pre-injury sports is in general not indicated at this time after the ACL reconstruction. This was 

concluded, because the muscular capabilities of the thigh did not recover on a morphologic (thigh 

circumference) and a force generating level (isometric force tests and impulse during jumping) as the 

healthy CG up to six months after ACL reconstruction. 

As the analyzed parameters of the dynamic FPTs also revealed clear deficits in the side-to-side 

ratio of the dynamic muscular capabilities in the ACL group compared to CG, it was concluded that the 

ACL group subjects showed in general clear functional deficiencies on a multi-modal muscular level 

(morphologically and in dynamic and static situations) compared to the CG in the conducted FPTs and 

the functional clinical tests at six months after ACL reconstruction. Therefore, it was suggested that 

more time is needed to recover static and dynamic force generating and load accepting muscular 

capabilities in ACL reconstructed subjects. Additionally, it was assumed that rehabilitation programs 

should be adapted more precisely and individually, according to persistent functional deficits. This 

should achieved by the standardized implementation of dynamic FPTs into post-surgical ACL 

rehabilitation. Summarized, by the results and findings of the functional clinical tests and the FPTs, it 

was stated that the ACL reconstructed subjects of this study did not recover their muscular capabilities 

up to six months after ACL reconstruction on a level to recommend release and participation in pre-

injury sports on pre-injury intensity level. 

Surely, these findings of functional adaptations are closely related to the examined FPTs. 

Nonetheless, as the muscular and neuromuscular capabilities can be detected by these static and dynamic 
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FPTs (ALEXANDER 2000; WANK & HEGER 2009) and because the jumping tasks represent movement 

components and types of movements, which are required in intense ADLs and, especially, in sports 

(WANK & HEGER 2009), these performance related results provide important knowledge about the state 

of the functional recovery of the knee joint and of the biological structures (e.g. musculature, tissue etc.) 

of the legs over the post-surgical rehabilitation process. 

These findings, moreover, led to the implication and recommendation to include functional 

testing in the post-surgical rehabilitation phase more standardized, to detect the individual deficits 

throughout the rehabilitation cycle more precisely, and to deduce more individual-based adaptations of 

the rehabilitation program. Specifically, pronounced deficits in the maximum strength capacities should 

be addressed by an increase of maximum strength and neuromuscular training programs. Distinct 

deficits of postural stability should be compensated by an increase of sensorimotor training. Deficits in 

complex high-demanding movements, as jumping, should be restored by a rehabilitation program that 

includes the relevant components of these movements. That is: maximum strength training of the legs, 

strength training of the whole body, agility training, and postural stability training in complex 

demanding movements, as landing, variations in training programs to adapt the neuromuscular systems 

to a complex variety of demanding tasks again. This approach was motivated due to the fact that wide 

ranges of the state of morphologic recovery and the state of the recovery of the functional performance 

level were detected at the different test sessions of this study. 

8.3 Tendencies of Functional Adaptations in Daily Occurring Turns 

The analyses of the 90° and 180° turns, as representatives of daily occurring turns, revealed in 

terms of the general locomotion strategy that the majority of the subjects showed generally locomotion 

strategies as healthy subjects before and after the ACL reconstruction. In particular, the ACL group 

subjects performed more often the step than the spin turn strategy in both 90° and 180° turns at nearly 

all test sessions. As healthy individuals also perform turns more often with a step turn strategy (HASE & 

STEIN 1999; KRAFFT et al. 2015), the detected locomotion pattern was considered normal in the ACL 

group. Thus, it seemed that the ACL tear had no general influence in the selection of the general turning 

locomotion strategy. These findings were underlined by the fact that, generally, the ACL group 

performed both turns more often with the injured/reconstructed legs as leading legs. Due to the fact that 

the leading leg has to accept higher demands during the turning process (HASE & STEIN 1999; KRAFFT 

et al. 2015), contrary results were expected. However, these unexpected findings showed that the ACL 

group could withstand the general demands required to the injured/reconstructed leg in its function as 

leading leg and did not lead to any general avoidance strategy to expose the injured/reconstructed legs 

to the demands of the leading leg situations. 
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Nonetheless, it was assumed that the ACL injured/reconstructed subjects would show kinematic 

and kinetic adaptation processes during turning gait due to the ACL tears and reconstructions, as it was 

described during straight locomotion tasks of daily life (BERCHUCK et al.1990; GARDINIER et al. 2012; 

GEORGOULIS et al. 2003; WEXLER et al. 1998). 

Sagittal plane adaptations during the locomotion process were found on a kinematic as well as 

on a kinetic level. Furthermore, some adaptations were obvious even at six months after ACL 

reconstructions and some diminished with increasing time after the reconstruction. 

In particular, the ACL group subjects showed in the analyzed kinematic parameters tendencies 

of functional adaptations, in terms of generally deeper flexed knee joint positions throughout the stance 

phase. These deeper flexed knee joint positions were found in the injured/reconstructed and non-injured 

legs and appeared in the early stance up to 50% of the stance phase and over the whole stance phase 

while performing the step turn strategy and the spin turn strategy. These deeper flexed knee joint 

positions not only appeared in the test sessions seven weeks after the tears and seven weeks after the 

reconstructions. These were also found at three and six months after reconstruction compared to the CG. 

Thus, the ACL group showed in turning locomotion, tendencies of similar kinematic adaptation 

strategies as detected in straight locomotion tasks, wherein also higher knee flexion were found, aiming 

to reduce stress to the reconstructed autograft and to provide and increase stability to the injured and 

reconstructed knee joint during straight (BERCHUCK et al. 1990; GARDINIER et al. 2012; KNOLL et al. 

2004a; TORRY et al. 2000; WEXLER et al. 1998). Due to the findings of studies investigating straight 

locomotion tasks (BERCHUCK et al. 1990; GARDINIER et al. 2012; KNOLL et al. 2004a; TORRY et al. 

2000; WEXLER et al. 1998), these adaptation strategies seemed beneficial in the short- and mid-term 

rehabilitation phase after the ACL reconstruction.  

Inconsistently, in some turning conditions the kinematics recovered onto the level of the healthy 

CG or showed no tendencies of kinematic adaptations at all test sessions. These findings revealed that 

the ACL reconstructed subjects showed an ambiguous recovery of the kinematics in turning gait. 

However, if the detected functional kinematic adaptations, existing at six months after reconstruction, 

would persist longer, they could bear the risk to manifest. Manifestations of these functional adaptations 

could change the performance in the respective locomotion tasks in general, which could increase the 

risk of musculoskeletal disorders and diseases (ANDRIACCHI & MÜNDERMANN 2006). 

These tendencies of kinematic adaptations were underlined by the analyses of the sagittal plane 

kinetics. Therein, tendencies of functional adaptations were detected in turning locomotion conditions, 

where accompanied tendencies of kinematic adaptations were detected or where no tendencies of 

functional kinematic adaptations occurred. However, as no general pattern could have been detected, it 

seemed that there rather existed task-specific and individual kinetic adaptations, according to the 

recovery process of the knee joint. Such a task-specific individual course of the rehabilitation was 

assumed due to described individually varying adherence to post-surgical rehabilitation, differing 
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individual influence in the extent of potential concomitant injuries of other biological structures on the 

rehabilitative functional outcome (MYKLEBUST & BAHR 2005) and due to the fact that, generally, task-

specific training effects occur in healthy subjects (AAGAARD et al. 1996; GIBOIN et al. 2015; KRAEMER 

et al. 2002). These findings led to the implication that task-specific adaptations and individual 

compliance to specific rehabilitation exercises exist in ACL teared and reconstructed subjects, which 

might highly influence the rehabilitative outcome. 

As stated earlier, no general pattern of kinetic adaptations could be found according to the 

turning locomotion task and the turning locomotion strategy. Therefore, a variety of kinetic adaptations 

appeared, with rather increased knee flexion loads, decreased knee extension loads, and increased time 

of acting knee flexion moments in the 90° step turns at six months after reconstruction. These adaptation 

characteristics appeared as well in the injured/reconstructed legs, acting as leading legs in 180° step 

turns. Additionally, tendencies of functional kinetic adaptations in the spin turns were detected, which 

appeared to be very heterogeneous. However, the most remarkable finding in the spin turns was that 

exclusively knee extension moments appeared in the leading legs. These appeared to be increased up to 

130% compared to the mean peak knee extension moments in the step turns. Due to the described 

negative influence of high knee extension moments, producing high stress to the implanted autograft 

(BERCHUCK et al. 1990; GARDINIER et al. 2012; KNOLL et al. 2004a; TORRY et al. 2000; WEXLER et al. 

1998), this turning locomotion strategy was considered unbeneficial short- and mid-term after ACL 

reconstruction. 

These summarized results showed that there was limited access in generalization of sagittal 

kinematics and kinetics in turning locomotion tasks. However, the results showed that individually 

distinct functional adaptations in the sagittal plane occurred on a kinematic and a kinetic level. Despite 

the methodological limitations of this study, the data revealed tendencies, which gave the implication 

that task-specific individual functional adaptations occurred on a kinematic and kinetic level even at six 

months after ACL reconstruction. Due to the fact that in the spin turns the leading legs had to withstand 

more than twice the load compared to the leading legs in the step turns, rehabilitation of normal turning 

locomotion should consider to generally avoid the spin turn strategy to reduce unbeneficial loads to knee 

joints of ACL reconstructed subjects. 

In conclusion, due to the turning gait analyses in the ACL group and the CG, it seems essential 

in the post-reconstructive rehabilitation process to include exercises to recover normal movement 

locomotion behavior in sport-specific movements and, especially, as well in daily occurring movements. 

This purposes to help to recover normal locomotion behavior and, additionally, to reduce misbalanced 

kinematics and kinetics in the reconstructed knee joint. As ADLs occur with a great variety multiple 

times in daily life, manifestations of functional adaptations in these movements or movement 

components, on a kinematic or kinetic level, would highly increase misloading situations in the legs 

(ANDRIACCHI & MÜNDERMANN 2006; GEORGOULIS et al. 2003). Therefore, movement locomotion 
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exercises to recover normal movement behaviors seem equally important as the recovery of muscular 

and neuromuscular capabilities by strength and conditioning exercises. 

8.4 Reduced Injury Related Self-Concept 

The before-discussed findings of the functional clinical tests, the dynamic and static FPTs, and 

the analyses of the ADL turn walking underlined that reconstructed leg deficiencies occurred on a multi-

modal functional level along with locomotion adaptations up to six months after ACL reconstruction. 

As the post-reconstructive rehabilitation program mainly aimed to recover muscular and neuromuscular 

capacities of the knee joint and the injured leg (WHITING & ZERNICKE 2008), it has shown that, although 

the muscular functionality of the legs enhanced with increasing time after the reconstruction, 

deficiencies occurred pronounced in the individual side-to side differences of the legs and compared to 

the CG even at six months after reconstruction. This showed that the applied rehabilitation programs 

positively influenced functional recovery, however, it seemed that these recovery processes follow 

rather an individual task-specific than a uniform progression. 

Of course, the recovery of strength capabilities, in general, is important for the recovery of the 

functionality after ACL tears and reconstructions to regain functionality and stability of the knee joint 

(KEAYS et al. 2003). Nonetheless, rehabilitation programs should not only focus on the recovery of 

strength capabilities, because there exists one important factor, which can strongly influence a negative 

or unsatisfying functional outcome after ACL reconstructions, although on a physiological level the 

individual seems fully recovered. These factor is of psychological nature and is characterized by reduced 

self-confidence in relation to the knee joint functionality, increased fear of re-injury and/or experiences 

of repetitive situations of insecurity and instability to the reconstructed knee joint (BREWER et al. 2007; 

CHMIELEWSKI et al. 2008; EVERHART et al. 2015; KVIST et al. 2005; TE WIERKE et al. 2013). 

To reach these requirements, the KOOS was included into the comprehensive test battery of this 

thesis, to measure the subjects’ self-administered evaluation of the knee joint functionality under the 

aspects of pain, other symptoms and joint stiffness, function in daily living, function in sport and 

recreation, and knee related QoL at each test session (KESSLER et al. 2003; ROOS et al. 1998). 

If analyzing the KOOS results of this study, it appeared that highest scores were reached in the 

sub-categories pain (84.1 ± 14.1) and ADL (91.4 ± 10.9) at six months after ACL reconstruction. 

Although these scores were significantly different to the CG (Pain: 98.7 ± 3.7; ADL: 100 ± 0), 

nonetheless, the ACL group only reported little amount of situations of moderate to severe experiences 

of pain and only little limitations in ADL. Furthermore, these scores were on a similar level as the scores 

of ACL reconstructed subjects (Pain: 89.9 ± 8.1; ADL: 96.5 ± 3.6) investigated by ROOS et al. (1998) at 

six months after reconstruction.  
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Therefore, the results of the ACL group of this study implied that in relation to self-evaluated 

pain and function in ADL, the ACL reconstructed subjects approached the level of other ACL 

reconstructed individuals and nearly the level of healthy subjects at six months after ACL reconstruction, 

although differences in the sub-categories pain and function in ADL occurred. Therefore, in relation to 

pain and knee joint function in ADL, it can be stated that the results of the ACL group subjects, 

participated in this study, represented a normal progression after ACL reconstruction. Additionally, as 

pain is one major factor, which influences the general well-being of reconstructed subjects, these 

findings led to the implication that the ACL group subjects seemed to recover on good level. This was 

underlined by the fact that the ACL group subjects only suffered from little limitations and restrictions 

in the category function in ADL. Both results could build a good basement for the other sub-categories 

symptoms and stiffness, function in sport and recreation and knee-related QoL. 

However, although the ACL group reached scores in symptoms and stiffness at six months after 

ACL reconstruction (74.3 ± 18.7), which were significantly lower to the CG (94.8 ± 8.1) and reduced to 

the scores in symptoms and stiffness of the subjects tested in ROOS et al. (1998), the ACL group showed 

a clear increase in the reduction of symptoms and stiffness in relation to the reconstructed knee joint up 

to six months after ACL reconstruction. This increase was additionally seen as positive development in 

terms of functional recovery.  

All before mentioned sub-categories showed a certain increase in direction of an acceptable self-

evaluated state of well-recovered knee joint functionality, on a level, which appeared to be decreased to 

healthy subjects by around one standard deviation (COHEN’S d: 1.1 to 1.4) up to six months after ACL 

reconstruction. However, the scores of the KOOS sub-categories sports and recreation function (69 ± 

24.0) and QoL (59.6 ± 22.1) were reduced more pronounced at six months after ACL reconstruction 

compared to the CG (Sports and recreation function: 99.5 ± 1.5; QoL: 97.8 ± 2.6) by about two standard 

deviations (COHEN’S d: 1.8 to 2.3). The results of both latter sub-categories shatter the before-mentioned 

findings of the formerly sub-categories and, thus, the primary deduced enhancement of self-evaluated 

functionality of the knee joint cannot generally be stated. Especially, in the knee-related QoL sub-

category, where the lowest of all scores appeared, a strong reduction occurred in the ACL group at six 

months after reconstruction compared to the CG.  

As the results in the FPTs, which required demands similar to those in sports, were significantly 

reduced at six months after reconstruction, it was expectable that the ACL group subjects self-evaluated 

the function in sports and recreational activities on such a low level. Interestingly, there appeared also 

a lower score compared to the mean score of the subjects investigated by ROOS et al. (1998) at six 

months after reconstruction (70.8 ± 15.8). In line with the strongly reduced self-evaluated QoL of the 

ACL group (59.6 ± 22.1) at six months after reconstruction compared to the CG (97.8 ± 2.6) of this 

study, the ACL group subjects of ROOS et al. (1998) reached a same score (58.9 ± 10.1). As the questions 

of the knee-related QoL sub-category aiming to detect the general relationship of the reconstructed 
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subjects to the ACL injury and the impaired knee joint, this sub-category is especially informative in 

relation to potential individual psychological constraints. The knee-related QoL sub-category showed 

strongly reduced scores in the ACL reconstructed subjects of this thesis and as well in further studies, 

applying the KOOS to ACL reconstructed subjects (ROOS et al. 1998). These findings strengthened that 

the ACL reconstructed subjects were in critical self-evaluative functional state to consider six months 

after ACL reconstruction as time-point full recovery and, especially, as time-point to return in pre-injury 

sports and pre-injury intensity level. 

As psychological well-being and self-confidence is highly related to well-being in demanding 

activities (SCHEIER & CARVER 1987), functional self-evaluation should be more taken into account if 

considering a full recovery of ACL reconstructed subjects or a release in pre-injury sports and intensity 

level. 

This seemed to be even more essential in recreational athletes than in competitive athletes. As 

competitive athletes with higher or more competitive level of pre-injury activity are more used to deal 

with injuries that prevent from sports participation, they should be emotionally more resilient (TRACEY 

2003; BREWER et al. 2007). Emotional resilience was assumed to be advantageous for the recovery after 

ACL tear and the subsequent rehabilitation process, because they are fewer influenced by feelings of 

negative outcome and fear of re-injury (TRACEY 2003; BREWER et al. 2007). However, recreational 

athletes are not that used to injury situations than competitive athletes, including a strong reduction of 

the QoL. Therefore, frustrations or negatively steered emotional well-beings can occur more pronounced 

after the ACL tear, the reconstruction, and the rehabilitation process, because a recovery of the knee 

joint and therewith the general period of rehabilitation lasted longer than previously expected and 

experiences of similar situations were missing (TE WIERKE et al. 2013). Therefore, more realistic views 

with a higher level of objectivity of the functional level should be done in the decision-making by 

therapists (CASCIO et al. 2004), including the ACL reconstructed subjects functional self-evaluation. 

Furthermore, counseling interventions should find standardized inclusion in the rehabilitation cycle and 

should accompany physical rehabilitation in form of psychological rehabilitation (TE WIERKE et al. 

2013). 

8.5 Practical Implications and Recommendations 

The purpose of this thesis was to provide data of the progression of functionality from pre- to 

six months post-reconstruction to the field of ACL rehabilitation by conducting a comprehensive test 

battery at multiple test sessions. Hence, the detected results and the deduced findings showed that, in 

general, the recovery of functionality after ACL reconstructions proceeded very individual and has a 

strong dependence on potential concomitant knee injuries, the state of functionality prior to the ACL 

tear and the adherence to the post-surgical rehabilitation program. However, the results of this thesis 
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provided, as the first of its kind, longitudinal data of ACL teared and reconstructed subjects from pre- 

to six months post-reconstruction in the setting of functional testing and in comparison to a matched 

healthy CG. Nonetheless, these data enabled, firstly, to draw progressions and developments of 

functional capacities over the whole post-surgical rehabilitation cycle up to six months after the 

reconstruction and, secondly, to compare the respective results to the pre-reconstruction state and to a 

matched healthy CG. 

The described results and findings, deduced from the conducted tests of this thesis, showed that 

the level of functionality of the ACL group, generally hardly achieved the level of the healthy CG up to 

six months after ACL reconstruction. Nonetheless, an enhancement of the functional level was found in 

the ACL group with increasing time after ACL reconstruction. This confirmed that the applied 

rehabilitation program led to increased knee joint functionality with increasing time after the 

reconstruction. However, with the applied rehabilitation program the general functional level of healthy 

control subjects could not get achieved. In contrast, the analyses showed that functional recovery 

processes remained very individual and specific, as some ACL reconstructed subjects reached the level 

of functionality of the healthy CG, but, in contrast, some showed strongly reduced level of functionality 

at the same time point. However, as, in average, the functional level of the CG was not reached, it was 

assumed that the ACL reconstructed subjects have not reached their pre-injury level of knee joint 

functionality up to six months after ACL reconstruction. 

Therefore, due to the findings of this thesis and of recently conducted studies in the field of ACL 

rehabilitation, the general practical implication was deduced that with emerging evidence the 

rehabilitation outcome can be strongly enhanced and the incidence of secondary ACL injury can be 

dramatically reduced by training programs targeting specific movements and neuromuscular control 

strategies (HEWETT et al. 2005 in WHITING & ZERNICKE 2008). Accordingly, these training programs 

should not only target asymmetries and deficiencies in sport-specific high-intense movements but also 

include the rehabilitation of emerging asymmetries in ADLs, as gait asymmetries (GARDINIER et al. 

2012). Therefore, as MANDELBAUM et al. (2005) proposed, a rehabilitation program after ACL 

reconstruction should be most comprehensive, dependent on detected individual functional deficiencies 

by functional testing throughout the rehabilitation process.  
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Therefore, out of the findings and conclusions of this thesis, the following practical implications 

were deduced: 

- Repetitive comprehensive functional testing enables an adequate detection of potential 

functional deficiencies. 

- According to detected functional deficiencies, individual adaptation of the rehabilitation 

program. 

- Purpose of most comprehensive rehabilitation program to recover locomotion in a wide 

range of setting. 

- According to functional deficiencies in daily living tasks, exercises to recover normal 

locomotion pattern components and to increase postural stability components. 

- According to functional deficiencies in sport-specific tasks, exercises to enhance the 

physical capacities in strength, agility, and endurance. 

- According to injury related psychological constraints, assistant care and counseling to 

enhance self-confidence and self-esteem. 

8.6 Conclusions 

Full recovery and rehabilitation of the knee joint is fundamental for a return to normal 

locomotion in ADLs and the complete return to pre-injury sports and activities on pre-injury intensity 

level. Therefore, examination of ACL rehabilitation after tears and reconstructions represents a 

substantial field of research, including a vast field of recently and formerly conducted studies. However, 

to the best of my knowledge, no studies exist, which conducted a close longitudinal comprehensive 

functional testing approach after a ACL tear up to six months after ACL reconstruction. 

Hence, the contribution of knowledge about decisive factors and developments throughout the 

rehabilitation process, which lead to full recovery or incomplete rehabilitation are major concerns of 

ACL rehabilitation programs after ACL tears and subsequent reconstructions. 

Therefore, findings of studies, examining functional adaptations in the rehabilitation after ACL 

reconstruction represent an essential contribution for clinicians and therapists to enhance and adapt 

rehabilitation programs more individualized in regard to potential individual knee joint deficiencies. 

Furthermore, the detection of more individualized points in time after the reconstruction to determine 

full knee joint recovery is enabled to release ACL reconstructed subjects back to pre-injury sports and 

intensity level. 

To contribute valuable knowledge to this field of orthopedics, this thesis purposed to add more 

sophisticated data by the conduction of a multi-disciplinary comprehensive longitudinal test battery. The 

comprehensive test battery comprised subject’s self-administered evaluation of the knee joint function, 
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functional clinical tests, functional performance tests, and the analyses of functionality of the ACL 

subjects in turning locomotion, over the half-year rehabilitation process after reconstruction. 

Furthermore, by applying these test battery at four test sessions from pre- to six months post-ACL 

reconstruction, a close monitoring of the progression and development of knee joint functionality from 

various perspectives could be determined. Summarized, the studies, integrated in this thesis, revealed 

the following findings and conclusions: 

(1) Reproducibility of daily occurring turns showed that there exist individually fixed 

locomotion strategies in these turns. Therefore, it was assumed that recovery of normal 

locomotion strategies in activities of daily living is essential to achieve full knee joint 

functionality after ACL tears and reconstructions. 

(2) Reconstructed leg deficiencies in knee joint ROM and muscular atrophy of the reconstructed 

legs at six months after the reconstruction were assumed as pre-determining factors for 

subsequent deficiencies in locomotion tasks of daily living and in recreational and 

competitive sports. 

(3) Significantly reduced functionality in jumping and reduced isometric strength capacities 

indicated strong functional deficiencies and incomplete recovery of the reconstructed legs 

at six months after ACL reconstruction compared to the healthy control group, although, 

the level of functionality increased in these tests with increasing time after ACL 

reconstructions. Significant side-to-side imbalances indicated that ACL reconstructed 

subjects should not get released in pre-injury sports-intensity level without any dynamic 

functional testing. 

(4) Tendencies of functional kinematic and kinetic adaptations in daily occurring turns were 

detected short-term, but as well three and six months after the reconstruction. These 

tendencies of adaptations in the reconstructed and non-injured legs can increase and 

intensify locomotion imbalances. Recovery of full functionality and normal locomotion 

pattern in daily life activities and in sport-specific locomotion tasks is essential to achieve 

full knee joint recovery. 

Summarizing the findings of this thesis, it can be stated that valuable knowledge was contributed 

to the field of functional recovery over the six months rehabilitation cycle after the ACL reconstruction. 

As this study represented the first of its kind with such a closed-monitored comprehensive test design, 

it adds important results and findings to the state, progression and development of functional knee joint 

rehabilitation from various important viewpoints at multiple test sessions up to six months after ACL 

reconstruction. Furthermore, it motivates a more standardized inclusion of comprehensive testing into 

the post-surgical ACL rehabilitation paradigm to receive more precise data about the state of knee joint 

functionality. 
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Nonetheless, the general positive effects of the applied rehabilitation programs were confirmed 

by the increasing knee joint functionality and increasing performance outcome in the ACL reconstructed 

subjects with increasing time after the ACL reconstruction. However, the great variety of results imply 

that strong individual processes remain, which immensely influence the outcome of functional knee 

joint rehabilitation.  

Due to the highly individual-dependent rehabilitation process, we motivate to generally add 

more standardized functional testing to the field of post-surgical ACL rehabilitation to detect functional 

deficiencies more specifically and more individually. Out of these findings a more individually adaption 

of the rehabilitation programs is enabled, precisely according to the assessed potential individual 

deficiencies. Therefore, in conclusion of the results of this thesis, a general return of individuals to pre-

injury sports and intensity level seems not to be indicated without any functional testing at six months 

after ACL reconstruction. This assumption was drawn, as in nearly none of the applied tests, the 

performance outcome or the level of functionality of the CG was reached. Furthermore, large individual 

variations appeared in the level of knee joint functionality at specific time points. These findings implied 

that the development of knee joint functionality in low-intense and high-intense locomotion tasks 

proceeded very individual over the testing period from pre- to six months post-ACL reconstruction, as 

hardly any crucial criteria, proposed in literature for releasing ACL reconstructed individuals back in 

pre-injury sports, was reached. 
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 Appendix 

10.1 General Questionnaires of the Study 

Subjects Information 

Patienteninformation 

Studie „Kinetische und Kinematische Analysen von Belastungen der Beinen bei 

ausgewählten Bewegungen bis 1 Jahr nach vorderer Kreuzbandverletzung“ 

BioMotion Center, Institut für Sport und Sportwissenschaft (IfSS),  

Karlsruher Institut für Technologie (KIT) 

Sehr geehrte Studienteilnehmerin, sehr geehrter Studienteilnehmer, 

die folgenden Informationen sollen Ihnen die Entscheidung erleichtern, ob Sie an dieser Studie 

teilnehmen möchten. Lesen Sie das Dokument sorgfältig bevor Sie eine Entscheidung treffen. Der 

Testleiter, der Sie am 1. Testtag betreut, wird dieses Dokument mit Ihnen besprechen. Es ist wichtig, 

dass Sie nachfragen, wenn etwas unklar ist.  

Einleitung 

Vordere Kreuzbandverletzungen (62 %) stellen die größte Gruppe an Verletzungen innerhalb der 

Knieverletzungen (60.000/Jahr) dar. Auffallend ist in diesem Zusammenhang, dass die Häufigkeit 

vorderer Kreuzbandverletzungen seit dem Jahr 2000 um 30 % gestiegen ist. (Quelle: statistisches 

Bundesamt) 

Auffallend ist in diesem Zusammenhang die deutliche Zunahme von Kreuzbandverletzungen bei 

Breiten- und Freizeitsportlern (z.B. Carving-Ski). Für alle Patienten, ob Leistungs- oder Freizeitsportler, 

bedeutet diese Verletzung einen langen Weg der Rehabilitation verbunden mit erheblichen 

Einschränkungen in der Bewegungsfreiheit. Diese Beeinträchtigungen folgern nicht nur in Problemen 

bei einer Rückkehr auf das Sportniveau vor der Verletzung, sondern bringen auch erhebliche Probleme 

bei Bewegungen des alltäglichen Lebens, in Haushalt und Beruf, mit sich. 

Auf Grund der, aus der Verletzung folgenden, Beeinträchtigungen für das alltägliche und sportliche 

Leben, ist die Verbesserung der Therapie nach einer Kreuzbandverletzung von großer Bedeutung. Nur 

mit einer weiteren Verbesserung der Therapie, vor allem auch für den Breiten- und Freizeitsportbereich, 

kann gewährleistet werden, dass die Patienten wieder eine Leistungs- und Funktionsfähigkeit ihres 

Kniegelenks erreichen, mit der sie das alltägliche Leben und in der Folge auch Sport auf 
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Vorverletzungsniveau, beschwerdefrei durchführen können. Den Therapieprozess zu verbessern, ist von 

erheblichem wissenschaftlichem und therapeutischem Interesse. Dazu soll diese Studie einen wichtigen 

Beitrag leisten. 

Ziel dieser Studie ist es durch Analyse von typischen Alltagsbewegungen und funktionellen 

Bewegungsaufgaben der Sportleistungsdiagnostik kurz vor, sowie an verschiedenen Testzeitpunkten 

nach der Operation (bis 1 Jahr nach der Operation) Rückschlüsse auf die Qualität des Reha-Prozesses 

ziehen und bessere Aussagen über eine Rückkehr in den Sport treffen zu können. Zudem sollen mittels 

dieser Untersuchung auch, die aus dieser Verletzung entstehenden degenerativen Prozesse am 

Kniegelenk (Arthrose), besser kontrolliert und verstanden werden können. 

In dieser Studie liegt daher das Hauptaugenmerk darauf, in wieweit sich über den Therapieprozess 

Seitigkeitsphänomene, hinsichtlich einer Belastungsverschiebung in den Beinen, einstellen und u.U. 

manifestieren und so das Belastungsgefüge in den Beinen nachhaltig verändern. Diese Veränderungen 

könnten zu Bewegungseinschränkungen führen und die Entwicklung von Folgeschädigungen 

unterstützen. 

Um dieses Forschungsthema aufzuarbeiten ist geplant im biomechanischen Labor, dem BioMotion 

Center des Instituts für Sport und Sportwissenschaft, mit 25 Patienten, die eine Verletzung des vorderen 

Kreuzbandes erlitten haben, Bewegungsanalysen von Alltagsbewegungen (z.B. Gehen) durchzuführen 

und aus den Ergebnissen Zusammenhänge zu Bewegungs- und Belastungsanalysen funktioneller 

Sportleistungstest zu ziehen. 

Ablauf der Untersuchungen 

Bei dieser Studie wird es zwei Versuchsgruppen geben. Eine Versuchsgruppe wird durch Patienten mit 

verletztem vorderem Kreuzband repräsentiert. Die zweite Versuchsgruppe dient als Kontrollgruppe. Die 

Probanden dieser Versuchsgruppe werden den Probanden der Patientengruppe hinsichtlich 

anthropometrischer Daten und Aktivität des täglichen Lebens angepasst. 

Wir möchten mit Ihnen, als Proband der Patientengruppe, an fünf Testzeitpunkten innerhalb eines Jahres 

Bewegungstests durchführen und dabei dokumentieren wie sich Ihre funktionelle Leistungsfähigkeit 

und Ihre Belastungssituation in den Beinen bei alltäglichen Bewegungen (Gehen, Laufen, 

Treppensteigen) und bei funktionellen Tests aus der Sportleistungsdiagnostik über die Zeit ausprägt 

bzw. verändert. Hierbei ist für uns von besonderem Interesse, wie sich bei Ihnen das 

Belastungsverhältnis zwischen den Beinen darstellt und wie sich dieses über den 

Untersuchungszeitraum verändert. 

Um diesen Sachverhalt umfassend wissenschaftlich aufarbeiten zu können, möchten wir mit Ihnen über 

ein Jahr an fünf Testtagen, die weiter unten beschriebenen, Tests durchführen. 
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Vor den durchzuführenden Tests bitten wir Sie, Angaben zu ihrer Person, eine Einwilligungserklärung 

zur Teilnahme an der Studie und zur Einordnung ihres körperlichen Status, eine 

Unbedenklichkeitserklärung ausfüllen.  

Zu Beginn eines jeden Testtages bitten wir Sie Sie zwei evaluierte und standardisierte Fragebögen zu 

beantworten, in denen Sie Angaben über ihre körperliche Leistungsfähigkeit, Aktivitätsniveau und 

etwaige alltägliche Einschränkungen auf Grund Ihrer Knieverletzung, machen sollen (Tegner Activity 

Score (TAK), „KOOS“-Kniefragebogen). Im Anschluss an die Beantwortung dieser Fragebögen, finden 

die Bewegungsanalysen und funktionellen Tests statt. Von Testzeitpunkt zu Testzeitpunkt bitten wir Sie 

zudem in einem Formular, das Sie ausgehändigt bekommen, ihre körperlich-sportliche oder 

rehabilitative Aktivität zu dokumentieren. 

Das Testprocedere werden Sie einmal vor der Operation und viermal in einem Jahr nach der Operation 

des vorderen Kreuzbandes durchlaufen. Testtag I wird 1 bis 3 Wochen vor Ihrer Operation sein, Testtag 

II 6 Wochen nach der Operation; Testtag III, IV und V 3, 6 bzw. 12 Monate nach der Operation. 

Während dieser Zeit dokumentieren Sie bitte die erhaltenden Rehaleistungen und ausgeführten 

körperlich, sportlichen Aktivitäten auf beiliegendem Formular. (Aktivitätserfassungsbogen) 

Die praktischen bewegungsanalytischen Tests werden mit dem 3D-Bewegungsanalyse-System Vicon® 

durchgeführt. Bei diesen Aufnahmen werden reflektierende Marker auf die Haut über den Gelenken 

ihres Körpers geklebt. Um eine möglichst hohe Qualität der Daten zu erreichen sollten Männer nicht 

mehr als eine eng anliegende Hose und Frauen eine eng anliegende Hose und einen BH tragen. Da weit 

anliegende Kleidung die Markerplatzierung erschwert und durch die Bewegung der Kleidung 

Markerbewegungen stattfinden, würde die Datenqualität damit stark beeinträchtigt werden.  

Bei der Ganganalyse mit Störeinflüssen laufen Sie zunächst über einen ebenen Laufsteg, in den eine 

Kraftmessplatte integriert ist. Beim Kontakt mit der Kraftmessplatte wird diese leicht auslenken (die 

Richtung ist Ihnen nicht bekannt). Aber die Auslenkung wird nicht so stark sein bzw. Sie in einer solchen 

Weise beeinträchtigen, dass Sie stürzen könnten. Wichtig für diesen Test ist zu erfahren, wie Sie 

derartige Störeinflüsse des Untergrundes mit Ihrem Bewegungsapparat kompensieren. 

Während der Untersuchung werden lediglich der Projektleiter und eine studentische Hilfskraft, die extra 

für diese Testdurchführung geschult ist, mit Ihnen im Testlabor sein. Das Labor und damit die 

Untersuchung sind für Dritte von außen nicht einsehbar. Außerdem ermöglicht die Betreuung der 

Patienten durch einen Orthopäden (Prof. Dr. Stefan Sell) einen reibungsfreien Ablauf der 

Untersuchungen ohne Komplikationen. Aus wissenschaftlicher und vor allem aus medizinischer Sicht 

schaffen die Ergebnisse der Untersuchung Grundlage und Erkenntnis für zukünftige 

Therapiemaßnahmen nach Kreuzbandverletzung, die nicht nur die akute Rehabilitation und den 

Outcome der Patienten aus der Therapie verbessern sollen, sondern den Therapieprozess auch so zu 

verbessern, dass zusätzlich zukünftige degenerative Folgeerkrankungen am betroffenen Gelenk schon 

in der Frühphase der Therapie nach einer Operation entgegengewirkt werden wird. 
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Testprocedere 

- Angaben zur Person, Einwilligungserklärung, Unbedenklichkeitserklärung 

- Fragebögen: Tegner-Activity-Score (TAS) und (Knee inury and Osteoarthritic Outcome Score 

= KOOS) 

- Test zur Bestimmung des Bewegungsausmaßes des Kniegelenks und der 

Kniegelenksschwellung 

- Aktivitätserfassungsbogen von Testzeitpunkt zu Testzeitpunkt 

- Ganganalyse geradeaus, geradeaus mit variablem Untergrund und beim Kurve gehen 

- Ganganalyse Treppe auf- und absteigen 

- Einbeinsprungtests 

- Isometrische Krafttests der Beine 

Risiken 

Die durchzuführenden Tests umfassen Bewegungen, die die Probanden vor einer Kreuzbandoperation 

bzw. frühestens 6 Wochen nach der Operation problemlos durchführen können. Die Bewegungen 

umfassen zum einen Ganganalysen bei ebenem Gehen, bei Kurvengehen und beim Treppensteigen. 

Diese Bewegungen sollten ohne Beschwerden/ Probleme durchführbar sein. Die Ganganalyse bei 

unebenem Untergrund wird mit einer speziell für diesen Test konzipierten und gebauten Kraftmessplatte 

ausgeführt. Diese Kraftmessplatte ist beweglich, wodurch Störeinflüsse beim Gehen simuliert werden 

können. Diese beeinflussen die Probanden aber lediglich in einer Art und Weise, die dieser gut tolerieren 

kann. Durch diese Störeinflüsse sind keine Gefährdungen durch Gleichgewichtsstörungen oder sogar 

Stürze zu erwarten, die die Patienten in eine unangenehme oder etwa gefährdende Situation bringen 

würden. Zumal sind die Probanden während der Ganganalysen durch einen Tragegurt (ähnlich eines 

Kletterharnisches) gesichert, so dass keine Gefahren für die Gesundheit der Patienten bestehen. 

Die funktionellen Leistungstests aus der Sportleistungsdiagnostik (Sprungtest, Maximalkrafttest im 

Kraftmessstuhl) sollen zwar mit der Patienten möglichen höchsten Intensität ausgeführt werden, 

allerdings nur in jenem Maße, dass die Patienten die Tests absolut beschwerdefrei ausführen können. 

Bei diesen Tests ist es wichtig, die zum jeweiligen Testzeitpunkt bestmöglichen Leistungen zu messen; 

jedoch ist stets von oberster Priorität, zu messen, inwiefern durch das gesunde Bein die Leistungen des 

verletzten Beines in der jeweiligen Testaufgabe kompensiert werden. 

Probleme, Einschränkungen oder gar Schmerzen und andere Beschwerden jedweder Art, mitgeteilt 

durch den Patienten während des Tests, gelten stets sofort als Abbruchkriterium für den jeweiligen Test. 

Zudem wird für die Durchführung der Untersuchung ausschließlich geschultes Personal eingesetzt, das 

eine sichere Durchführung der Tests gewährleistet und im Notfall auch sofort erste Hilfe Maßnahmen 

einleiten kann. Außerdem ermöglicht die Betreuung der Patienten durch einen Orthopäden (Prof. Dr. 

med. Stefan Sell) einen reibungsfreien Ablauf der Untersuchungen ohne unerwartete Komplikationen. 

Nutzen 

Insgesamt wird für jeden Patienten ein Probandengeld von 75 € erstattet. Die Bezahlung wird in drei 

Schritte á 25 €, über das Studienjahr, gestaffelt sein. 
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Aus wissenschaftlicher und vor allem aus medizinisch-therapeutischer Sicht trägt diese Studie dazu bei, 

den Therapieprozess qualitativ und quantitativ zu überprüfen. Daher sollen die Ergebnisse und 

Schlussfolgerungen dieser Studie dann gewinnbringend für zukünftige Therapiemaßnahmen genutzt 

werden können und so der Therapieprozess und der Outcome nach der Therapie stetig verbessert 

werden. Zusätzlich können die Ergebnisse u.U. helfen degenerativen Folgeerkrankungen an den 

Gelenken der Beine schon im Therapieprozess entgegen zu wirken. 

Freiwilligkeit der Teilnahme 

Ihre Teilnahme an der Studie ist ausschließlich freiwillig. Sie absolvieren die Tests auf eigene Gefahr. 

Die Studienleitung übernimmt keine Haftung für Verletzungen, Krankheiten oder sonstige 

gesundheitliche Beschwerden, die durch die Studie verursacht oder ausgelöst werden; es sei denn, sie 

sind durch schuldhaftes Verhalten (z.B. Nichteinhaltung der Sicherheitsmaßnahmen oder fehlerhaftes 

Bedienen von Geräten) durch die jeweiligen Testleiter verursacht. 

Sie können jederzeit und ohne Angabe von Gründen Ihre Einverständniserklärung zurückziehen und 

damit jeden Test zu jedem Zeitpunkt sofort abbrechen. Es entstehen von Seiten der Studienleitung 

dadurch keine Schadenersatzansprüche. Die Studienleitung hat das Recht, Sie aus Sicherheitsgründen 

oder sonstigen Gründen aus der Studie herauszunehmen.  

Datenschutzrechtliche Bestimmungen 

Durch Ihre Unterschrift auf der Einwilligungserklärung erklären Sie sich damit einverstanden, dass 

personenbezogene Daten zum Zweck der Studie erhoben und verarbeitet werden dürfen. Die 

personenbezogenen Daten werden für den Zweck der Verwaltung und Durchführung der Studie sowie 

für Zwecke der Forschung und statistischen Auswertung verwendet. Die Daten werden in 

verschlüsselter Form verarbeitet und gespeichert. Hierzu werden die Daten mit einer Codenummer 

versehen (Pseudonymisierung der Daten). Auf den Codeschlüssel, der es erlaubt die Daten mit den 

Namen der Patienten in Verbindung zu bringen, haben ausschließlich der verantwortliche Projektleiter 

sowie seine, für die Auswertung der Daten zuständigen Mitarbeiter, Zugriff. 

Sie haben das Recht auf Auskunft über alle vorhandenen personenbezogenen Daten über Sie. Sie haben 

auch das Recht auf Benachrichtigung unrichtiger personenbezogener Daten. Im Falle des Widerrufs der 

Studienteilnahme und des Widerspruchs gegen die Verarbeitung Ihrer Daten, werden diese gelöscht. 

Bitte beachten Sie, dass die Ergebnisse der Studie in der Fachliteratur veröffentlicht werden, wobei Ihre 

Identität allerdings stets anonym gehalten wird. 
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Study Participation Criteria 

Teilnahmekriterien 

Studie „Kinetische und Kinematische Analysen von Belastungen der Beine bei 

ausgewählten Bewegungen bis 1 Jahr nach Verletzungen des vorderen 

Kreuzbandes“ 

BioMotion Center, Institut für Sport und Sportwissenschaft (IfSS), Karlsruher Institut für Technologie 

(KIT) 

Liebe Studienteilnehmerin, lieber Studienteilnehmer, 

vielen Dank, dass Sie an der Studie „Kinetische und Kinematische Analysen von Belastungen bei 

Alltagsbewegungen und funktionellen Leistungstests nach Verletzungen des vorderen Kreuzbandes“ 

teilnehmen möchten. Bevor Sie mit den ersten Tests anfangen können, füllen Sie bitte diesen 

Fragebogen aus. Er dient der Abklärung von Kriterien, die eine Teilnahme an der Studie ausschließen 

würden.  

Bitte beantworten Sie alle Fragen wahrheitsgemäß und sorgfältig! 

Wenn Sie alle Fragen mit „Nein“ beantworten können, bestehen keine gesundheitlichen Bedenken 

bezüglich einer Teilnahme an den Therapiesitzungen im Rahmen der Studie. 

Sollten Sie eine oder mehrere Fragen mit „Ja“ beantworten, können möglicherweise Beschwerden bei 

der Durchführung der Therapie auftreten. Wir können Sie daher unter Umständen nicht für die 

Teilnahme an der Studie nicht berücksichtigen. 

 

 

 

 

 

Gez. Frieder C. Krafft (Projektleiter, IfSS), Dr. Thorsten Stein (Leiter BioMotion Center, KIT), Prof. 

Dr. Alexander Woll (Institutsleiter, IfSS). 



APPENDIX 

 

 

 
162 

Fragen  

 Ja Nein 

1. Nehmen Sie im Therapiezeitraum (14 Tage) Schmerzmittel?      

2. Haben Sie maligne Erkrankungen im verletzten Kniegelenk?       

3. Haben Sie weitere, akute Erkrankungen im verletzten Kniegelenk?      

4. Haben Sie weitere, chronische Erkrankungen im verletzten Kniegelenk?      

5. Hatten Sie früher schon einmal eine Verletzung am jetzt verletzten Kniegelenk?      

6. Haben Sie Herzrhythmusstörungen?      

7. Haben Sie einen Herzschrittmacher?      

 Ich kann alle der oben gestellten Fragen mit „Nein“ beantworten und möchte 

weiterhin an der Studie teilnehmen. 

 Ich kann eine oder mehrere der oben gestellten Fragen mit „Ja“ beantworten und 

kann daher an der Studie nicht teilnehmen. 

 

Ich habe den Sinn und Zweck des Fragebogens verstanden und alle Fragen zu meiner 

Gesundheit wahrheitsgemäß beantwortet. 

Datum, Unterschrift Studienteilnehmer/-in 

_______________________________________ 

 

Patienten ID (wird vom Testleiter eingetragen): ______________ 
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Declaration of Consent 

Einwilligungserklärung 

Studie „Kinetische und Kinematische Analyse von Belastungen von ausgewählten 

Bewegungen bis 1 Jahr nach Verletzungen des vorderen Kreuzbandes“ 

BioMotion Center, Institut für Sport und Sportwissenschaft (IfSS), Karlsruher Institut für Technologie 

(KIT) 

Hiermit erkläre ich, 

Vorname   _________________________ 

Nachname   _________________________ 

Geburtsdatum   _________________________ 

Adresse   _________________________ 

    _________________________ 

    _________________________ 

Telefonnummer  _________________________ 

E-Mail    _________________________ 

Patienten-ID   _________________________ (wird vom Testleiter eingetragen) 

dass ich durch Herrn/Frau  ________________________________________  

(Name des Testleiters) 

mündlich und schriftlich über das Wesen, die Bedeutung, die Tragweite und mögliche Risiken der 

einzelnen Untersuchungen im Rahmen der o.g. wissenschaftlichen Studie informiert wurde und 

ausreichend Gelegenheit hatte, meine Fragen hierzu in einem Gespräch mit dem/der 

Testleiter/Testleiterin zu klären. 

Ich habe insbesondere die mir vorgelegte Patienteninformation verstanden und eine Ausfertigung 

derselben und dieser Einwilligungserklärung erhalten. 

Mir ist bekannt, dass ich meine Einwilligung jederzeit ohne Angabe von Gründen und ohne nachteilige 

Folgen für mich zurückziehen und einer Weiterverarbeitung meiner erhobenen Daten jederzeit 

widersprechen und ihre Löschung verlangen kann. Ich bin bereit, an allen Untersuchungen im Rahmen 

der o.g. wissenschaftlichen Studie teilzunehmen. 
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Ich erkläre mich damit einverstanden, dass sämtliche, im Rahmen dieser Studie erhobenen 

Daten/Angaben über mich verschlüsselt (pseudonymisiert) und auf elektronischen Datenträgern 

aufgezeichnet und verarbeitet werden.  

Einer Veröffentlichung der anonymisierten Studienergebnisse stimme ich zu. 

____________________________    ____________________ 

Unterschrift des Patienten           Datum 

_________________________________ 

Name des Patienten in Druckbuchstaben 

Testleiter/Testleiterin, welche(r) die Einwilligung einholt 

Hiermit erkläre ich, den/die o.g. Patienten/Patientin am ________________ über Wesen, 

Bedeutung, Tragweite und Risiken der o.g. Studie mündlich und schriftlich aufgeklärt und Ihm/ 

Ihr eine Ausfertigung der Patienteninformation sowie dieser Einwilligungserklärung übergeben 

zu haben. 

1. Technische Geräte in einwandfreiem Zustand?   

2. Patienten über Risiken und Gefahren aufgeklärt?  

3. Fragen über Risikofaktoren überprüft?  

4. Ist die Notfallkette inklusive Notrufnummer bekannt?  

5. Ist ein funktionsfähiges Telefon vorhanden?  

______________________________    ______________________ 

Unterschrift        Datum 

___________________________________ 

Name in Druckbuchstaben 
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Subjects Personal Specifications 

Angaben zur Person 

Studie „Kinetische und Kinematische Analysen von Belastungen der Beine bei 

ausgewählten Bewegungen bis 1 Jahr nach Verletzungen des vorderen 

Kreuzbandes“ 

BioMotion Center, Institut für Sport und Sportwissenschaft (IfSS), Karlsruher Institut für Technik (KIT) 

Liebe Studienteilnehmerinnen, lieber Studienteilnehmer, 

zur Bearbeitung der erhobenen Daten benötigen wir noch einige personenbezogene Angaben 

von Ihnen. 

Bitte lesen Sie alle Fragen vor der Beantwortung genau durch. Bitte beantworten Sie alle 

Fragen, da nur vollständig ausgefüllte Fragebögen berücksichtigt werden können. 

Alle Unterlagen sowie Angaben, die sie zu Ihrer Person machen, dienen ausschließlich 

wissenschaftlichen Zwecken und werden streng vertraulich behandelt. Die Auswertung erfolgt 

am Institut für Sport und Sportwissenschaft des KIT. 

Die Erfassung von Name, Telefonnummer und E-Mail Adresse ist für die Kommunikation 

zwischen Projektleitung und Studienteilnehmer/in notwendig. 

Bitte ausfüllen: 

Patienten-ID (wird vom Testleiter eingetragen): _____________________________ 

Name, Vorname: __________________________________________________ 

Telefonnummer: __________________________________________________ 

E-Mail:  __________________________________________________ 
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Persönliche Angaben 

1. Sie sind 

2. Wie alt sind Sie?  _________ Geburtsmonat/ Geburtsjahr 

3. Ihre Körpergröße?  _________ cm 

4. Ihr Körpergewicht?  _________ kg 

5. Mit welchem Fuß schießen Sie einen Ball? 

6. Mit welchem Bein springen Sie ab? 

 

7. Auf welchem Bein können Sie besser im Einbeinstand stehen? 

Angaben zur Kreuzbandruptur 

1. Welche Sportarten haben Sie vor Ihrem Kreuzbandriss betrieben? 

________________________________________________________________ 

________________________________________________________________ 

2. Haben Sie akute Erkrankungen/ Verletzungen, außer der Kreuzbandverletzung, 

oder schon früher Verletzungen am selben Kniegelenk gehabt? 
 

Wenn ja, welche? 

________________________________________________________________ 

________________________________________________________________ 

 weiblich  

 männlich 

 rechts           

 links 

 rechts           

 links 

 rechts           

 links 

 ja 

 nein 
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3. Wie wurde Ihr Kreuzband operiert? Mit welcher Technik? Welche Art des 

Transplantats haben Sie? 

_________________________________________________________________ 

_________________________________________________________________ 

4. Haben Sie sonstige, chronische Erkrankungen? 

Wenn ja, welche? 

___________________________________________________________________ 

___________________________________________________________________ 

5. Tragen Sie eine Orthese (Kniegelenksbandage)? Haben Sie eine Orthese getragen? 

6. Nehmen Sie derzeit Schmerzmittel ein? 

7.  Sonstige Anmerkungen 

 

 

 

 

 

 

 

Bitte beachten Sie! 

Ich habe den Fragebogen freiwillig bearbeitet. Mir ist bekannt, dass meine Daten ausschließlich 

zum Zwecke wissenschaftlicher Erkenntnisgewinnung verwendet und nicht an Dritte 

weitergegeben werden. 

Vielen Dank für die Beantwortung der Fragen! 

 ja 

 nein 

 ja, immer 

 ja, bei folgenden Tätigkeiten/ Bewegungen: 

___________________________________________________________________ 

___________________________________________________________________ 

 nein 

 ja, welche:________________________________________________________ 

 nein 

__________________________________________________________________ 

__________________________________________________________________ 

__________________________________________________________________ 

__________________________________________________________________ 

__________________________________________________________________ 
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10.2 Study Related Questionnaires and Scores 

Knee Injury and Osteoarthritis Outcome Score 

Knee injury and Osteoarthritis Outcome Score (KOOS) 

Datum:________________________   ID: ___________________________ 

Testtag-Nr.:____________________ 

ANLEITUNG: 

Dieser Ankreuzbogen befragt Sie, welchen Eindruck Sie von Ihrem Knie haben. 

Die dadurch gewonnene Information wird uns helfen zu überwachen, wie es Ihnen mit 

Ihrem Knie geht und wie gut Sie in der Lage sind, Ihre üblichen Aktivitäten zu 

verrichten. 

Beantworten Sie bitte jede Frage durch ankreuzen des zugehörigen Kästchens. 

Bitte nur ein Kästchen pro Frage ankreuzen. 

Wenn Sie sich unsicher sind, wie Sie die Frage beantworten sollen, wählen Sie die 

Antwort aus, die Ihnen am zutreffendsten erscheint. 

Symptome 

Diese Fragen beziehen sich auf Beschwerden von Seiten Ihres Kniegelenkes in der 
vergangenen Woche. 

S1. Haben Sie Schwellungen an Ihrem Knie? 

  niemals             selten        manchmal  oft            immer 

      􀂅  􀂅  􀂅  􀂅  􀂅 

S2. Fühlen Sie manchmal ein Mahlen, hören Sie manchmal ein Klicken oder irgendein 

Geräusch, wenn Sie Ihr Knie bewegen? 

  niemals             selten        manchmal  oft            immer 

      􀂅  􀂅  􀂅  􀂅  􀂅 

S3. Bleibt Ihr Knie manchmal hängen, oder blockiert es, wenn Sie es bewegen? 

  niemals             selten        manchmal  oft            immer 

      􀂅  􀂅  􀂅  􀂅  􀂅 

S4. Können Sie Ihr Knie ganz ausstrecken? 

   immer  oft        manchmal            selten  nie 

      􀂅  􀂅  􀂅  􀂅  􀂅 

S5. Können Sie Ihr Knie ganz beugen? 

   immer  oft        manchmal            selten  nie 

      􀂅  􀂅  􀂅  􀂅  􀂅 
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Steifigkeit 

Die nachfolgenden Fragen betreffen die Steifigkeit Ihres Kniegelenkes während der letzten 
Woche. Unter Steifigkeit versteht man ein Gefühl der Einschränkung oder Verlangsamung der 
Fähigkeit Ihr Kniegelenk zu bewegen. 

Für jede der nachfolgenden Aktivitäten sollen Sie das Ausmaß der Schwierigkeiten angeben, 
welche Sie durch Ihr Kniegelenk innerhalb der letzten Woche erfahren haben. 

S6. Wie stark ist Ihre Kniesteifigkeit morgens direkt nach dem Aufstehen? 

    keine         schwach           mäßig             stark         sehr stark 

      􀂅  􀂅  􀂅  􀂅  􀂅 

S7. Wie stark ist Ihre Kniesteifigkeit nach dem Sie saßen, lagen, oder sich ausruhten im Verlauf 

des Tages? 

    keine         schwach           mäßig             stark         sehr stark 

      􀂅  􀂅  􀂅  􀂅  􀂅 

Schmerzen 

P1. Wie oft tut Ihnen Ihr Knie weh? 

  niemals        monatlich       wöchentlich           täglich           immer 

      􀂅  􀂅  􀂅  􀂅  􀂅 

Wie ausgeprägt waren Ihre Schmerzen in der vergangenen Woche als Sie 

z.B…: 

P2. sich im Knie drehten? 

    keine          schwach            mäßig             stark         sehr stark 

      􀂅  􀂅  􀂅  􀂅  􀂅 

P3. Ihr Knie ganz ausstreckten? 

    keine          schwach            mäßig             stark         sehr stark 

      􀂅  􀂅  􀂅  􀂅  􀂅 

P4. Ihr Knie ganz beugten? 

    keine          schwach            mäßig             stark         sehr stark 

      􀂅  􀂅  􀂅  􀂅  􀂅 

P5. auf ebenem Boden gingen? 

    keine          schwach            mäßig             stark         sehr stark 

      􀂅  􀂅  􀂅  􀂅  􀂅 

P6. Treppen herauf oder heruntergingen? 

    keine          schwach            mäßig             stark         sehr stark 

      􀂅  􀂅  􀂅  􀂅  􀂅 

P7. nachts im Bett lagen? 

    keine          schwach            mäßig             stark         sehr stark 

      􀂅  􀂅  􀂅  􀂅  􀂅 



APPENDIX 

 

 

 
170 

P8. saßen oder lagen, z.B. auf der Couch? 

    keine          schwach            mäßig             stark         sehr stark 

      􀂅  􀂅  􀂅  􀂅  􀂅 

P9. aufrecht standen? 

    keine          schwach            mäßig             stark         sehr stark 

      􀂅  􀂅  􀂅  􀂅  􀂅 

Aktivitäten des täglichen Lebens 

Die nachfolgenden Fragen beziehen sich auf Ihre körperliche Leistungsfähigkeit. 
Hierunter verstehen wir Ihre Fähigkeit sich selbständig zu bewegen bzw. sich selbst zu 
versorgen. 
Für jede der nachfolgenden Aktivitäten sollen Sie das Ausmaß der Schwierigkeiten angeben, 
welche Sie durch Ihr Kniegelenk innerhalb der letzten Woche erfahren haben. 

Welche Schwierigkeiten hatten Sie letzte Woche als Sie z.B….: 

A1. Treppen herunterstiegen? 

    keine            wenig            einige            große         sehr große 

      􀂅  􀂅  􀂅  􀂅  􀂅 

A2. Treppen heraufstiegen? 

    keine            wenig            einige            große         sehr große 

      􀂅  􀂅  􀂅  􀂅  􀂅 

A3. vom Sitzen aufstanden? 

    keine            wenig            einige            große         sehr große 

      􀂅  􀂅  􀂅  􀂅  􀂅 

Welche Schwierigkeiten hatten Sie letzte Woche als Sie z.B….: 

A4. standen? 

    keine            wenig            einige            große         sehr große 

      􀂅  􀂅  􀂅  􀂅  􀂅 

A5. sich bückten um z.B. etwas vom Boden aufzuheben? 

    keine            wenig            einige            große         sehr große 

      􀂅  􀂅  􀂅  􀂅  􀂅 

A6. auf ebenen Boden gingen? 

    keine            wenig            einige            große         sehr große 

      􀂅  􀂅  􀂅  􀂅  􀂅 

A7. ins Auto ein- oder ausstiegen? 

    keine            wenig            einige            große         sehr große 

      􀂅  􀂅  􀂅  􀂅  􀂅 

A8. einkaufen gingen? 

    keine            wenig            einige            große         sehr große 

      􀂅  􀂅  􀂅  􀂅  􀂅 
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A9. Strümpfe/Socken anzogen? 

    keine            wenig            einige            große         sehr große 

      􀂅  􀂅  􀂅  􀂅  􀂅 

A10. vom Bett aufstanden? 

    keine            wenig            einige            große         sehr große 

      􀂅  􀂅  􀂅  􀂅  􀂅 

A11. Strümpfe/Socken auszogen? 

    keine            wenig            einige            große         sehr große 

      􀂅  􀂅  􀂅  􀂅  􀂅 

A12. im Bett lagen und sich drehten, ohne das Knie dabei zu beugen? 

    keine            wenig            einige            große         sehr große 

      􀂅  􀂅  􀂅  􀂅  􀂅 

A13. in oder aus der Badewanne kamen? 

    keine            wenig            einige            große         sehr große 

      􀂅  􀂅  􀂅  􀂅  􀂅 

A14. saßen? 

    keine            wenig            einige            große         sehr große 

      􀂅  􀂅  􀂅  􀂅  􀂅 

A15. sich auf die Toilette setzten oder aufstanden? 

    keine            wenig            einige            große         sehr große 

      􀂅  􀂅  􀂅  􀂅  􀂅 

A16. schwere Hausarbeit verrichteten (schrubben, Garten umgraben, ...)? 

    keine            wenig            einige            große         sehr große 

      􀂅  􀂅  􀂅  􀂅  􀂅 

A17. leichte Hausarbeit verrichteten (Staub wischen, kochen, ...)? 

    keine            wenig            einige            große         sehr große 

      􀂅  􀂅  􀂅  􀂅  􀂅 

Sport und Freizeit 

Die nachfolgenden Fragen beziehen sich auf Ihre körperliche Belastbarkeit im Rahmen eher 
sportlicher Aktivitäten. 
Für jede der nachfolgenden Aktivitäten sollen Sie das Ausmaß der Schwierigkeiten angeben, 
welche Sie durch Ihr Kniegelenk innerhalb der letzten Woche erfahren haben. 

Hatten Sie Schwierigkeiten letzte Woche als Sie z.B….: 

SP1. in die Hocke gingen? 

    keine            wenig            einige            große         sehr große 

      􀂅  􀂅  􀂅  􀂅  􀂅 

SP2. rannten? 

    keine            wenig            einige            große         sehr große 

      􀂅  􀂅  􀂅  􀂅  􀂅 
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SP3. hüpften? 

    keine            wenig            einige            große         sehr große 

      􀂅  􀂅  􀂅  􀂅  􀂅 

SP4. sich auf Ihrem kranken Knie umdrehten? 

    keine            wenig            einige            große         sehr große 

      􀂅  􀂅  􀂅  􀂅  􀂅 

SP5. sich hinknieten? 

    keine            wenig            einige            große         sehr große 

      􀂅  􀂅  􀂅  􀂅  􀂅 

Beeinflussung der Lebensqualität durch das betroffene Knie 

Q1. Wie oft spüren Sie Ihr erkranktes Knie? 

      nie        monatlich       wöchentlich           täglich           immer 

      􀂅  􀂅  􀂅  􀂅  􀂅 

Q2. Haben Sie Ihre Lebensweise verändert um eventuell Ihrem Knie schadende 

Tätigkeiten zu vermeiden? 

     nicht            wenig            etwas             stark        vollständig 

      􀂅  􀂅  􀂅  􀂅  􀂅 

Q3. Wie sehr macht es Ihnen zu schaffen, dass Ihr Knie nicht stabil ist? 

               gar nicht            wenig           einiges           schlimm      sehr schlimm 

      􀂅  􀂅  􀂅  􀂅  􀂅 

Q4. Wie würden Sie insgesamt die Schwierigkeiten bewerten die Sie durch das Knie haben? 

    keine            wenig            einige            große         sehr große 

      􀂅  􀂅  􀂅  􀂅  􀂅 
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Tegner Activity Score 

Tegner Aktivitäts-Score (TAS) 

Datum:________________________   ID: ___________________________ 

Testtag-Nr.:____________________ 

Standardisierter und evaluierter Fragebogen zur Bestimmung der körperlich, sportlichen 

Aktivität. Je nach Aktivitätsniveau werden 0 bis 10 Punkte vergeben. (Tegner & Lysholm, 

1985)6 

 
Derzeitiges 

Aktivitäts-

niveau 

Aktivitätsgrad Punkte 

  
Leistungssport 

Fußball – nationale und internationale Elite 

10 

  
Leistungssport 

Fußball (untere Ligen), Eishockey, Ringen, Turnen 

9 

  
Leistungssport 

Bandy, Squash oder Badminton, Leichtathletik (Sprünge etc.), Ski 

Alpin 

8 

  
Leistungssport 

Tennis, Leichtathletik (Rennen, Laufen), Moto-Cross (Speedway), 

Handball, Basketball 

Freizeitsport 

Fußabll, Bandy und Eishockey, Squash, Leichtathletik (Sprünge), 

Geländelauf (Leistungs- und Freizeitsport) 

7 

  
Freizeitsport 

Tennis und Badminton, Handball, Basketball, Ski Alpin, Joggen 

(min. 5 mal pro Woche) 

6 

  
Wettkampfsport 

Radfahren, Skilanglauf 

Freizeitsport 

Joggen auf unebenem Untergrund (min. 2 mal pro Woche) 

Arbeit 

5 

                                                      

 

6 Tegner, Y. & Lysholm, J. (1985). Ratings Systems in the Evaluation of Knee Ligament Injuries. Clinical 

Orthopaedics and Related Research, 23 (198), 43-49. 
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Schwere Arbeit (z.B. Bauarbeiter, Waldarbeiter) 

  
Freizeitsport 

Radfahren, Skilanglauf, Joggen auf ebenem Untergrund (min. 2 

mal pro Woche) 

Arbeit 

Mittelschwere Arbeit (z.B. Fernfahrer, schwere häusliche Arbeit) 

4 

  
Leistungs- und Freizeitsport 

Schwimmen 

Arbeit 

Leichte Arbeit (z.B. Krankenpflege) 

Gehen 

Gehen im Wald ist möglich 

3 

  
Arbeit 

Leichte Arbeit 

Gehen 

Auf unebenem Grund möglich; aber Gehen im Wald unmöglich. 

2 

  
Arbeit 

Sitzende Arbeit 

Gehen 

Auf ebenem Untergrund möglich 

1 

  
Im Krankenstand oder Erwerbsunfähigkeitsrente wegen 

Knieproblemen 

0 
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10.3 Landmarks for Assessment of the Subjects’ Anthropometrics 

Table 8. Landmarks of the anthropometric measurements. 

Name Definition Measuring Instruction 

Weight Body Weight Measured by the force platforms. 

HLeg Functional Leg Length 
Vertical distance of pubic bone to the ground. Use of a spirit level 
between the legs in parallel orientation to the ground. 

HWaist Height of the Waist 
Narrowest part of the waist above the iliac crest; vertical distance 
from ground to the most medial point of the thorax’s frontal profile 
between the iliac crest and the lower costal arch. 

HXiphoid 
Height of the Sternum’s 

Xiphoid 
Vertical distance in the median plane of the Sternum’s Xiphoid to 
the ground. 

HAtlas 
Height of the Atlas 

Vertebra 
Vertical distance of the onset of the cranial bone (small 
depression in the neck) to the ground. 

LFoot Foot Length 
Horizontal distance of the most prominent point of the heels to the 
longest of the toes (1st or 2nd toe). 

CCalf 
Largest Circumference 

Calf  
Stand up straight, Muscles loose, at the point of largest 
circumference of the calf. 

CThigh 
Largest Circumference 

Thigh 
Stand up straight, Muscles loose, at the point of largest 
circumference of the thigh (note the transition of the Mm. glutei). 

CLowerLegS 
Smallest Circumference 

Calf 
Stand up straight, Muscles loose, close to the upper ankle joint. 

Whip Largest Hip Width 
Largest horizontal distance between the most lateral landmarks of 
the hip. 

WWaist Width of the Waist 
Horizontal distance of the two most medial points of the thorax’s 
frontal profile between the iliac crest and the lower costal arch. 

CHip 
Largest Circumference 

Hip 
Horizontal circumference in height of the most prominent bulks of 
the Mm. glutei. 

CWaist Waist Circumference 
Horizontal circumference in height of the most medial points of the 
thorax’s frontal profile between the iliac crest and the lower costal 
arch 

WBreast Thorax Frontal Width 
In level of the lower sternum; horizontal distance of the most 
lateral costal points in the frontal plane. 

DBreast Thorax Sagittal Width  
Linear sagittal distance from the lower edge of the Xiphoid to the 
most dorsal point at the spine. 

LHand Hand Length 
Hand rests extended on a table; horizontal distance from the 
centre of the wrist to the most distal point of middle finger. 

CUpperArmL 
Largest Circumference 

Upper Arm 
Elbow flexed 90° with no M. biceps contraction. Horizontal 
circumference at the most prominent muscular bulks. 
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CForeArmL 
Largest Circumference 

Forearm 
Arm in extended position. Point of most prominent muscular bulks, 
close to the elbow joint. 

CForeArmS 
Smallest Circumference 

Forearm 
Arm in extended position. Close to the wrist. 

CCervical Neck Size 
Perpendicular to the vertical axis of the neck. Horizontal 
circumference, directly below the larynx. 

LPate Head Height 
Distance from the most prominent point of the lower jaw in median 
plane to the most prominent point of the parietal bone in median 
plane. 

Ovierview of the anthropometric measurements. In the first column the names of the measuring points are listed. 

The second column contains the anatomic definition. In the third column the measuring instructions are presented. 
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10.4 Dynamicus Marker Set 

Table 9. Applied markers (abbreviations) attached to the respective anatomical landmarks. According to the 

ALASKA, Dynamicus Marker-Set (HÄRTEL & HERMSDORF 2006). 

HEAD 

LFHD Left front head  RFHD Right front head  

LBHD Left back head LBHD Right back head 

TRUNK 

C7 7th cervical vertebrae CLAV Clavicle 

T10 10th thoracic vertebrae STRN Sternum 

UPPER LIMB 

LACR Left acromion RACR Right acromion 

LHUM Left humerus RHUM Right humerus 

LELB_med 
Left elbow medial epi-

condyle 
RELB_med 

Right elbow medial 

epicondyle 

LELB_lat 
Left elbow lateral epi-

condyle RELB_lat 
Right elbow lateral 

epicondyle 

LWRI_med Left wrist medial RWRI_med Right wrist medial 

LWRI_lat Left wrist lateral RWRI_lat Right wrist lateral 

LFIN 2nd phalanx left hand RFIN 2nd phalanx right hand 

PELVIS 

LASI Left anterior iliac spine RASI Right anterior iliac spine 

LPSI Left posterior iliac spine RPSI Right posterior iliac spine 
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LOWER LIMB 

LKNE_med Left knee medial joint 

space 

RKNE_med Right knee medial joint space 

LKNE_lat Left knee lateral joint 

space 

RKNE_lat Right knee lateral joint space 

LMAL_med Left medial malleolus RMAL_med Right medial malleolus 

LMAL_lat Left lateral malleolus RMAL_lat Right lateral malleolus 

LHEEL Left heel RHEEL Right heel 

LFOOT_med 
Head of the proximal 

phalanx of the first toe left 
RFOOT_med 

Head of the proximal phalanx of 

the first toe left 

LFOOT_lat 
Head of the proximal 

phalanx of the little toe left 
RFOOT_lat 

Head of the proximal phalanx of 

the little toe left 

LTOE Left big toe RTOE Right big toe 
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10.5 Summarized Rehabilitation Program of the ACL Reconstructed Subjects 

Table 10. Summarized Rehabilitation Program of the ACL Reconstructed Subjects. 

 
Time post-reconstruction Rehabilitation exercises 

1
s
t  
s
ta

g
e

 

1st week 

PT: Lymphatic drainage, physical therapy (passive ROM 
exercises, massage). 

ADL: Walking with crutches. 

2nd week 

PT: Lymphatic drainage, physical therapy (passive ROM 
exercises, massage, closed-kinetic chain exercises). 

ADL: Walking with crutches. 

3rd week 

PT: Lymphatic drainage, physical therapy (passive ROM 
exercises, massage, closed-kinetic chain exercises). 

ADL: Walking with crutches. 

4th week 

PT: Lymphatic drainage, physical therapy (passive ROM 
exercises, massage, closed-kinetic chain exercises, stability 
exercises). 

ADL: Walking without or with one crutch. 

5th week 

PT: Proprioceptive training (One-legged stance, step-up 
forward/ backward, stability exercises), ROM exercises, closed-
kinetic chain exercises. 

ADL: Walking without or with one crutch, stair climbing. 

6th week 

PT: Proprioceptive training (One-legged stance, step-up 
forward/ backward, stability exercises), ROM exercises, closed-
kinetic chain exercises. 

ADL: Walking without crutches, stair climbing ergometer cycling, 
Aqua jogging. 

7th week 

PT: Proprioceptive training (One-legged stance, step-up 
forward/ backward, stability exercises), ROM exercises, closed-
kinetic chain exercises. 

ADL: Walking without crutches, ergometer cycling, Aqua 
jogging. 

2
n

d
 s

ta
g

e
 

8th week 

PT: core strength training, proprioceptive training unstable 
surface, gymnastics/stretching. 

ADL: Walking, (ergometer) cycling, Aqua jogging. 

9th week 

PT: core strength training, proprioceptive training unstable 
surface, gymnastics/stretching. 

ADL: Walking, (ergometer) cycling. 

10th week 

PT: core strength training, low-intensity lunges, leg press, 
proprioceptive training unstable surface, gymnastics/stretching. 

ADL: Walking, (ergometer) cycling. 
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11th week 

PT: core strength training, medium-intensity lunges, leg press, 
proprioceptive training unstable surface. 

ADL: (Ergometer) cycling, Cross-Trainer, Walking on treadmill. 

12th week 

PT: core strength training, medium-intensity lunges, leg press, 
proprioceptive training unstable surface. 

ADL: (Ergometer) cycling, Cross-Trainer, Walking on treadmill. 

13th week 

PT: Core strength training (leg press, Abduction, knee flexion), 
proprioceptive training unstable surface, one-legged lunges. 

ADL: Cross-Trainer, Walking on treadmill, cycling. 

14th week ADL: Cross-Trainer, Walking on treadmill, cycling. 

3
rd

 s
ta

g
e

 

15th week 

PT: Core strength training (leg press, Abduction, knee flexion), 
proprioceptive training unstable surface. 

SP: Swimming, cycling. 

16th week 

PT: Core strength training (leg press, Abduction, knee flexion), 
proprioceptive training unstable surface 

SP: Swimming, cycling. 

17th week 

PT: Core strength training (leg press, Abduction, knee flexion), 
proprioceptive training unstable surface 

SP: Swimming, cycling, moderate jogging. 

18th week 

PT: Core strength training (leg press, Abduction, knee flexion), 
proprioceptive training unstable surface 

SP: Swimming, cycling, moderate jogging. 

19th week 

PT: Core strength training (leg press, Abduction, knee flexion), 
proprioceptive training unstable surface 

SP: Swimming, cycling, moderate jogging. 

20th week 

PT: Core strength training (leg press, Abduction, knee flexion), 
proprioceptive training unstable surface 

SP: Swimming, cycling, moderate jogging. 

21st week 

PT: Core strength training (leg press, Abduction, knee flexion), 
proprioceptive training unstable surface 

SP: Swimming, cycling, moderate jogging. 

22nd week 

PT: Core strength training (leg press, Abduction, knee flexion), 
proprioceptive training unstable surface 

SP: One-legged jumps for distance and vertical, swimming, 
cycling. 

23rd week 

PT: Core strength training (leg press, Abduction, knee flexion), 
proprioceptive training unstable surface 

SP: unilateral and bilateral lateral jumps, jogging. 
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24th week 

PT: Core strength training (leg press, Abduction, knee flexion), 
proprioceptive training unstable surface 

SP: jogging, pre-injury sports. 

25th week 

PT: Core strength training (leg press, Abduction, knee flexion), 
proprioceptive training unstable surface 

SP: jogging, pre-injury sports 

26th week 

PT: Core strength training (leg press, Abduction, knee flexion), 
proprioceptive training unstable surface 

SP: jogging, pre-injury sports 

Summarized rehabilitation program of the ACL reconstructed subjects. Summarized rehabilitation 

programs and performed recreational and/or sports activities of the ACL reconstructed subjects up to 6 

months post-ACL reconstruction. Distinguished in physiotherapeutic exercises (PT), activities of daily living 

(ADL), and recreational or sports activities (SP). 
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10.6 Means of Force-Over-Time of all Tested Turning Conditions  
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90 right 
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180 right 
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O left 
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O right 

Leading Leg Trailing Leg 

𝑭𝒛 

 

 
 

 

𝑭𝒚  

 

 
 

 

Figure 36. Means of force-over-time over the three turning conditions '90' (90° turn), '180' (180° turn), 

and 'O' (turn as avoiding an obstacle) with their two orientations, clockwise (right) and counter-clockwise 

(left). The X-axes are normalized in % stance phase. The Y-axes show the force values in Newton per 

bodyweight [N/kg]. The black lines represent the means from the test session (SD in dark grey) and the light 

grey lines (SD light grey) represent the retest session. 
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10.7 Results of the Isometric Force Tests 

Table 11. Mean LSIs and standard deviations (±) of the analyzed parameters of the isometric force tests.  

Parameter Test condition T1 T2 T3 T4 Control group Significant differences 

𝑭𝒎𝒂𝒙 

[N/kg] 

Flexion 90° 0.74 ± 0.22 0.27 ± 0.10 0.43 ± 0.09 0.58 ± 0.08 1.05 ± 0.13 

T1/T2: 𝑇(17) = 5.00, 𝑃 < 0.01, 𝑑 = 0.91 

T2/T3: 𝑇(16) = 3.22, 𝑃 = 0.01, 𝑑 = 0.82 

T3/T4: 𝑇(17) = 3.28, 𝑃 < 0.01, 𝑑 = 0.77 

T4/CG: 𝑇(38) = 6.05, 𝑃 < 0.01, 𝑑 = 1.91 

Flexion 110° 0.64 ± 0.18 0.34 ± 0.20 0.46 ± 0.13 0.49 ± 0.09 1.02 ± 0.12 

T1/T2: 𝑇(12) = 2.89, 𝑃 = 0.01, 𝑑 = 1.10 

T2/T3: 𝑇(11) = 4.62, 𝑃 < 0.01, 𝑑 = 0.54 

T3/T4: 𝑇(15) = 2.47, 𝑃 = 0.03, 𝑑 = 0.38 

T4/CG: 𝑇(38) = 7.00, 𝑃 < 0.01, 𝑑 = 2.21 

Extension 90° 0.76 ± 0.13 0.47 ± 0.13 0.62 ± 0.15 0.73 ± 0.12 1.03 ± 0.15 

T1/T2: 𝑇(17) = 4.66, 𝑃 < 0.01, 𝑑 = 0.88 

T2/T3: 𝑇(16) = 3.45, 𝑃 = 0.01, 𝑑 = 0.54 

T4/CG: 𝑇(38) = 3.06, 𝑃 < 0.01;  𝑑 = 0.97 

Extension 110° 0.83 ± 0.14 0.46 ± 0.18 0.63 ± 0.10 0.75 ± 0.09 1.08 ± 0.09 

T1/T2: 𝑇(14) = 4.98, 𝑃 < 0.01, 𝑑 = 1.14 

T2/T3: 𝑇(13) = 3.54, 𝑃 <  0.01, 𝑑 = 0.61 

T3/T4: 𝑇(16) = 4.57, 𝑃 < 0.01, 𝑑 = 0.80 

T4/CG: 𝑇(38) = 5.02, 𝑃 < 0.01;  𝑑 = 1.59 



 

 
 

 

Parameter Test condition T1 T2 T3 T4 Control group Significant differences 

𝑹𝑭𝑫𝒎𝒂𝒙 

[N/kg*s] 

Flexion 90° 0.60 ± 0.16 0.34 ± 0.13 0.53 ± 0.11 0.67 ± 0.20 1.06 ± 0.19 

T1/T2: 𝑇(19) = 2.97, 𝑃 < 0.01, 𝑑 = 0.75 

T4/CG: 𝑇(38) = 2.85, 𝑃 < 0.01, 𝑑 = 0.90 

Flexion 110° 0.59 ± 0.18 0.52 ± 0.26 0.40 ± 0.14 0.56 ± 0.11 1.04 ± 0.17 

T1/T2: 𝑇(16) = 2.58, 𝑃 = 0.02, 𝑑 = 0.54 

T3/T4: 𝑇(19) = 3.79, 𝑃 < 0.01, 𝑑 = 0.69 

T4/CG: 𝑇(38) = 4.66, 𝑃 < 0.01, 𝑑 = 1.47 

Extension 90° 0.94 ± 0.22 0.61 ± 0.20 0.67 ± 0.18 0.82 ± 0.18 1.21 ± 0.19 

T1/T2: 𝑇(19) = 2.60, 𝑃 = 0.02, 𝑑 = 0.62 

T3/T4: 𝑇(19) = 3.15, 𝑃 < 0.01, 𝑑 = 1.06 

Extension 110° 0.89 ± 0.26 0.55 ± 0.23 0.56 ± 0.19 0.69 ± 0.14 1.12 ± 0.15 

T1/T2: 𝑇(17) = 2.69, 𝑃 = 0.02, 𝑑 = 0.72 

T3/T4: 𝑇(19) = 2.49, 𝑃 = 0.02, 𝑑 = 0.58 

T4/CG: 𝑇(38) = 4.22, 𝑃 < 0.01;  𝑑 = 1.33 

𝑹𝑭𝑫𝟐𝟎𝟎𝒎𝒂𝒙 

[N/kg*s] 

Flexion 90° 0.65 ± 0.23 0.36 ± 0.16 0.61 ± 0.30 0.60 ± 0.12 1.18 ± 0.37 T4/CG: 𝑇(38) = 2.93, 𝑃 < 0.01, 𝑑 = 0.93 

Flexion 110° 0.61 ± 0.18 0.44 ± 0.23 0.44 ± 0.14 0.61 ± 0.22 1.12 ± 0.40 

T1/T2: 𝑇(16) = 2.35, 𝑃 = 0.03, 𝑑 = 0.54 

T4/CG: 𝑇(38) = 2.21, 𝑃 < 0.03, 𝑑 = 0.70 

Extension 90° 0.92 ± 0.32 0.54 ± 0.22 0.94 ± 0.34 0.81 ± 0.19 1.04 ± 0.16  

Extension 110° 0.93 ± 0.30 0.42 ± 0.20 0.54 ± 0.20 0.66 ± 0.18 1.22 ± 0.28 

T1/T2: 𝑇(17) = 3.01, 𝑃 < 0.01, 𝑑 = 0.90 

T4/CG: 𝑇(38) = 3.23, 𝑃 < 0.01, 𝑑 = 1.03 

Mean Leg symmetry indices with 95% confidence intervals of the parameters analyzed in the isometric force tests: Maximum force (Fmax), maximum rate of force development 

(RFDmax) and maximum rate of force development in the first 200ms after contraction initiation (RFD200max) standardized by body weight (kg). In the last column all significant 

differences with COHEN’s d of the post-hoc analysis are illustrated (P < 0.05). 
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10.8 Knee Flexion Graphs of Turning Gait Analyses with Tendencies of Functional 

Adaptations in the Injured Leg at all four Test Sessions Compared to the Control 

Group 

 
Figure 37. Knee flexion angles of the injured/reconstructed leg during the stance phase in the 90° (left) and 

180° (right) step turns. Mean graphs of the knee flexion angles of the injured/reconstructed legs of the ACL group 

acting as trailing legs in both turns at the four test sessions (T1 to T4) and the non-dominant legs of the control 

group (CG). T1 is illustrated by the magenta-colored line, T2 by the red-colored line, T3 by the blue-colored line, 

and T4 by the green-colored line. The black-colored line illustrates the knee flexion course of the CG. Shaded 

areas represent the standard deviations. Positive values indicate knee flexion angles, negative values indicate 

knee extension angles. 

 
Figure 38. Knee flexion angles of the injured/reconstructed leg during the stance phase in the 90° spin turns. 
Mean graphs of the knee flexion angles of the injured/reconstructed legs of the ACL group acting as leading legs 

(left) and as trailing legs (right) in the 90° spin turns (T1 to T4). The knee flexion angles of the 

injured/reconstructed legs were compared to the non-dominant legs of the control group (CG). T1 is illustrated 

by the magenta-colored line, T2 by the red-colored line, T3 by the blue-colored line, and T4 by the green-colored 

line. The black-colored line illustrates the knee flexion course of the CG. Shaded areas represent the standard 

deviations. Positive values indicate knee flexion angles, negative values indicate knee extension angles. 
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Figure 39. Knee flexion angles of the non-injured leg during the stance phase in the 90° step turns. Mean 

graphs of the knee flexion angles of the non-injured legs of the ACL group acting as leading legs (left) and as 

trailing legs (right) in the 90° step turns (T1 to T4). The knee flexion angles the non-injured legs were compared 

to the dominant legs of the control group (CG). T1 is illustrated by the magenta-colored line, T2 by the red-colored 

line, T3 by the blue-colored line, and T4 by the green-colored line. The black-colored line illustrates the knee 

flexion course of the CG. Shaded areas represent the standard deviations. Positive values indicate knee flexion 

angles, negative values indicate knee extension angles. 

 

 
Figure 40. Knee flexion angles of the non-injured leg during the stance phase in the 90° spin turns. Mean 

graphs of the knee flexion angles of the non-injured legs of the ACL group acting as leading legs (left) and as 

trailing legs (right) in the 90° spin turns (T1 to T4). The knee flexion angles of the non-injured legs were compared 

to the dominant legs of the control group (CG). T1 is illustrated by the magenta-colored line, T2 by the red-colored 

line, T3 by the blue-colored line, and T4 by the green-colored line. The black-colored line illustrates the knee 

flexion course of the CG. Shaded areas represent the standard deviations. Positive values indicate knee flexion 

angles, negative values indicate knee extension angles. 
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10.9 Knee Flexion Graphs of the Turning Locomotion Conditions with Increased 

Knee Flexion T1 to T3 and Balanced Knee Flexion at T4 Compared to the CG 

 
Figure 41. Knee flexion angles of the injured/reconstructed leg during the stance phase in the 90° step turns 

(left) and the 180° step turns (right). Mean graphs of the knee flexion angles of the injured/reconstructed legs of 

the ACL group acting as leading legs in the 90° step turns (left) and 180° step turns (right). The knee flexion 

angles of the injured/reconstructed legs were compared to the non-dominant legs of the control group (CG). T1 

is illustrated by the magenta-colored line, T2 by the red-colored line, T3 by the blue-colored line, and T4 by the 

green-colored line. The black-colored line illustrates the knee flexion course of the CG. Shaded areas represent 

the standard deviations. Positive values indicate knee flexion angles, negative values indicate knee extension 

angles. 

 
Figure 42. Knee flexion angles of the injured/reconstructed legs during the stance phase in the 180° spin turns. 

Mean graphs of the knee flexion angles of the injured/reconstructed legs of the ACL group acting as trailing legs 

in the 180° spin turns. The knee flexion angles of the injured/reconstructed legs were compared to the non-

dominant legs of the control group (CG). T1 is illustrated by the magenta-colored line, T2 by the red-colored line, 

T3 by the blue-colored line, and T4 by the green-colored line. The black-colored line illustrates the knee flexion 

course of the CG. Shaded areas represent the standard deviations. Positive values indicate knee flexion angles, 

negative values indicate knee extension angles. 
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10.10 Knee Flexion Graphs of the Turning Gait Analyses with Uniform Courses 

 
Figure 43. Knee flexion angles of the non-injured legs in the 180° step turns. Mean graphs of the knee flexion 

angles of the non-injured legs of the ACL group acting as leading legs (left) and trailing legs (right) in 180° step 

turns. The knee flexion angles of the non-injured legs were compared to the dominant legs of the control group 

(CG). T1 is illustrated by the magenta-colored line, T2 by the red-colored line, T3 by the blue-colored line, and 

T4 by the green-colored line. The black-colored line illustrates the knee flexion course of the CG. Shaded areas 

represent the standard deviations. Positive values indicate knee flexion angles, negative values indicate knee 

extension angles. 

 
Figure 44. Knee flexion angles of the non-injured legs in the 180° spin turns. Mean graphs of the knee flexion 

angles of the non-injured legs of the ACL group acting as leading legs (left) and trailing legs (right) in the 180° 

spin turns. The knee flexion angles of the non-injured legs were compared to the dominant legs of the control 

group (CG). T1 is illustrated by the magenta-colored line, T2 by the red-colored line, T3 by the blue-colored line, 

and T4 by the green-colored line. The black-colored line illustrates the knee flexion course of the CG. Shaded 

areas represent the standard deviations. Positive values indicate knee flexion angles, negative values indicate 

knee extension angles. 
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Figure 45. Knee flexion angles of the injured/reconstructed legs during the stance phase in the 180° spin turns. 

Mean graphs of the knee flexion angles of the injured/reconstructed legs of the ACL group acting as leading legs 

in the 180° spin turns. The knee flexion angles of the non-injured legs were compared to the dominant legs of the 

control group (CG). T1 is illustrated by the magenta-colored line, T2 by the red-colored line, T3 by the blue-

colored line, and T4 by the green-colored line. The black-colored line illustrates the knee flexion course of the 

CG. Shaded areas represent the standard deviations. Positive values indicate knee flexion angles, negative values 

indicate knee extension angles. 

.

10.11 Knee Moment Graphs of Turning Locomotion Conditions Showing Tendencies 

of Kinetic and Kinematic Adaptations 

 
Figure 46. Knee Moments of the Injured/Reconstructed in the 90° Step Turns. Graphs of the mean sagittal plane 

knee moments of the injured/reconstructed legs in the ACL group, acting as leading legs (left) and acting as 

trailing legs (right) in the 90° step turns. Negative values indicate internal knee flexion moments, positive values 

indicate internal knee extension moments. The knee moments of the injured/reconstructed legs in the ACL group 

were compared to the non-dominant of the control group (CG). T1 is illustrated by the magenta-colored line, T2 

by the red-colored lines, T3 by the blue-colored lines, and T4 by the green-colored lines. The black-colored lines 

illustrate the knee moment courses of the CG. Shaded areas represent the standard deviations. 
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Figure 47. Knee Moments of the Injured/Reconstructed in the 180° Step Turns. Graphs of the mean sagittal 

plane knee moments of the injured/reconstructed legs in the ACL group, acting as leading legs in the 180° step 

turns. Negative values indicate internal knee flexion moments, positive values indicate internal knee extension 

moments. The knee moments of the injured/reconstructed legs in the ACL group were compared to the non-

dominant legs of the control group (CG). T1 is illustrated by the magenta-colored line, T2 by the red-colored 

lines, T3 by the blue-colored lines, and T4 by the green-colored lines. The black-colored lines illustrate the knee 

moment courses of the CG. Shaded areas represent the standard deviations. 

 
Figure 48. Knee Moments of the Leading Legs in the 90° and 180° Step Turns. Graphs of the mean sagittal 

plane knee moments of non-injured legs in the ACL group, acting as leading legs in the 90° step turns (left) and 

the injured/reconstructed legs, acting as leading legs in the 180° step turns (right). Negative values indicate 

internal knee flexion moments, positive values indicate internal knee extension moments. The knee moments of the 

injured/reconstructed and the non-injured legs in the ACL group were compared to the non-dominant and 

dominant legs of the control group (CG), respectively. T1 is illustrated by the magenta-colored line, T2 by the 

red-colored lines, T3 by the blue-colored lines, and T4 by the green-colored lines. The black-colored lines 

illustrate the knee moment courses of the CG. Shaded areas represent the standard deviations. 
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Figure 49. Knee Moments of the Injured/Reconstructed legs as Trailing Legs in the 90° Spin Turns. Graphs of 

the mean sagittal plane knee moments of the injured/reconstructed legs in the ACL group, acting as trailing legs 

in the 90° spin turns. Negative values indicate internal knee flexion moments, positive values indicate internal 

knee extension moments. The knee moments of the injured/reconstructed legs in the ACL group were compared to 

the non-dominant legs of the control group (CG). T1 is illustrated by the magenta-colored line, T2 by the red-

colored lines, T3 by the blue-colored lines, and T4 by the green-colored lines. The black-colored lines illustrate 

the knee moment courses of the CG. Shaded areas represent the standard deviations. 

 
Figure 50. Knee Moments of the Non-injured Legs as Trailing Legs in the 90° Spin Turns. Graphs of the mean 

sagittal plane knee moments of the non-injured legs in the ACL group, acting as trailing legs in the 90° spin turns. 

Negative values indicate internal knee flexion moments, positive values indicate internal knee extension moments. 

The knee moments of the injured/reconstructed legs in the ACL group were compared to the non-dominant legs of 

the control group (CG). T1 is illustrated by the magenta-colored line, T2 by the red-colored lines, T3 by the blue-

colored lines, and T4 by the green-colored lines. The black-colored lines illustrate the knee moment courses of 

the CG. Shaded areas represent the standard deviations. 
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10.12 Knee Moment Graphs of Turning Locomotion Conditions Showing No 

Tendencies of Kinetic Adaptations, But Showing Kinematic Adaptations 

 
Figure 51. Knee Moments of the Trailing Legs in the 90° and 180° Step Turns. Graphs of the mean sagittal 

plane knee moments of the non-injured legs in the ACL group, acting as trailing legs in the 90° step turns (left) 

and the injured/reconstructed legs, acting as trailing legs in the 180° step turns (right). Negative values indicate 

internal knee flexion moments, positive values indicate internal knee extension moments. The knee moments of the 

injured/reconstructed and the non-injured legs in the ACL group were compared to the non-dominant and 

dominant legs of the control group (CG), respectively. T1 is illustrated by the magenta-colored line, T2 by the 

red-colored lines, T3 by the blue-colored lines, and T4 by the green-colored lines. The black-colored lines 

illustrate the knee moment courses of the CG. Shaded areas represent the standard deviations. 

 
Figure 52. Knee Moments of the Trailing Legs in the 180° Spin Turns and the Leading Legs in the 90° Spin 

Turns. Graphs of the mean sagittal plane knee moments of the of the injured/reconstructed legs in the ACL group, 

acting as trailing legs in the 180° spin turns (left) and the injured/reconstructed legs, acting as leading legs in the 

90° spin turns (right). Negative values indicate internal knee flexion moments, positive values indicate internal 

knee extension moments. The knee moments of the injured/reconstructed legs in the ACL group were compared to 

the non-dominant of the control group (CG). T1 is illustrated by the magenta-colored line, T2 by the red-colored 

lines, T3 by the blue-colored lines, and T4 by the green-colored lines. The black-colored lines illustrate the knee 

moment courses of the CG. Shaded areas represent the standard deviations. 
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10.13 Knee Moment Graphs of Turning Locomotion Conditions Showing Tendencies 

of Kinetic Adaptations, But No Kinematic Adaptations 

 
Figure 53. Knee Moments of the Leading Legs in the 90° and the 180° Spin Turns. Graphs of the mean sagittal 

plane knee moments of the non-injured legs in the ACL group, acting as leading legs in the 90° spin turns (left) 

and the injured/reconstructed legs, acting as leading legs in the 180° spin turns (right). Negative values indicate 

internal knee flexion moments, positive values indicate internal knee extension moments. The knee moments of the 

injured/reconstructed and the non-injured legs in the ACL group were compared to the non-dominant and 

dominant legs of the control group (CG), respectively. T1 is illustrated by the magenta-colored line, T2 by the 

red-colored lines, T3 by the blue-colored lines, and T4 by the green-colored lines. The black-colored lines 

illustrate the knee moment courses of the CG. Shaded areas represent the standard deviations. 

10.14 Knee Moment Graphs of Turning Locomotion Conditions Showing No 

Tendencies of Kinetic Adaptations and No Kinematic Adaptations 

 
Figure 54. Knee Moments of the Leading and Trailing Legs in the 180° Step Turns. Graphs of the mean sagittal 

plane knee moments of the non-injured legs in the ACL group, acting as leading legs in the 180° step turns (left) 

and acting as trailing legs in the 180° step turns (right). Negative values indicate internal knee flexion moments, 

positive values indicate internal knee extension moments. The knee moments of the non-injured legs in the ACL 

group were compared to the dominant legs of the control group (CG). T1 is illustrated by the magenta-colored 

line, T2 by the red-colored lines, T3 by the blue-colored lines, and T4 by the green-colored lines. The black-

colored lines illustrate the knee moment courses of the CG. Shaded areas represent the standard deviations. 
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Figure 55. Knee Moments of the Non-injured Legs as Leading Legs in the180° Spin Turns. Graphs of the mean 

sagittal plane knee moments of the non-injured legs in the ACL group, acting as leading legs in the 180° spin 

turns. Negative values indicate internal knee flexion moments, positive values indicate internal knee extension 

moments. The knee moments of the non-injured legs in the ACL group were compared to the dominant legs of the 

control group (CG). T1 is illustrated by the magenta-colored line, T2 by the red-colored lines, T3 by the blue-

colored lines, and T4 by the green-colored lines. The black-colored lines illustrate the knee moment courses of 

the CG. Shaded areas represent the standard deviations. 
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