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Abstract

Over the last few years, graphics processing units (GPUs) have become popular in
computing. Consequently, all major cloud providers have included GPUs in their
platforms. These platforms typically use virtualization to share physical resources
between users, which increases the utilization of these resources. Utilization
can be increased even further through oversubscription: Since users tend to buy
more resources than are actually needed, providers can offer more resources
than physically available to their customers, hoping that the customers will not
fully utilize the resources that were promised all the time. In case customers do
fully utilize their resources, however, the provider must be prepared to keep the
customers’ applications running even if the customers’ resource demands exceed
the capacity of the physical resources.

The memory of modern GPUs can be oversubscribed easily since these GPUs
support virtual memory not unlike that found in CPUs. Cloud providers can thus
grant large virtual address spaces to their customers, only allocating physical
memory if a customer actually uses that memory. Shortages of GPU memory can
be mitigated by evicting data from GPU memory into the system’s main memory.
However, evicting data from the GPU is complicated by the asynchronous nature
of today’s GPUs: Users can submit kernels directly into the command queues of
these GPUs, with the GPU handling scheduling and dispatching autonomously.
In addition, GPUs assume that all data allocated in GPU memory is accessible at
any time, forcefully terminating any GPU kernel that tries to access unavailable
data.

Previous work typically circumvented this problem by introducing a software
scheduler for GPU kernels which selects the next kernel to execute in software
whenever a previous kernel finishes execution. If data from the next kernel’s
address space has been evicted, the scheduler returns that data to GPU memory
before launching the next kernel, evicting data from other applications in the
process. The main disadvantage of this approach is that scheduling GPU kernels
in software bypasses the GPU’s own, highly efficient scheduling and context
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switching and therefore induces significant overhead in applications even in the
absence of memory pressure.

In this thesis, we present GPUswap, a novel approach to oversubscription of GPU
memory which does not require software scheduling of GPU kernels. In contrast
to previous work, GPUswap evicts data on memory allocation requests instead
of kernel launches: When an application attempts to allocate memory, but there
is insufficient GPU memory available, GPUswap evicts data from the GPU into
the system’s main memory to make room for the allocation request. GPUswap
then uses the GPU’s virtual memory to map the evicted data directly into the
address space of the application owning the data. Since evicted data is thus
directly accessible to the application at any time, GPUswap can allow applications
to submit kernels directly to the GPU without the need for software scheduling.
Consequently, GPUswap does not induce any overhead as long as sufficient GPU
memory is available. In addition, GPUswap eliminates unnecessary copying of
data: Only evicted data that is actually accessed by a GPU kernel is transferred
over the PCIe bus, while previous work indiscriminately copied all data a kernel
might access prior to kernel launch. Overall, GPUswap thus delivers consistently
higher performance than previous work, regardless of whether or not a sufficient
amount of GPU memory is available.

Since accessing evicted data over the PCIe bus nonetheless induces non-trivial
overhead, GPUswap should ideally evict rarely-accessed pages first. However, the
hardware features commonly used to identify such rarely-accessed pages on the
CPU – such as reference bits – are not available in current GPUs. Therefore, we rely
on off-line profiling to identify such rarely-accessed pages. In contrast to previous
work on GPU memory profiling, which was based on compiler modification, our
own profiling uses the GPU’s performance monitoring counters to profile the
application’s GPU kernels transparently. Our profiler is therefore not limited
to specific types of application and does not require recompiling of third-party
code such as shared libraries. Experiments with our profiler have shown that
the number of accesses per page varies mostly between an application’s memory
buffers, while pages within the same buffer tend to exhibit a similar number of
accesses.

Based on the results of our profiling, we examine several possible eviction policies
and their viability on current GPUs. We then design a prototype policy which
allows application developers to assign a priority to each buffer allocated by the
application. Based on these priorities, our policy subsequently decides which
buffer’s contents to evict first. Our policy does not require hardware features
not present in current GPUs, and our evaluation shows that the policy is able to
relocate significant amounts of application data to system RAM with minimal
overhead.
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Chapter 1

Introduction

Graphics processing units (GPUs) have become increasingly popular in com-
puting. The freely-programmable nature of modern GPUs combined with their
unprecedented levels of performance and low power consumption make these
GPUs a perfect fit for applications like machine learning [1], computer vision [17],
cryptography [32], network packet processing [22] and even processing of gen-
eral web requests [5]. However, despite their obvious benefits, GPU adoption is
often hindered by hardware costs: The price for a high-end GPU model can reach
five-digit numbers1.

An increasingly popular alternative to buying dedicated hardware is to integrate
these high-end GPUs into shared environments, such as clouds. Sharing a GPU in
this manner allows the cloud provider to increase the GPU’s utilization – and thus
offer GPU computation time at a lower price – for two reasons: First, applications
tend to have a finite execution time. After an application finishes, a customer
with exclusive access to a GPU may take a while to start the next application,
which forces the GPU to idle. In contrast, a shared GPU can execute multiple
applications concurrently and thus does not fall idle if a single application exits.
Second, running GPU applications may not fully utilize the GPU’s resources:
Most applications perform I/O or CPU computation from time to time, during
which a dedicated GPU would idle. In contrast, a shared GPU can simply execute
code from another application during these periods, which increases utilization.
Furthermore, GPU applications may not launch a sufficient number of threads to
fully utilize all of the GPU’s cores, thus leaving some of these cores unused. In
that situation, some GPUs have the ability to execute threads from more than one
application in parallel to increase utilization.

Integrating a GPU into a cloud environment, however, requires the cloud provider
to efficiently virtualize the GPU, which creates interesting new challenges. GPUs

1 At the time of this writing, the prices for an Nvidia Tesla V100 in German web shops ranged
from €8,780.66 to €18,194.99.
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were designed to be used exclusively by a single application, and modern-day
GPUs inherited the basic design principles of their ancestors. As a result, GPUs
are difficult to share between applications – especially if these applications do not
cooperate with each other, which is the common case in a cloud environment.
While some support for sharing – such as GPU virtual address spaces – has been
added in recent years, hardware support for GPU virtualization is still in its
infancy.

Virtualizing a GPU in software has been a major focus of research in recent
years. These efforts, however, have largely focused on the efficiency of virtual-
ization [18, 21, 56, 62] – i.e., on reducing the virtualization overhead – or on
expanding the functionality of virtual GPUs [13,58,61,64,67] – e.g., on enabling
full virtualization. More recently, some research efforts have also considered
the problem of achieving fairness between multiple, mutually untrusted GPU
applications [38,44,54,58,61].

A topic that has been mostly overlooked in previous research, however, is how
to deal with the memory of a virtualized GPU. As for the GPU’s computational
power, it is desirable for a cloud provider to oversubscribe that memory to increase
its utilization. While this oversubscription can be achieved simply by promising
customers a larger amount of memory than is actually available, doing so can
easily lead to a shortage of GPU memory if customers actually do allocate all the
memory promised to them. On the CPU, this situation is typically handled by
swapping data to disk; however, this technique does not apply to current GPUs
since these GPUs lack important features – most notably page fault support – that
are necessary to implement classical swapping.

1.1 Extending the GPU Memory

One approach to alleviating shortages of GPU memory is to use system RAM in its
place. Current GPUs typically have the ability to access system RAM directly. This
access is transparent to the applications running on the GPU: The GPU driver
can map system RAM into the GPU address space of the application, which the
application can then read and write as usual. When the available GPU memory
is running low, the operating system can thus prevent applications from failing
by transparently allocating system RAM instead of GPU memory. However, each
access to system RAM translates to a transaction on the PCIe-bus. Accessing system
RAM is therefore significantly slower than accessing GPU RAM: The GDDR5X
memory of current GPUs reaches transfer rates of up to 448 GiB/s and latencies of
about 10 ns [33], whereas the PCIe-bus limits transfers to and from system RAM
to a bandwidth of 16 GiB/s and a latency of several hundred nanoseconds [42].
Therefore, any application using system RAM instead of GPU memory will suffer
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App A App B

PCI Express

GPU memory

System RAM

Figure 1.1: Unfairness with first-come-first-served-allocation. Both applications
have allocated the same amount of memory. However, application B
receives a larger amount of GPU memory simply because it allocated
its memory first.

a severe performance hit. However, this performance degradation is arguably
preferable to applications failing altogether due to lack of memory.

While a performance penalty is unavoidable when extending GPU memory with
system RAM, it is the operating system’s task to at least minimize that performance
penalty. Specifically, this leads to two main goals for such a system:

1. Utilization: The system should maintain high utilization of the available
GPU memory. Specifically, applications should not have to use system RAM
until all GPU memory is exhausted.

2. Fairness: If using system RAM is unavoidable, applications should still
benefit equally from the GPU memory available. Thus, each application
should be guaranteed an equal share of the available GPU memory.

The allocation strategies for GPU memory found in most current research projects
on GPU virtualization typically fall short on at least one of these goals. In fact,
current research largely uses rather simple allocation strategies like first-come-
first-served (FCFS) or static partitioning. In the following, we will examine these
allocation strategies in more detail.

First-Come-First-Served Allocation

FCFS allocation is probably the simplest strategy imaginable: Allocation requests
are fulfilled immediately on arrival, without considering any other requests, past
or future. Requests are fulfilled from GPU memory when sufficient GPU memory
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App A App B

PCI Express

GPU memory

System RAM

Figure 1.2: Poor utilization with static partitioning. Some GPU memory is reserved
for application A. Therefore, application B is forced to use slower
system RAM, even though there would be enough free GPU memory
available.

is available; if not, system RAM is used instead. This strategy does maintain
good utilization – system RAM is never used while GPU memory is available.
However, the fact that FCFS only considers requests individually easily leads to
unfairness, as illustrated in Figure 1.1: Two applications, A and B, both allocated
the same amount of memory. However, application B allocated its memory first,
and therefore received only GPU memory, which was abundantly available at
the time. When application A allocated the same amount of memory later on,
system RAM was used for part of the allocation request because there was not
enough GPU memory available. The result is an unfair distribution of GPU
memory: Application A must keep some of its data in system RAM and thus
suffers performance degradation, whereas application B can keep all its data in
the much faster GPU memory.

Static Partitioning

A seemingly obvious solution for the unfairness problem of FCFS is to statically
partition the available GPU memory between applications: For n applications,
1/n of the available memory is reserved for each application exclusively. While
this scheme achieves good fairness – each application is guaranteed to receive
the same share of GPU memory – it also requires the number of applications to
be known beforehand. In addition, this scheme can lead to poor utilization if
an application does not actually use all of its share, as illustrated in Figure 1.2:
Two applications are using the GPU concurrently, with half of the GPU’s memory
reserved for each application. However, application A uses slightly less memory
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than it would be entitled to, while application B uses slightly more. As a result,
application B is forced to use system RAM – and thus suffers from degraded
performance – even though there is still unused GPU memory available.

Swapping

Besides FCFS and static partitioning, there are some recent research projects
taking more sophisticated approaches. Most notably, Gdev [39] and its extension
GDM [63] include a swapping mechanism integrated with a software scheduler
for GPU kernels: The scheduler decides in software which GPU kernel to launch
next, and the swapping mechanism subsequently moves all data that this kernel
might need to the GPU – potentially evicting data from other applications in the
process – before the kernel is actually launched. While this approach is successful
in enabling oversubscription of GPU memory, it also suffers from two fundamental
drawbacks: First, scheduling GPU kernels in software can induce considerable
overhead in GPU applications even in the absence of memory pressure since it
implicitly disables the GPU’s internal, highly efficient scheduling and context
switching [38]. Second, copying all data a GPU kernel might need prior to kernel
launch may lead to unnecessary data transfer if the kernel does not actually need
all the copied data.

1.2 Contributions

The goal of the work presented in this thesis is to extend GPU memory with system
RAM with minimal overhead while maintaining both fairness and high utilization
of GPU memory. Specifically, this thesis makes the following contributions:

Memory extension mechanism for GPUs We present an extension mechanism
for GPU memory, called GPUswap, which transparently extends GPU memory with
system RAM without relying on software scheduling of GPU kernels. GPUswap
evicts application data from the GPU to system RAM whenever an allocation
request cannot be satisfied due to insufficient GPU memory. In contrast to previous
work, GPUswap’s operation is triggered by allocation requests rather than GPU
kernel launches, which has two main advantages: First, GPUswap does not add any
overhead to GPU kernel launches. Therefore, GPUswap’s overhead is virtually zero
in the absence of actual memory pressure. Second, GPUswap keeps the evicted
data directly accessible to the application. Therefore, during GPU computation,
only data that is actually touched by the application is transferred over the PCIe
bus.
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Profiling mechanism for GPU memory accesses The eviction policy accom-
panying GPUswap requires information about the applications’ memory accesses
to operate. Since this information cannot be collected at runtime on current
GPUs due to lack of hardware support, we instead develop a memory profiling
mechanism which is based on the GPU’s performance monitoring counters and
GPUswap. Our mechanism offers two main advantages over previous work: First,
our mechanism does not assume a specific type of application, but can instead
count memory accesses from arbitrary applications. Second, our mechanism is
able to gather information about memory regions outside the application’s direct
control, such as those allocated by the GPU runtime library.

Using our mechanism, we observe that page-level eviction, as done on the CPU,
is often not necessary on the GPU since GPU applications display a higher degree
of uniformity in their memory accesses due to their data-parallel nature.

Eviction policy We present a proof-of-concept policy based on hints generated
from profiling of GPU applications to demonstrate the general benefit of an
eviction policy for GPUs. In addition, we discuss other possible eviction policies
for GPUswap and their applicability to current GPUs. Some of these policies are
not actually viable on current GPUs since these GPUs lack many hardware features
commonly found in CPUs, such as page faults or reference bits. However, as GPUs
are growing ever closer to CPUs in terms of features [59], one of these strategies
may well become state of the art in the future. Therefore, we also discuss how the
hardware of current GPUs would have to change to enable more efficient eviction
policies for GPUs.

Performance considerations Finally, we evaluate the overhead induced by
both GPUswap and the use of system RAM in general. In case GPU memory is
scarce, we analyze the overhead induced by GPUswap’s evictions. Using GPUswap,
there are two main sources of overhead: i) Copying data between CPU and GPU
in response to memory pressure, and ii) frequent accesses to system RAM after
data has been swapped out. We quantify both types of overhead, and assess to
what extent these overheads can be alleviated by an eviction policy.

1.3 Thesis Organization

The remainder of this thesis is organized as follows:

Chapter 2 – Background and Literature Review describes the hardware of
current GPUs, and how the design of that hardware affects our goal of extending
GPU memory with system RAM. In addition, we review related work on GPU
virtualization and GPU memory management in this chapter.
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Chapter 3 – An Eviction Mechanism for GPUs introduces GPUswap, our novel
memory extension mechanism for GPUs, which is the main contribution of this
thesis. We describe both GPUswap’s design and implementation in this chapter.

Chapter 4 – ProfilingMemory Access Patterns of GPU Applications presents
our method for profiling the memory access patterns of GPU applications. We
first describe our methodology for measuring GPU memory accesses of GPU
applications, which is based on GPUswap. Then, we describe the memory access
patterns we observed in several GPU applications, and the implications of these
patterns for eviction policies.

Chapter 5 – Potential Eviction Policies for GPUs discusses possible eviction
strategies and their viability on current GPUs. We also assess how the hardware
of current GPUs should be extended for better memory management – i.e., what
additional features GPUs would need to enable more efficient eviction decisions.
Finally, we present a proof-of-concept policy which works on GPUs that are in use
today.

Chapter 6 – Performance Evaluation of GPU Memory Extension quantifies
the overhead that eviction has on GPU applications. In this chapter, we also use
our proof-of-concept policy to assess to what extent the overhead associated with
using system RAM in place of GPU memory can be alleviated through an eviction
policy. Finally, we show that GPUswap induces no overhead unless actual memory
pressure is present.

Chapter 7 – Conclusion summarizes the main points of the thesis, as well as
the contributions and limitations of the presented work. Finally, we also discuss
possible future research directions in this chapter.





Chapter 2

Background and Literature Review

Modern GPUs support paged virtual memory similar to that used on the CPU:
Applications are confined to virtual address spaces, and virtual addresses from
these spaces are translated to physical addresses by a dedicated MMU via a page
table. However, current GPUs are trailing behind CPUs in terms of features:
For example, GPUs are only starting to support page faults, and the page tables
of current GPUs do not include reference or dirty bits. Therefore, well-known
techniques for memory management on the CPU are typically not applicable to
GPUs.

2.1 Virtual Memory Systems

In the first computer systems, programs were loaded directly into physical memory.
With the advent of multiprogramming, however, this approach turned out to be
insufficient: Since each physical address can be used by only one program at a
time, programmers had to manually ensure that each program – and even multiple
concurrent instances of the same program – used different parts of the available
memory, which proved to be a cumbersome and error-prone task.

2.1.1 Virtual Address Spaces

As many other problems in computer science, the problem of multiplexing mem-
ory addresses among applications was eventually solved by adding another level
of indirection. On today’s computers, programs operate exclusively on virtual

addresses. Whenever a program accesses a virtual address, a dedicated copro-
cessor, called the memory management unit (MMU), transparently translates
this virtual address into a physical address using a translation table, as shown
in Figure 2.1. Since each application has its own translation table, different
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CPU MMU
Physical 

memoryVirtual 

address

Physical

address

Translation

table

Data

Figure 2.1: Address translation on current CPUs. Programs running on the CPU
access virtual addresses, which the MMU translates into physical
addresses using a translation table.

applications are free to use the same virtual addresses. It is the operating system’s
task to configure each application’s translation table appropriately so that each
application’s data actually resides in a different physical location.

The set of all virtual addresses available to a program forms the program’s virtual

address space. This virtual address space is not conceptually different from the
physical address space; its addresses can be used in machine instructions directly
just like physical addresses, which any necessary translation being performed
transparently by the MMU. However, since the virtual address space is an abstrac-
tion of the physical memory, it provides three key benefits over accessing physical
memory directly:

1. Applications are given the illusion of owning the entire physical memory.
Since each application has a dedicated virtual address space, each applica-
tion is free to access any virtual address, without any danger of overwriting
data other than its own.

2. Applications are protected from each other. Since each memory access has to
go through the MMU and translation table, applications are unable to access
physical memory for which no translation exists in their virtual address
space. As a result, the operating system can guarantee that applications
cannot access each other’s data by ensuring that each physical address is
mapped in at most one address space. Note that it is also possible to relax
this protection by establishing mappings to the same physical address in
multiple address spaces, but this is typically done only if explicitly requested
by the application.

3. Applications need not care about the amount of physical memory available.
Instead, they are free to use their entire virtual address space as they see
fit; it is the operating system’s task to provide appropriate translations
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into physical memory. If the applications’ demand for memory exceeds
the capacity of the physical memory, the operating system must decide
how to respond to that condition, for example by terminating one or more
applications to free physical memory for use by other applications.

The virtual address space is typically larger than the physical address space. As
a consequence, not every virtual address has a corresponding translation to a
physical address. Normally, addresses without a translation are not a problem
since applications typically do not use their entire virtual address space. However,
the operating system must be able to handle accesses to virtual addresses without
a translation – typically either by allocating memory at the address that was
accessed and restarting the faulting instruction (lazy allocation) or by terminating
the program if the operating system determines that the memory access was the
result of faulty or malicious application behavior.

2.1.2 Paging

As address spaces can be quite large on current computer systems, providing
virtual-to-physical translations for each individual address is infeasible. As a
result, paged virtual memory [15]was introduced. With paged virtual memory, the
virtual address space is composed of pages, which are contiguous and indivisible
regions of memory. The size of a page ranges from a few kilobytes to several
gigabytes, with the starting address of each page being aligned to the page’s size.
For example, the x86-64 CPUs in use today typically offer a page size of 4 KiB,
but also support huge pages of 2 MiB or 1 GiB [2]. Other architectures, like
PowerPC, support page sizes of up to 16 GiB [30].

With paged virtual memory, the translation table – which is called the page table

in this context – specifies a translation for each page. To translate a virtual into
a physical address, the MMU uses the page table to map the highest bits of the
virtual address to the starting address of a physical page. The remainder of the
virtual address is then added to the physical page’s starting address to obtain the
address of the specific byte to be read or written.

Even though page tables must only store one entry per page, the entire table
can still be prohibitively large for large virtual address spaces. For example, a
complete page table for a virtual and physical address space of 64 bit and a page
size of 4 KiB would be 32 PiB in size. As a result, various schemes have been
developed to reduce the size of the page table in memory [31]. On x86 CPUs, for
example, page tables consist of multiple levels: The first level, called the page

directory, contains addresses to second-level page tables, which in turn may hold
physical page addresses or addresses of yet another level of page tables. This
scheme can be extended to an arbitrary nesting depth – today, three to four levels
are commonplace – with only the last level of page tables holding physical page
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Figure 2.2: Virtual address translation for a two-level page table and 32-bit virtual
addresses, as found in an x86 CPU without physical address extension.
The first 10 bits of the virtual address serve as an index into the page
directory, yielding the address of the second level page table. The
second 10 bits of the virtual address are then used as an index into
the second-level page table, which yields the starting address of the
physical page. The remaining 12 bits of the virtual address then serve
as an index into the physical page.

addresses. The advantage of this design is that only page tables actually in use
must be held in memory. Other hardware architectures use different designs,
such as inverted page tables holding physical-to-virtual address translations,
thus scaling with the size of the physical memory rather than that of the virtual
address space, hashed page tables using a hash of the virtual address to index the
table or software-walked page tables allowing the operating system to define an
arbitrary page table structure. To reduce the cost of resolving virtual-to-physical
translations, most architectures also feature a translation lookaside buffer (TLB)

which caches frequently-used translations.

Figure 2.2 shows the address translation process for a two-level page table and
32 bit addresses. In this example, the MMU uses the first 10 bits of the virtual
address as an index into the page directory. The page directory entry at this
index holds the starting address of a second-level page table. The next 10 bits of
the virtual address are then used as an index into that second-level page table,
with the referenced entry holding the starting address of a physical page. The
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Figure 2.3: Page table entry on 32 bit x86

remaining 12 bits of the virtual address then serve as an index into the physical
page, referencing a specific byte to be read or written.

Besides a physical address, a page table entry holds various other information
about the physical page it references. As an example, Figure 2.3 shows the format
used on 32 bit x86 for both page table and page directory entries. Since pages
are 4 KiB in size with each page’s starting address aligned to its size, each entry
only needs to hold the upper 20 bits of the physical page- or page table address,
which leaves 12 bits for additional information. These bits are used for various
flags describing the page referenced by the entry:

• Present (P) indicates whether this page table entry is currently valid. If
this bit is zero, the MMU ignores the remainder of the entry.

• Read/Write (R) determines whether the page can be written to. Somewhat
counterintuitively, a value of one prevents the page from being written.

• User (U) controls if the page is accessible to unprivileged code. If this bit is
not set, only the operating system kernel may access the page.

• Write-through (W) controls the cache’s behavior for this page. If the bit
is set, write-through caching is used for the page. Otherwise, write-back
caching is used.

• Cache (C) disables caching for this page altogether if set.

• Accessed (A) is automatically set by the MMU if the page is read from or
written to. This bit is also known as the reference bit.

• Dirty (D) behaves similar to accessed, but is only set when the page is
written to.

• Size (S) is only present in page directory entries. If set, it indicates that
this page directory entry does not hold the address of a second-level page
table, but of a physical page of larger size (often called a huge page). For
last-level page tables, this bit is always zero.

• Global (G) indicates that this entry should not be removed from the TLB
when the TLB is flushed.

When the MMU encounters an entry with the present bit set to zero while trans-
lating an address, raises an exception. This exception is called a page fault. Page
faults are processed by the operating system, which usually handles them in one
of two ways: If the faulting address should be valid, the operating system typically
responds by making the accessed memory available to the application and then
retrying the faulting instruction. This technique is often used in conjunction with
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large application buffers to allocate only those parts of the buffer that are actually
accessed – a technique called demand paging. If, however, the application is
not supposed to access the faulting address, the operating system typically reacts
by terminating the application since an access to an invalid address is typically
caused by either a programming error or malicious application behavior.

2.1.3 Virtual Memory and DMA

Today’s computers often include devices which transfer large amounts of data to
and from the system’s main memory, such as hard disks or network controllers.
To speed up these large transfers, these devices typically support direct memory

access (DMA), which allows them to access data in the system’s main memory
autonomously, leaving the CPU free to perform other work. Traditionally, these
DMA operations used to operate on physical memory addresses, which without
remedy allowed each DMA-enabled device to access any data in memory, including
that of other applications or the kernel.

To mitigate this issue, current CPUs include an input/output memory manage-

ment unit (IOMMU) which applies virtual memory to DMA operations. DMA
operations now target bus addresses instead of physical addresses, and the
IOMMU translates these bus addresses to physical addresses using a set of per-
device page tables maintained by the operating system. If a device accesses a
bus address for which no page table entry exists, the DMA operation is typically
aborted. By setting up the IOMMU’s page tables appropriately, the operating
system can thus prevent the device from accessing data it is not supposed to
access without verifying the target address of each individual DMA request.

More recently, the IOMMUs in both Intel [29] and AMD [3] CPUs have begun
to support direct access to I/O devices from user space. To allow user space
applications to perform DMA in a safe way, these IOMMUs translate bus addresses
to physical addresses in two steps. For first-level translation, which is optional,
devices can attach an address space identifier to their DMA requests. The IOMMU
uses this identifier to select one of several page tables attached to the device, and
subsequently uses this page table to translate the bus address to an intermediate
address. The page tables used in first-level translation conveniently share the
same format as the regular MMU’s page table. If the device tags each DMA request
with an identifier for the application the request originated from, the IOMMU
can thus use the regular MMU’s page tables to allow each application to perform
DMA using its own virtual addresses. If a device does not support address space
identifiers, the IOMMU skips first-level translation altogether.

Once first-level translation is complete, second-level translation translates the
intermediate address – or the bus address if first-level translation is skipped –
to a physical address using another, dedicated page table global to the device.
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This translation is transparent to the device, and is unconditionally applied to
all DMA requests. Second-level translation is particularly useful in virtualized
contexts: The hypervisor can use second-level translation to control which memory
is accessible to an entire virtual machine, and subsequently allow that virtual
machine to manage first-level translation itself.

2.1.4 Swapping

Since virtual address spaces make applications oblivious to the amount of physical
memory available, it is possible for applications to allocate more memory than
available. Modern operating systems handle this situation through swapping: If
a new memory allocation request cannot otherwise be satisfied, the operating
system pushes some application data out to secondary storage. To that end,
the operating system copies a set of pages – not necessarily from the allocating
application’s address space – to another storage device – typically a hard disk
or SSD. Once copying is complete, the operating system clears the present bit
in the page table entries pointing to the swapped pages, and stores the location
of each page in secondary storage – e.g., a block number on the hard disk – in
the remainder of the page’s page table entry. Once that process is complete, the
operating system can use the swapped physical pages to fulfill the outstanding
allocation request.

Since data that has been swapped to secondary storage is not directly accessible
to the application, the operating system must be able to return swapped pages to
physical memory if the application accesses those pages. When the application
accesses a swapped page, the MMU raises a page fault since the present bit of
swapped pages is set to zero. The page fault handler then reads the location of the
swapped page from the page table entry – the rest of which the MMU conveniently
ignores after reading the present bit – copies the content of the swapped page
from secondary storage to a physical page, and updates the page table entry to
point to the new location of the data in memory. If memory is still contended, the
page fault handler may have to swap another page in the process to make room
for the page the application tried to access.

When an operating system practices this kind of swapping, finding the right pages
to swap to secondary storage is a major problem [60]: Both pushing pages out to
secondary storage and getting them back into RAM induces significant latency.
Swapping frequently-accessed pages can therefore lead to significant overhead.
When memory pressure occurs, the operating system must therefore find rarely-
accessed pages to swap to preserve application performance. Current MMUs
typically provide tools to aid the operating system in this task – the most common
such tool is the reference bit described in Section 2.1.2. Based on these tools,
various algorithms are available for selecting appropriate pages [60].
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Figure 2.4: The compute model of contemporary GPUs. The application launches
kernels consisting of a large number of threads grouped in thread
blocks. The kernel is sent to the GPU’s compute engine, which sched-
ules each block to run on a streaming multiprocessor (SM) with free
capacity. The SMs internally divide each block into warps, and then
execute the threads in each warp on their compute cores in a single
instruction, multiple thread (SIMT) fashion. Though not shown in
the figure for simplicity, SMs may execute multiple blocks concur-
rently, and the cores interleave between threads of different warps
with instruction granularity.

2.2 Graphics Processing Units

GPUs can be used for various purposes other than rendering graphics. In fact,
current GPUs are small many-core computer systems capable of executing arbitrary
code. Due to their massively-parallel nature, these GPUs can deliver tremendous
levels of performance for applications that can be parallelized to a sufficient
degree. As a result, the use of GPUs is growing ever more widespread, and GPUs
have long found their way into the computers in present-day datacenters, even
though these computers typically have no screens attached.

2.2.1 Compute Model

Today’s GPUs function as asynchronous accelerators: Applications submit multi-
threaded programs called kernels to the GPU and are then free to perform other
work, while the GPU processes these kernels autonomously. For each kernel,
the application can optionally ask to be notified once the kernel has finished
execution.
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Data transfers between CPU and GPU over the PCIe bus are typically expensive
– sometimes even more expensive than the GPU computation itself. For best
performance, GPU applications should therefore perform as much work as pos-
sible on the GPU between data transfers [47, Section 5.3.1]. As a consequence,
applications using the GPU often execute in cycles: The application first copies
data to the GPU, then executes one or more GPU kernels, and finally copies the
result of the GPU computation back into system RAM.

GPU kernels consist of many threads which process the kernel’s input in parallel.
These threads are light-weight compared to CPU threads, and each GPU thread
typically performs much less work than a typical CPU thread. For a typical matrix
multiplication, for example, each GPU thread computes just one element of the
result matrix. Since GPUs often have hundreds of compute cores, this fine-grained
parallelization is necessary to fully utilize the GPU’s resources.

Figure 2.4 illustrates the compute model used by current GPUs. Application
developers must group the threads of each kernel into thread blocks. When the
kernel is started, the GPU’s compute engine then assigns each of these blocks to
one of the GPU’s streaming multiprocessors (SM). Each thread block is executed
by exactly one SM – which allows threads in a block to share the SM’s resources –
but one SM may execute threads from multiple blocks concurrently. The latest
generation of Nvidia GPUs features 80 SMs composed of 64 individual cores
each [50].

Internally, the SMs subdivide each block into warps. A warp typically consists
of 32 threads, but smaller warps may exist if the number of threads in a block
is not an exact multiple of the warp size. Threads within a warp use a single

instruction, multiple thread (SIMT) execution model [43]: In each cycle, all
threads in the warp execute the same instruction, though possibly with different
parameters. To load data from memory, for example, all threads in the warp
must simultaneously execute a load instruction, but each thread may load a word
from a different address. Different warps can execute independently on the same
SM, and SMs with a sufficient number of cores can execute multiple warps in
parallel. An SM-internal warp scheduler multiplexes the SM’s cores among all
active warps with instruction granularity. In principle, the SMs can thus execute an
instruction from a different warp in each cycle, which allows the warp scheduler
to hide memory latency by switching to a different warp after issuing a load
instruction. The scheduler also offers a low-overhead barrier synchronization
primitive to allow for coordination between warps.

Using a SIMT model greatly simplifies the SMs’ design – for example, threads
within a warp can share the same instruction decoder. However, this model can
also lead to severe performance degradation if the control flow diverges within a
warp: If multiple threads in the same warp execute different sides of a branch,
the SM must execute both sides of the branch sequentially, discarding the result of
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Figure 2.5: The cache hierarchy found in current GPUs. Each streaming multi-
processor (SM) includes its own L1 cache and shared memory, both
of which are backed by the same physical memory. The L1 cache
is transparent to the application, whereas the shared memory is a
scratchpad managed explicitly by the threads running on the SM. In
addition, the GPU includes an L2 cache which is shared between all
SMs.

one side in each thread. To achieve good performance, developers must therefore
carefully structure the code of their GPU applications to fit the GPU’s compute
model.

Each SM typically includes a large register file, which can be several kilobytes in
size. Local variables of GPU threads are thus stored mostly in registers, but can
be spilled to a stack in GPU memory if there is insufficient space in the register
file. In addition, each SM includes an L1 cache and several kilobytes of shared

memory. This shared memory serves as a scratchpad shared between all threads
in a block which is accessible at the same speed as the L1 cache1. Finally, the GPU
includes an L2 cache which is shared between all SMs. The entire cache hierarchy
is depicted in Figure 2.5.

Nvidia recommends that data local to a thread block should be placed in shared
memory whenever possible [47, Section 3.2.3]. Thread blocks therefore often
repeat the application’s GPU execution cycle: GPU threads copy data from GPU
memory into shared memory, perform as much computation as possible on that
data, and copy the result of the computation back into GPU memory.

1 In fact, L1 cache and shared memory are backed by the same physical memory, which is
partitioned between the two by the GPU’s firmware. The tradeoff can be set at runtime using
the CUDA runtime API function cudaDeviceSetCacheConfig.
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Figure 2.6: A GPU command submission channel. After writing a block of com-
mands into the push buffer, the application places a descriptor item
containing the starting address and length of the block in the indirect
buffer. Then, the application updates the control register IB_PUT to
inform the GPU that new commands have been submitted. IB_GET is
updated by the GPU after fetching a block of commands.

2.2.2 Command Submission

Current GPUs communicate with the applications using them through in-memory
data structures which Nvidia calls command submission channels. Modern
Nvidia GPUs support multiple such channels, while some Intel and AMD GPUs
are limited to one. Command submission channels are used to submit a stream
of high-level commands – like “launch kernel” or “start DMA transfer” – to the
GPU for execution. Note that these channels do not contain the actual code of the
GPU kernels. Instead, kernel launch commands specify the address of a kernel’s
code in GPU memory.

The basic structure of a command submission channel is depicted in Figure 2.6.
Each channel consists of a ring buffer – dubbed the indirect buffer (IB) – and
a set of device registers [14]. Inside that register set, two particular registers –
called IB_GET and IB_PUT – specify which parts of the indirect buffer currently
contain valid entries. Specifically, IB_GET points to the head of the queue – i.e.,
the end of the queue the GPU gets entries from – while IB_PUT points to the tail –
i.e., the end where new entries are put.

The entries of the indirect buffer are themselves pointers to push buffers (PB),
which in turn contain the actual commands. Each IB entry contains the starting
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address and length of a single PB, while a PB contains a block of commands that
logically belong together. A kernel launch, which actually requires a sequence of
multiple commands, is thus represented by a single IB item. Although PBs can be
stored at arbitrary locations in GPU memory, GPU drivers typically implement the
PBs as another ring buffer to facilitate memory management.

The command submission channels found in Nvidia’s GPUs can be mapped directly
into the CPU address space of an application. Since these GPUs support multiple
channels, each application can be given a dedicated channel. The application
can then submit commands to the GPU by writing these commands into the push
buffer, appending an item referencing these commands to the end of the indirect
buffer, and then setting IB_PUT to point to the newly added IB item. IB_PUT,
being a device register, doubles as a doorbell, informing the GPU that a new set of
commands has been submitted. The main advantage of mapping channels directly
into the application’s address space is that applications need not enter the kernel
to submit commands to the GPU. This approach therefore reduces the overhead
of command submission considerably. At the time of this writing, Nvidia’s binary
GPU driver and the open-source PathScale Nvidia Graphics Driver (pscnv) [53]
implement command submission this way, whereas the Nouveau driver [65] still
requires applications to call into the kernel to submit commands.

2.2.3 Command Processing

The GPU includes several engines which process the commands submitted by the
applications [14]. Three of these engines are relevant in the context of this thesis:
PFIFO which implements the GPU’s internal scheduling and context switching,
PCOPY which handles asynchronous DMA, and PGRAPH which can execute
arbitrary code and thus handles all CUDA kernels. Besides these three engines,
the GPU also includes a number of engines for specialized tasks, such as video
encoding and decoding. Since these engines are not relevant in the context of
this thesis, we omit detailed descriptions here for brevity. In general, applications
can choose which engine should execute a given command – however, not all
commands can be executed on each engine, and submitting a command to an
incompatible engine results in an error.

The PFIFO engine implements the GPU’s internal scheduler and is thus the first
to process every new command. In essence, PFIFO executes a loop consisting of
four steps: i) fetch a single entry from one of the GPU’s indirect buffers, ii) read
the corresponding commands in the push buffer, iii) forward these commands to
one of the other engines for processing, and iv) switch to the next indirect buffer.
Since a set of commands referenced by a single IB entry typically represents a
high-level command from the application – e.g., a GPU kernel launch – PFIFO thus
implements simple round-robin scheduling of GPU kernels. The main advantage
of this scheme is that the scheduling latency is completely hidden: Fetching
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commands and switching to the next channel takes place while the previous
kernel is still executing in a different engine.

PFIFO typically forwards CUDA kernels to PGRAPH for processing. PGRAPH is a
general-purpose engine capable of executing arbitrary code on the GPU’s SMs,
and thus the only engine capable of executing CUDA kernels. However, PGRAPH
is also capable of performing other tasks, such as DMA. This feature is often
used when synchronous DMA is desired: Since each engine can only execute one
command at a time, executing a DMA operation on PGRAPH ensures that the
next kernel does not start before the DMA operation completes. For asynchronous
DMA, a dedicated engine named (PCOPY) is available: Since different engines
can execute commands in parallel, PCOPY allows the GPU to perform a DMA
operation while a GPU kernel is running.

Since the GPU’s engines operate asynchronously to the CPU, GPU commands are
typically processed without any interaction with the application that submitted the
commands. In some cases, however, the application may need to know whether
one of its GPU kernels has finished execution. Polling IB_GET is insufficient in that
case since PFIFO advances IB_GET immediately after fetching the last command
in a block, and thus before this commands has been processed by one of the other
engines. Instead, the GPU offers a special fence command which the application
can submit to one of its command submission channels. This fence command takes
a memory address and a value as parameters, prompting the engine executing the
command – which can be any engine – to write the value to the memory address.
Since each engine processes only one command at a time and commands from the
same command submission channel are processed in order, execution of a fence
command guarantees that all preceding commands from the same channel and
targeting the same engine have finished execution. The application can thus wait
for a command to complete by writing a fence command to one of its channels and
subsequently polling the memory location passed to the command. In case polling
is undesirable, the application can optionally pass a third parameter to the fence
command, prompting the GPU to raise an interrupt upon executing the command.
The GPU driver typically offers a corresponding system call which blocks until
this interrupt is received. In case multiple fence commands are outstanding, the
application can then read the memory addresses passed to all of its outstanding
fence commands to determine which one was executed.

2.2.4 Virtual Memory

Modern GPUs support virtual memory similar to that found on the CPU. Each
application using the GPU is confined to a dedicated virtual address space on the
GPU. This confinement is implemented by attaching the application’s command
submission channels to the application’s address space at creation time. GPU
kernels launched via a given channel can then only access memory from the
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Figure 2.7: Page table entry of an Nvidia Fermi GPU

address space attached to that channel. The GPU’s virtual address spaces are
essential for allowing applications to submit GPU kernels without operating system
intervention: Once address spaces are set up, there is no need for the operating
system to examine each command submitted to the GPU since the GPU can
autonomously ensure that applications cannot access each other’s memory.

As on the CPU, the GPU’s address spaces are composed of pages. Current Nvidia
GPUs support two distinct page sizes: Small pages of 4 KiB and large pages

of 128 KiB [14]. Whenever a GPU kernel accesses a virtual memory address,
a dedicated MMU translates that virtual address to a physical address using a
page table set up by the GPU driver. The process of translating virtual to physical
addresses is similar to that described in Section 2.1.2.

The page table of a recent Nvidia GPU consists of two levels. The top level
consists of a page directory which is 64 KiB in size, stored in 16 contiguous
pages in physical GPU memory. Each entry in this page directory is 64 bits long
and holds pointers to two distinct second-level page tables: A small page table

which contains translations for small pages, and a large page table containing
translations for large pages. Each page directory entry contains pointers to both
of these page tables, allowing the driver to mix small and large pages within the
memory region covered by a single page directory entry. The driver can also mark
either page table as not present if only one page size is required within a page
directory entry’s memory region, or both if a region is not in use at all. A given
virtual address is considered valid if either second-level page table is present and
contains a valid mapping for that address; if both page tables contain a valid
mapping, the large page table takes precedence.

Each of the GPU’s second-level page tables covers 128 MiB of virtual address space,
holding a physical address for each virtual page within that region. Since the
small and large page tables use different page sizes, the page tables themselves
are different in size to cover the same region of memory: Each large page table is
8 KiB long, while each small page table occupies 256 KiB. Like the page directory,
both types of page table are stored in contiguous physical pages.

Figure 2.7 shows the entry format used by an Nvidia Fermi GPU for both the large
and the small page table. The most important field in each page table entry is
the address field, which holds the upper 28 bits of a physical address; for the
large page table, the lower 5 bits of this field are always zero. During address
translation, the MMU replaces the upper bits of a translated virtual address with
the contents of this address field while leaving the lower 12 bits unchanged to
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obtain the corresponding physical address. Note that both virtual and physical
address space of current GPUs are only 40 bits wide.

The field labeled Targ is particularly relevant in the context of this thesis. This
field controls which memory – GPU memory or system RAM – the physical address
in the address field is located in. Specifically, three values are possible for this
field:

• VRAM indicates that the physical address is located in the GPU’s internal
memory.

• SYSRAM_NO_SNOOP indicates that the physical address is located in sys-
tem RAM. Whenever an address corresponding to this page table entry is
accessed, the GPU performs a DMA transaction using the translated physical
address as a PCIe bus address. This bus address may be further translated
by the host system’s IOMMU.

• SYSRAM behaves like SYSRAM_NO_SNOOP, but enables cache coherence
between CPU and GPU. When the GPU issues a write operation over the
PCIe bus, all entries in the CPU’s cache which correspond to the operation’s
target address are invalidated. This mode is useful if the same physical
memory is mapped into both a CPU and a GPU address space, which is
sometimes used to exchange data between CPU and GPU.

It is important to note that code executing on the GPU is oblivious to the type
of physical memory backing its virtual address space. If the driver maps system
RAM in place of GPU memory into a GPU address space, accessing this system
RAM is thus completely transparent to the application.

Besides the two fields described above, various other fields exist in each page
table entry:

• Present (P) indicates whether this page table entry is currently valid. If
this bit is zero, the MMU ignores the remainder of the entry.

• Supervisor (S) indicates whether regular GPU operations from applications
can access the memory referenced by this page table entry. If set to 1, only
code executing in a special supervisor mode which is only available to the
GPU driver can access this page.

• Read-only (R) determines whether the page can be written to. A value of
one prevents the page from being written.

• Encrypted (E) determines whether the contents of this page are transpar-
ently encrypted by the GPU. This encryption is useful if GPU data is stored
in system RAM but should not be accessed by the CPU.

• Storage Type allows the driver to choose between linear addressing and
various tiling modes used primarily in graphics contexts.

• Compression Tag is used in conjunction with texture compression.
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In addition, Figure 2.7 includes some fields labeled “U”. While these fields are in
use on current GPUs, their exact meaning is currently not publically known.

While GPUs do support several memory-related features not commonly found
in CPUs – such as transparent encryption or texture compression – they also
lack a number of features that are commonly taken for granted on the CPU. For
example, the GPU’s page tables do not contain the reference and dirty bits found
in CPU page tables. Neither the GPU nor the GPU’s driver can thus determine
which of the GPU’s memory pages are accessed frequently. In addition, most
GPUs currently in use do not support transparent page faults as found on the CPU.
Instead, these GPUs treat an access to a page for which no page table entry exists
as a fatal error, forcefully aborting the GPU kernel the access originated from and
raising an interrupt to the GPU driver. Although the driver could update the GPU’s
page table in response to that interrupt, current GPUs do not support restarting
a kernel where it was interrupted – typically, it is not even possible to restart a
kernel from the beginning since that kernel may have changed the contents of the
GPU’s memory before it was aborted, making the result of a repeated execution
unpredictable. Due to these restrictions, the most common techniques for memory
management – most notably demand paging and swapping of data to secondary
storage – cannot be used on current GPUs.

More recently, however, these restrictions of GPU hardware have been diminishing:
The Pascal generation of Nvidia GPUs includes limited page fault support [49].
Upon encountering a page fault, these GPUs are able to stop the faulting GPU
kernel and raise an interrupt. The fault is then handled in the GPU driver, typically
by adding a mapping to the faulting application’s GPU page tables and signalling
the GPU to resume the faulting kernel’s execution. However, details about this
process are not publicly known since no documentation on the hardware of current
GPUs is available. Therefore, page fault support is currently only available in
Nvidia’s proprietary driver, but not in any of the open-source GPU drivers currently
available.

2.2.5 Performance Monitoring Counters

Programming on current GPUs often requires extensive tuning to achieve maxi-
mum performance. To assist these tuning efforts, current Nvidia GPUs feature a
set of performance monitoring counters. Although these counters can monitor a
variety of events from all parts of the GPU, they also come with one significant
limitation: Due to the hardware structure of the performance monitoring coun-
ters, it is often impossible to count multiple related events simultaneously – for
example, read and write accesses to memory cannot be counted at the same time.
Nvidia’s own profiling tools work around this problem by executing each GPU
kernel launched by the profiled application multiple times on the same input,
counting one event in each repetition.
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On Nvidia GPUs, the performance monitoring counters are grouped together in a
dedicated engine named PCOUNTER [14]. Handling the performance monitoring
counters is the only task of PCOUNTER; specifically, PCOUNTER never executes
any code.

PCOUNTER is internally divided into domain sets. Most sets are connected
to either a partition of the GPU’s SMs or one of the GPU’s memory controllers,
the only exception being one dedicated set handling events related to neither
computation nor memory. As a consequence, each set sees events from only a
portion of the GPU – in particular, memory accesses are spread across multiple
sets since the GPU interleaves these accesses across all memory controllers for
increased performance. To capture all events of a certain type for the entire GPU,
it is therefore necessary to use counters from all sets, summing up the counters’
results after the profiled GPU kernel finishes execution.

Each domain set is further divided into eight domains. Each of these domains is
connected to a set of 256 signal lines. Each signal line is associated with a specific
event – such as the completion of an instruction – or state – such as whether or
not a certain engine is currently busy or idle. To support more than 256 distinct
signals, most signal lines are connected to only one domain per set. In addition to
the signal lines, there are some lines connecting the domains, allowing an output
of one domain to serve as input for another.

Each domain contains four counters operating on a shared clock. On each clock
tick, each of these counters can sample up to four of the domain’s signal lines.
The counter combines these four lines using a freely-configurable logic function,
increasing its count in each clock tick if this logic function yields true. Combining
multiple signal lines in this way is often necessary since usable events are typically
composed of more than one signal.

Even though each domain includes multiple counters, it is often impossible to
count multiple related events concurrently since the domains feature different
operating modes, some of which require multiple counters to work in tandem. In
the simplest operating mode, each of the four counters of a domain independently
counts events from its configured signal lines. In another mode, it is possible
to start the actual counting only after a certain number of events of a certain
type have occurred. To that end, one of the four counters counts down from a
configured value, enabling another counter once the value of the first counter
reaches zero.

Some events – such as memory accesses, which are always performed by all
threads in a warp – can occur multiple times per clock tick. For such events, the
GPU’s engines have the ability to submit an integer value for each clock tick using
multiple signal lines, with each line representing one bit of the total number.
Conversely, the performance monitoring counters have an operating mode which
sums up these integers: Instead of using the logic function, the counter interprets
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Figure 2.8: Counting memory accesses using the GPU’s performance monitoring
counters. Each of the GPU’s memory controllers periodically transmits
a four-bit number for each type of access using four signal lines (called
data lines in the figure). The type of access is indicated by three more
signal lines, called selection lines in the figure. PCOUNTER uses two
counters from the first domain in each set to interpret these signals:
The logic function of the first counter is connected to the selection
lines, while the second counter sums up the values carried by the data
lines whenever the first counter’s logic function yields true. Note that
only the first domain in each set is connected to the lines required
for counting memory accesses, and that only the first two counters in
that domain can be used with this type of signal.

its four input signal lines as a four-bit integer and adds the integer’s value to its
count in each clock tick. On the downside, however, these modes can use only
one counter of each domain. Each domain can thus account for only one such
event at the same time, which can occur up to 15 times per clock tick.

To reduce the number of signal lines required for such multi-line events, the GPU
multiplexes some four-bit signals among multiple events as shown in Figure 2.8.
For these events – which include memory accesses – the four signal lines carry
a count for a different event in each clock tick, which yet other signal lines
indicating the meaning of the current value. Another special operating mode
exists to interpret this type of signal. In this mode, two of the four counters
in a domain work in tandem while the remaining two counters remain unused:
The first counter is used to configure which events should be counted, while the
second one sums up the values for these events. To count read accesses to system



2.3 Related Work 27

RAM, for example, the first counter is configured to combine three signal lines –
one corresponding to memory accesses in general, one denoting a read access,
and one indicating a PCIe bus transaction – using a simple, three-way logical
and function. The second counter then adds a four-bit value to its internal count
whenever the first counter’s logic function yields true.

Although this scheme is quite complex, it also offers great flexibility. If, for example,
the sum of both read and write accesses to system RAM should be counted, the
only change required to the scheme described above would be to omit the read
access line from the first counter. Although the domain still sees read and write
accesses as distinct events in that case, the first counter’s logic function would
yield true for both events, causing the second counter to sum up both counts as
desired. On the downside, however, all complex operating modes can only count
one type of event at a time even if some of the domains’ counters remain unused.
As a consequence, separate counts for read and write accesses cannot be obtained
in parallel since both are only countable by one domain of each set.

To enable convenient access to the GPU’s performance monitoring counters, Nvidia
provides an API named the CUDA Profiling Tools Interface (CUPTI) [48]. CUPTI
provides a library interface to monitor both the GPU’s performance monitoring
counters and the CUDA operations (e.g., kernel launches or memory copy op-
erations) issued by applications. CUPTI is intended as a tool to build more
sophisticated profiling tools for GPUs – in fact, Nvidia’s own profiling tools for
GPUs are built on top of CUPTI. However, it is also possible for an application to
profile itself by using CUPTI functionality. Most of our own knowledge about GPU
performance monitoring counters was obtained by tracing GPU register accesses
of such CUPTI-enabled applications.

2.3 Related Work

In this section, we review past research efforts relevant to this thesis. We discuss
techniques for GPU virtualization – which must multiplex memory between multi-
ple VMs – in Section 2.3.1, followed by a discussion of more general techniques
for memory management on current GPUs in Section 2.3.2.

2.3.1 GPU Virtualization

Previous work on GPU virtualization largely falls into one of four categories [11]:
Fixed passthrough, API remoting, device emulation, or mediated passthrough.
In this section, we first describe these categories in general, before discussing
specific research projects in more detail.
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Figure 2.9: Basic principle of API remoting. The guest application calls the func-
tion of a paravirtual CUDA library. This library forwards the calls to a
proxy process in the host, which executes the call on the application’s
behalf.

Fixed Passthrough

Fixed passthrough is a simple yet efficient method of virtualizing PCI and PCIe
devices: The hypervisor maps the device’s memory-mapped I/O registers into the
guest-physical address space of the VM. The VM can then access these registers
directly, without further intervention from the hypervisor. Fixed passthrough
therefore allows the VM to access the device at native speed. On the downside,
however, this approach requires that the device is given to a single virtual machine
exclusively since fixed passthrough offers no way of coordinating multiple VMs
accessing the same device.

To mitigate this issue, single-root I/O virtualization (SR-IOV) [10] was intro-
duced. Devices supporting SR-IOV can be split into multiple virtual devices called
virtual functions. To applications, these virtual functions appear identical to
the original device, and each virtual function can be safely passed through to a
different VM. Support for SR-IOV is found in many server-grade network adapters,
but we are not aware of any GPUs supporting this feature.

API Remoting

The basic principle of API remoting is shown in Figure 2.9. To implement API
remoting, applications running inside a virtual machine are linked with a par-
avirtual GPU runtime library. This library implements the same interface as the
real runtime library in the host – e.g., CUDA, OpenCL or OpenGL – and is thus
indistinguishable from the real runtime library to the application. Instead of
implementing the functionality of the original runtime library, however, the par-
avirtual library forwards all calls to a proxy process running in the host system,
typically using some kind of IPC or RPC mechanism. Each application is associ-
ated with a separate proxy process which encapsulates all GPU state associated
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with the application; isolation between applications is then implemented by the
operating system and GPU driver in the host. The proxy process executes the
forwarded calls on the application’s behalf by calling into the real runtime library,
and sends the result of the call back to the paravirtual library, which returns it to
the application.

The main advantage of API remoting is its ease of implementation: Since the
proxy process simply calls into the real runtime library, no special knowledge
about the inner workings of the GPU is required. However, this approach is also
highly inflexible: Each implementation is tied closely to the runtime library in
use. Consequently, an entirely new implementation must be created to support
a new runtime library. In addition, API remoting requires a large amount of
communication between the application and its proxy process. Since this commu-
nication crosses VM boundaries, API remoting tends to induce high overhead in
applications.

Device Emulation

Device emulation can be seen as the opposite of API remoting: Instead of putting
a virtualization component into the guest, device emulation attempts to present
the guest with an entire emulated GPU, which is identical to the host’s physical
GPU. The hypervisor implements one such virtual GPU for each guest VM, main-
taining separate state for each virtual GPU to keep VMs isolated from each other.
Implementing this scheme is highly complex: The hypervisor must emulate all
GPU control structures – e.g., command submission channels – as well as all GPU
device registers, which can number in the thousands for a recent GPU. Emulation
is typically implemented by trapping all accesses from the guest’s device driver to
the emulated structure, which tends to induce high application overhead since
even simple operations often require a large number of device register accesses
on current GPUs. If implemented properly, however, the virtual GPU is indistin-
guishable from a physical one – the guest can even use the same GPU driver as
the host – and no assumptions about the guest’s use of the GPU are necessary. In
contrast to API remoting, device emulation is therefore not limited to a specific
type of guest application. Instead, all applications – and even guest operating
systems – are supported without requiring special support in either the guest or
the hypervisor.

Mediated Passthrough

Mediated passthrough is a hybrid between API remoting and device emulation.
The basic principle is shown in Figure 2.10: Only operations related to resource
allocation are intercepted and forwarded to the hypervisor, while all other op-
erations are sent to the GPU directly. In contrast to API remoting, mediated
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Figure 2.10: Basic principle of mediated passthrough. Resource allocation re-
quests are forwarded to the hypervisor, while other GPU commands,
such as kernel launches, are sent directly to the GPU.

passthrough operates on the driver level: A modified device driver intercepts
those GPU operations that must be handled by the hypervisor. The hypervisor
then forwards these operations to the actual GPU driver if it deems the operation
safe to execute. Intercepting resource allocation requests allows the hypervisor
to enforce isolation between VMs: Since all memory is allocated through the
hypervisor, that hypervisor can easily ensure that VMs cannot access each other’s
memory by configuring all GPU address spaces accordingly. Once address spaces
are set up, however, it is not necessary to intercept other commands, such as
kernel launches, operating on those address spaces. As a result, the hypervisor
can grant each guest application direct access to a command submission channel,
which allows the application to submit kernels to the GPU without any overhead,
while the GPU autonomously enforces address space boundaries.

The main advantage of mediated passthrough over API remoting is its increased
flexibility: Since the guest driver implements the same interface as the GPU’s
original driver, the guest is not limited to a specific type of application; instead, any
GPU runtime supporting the driver’s interface can be used without modification.
At the same time, mediated passthrough is much less complex to implement than
device emulation: Since the original GPU driver in the host performs most of
the actual work, much less knowledge about the inner workings of the GPU is
required, though the resulting implementation is typically still closely tied to a
specific GPU vendor. Most importantly, however, mediated passthrough typically
causes lower overhead than both API remoting and device emulation since most
commands are sent to the GPU directly.
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Specific Projects

vCUDA [56] enables the use of CUDA in virtual machines. Being a prime example
of a project using API remoting, vCUDA intercepts CUDA calls in a modified CUDA
library and forwards them to a proxy process in the host system. To minimize
the overhead of call forwarding, vCUDA builds upon VMRPC [25], a highly
efficient, shared memory-based data transfer mechanism for virtual machines
developed by the same authors. Using this approach, vCUDA supports sharing
of a single GPU between multiple VMs as well as VM migration, while inducing
an overhead of 11 % on average. However, even though vCUDA is able to safely
share a GPU between VMs, it does not guarantee any fairness. In particular,
vCUDA allocates GPU memory in a first-come-first-served fashion, though the
authors briefly discuss the possibility of statically partitioning GPU resources,
which could be implemented by modifying the result of certain CUDA calls to
make applications believe that there are fewer resources – e.g., less RAM – than
are physically available.

GViM [21] is a predecessor to vCUDA. Like its predecessor, GViM employs API
remoting, but uses a guest kernel driver in addition to a fake CUDA library. Using
the driver’s extended privileges GViM establishes an efficient, shared memory-
based communication channel between guest and host to enable fast data transfer
between the application and the GPU. In contrast to vCUDA, GViM also addresses
fairness between multiple VMs, implementing a scheduler for CUDA kernels which
can guarantee a certain amount of GPU computation time to each application.
However, GViM limits its fairness considerations to computation time, but does
not address memory.

API remoting is not limited to the CUDA API: VMGL [41] uses the same technique
to allow VMs to render 3D graphics using OpenGL. VMGL uses a custom network-
based transport, which the authors call WireGL, over a loopback interface to
forward GL calls to a proxy process in the host. In addition, the authors make
modifications to the guest’s X server to allow the guest to display self-rendered
2D graphics as well as 3D graphics rendered by the proxy process on the same
screen. As a result, VMGL enables guest access the full OpenGL API as well as VM
suspend and resume at about 14 % of overhead. VMGL allows multiple VMs to
share the same GPU, but does not attempt to guarantee fairness between VMs.
Specifically, VMGL allocates memory in a first-come-first-served fashion.

rCUDA [13] extends the idea of API remoting to allow applications to use GPUs
located in a remote machine. To that end, communication between the fake
CUDA library and the proxy process takes place over a network instead of an
IPC mechanism within a single machine. This approach allows datacenter ap-
plications which do not saturate a GPU by themselves to share that GPU with
other applications, which reduces the number of GPUs as well as the amount of
energy required. RCUDA supports the entire CUDA API with the exception of
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zero-copy data transfer, which is typically implemented by mapping the same
memory into both a CPU and a GPU address space and is thus fundamentally
incompatible with using a remote GPU over a network. Since the network is much
slower than the PCIe interconnect typically used for GPUs, rCUDA induces a high
application overhead of 71 % on average. In addition, rCUDA requires changes
to the application’s source code to avoid the use of undocumented functionality –
however, this appears to be an implementation artifact since vCUDA has no such
limitation. Like the projects described above, rCUDA does not specifically deal
with GPU memory.

VOCL [64] implements a similar functionality as rCUDA, but based on OpenCL
instead of CUDA. VOCL uses MPI instead of sockets for data transfer between
machines and can thus leverage high performance interconnects efficiently and
transparently. Compared to rCUDA, VOCL introduces four optimizations to reduce
the application overhead. First, rCUDA does not properly handle local GPUs, but
instead assumes all GPUs to be remote. In contrast, VOCL simply calls the real
OpenCL library if a call made by the application targets a local GPU, bringing
the overhead of using a local GPU down to virtually zero. Second, in case of a
remote GPU, VOCL locally caches kernel arguments until the kernel is launched,
and sends these arguments to the remote machine as part of the actual kernel
launch operation. This optimization significantly reduces the number of round-
trips required to launch a GPU kernel. Third, VOCL pipelines data transfer over
the network with data transfer between CPU and GPU on the remote machine,
which increases the transfer bandwidth to and from the remote GPU. Fourth,
VOCL forces all errors of asynchronous calls to be returned asynchronously, which
eliminates all waiting in those calls. Using these optimizations, VOCL reduces
the overhead for compute-intensive applications to below 5 %. For applications
transferring large amounts of data, however, the network still poses a bottleneck.
As a result, these applications experience overheads of up to 150 %. Memory
management is again outside the scope of the project’s scope: VOCL allocates
memory in a first-come-first-served fashion.

Becchi et al. [6] developed another virtualization solution for GPUs based on
API remoting. Their work divides each GPU into multiple virtual GPUs (vGPUs),
each of which contains the entire GPU execution state of one application. An
application is mapped to a vGPU when its first kernel is launched, while vGPUs are
mapped to a physical GPU dynamically on demand, including migration of vGPUs
to a different physical GPU at runtime. vGPUs may also be mapped to a physical
GPU located in a remote machine. To ensure fairness between vGPUs, the system
includes a scheduler for GPU kernels: Kernels submitted for execution are queued
in software, with the scheduler selecting the next kernel to execute whenever
the previous kernel finishes execution. Becchi et al. also enable oversubscription
of GPU memory: Their system initially allocates all memory in a staging area
in system RAM and returns an internal handle instead of a pointer. When the
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application subsequently launches a kernel, it passes the internal handles to
the kernel as parameters, which allows the runtime to transfer exactly the data
needed by the kernel to the GPU. If there is insufficient GPU memory available,
unneeded data from the same address space may be evicted. Evicting data from
other address spaces is possible as well, but only in a cooperative fashion: If no
data from the same address space can be evicted, other applications are asked
to voluntarily swap some of their data; however, these applications are free to
decline the request. If all applications refuse to swap, the runtime can migrate the
application’s vGPU to a different physical GPU as a last resort. While this approach
allows a GPU to run applications exceeding the GPU’s physical memory capacity,
Becchi et al. do not address fairness: Uncooperative applications can hold on to
large amounts of memory, leaving other applications no choice but to migrate to a
different GPU. In addition, their solution depends on software scheduling of GPU
kernels since the runtime must check each kernel’s parameters whether copying
is needed prior to kernel launch. However, such software scheduling disables the
GPU’s internal, highly efficient scheduling and context switching and thus causes
application overhead, which the authors measured at about 10 %.

The authors of GPUvm [58] opted for device emulation instead of API remoting.
GPUvm provides a fully functional virtual GPU to each VM, allowing the VM to
use the same GPU driver as the host without modification. GPUvm forwards
trapped register accesses from the guest device driver to a GPU access aggregator

in the host. This access aggregator serves a similar purpose as the proxy process
in API remoting, but calls into the host’s GPU driver directly instead of relying
on a high-level interface such as CUDA. Due to the frequent trapping of device
accesses, GPUvm’s initial prototype caused an overhead of up to 140x, which
prompted the authors to introduce a degree of paravirtualization, bringing the
overhead down to less than 3x. Besides providing a fully functional virtual GPU,
the authors also address the topic of fairness between VMs: GPUvm includes a
scheduler for GPU kernels which distributes GPU computation time fairly among
VMs. In addition, GPUvm partitions the available GPU memory between VMs
to guarantee a fair share of that memory to each VM. The authors also discuss
the possibility of allocating memory dynamically; in any case, however, GPUvm’s
memory allocation is limited to the amount of available GPU memory, while
oversubscription of that memory is beyond the scope of the project.

LoGV [20] was any early work employing mediated passthrough to virtualize a
GPU. In contrast to GPUvm, LoGV attempts to grant the guest VM direct access to
GPU resources whenever it is safe to do so – most importantly LoGV managed to
grant the guest VMs direct access to the GPU’s command submission channels.
LoGV provides a para-virtual device driver for the guest to trap resource allocation
requests, but does not require modifications to the guest’s user space software
stack. LoGV enables safe sharing of a GPU between multiple guests as well as
VM migration at an overhead of less than 3 %. However, LoGV focuses on safety
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and performance rather than fairness. As a consequence, LoGV does not include
any scheduling of GPU kernels, and allocates memory in a first-come-first-served
fashion.

gVirt [61] is unique in that it uses mediated passthrough without relying on a
para-virtual guest driver. GVirt targets Intel GPUs, which differ from dedicated
GPUs in two main ways: First, these GPUs do not feature dedicated GPU memory,
but use system RAM instead. Second, these GPUs only feature a single command
submission channel, which makes passing this channel through to a guest applica-
tion impossible. Nonetheless, gVirt presents the VM with a fully functional virtual
GPU, to an extent such that the guest OS can use the same GPU driver as the
host – though the authors did make minor modifications to that driver to reduce
the virtualization overhead to less than 10 % for most workloads. GVirt multi-
plexes the GPU’s sole command submission channel by alternating this channel
between multiple VMs in a round-robin fashion, granting each VM access for a
short timeframe before moving on to the next VM. This approach also achieves
fairness between VMs with respect to GPU computation time. In addition, GVirt
is able to multiplex the GPU’s virtual memory between VMs. Intel GPUs use two
distinct virtual address spaces: Local GPU memory, which is accessible only to the
GPU, and global GPU memory, which is accessible to both CPU and GPU. Both of
these address spaces are backed by system RAM and normally shared between
all applications. To multiplex the local GPU memory, gVirt switches the GPU
page tables along with the command submission channel, essentially granting
each VM a dedicated address space. This constitutes a form of oversubscription
since the total amount of local graphics memory available to all VMs is larger
than the amount of memory normally supported by the GPU; however, the GPU
is still limited to the amount of physical memory available, which makes this
scheme unfit for GPUs including dedicated GPU memory. For the global GPU
memory, gVirt does not use this type of switching to avoid consistency problems
between CPU and GPU. Instead, gVirt employs a form of partitioning using a
novel technique called address space balooning: When a region of global GPU
memory is allocated by a VM, the hypervisor marks all guest-physical pages in this
region as unavailable in all other VMs. The current implementation of gVirt does
not support oversubscribing the global GPU memory; however, this limitation was
later removed by gScale [66], which we describe below.

2.3.2 GPU Resource Management

Gdev [39] attempts to turn GPUs into first-class operating system resources similar
to CPUs. Besides making GPU acceleration available to the operating system itself,
Gdev introduced GPU scheduling at the operating system level: Gdev includes
an admission control mechanism as well as a scheduler which can ensure a fair
distribution of GPU time between applications after admission. Gdev’s scheduler
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requires applications to submit new GPU kernels into a software queue instead of
the GPU’s command submission channels. Whenever a kernel finishes execution,
the scheduler then selects one of the submitted kernels and inserts the necessary
commands for launching that kernel into a command submission channel. At the
same time, Gdev configures the GPU to raise an interrupt when the submitted
kernel finishes execution. When this interrupt arrives, Gdev’s scheduler is activated
again to select the next kernel to run. While this scheme achieves a fair distribution
of computation time, it also disables the GPUs internal scheduling and context
switching: From the GPU’s point of view, only one kernel is queued at any given
time, and whenever a GPU kernel finishes execution, the GPU must wait for
the scheduler before launching the next kernel. Gdev’s scheduling thus induces
considerable overhead in some applications.

In addition to scheduling, Gdev makes several changes to the GPU’s memory
management. For example, Gdev enables GPU applications to allocate shared
memory segments on the GPU. Normally, these segments must be explicitly
allocated as shared by all applications wishing to share the same buffer. However,
Gdev uses the same mechanism in conjunction with the scheduler to enable
transparent oversubscription of GPU memory: When an application fails to allocate
a new GPU buffer due to insufficient GPU memory, Gdev searches the address
spaces of other applications for buffers of equal or larger size than the requested
allocation. If a suitable buffer is found, Gdev transparently shares that buffer with
the allocating application. Subsequently, Gdev swaps the contents of the shared
buffer on kernel launches to give each of the two applications the illusion that it
owns the buffer exclusively: Whenever one of the two applications launches a
GPU kernel, Gdev copies that application’s data to the shared buffer, evicting the
data of the other application to system RAM in the process.

While this scheme allows applications to allocate more GPU memory than is
physically available, it also comes with a number of disadvantages. First, Gdev’s
swapping fundamentally depends on software scheduling of GPU kernels: Once a
buffer is shared between two applications, Gdev must be able to guarantee that
only one of these applications can run a GPU kernel at any given time, which
is impossible without scheduling kernels in software. Second, since Gdev does
not know which shared buffers a GPU kernel actually needs, Gdev’s swapping
mechanism indiscriminately copies the contents of all shared buffers in the appli-
cation’s address space to the GPU prior to kernel launch, which may include data
that the kernel does not touch. Third, Gdev requires all data in the application’s
address space to be in GPU memory before launching one of the application’s
kernels, which can be problematic in situations where very little GPU memory is
available.

GDM [63] is an extension to Gdev which generalizes Gdev’s approach to memory
management. Instead of implicitly sharing buffers, GDM performs allocations
in a staging area in the application’s CPU address space. When an application
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subsequently launches a GPU kernel, GDM moves all application data from the
staging area to the GPU prior to kernel launch; if there is insufficient space left on
the GPU, GDM evicts data from other applications to these applications’ staging
areas. Internally, GDM divides GPU buffers into blocks and performs all DMA
operations on these blocks rather than entire buffers. As a result, GDM is able to
evict only part of a buffer to system RAM if doing so frees up sufficient space on
the GPU. In addition, GDM tracks which blocks have changed by computing an
MD5 hash for each block and comparing this hash to the hash of the corresponding
block in the staging area prior to eviction. Blocks found to be unchanged are
not copied back into system RAM, but simply overwritten on the GPU. Finally,
GDM is able to perform some copy operations asynchronously: The data of the
next kernel can be copied to the GPU while the previous kernel is still running as
long as doing so does not require data used by the running kernel to be evicted.
Despite constituting a major advance compared to Gdev, however, GDM still
suffers from essentially the same limitations as its predecessor: First, GDM still
depends on software scheduling of GPU kernels since it must ensure that all the
application’s data is on the GPU prior to kernel launch, and that data needed by
running kernels is not evicted from the GPU before the kernel finishes execution.
Second, GDM does not allow GPU kernels to use system RAM directly, but requires
the application’s working set to be in GPU memory while the application’s kernels
are running, which may not be possible in situations where little GPU memory
is available. Third, GDM typically does not have information about the exact
data needed by each kernel, and may thus transfer unneeded data to the GPU
on kernel launch. GDM attempts to alleviate the latter two disadvantages by
introducing a new API which allows the application to specify explicitly which
buffers are required by each of its GPU kernels. However, using this API requires
modifications to the application, and does not solve the dependency on software
scheduling.

TimeGraph [38] is a real-time scheduling system for GPUs mainly targeted at
graphics applications, allowing these applications to maintain constant frame
rates even under heavy load. To that end, TimeGraph includes a priority sched-
uler for GPU kernels as well as a reservation mechanism which can guarantee a
fixed amount of GPU time to each application. Like Gdev, TimeGraph’s scheduler
maintains software queues for submitted GPU kernels, starting the highest priority
kernel from its queues whenever a kernel finishes execution. In addition, Time-
Graph includes a fast track mechanism – called the high throughput policy – which
allows the application currently executing on the GPU to submit further kernels
directly to the GPU as long as no higher-priority applications are waiting to use
the GPU. In contrast to Gdev, TimeGraph focuses on scheduling only, and thus
does not address memory. However, the authors explicitly measured TimeGraph’s
scheduling overhead for a single application instance, while related projects typi-
cally evaluated only the overall throughput of the GPU for multiple concurrent
applications. Specifically, the authors measured decreases of 17–28 % in the
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frame rate of several graphics applications if every GPU kernel was dispatched in
software, and frame rate decreases of about 4 % using the high throughput policy
– which would be incompatible with a GPU swapping mechanism such as Gdev’s.
These results indicate that software scheduling of GPU kernels is a problem at
least for some applications.

PTask [54] defines a new API for GPU applications with the goal of minimizing
the amount of data movement between CPU and GPU. An application using
the PTask API is composed of multiple parallel tasks (PTasks) communicating
through pipes. These pipes are similar in spirit to UNIX pipes: A PTask writes its
output data into a pipe, and other PTasks then read this data from the pipe as
input. Through the pipe abstraction, the PTask runtime gains information about
which data is needed by which PTasks as well as the origin of that data. The
runtime can thus schedule ready PTasks such that minimal data movement is
needed, for example by scheduling a PTask on a GPU that already has most of
the task’s inputs in memory. Using the same information, the runtime could also
oversubscribe GPU memory to some extent: Since the working set of each PTask
is known, unneeded data can be identified and evicted from the GPU. Since the
runtime is implemented partially in the kernel, this eviction would also work
across address spaces. However, the authors explicitly do not target scenarios
where the demand for GPU memory exceeds the GPU’s capacity, but instead focus
solely on minimizing data movement.

NEON [44] takes a different approach to GPU scheduling than its predecessors:
Instead of dispatching every GPU kernel in software, NEON applies fair queuing
to GPU kernels. Initially, NEON allows all applications to submit kernels directly
to the GPU, but monitors each application’s GPU usage. If an application is found
to use more than its fair share of GPU time, that application’s access to the GPU
is temporarily suspended to allow other applications to catch up. Using this
approach, NEON is able to maintain fairness between applications with respect to
GPU computation time. At the same time, NEON keeps the scheduling overhead
below 5 % since it only interferes with the GPU’s internal scheduling and context
switching when necessary to correct unfairness. NEON’s approach is incompatible
with a GPU swapping mechanism such as Gdev’s: If GPU kernels are sent to the
GPU directly, it is impossible to move a kernel’s working set to the GPU prior to
launch. However, NEON’s comparatively low scheduling overhead indicates that
decoupling swapping from software scheduling of GPU kernels is worthwhile.

GPU Maestro [52] aims to reduce interference between multiple GPU applications.
The authors investigate the behavior of GPU applications sharing the same GPU
resources – e.g., the same SMs – concluding that some applications suffer from
performance degradation when sharing resources while others do not. The authors
propose to partition the GPU’s internal resources to mitigate this problem. As a
first step, GPU Maestro probes all running applications for mutual interference:
For each pair of applications running on the GPU, GPU Maestro temporarily places



38 Chapter 2: Background and Literature Review

a thread group of each application on the same SM. Subsequently, GPU Maestro
uses the GPU’s performance monitoring counters to detect any performance
degradation in these thread groups compared to the group running alone on
an SM. After probing all running applications in this manner, GPU Maestro
assigns interfering applications to separate SMs, while allowing non-interfering
applications to share the same SMs to increase utilization. Using this approach,
GPU Maestro is able to significantly increase the GPU’s overall throughput as
well as to reduce the turnaround times of individual GPU kernels. GPU Maestro
considers the SM’s compute capacity as well as the size of the SMs’ register file and
shared memory in its placement decisions, but does not address GPU memory.

Agarwal et al. [4] investigate strategies for page placement in heterogeneous
CPU/GPU systems. Somewhat counterintuitively, the authors discover that placing
some GPU data in system RAM can actually result in an application speedup: Since
current GPUs can access GPU memory and system RAM in parallel, distributing
data over both memories increases the available memory bandwidth, resulting in a
speedup if memory bandwidth is a limiting factor for the application. In addition,
the authors develop a hinting scheme for applications with a working set larger
than the available GPU memory. These hints allow the application to specify which
data is critical to the application’s performance and should therefore be placed in
GPU memory. While this scheme is similar in spirit to our own, the authors focus
on HPC systems where only one application with a large working set runs at any
given time, but do not consider GPUs shared between multiple applications. As a
consequence, the authors allocate data directly in GPU memory or system RAM
according to the application’s hints, but do not support moving data between the
two memories at runtime in response to other applications starting or exiting.
In addition, the authors consider application buffers as indivisible: Buffers are
allocated entirely in either GPU memory or system RAM – it is not possible to
allocate only part of a buffer in GPU memory even if space is available. Finally,
the authors target a hypothetical platform in which CPU and GPU have cache-
coherent access to each other’s memories using an interconnect much faster than
contemporary PCIe. This target platform is similar in spirit to APUs – which consist
of a CPU and GPU on a single chip sharing the same memory bus, but typically do
not include dedicated GPU memory – such a platform does not exist at the time
of this writing.

To generate their application hints, Agarwal et al. also develop a compiler-based
profiling mechanism for GPU memory accesses. In this approach, a modified
compiler inserts additional instructions next to each instruction accessing memory.
These additional instructions are then used to count the number of accesses to each
virtual memory page at runtime. While this approach is effective in generating
access profiles, it suffers from two main drawbacks: First, the profiling mechanism
will only gather data for those parts of the application that have been compiled
with the authors’ modified compiler. As a consequence, not only the application
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itself, but also all shared libraries used by the application must be compiled with
the authors’ compiler, which can pose a problem if the source code of some of
these libraries is not available. Second, the authors’ approach is inherently limited
to code written in a language compatible with the authors’ modified compiler
– in this case, CUDA code. Nonetheless, the authors’ profiling shows that most
applications display a high degree of uniformity in their memory accesses within
application buffers, while the number of accesses can vary greatly between buffers
– a result which agrees well with our own profiling.

Region-Based Software Virtual Memory (RSVM) [34] uses a cooperative ap-
proach to GPU memory management. RSVM is a user space library which aims
to make data transfer between CPU and GPU transparent to the application by
copying data between CPU and GPU on demand. RSVM uses application-defined
memory regions as its unit of memory management. By default, each applica-
tion buffer consists of a single region, but application developers can also divide
buffers into multiple regions during allocation. To detect accesses to memory
regions, RSVM requires both CPU and GPU code to issue an explicit map call
for each region before access. Conversely, the application is expected to unmap

regions which are no longer in use. Each region can only be mapped at either
the CPU or the GPU side at any given time; the contents of the mapped region
are implicitly copied to the mapping side during the map operation. If a region is
unmapped on the GPU side, that region stays in GPU memory if sufficient space is
available; copying data between CPU and GPU is thus unnecessary if that region
is not touched from the CPU side. If GPU memory is scarce, however, RSVM
implements cooperative swapping of GPU data: If an application attempts to map
a region to the GPU, but insufficient GPU memory is available, RSVM may evict
unmapped regions from the application’s address space to system RAM. Due to
its implementation as a user space library, however, RSVM cannot swap regions
from other application’s address spaces and is thus unable to ensure fairness
between applications. To select regions to swap, RSVM uses a not-frequently-
used (NFU) scheme, treating regions as used whenever they are mapped. RSVM
does not include the regions’ sizes in its eviction decisions, which can lead to
larger-than-necessary amounts of data being evicted since RSVM cannot partially
evict regions. The main drawback of RSVM is that applications must be modified
to use RSVM’s API. This modification has been shown to induce overheads of
about 20 % especially for compute-intensive applications even if no swapping
is required. In addition, the required modifications can be complex for existing
applications since for best performance, application buffers must be manually
divided into regions, which requires in-depth application knowledge.

Gscale [66] is an extension of gVirt which enables oversubscription of the global
GPU memory on Intel GPUs. Instead of relying on gVirt’s address space balooning,
gScale introduces a separate guest-physical address space for each application’s
global GPU memory. During GPU context switches, gScale switches the global



40 Chapter 2: Background and Literature Review

GPU memory page tables in the same way as gVirt does for the local GPU memory.
For global GPU memory, however, switching page tables is complicated by the fact
that this memory is accessible to both CPU and GPU: To present a unified view of
the GPU’s address space to both CPU and GPU, each access to global GPU memory
is normally routed to the GPU over PCI express, translated using the GPU’s page
table, and then routed back to system RAM, again over PCI express. This scheme
leads to problems in virtualized contexts where CPU and GPU are scheduled
independently: If one CPU process is scheduled on the GPU and a second process
simultaneously attempts to access global GPU memory, that second process would
have its access translated using the page tables of the first process and thus gain
access to the first process’ memory. To overcome this problem, Gscale mirrors GPU
page table entries to the CPU page table of each process, adding entries pointing
directly to the system RAM backing the global GPU memory. Processes can thus
access their own global GPU memory without relying on the GPU’s page table,
and thus independently of GPU scheduling. Using this scheme, Gscale is able to
oversubscribe the global GPU memory as well, which increases the maximum
number of concurrent VMs supported, while causing a small increase in overhead
due to more complex page table handling. Like gVirt, however, Gscale’s approach
is not applicable to GPUs with dedicated memory.

Nvidia’s CUDA has included a feature called Unified memory [24] since version
6.0. The goal of unified memory is to create a single address space used by both
CPU and GPU such that both can use the same pointers and explicit copying
of data between CPU and GPU is unnecessary. To that end, the CUDA runtime
synchronizes buffer contents between CPU and GPU on demand: When a pointer
to a buffer currently residing in system RAM is passed to a GPU kernel, the runtime
unmaps the buffer referenced by the pointer from the application’s CPU address
space and copies the buffers contents to the GPU prior to kernel launch. When the
same buffer is subsequently accessed from the CPU, that access raises a page fault,
which prompts the runtime to copy the buffer’s contents back into system RAM.
Unified memory is thus able to oversubscribe GPU memory to some extent: Only
the application’s current working set – i.e., the buffers passed to the currently
executing kernels – must be in GPU memory, while any remaining data may be
evicted to system RAM. However, unified memory targets HPC environments
– where there is typically only a single applications with a large working set
executing on the GPU at any given time – while shared-GPU environments are
outside the scope of the project. As a consequence, unified memory does not
consider evicting of GPU data from other applications.

2.4 Summary

Even though current GPUs still function as accelerators and are thus subordinate
to the CPU, these GPUs have adopted a number of features from the CPU world.
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With respect to memory, for example, today’s GPUs feature virtual address spaces
and address translation hardware similar to those found in CPUs. The page tables
defining the GPU’s address spaces are managed by the GPU driver, allowing that
driver to dynamically allocate memory to applications as needed. GPU address
spaces can use both GPU memory and system RAM as a backing store; it is thus
possible to make GPU applications use system RAM without the application’s
knowledge if the GPU’s own memory proves insufficient. However, there is also
a number of memory-related features that are common in the CPU world but
missing from current GPUs. For example, current GPUs typically do not support
page faults or preemption and do not include reference bits in their page tables.
Traditional approaches to extending memory therefore do not apply to GPUs:
The lack of page fault support precludes demand paging, the missing reference
bits impede the use of traditional swapping policies, and the inability to preempt
running kernels makes it difficult to rearrange memory allocations at runtime.
Nonetheless, the feature set of current GPUs is sufficiently advanced to open up
interesting possibilities with respect to GPU memory management.

Despite this wealth of possibility, however, the problem of oversubscribing GPU
memory has not yet been solved. Most research projects that should address the
problem – most notably those in the area of GPU virtualization – typically either
allocate GPU memory in a first-come-first-served fashion, which results in poor
fairness among applications, or statically partition that memory, resulting in poor
utilization. Those research projects that employ more sophisticated techniques
typically suffer from two drawbacks: First, these projects assume that all data a
kernel might need must be physically on the GPU before that kernel can execute,
leading to unnecessary copying of data between CPU and GPU. Second, existing
solutions integrate memory management with software scheduling of GPU kernels
to be able to intercede in the applications’ execution on the GPU when memory
allocations must be rearranged. Software scheduling of GPU kernels can, however,
cause significant application overhead even if sufficient GPU memory is available.
To date, we are not aware of a solution that achieves fairness, high memory
utilization and low overhead at the same time.





Chapter 3

An Eviction Mechanism for GPUs

GPUswap is a novel mechanism to extend GPU memory with system RAM. When
insufficient GPU memory is available, GPUswap evicts application data from the
GPU to system RAM, but keeps the evicted data accessible to the GPU. As a result,
applications can submit kernels directly to the GPU without requiring software
scheduling, resulting in lower application overhead than with previous work. In
addition, GPUswap performs evictions in response to memory allocation requests
instead of kernel launches as in previous work, which reduces the amount of data
transferred between CPU and GPU.

In this chapter, we present the design and implementation of our eviction mecha-
nism. The corresponding eviction policy is discussed in Chapter 5.

3.1 Goals

Memory contention is always associated with overhead: Memory contention in a
CPU-only system, for example, can lead to frequent swapping to secondary storage
which may slow the system down to the point where it becomes unusable. We
therefore consider memory contention to be an exceptional case rather than the
norm in any system. Consequently, though GPUswap is meant to deal with memory
contention, we chose to optimize for the common case that there is sufficient GPU
memory available: An eviction mechanism should keep applications running if
there is memory contention, but should not negatively affect applications if there
is not. Specifically, we formulate the following goals for GPUswap:

Performance GPUswap should minimize application overhead. Specifically,
since we expect memory contention to be the exception rather than the common
case, GPUswap should cause no overhead at all if sufficient GPU memory is avail-
able. In the presence of memory contention, we consider overhead unavoidable.
However, GPUswap should keep that overhead as small as possible.
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Generality GPUswap should work out of the box with arbitrary applications.
Previous work was often tied closely to a specific GPU API, such as CUDA, or even
introduced new APIs. As a consequence, these designs limited the applications
running on the GPU to those supporting the right APIs. In contrast, GPUswap
should not make assumptions about the applications running on the GPU.

Transparency GPUswap should not require explicit cooperation from applica-
tions to operate. Not relying on cooperation has two distinct advantages: First,
GPUswap does not require applications and their developers to explicitly manage
resources, or even know about the amount of available resources or the current
degree of sharing. Therefore, application development is simplified – a shared
GPU can be used in the same way as a dedicated one – and existing applications
continue to work without modification. Second, applications may not always
cooperate, for example due to malfunctions or malicious intent. A transparent
design allows GPUswap to enforce its decisions against the application’s will if
necessary.

3.2 Design

To overcome memory shortages, GPUswap uses system RAM to extend the GPU’s
memory: When GPU memory is running low, GPUswap evicts data from the GPU
to system RAM. To keep the evicted data accessible to the GPU, GPUswap then
maps the virtual address range corresponding to the evicted data to the data’s
new location in system RAM. This approach allows GPU applications to use more
memory than is physically available on the GPU, while still allowing applications
to submit kernels directly to the GPU since all application data is accessible at any
time.

3.2.1 Overview

The basic architecture of GPUswap is shown in Figure 3.1. GPUswap is composed
of three main components: An eviction policy, a relocation mechanism and
an accounting mechanism. When an application allocates memory, GPUswap
first examines the accounting data to determine whether there is sufficient GPU
memory available to fulfill the request. If not, GPUswap invokes the eviction policy,
passing the amount of memory that must be freed before the allocation request
can be served. The policy’s task is to select a set of application pages to be evicted
to system RAM using data from the accounting mechanism. The set of selected
pages is then passed to the relocation mechanism, which moves the contents
of the selected pages to system RAM and updates the application’s page tables.
Once the relocation mechanism has finished its task, the request is forwarded
to the original allocation mechanism in the GPU driver, which can now fulfill
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Figure 3.1: Flowchart of the basic operation of GPUswap. GPUswap’s own mecha-
nisms are shown in color. The memory allocator is part of the original
GPU driver.

the application’s allocation request. Finally, GPUswap’s accounting mechanism
keeps track of the available GPU memory and the amount of memory consumed
by each application after the allocation as well as any necessary relocation have
been performed. The accounting mechanism also divides the newly allocated
GPU memory into fixed-size chunks and maintains a list of all allocated chunks.
Both the policy and the relocation mechanism operate on these chunks rather
than individual pages to reduce the processing overhead.

While memory allocation is a common case, GPUswap may be invoked by events
other than memory allocation as well. When an application frees memory, for
example, GPUswap performs the same process described above in reverse to
maintain high memory utilization: The eviction policy selects a set of pages to
return to GPU memory, which the relocation mechanism subsequently moves
back to the GPU. It is also conceivable to invoke the eviction policy periodically,
for example to reevaluate past decisions or to react to changes in application
behavior.

GPUswap is designed to be part of the GPU’s driver. Being part of the driver – and
thus running in kernel mode – allows GPUswap to be fully transparent to appli-
cations: GPUswap can freely manipulate page tables and stop applications from
running, both of which are necessary to implement many of the mechanisms used
by GPUswap. In addition, the driver’s API is used by all applications, regardless of
the application type, which allows GPUswap to remain application-oblivious.
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3.2.2 Memory Relocation

The relocation mechanism is the core of GPUswap. In the event of memory
shortage, the mechanism receives a set of memory chunks selected by the eviction
policy as input, and is then responsible for moving the contents of these chunks
from the GPU to system RAM. In the process, the relocation mechanism must
also make the chunks’ new location accessible to the application by changing the
appropriate entries in the GPU’s page table. Note that the policy may also return
chunks from a buffer that is currently being allocated. Since these chunks do not
yet exist in GPU memory, our relocation mechanism allocates these chunks in
system RAM directly without the need for a relocation operation.

To relocate memory from the GPU to system RAM, our relocation mechanism
performs five steps:

1. Select an application with at least one selected chunk in its address space

2. Suspend all access to the GPU from that application

3. Move the data inside all selected chunks from the application’s address
space to system RAM

4. Update the application’s page tables such that the virtual addresses of
relocated chunks map to the data’s new location in system RAM

5. Restore the application’s GPU access

The relocation mechanism repeats these steps until all chunks returned by the
policy have been relocated. After the relocation finishes, it is safe to call the GPU
driver’s original allocation mechanism since relocation frees up sufficient GPU
memory to service the allocation request that triggered the relocation.

Chunks

Our relocation mechanism operates on chunks rather than pages or entire applica-
tion buffers. Relocating entire buffers, which can easily be hundreds of megabytes
in size, would likely lead to poor memory utilization: If a large buffer is moved
to system RAM in response to a small allocation, most of the space freed by the
large buffer’s eviction would remain unused. In contrast, relocating memory with
page granularity guarantees high utilization, but results in increased relocation
overhead: Since the eviction policy is not required to select adjacent pages, each
page must be relocated using an individual DMA operation, which requires time to
set up. In addition, the policy itself may also require a large amount of processing
time if a large number of pages must be selected for eviction in response to a
large allocation request.
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Operating on chunks provides a middle ground between these two extremes:
Given that the chunk size is larger than the page size, but smaller than the typical
application buffer, operating on chunks reduces the amount of processing and
the number of DMA transactions required for relocations, while at the same time
limiting the amount of unused GPU memory. Chunks thus introduce a tradeoff
between utilization and overhead: Smaller chunks maximize memory utilization
at the cost of increased relocation overhead, while larger chunks reduce the
overhead at the cost of lower memory utilization. Since the optimal chunk size
depends on a variety of factors, such as the bandwidth of the interconnect between
CPU and GPU or the requirements of the applications, GPUswap does not set
the chunk size to a fixed value, but instead allows the system administrator to
configure a chunk size according to circumstances. We analyze the effects of
GPUswap’s chunk size on applications in Section 6.4.

GPUswap generally attempts to divide all application buffers into chunks of
the configured size at allocation time. If, however, a buffer’s size is not an
exact multiple of the chunk size, the last chunk in the buffer cannot be filled to
capacity. In that case, GPUswap allocates a chunk smaller than the configured size
– which we call a remainder chunk – at the end of the buffer to avoid internal
fragmentation.

Suspending Applications

While the relocation mechanism is moving data from the GPU to system RAM,
applications cannot be permitted to make changes to this data. If an application
were to change data that has already been copied to system RAM, that change
would be lost when the application’s mapping is updated to point to the data’s
new location. On the CPU, this problem is typically solved by mapping the data
read-only during migration and using page faults to detect write attempts [9].
However, this method does not apply to current GPUs since these GPUs treat
page faults as fatal errors. Therefore, the relocation mechanism must ensure that
no GPU kernels can run in the application’s address space while data is being
relocated. To that end, the relocation mechanism suspends GPU access altogether
for each application while chunks from the application’s address space are being
relocated.

Suspending GPU access for an entire application inevitably causes a delay in the
application’s execution. To minimize the effects of that delay, the relocation mech-
anism processes one application at a time: Since it is only necessary to suspend
GPU access for the one application whose address space is being manipulated, all
other applications can freely run GPU kernels. Although the application being
processed still experiences a delay with this method, the GPU’s utilization remains
high since other applications are not affected.
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Data Transfer

Once GPU access for an application has been suspended, the relocation mechanism
can safely move data from the application’s address space to system RAM. To
that end, the relocation mechanism iterates over all selected chunks from the
application’s address space. For each chunk, the mechanism allocates a buffer
of the same size in system RAM. Since the CPU never accesses the system RAM
occupied by relocated chunks, the mechanism disables CPU cache coherence for
this buffer by setting the targ field in the GPU’s page table to SYSRAM_NO_SNOOP.
Once the system RAM buffer has been allocated, the mechanism initiates a copy
operation of the chunk’s contents into that buffer. When the copy operation is
complete, the mechanism updates the GPU’s page tables to point to the newly
allocated buffer in system RAM. The GPU memory occupied by the chunk can
then safely be reused.

Chunks can be transferred between CPU and GPU in two ways: By issuing a DMA
operation to the GPU, or by mapping the chunk’s GPU memory into the GPU
driver’s address space and executing a copy loop on the CPU. For GPUswap, we
chose to perform DMA transfers on the GPU for two reasons: First, at GPUswap’s
typical chunk size of several MiB, the GPU can be expected to deliver better overall
performance than the CPU [16]. Second, we expect DMA transfers to cause less
interference than copying on the CPU since the GPU is able to execute DMA
transfers asynchronously: Submitting DMA operations to the GPU’s PCOPY engine
allows the GPU to execute these operations in parallel with both GPU kernels
and any work applications may perform on the CPU. While GPUswap’s transfers
may still compete with asynchronous DMA transfers initiated by applications, we
expect PCOPY to be the least busy of the GPU’s engines since applications should
generally minimize DMA to achieve best performance [47, Section 5.3.1].

Our relocation mechanism assumes that there is sufficient system RAM available
to hold all relocated chunks. We consider this assumption reasonable since current
server machines typically contain much more system RAM than GPU memory:
Recent Intel CPUs support up to 3 TiB of RAM per socket [28] while even the most
high-end GPUs currently available are limited to 32 GiB of GPU memory [51]. The
relocation mechanism can, however, only use system RAM that is compatible with
DMA from the GPU. Fortunately, current GPUs are not particularly demanding
when it comes to DMA memory: Recent Nvidia GPUs can access the lower 1 TiB
of physical address space and support scatter-gather-DMA – i.e., can perform
DMA operations on memory that is not physically contiguous. Therefore, the
only requirement for the memory used to relocate chunks is that this memory
must be non-pageable: Since memory holding relocated chunks is mapped in a
GPU address space, paging out that memory to disk would create inconsistency
between CPU and GPU. Since regular kernel memory fulfills all requirements
described above, the relocation mechanism can simply use the kernel’s physical
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page allocator to obtain appropriate memory. Note that the relocation mechanism
is not constrained by the kernel’s virtual address space: Since the CPU never
accesses relocated chunks, no virtual-to-physical mappings are required on the
CPU side.

The eviction policy is generally free to select chunks from the buffer that triggered
the relocation – in particular, the policy has no other choice than to select chunks
from that buffer if the buffer is larger than the total amount of GPU memory.
Since chunks from a buffer that is currently being allocated do not yet contain
any data on the GPU, our relocation mechanism does not need to perform a DMA
transfer for these chunks. Instead, the mechanism modifies the original allocation
request to allocate the selected chunks directly in system RAM.

3.2.3 Returning Data to the GPU

Using system RAM in place of GPU memory always induces application overhead
since accessing system RAM over PCIe is necessarily slower than accessing native
GPU memory. Therefore, GPUswap should ensure that data is kept in GPU memory
whenever possible. As a consequence, GPUswap never evicts any data from the
GPU while there is still GPU memory available. However, applications can also free
memory after data has been evicted from the GPU. To maintain good utilization
of GPU memory at all times, it is therefore necessary to actively return data to the
GPU to re-use any memory that has been freed.

To enable returning of data to the GPU, our eviction policy must be able to select
not only pages for eviction, but also pages that should be returned to the GPU.
While this makes our policy responsible for two distinct operations, these two
operations share similar goals and require the same information about which
chunks are frequently accessed by the application. When unused memory is
detected on the GPU, GPUswap first calls the eviction policy, specifying how much
data should be returned to the GPU. In response, the policy returns a set of
evicted chunks that should be relocated back to GPU memory. The policy may
return fewer chunks than requested if more GPU memory has been freed than
was previously evicted.

After the policy has selected a set of chunks, GPUswap moves the contents of
these chunks back to GPU memory in a manner similar to eviction: For each
application for which the policy has returned at least one chunk, GPUswap first
suspends GPU access, and then schedules asynchronous DMA transfers for each
of the application’s selected chunks. Once these transfers are complete, GPUswap
updates the application’s page tables such that the virtual address ranges occupied
by the selected chunks point to the new locations of these chunks in GPU memory.
Finally, GPUswap restores GPU access for the application, and moves on to the
next application with chunks selected for return to the GPU.
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Although returning data to the GPU is important, it is generally not as urgent as
evicting data: If data must be evicted from the GPU, there is always an allocation
request outstanding which cannot be serviced before the eviction is complete. In
contrast, there is no reason for a deallocation operation to wait for data to be
brought in. Instead of returning data to the GPU immediately on deallocation,
GPUswap therefore handles return operations asynchronously in a separate thread
which is part of the GPU driver. This thread periodically checks if there is unused
memory on the GPU, and returns data to the GPU if there is. While checking for
unused memory periodically leaves some GPU memory unused for a short period
of time, this approach has the advantage of batching return operations. Since
returning data to the GPU requires suspending GPU access for the application
owning the data, returning memory to the GPU immediately would result in appli-
cations’ GPU access being suspended frequently if an application performs many
deallocation operations in short succession. Since we frequently observed this
behavior in the GPU applications we examined, we assume that the performance
benefit of suspending GPU access less often outweighs the performance penalty
from leaving GPU memory unused for a short period of time.

3.2.4 Memory Accounting

Our accounting mechanism handles two main tasks: Keeping track of the amount
of allocated and free GPU memory, and dividing allocated buffers into chunks.
The mechanism is invoked after each allocation or deallocation request and after
our background thread has returned data to the GPU.

The accounting mechanism tracks allocated GPU memory both globally and
per application. Tracking allocated GPU memory globally allows GPUswap to
determine efficiently whether or not an eviction is required before an allocation
request can be serviced. Tracking allocated GPU memory for each application can
be useful for the eviction policy: A policy trying to maintain fairness could, for
example, evict data from the application currently owning most GPU memory.
Keeping track of an amount of allocated memory is as simple as incrementing
or decrementing a counter after an allocation or deallocation; however, the
accounting mechanism must ensure that updates to the stored amounts reflect
the state after all relocations that may have taken place before the accounting
mechanism was invoked. For example, a single allocation request can cause the
amount of allocated GPU memory to change for multiple applications if chunks
from multiple address spaces are evicted as a result.

In addition to keeping track of allocated memory, our accounting mechanism
is also responsible for dividing allocated buffers into chunks. The accounting
mechanism maintains two chunk lists for each application using the GPU: One
contains data about chunks currently in GPU memory, while the other holds data
about chunks in system RAM. The entries in the chunk lists only contain metadata
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about chunks – such as the chunk’s base address and size – but not the data stored
in the chunk.

Whenever a new buffer is allocated in GPU memory, the mechanism divides this
buffer into chunks and adds appropriate entries to the GPU chunk list of the
allocating application. If an eviction was required before the allocation could be
served, the accounting mechanism also moves the entries of all evicted chunks
from the corresponding application’s GPU chunk list to its system RAM chunk list.
Conversely, after the background thread returns chunks to the GPU, the accounting
mechanism moves the entries of all returned chunks back to the application’s GPU
chunk list. Finally, after each deallocation, the accounting mechanism removes
the entries of all freed chunks from the appropriate lists.

3.3 Prototype Implementation

To demonstrate the viability of our approach, we created a prototype of GPUswap.
In this section, we describe the implementation of that prototype. First, we
describe how we integrated this prototype with the GPU driver in Section 3.3.1.
Then, we present implementation details of various components of GPUswap: We
describe the relocation mechanism in Section 3.3.2, our mechanism for suspending
GPU access in Section 3.3.3, and the accounting mechanism in Section 3.3.4.
Finally, we discuss the limitations of our prototype in Section 3.3.5.

3.3.1 Driver Integration

Our prototype is implemented as part of the GPU driver. Integrating GPUswap
into the driver allows us to take shortcuts which both simplify the implementation
and improve performance, such as directly accessing the driver’s internal data
structures or adding hooks to existing code to call into GPUswap in appropriate
locations. Overall, however, GPUswap is mostly an add-on to the existing driver,
requiring little change to existing code. In case the driver’s source code is not
available, GPUswap can also be implemented as a separate kernel module in a
manner similar to NEON [44].

We implemented our prototype as part of the PathScale NVIDIA Graphics Driver
(pscnv) [53]. Pscnv is a fork of the popular Nouveau driver [65] and, to our
knowledge, the only open-source driver capable of mapping command submission
channels into user space. We chose pscnv since we wanted to demonstrate that
GPUswap works even when applications have direct access to the GPU’s command
submission channels. Unfortunately, pscnv has been unmaintained since 2012
and therefore restricts our prototype to Nvidia Fermi-generation GPUs and Linux
version 3.5.
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3.3.2 Memory Relocation

To minimize the number of times each application’s GPU access is suspended, our
relocation mechanism performs chunk relocations one address space at a time. To
that end, the mechanism first sorts the chunks received from the eviction policy by
the GPU address space the chunks belong to. Then, the mechanism iterates over
all GPU address spaces for which at least one chunk has been selected. For each
of these address spaces, the relocation mechanism performs the steps described in
Section 3.2.2: First, the mechanism suspends access to all command submission
channels attached to the address space. Then, the mechanism copies all selected
chunks from the address space to system RAM, and updates the address space’s
page tables. Finally, it restores access to all suspended channels. Returning
memory to the GPU is implemented in much the same way, the only difference
being that data is being copied to from system RAM to GPU memory.

The design of the pscnv driver presented a challenge in implementing our relo-
cation mechanism: Since the mechanism should move data between CPU and
GPU using asynchronous DMA operations, it must be able to submit appropriate
commands to the GPU. However, pscnv does not include any code to submit
commands to the GPU from kernel space. Instead, pscnv expects applications to
map their command submission channels to user space and subsequently submit
all GPU commands from there. To allow our relocation mechanism to submit the
necessary DMA commands, we therefore ported the corresponding code from
Gdev’s user space libraries [36] into pscnv. Since Gdev’s libraries are designed to
interact with the GPU’s command submission channels directly, this port required
only small modifications to the code.

Our prototype uses a dedicated command submission channel attached to a
dedicated virtual address space to handle DMA operations. Our modified pscnv
driver allocates this DMA channel and the corresponding address space when it
is loaded into the kernel, but never maps this DMA channel into user space. To
relocate a chunk from GPU memory to system RAM or vice versa, our prototype
then performs the following steps:

1. Allocate space at the chunk’s new location

2. Map both the chunk’s old and new location into the DMA address space

3. Queue a DMA operation into the DMA channel

4. Wait for the DMA operation to complete

5. Remove both mappings from the DMA address space

6. Change the mapping in the application address space containing the relo-
cated chunk to map to the chunk’s new location

7. Free the memory at the old location of the chunk
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In principle, relocation could be implemented without a dedicated DMA channel
by using a command submission channel in the address space of the application
owning the chunk. However, submitting commands to a channel owned by
an application may inadvertently result in changes to the state of that channel
which would be visible to the application. Furthermore, using an application
channel would also require a temporary mapping of the chunk’s new location in
the application’s address space, which would complicate memory management
since we must ensure that this temporary mapping does not collide with existing
mappings. Therefore, we chose to implement relocation using a separate channel
and address space to avoid these issues.

For ease of implementation, our current prototype does not use fully asynchronous
DMA operations. Instead, our prototype submits DMA operations for one chunk
at a time, waiting for the operation’s completion before submitting the next
DMA operation. Although this scheme renders tracking of multiple in-flight DMA
operations unnecessary, it potentially prolongs the time each channel remains
suspended since the setup of the next DMA transfer does not overlap with the
execution of the current one. However, we do not consider this limitation a
major issue since for chunk sizes of a few MiB, the time spent on setting up DMA
transfers is small compared to the transfers themselves as shown in Section 6.3.2.
Our prototype does submit all DMA operations to the PCOPY engine, rendering
them asynchronous from the GPU’s point of view. Relocation operations thus
execute in parallel with kernels running in other address spaces, which ensures
that no compute performance is lost to relocations.

3.3.3 Suspending Applications

To maintain data consistency, our relocation mechanism must ensure that applica-
tions do not change the contents of chunks during relocation. On the CPU, such
changes can easily be prevented by mapping all pages in a chunk read-only until
the relocation is complete. However, this method does not apply to current GPUs
since these GPUs do not support page faults in the same way as CPUs: Any page
fault caused by writing to a chunk during relocation would be treated as a fatal
error and result in the immediate termination of the faulting GPU kernel. As a
consequence, the relocation mechanism must prevent applications from executing
any kernels in their address spaces while a relocation is in progress.

GPUswap employs shadow channels similar to those implemented in LoGV [20]
to suspend GPU access for applications. For each command submission channel
owned by the application to be suspended, GPUswap creates an identical copy
of the channel’s control registers in system RAM. This shadow copy is then
mapped into the application’s CPU address space at the same address at which
the real control registers were previously mapped. From the application’s point
of view, the shadow copy is not only identical to the real registers, but can also be
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Figure 3.2: A suspended command submission channel. The application’s push
buffer (PB) is visible to both the application and the GPU, while the
real indirect buffer (IB) and control registers are accessible only to the
GPU, but have been replaced by shadow copies in the application’s
CPU address space. In this example, the application has submitted four
GPU kernels which had not yet been executed at the time the applica-
tion’s GPU access was suspended. The real IB therefore contains four
descriptor items pointing to the application’s PB, and an additional de-
scriptor item (shown in green) pointing to a PB in the driver’s address
space containing a fence command (not shown). All commands in
the channel have been executed by the GPU. The shadow IB contains
copies of the four descriptor items submitted prior to suspension, but
the application is unaware that the corresponding commands in the
PB have finished executing. In addition, the application has submitted
three descriptors and a set of corresponding commands (shown in
red) after its GPU access was suspended, which are not yet visible to
the GPU.
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freely modified. As a result, the application never experiences a page fault while
submitting commands to the GPU – and is thus never prevented from executing
code on the CPU – but the submitted commands do not execute on the GPU until
the application’s GPU access is restored. To restore the application’s GPU access,
GPUswap copies the contents of the shadow copy to the real control registers –
which causes all commands that were submitted to the suspended channel to
become visible to the GPU simultaneously – and restores the original mapping to
the real registers.

Since command submission channels act as queues for commands awaiting ex-
ecution, there may be commands already queued in the application’s channels
at the time the application’s GPU access is suspended. Current GPUs offer no
reliable way to un-queue commands after these commands have been written into
a channel, but instead expect all commands in a channel to eventually execute
to completion. Before our relocation mechanism can begin relocating chunks,
the mechanism must therefore wait for any commands that were already queued
in the application’s channels at the time the application’s GPU access was sus-
pended to finish execution. To determine when it is safe to begin relocation,
GPUswap submits a fence command to each suspended command submission
channel. Whenever one of these fence commands is executed, the GPU raises
and interrupt to the GPU driver. Since commands in a channel always execute
in order, relocation can begin as soon as GPUswap’s fence commands have been
executed in all suspended channels. Note that GPUswap may receive additional
interrupts while waiting for its fence commands to be executed since applications
may use fence commands as well. On each interrupt, GPUswap must therefore
check whether that interrupt was caused by one of its own fence commands.

While fence commands provide an efficient way to detect empty channels, sub-
mitting commands to suspended channels has the potential to violate our goal
of operating transparently: Since the channel’s indirect buffer (IB) is directly
accessible to the application owning the channel, the fence command is visible
to the application, and may even be overwritten if the application submits com-
mands while its GPU access is suspended. To preserve transparency, GPUswap
thus shadows the channels’ IBs in the same way as the control registers to ensure
that the fence command is never visible to the application. Shadowing the push
buffer (PB) is unnecessary: GPUswap allocates a private PB for fence commands in
kernel space and insert pointers to this private PB into the channel’s IB. Figure 3.2
shows an example of a shadowed command submission channel after GPU access
has been suspended for the application owning the channel.

Since submitting the fence command also changes the values of the channel’s
control registers, GPUswap must reset the control registers to a state that appears
like the fence command was never submitted before restoring the application’s
GPU access. Since the GPU does not allow direct writes to IB_GET, GPUswap
implements this reset by filling the channel’s entire IB with pointers to a PB
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containing a single NOP command and subsequently updating IB_PUT to point to
the IB slot right before the fence command. As a result, IB_GET wraps around
and eventually reaches the position expected by the application. Once IB_GET
has reached its original position, GPUswap copies the contents of the IB’s shadow
copy to the real IB and restores the application’s mapping to the real IB before
restoring access to the control registers.

Since creating shadow copies of both the control registers and the IB is not atomic,
it is possible for the application to submit commands while the shadow copy is
being created. To ensure consistency, GPUswap unmaps both the control registers
and the IB before creating the corresponding shadow copies. If the application
subsequently writes to either the registers or the IB while the shadow copy’s
creation is still in progress, GPUswap stops the application’s execution in the
page fault handler until the process is complete. While this scheme may prevent
the application from executing CPU code for short periods of time, this period is
typically much shorter than the subsequent relocation.

3.3.4 Memory Accounting

Our accounting mechanism is responsible for tracking the amount of allocated
memory and for dividing newly allocated application buffers into chunks. To track
allocated memory, the accounting mechanism maintains a global variable for the
total amount of allocated memory. Furthermore, GPUswap adds a field to pscnv’s
address space data structure which holds the total amount of memory allocated
in that address space. The accounting mechanism increments the appropriate
variables whenever an application allocates GPU memory, but ignores allocation
requests if the application specifically requests system RAM.

Whenever an application allocates a buffer in GPU memory, our accounting mech-
anism divides the allocated buffer into chunks. To that end, GPUswap extends
pscnv’s internal buffer object (BO) data structure – which represents a single
application buffer – by adding an array of chunk descriptors. Each of these de-
scriptors holds metadata about a single chunk belonging to the buffer, such as
whether or not the chunk is currently in system RAM, a pointer to the BO data
structure and information about the physical pages backing the chunk.

Storing information about physical pages is not trivial since application buffers
are typically not physically contiguous. If each chunk is larger than one page, the
accounting mechanism must thus store a physical address for each page in the
chunk. Pscnv’s memory allocator normally stores this information in each BO as a
linked list of physically contiguous segments. To leverage this data, we modified
the memory allocator to instead attach a linked list of segments to each chunk
descriptor as depicted in Figure 3.3.
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Figure 3.3: Storing chunk metadata in GPUswap. Each buffer object (BO) data
structure contains an array of chunk descriptors. In addition, GPUswap
maintains two linked lists for each GPU address space: One containing
pointers to the descriptors of all chunks currently residing in GPU
memory, and one containing pointers to all descriptors of evicted
chunks (not shown). Each chunk descriptor contains a linked list of
segment descriptors holding information about the physical memory
backing the chunk. Each segment descriptor contains a starting ad-
dress and a length, thus describing a physically-contiguous region of
memory. Note that even though all chunks normally share the same
size, the size of the physical segments is not fixed, leading to a variable
number of segments per chunk.

In addition to the array of chunks in each buffer, our accounting mechanism
maintains two linked lists for each address space: One, which is shown in Fig-
ure 3.3, stores pointers to the descriptors of all chunks allocated in GPU memory
inside the address space, while the other holds pointers to the descriptors of all
chunks in the address space that have been relocated to system RAM. Whenever a
new buffer is allocated, the accounting mechanism appends pointers to all chunk
descriptors in the corresponding BO’s chunk array into the appropriate chunk lists1

of the address space containing the buffer. Since GPUswap only stores pointers in
the two chunk lists, it is not necessary to copy entire descriptor items between
the two lists after chunks have been evicted from or returned to GPU memory.
Furthermore, both lists are unsorted, which speeds up allocations by allowing the

1 Note that the eviction policy may decide to allocate some chunks directly in system RAM.
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accounting mechanism to simply append pointers to the newly allocated chunks
to the list.

Our accounting mechanism currently ignores all buffers allocated by the GPU
driver for its own use, such as command submission channels. These buffers
are marked with a special flag in their BO structure, which makes them easy to
detect. Although some of these buffers can in principle be allocated in system
RAM, it is undocumented which data structures are required to be in GPU memory.
In addition, these buffers are typically small compared to buffers containing
application data. We therefore decided to err on the side of caution by keeping
these data structures in GPU memory.

3.3.5 Limitations

Our current prototype relies heavily on the pscnv driver. As a consequence, since
pscnv has been unmaintained for a long time, the prototype is limited to GPUs
and a version of the Linux kernel that were state of the art when pscnv was
developed. Specifically, pscnv – and hence our prototype – supports GPUs up
to the Nvidia Fermi generation, and Linux up to version 3.5. However, these
limitations are not conceptual ones: GPUswap can be integrated into any GPU
driver as long as that driver’s source code is available. Furthermore, GPUswap’s
design is not limited to Nvidia GPUs: In principle, GPUswap only requires the GPU
to support mapping of system RAM into its address spaces, which is fulfilled by all
recent Nvidia and AMD GPUs. Note that the ability to map command submission
channels into user space is not a requirement for GPUswap. In fact, hiding
command submission channels from applications would simplify our prototype by
rendering the implementation of shadow channels unnecessary: If applications
would have to call into the GPU driver to submit commands, GPUswap would
know about each submitted command and could thus delay the execution of
commands from suspended applications. Nevertheless, GPUswap should support
applications accessing their command submission channels directly since calling
into the driver on each command submission would cause non-trivial system call
overhead. However, GPUswap’s shadow channels can be applied to any GPU that
supports mapping of command submission channels into user space.

Even though GPUswap is intended to be application-agnostic, our prototype
implementation is limited to CUDA applications. The cause of this problem
is the fact that the only user space runtime supporting pscnv is that of Gdev.
Besides Gdev’s own interface, this runtime supports the CUDA driver API, but not
OpenCL or accelerated 3D rendering. However, this limitation is not a conceptual
one either: Our prototype itself makes no assumptions about the nature of the
applications using the GPU. Specifically, our implementation of shadow channels
is oblivious to the commands submitted by the application, and our relocation
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mechanism does not need to know about the contents of evicted chunks. In
principle, GPUswap thus works with any GPU application.

The final major limitation of our prototype is that it does not yet properly handle
buffers in GPU memory which are mapped into an application’s CPU address
space. This type of mapping is used for command submission channels – i.e., the
IB and PB – but applications can explicitly set up such mappings as well if needed,
for example to exchange data between CPU and GPU. Although GPUswap can
evict chunks from these buffers just like any other chunk, our prototype does
not currently update the CPU’s page tables after eviction. Evicting a GPU buffer
mapped on the CPU thus causes CPU and GPU to disagree about the physical
location of the chunk after eviction. In our prototype, we did not implement
support for such mappings since none of the applications we examined use this
type of mapping for anything other than their command submission channels,
which our prototype currently ignores anyway.

3.4 Discussion

In this Section, we revisit the design goals laid our in Section 3.1 and discuss how
these goals are fulfilled by our design. In addition, we discuss the limitations of
our design compared to previous work, as well as the impact of those limitations
on GPU applications. In Section 3.4.1, we address the generality and transparency
of GPUswap, which are closely related. Finally, we discuss the performance impact
of GPUswap on applications in Section 3.4.2.

3.4.1 Generality and Transparency

GPUswap fulfills the generality requirement since our design makes no assump-
tions about the application’s behavior: Our shadow channels are oblivious to the
nature of the commands submitted into the applications’ command submission
channels, and our relocation mechanism only makes identical copies of relo-
cated pages, but never interprets the contents of those pages. Therefore, even
though our prototype is limited to CUDA due to pscnv, GPUswap is, in principle,
compatible with any type of GPU application.

Overall, we consider our requirement of transparent operation to be fulfilled as
well: Neither our shadow channels nor our relocation mechanism change the
contents of the application’s virtual address space from the application’s point
of view. As a result, the only aspect of GPUswap’s operation that is visible to
the application at all is its overhead: Applications could detect the presence of
GPUswap by measuring the performance of their memory, which would show
a noticable drop as soon as GPUswap starts evicting memory to system RAM.
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1. Gdev pulls buffer into GPU memory
prior to kernel launch.
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(b) Data transfers with GPUswap.
1. GPU kernel loads data into shared
memory, bypassing GPU memory.
2. GPU kernel performs computation
on data in shared memory.
3. GPU kernel writes results back to
system RAM.

Figure 3.4: Data transfers performed during in-place computation with Gdev and
GPUswap

However, GPUswap does not require applications to be modified or to otherwise
cooperate in any way, and is capable of relocating memory even against the will
of faulty or malicious applications.

Even though our design achieves both generality and transparency, it is important
to note that the fulfillment of both goals also depends on the capabilities of the
GPU in use: The memory of current GPUs supports several storage types, but it is
undocumented whether all of these storage types are supported on pages backed
by system RAM. While GPUswap is capable of evicting pages regardless of storage
type, evicting data using a storage type that is only supported on GPU memory
pages might thus lead to application errors.

3.4.2 Performance

The performance of applications running on a GPUswap-enabled driver depends
heavily on whether or not there is sufficient GPU memory available. When suffi-
cient GPU memory is available, we consider our goal fulfilled since, in contrast to
previous work, GPUswap never performs any work when an application launches
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(b) Data transfers with GPUswap.
1. GPU kernel loads input data into
shared memory, bypassing GPU mem-
ory.
2. GPU kernel performs computation
on data in shared memory.
3. GPU kernel writes results back to
output buffer in system RAM.

Figure 3.5: Data transfers performed with Gdev and GPUswap when using sepa-
rate buffers for input and output

a GPU kernel. As long as sufficient GPU memory is available, GPUswap thus
induces only negligible overhead on memory allocation requests due to memory
accounting.

In the presence of memory contention, we expect GPUswap to induce considerable
overhead. However, this problem is not singular to GPUswap: Since system RAM
is slower than GPU memory, overhead is unavoidable whenever GPU data is
evicted to system RAM, regardless of the method used for eviction.

In contrast to previous work, GPUswap only transfers evicted data over the PCIe
bus if a GPU kernel actually accesses that data. On the one hand, this approach
has the obvious advantage of avoiding unnecessary data transfers – data that is
never accessed is never transferred over the PCIe bus. On the other hand, however,
transferring data on access may lead to the same piece of data being transferred
multiple times if that data is accessed more than once.

Despite the possibility of repeated transfers, we argue that GPUswap does not
typically transfer larger amounts of data than previous work since in practise, this
type of repeated transfer is rare. Most GPU applications rely heavily on the GPU’s
shared memory for performance. As a result, each GPU kernel typically accesses
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data in GPU memory twice: Once to bring its input data into shared memory, and
once more to write the result back into GPU memory after the kernel has finished
its computation1. For applications performing in-place computation – i.e., writing
the result of their computation into the same buffer that contained the input data
– GPUswap thus performs the same number of PCIe transfers as Gdev, as depicted
in Figure 3.4: With GPUswap, GPU threads load evicted data from system RAM
directly into the GPU’s shared memory, while Gdev transfers the evicted buffers to
GPU memory prior to kernel launch, and likely evicts them again after the kernel
finishes execution. As a result, GPUswap may actually be at an advantage since
the application does not need additional accesses to GPU memory to bring evicted
data into shared memory.

For applications using different buffers for input and output, GPUswap’s advantage
is even larger, as shown in Figure 3.5: If the application reads its input from one
evicted buffer and writes the result into another, GPUswap transfers each buffer’s
contents over PCIe once. In comparison, Gdev requires twice as many PCIe
transfers: Both buffers must be transferred to the GPU prior to kernel launch and
may be evicted again after the kernel finishes execution.

Gdev is able to schedule a single, large DMA transfer for each buffer it must
move between GPU memory and system RAM, while GPUswap forces the GPU to
perform one PCIe bus transaction for each access from the GPU to evicted chunks.
However, while one large transfer is superior to many small ones in terms of
performance, Gdev’s approach also requires the application to wait for all evicted
buffers to be returned to the GPU before starting any GPU kernels. In contrast,
GPUswap allows each GPU thread to resume computation as soon as the data the
thread requires has been transferred to the GPU. As a result, many of the small
transfers caused by GPUswap overlap with computation, which hides part of the
overhead associated with large numbers of small transfers.

1 It is possible for GPU threads from different warps to copy the same data into the shared memory
of multiple SMs. However, the GPU’s cache tends to coalesce such accesses into a single PCIe
transfer: The first thread to access the data pulls that data into the GPU’s L2 cache, which is
shared by all SMs. Subsequent accesses from different threads then read the data from that
cache without the need for a PCIe transfer.



Chapter 4

Profiling Memory Access Patterns
of GPU Applications

The mechanism described in the previous chapter must be accompanied by an
eviction policy to be effective. While a wide variety of algorithms for making
eviction decisions exists in the CPU world [60], these algorithms typically rely on
hardware features like reference bits or page faults to find frequently-accessed
memory pages. Since these features are not available in current GPUs, profiling is
currently the only viable way to gather information about the access frequency of
GPU memory pages.

Memory profiling in previous work [4] relied on compiler modification, which
induces two major limitations: First, profiling is restricted to the types of appli-
cations – e.g., CUDA or OpenCL – that are supported by the modified compiler.
Second, only code which has been compiled using the modified compiler can be
profiled, rendering memory accesses originating from shared libraries used by the
application invisible to the profiler.

To overcome these issues, we developed a profiling mechanism for GPU appli-
cations based on the GPU’s performance monitoring counters. Our profiling
mechanism complements the existing work in two ways: First, we confirm the
findings of previous work using a different method of measurement. Second,
our method is able to account for some memory accesses which were invisible to
previous work, leading to additional insights into application behavior.

4.1 Goals

Since the performance monitoring counters of current GPUs can only count
events from one application at a time, our profiler is intended for off-line analysis
of GPU applications. Profiling should provide detailed information about the
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memory accesses of the analyzed application, without imposing restrictions on
that application. Specifically, our profiler should fulfill the following goals:

Accuracy The data generated by our profiler is ultimately intended for use
in eviction decisions. Since we can only evict data from the GPU with page
granularity, the profiler should thus be able to count the application’s memory
accesses with page granularity as well. In contrast, a finer granularity is unlikely
to yield additional insights. Furthermore, our profiler should be able to separate
different types of access, such as read and write accesses, since different types
of access to evicted data may impose different penalties on the application’s
performance.

Transparency Like GPUswap, our profiler should not require the profiled appli-
cation to explicitly cooperate. Explicit cooperation would require the application
to be modified, which is often not possible if the application’s source code is
not available. In addition, uncooperative applications could deceive the profiler
about their memory accesses. As a consequence, we strive to keep the profiler’s
operation transparent to the application.

Generality Ideally, our profiler should support any type of GPU application out
of the box. To use the performance monitoring counters of current GPUs, however,
these counters must be explicitly enabled during GPU kernel launches by setting
a flag in the command submission channel of the profiled application. As a
consequence, a profiler using the performance monitoring counters must detect
kernel launches of the profiled application and set the profiling flag itself if profiling
is to be transparent. Detecting kernel launches in turn requires information about
the application being profiled since different types of application may perform
kernel launches differently. While a profiler using the performance monitoring
counters thus cannot be fully application-agnostic, the design of our profiler
should nonetheless remain as independent as possible from any specific type of
application.

Note that we do not consider performance a primary goal of our profiler: The
profiler is intended for off-line use and is thus unlikely to be used in a production
environment. In addition, profiling is a relatively rare event: Given the profiling
data is representative of the application’s execution, data collected once can
subsequently be reused many times. We therefore consider it generally acceptable
if a profiler causes significant application overhead.

4.2 Design

Our profiling mechanism uses the GPU’s performance monitoring counters to re-
main oblivious to the application being profiled: Peformance monitoring counters
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Figure 4.1: Separation of a page from the rest of its address space for profiling. In
this example, the first page in the application’s address space has been
relocated to system RAM. Since no other pages from the address space
are in system RAM, the total number of system RAM accesses equals
the number of accesses to the relocated page. In the next iteration,
the second page from the buffer will be in system RAM.

are not only compatible with any type of application, but also indiscriminately
account for all memory accesses from the application, whether these accesses
originate from the main application code or a library linked into the application.
However, the GPU’s performance monitoring counters were designed to monitor
events for applications as a whole and can therefore not count accesses to individ-
ual memory pages. Our profiling mechanism must work around this limitation
to obtain detailed information about the access patterns within an application’s
address space.

In this section, we present our design for a profiling mechanism which uses the
GPU’s performance monitoring counters to obtain access counts for individual
pages in a transparent way. We give an overview of our design in Section 4.2.1,
followed by detailed descriptions of the individual components of our profiler in
the subsequent sections.

4.2.1 Overview

Out of the box, the GPU’s performance monitoring counters can only count memory
accesses for an entire GPU address space, but not for individual pages within that
address space. To obtain an access count for an individual page, we must therefore
separate that page from the rest of the address space in such a way that all events
of a certain type are caused by accesses to that page. Our profiler achieves this
separation by relocating individual pages to system RAM while ensuring that all
other application data is in GPU memory, as depicted in Figure 4.1. Since only one
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page from the application’s address space is in system RAM at the same time, the
total number of accesses to the relocated page equals the total number of accesses
to system RAM from the application’s address space, which is easily determined
through the performance monitoring counters.

To obtain a complete access profile for the application’s entire address space,
our profiler uses this method on each page in the address space: Whenever the
application being profiled launches a GPU kernel, the profiler repeats the kernel’s
execution once for each page in the application’s address space, relocating a
different page to system RAM in each repetition. After all pages in the application’s
address space have been processed in this way, this approach yields an accurate
number of accesses for each page.

The main advantage of using the performance monitoring counters for profiling is
that these counters require little knowledge about the application being profiled.
Specifically, the counters do not require the application to be instrumented and are
oblivious to shared libraries used by the application. In principle, our profiler is
therefore not restricted to a specific type of application: While our profiler cannot
remain fully application-agnostic since it must detect the application’s kernel
launches to enable the performance monitoring counters, the majority of the
profiler’s code can operate on any type of application. Specifically, the operation
of the performance monitoring counters and the mechanism for relocating pages
to system RAM are application-independent, while the code for detecting and
repeating kernel launches – which is specific to the GPU runtime library in use –
is comparatively small and easy to adapt to new types of applications.

Since each of the application’s GPU kernels must be repeated once for each page
in the application’s address space, profiling an application using a large amount of
memory can easily require millions of repetitions, taking a considerable amount
of time. However, we do not consider profiling time to be a serious issue since we
expect profiling to be a rare event: Given that profiling yields representative results,
the application must only be profiled once, and the results can subsequently be
reused many times. In addition, it is often possible to profile an application using
a smaller input data set than will be used later in production [40], which speeds
up the profiling process considerably. Finally, a coarser profiling granularity may
be acceptable in some cases – GPUswap, for example, typically operates on chunks
larger than one page and therefore does not benefit from a granularity smaller than
its chunk size. In such cases, our profiler can easily trade accuracy for performance
by relocating more than one page to system RAM in each repetition.

Compared to previous work [4], which relies on compiler modification, our ap-
proach has two main advantages: First, a profiling mechanism based on compiler
modification is inherently limited to those applications that can be handled by the
modified compiler – e.g., CUDA applications. In contrast, our profiling mechanism
is capable of profiling arbitrary applications. Second, compiler-based profiling
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Figure 4.2: Repeating GPU kernel execution using an interception library. The
profiler injects the interception library between the GPU runtime
library – in this example, a CUDA library – and the application. The
interception library then intercepts GPU kernel launches from the
application and transparently repeats each kernel’s execution once
for each page in the application’s address space. Between repetitions,
the library issues the necessary system calls to restore the kernel’s
inputs, to read and reset the performance monitoring counters and to
relocate the next page.

cannot profile memory accesses originating from libraries used by the profiled
application unless these libraries were compiled by the modified compiler as well.
In contrast, our work automatically covers memory accesses from all code running
in the application’s address space, including any shared libraries.

The main disadvantage of our approach is the time required for profiling: Our
profiler must repeat the execution of each GPU kernel launched by the profiled
application many times to collect a complete profile of the application’s entire
address space, which can take a considerable amount of time. While we cannot
directly compare our approach to previous work since previous work did not report
any numbers related to profiling time, we assume that previous work can collect
access profiles much faster than our profiler since a compiler-based approach does
not require repeating of GPU kernels.

4.2.2 Repeating Kernel Runs

To obtain a complete memory access profile for an entire address space, our profiler
repeats the execution of each GPU kernel launched by the profiled application
once for each page in the application’s address space. To achieve this repetition,
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our profiler wraps each call to the GPU runtime library that launches kernels in a
kernel repetition loop.

In our experiments, we frequently observed GPU kernels storing their result in the
same buffer that previously held the input data. Without remedy, this behavior
would cause each repetition to run on different input data, which would render
the collected profiles meaningless. In addition to repeating kernel executions, our
kernel repetition loop therefore restores each kernel’s original input data between
repetitions to ensure that the kernel’s behavior is deterministic across iterations.

In total, our kernel repetition loop performs the following steps on each kernel
launch:

1. Make a copy of all data accessible to the kernel and store that copy in system
RAM to enable restoration of the original values between repetitions.

2. Relocate a page from the application’s address space to system RAM as
shown in Figure 4.1, mapping the relocated page to the same virtual address
it originated from. Note that the page relocated in this step is different in
each repetition.

3. Setup the performance monitoring counters to count all accesses to system
RAM from the application.

4. Call into the original GPU runtime library to launch the application’s GPU
kernel.

5. Read the values of the performance monitoring counters and store them in
a result file.

6. Return the page that was relocated in step 2 to GPU memory.

7. Check if all pages in the application’s address space have been processed. If
so, return to the application.

8. Otherwise, copy the application data saved in step 1 from system RAM back
into GPU memory.

9. Return to step 2.

The kernel repetition loop can be implemented in two ways: Either by modifying
the application’s source code, or by injecting an interception library between
the application and the GPU runtime library as depicted in Figure 4.2. The main
advantage of using an interception library is that no access to the application’s
source code is required since the library’s operation is completely transparent
to the application. On the other hand, however, modifying the application has
the advantage of allowing the kernel repetition loop to leverage application
knowledge to reduce the amount of I/O required: By analyzing the application’s
source code, the developer can determine which buffers are modified during each
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Figure 4.3: Restoring kernel inputs during profiling for our interception library
and with the kernel repetition loop integrated into the application.
In this example, the application launches three kernels. Since the
interception library does not know about the relationships between
these kernels, it must profile each kernel individually. This implies
that each kernel’s input must be restored once for each page in the
application’s address space. In contrast, a kernel repetition loop
integrated into the application can execute multiple kernels in a row
before restoring the inputs of all of them, thus reducing the amount
of DMA by a factor of three.

kernel’s execution. With this information, the developer can then adapt the kernel
repetition loop to only restore the contents of these modified buffers between
iterations. In addition, if the application executes multiple kernels to compute a
single result, the kernel repetition loop can execute the entire chain of kernels in
each iteration as shown in Figure 4.3, only restoring the inputs of the first kernel
after the last one has finished execution. Compared to an interception library,
these measures can speed up the profiling process considerably.

Our approach builds on the assumption that each kernel’s execution is sufficiently
deterministic to perform the same memory accesses in each repetition. This
assumption holds well since most GPU kernels compute labor-intensive mathe-
matical functions, which, given the same input data, tend to perform the exact
same computation every time. Note that our profiler only requires the number,
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but not the exact timing of memory accesses to be deterministic: Since the GPU’s
performance monitoring counters cannot account for the exact time when each
access took place, changes in the timing of memory accesses will not affect the
resulting access profile.

Since our approach relies on injecting code into the application, our profiler is
not fully application-agnostic since the injected code is always specific to the GPU
runtime library used by the application. However, the amount of code actually
injected is relatively small: Since each step of the kernel repetition loop is generic
in nature – for example, relocating a page to system RAM works the same way
for both CUDA and OpenGL-based applications – we can implement each step
of the loop as a call into the GPU driver, which is then reusable for all types of
applications. Beside the kernel repetition loop, our profiler generally requires
no modifications to other parts of the application: Since the input data is not
restored after the last repetition of each kernel, the application’s remaining code
is under the impression that the kernel executed as expected. As a consequence,
only a small part of our profiler is actually application-dependent, and we expect
this part to be easily adaptable to different applications or GPU runtimes.

4.2.3 Separating Pages

To count memory accesses for individual pages using the GPU’s performance
monitoring counters, our profiler separates these pages from the rest of the
application’s address space by relocating them to system RAM. To achieve this
relocation, the profiler reuses the existing relocation mechanism of GPUswap,
which we describe in Section 3.2.2.

Since the chunk size used by GPUswap is configurable, using GPUswap’s relocation
mechanism has the advantage of allowing the user to easily configure the profiling
granularity. If fine-grained profiling is desired, the size of each chunk can easily
be configured to one page. Conversely, a user wishing to speed up the profiling
process can easily configure a larger chunk size, leading to fewer repetitions of
each kernel. However, it is important to note that our relocation mechanism will
never put multiple buffers in a single chunk: If the chunk size is larger than one of
the application’s buffers, the entire buffer will become a single remainder chunk.
The coarsest granularity supported by our profiler is thus determined by the size
of the application’s buffers.

The only required modification to GPUswap’s original relocation mechanism
concerns the method of its invocation: GPUswap invokes its relocation mechanism
transparently if memory contention is detected, whereas our profiler must be
able to invoke the relocation mechanism explicitly from the kernel repetition loop
inside the profiled application or the interception library. To allow the profiler to
invoke page relocation explicitly, we modify GPUswap’s original design by adding
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a system call for explicit relocation. Using this system call, the profiler passes an
index into the application’s chunk list to GPUswap. GPUswap then relocates the
chunk referenced by the corresponding chunk list entry to system RAM, while at
the same time returning all previously relocated chunks to the GPU. The call then
returns the virtual address of the relocated chunk to allow the profiler to map
each chunk to an application data structure. If the application passes a number
for which no entry exists in the application’s chunk list, the call returns an error.

Our relocation system call identifies pages using chunk list indices instead of
virtual addresses to simplify the kernel repetition loop inside the application: The
loop can simply increment the chunk index in each iteration until the system
call returns an error, at which point all pages in the application’s address space
have been processed. As a result, the kernel repetition loop does not require
information about the application’s address space layout: Unallocated regions
in the application’s address space are skipped automatically since the chunk list
only contains entries for allocated pages, and no knowledge about the amount
of allocated memory in the application’s address space is required since the loop
exits automatically once all pages have been processed. In addition, using chunk
list indices causes our profiler to ignore all buffers which cannot be relocated
to system RAM at runtime – such as those allocated by the GPU driver – since
GPUswap never includes these buffers in its chunk list to begin with.

Since GPUswap’s chunk list is unordered, our profiler does not guarantee that the
pages in the profiled application’s address space are processed in any particular
order. However, since our relocation system call returns the virtual address of the
relocated page, the profiler can match each page to its location in the application’s
address space regardless of ordering.

4.3 Prototype Implementation

To demonstrate the viability of our approach as well as to gain insight into the
memory usage of GPU applications, we created a prototype implementation of
our profiler. The largest part of that prototype is integrated into our pre-existing
prototype of GPUswap. Specifically, our prototype reuses GPUswap’s existing
chunk relocation code, but augments that code with an API allowing the kernel
repetition loop to save and restore kernel input data and to explicitly invoke chunk
relocation.

In this section, we present details about the prototype implementation of our
profiler. First, we explain how to guarantee deterministic kernel execution across
repetitions in Section 4.3.1. In Section 4.3.2, we then discuss relocation of
individual pages to system RAM. Finally, we present our handling of the GPU’s
performance monitoring counters in Section 4.3.3.
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4.3.1 Repeating Kernel Runs

Our prototype uses an interception library to wrap each of the application’s kernel
launches in a kernel repetition loop. This library intercepts all calls to the CUDA
API which either allocate memory or launch GPU kernels. By intercepting memory
allocation calls, our library collects information about the location and size of
all GPU memory buffers allocated by the application. When the application
subsequently launches a GPU kernel, the library uses CUDA’s existing API to save
the contents of each of the application’s buffers to system RAM, and subsequently
restores each buffer’s contents between iterations of the kernel repetition loop.

For comparison, we also created modified versions of our benchmark applications
with the kernel repetition loop integrated directly into the application’s source
code. In these versions, we made heavy use of application knowledge to reduce
the amount of I/O required: The kernel repetition loop integrated into these
applications restores only the contents of modified buffers between iterations and
executes as many kernels as possible before restoring any inputs.

4.3.2 Separating Pages

To separate pages from the rest of the application’s address space, our profiler
provides an API call for moving individual pages to system RAM. Our kernel
repetition loop invokes this API call in each iteration to ensure that a different
page is evicted in each repetition of the profiled GPU kernel. The call takes an
index the profiled application’s chunk list as an argument, and triggers GPUswap’s
pre-existing eviction mechanism on the chunk referenced by that index. At the
same time, the call unconditionally returns all other chunks in system RAM to
GPU memory.

For profiling to yield meaningful results, the contents of the application’s chunk
list must not change during profiling of a single kernel. As a consequence, appli-
cations cannot be allowed to allocate or free memory while our kernel repetition
loop is running: Allocating or freeing memory would add or remove entries in the
application’s chunk list, changing the index of other chunks in the process. Since
the kernel repetition loop simply increments a counter in each repetition, chang-
ing chunk indices while the loop is running could result in some chunks being
missed or profiled twice under different indices. For single-threaded applications,
our profiler mitigates this issue by wrapping the kernel repetition loop tightly
around kernel launch operations: If the loop does not contain any operation other
than calls into the kernel part of our profiler and the actual kernel launch, the
application is guaranteed not to allocate or free any memory before the loop has
finished running.
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Multithreaded GPU applications present two additional challenges to our profiler.
First, a multithreaded application could allocate or free memory from a different
thread during profiling, which without our profiler would be safe to do as long as
the application does not free any memory that is touched by the running kernel.
Second, a multithreaded application may launch multiple kernels in parallel,
causing our profiler to relocate two pages to system RAM at the same time with
no way of telling which page accumulated how many accesses. To mitigate these
issues, our profiler introduces a lock which must be held during the entire runtime
of the kernel repetition loop as well as during any operation changing GPUswap’s
chunk list. In essence, this lock forces the profiled application to behave as if
it was single threaded: Any thread attempting to launch a kernel or allocate or
free memory while a kernel is being profiled is stopped until the running kernel
repetition loop completes, which guarantees consistent profiling results.

4.3.3 The Performance Monitoring Counters

Our current prototype does not implement separate system calls to handle the
GPU’s performance monitoring counters. Instead, our interception library maps
the counters’ control registers into user space and subsequently accesses these
registers directly: Before launching the profiled kernel, the loop iterates over all
memory-related domain sets, configuring the first domain in each set to account
for the desired type of event and resetting the domains’ counter values to zero.
Whenever a kernel finishes execution, the loop sums up the counter values of the
first domain in each set and stores the final sum as the number of accesses made
to the currently evicted page by the profiled GPU kernel.

While the code related to the performance monitoring counters accounts for
most of the code in our interception library, this code is entirely generic: When
integrating our kernel repetition loop directly into our benchmark applications,
we were able to use the same code without modification. In addition, this code
does not rely on CUDA and could thus be used by an interception library targeting
a different API – such as OpenGL – without modification as well.

On current Nvidia GPUs, only the first domain in each memory-related domain set
can count simple read and write operations. As a consequence, it is not possible
to count memory read and write operations simultaneously since counting any
type of memory access requires one of the counters’ special operating modes, thus
blocking the entire domain. To overcome this issue, Nvidia’s profiling tools repeat
each kernel multiple times, once for each desired event. Our kernel repetition
loop replicates this behavior: The loop repeats each kernel twice for each page in
the application’s address space – once for read and once for write operations.

As a final complication, Nvidia GPUs require the profiled application itself to
explicitly enable the performance monitoring counters by setting a flag in the
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kernel launch commands written to the application’s command submission chan-
nels. If that flag is missing for a given kernel, no events generated by the kernel’s
execution will be counted. Since performance monitoring counters can be a
potential vector for side channel attacks [7], we assume this flag to be a security
measure to prevent the activation of the performance monitoring counters against
the application’s will. Without breaking transparency, this security measure can
be overcome in three ways: First, our profiler could use a modified version of
the GPU’s user-mode runtime library which sets the profiling flag unconditionally
in all kernel launch commands. From the interception library’s perspective, this
approach effectively removes the counters’ security altogether, which allows us to
implement the interception library using only calls to GPUswap and the GPU’s
pre-existing user space runtime. Second, our interception library could submit all
GPU kernels directly into the application’s command submission channels, setting
the profiling flag in the process. However, this approach would require the inter-
ception library to re-implement large parts of the GPU’s user space runtime. Third,
our profiler could virtualize the application’s command submission channels in the
GPU driver: The profiler could force the application to submit all commands into
a shadow channel similar to those used by GPUswap, and subsequently set the
profiling flag before copying the commands to the real channel. Since the latter
two options are complex to implement, our current prototype uses a modified
version of the GPU’s runtime library for simplicity.

4.4 Profiling Results

Using the prototype of our profiler, we examined the memory access patterns
of several GPU applications. In our profiling experiments, we pursued three
main goals: i) To confirm the results of previous work [4], ii) to assess the time
needed to collect a complete access profile using our profiler, and iii) to gain
additional insight into the behavior of GPU applications which might be helpful
in the development of an eviction policy for GPUswap.

4.4.1 Profiling Setup

In our profiling experiments, we used eight applications from the Rodinia bench-
mark suite [8]. We limit ourselves to those eight applications since these applica-
tions have been previously ported to the CUDA runtime API [37], which is the
only API supported by GPUswap, and hence by our profiler as well. We used two
versions of each application in our experiments: An unmodified version for use
with our interception library, and a modified version with the kernel repetition
loop required by or profiler added to the application’s source code. As we ex-
pected, the modifications required for the latter version were relatively small:
The kernel repetition loop amounts to about 25 lines of code.
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Since one of our goals was to gain an understanding of the behavior of GPU
applications, we determined an access count for each individual page in each
application’s address space, which is the finest granularity supported by our
profiler. In addition, we configured the profiler to account for read and write
accesses separately.

The test system used in our profiling experiments consists of a Core i7-4770 CPU
clocked at 3.4 GHz and 16 GiB of system RAM. The GPU used in our experiments
was a GeForce GTX 480. In all our experiments, both CPU and GPU were locked
to the highest available clock frequency. Our test system ran Ubuntu 12.04 based
on Linux version 3.5.7. We used pscnv as our GPU driver since that driver is a
prerequisite for GPUswap. In user space, we used Gdev’s CUDA runtime, modified
to set the profiling flag on all kernel launches as discussed in Section 4.3.3.

4.4.2 Observations

The results of our profiling experiments are shown in Figure 4.4. The figure shows
a separate access profile for each GPU kernel launched by each application. In
all plots, the X axis represents the application’s virtual address space, omitting
unallocated regions for readability. Read and write accesses are shown on the Y
axis, separated by a horizontal line at zero accesses. Read accesses are shown
above that line and in blue, while write accesses are shown below the line and in
red. Note that each page is represented by a single dot; any structures visible in
the plots are composed of these dots without additional processing. We collected
profiles for each application using our interception library and by adding the
kernel repetition loop directly into the source code of our benchmark applications.
For all applications, the results were identical for both methods; the profiles shown
in Figure 4.4 are those collected from the modified applications.

Interestingly, the profiles of most applications contain clearly visible horizontal
lines, indicating contiguous regions of virtual address space in which all pages
share a similar number of accesses. An analysis of the applications’ source code
as well as our instrumentation of the applications’ memory accesses show that
each of these regions corresponds to a single application buffer.

For most of the applications, the difference in the number of accesses per page
is large between these buffers compared to the difference between pages within
the same buffer. However, there are also applications for which multiple buffers
share the same number of accesses, thus appearing as a single horizontal line:
For srad_v1 – shown in Figure 4.4(i) – for example, the top line in kernel 2, the
bottom-right line in kernel 3 and the middle line of kernel 4 are all composed of
multiple buffers. The boundaries of those buffers are indicated by the isolated
dots between the solid horizontal line and the zero line: Since the size of each
buffer is not an exact multiple of the GPU’s page size, the last page in each buffer
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Figure 4.4: Profiling results for various applications from the Rodinia Benchmark
Suite. The X axis in each plot represents the application’s virtual
address space with unallocated regions omitted. The Y axis shows
the access count for each page. Read requests are shown in blue and
above the zero line, while write requests are shown in red and below.
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is not entirely filled with application data and is therefore accessed less often than
the rest of the buffer. The only application for which no individual buffers are
visible at all is lud – shown in Figure 4.4(h) – which only allocates a single buffer
on the GPU.

While in general, the number of accesses per page appears to vary mostly between
buffers, some applications do exhibit non-trivial differences in the number of
accesses between different pages within the same buffer. For example, the trace of
srad_v2, depicted in Figure 4.4(g), shows multiple parallel lines in the same region
of the application’s address space. This result indicates that the application buffer
stored in that region is not read sequentially, but accessed in a more intricate
pattern. Even for these applications, however, the difference in the number of
memory accesses between buffers is typically larger than the difference within
each buffer: For example, kernel 1 of srad_v2 accesses each page in the leftmost
buffer more frequently than any page outside that buffer, even though the number
of accesses per page is not uniform within the buffer.

Besides the buffers shown in Figure 4.4, our traces identified another large buffer
in the address space of each application, which we omitted from the Figure for
legibility since this buffer would have taken up most of the space in all plots. This
buffer is allocated by the GPU’s runtime library and serves as stack space for the
application’s GPU threads. While this buffer was present in the address space of all
applications, the number of accesses to this buffer was generally low: Most pages
in the buffer were never accessed at all, while those that were rarely reached
100 accesses. This result is consistent with our understanding of GPU hardware:
The GPU typically attempts to keep each kernel’s local variables in registers, only
spilling variables to the stack if there is insufficient register space. Nonetheless, a
stack must be present for each thread executing on the GPU: Since the GPU may
spill data to the stack at any time, a missing stack could cause random GPU page
faults, thus leading to the unexpected termination of GPU kernels. In addition the
stack buffer, the GPU’s runtime library allocates several other buffers, for example
to store the code of the application’s GPU kernels. These buffers are included in
Figure 4.4, but are not clearly visible since each of these buffers typically consists
of only a few pages. Note that all buffers allocated by the runtime library can be
evicted to system RAM just like any application buffer.

To verify our results, we repeated our profiling experiments with different input
data for some of the applications. The results of these experiments were generally
consistent with those shown in Figure 4.4: While the absolute number of memory
accesses changed with the input size, the relative number of accesses between
different buffers did not. In particular, the difference in the number of accesses
between buffers always tended to be larger than the difference between pages
in the same buffer, and the same buffer always received the largest number of
accesses, regardless of the input supplied.
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Comparison to Related Work

Agarwal et al. [4] conducted an analysis similar to our own on several GPU
applications. Four of the applications used in the authors’ analysis – backprop,
bfs, nn and srad_v1 – are present in our own analysis as well. For three of these
applications, however, Agarwal et al. report only aggregate results in the form of a
cumulative distribution function (CDF) of memory accesses over the application’s
address space: The authors sorted the pages in the application’s address space
by the number of accesses to each page, and then plotted a CDF of the number
of memory accesses over the sorted pages. Applications with the same number
of accesses to each page in their address space thus yield a linear CDF, while
applications with large differences between pages show a CDF curved towards
the upper-left corner of the plot.

For three of the applications analyzed by Agarwal et al., the authors’ results
agree well with our own: For backprop, Agarwal et al. report a CDF indicating
that the application’s address space is split into two parts, with one half of the
address space receiving about twice as many memory accesses than the other.
Consequently, our profiler identified two large buffers occupying almost the entire
address space of the application, with one of these buffers receiving twice as many
accesses as the other. For srad_v1, the CDF reported by the authors is almost
linear, indicating that all pages in the application’s address space exhibit a similar
number of accesses. However, the CDF shows two inflection points, indicating
that there are two buffers, each occupying a little over 10 % of the application’s
address space, which receive more memory addresses than the rest of the address
space. Our own profiler identified eight equal-sized buffers for this application,
as can be seen in Figure 4.4(i): The buffers on the far left and the far right of the
figure receive a large and intermediate number of accesses per page, respectively,
while the remaining buffers exhibit similar and low numbers of accesses per page.
Since each of the application’s buffers occupies 12.5 % of the application’s address
space, these results agree with the inflection points observed by Agarwal et al.

For bfs, Agarwal et al. present more detailed results: The authors identified
two large buffers and several smaller ones, with the smaller ones receiving a
larger number of accesses per page. The same is visible in our own analysis
(Figure 4.4(f)): The two large buffers to the left of the figure receive relatively few
accesses per page, while the smaller ones to the right are accessed more frequently.
Furthermore, Agarwal et al. ordered the application’s buffers by the number of
accesses per page in each buffer. Consequently, sorting the application’s buffers
by the number of accesses per page reported by our own profiler yielded the same
ordering. Finally, it is important to note that Agarwal et al. used a much smaller
input than our own in their analysis: The authors’ plot of bfs’ address space only
shows a little under 128 KiB of data, whereas in our own profiling, the application
allocated more than 45 MiB of memory. Nonetheless, our analysis shows results
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very similar to Agarwal’s, which indicates that profiling of GPU applications can
yield results that are representative for different inputs.

For nn, however, the results of Agarwal et al. differ from our own. The CDF
reported by the authors indicates that nn’s address space is split into two parts:
The first part occupies one third of the application’s address space while the
second part occupies the rest. The same distribution is visible in our own results
(Figure 4.4(d)): The application’s address space consists of an input buffer which
takes up two thirds of the address space and is only read, and an output buffer
which occupies one third of the address space and is only written. According to the
authors’ analysis, however, the smaller of the two buffers receives more memory
accesses per page than the larger one, resulting in the application’s CDF being
slightly curved. In contrast, our profiler reported the same number of accesses
per page for both buffers, which corresponds to the CDF being a straight line.

To understand this result, we examined the source code of nn’s sole GPU kernel.
Each thread launched by this kernel reads two values from the application’s input
buffer and combines them into a single result, which is then written into the
output buffer. All three of these memory accesses are performed directly on GPU
memory – nn does not use the GPU’s shared memory at all. Regardless of the
input given to the application, the input buffer should thus receive twice as many
memory accesses as the output buffer, which appears to contradict the results of
Agarwal et al.

The results of our own profiler are nonetheless plausible since the GPU is often able
to coalesce memory accesses. In microbenchmarks, we were able to identify two
different types of coalescing: First, the GPU is able to coalesce multiple accesses
from different threads in the same warp into a single memory access. Second, the
GPU’s cache tends to coalesce read accesses into a single memory access even if
these accesses originate from different warps: If two values that are adjacent in
memory are read in close succession – which is the case for nn – the first read
will bring both values into the cache in a single memory access. The result of the
second read is then served from the cache and therefore not counted as another
memory access. However, the GPU’s caches appear to be strictly write-through and
therefore do not coalesce write accesses. Since Agarwal et al. used a simulated
GPU with a modified memory subsystem in their experiments, their simulated
GPU may have exhibited a different coalescing behavior than the physical one
used in our experiments, which would explain the difference between their results
and our own.

In addition to the four applications discussed above, Agarwal et al. examined
several other applications, and frequently observed large differences in the number
of accesses between application buffers. For some applications, however, they
also found large differences within individual buffers, similar to those our profiler
reported for lud. Overall, Agarwal et al. came to the same two conclusions that we
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Figure 4.5: Slowdown due to profiling with page granularity for various applica-
tions. In this experiment, our profiler was configured to a granularity
of one page, which is the finest possible granularity. “Modified” shows
the slowdown for applications with the kernel repetition loop in-
tegrated directly into the application’s source code, while “Library”
indicates the slowdown when using our interception library on the
unmodified application. We omitted error bars from this figure since
the standard deviations of our results are negligibly small for all ap-
plications.

drew from our analysis: First, the number of memory accesses in the address space
of GPU applications differs mostly between buffers. Second, some applications
show a different number of memory accesses within the same buffer, which implies
that a placement policy based on pages may yield a performance improvement
over one based on buffers. Nonetheless, the authors’ own policy, which is based
on the results of their analysis, operates on buffers rather than individual pages.

4.4.3 Profiling Duration

The main drawback of our method of profiling is that our profiler must repeat the
execution of each GPU kernel launched by the profiled application many times,
thus causing a considerable slowdown in the application’s execution. To quantify
this slowdown, we measured the time needed to profile each of our benchmark
applications both using our interception library and with the kernel repetition
loop integrated directly into the application’s source code. For comparison, we
also measured the execution time of each application without any profiling, which
allows us to calculate the slowdown induced by profiling.
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Figure 4.6: Profiling time with different granularities for four of our benchmark
applications. “Modified” shows the slowdown for applications with
the kernel repetition loop integrated directly into the application’s
source code, while “library” indicates the slowdown when using our
interception library on the unmodified application.

Figure 4.5 shows the slowdown of each application for both methods of profiling
with the profiling granularity set to one page, which is the finest granularity
supported by our profiler. The results show that profiling indeed increases the
applications’ execution times significantly: Our interception library induced slow-
downs of more than 1000x in most applications, taking several hours to collect
a complete access profile of the entire address space. In the worst case (heart-
wall), collecting a complete profile took about 4.5 days, which corresponds to a
slowdown of more than 600000x.

Compared to our interception library, integrating the kernel repetition loop directly
into the application decreased the slowdown induced by our profiler by more
than an order of magnitude for most applications. Most notably, the slowdown of
heartwall – which had been the worst case for our interception library – dropped
from a factor of over 600000 to a factor of 1400. Consequently, integrating the
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Figure 4.7: Slowdown due to profiling with buffer granularity for various applica-
tions. In this experiment, our profiler was configured to relocate an
entire application buffer in each iteration of the kernel repetition loop.
As in Figure 4.5, “Modified” shows the slowdown for applications with
the kernel repetition loop integrated directly into the application’s
source code, while “Library” indicates the slowdown when using our
interception library on the unmodified application.

kernel repetition loop into the applications brought the absolute time to collect a
complete profile into an acceptable range as well: The slowest application was
bfs with a profiling time of just under two hours. While the slowdown induced by
our profiler is still severe even for our instrumented applications, the results thus
clearly indicate that exploiting application knowledge can reduce the profiling
time significantly.

Depending on the reason for profiling an application’s memory accesses, a fine
profiling granularity may not always be necessary. If a coarser profiling granularity
is acceptable, our profiler allows the user to trade profiling granularity for faster
profiling times. To quantify this tradeoff between granularity and profiling time,
we measured the profiling slowdown for four of our benchmark applications with
our profiler configured to different granularities. We chose to limit this experiment
to the four fastest-running applications since the experiment would otherwise
have taken a prohibitively long time to complete: We estimate that running this
experiment on heartwall alone would have taken more than one month.

Figure 4.6 shows the profiling slowdown for the four fastest-running applications
for various granularities. As can be seen, the profiling time initially decreases
linearly with increasing profiling granularity. This result reflects our profiler’s
behavior: If the granularity is doubled, the profiler must repeat the application’s
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execution half as often, thus exactly cutting the profiling time in half. Towards the
right of the figure, the profiling time approaches a constant value as the profiling
granularity approaches the size of the application’s buffers. Since our current
prototype never puts multiple application buffers into a single chunk, a further
increase in granularity then has no effect on the profiling time since the profiler
is already relocating an entire buffer in each iteration.

Figure 4.7 shows the profiling slowdown when relocating an entire buffer in each
iteration of the kernel repetition loop – which is the coarsest possible granularity
supported by our current prototype – for all applications. At this granularity,
the profiling time was reduced to an acceptable level for all applications: Even
when using our interception library, our profiler collected a complete access
profile in under one minute for most applications, while the slowest application
(heartwall) took 1.25 hours to profile. Integrating the kernel repetition loop
into the applications reduced the profiling time even further. However, since
the profiling times using our interception library were generally acceptable, we
consider the effort of instrumenting an application to be worthwhile only for
extreme cases like heartwall at coarse granularity.

4.4.4 Implications on Policy

From our observations, we can draw several conclusions influencing the design of
an eviction policy for GPUswap. The most important of these conclusions is that
it may not always be necessary to identify the best individual page to evict: Since
for the applications we examined, the number of accesses to a given page is often
defined by the buffer that page belongs to, it may be sufficient to identify the
right buffer to evict pages from. We assume this conclusion to hold for other GPU
applications as well since these applications typically perform similar operations
on large amounts of data in many threads. In addition, real-world applications
tend to allocate more buffers for the policy to choose from than the relatively small
applications in the Rodinia Suite – for example, we observed Google’s project
deepdream [19, 46], which builds on the caffe deep learning framework [35],
to allocate 96.6 MiB of data in 746 buffers.1 Therefore, we assume an eviction
policy based on buffers rather than pages to have a sufficiently large number of
choices to make useful eviction decisions.

It is, however, important to note that for many applications, some differences exist
between pages within the same buffer. Even though these differences are typically
small compared to the difference between buffers, they are often large enough to
suggest that selecting the correct individual page can yield an additional benefit
over selecting a random page from the right buffer. Unfortunately, detecting the

1 Note that a larger number of buffers does prolong the profiling time at coarse granularity.
However, we still expect profiling to be possible in reasonable time for such applications.
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right pages is difficult on current GPUs due to the lack of reference bits in their
page tables. Nonetheless, finding a way to identify frequently-accessed pages
within each buffer – e.g., those forming the topmost line in the leftmost buffer of
srad_v2 – could yield additional benefit for GPU memory management.

Finally, our observations show that an eviction policy cannot afford to generally
ignore data structures allocated by the GPU runtime library in its decisions. For
example, pages in the stack buffer are likely good candidates for eviction to
system RAM: Since the GPU always attempts to keep local variables in registers,
we expect the number of memory accesses to the stack buffer to be low for the
vast majority of GPU applications. However, while the stack buffer cannot be
ignored, there is also no guarantee that the stack buffer is a good candidate for
eviction for all applications. Therefore, any eviction policy cannot unconditionally
evict pages from the stack buffer, but must instead treat this buffer the same way
as any other buffer in the application’s address space.



Chapter 5

Potential Eviction Policies for
GPUs

GPUswap requires an eviction policy to decide which data to evict in response
to memory shortages. Creating such an eviction policy for current GPUs is not
straightforward: To minimize the performance impact of its eviction decisions,
any policy requires information about which data in GPU memory is frequently
used. On current GPUs, this information is difficult to obtain since the hardware
of these GPUs lacks appropriate hardware support, such as reference bits. The
well-known techniques for solving this problem on the CPU therefore do not apply
to GPUs. As a consequence, we must design a novel eviction policy that depends
only on features available in current GPUs.

5.1 Goals

GPUswap is intended for use in a shared environment where multiple, mutually
untrusted clients use the same GPU. Since these clients are typically unwilling to
sacrifice the performance of their own applications for the benefit of others, our
eviction policy should treat all clients equally. At the same time, the policy should
minimize its own impact on the overall performance of the system. Specifically,
we formulate the following goals for our policy:

Fairness In general, our policy should treat all running applications fairly in the
sense that every application should receive an equal share of the GPU’s resources.
However, which resources should be considered by our policy is a matter of choice.
In the context of our policy, we define fairness in terms of the amount of memory
consumed by each application: Each application should receive an equal share of
the GPU’s memory. Conversely, applications that do not consume more than their
fair share of memory to begin with should not suffer any overhead.
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Performance While distributing resources fairly among applications is impor-
tant, doing so may lead to a sub-optimal total overhead across the whole system.
While our policy should always attempt to minimize the overhead caused by its
eviction decisions, we consider fairness a more important goal than performance,
especially since overhead is to be expected if data is evicted to system RAM.

Generality Our policy should not impose restrictions on the applications that
can run on the GPU. Specifically, the policy should support running legacy ap-
plications which are not aware that eviction is taking place and for which no
profiling data is available. While these applications will likely suffer a larger
performance penalty than cooperating ones since the policy may lack necessary in-
formation without cooperation, we consider a higher penalty for non-cooperating
applications acceptable as long as only the non-cooperating application itself is
affected.

5.2 Policy Ideas

Whenever it is necessary to evict data from the GPU to system RAM, an eviction
policy must make two decisions: First, the policy must select an application –
which we call the victim – that must give up some of its GPU memory. Second,
the policy must select one or more chunks of GPU memory from that application’s
address space which are subsequently moved to system RAM by the relocation
mechanism. In this section, we examine several possible policies for both victim
and chunk selection as well as their viability on current GPUs.

All policies described in this section have in common that, in addition to the
memory already allocated in each application’s address space, they must include
the allocation request that triggered the eviction operation in their decisions.
If the allocation request was ignored, the policy would be unable to enforce
fairness in all situations: For example, any application could easily claim the
entire GPU memory for itself simply by allocating a very large buffer. To mitigate
this issue, GPUswap passes information about all chunks that will be created
from the requested buffer to the eviction policy. If the policy selects chunks from
the requested buffer for eviction, GPUswap subsequently allocates these chunks
directly in system RAM.

5.2.1 Victim Selection

The first step in making an eviction decision is to find a victim application. This
step is mostly responsible for ensuring fairness between applications: The victim
always suffers a performance penalty when some of its data is relocated to system
RAM since system RAM is much slower than GPU memory. Therefore, careful
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selection of victims is required to ensure that the overhead of memory relocation
is distributed fairly between applications. In comparison, the impact of the
subsequent chunk selection step on fairness is limited since that step is restricted
to the victim’s address space and therefore does not influence other applications.

Performance-Based Selection

Different applications often show a different degree of sensitivity to memory
bandwidth and latency: Applications for which memory is the main bottleneck
may suffer large performance penalties even when small amounts of their data
are evicted into slower memory, whereas applications limited by other factors
may show near-optimal performance even if all of their data resides in the slower
memory. To maximize fairness, our first potential policy – which we call the
performance-based policy – thus focuses on the actual overhead induced by its
eviction decisions: The policy’s goal is to keep the slowdown experienced by each
application proportional to the amount of memory consumed by that application.
Since users typically care about the actual performance of their applications, we
assume that this policy would be perceived as fair by most users. In addition, the
policy would likely maximize the system’s overall performance since applications
insensitive to memory performance could give up large amounts of memory, thus
allowing more sensitive applications to keep more of their data in GPU memory.

To ensure that each application’s penalty is proportional to its memory consump-
tion, the performance-based policy performs three steps to selects a victim: First,
the policy measures each application’s current slowdown compared to the applica-
tion executing with all of its data in GPU memory. Second, once each application’s
slowdown is known, the policy calculates each application’s relative performance
penalty by dividing the application’s measured slowdown by the amount of mem-
ory allocated in the application’s address space. Finally, the policy selects the
application with the smallest relative performance penalty as the victim.

One problem of this policy is that there is no correct behavior that reliably prevents
an application’s data from being evicted: Even if an application allocates only a
small amount of memory, that application will initially have a relative performance
penalty of zero since none of its data has been evicted. To make matters worse,
even a single chunk represents a large portion of such an application’s address
space and is therefore likely to cause a large performance penalty if evicted. To
mitigate this issue, the policy can ignore applications for which the total amount
of allocated memory is below a certain threshold, which may depend on the
number of running applications for increased fairness: For three applications
running concurrently, for example, the policy could ignore any application which
has allocated less than one third of the total amount of GPU memory available.

The main problem of the performance-based approach is that application per-
formance – and hence the performance penalty of applications – is difficult to
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measure without knowing the nature of the application: If the policy does not
know what the application is doing, it cannot determine the amount of progress
made by the application per unit of time. A possible solution to this problem
may be to estimate the application’s performance using the GPU’s performance
monitoring counters [27,57]. To that end, the developer first profiles the applica-
tion running in isolation to obtain readings of various performance monitoring
counters as a baseline. The policy can then derive an estimate of the applica-
tion’s current performance by collecting readings of the performance monitoring
counters at runtime and comparing these readings to the profiled values.

The main problem with this type of performance estimation is that the performance
monitoring counters of current GPUs can only collect events for one application at
a time. As a consequence, the policy would have to cycle through all applications
after each eviction decision to obtain an updated value for each application’s cur-
rent slowdown. This cycling in turn leads to three problems: First, cycling through
all applications can take a large amount of time if the number of applications using
the GPU is large. During this time, the policy cannot make sensible eviction deci-
sions since accurate information about the current slowdown is not yet available
for all applications. Second, the policy would have to control which application
is running at any given time to be able to attribute all measurements correctly.
However, this type of control requires scheduling of GPU kernels in software,
which would defeat the entire purpose of GPUswap. Third, cycling through all
applications would yield only a sample of each application’s performance during
a short timeframe, which may not be representative if the application’s execution
consists of multiple phases. For these reasons, we consider a performance-based
policy to be impractical for the time being. However, such a policy may well
become practical on future generations of GPUs if the performance monitoring
counters of these GPUs are able to monitor multiple applications concurrently.

Access-Based Selection

While it is difficult to measure an application’s performance without knowing the
nature of that application, it may be possible to estimate that performance based
on other factors. Our second potential policy, which we call the access-based

policy, takes this approach by assuming that the application’s performance is
proportional to the number of GPU memory accesses performed by the application.
Consequently, this policy attempts to guarantee the same number of GPU memory
accesses per unit of time to each application. To that end, the policy periodically
measures the current number of GPU memory accesses per unit of time for each
application. Measuring the number of memory accesses periodically is necessary
since by the time a victim must be selected, the application that performed the
memory allocation which triggered the policy will be blocked until the allocation
request completes. When a victim must eventually be selected, the policy returns
the application performing the largest number of accesses per time as the victim.



5.2 Policy Ideas 89

Compared to the performance-based policy, the access-based policy is much more
easier to implement on current hardware: While performance estimation using
performance monitoring counters requires complex models and off-line profiling
of applications, the number of memory accesses per time is a clear metric which
can be measured accurately using the GPU’s performance monitoring counters.
On the downside, however, this metric may not be an accurate estimate of the
application’s performance since not all applications are equally sensitive to memory
performance: Some applications are able to overlap even high memory access
latencies with other work and thus do not suffer noticeable slowdowns if memory
performance decreases, while others must stall on memory accesses and thus
experience severe overhead if memory performance degrades [26].

On current GPUs, our access-based policy suffers from the same problems as
the performance-based policy: Since the performance monitoring counters of
current GPUs can only monitor one application at a time, the policy would have
to periodically cycle through all applications to ensure that a recent measurement
is available for each one. This cycling can take a long time if the number of
applications is large, requires software scheduling of GPU kernels and yields only
a sample of the number of memory accesses per time for each application which
may not be representative if the application exhibits phase behavior. Like the
performance-based policy, we therefore consider the access-based policy to be
impractical on current GPUs.

Memory-Based Selection

Since both the overhead caused by evicting data to system RAM and the number
of memory accesses are difficult to distribute fairly on current GPUs, our third
potential policy – called the memory-based policy – instead focuses on the
amount of memory consumed by the applications. Specifically, the memory-based
policy attempts to guarantee the same amount of memory to each application.
Whenever a victim must be selected, the policy performs a single step: The
application owning the largest amount of GPU memory is selected as the victim.
Compared to the two policies described above, the memory-based policy is much
simpler to implement: No profiling of, cooperation from or cycling through
applications is required since the only input required by the policy – the amount
of memory allocated by each application – is readily available for all applications
through GPUswap’s accounting mechanism.

Despite its simplicity, the memory-based policy has several desirable properties.
First, it automatically converges towards a fair state: If the application owning
most memory is always the one to give up memory, each application will own
the same amount of memory eventually. In addition, the applications owning
most GPU memory – which likely caused the memory shortage at hand – are
automatically punished first. Finally, it is easy for applications to behave well
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under this policy: Each application is guaranteed 1/n of the GPU’s total memory
for n running applications. If an application consumes less than this fair share
of memory, that application will never see any of its data evicted. Conversely,
if an application leaves part of its fair share unused, that unused part of the
application’s share will be equally divided among the other applications.

The main disadvantage of the memory-based policy is that application perfor-
mance may not be determined by the amount of GPU memory available: On the
CPU, it has been shown that some applications are highly sensitive to memory
performance, while others are able to tolerate decreased memory performance
without significant performance overhead [26]. If the same is true for GPU appli-
cations as well, some applications may experience larger overhead than others if
the same amount of data is evicted to system RAM. However, the memory-based
policy does not take varying sensitivity to memory performance into account at
all, but instead treats all applications equally. Nonetheless, we assume that this
policy is the only of the three policies described in this section that is practical to
implement on current GPUs.

5.2.2 Chunk Selection

Once a victim has been selected, the eviction policy must select a chunk of memory
from that victim’s address space for eviction to system RAM. The policy’s main
goal in this step is to minimize the performance impact of its decision on the
victim. Depending on the policy, however, the decision made in this step may
also have an impact on fairness: With performance-based victim selection, for
example, the amount of overhead induced by the decision made in this step may
influence future victim selections.

Random Selection

The simplest chunk selection policy is to select a chunk from the victim’s address
space at random. The advantage of this random selection policy is that it can be
applied to any application without prerequisites: Since random selection requires
no input beside the application’s chunk list, no information about or cooperation
from the application are necessary. In addition, this policy does not depend on
features that are not supported by current GPUs, such as reference bits. On
the downside, however, this policy is likely to produce suboptimal results: The
policy does not attempt to select chunks that have little impact on the victim’s
performance. As a result, one can expect not only high overhead in the victim
application but also large variance in the overhead between different runs of the
application, depending on which chunks are selected for eviction in each run.
Nevertheless, random selection can serve as a fallback in case other policies cannot
be applied, for example due to lack of profiling data or hardware support.
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Sampling-Based Selection

While current GPUs lack reference bits, it may still be possible to collect infor-
mation about frequently-accessed memory regions at runtime using the GPU’s
performance monitoring counters. Since these counters are limited to collecting
information about one application at a time, the idea of our sampling-based

selection policy is to use these counters to periodically collect samples of each
application’s memory accesses. To that end, the policy evicts one page from an
application buffer to system RAM, and subsequently runs one of the application
kernels to determine the number of accesses to that page. The policy repeats
these steps for each buffer and each application. Assuming that all pages in a
buffer share the same number of accesses, these measurements can then be used
to derive a priority for each buffer at runtime.

The main advantage of sampling-based selection is that this type of policy does
not require any prior knowledge about applications: All information required for
the policy’s operation can be collected at application runtime. On the downside,
however, this type of policy has two main disadvantages. First, evicting pages to
system RAM is likely to cause overhead in the application being sampled: Even if
only one page is evicted to system RAM, GPU threads accessing that page could be
slowed down considerably, possibly prompting other threads to wait since current
GPUs only offer barrier synchronization. While we do not expect this overhead to
be severe for most applications if only a single page is evicted at a time, the policy
induces this overhead even if no memory pressure is present, thus violating the
main goal of GPUswap described in Section 3.1.

An even more severe problem with this type of policy is that sampling always
introduces inaccuracy. If the number of accesses per page is not uniform within a
buffer, for example, the evicted page may not be a representative sample. While
the accuracy of sampling can be increased by evicting more pages from the buffer
– or even the entire buffer – evicting a larger number of pages also leads to a
larger application overhead. In addition, a single GPU kernel is typically not
representative of the application’s execution. The policy would thus have to
sample each buffer once for each kernel before meaningful eviction decisions can
be made. We therefore expect sampling to take too long to be practical: Most
applications we examined do not repeat each of their kernels once for each of
their buffers, which implies that the policy would have no chance to collect the
necessary information before the application finishes execution.

Reverse Swapping

In contrast to current GPUs, the IOMMUs of current CPUs often include support
for both reference and dirty bits. Specifically, the IOMMU in recent Intel CPUs
can set these bits in the application’s page table during first-level translation [29],



92 Chapter 5: Potential Eviction Policies for GPUs

while AMD’s IOMMUs support these bits during both first- and second-level
translation [3]. While this feature cannot provide information about pages in GPU
memory, it could enable an eviction policy to detect frequently-accessed pages
after these pages have been evicted, thus allowing the policy to detect and reverse
bad decisions. Our reverse swapping policy leverages this feature as follows:
When chunks must be selected for eviction, the policy returns a random set of
chunks from the victim’s address space. Then, the policy examines the reference
bits in the IOMMU’s page tables in regular intervals. In each interval, the policy
records which of the evicted pages have their reference bits set, and subsequently
resets the reference bits of all evicted pages. Finally, whenever one of the victim’s
GPU kernels finishes execution, the policy prompts GPUswap to move chunks
containing frequently-accessed pages back to GPU memory, evicting an equal
number of random chunks in the process. Eventually, if this process is repeated
often enough, only rarely-accessed pages will remain in system RAM, while all
frequently-accessed pages will reside in GPU memory.

Like the sampling-based selection policy, reverse swapping does not require prior
knowledge about the applications using the GPU, and the applications need not
cooperate in any way – in fact, it is not even necessary to gather any information
at all about applications before the reverse swapping policy can make eviction
decisions. In contrast to sampling-based selection, applications are therefore not
delayed when their allocation requests trigger an eviction.

The main problem with this type of policy is that since the policy initially has no
information about which chunks contain frequently-accessed pages, the policy
will have to perform multiple iterations before all frequently-accessed pages reside
in GPU memory. This matter is further complicated by the fact that different GPU
kernels access different pages. Pages that are not accessed at all by one kernel
may thus be evicted to system RAM even though the next kernel to run will access
these pages frequently. While the policy can incorporate information about all
GPU kernels seen so far in its decisions, we assume that the policy must observe
each kernel multiple times before sufficient information is available to decide
which pages should be in GPU memory. Therefore, we expect this type of policy
to take a rather long time to converge, during which frequently-accessed pages in
system RAM may cause significant application overhead. In addition, this type
of policy must frequently move data between GPU memory and system RAM
between iterations, which causes additional overhead.

Priority-Based Chunk Selection

Ideally, our eviction policy should select chunks which are rarely accessed by the
application since these chunks likely have the smallest impact on the application’s
performance. While current GPUs do not allow the policy to collect information
about the number of accesses to a given chunk due to lack of hardware support,
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it is possible to obtain this information ahead of time through profiling, for
example using a profiling mechanism like the one we described in Chapter 4. The
information can then be used to assign a priority to each chunk. The application
can subsequently pass these priorities to GPUswap as an additional parameter to
its memory allocation requests. When a chunk must be selected for eviction, the
priority-based chunk selection policy simply returns the chunk with the lowest
priority from the application’s address space. Similar techniques have been used
in the past, for example in self-paging systems like Nemesis [23].

The main advantage of this type of policy is that it can capture the application’s
memory access patterns even within buffers. Therefore, we expect this policy
to achieve much lower eviction overheads than random selection. In addition,
application performance should also be more consistent across executions than
with random selection: Since each chunk’s priority is static, the same chunks are
chosen for eviction each time the application is executed. However, there are also
a number of downsides to this policy. First, the application must be profiled before
this policy can operate, which can be a time-consuming process. Second, if the
application is profiled using smaller input data than is later used in production,
some chunks seen in production may not exist in the profiling data. For some
applications with regular access patterns, it may be possible to interpolate the
number of accesses to the missing chunks; however, such interpolation is always
less accurate than direct profiling.

The most severe problem with this type of policy, however, is that the number of
memory accesses per chunk may not be a good metric for the chunk’s impact to
the application’s performance: On the CPU, it has been shown that applications
differ in their sensitivity to memory latency [26]: Some applications have been
shown to experience severe overhead if the latency of memory accesses increases,
while others are apparently able to hide this latency and thus experience next
to no overhead. Since GPU kernels are essentially small, independent programs
processing a self-contained task, these kernels may exhibit similar effects: The
same number of accesses to a chunk could cause a different amounts of overhead
in different kernels. On the upside, the policy itself only operates on priorities,
but does not care how these priorities are generated. Therefore, if another metric
turns out to be better suited to assess the performance impact of evicting specific
chunks, this metric can be used instead of the number of memory accesses without
modifications to the policy.

Priority-Based Buffer Selection

A straightforward way to reduce the complexity of priority-based chunk selection
is to assign priorities to buffers instead of chunks. The resulting priority-based

buffer selection policy operates in a similar fashion to priority-based chunk
selection: First, the application is profiled to determine the number of memory
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accesses to each application buffer. Based on the results of the profiling, a priority
is then assigned to each application buffer. The application then passes these
priorities to GPUswap as part of its memory allocation requests. Finally, whenever
a chunk must be selected for eviction, the policy searches the victim’s address
space for the buffer with the lowest priority and selects a random chunk from
that buffer for eviction.

Although priority-based buffer selection is based on the same basic idea as priority-
based chunk selection, it solves two of the main problems of the chunk-based
policy: First, we expect a buffer-based policy to be less sensitive to the input
data used in profiling than a chunk-based policy: Changes in the number of
chunks between profiling and production can simply be ignored since we found
the relative importance of buffers not to change with varying input data. Second,
the profiling data necessary for the operation of a buffer-based policy can be
obtained much faster since only the total number of memory accesses per buffer
is of interest. If the profiling method described in Chapter 4 is used, it is therefore
sufficient to repeat the application’s execution once per buffer rather than once
per chunk. The third problem, however, affects both policies alike: The number
of memory accesses to a buffer may not be a good metric for the buffer’s impact
on the application’s performance. As with priority-based chunk selection, how-
ever, priority-based buffer selection does not depend on a particular method for
generating the priorities. The number of memory accesses can thus be replaced
by a different metric without modifications to the policy.

An additional problem with priority-based buffer selection is that even though
chunks in the same buffer often share a similar number of accesses, that may not be
the case for all applications. In our own profiling experiments, we observed some
applications with major differences in the number of accesses between pages in
the same application buffer. Since these differences cannot be captured by a single
priority for an entire buffer, we expect priority-based buffer selection to produce
larger overhead than priority-based chunk selection for this type of application.
However, our profiling experiments also showed that these applications appear to
be the minority: For most applications we examined, pages in the same buffer
share a similar number of accesses. We therefore expect priority-based buffer
selection to yield a performance similar to that of priority-based chunk selection
for most applications.

5.3 Prototype Policy

To demonstrate the benefits of an eviction policy, we integrated a viable prototype
policy into our existing prototype of GPUswap. Since all policies described above
suffer from serious drawbacks, our main goal in implementing this policy was not
to create a policy that can be used in production environments, but to assess to
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Figure 5.1: Operation of our prototype policy. First, the developer profiles the
application and assigns priorities to the application’s buffers based
on the results of that profiling. Then, when there is insufficient GPU
memory to perform an allocation request, the policy performs three
steps: First, it selects the application owning most GPU memory as the
victim. Second, it selects the lowest-priority buffer from the victim’s
address space. Finally, it selects a random chunk from that buffer and
marks that chunk for eviction. This process continues until the marked
chunks free up enough memory to accommodate the allocation request
that triggered the policy. At that point, all marked chunks are evicted
to system RAM.

what extent an eviction policy can mitigate the slowdown caused by evicting GPU
data to system RAM. Consequently, we chose a policy that is reasonably simple to
implement, yet likely offers a significant benefit compared to random selection:
Our policy is based on memory-based victim selection and priority-based buffer
selection.

5.3.1 Overview

Our prototype policy operates in two steps. In the first, off-line step, the developer
must profile the application’s memory accesses, for example using the profiling
mechanism described in Chapter 4, to determine which GPU memory buffers
the application accesses frequently. Based on the results of that profiling, the
developer then assigns a priority to each of the application’s buffers. Finally, the
developer modifies the application to pass these priorities to GPUswap as part of
its memory allocation requests.

Once a priority has been assigned to each buffer, the second, on-line step of our
policy can use these priorities to select memory for eviction: Whenever the GPU
driver receives a request for GPU memory, but cannot satisfy this request due to
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insufficient resources, our policy first uses memory-based selection as described
in Section 5.2.1 to find a victim application: The application owning most GPU
memory is selected to give up some of its GPU memory. Once the victim has been
selected, our policy uses priority-based buffer selection, described in Section 5.2.2,
to choose a chunk from the victim’s address space for eviction: The policy finds
the lowest-priority buffer from the victim’s address space, selects a random chunk
from that buffer and marks that chunk for eviction to system RAM. The policy
repeats these two steps until all marked chunks combined free up enough memory
to accommodate the outstanding allocation request. Once that is the case, the
policy returns the list of marked chunks to the relocation mechanism, which
subsequently moves the contents of these chunks to system RAM. The entire
operation of our policy is shown in Figure 5.1.

While the main purpose of our policy is to assess the benefit of an eviction policy
in general, our policy can also serve as a placeholder for production environments
for the time being: The policy achieves fairness even in the presence of unmodified
applications since memory-based victim selection is independent of priorities, and
if application source code is available, our priority-based buffer selection scheme
can be applied to any application with only small modifications. On the downside,
however, the profiling required for our policy’s operation is a time-consuming
process. For the time being, there is no alternative to profiling since current
GPUs lack features that enable advanced memory management, such as reference
bits. Once these missing features have been added to GPU designs, however, we
plan to replace our prototype with a policy that does not require modifications to
application source code or off-line profiling.

5.3.2 Priority Assignment

To support our policy in selecting chunks for eviction in a meaningful way, the
developer must assign priorities to application buffers. To assign these priorities,
developers should profile the memory accesses of their applications. This profil-
ing can be achieved, for example, using our profiling mechanism described in
Chapter 4.

A principal difference between the profiles collected in Chapter 4 and the profiling
required for our policy is the required accuracy: Since only a single priority value
per buffer is needed, there is no need to determine the number of accesses to
each individual page in the application’s address space. Therefore, our profiling
mechanism can evict entire application buffers at a time instead of individual
pages. In addition, our prototype policy weighs read and write accesses equally,
which implies that both can be profiled at the same time. Therefore, our profiling
mechanism must only repeat the execution of each GPU kernel once, which speeds
up profiling considerably as shown in Section 4.4.3.
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Figure 5.2: Passing priorities using an interception library. The library replaces
the original allocation function in the GPU’s user space runtime library
with its own implementation. When the application attempts to allo-
cate GPU memory, the interception library reads the intended priority
for the newly allocated buffer from a configuration file and passes this
priority to GPUswap using the appropriate allocation system call. The
entire process is transparent to the application.

Once the total number of memory accesses is known for each buffer, the admin-
istrator can assign a priority to each buffer. Since priorities are simple integers
of arbitrary length, each buffer can be assigned a unique priority, though it is
also possible to assign the same priority to multiple buffers if desired. For our
prototype, we assign priorities in two steps: First, we calculate each buffer’s
average number of accesses per page by dividing the number of accesses to the
buffer by the number of pages in the buffer. Second, we order all buffers by the
number of accesses per page. The buffer with the largest number of accesses per
page then receives the highest possible priority, the buffer with the second largest
number of accesses per page is assigned the second highest priority and so on. If
multiple buffers share the exact same number of accesses per page, we currently
assign different but adjacent priorities to those buffers. Note that there is no need
to coordinate these priorities between applications since all priorities are local to
the respective application.

5.3.3 Passing Priorities to GPUswap

Once a priority has been assigned to each buffer, the application must pass these
priorities to GPUswap as part of its allocation requests. To allow the application
to pass priorities, GPUswap offers an alternate system call for GPU memory
allocation in addition to the GPU driver’s original call. GPUswap’s alternate
memory allocation call implements the same functionality as the driver’s original
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call, but accepts the priority as an additional parameter. Upon invocation of
the alternate call, GPUswap invokes the driver’s original memory allocator and
subsequently stores the passed priority in the allocated buffer’s metadata. Buffers
allocated using the original call are assigned a medium priority by default.

To allow applications to use the new system call, GPUswap extends the GPU’s
user space runtime library with a matching allocation function which accepts
the priority as an additional parameter. Since this function is otherwise identical
to the runtime’s original allocation function, the modifications required in the
applications’ source code to use the new allocation function are generally small:
An additional parameter must be appended to each memory allocation request. If
modifying an application’s source code is infeasible, a more transparent alternative
is to employ an interception library which replaces the GPU runtime’s allocation
function with its own implementation as shown in Figure 5.2. When the inter-
ception library’s allocation function is called, it reads the priority for the buffer
being allocated from a per-application configuration file and passes the value
from that file to GPUswap’s allocation system call. In case no priority is found,
the library falls back to the original allocation call, thus effectively assigning the
default priority to the buffer.

A major challenge when using an interception library is to reliably identify the right
entry in the configuration file: Since the size of each buffer, the allocation order
and any memory addresses involved are not necessarily constant across executions,
it is difficult to determine which buffer the application is trying to allocate with
each call. This problem does not occur when modifying the application’s source
code: The developer knows exactly which buffer is being allocated with each call
and can therefore easily pass the correct priority with each allocation request. If
a more dynamic configuration of priorities is desired, the application could also
pass a unique identifier for each buffer instead of a priority, which would allow
an interception library to reliably identify the correct entry in a configuration file.
While this hybrid approach is also not fully transparent, it allows the developer to
change priorities without recompiling the application.

5.3.4 Selecting Chunks for Eviction

Whenever there is insufficient GPU memory available to satisfy an allocation
request, our policy must select an eviction set of chunks which should be evicted
to system RAM. The policy builds this set in two steps: First, our policy selects
a victim application which must give up some of its memory. Then, the policy
selects a chunk from the victim’s address space and adds that chunk to the eviction
set. The policy repeats these two steps until the eviction set is large enough to
make room for the outstanding request. Note that both steps must include all
chunks from the buffer currently being allocated in their decisions.
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Our policy uses memory-based selection to determine the victim application: The
application with the largest amount of GPU memory allocated in its address space
is always selected as the victim. To distribute the selected chunks fairly across
applications owning similar amounts of memory, our policy ignores chunks already
in the eviction set when selecting the victim, thus effectively treating these chunks
as already evicted. The main advantage of this design is that it automatically
converges against each application owning the same amount of memory, thus
ensuring fairness between applications. In addition, if an application allocates
less than its fair share of memory, the leftover memory is distributed fairly among
the other applications.

Once a victim has been selected, our policy uses the priorities determined in the
off-line step to select a suitable chunk of memory for eviction. To that end, our
policy builds a temporary set of chunks, which we call the decision set. This
decision set consists of all chunks from the victim’s address space sharing the
lowest priority present in that address space. As during victim selection, our
policy ignores all chunks already in the eviction set while building the decision
set, ensuring that the policy continues to the next higher priority if all chunks of
the lowest priority are already in the eviction set. Once the decision set has been
assembled, our policy selects a random chunk from the decision set and adds that
chunk to the eviction set. Note that chunks with the same priority may still have
a different impact on the victim’s performance when evicted; selecting chunks at
random helps to smooth out these differences.

Whenever a chunk has been added to the eviction set, the policy must check
whether a sufficient number of chunks has been selected to satisfy the outstanding
allocation request: If the sum of the amount of free GPU memory and the combined
size of all chunks in the eviction set is larger than the amount of GPU memory
requested, the policy terminates and returns the eviction set to GPUswap’s eviction
mechanism. If not, the policy repeats the entire process, starting with victim
selection. Repeating victim selection is necessary since evicting a chunk may
change the victim of the next eviction if multiple applications own similar amounts
of memory. Note that this design leaves room for optimization – for example, it
would be possible to compute the amount of memory each application must give
up during victim selection and then select an appropriate number of chunks from
each application without repeating victim selection. However, the runtime of our
policy is not a major issue since GPUswap’s eviction operations are dominated by
DMA transfers as shown in Section 6.3.2.

5.3.5 Returning Data to the GPU

Whenever an application frees GPU memory, our policy must select a return set

of evicted chunks that should be returned to the GPU. As when selecting chunks
for eviction, our policy builds the return set in two steps: First, our policy selects a



100 Chapter 5: Potential Eviction Policies for GPUs

winner application which will have one of its chunks returned to the GPU. Then,
the policy selects an evicted chunk from that winner’s address space and adds
that chunk to the return set. The policy repeats these two steps until either the
return set fills all available GPU memory or all evicted chunks have been added
to the return set.

Our policy again employs memory-based selection to determine winner applica-
tions: The application owning the least amount of GPU memory is always selected
as the winner. Conversely to victim selection, our policy adds the size of each
chunk in the return set to the amount of GPU memory allocated by the application
owning that chunk during winner selection, effectively treating chunks in the
return set as if these chunks were already in GPU memory. This scheme ensures
that the available GPU memory is distributed fairly among all applications with
evicted chunks.

Once a winner has been selected, the policy builds a decision set containing the
evicted chunks with the highest priority in the winner’s address space. As when
selecting chunks for eviction, the policy ignores all chunks in the return set while
building the decision set, ensuring that the policy continues with the next lower
priority once all evicted chunks of the highest priority have been added to the
return set. The policy then selects a chunk at random from the decision set and
adds that chunk to the return set. When the policy eventually terminates, it
returns the return set to GPUswap, which transfers the contents of all chunks in
the return set back to GPU memory.

5.3.6 Policy Implementation

To assess the benefit of our policy, we added a prototype implementation of that
policy to GPUswap. For chunk selection, this prototype implements both priority-
based buffer selection and random selection, allowing us to evaluate the benefit
of priorities by comparing the two policies. Victims are always selected based on
the amount of GPU memory allocated in each application’s address space.

Passing Priorities to GPUswap

To allow applications to pass priorities to GPUswap, our prototype extends the
pscnv driver with an alternate memory allocation system call taking a priority for
the allocated buffer as an additional parameter. GPUswap also provides pscnv’s
original memory allocation call to support legacy applications; however, that
call is merely a wrapper around the alternate call using a default priority. To
facilitate applications’ use of the new allocation system call, we also modified the
Gdev CUDA runtime to provide an alternate version of CUDA’s memory allocation
function which is backed by the alternate allocation system call. This function
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takes the priority as an additional parameter, but is otherwise identical to CUDA’s
original allocation function.

When an application calls either of the two allocation system calls, GPUswap
first performs any evictions necessary to make room for the allocation request.
Then, GPUswap uses pscnv’s original memory allocator to allocate the requested
amount of memory minus the combined size of those chunks that were allocated
in system RAM during the eviction. Finally, GPUswap’s accounting mechanism
stores the passed priority – which may be the default priority – in all chunk list
entries created from the allocated buffer. Storing the priority with each chunk
has the advantage that the policy can subsequently operate directly on chunks,
without having to know which chunk originated from which buffer.

To allow for dynamic reconfiguration of priorities, we finally created a separate
wrapper function which fulfills the role of the interception library described in
Section 5.3.3. This wrapper function takes a unique identifier for each buffer
instead of a priority as its additional parameter. The wrapper function then
uses this identifier to read the buffer’s priority from a configuration file and
calls CUDA’s priority-enabled allocation function with that priority, or the default
priority if no appropriate entry is found in the configuration file. All of our
benchmark applications currently use this wrapper function instead of CUDA’s
original allocation functions.

System buffers, such as the stack buffer, present a challenge for this scheme: Since
these buffers are allocated by the GPU runtime library directly through the driver’s
allocation system calls, we cannot inject priorities for these buffers through an
interception library or by modifying the application’s source code. Instead, we
modified Gdev’s user space runtime library to use GPUswap’s new allocation call to
allocate all system buffers. The priorities for these buffers are currently hardcoded
in the runtime library, which may be a problem if different priorities for these
buffers are required for different applications. For our benchmark applications,
however, we found a set of priorities which is suitable for all applications: The
stack buffer is assigned the lowest possible priority, while all other system buffers
receive the highest possible priority.

Chunk Selection

While our prototype supports only memory-based victim selection, it includes two
policies for chunk selection: Priority-based buffer selection and random selection.
Upon loading GPUswap’s kernel module, the administrator can choose which of
the two policies to use via a module parameter. The chosen policy then governs
both eviction and returning data to the GPU for all applications. In the remainder
of this section, we only describe selection of chunks for eviction; however, the
same principles apply when selecting chunks to return to the GPU.
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To avoid frequent recompiling of our benchmark applications, our prototype
provides the priority-enabled memory allocation system call even if random
selection is in use. The passed priority is still stored in GPUswap’s chunk list in
that case. However, if random selection is active, our policy skips generation of
the decision set altogether and instead selects chunks randomly from the victim
application’s GPU chunk list. While storing priorities is thus unnecessary work
when using random selection, the performance impact of storing a single integer
per chunk is negligible.

Our policy must ignore all chunks already in the decision set when selecting a
victim to avoid unfairness when building large decision sets. Since processing
the entire decision set on each victim selection is time-consuming, our prototype
instead updates GPUswap’s metadata immediately after adding a chunk to the
eviction set: After adding a chunk to the set, the policy removes that chunk from
the application’s GPU chunk list and adds the chunk to the application’s system
RAM chunk list. In addition, the policy immediately decrements the amount
of GPU memory allocated by the application. While this approach ensures that
selected chunks are ignored without requiring the eviction set to be examined
frequently, it also causes GPUswap’s metadata to briefly become inconsistent
during the policy’s operation: Selected chunk are effectively treated as already
evicted, even though these chunks still reside in GPU memory until the policy
terminates. Without mitigation, this inconsistency could cause another application
to allocate memory without triggering an eviction if GPUswap’s metadata shows a
sufficient amount of free GPU memory even though some of that free memory is
still occupied by chunks selected for eviction. To prevent this inconsistency from
causing problems in practise, we delay all memory allocation requests arriving
during the policy’s operation until the subsequent evictions are complete.

5.4 Hardware Wishlist

Since the applications we examined showed a high degree of uniformity in their
memory accesses within buffers, we expect a priority-based policy to achieve
good results for most applications. For production environments, however, we
consider our prototype policy to be less than optimal for three reasons: First, our
policy requires time-consuming profiling before it can make effective decisions.
Second, some applications did show a non-uniform access pattern in some of
their buffers, which a single priority per buffer is unable to capture. Third, our
prototype requires the applications’ source code to be modified, which is infeasible
for most commercial software.

For an eviction policy to work well in production, that policy must be able to
make sensible decisions for any application out of the box, without requiring
modifications to the application or off-line profiling. However, such a policy is not
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viable on current GPUs since these GPUs lack several common features related
to memory management. Specifically, the following features would help with
building a viable eviction policy if added to future GPUs.

Reference Bits are present in the page tables of all contemporary CPUs. Most
existing techniques for memory management build on these reference bits in one
way or another. Consequently, similar techniques could be applied to GPUs if
reference bits were available in the GPU’s page table as well: The GPU driver
could read these bits periodically to determine which pages in each application’s
address space are accessed frequently. This periodic process could be either be
implemented on the GPU itself, leveraging the GPU’s large number of cores and
wide memory bus to read many page tables in parallel, or on the CPU, keeping
more GPU time available to applications. In the event of memory pressure, an
eviction policy could then use the information gained from those reference bits to
choose pages for eviction using one of the well-known swapping algorithms [60].
Such an eviction policy would not require any prior knowledge about applications,
and would likely surpass our prototype in terms of performance since it could
account for non-uniform access patterns within application buffers. Since current
GPUs already feature virtual memory and MMUs, we assume that it is possible to
add reference bits to these GPUs.

Page Faults are already supported by the latest generation of Nvidia GPUs: If a
GPU kernel accesses an address for which no entry exists in the application’s page
table, the GPU stops the faulting kernel and raises an interrupt. The GPU driver
then handles the page fault and signals the GPU to resume the faulting kernel. At
the time of this writing, however, details on how to implement page fault handling
in the GPU driver are not publicly known since no appropriate documentation is
available. Therefore, page faults are only supported by Nvidia’s proprietary driver,
but not by any of the open-source GPU drivers currently available. Nevertheless,
page fault support could be useful to GPUswap if documentation was released in
the future.

Currently, GPU page faults are mainly used in the context of Nvidia’s unified
memory to synchronize data between CPU and GPU in a manner similar to the
demand paging used in current operating systems [49]. Since GPU page faults are
handled by the GPU driver, the latency of GPU page faults is typically higher than
that of CPU page faults [59]. Unless GPU data is accessed very frequently, the
overhead of moving accessed pages to the GPU through page faults is thus often
larger than that of accessing evicted data directly over the PCIe bus1. Therefore, we
consider GPU page faults in their current form to be inviable for eviction purposes
since the explicit goal of our eviction policy is to keep frequently-accessed pages
in GPU memory. Besides demand paging, however, page faults can also be used

1 Even CUDA applications require careful profiling and tuning to actually benefit from page fault
support [55].
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to emulate reference bits by intentionally unmapping pages and subsequently
counting the number of page faults to each page [12]. While this approach leads
to a high number of page faults, it could allow us to build a fully transparent
eviction policy even if reference bits are not available by periodically sampling
the number of accesses to each page.

Preemption is also supported by the latest generation of Nvidia GPUs: The
GPU driver can stop running kernels and seamlessly resume their execution later
on. This feature is a prerequisite for page faults since a faulting kernel must be
stopped immediately and cannot continue its execution until the page fault is
resolved. Like page faults, however, this feature is not publicly documented and
therefore inviable to use at the time of this writing.

If appropriate documentation were available, we could use preemption to reduce
the memory allocation latency in the presence of memory pressure: Currently,
GPUswap must drain the command submission channels of each application
before evicting chunks from the application’s address space. With preemption,
this draining would no longer be necessary: GPUswap could instead stop all
running kernels in the application’s GPU address space, evict all selected chunks,
and subsequently resume all stopped kernels.

Per-Application Performance Monitoring Counters are not supported by any
current GPU. Instead, the performance monitoring counters of these GPUs can
only count events from one application at a time, which makes monitoring the
interaction of multiple applications a cumbersome process since events must be
counted separately for each application. If instead there was a set of performance
monitoring counters for each application, it would be possible to measure the
performance of multiple applications simultaneously in real time. This feature
would enable us to build a performance-based policy as described in Section 5.2.1:
Determining both each application’s baseline performance and its slowdown after
evicting chunks could be done in reasonable time if all applications could be
measured concurrently. In addition, the policy could also capture interactions
between applications after an eviction, such as one application running faster
if another application is slowed down as a result of an eviction. Since such
performance-based policies are not widely used, this feature opens up far more
interesting research opportunities than the other features described in this section;
however, we also expect this feature to be the most difficult to integrate, and
therefore consider it unlikely to happen in the foreseeable future.



Chapter 6

Performance Evaluation of GPU
Memory Extension

GPUswap fulfills the functional goals set in the previous chapters by design: Our
accounting and relocation mechanisms operate transparently and are compatible
with any type of application, and our eviction policy supports different applications
with minimal modifications and achieves fairness even for unmodified legacy
applications. In addition, however, it was our goal to minimize the overhead
experienced by applications. Since low overhead is a non-functional goal, its
fulfillment must be verified through experiments. GPUswap’s overhead consists
of three main components: i) The overhead of using system RAM in place of
GPU memory after eviction, ii) the allocation latency induced by our eviction
mechanism if insufficient GPU memory is available, and iii) the latency of our
accounting mechanism, which induces latency even if sufficient GPU memory
is available. In addition to quantifying GPUswap’s overhead, our experiments
also demonstrate that GPUswap can keep applications running even in extreme
low-memory conditions.

6.1 Experimental Setup

In the experiments presented in this chapter, we used the same setup as for
the profiling experiments presented in Section 4.4. The test system used in
our experiments consists of a Core i7-4770 CPU clocked at 3.4 GHz, 16 GiB of
RAM and an Nvidia GeForce GTX 480 GPU. In all our experiments, both CPU
and GPU were locked to the highest available clock frequency. Our machine
ran Ubuntu 12.04 and Linux version 3.5.7. Besides the pscnv GPU driver, into
which our prototype implementation is integrated, we used Gdev’s user space
library and CUDA runtime, both modified to pass priorities to our eviction policy.
Our prototype includes both the random selection and the priority-based buffer
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selection policies; the priorities used by the latter were generated as described in
Section 5.3.2. The software stack used for the experiments in this chapter did not
include any of the profiling-specific modifications described in Chapter 4.

To study the behavior of GPUswap with varying amounts of available GPU memory,
we added a memory limiting mechanism to pscnv. Upon loading pscnv’s kernel
module, this mechanism allows the user to pass a memory threshold to pscnv
as a module parameter. Pscnv’s memory allocator then ignores all physical GPU
memory above that threshold.

In all experiments presented in this chapter, we used the same eight applications
from the Rodinia Benchmark Suite [8] as in our experiments in Section 4.4. We
chose these applications because they had been previously modified to support the
CUDA driver API [37], which is the only API supported by Gdev’s CUDA runtime.
In each experiment, we ran two concurrent instances of each application to ensure
that were multiple processes competing for GPU memory. Using two instances of
the same application has the advantage of both instances running for a similar
amount of time – if two applications with different runtimes were used instead,
one of the applications would run alone on the GPU for part of its runtime, which
would distort any measurements of the overhead experienced by the application.
In addition, we extended the runtime of some of our benchmark applications since
the original runtimes of some applications were short enough for one instance
to finish execution before the second instance was fully started. Specifically, we
added a loop around the main computation of those applications that do not
naturally execute multiple iterations. This loop repeats the application’s GPU
kernels, DMA transfers and any CPU computation performed by the application –
but not its memory allocations – 100 times. For applications which do execute a
number of iterations, we set the iteration count high enough to ensure that the
application runs for several seconds. Finally, to obtain runtimes with different sets
of evicted chunks, we repeated the entire execution of each application ten times,
simultaneously starting both application instances in each repetition. Unless
stated otherwise, the numbers reported are the average of these ten runs, and
error bars denote the standard deviation over all ten runs.

Since our prototype only supports a single chunk size for the entire system,
we chose to conduct all experiments with a single chunk size. Specifically, we
configured GPUswap’s chunk size to 4 MiB for all experiments, which optimizes
the eviction latency in most cases as shown in Section 6.4. While this chunk
size is suboptimal for some applications, using the optimal chunk size in each
experiment would only improve the results of GPUswap further.

For comparison, we repeated some of our measurements using the Gdev kernel
module [36]. Compiling Gdev as kernel module moves the entire code base
of Gdev’s user space library into the kernel, while the user space library itself
becomes a stub translating Gdev’s API calls into system calls. The only significant
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difference between the kernel module and the user space library is that the former
optionally includes Gdev’s scheduler and swapping mechanism.

By default, Gdev’s scheduler allows applications to have multiple GPU kernels
queued in their command submission channels at the same time. While this
setting reduces Gdev’s scheduling overhead, it can also lead to Gdev’s swapping
mechanism evicting buffers from an application with kernels still awaiting execu-
tion. In our experiments, we therefore configured Gdev to allow only one GPU
kernel in the GPU’s command submission channels at any given time.

While Gdev claims to support pscnv as the underlying driver even when compiled
as a kernel module, we were unable to create a working setup with Gdev’s
kernel module and the pscnv driver. Therefore, we instead run Gdev on top
of the Nouveau GPU driver [65]. We fixed numerous bugs in Gdev’s original
implementation, but made no functional modifications to Gdev’s original scheduler
or swapping mechanism. To be able to examine Gdev’s behavior with different
amounts of available GPU memory, we also added the same memory limiting
mechanism to Gdev that we previously added to pscnv.

6.2 Application Runtime

Arguably the most important metric for the performance of GPUswap is the runtime
overhead induced in applications. To quantify this overhead, we measured the
runtime of each application’s computation phase, which includes all GPU kernels,
DMA operations and CPU computation launched by the application. In this series
of experiments, we excluded the time taken by the application’s memory allocation
requests; GPUswap’s overhead during memory allocation requests is evaluated
separately in the next section.

Figures 6.1 and 6.2 show the total runtime of all repetitions of each application’s
computation and I/O with different amounts of GPU memory available. We
measured these runtimes for the random selection and the priority-based chunk
selection policies of GPUswap as well as for Gdev. For comparison, we ran each
application another 100 times under the random selection policy, recording the
best runtime we encountered during these 100 runs. This best runtime can serve
as an approximation of the best possible result that any policy could obtain since
given enough runs, the random selection policy will eventually select the optimal
set of chunks for each application.

Scheduling Overhead

One of the main goals of GPUswap is not to induce any overhead if sufficient
GPU memory is available, which we expect to be the common case in produc-
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Figure 6.1: Runtime of various applications under GPUswap and Gdev. The times
in this figure are the total runtime of all repetitions of the application’s
computation and I/O. “Random” shows the runtime of each application
using GPUswap’s random selection policy, while “prio” shows the
same runtime under the priority-based chunk selection policy. “Gdev”
shows the runtime under Gdev’s original scheduler and swapping
mechanism. For comparison, “best random” shows the best runtime
we encountered during 100 runs of the application under our random
chunk selection policy, which serves as an approximation of the best
runtime obtainable by any policy.



6.2 Application Runtime 109

 0

 20

 40

 60

 80

 0  50  100  150  200

R
u

n
ti

m
e
 (

s)

VRAM (MiB)

(a) lud

 0

 10

 20

 30

 40

 50

 60

 0  100  200  300  400  500  600  700

R
u

n
ti

m
e
 (

s)

VRAM (MiB)

(b) nn

 0

 50

 100

 150

 200

 250

 300

 0  50  100  150  200  250

R
u

n
ti

m
e
 (

s)

VRAM (MiB)

(c) srad1

 0

 2

 4

 6

 8

 10

 0  100  200  300  400  500

Gdev evicts
entire buffers

at once

GPUswap
evicts rarely

accessed
data first

R
u

n
ti

m
e
 (

s)

VRAM (MiB)

(d) srad2

random prio gdev best random

Figure 6.2: Runtime of various applications under GPUswap and Gdev. The times
in this figure are the total runtime of all repetitions of the application’s
computation and I/O. “Random” shows the runtime of each application
using GPUswap’s random selection policy, while “prio” shows the
same runtime under the priority-based chunk selection policy. “Gdev”
shows the runtime under Gdev’s original scheduler and swapping
mechanism. For comparison, “Best Random” shows the best runtime
we encountered during 100 runs of the application under our random
chunk selection policy, which serves as an approximation of the best
runtime obtainable by any policy.
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tion systems. This condition corresponds to the right-hand side of the plots in
Figures 6.1 and 6.2. The runtime of all applications is constant in that region
since no evictions take place. Compared to GPUswap, however, Gdev causes a
slowdown between 4.6 % (nn) and 95 % (backprop) in this region. The cause of
this result is Gdev’s software scheduling of GPU kernels, which is active regardless
of the amount of GPU memory available: When we disabled Gdev’s scheduler
at compile time – which completely removes the scheduler from Gdev’s code
base, but also disables Gdev’s swapping mechanism – Gdev did not exhibit any
slowdown compared to pscnv. Note that Gdev’s scheduling overhead is inflated
by the settings used in our experiments: We allowed Gdev to keep only one GPU
kernel in the GPU’s command submission channels at any time since any other
setting would be incompatible with Gdev’s swapping mechanism. However, even
when we allowed Gdev to keep multiple kernels in flight concurrently, we still
measured scheduling overheads of up to 17 %.

Eviction Overhead

When GPU memory becomes scarce, both Gdev and GPUswap must evict data
from the GPU to system RAM. Since these evictions unavoidably cause applica-
tion overhead, the runtime of all applications eventually starts to increase as the
amount of available GPU memory is reduced. However, the runtime of all applica-
tions increases much more steeply under Gdev than it does under GPUswap even
when using the random selection policy. This result indicates that Gdev’s strategy
of copying data to the GPU before launching GPU kernels is inefficient since it
causes Gdev to frequently copy large amounts of data – which may not even be
needed by the next kernel to run – between CPU and GPU. In contrast, GPUswap
causes only data that is actually accessed by the application to be transferred over
the PCIe bus. Consequently, the runtime of all applications rises less steeply with
GPUswap, regardless of the policy in use.

While GPUswap causes the applications’ runtimes to increase linearly as the
amount of available GPU memory decreases, the increase in runtime caused by
Gdev occurs in steps, which can be seen most clearly for srad2 in Figure 6.2(d).
This stepping is caused by the fact that Gdev can only evict entire buffers: Once
Gdev detects a shortage of GPU memory, it evicts the contents of an entire ap-
plication buffer, even if the amount of missing GPU memory is smaller than the
buffer’s size. Since the buffer’s contents are then copied between GPU memory
and system RAM on each kernel launch, this eviction causes a steep rise in the
application’s runtime. Subsequently, Gdev does not need to evict more data until
the entire memory freed by evicting the first buffer has been allocated for other
buffers. Once that is the case, however, Gdev must evict the contents of a second
buffer, causing another steep increase in runtime.
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From the figures, it can also be seen that GPUswap can apparently tolerate lower
amounts of available GPU memory than Gdev without evicting data: For all
applications, Gdev causes the runtime of all applications to start increasing with a
larger amount of available GPU memory than GPUswap. This result is an artifact
of our experimental setup: Both Gdev and the underlying GPU driver allocate
some GPU memory internally, which is subsequently unavailable to applications.
However, Nouveau and the Gdev kernel module appear to allocate a larger amount
of memory than pscnv and the Gdev library, thus leaving less GPU memory to
applications and causing Gdev to start swapping earlier than GPUswap. We do
not consider this result to be our contribution since GPUswap would likely suffer
from the same problem if it were integrated into Nouveau instead of pscnv.

Low Memory Conditions

Even if large overheads due to eviction of data to system RAM are unavoidable,
keeping applications running slowly is preferable to not running them at all. In
Figures 6.1 and 6.2, however, it can be seen that Gdev is unable to execute any
applications if the amount of available GPU memory falls below a certain threshold.
The cause of this result is that Gdev requires all data in the address space of an
application to be in GPU memory before launching one of the application’s kernels.
By design, Gdev is therefore unable to launch any GPU kernels if the amount of
available GPU memory is insufficient to hold all data of at least one application.
In contrast, GPUswap does not strictly require any data to be in GPU memory
since evicted data remains accessible to the application at any time. Consequently,
GPUswap was able to execute all applications with as little as 20 MiB of available
GPU memory.

Since we ran two instances of the same application – both of which consume the
same amount of memory – Gdev should be able to keep applications running with
up to half the amount of GPU memory at which swapping first became necessary.
In the figures, however, it can be seen that Gdev was often unable to execute
applications with more than half of the amount of GPU memory where swapping
first occurred still available. This result is caused by a flaw in Gdev’s swapping
algorithm: If one of the applications attempts to allocate a small buffer for
which insufficient GPU memory is available, Gdev may select a larger buffer from
another application as the allocated buffer’s sharing partner. If the first application
subsequently allocates a larger buffer, Gdev may be unable to find a sufficiently
large buffer to share with since the large buffer in the second application’s address
space is already shared. Even if this flaw was corrected, however, Gdev would still
require larger amounts of available GPU memory than GPUswap since in contrast
to GPUswap, Gdev requires the working set of at least one running application to
fit in GPU memory.
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Our prototype does not currently support amounts of GPU memory smaller than
20 MiB since it keeps system data structures, such as command submission chan-
nels, in GPU memory. In principle, however, it is possible to allocate some of
these data structures in system RAM as well. Therefore, GPUswap will be able to
run applications even with even lower amounts of GPU memory available once
support for these system data structures is added to our prototype.

The Benefit of Policy

While our experiments have shown that GPUswap significantly outperforms Gdev
even when using our random selection policy, that policy still induces considerable
overhead as soon as any data is evicted from the GPU. In comparison, our priority-
based buffer selection policy reduces the eviction overhead significantly: For
most applications, the average runtime under the priority-based policy was not
only consistently lower than under the random selection policy, but generally
came close to or even outperformed the best runtime seen in 100 runs of random
selection. For all applications except heartwall and srad1, the priority-based policy
was even able to evict around 100 MiB of data without causing any slowdown at
all: In all our experiments, our priority-based policy evicted the stack buffer first,
which has only a negligible impact on the application’s performance.

Once the stack buffer had been fully evicted, application runtimes did increase for
the priority-based policy as well. However, this increase tended to be less steep
initially than with random selection, only growing steeper towards the left of the
figures as the policy was eventually forced to evict chunks with higher priorities.
Finally, with only small amounts of available GPU memory – corresponding to
the far left of the figures – the runtimes under the two policies became nearly
indistinguishable. At that point, almost all application data resides in system
RAM, leaving neither policy with much choice about which chunks to evict.

Throughout our experiments, the applications’ runtimes under the priority-based
policy showed much smaller standard deviations than under the random selection
policy. Since our priority-based policy selects chunks from the decision set – all of
which share the same priority – at random, these small standard deviations indicate
that which chunks are chosen for eviction has little impact on the application’s
performance as long as the selected chunks share a similar number of accesses.

Overall, these results show that an eviction policy can significantly reduce the
overhead associated with evicting GPU data to system RAM. However, some
applications – such as heartwall and bfs – did show large standard deviations
under the priority-based policy as well when low amounts of GPU memory were
available. In such low-memory situations, the best runtime observed with random
selection was also lower than the average runtime under our priority-based
policy for some applications. These results indicate that our priority-based buffer
selection policy may still leave room for improvement in some cases.



6.2 Application Runtime 113

Outliers

While the results of most of our benchmark applications were remarkably con-
sistent, our measurements for heartwall and nn stand out. For heartwall, the
priority-based policy appears to have no effect on the application’s runtime. The
reason for this result is that heartwall is heavily DMA-bound, spending only a
small fraction of its total runtime on computation. Since we currently assign
priorities only based on the number of memory accesses during computation,
the impact of our policy on heartwall’s runtime is therefore limited. However,
our policy did not increase the application’s runtime either compared to random
selection, and GPUswap significantly outperforms Gdev regardless of the policy
in use.

Our results for nn are more complex to interpret. As for most other applications,
nn’s runtime initially remains constant, indicating that the stack buffer is a good
candidate for eviction for this application. Once the stack buffer is fully evicted,
however, the application’s runtime starts to increase more steeply than with
random selection, causing random selection to eventually outperform the priority-
based policy. With less than 180 MiB of GPU memory available, the runtime then
starts to increase less steeply. These results suggest that nn’s buffers are evicted in
the wrong order: The first buffer to be evicted after the stack is apparently more
important to the application’s performance, thus causing a steeper increase in
runtime than the last buffer to be evicted.

To understand this result, we re-examind nn’s memory access profile shown in
Figure 4.4(d). From that profile, it can be seen that nn allocates only two buffers:
An input buffer which is only read, and an output buffer which is only written.
The number of accesses per page is almost identical for these two buffers, except
for a single page at the end of the input buffer which is not filled to capacity and
therefore receives a lower number of accesses. Consequently, the input buffer was
assigned a lower priority than the output buffer in our experiments and was thus
evicted first. Since the number of accesses per page is almost identical for both
buffers, this decision should have only a negligible impact on the application’s
performance; however, the results in Figure 6.2(b) appear as if evicting the input
buffer has a much larger impact on the application’s performance than evicting
the output buffer. At first glance, this result suggests that read requests to system
RAM have a larger impact on application performance than write requests.

To test whether read requests really have a larger impact on application perfor-
mance than write requests, we repeated the previous experiment with the priorities
of the input and output buffers manually exchanged. The results, depicted in
Figure 6.3, show that with this change, the priority-based policy outperforms ran-
dom selection in all cases. However, the application’s runtime now increases more
steeply during the eviction of the output buffer, though the difference between
the two buffers is not as pronounced as in the previous experiment. We therefore
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Figure 6.3: Runtime of nn with manually adjusted priorities. “Original” shows
the results of our previous experiment shown in Figure 6.2(b). The
steep increase in runtime between 200 and 500 MiB corresponds to
the eviction of the input buffer, while the moderate increase below
200 MiB is caused by the eviction of the output buffer. “Adjusted”
shows the runtime with the priorities of nn’s input and output buffers
manually exchanged – the output buffer is thus evicted first, caus-
ing the application’s runtime to rise more steeply between 500 and
350 MiB than below 350 MiB. For comparison, “random” shows the
application’s runtime under the random selection policy.

conclude that there must be additional factors other than the type of access influ-
encing the performance impact of each memory access. In any case, our results
highlight that the number of memory accesses to a buffer may not accurately
reflect the impact of the buffer’s eviction on the application’s performance.

6.3 Latency

In addition to the runtime overhead discussed in Section 6.2, GPUswap can in-
duce delays in the application’s execution on memory allocation requests: Our
accounting mechanism must divide application buffers into chunks upon alloca-
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tion, applications requesting memory may have to wait for an eviction to complete
before their allocation requests are fulfilled, and other applications may have
their GPU access suspended during an eviction if these applications are chosen
as victims. While we expect allocation requests to be much less frequent than
kernel launches, long delays could nonetheless be a problem for applications with
real-time requirements. To quantify GPUswap’s latency, we conducted experi-
ments using the same eight benchmark applications as in the last section. In all
experiments presented in this section, we limited the amount of available GPU
memory to 100 MiB since eviction occurs in all applications at that amount.

6.3.1 Allocation Latency

Since GPUswap divides all buffers into chunks during allocation, GPUswap could
potentially increase the latency of memory allocations compared to the unmodified
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pscnv driver. To quantify the latency induced by GPUswap, we measured the
latency of memory allocation if no eviction takes place. To that end, we created a
microbenchmark which measures the time needed to allocate buffers of different
sizes. At each size, this benchmark performs 10000 allocations, freeing the
allocated buffer immediately after allocation to avoid running out of GPU memory.
The benchmark measures the total time taken for all 10000 allocation/free cycles
using the CPU’s timestamp counter.

Figure 6.4 shows the average time per allocation/free cycle for GPUswap, Gdev and
the unmodified pscnv driver. The results show that GPUswap actually outperforms
the unmodified pscnv driver for allocations larger than 128 KiB. This result is
counterintuitive since GPUswap performs additional work during allocations
to divide buffers into chunks and should therefore take more time to allocate
memory than pscnv. However, we made extensive modifications to pscnv and
fixed numerous bugs while integrating GPUswap. Therefore, it is possible that
we unknowingly fixed a performance bottleneck in the original implementation
of pscnv during GPUswap’s development. In any case, our results show that
GPUswap’s accounting mechanism does not lead to any significant performance
degradation during memory allocation.

In addition to pscnv, GPUswap also outperformed Gdev for allocations smaller
than 8 MiB. Between 4 and 8 MiB, however, Gdev’s allocation latency drops
significantly, causing Gdev to outperform both GPUswap and the unmodified
pscnv driver from that point on. This result indicates that the memory allocator
of the Nouveau driver, which the Gdev kernel module is built on, is more efficient
than pscnv’s for large allocation sizes.

Our results show that the allocation latency of all three drivers drops between 4
and 8 MiB. This drop is caused by an optimization for DMA transfers implemented
in both the Gdev kernel module and the Gdev user space library: For small
transfers, Gdev executes a copy loop on the CPU instead of submitting a DMA
operation to the GPU. To speed up this copy loop, Gdev proactively maps all
buffers of 4 MiB or less into the application’s CPU address space at allocation
time. Since setting up this mapping takes time, however, this optimization also
increases the latency of allocations smaller than 4 MiB for all drivers.

6.3.2 Eviction Latency

If there is insufficient GPU memory available to service an allocation request,
GPUswap must evict data from GPU memory to system RAM, which adds additional
latency to the allocation request. To quantify this latency, we used the CPU’s
time stamp counter to measure the time spent in GPUswap during evictions for
both allocating and victim applications. For applications allocating memory, we
measured the runtime of the policy in use and the runtime of GPUswap’s eviction
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Figure 6.5: Average latency of eviction operations without contention from the
allocating application’s perspective. “Policy” shows the runtime of
the respective eviction policy. “Dma setup” gives the time spent on
setting up DMA transfers – such allocating space for evicted chunk in
system RAM and mapping those chunks into the driver’s address space
– while “Dma” shows the time spent on the DMA transfers themselves.
“Other” is the time spent in other parts of our eviction mechanism, such
as waiting for command submission channels to drain or allocating
chunks directly in system RAM.
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Figure 6.6: Latency of eviction operations without contention from a victim ap-
plication’s perspective. “Drain” shows the time needed to drain each
application’s command submission channels prior to eviction, while
“pause” shows the time the application was unable to run kernels on
the GPU due to the ongoing eviction.
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mechanism itself; the latter includes waiting for victim applications’ command
submission channels to drain as well as the DMA transfers needed to relocate
the chunks selected by the eviction policy. For victim applications, we measured
the time needed to drain each application’s command submission channels and
the time during which the application’s GPU access was suspended due to chunk
transfers taking place. Note that draining the command submission channels
does not constitute overhead from the victim application’s point of view since the
GPU still performs useful work on the victim’s behalf during the draining phase.
We did not perform any measurements for Gdev in this experiment: Since Gdev
does not evict any data from the GPU during allocation requests, a comparison
between Gdev and GPUswap would be meaningless.

In a first experiment, we quantified the latency of eviction in the absence of
contention of any resources other than GPU memory. To that end, we created a
dummy application allocating 80 MiB of memory – thus leaving 20 MiB for the
benchmark application – which ensures that data from both the dummy and the
benchmark application is evicted since the dummy application owns more than
half of the available GPU memory. Apart from allocating memory, our dummy
application does nothing else until the benchmark application terminates. We then
ran each of our benchmark applications concurrently with our dummy application
under both the random selection and the priority-based buffer selection policies,
repeating each application’s execution 100 times under each policy. Since our
dummy application does not compete for PCIe bandwidth or any of the GPU’s
engines, the latency measured in this experiment constitutes a lower bound on
the eviction latency in any scenario.

Figure 6.5 shows the results from an allocating application’s perspective, while
Figure 6.6 shows the results from the perspective of a victim application. As can be
seen, the delay induced by GPUswap was typically below 60 ms for both allocating
and victim applications, indicating that GPUswap can achieve acceptable latencies.
The results also show that the latency measured in this experiment was heavily
dominated by DMA transfers. However, our prototype leaves some potential for
DMA latency optimization: The time spent on setting up DMA transfers – which
could potentially be overlapped with other transfers if our prototype supported
fully asynchronous DMA – accounts for about 14 % of the total latency. Since
our dummy application never submits any commands to the GPU and all of our
benchmark applications perform their allocations before launching the first kernel,
no draining of command submission channels takes place. Finally, the runtime of
both policies was negligible for all applications except nn. For nn, the ratio of policy
runtime to eviction mechanism runtime is larger than for the other applications
since nn causes larger amounts of data to be evicted at once than any other
application. As a result, our policy must select a large number of chunks during
the evictions triggered by nn, increasing the policy’s runtime compared to other
applications. Furthermore, most of the allocations performed by nn are larger
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than the amount of GPU memory available in this experiment. As a consequence,
GPUswap must always allocate some chunks of the newly allocated buffer directly
in system RAM, which shortens the runtime of our eviction mechanism compared
to other applications since no DMA is required to relocate those chunks.

Throughout our measurements, we observed a large variance in the latency of the
allocation requests, indicated by the large error bars in the figures. Three factors
contribute to this latency: First, the application may allocate buffers of different
sizes, which can lead to differences in latency between allocation requests since
GPUswap may have to evict more data for larger buffers. Second, however, the
amount of data that must be evicted does not only depend on the size of the
allocated buffer, but also on the amount of available GPU memory: If some GPU
memory is still available, the amount of data that must be evicted may be smaller
than the requested allocation. As a consequence, GPUswap may induce different
latencies in allocations of the same size. Third, the eviction policy may select
chunks from the newly allocated buffer for eviction, which are then allocated
directly in system RAM without the need for a DMA transfer. The total latency
of the allocation request thus depends on the number of chunks from the newly
allocated buffer that are chosen for eviction.

In contrast to our dummy application, applications in a production system do
launch GPU kernels which compete with other applications for the GPU’s engines
or – if some of the application’s data has been evicted – PCIe bandwidth. To study
GPUswap’s behavior in presence of such competition, we repeated the previous
experiment with a second instance of each application replacing our dummy
application. This setup replicates the one used in Section 6.2.

The results of this second experiment are shown in Figure 6.7 from an allocating
application’s perspective and Figure 6.8 from the perspective of a victim applica-
tion. As can be seen, the latency experienced by most of the applications when
allocating memory is increased under contention, but generally remains below
100 ms. While latencies of 100 ms can be problematic for real-time applications,
applications are free to choose when to perform their memory allocations and
can therefore allocate memory at times when latency is acceptable.

As in the previous experiment, the latency experienced by allocating applications
was dominated by the runtime of the eviction mechanism, while the runtime
of both policys was negligible. We therefore conclude that the runtime of the
eviction policy is generally not an issue.

The latency experienced by victim applications is potentially more problematic
since victim applications have no control over when their GPU access is suspended.
However, the latency seen by victim applications was lower than that experienced
by allocating applications: For most applications, the latency was below 60 ms,
which we consider unproblematic since human observers typically perceive re-
sponse times of less than 100 ms as instantaneous [45]. The main exception
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Figure 6.7: Average latency of eviction operations in the presence of contention
from the allocating application’s perspective. “Policy” shows the run-
time of the respective eviction policy. “Dma setup” gives the time
spent on setting up DMA transfers – such allocating space for evicted
chunk in system RAM and mapping those chunks into the driver’s ad-
dress space – while “Dma” shows the time spent on the DMA transfers
themselves. “Other” is the time spent in other parts of our eviction
mechanism, such as waiting for command submission channels to
drain or allocating chunks directly in system RAM.
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Figure 6.8: Average latency of eviction operations in the presence of contention
from a victim application’s perspective. “Drain” shows the time needed
to drain each application’s command submission channels prior to
eviction, while “pause” shows the time the application was unable to
run kernels on the GPU due to the ongoing eviction.
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to this result was nn which causes particularly large amounts of memory to be
evicted at once. Note that the time needed to drain the application’s command
submission channels does not constitute latency for victim applications since the
GPU still performs useful work on behalf of the victim while the application’s
channels are being drained.

Since the command submission channels of victim applications are suspended
only while chunks are being evicted from the application’s address space, the
latency experienced by victim applications consists almost exclusively of DMA.
Therefore, we can imagine two potential ways to further reduce this latency:
First, implementing support for fully asynchronous DMA would overlap some
of the time spent on setting up DMA transfers – which accounts for 13 % of the
total latency in this experiment – with the transfer of other chunks. Second,
porting GPUswap to a newer GPU supporting PCIe 3.0 would speed up the DMA
transfers themselves since PCIe 3.0 provides a higher bandwidth than the PCIe
2.0 interfaced used in our experiments.

Another notable difference to the previous experiment is an even larger variance
in allocation latency. In addition to the three factors influencing latency described
above, two more factors were present in this experiment: First, allocating ap-
plications may have to wait for the command submission channels of a victim
application to drain. This draining can not only take longer than the actual evic-
tion, but can also take varying amounts of time depending on the number of
commands queued in the victim’s command submission channels. This effect is
most clearly visible for hotspot, which tends to build particularly long queues of
kernels in its command submission channel. Second, since we ran two concurrent
instances of each application in each repetition, it is possible for the two instances
to compete for PCIe bandwidth: One instance may still be allocating memory
while the second instance has already finished its allocations and launched its first
GPU kernel, which may access evicted data over the PCIe bus. Our measurements
have shown that the duration of individual chunk transfers can increase by up to
a factor of 10 in that situation. Since this problem does not affected all transfers
equally, it causes additional variance in the latency observed by applications. This
second problem particularly affects bfs, nn and srad2.

6.4 Chunk Size

GPUswap operates on larger chunks instead of individual pages to reduce the
processing overhead of eviction operations. However, the optimal size of these
chunks is not intuitively clear. While our prototype allows the user to configure
the size of these chunks through a module parameter, GPUswap must provide a
default chunk size in case that parameter is not explicitly set. Ideally, this default
size should yield acceptable results for all applications.
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Figure 6.9: Runtime of various applications for different chunk sizes under the
priority-based buffer selection policy with 100 MiB of GPU memory
available. At each chunk size, we repeated each application’s execution
ten times; the numbers reported are the average of these ten runs,
while the error bars indicate the standard deviation.

To determine the default chunk size, we measured the runtime as well as the
allocation latency of our benchmark applications for different chunk sizes with
the amount of available GPU memory limited to 100 MiB. As in the previous
experiments, we repeated each application’s execution ten times at each chunk
size, running two concurrent application instances in each repetition.

Figure 6.9 shows the applications’ runtimes for different chunk sizes ranging from
128 KiB – which corresponds to one large page and is currently the smallest chunk
size supported by our prototype – to 128 MiB. The results show that the chunk
size has little impact on the runtime of most applications, with the exception of bfs
whose runtime increases at large chunk sizes, and heartwall for which large chunk
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Figure 6.10: Average eviction latency experienced by various applications at dif-
ferent chunk sizes under the priority-based buffer selection policy
with 100 MiB of GPU memory available. At each chunk size, we re-
peated each application’s execution 100 times; the numbers reported
are the average of these runs.

sizes cause the runtime to decrease. For bfs, the increase in runtime is caused by
the fact that GPUswap may leave up to one chunk of GPU memory unused if a
small allocation request triggers the eviction of a larger chunk. As a consequence,
the amount of GPU memory available to the application is decreased at large
chunk sizes, resulting in runtime overhead higher than necessary. For heartwall,
the decrease in runtime is caused by the fact that GPUswap permits the amount of
GPU memory allocated to each application instance to differ by up to one chunk.
At large chunk sizes, one of the two instances in our experiment therefore received
a much larger amount of GPU memory than the other, causing that instance to
finish its execution early and subsequently leave the entire GPU to the second
instance. While GPUswap’s behavior thus caused a speedup in both instances at
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large chunk sizes, the long error bars at large chunk sizes indicate that the two
instances were not affected evenly. This result highlights that a fair distribution
of resources does not necessarily optimize overall system performance.

Besides bfs and heartwall, srad1 also exhibited some sensitivity to the chunk size
in use. While the majority of executions for this application ran for the same
amount of time at each chunk size, we observed a small number of executions
with increased runtimes at chunk sizes between one and eight MiB. At some point
during these executions, our policy selected a remainder chunk for eviction. Since
remainder chunks are smaller than the configured chunk size, GPUswap was then
forced to evict an additional chunk to free up a sufficient amount of GPU memory.
As a result, the application ran with a smaller amount of data in GPU memory
than if no remainder chunk had been selected. The same effect is also visible in
our previous measurements shown in Figure 6.2(c): During the eviction of the
stack buffer of srad1, the application’s runtime is increased for some memory
sizes, while for others, it is identical to the runtime with all data in GPU memory.
Since this effect is a corner case caused by a specific combination of memory size,
chunk size and amount of memory used by the application, it can principally
manifest in any application using any chunk size given the right circumstances.
However, it is also possible that this effect results in a speedup: If selecting a
remainder chunk brings the total amount of data evicted closer to the size of the
allocation request that triggered the eviction than evicting only full chunks, the
application will run with up to one chunk of additional GPU memory. In any case,
the impact of this corner case is constrained to one chunk in either direction.

In addition to the applications’ total runtime, we also measured the allocation
latency experienced by the applications at different chunk sizes. Figure 6.10
shows the average latency experienced by both allocating and victim applications
under the priority-based buffer selection policy for chunk sizes ranging from
128 KiB to 128 MiB. Our results show that for three of our benchmark applications
– backprop, hotspot and srad1 – a chunk size of 4 MiB appears to optimize the
allocation latency for both allocating and victim applications. For three more
applications – bfs, lud and (for victim applications) srad2 – the latency is optimal
at either 2 or 8 MiB, with 4 MiB giving good results for these applications. The
remaining two applications prefer either smaller (heartwall) or larger (nn) chunks.
Overall, these results indicate that 4 MiB is the optimal chunk size in terms of
latency for this set of applications.

Based on our results, we chose a chunk size of 4 MiB for all our experiments to
optimize the eviction latency. We chose to optimize for eviction latency since
the chunk size appears to have no significant effect on the runtime of most ap-
plications. In addition, in those cases where the chunk size did cause significant
changes in runtime, these changes were generally insignificant at a chunk size of
4 MiB, indicating that this chunk size does not cause fairness or the GPU memory’s
utilization to degrade. Note that using a single chunk size in all experiments



6.5 Summary 125

implies that some of our experiments were conducted using a sub-optimal chunk
size. However, even using potentially sub-optimal chunk sizes, GPUswap outper-
formed Gdev significantly for all applications. Choosing the optimal chunk size
for each application would only improve the results of GPUswap further.

6.5 Summary

Overall, our evaluation has shown that GPUswap fulfills our performance goals:
First, GPUswap induces no application overhead as long as sufficient GPU memory
is available since we do not rely on software scheduling of GPU kernels. In
addition, when GPU memory becomes scarce, GPUswap induces less overhead
than Gdev, indicating that GPUswap’s strategy of keeping evicted data directly
accessible to applications is more efficient than copying data to the GPU prior to
kernel launch. Finally, GPUswap is able to keep applications running with much
smaller amounts of available GPU memory than Gdev, which requires that all GPU
data of each individual application must fit in GPU memory. The downside of our
approach is that GPUswap adds significant latency to memory allocation requests,
since applications must potentially wait for an eviction operation to complete
before an allocation request can be served. This problem does not affect Gdev
since Gdev never evicts any data from the GPU during memory allocation.

Our experiments have also shown that an eviction policy can further reduce the
overhead associated with evicting GPU data to system RAM. The performance
of our priority-based buffer selection policy is far superior to random selection.
However, some of our results indicate that the policy still leaves room for improve-
ment: In some cases, application runtimes have shown large standard deviations,
and individual runs under the random selection policy have achieved lower run-
times than the priority-based policy did on average. These results indicate that
application performance can still depend on the exact set of chunks chosen for
eviction even though these chunks all share a similar number of accesses. In
addition, the behavior of nn has shown that the number of memory accesses
alone does not always fully capture the importance of pages to the application’s
performance. Further research into how memory bandwidth and latency affect
the performance of GPU applications could thus yield further improvements to
our eviction policy. However, the main problem of our prototype policy remains
that the policy requires off-line profiling. Ideally, an eviction policy should operate
purely on-line, without requiring any effort beforehand. We expect more research
opportunities in this area to open up once GPU vendors include more hardware
support for memory management – such as reference bits – in their hardware.

Finally, our experiments have shown that the chunk size used by GPUswap has
no significant effect on application runtime in most cases, though large chunk
sizes can be problematic in terms of both fairness and GPU memory utilization for
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some applications. However, our results also show that the chunk size can greatly
influence the latency of memory allocations, and that there is no single chunk size
that optimizes this latency for all applications. Therefore, it may be worthwhile
for GPUswap to support a different chunk size for each application. Currently,
however, the optimal chunk size for each application can only be determined
experimentally. Further investigation may yield a way to derive an application’s
optimal chunk size from profiling data or to tune each application’s chunk size at
runtime.



Chapter 7

Conclusion

Over the last few years, GPUs have become increasingly popular in computing
since their massively parallel computing capability can bring tremendous speedups
to a variety of applications. Consequently, all major cloud providers have included
GPUs in their platforms. These platforms are typically virtualized, which increases
the utilization of the underlying physical hardware by sharing this hardware
between multiple customers. Since customers tend to under-utilize their hardware,
virtualization also allows the providers to oversubscribe the physical hardware –
i.e., offer their customers a larger amount of resources than physically available
– to increase the physical hardware’s utilization even further. The increased
utilization in turn allows providers to offer access their hardware at low cost. If
the physical hardware is oversubscribed, however, the provider must be capable
of dealing with overload in case the customers do use all the resources they were
promised.

In principle, the memory of modern GPUs can be oversubscribed easily since these
GPUs support virtual memory. The cloud provider can thus offer a larger amount
of virtual memory than is physically available, only allocating physical memory
that is actually used by a customer. If the customers allocate a larger amount of
memory than physically available, the provider can evict excess data from the
GPU to system RAM. However, oversubscription of GPU memory is complicated
by the asynchronous nature of contemporary GPUs: To reduce overhead, these
GPUs typically allow the user to submit GPU kernels for execution directly to the
GPUs command queues, bypassing the operating system. In addition, current
GPUs assume all data that has been allocated in GPU memory to be accessible at
any time. If a kernel attempts to access data that is not available, the resulting
page fault is consequently treated as a fatal error, resulting in the termination of
the faulting GPU kernel. Traditional methods of oversubscribing memory – such
as swapping – thus cannot be applied to GPUs.
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To overcome this issue, previous work has relied on software scheduling of GPU
kernels to regain control over GPU kernel execution: A scheduler executing on
the CPU selects the next GPU kernel to run when the previous kernel finishes
execution. The operating system can then enable oversubscription by copying
any data the next kernel might need into GPU memory prior to kernel launch.
While this approach can successfully oversubscribe GPU memory, it comes with
two main disadvantages: First, large amounts of data may be copied between
CPU and GPU whenever a GPU kernel is started, including data that the kernel
does not actually need. Second, software scheduling of GPU kernels disables the
GPU’s internal, highly efficient scheduling and context switching, thus inducing
significant application overhead even if sufficient GPU memory is available.

In this thesis, we propose GPUswap, a novel eviction mechanism for GPU memory.
In contrast to previous work, GPUswap triggers eviction operations on memory
allocation requests instead of kernel launches: When an application attempts to
allocate more GPU memory than is available, GPUswap evicts data from GPU
memory to system RAM to make room for the allocation request. GPUswap then
uses the virtual memory system present in modern GPUs to map the evicted data
directly into the virtual address spaces of the application owning the data. Since
all evicted data is thus directly accessible at any time, GPUswap can subsequently
allow applications to submit their kernels directly to the GPU. Since GPUswap
does not rely on software scheduling, GPUswap does not induce any overhead
as long as sufficient GPU memory is available. In addition, GPUswap eliminates
unnecessary copying since evicted data is only transferred over the PCIe bus when
a GPU kernel actually accesses that data. Our evaluation has shown that the
overhead induced by GPUswap is significantly lower than that of previous work
regardless of the amount of GPU memory available.

While GPUswap should ideally evict rarely-accessed pages first, such pages are
difficult to identify on current GPUs since these GPUs lack common features
related to memory management, such as reference bits. Therefore, we instead
use off-line profiling to identify rarely-accessed pages in the applications’ address
spaces. Previous work in this area relied on instrumenting the profiled application
through a modified compiler, which has two main disadvantages: First, profiling is
limited to the type of application supported by the modified compiler – e.g., CUDA
applications. Second, only application code compiled by the modified compiler
can be profiled, which can be a problem if an application uses shared libraries
for which no source code is available. In contrast, our own profiling is based on
the GPU’s performance monitoring counters: By evicting a single page to system
RAM and then counting the total number of accesses to system RAM from the
profiled application, we can obtain the exact number of accesses to the evicted
page. Repeating this process once for each page in the application’s address space
yields a complete access profile for the application’s entire memory. Our profiler is
not limited to a specific type of application and captures memory accesses from all
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code in the application’s address space, including shared libraries. While profiling
using this method is slow since each of the application’s GPU kernels must be
repeated many times, we have shown that profiling time can be reduced either by
exploiting application knowledge or by reducing profiling granularity.

Using our profiler, we examined several applications from the Rodinia Benchmark
Suite. Our profiling showed that pages in the same application buffer tend to
share a similar number of accesses, but the number of accesses often varies greatly
between buffers. Consequently, we augmented GPUswap with an eviction policy
which evicts rarely-accessed buffers first. Our policy operates in two steps: First,
application developers profile their applications to determine which buffers are
good candidates for eviction and assign a priority to each buffer allocated by the
application based on the results of that profiling. In the second step, our policy
then uses these priorities to select pages from rarely-accessed buffers for eviction
whenever memory pressure occurs. Our evaluation has shown that compared to
selecting pages randomly, this policy can greatly reduce the overhead associated
with using system RAM in place of GPU memory.

7.1 Future Work

While GPUswap overcomes the limitations of previous work, our work has raised
questions and uncovered challenges which have not yet been addressed.

Hardware and Application Support

Our current prototype builds on the pscnv driver, which has been unmaintained
since 2012. The driver thus introduces two limitations to our prototype: First,
our prototype is currently limited to CUDA applications. In principle, GPUswap
supports any type of application, and measurements with different applications
could yield additional insight into the strengths and weaknesses of our approach.
Second, the pscnv driver limits our prototype to the Nvidia Fermi generation of
GPUs, which only support PCI Express version 2. Newer versions of PCI Express
provide higher bandwidth, which would likely reduce both the overhead associated
with using system RAM in place of GPU memory and the eviction latency. Since
neither of these limitations is conceptual, both can be overcome by integrating
GPUswap into a different GPU driver.

Integration with Scheduling

While scheduling GPU kernels in software can induce significant application over-
head, we expect some form of scheduling to be necessary in a shared environment
to ensure fairness between different users. Recent works on GPU scheduling have
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shown that fairness can be guaranteed with low overhead by leaving a degree of
control to the GPU [44]. However, since such schedulers do not have full control
over GPU kernel execution, they are typically incompatible with Gdev’s approach
of returning data to the GPU prior to kernel launch. In contrast, GPUswap does
not depend on scheduling and should therefore be compatible to any GPU sched-
uler. Integrating GPUswap with scheduling also opens a range of new research
opportunities in terms of policy, such as whether the scheduling priority provides
information useful for an eviction policy.

Chunk Size

Our evaluation has shown that the latency of memory allocations under GPUswap
is sensitive to the chunk size in use. However, there is no single chunk size that is
optimal for all applications. While our current prototype only supports a single
chunk size for all running applications, it is possible to extend GPUswap with
support for individual chunk sizes for each application. Finding the correct chunk
size for each application, however, remains an open problem. Further analysis may
reveal application characteristics predicting the optimal chunk size. Alternatively,
it may be possible to tune each application’s chunk size at runtime.

Policy

While our policy significantly improves the overhead of GPUswap compared to
random selection, our evaluation has revealed shortcomings in the way priorities
are assigned: For some applications, the number of accesses to each page does
not appear to reflect the impact of each page on the application’s performance.
In addition, we currently assign priorities based only on the number of memory
accesses during computation, but disregard DMA. However, our priority-based
policy is oblivious to the way priorities are generated. More detailed applica-
tion profiling, including more factors than just the number of memory accesses,
could lead to more accurate priorities, which our policy can then use without
modification. In any case, however, we consider our priority-based policy to be a
placeholder due to the manual effort required for profiling and assigning priorities.
Ideally, an eviction policy should operate purely on-line, without requiring manual
intervention. We therefore hope to replace our policy with a fully transparent
policy once memory management-related features like reference bits are added
to GPU designs.



Deutsche Zusammenfassung

Grafikkarten (Graphics Processing Units, GPUs) nehmen in der heutigen Infor-
matik eine wichtige Rolle ein, da sie für bestimmte Arten von Anwendungen
große Leistungsgewinne bei gleichzeitig hoher Energieeffizienz ermöglichen. Aus
diesem Grund haben alle großen Cloudanbieter in den letzten Jahren GPUs in ihre
Angebote integriert. Die Plattformen dieser Anbieter verwenden üblicherweise
Virtualisierung, um physische Ressourcen zwischen mehreren Kunden aufzuteilen.
Dieses Aufteilen erhöht die Auslastung der Ressourcen und verschafft dem Clou-
danbieter so einen Kostenvorteil gegenüber dedizierter physischer Hardware. Um
die Auslastung noch weiter zu erhöhen, vermieten heutige Cloudanbieter häufig
mehr Ressourcen, als tatsächlich physisch zur Verfügung stehen. Für den Fall,
dass die Kunden die angebotenen Ressourcen tatsächlich vollständig auslasten
wollen, muss der Anbieter in diesem Fall aber in der Lage sein, das Funktionieren
der Kundenanwendungen zu garantieren, selbst wenn der Ressourcenbedarf der
Kunden die Kapazität der physischen Ressourcen übersteigt.

Der Speicher aktueller Grafikkarten lässt sich vergleichsweise einfach zwischen
mehreren Kunden aufteilen, da diese Grafikkarten virtuellen Speicher ähnlich
dem der CPU unterstützen. Der Anbieter kann so jedem Kunden einen großen,
virtuellen Adressraum zur Verfügung stellen, muss aber nur so viel physischen
Speicher bereitstellen, wie die Kunden tatsächlich verwenden. Falls der Anbieter
mehr Speicher anbieten will, als physisch vorhanden ist, ist es grundsätzlich auch
möglich, im Fall einer Überlastung des Grafikspeichers Daten in den Hauptspei-
cher des Systems auszulagern. Dieses Auslagern wird aber durch die asynchrone
Arbeitsweise aktueller GPUs erschwert: Anwendungen können GPU-Kernels zur
Ausführung direkt an die GPU senden, ohne dafür das Betriebssystem aufrufen zu
müssen. Das Betriebssystem hat so keine Kontrolle über den Ausführungszeitpunkt
der GPU-Kernels. Darüber hinaus gehen aktuelle GPUs davon aus, dass sämtlicher
Grafikspeicher, der einmal von einer Anwendung angefordert wurde, jederzeit
zugänglich ist. Sollte ein Kernel versuchen, auf eine nicht zugängliche Adresse
zuzugreifen, behandelt die GPU diesen Zugriff als fatalen Fehler und beendet die
Ausführung des Kernels.
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Bisherige Ansätze umgehen dieses Problem, indem sie einen Software-Scheduler
für GPU-Kernels einsetzen, um die Kontrolle über den Ausführungszeitpunkt
der Kernels zurückzugewinnen. Bei dieser Methode wird nach Beendigung jedes
Kernels der nächste Kernel auf der CPU in Software ausgewählt und an die GPU
gesendet. Sind Daten, auf die der nächste Kernel möglicherweise zugreift, von der
GPU in den Hauptspeicher ausgelagert worden, kopiert der Scheduler diese Daten
zurück auf die GPU, bevor der Kernel gestartet wird. Der entscheidende Nachteil
dieses Ansatzes ist, dass der Software-Scheduler das extrem effiziente interne
Scheduling und Context Switching der GPU ersetzt, ohne das gleiche Maß an
Effizienz zu erreichen. Ansätze, die auf Software-Scheduling basieren, verursachen
daher einen hohen Overhead, und zwar auch dann, wenn eine ausreichende
Menge Grafikspeicher zur Verfügung steht. Da der Scheduler darüber hinaus
keine Möglichkeit hat, festzustellen, auf welche Daten ein GPU-Kernel tatsächlich
zugreift, werden mit diesem Ansatz häufig Daten kopiert, die gar nicht benötigt
werden.

In der vorliegenden Arbeit entwickeln wir einen alternativen Ansatz, um Ausla-
gern von GPU-Daten zu ermöglichen. Unser Auslagerungsmechanismus, genannt
GPUswap, blendet alle ausgelagerten Daten direkt in den GPU-Adressraum der
jeweiligen Anwendung ein. Da auf diese Art alle Daten jederzeit zugänglich sind,
kann GPUswap den Anwendungen weiterhin erlauben, Kommandos direkt an die
GPU zu senden. Da unser Ansatz ohne Software-Scheduling auskommt, verursacht
GPUswap keinerlei Overhead, solange Grafikspeicher in ausreichender Menge zur
Verfügung steht. Falls tatsächlich Daten in den Hauptspeicher ausgelagert werden
müssen, eliminiert GPUswap außerdem unnötige Datentransfers zwischen Haupt-
speicher und GPU, da nur ausgelagerte Daten, auf die Anwendung tatsächlich
zugreift, über den PCIe-Bus übertragen werden.

Auch wenn GPUswap im Vergleich zu vorherigen Ansätzen deutlich weniger Over-
head verursacht, ist der Overhead, der durch die Verwendung von Hauptspeicher
anstelle von Grafikspeicher verursacht wird, immer noch erheblich: Anwendungen
greifen auf ausgelagerte Daten über den PCIe-Bus zu, der über eine erheblich
geringere Bandbreite verfügt als der Grafikspeicher. Um diesen Overhead zu re-
duzieren, sollten bevorzugt Speicherseiten ausgelagert werden, auf die selten
zugegriffen wird. Solche Seiten zu identifizieren ist auf aktuellen GPUs allerdings
nicht ohne Weiteres möglich, da die Hardwarefunktionen, die auf der CPU zu
diesen Zweck normalerweise eingesetzt werden – z.B. Referenzbits – auf aktuellen
GPUs nicht zur Verfügung stehen.

In der vorliegenden Arbeit verwenden wir stattdessen Profiling, um selten ver-
wendete Speicherseiten zu identifizieren. Bisherige Ansätze zum Profiling von
GPU-Speicher basierten auf modifizierten Compilern, die alle Speicherzugriffe der
analysierten Anwendung transparent instrumentieren. Dieser Ansatz hat aller-
dings zwei Nachteile: Erstens können nur Anwendungen untersucht werden, die
vom modifizierten Compiler unterstützt werden, und zweitens muss sämtlicher
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Code der untersuchten Anwendung – inklusive verwendeter Bibliotheken – mit
dem modifizierten Compiler übersetzt werden, da ansonsten Speicherzugriffe aus
Anwendungsteilen, die mit einem anderen Compiler übersetzt wurden, für den
Profiler nicht sichtbar sind.

Unser Ansatz verwendet die Performancezähler der GPU anstelle eines modifizier-
ten Compilers. Unser Profiler lagert einzelne Seiten aus dem Grafikspeicher in den
Hauptspeicher aus und verwendet anschließend die Performancezähler, um die
Zahl der Hauptspeicherzugriffe der Anwendung zu zählen. Wird dieser Vorgang
einmal für jede Seite im Adressraum der Anwendung wiederholt, so erhält man
ein vollständiges Zugriffsprofil des gesamten Speichers in diesem Adressraum.
Im Gegensatz zu vorherigen Arbeiten funktioniert dieser Ansatz mit beliebigen
Anwendungen und erfasst automatisch sämtliche Bibliotheken im Adressraum der
Anwendung. Eine Untersuchung von mehreren Anwendungen aus der Rodinia
Benchmark Suite mithilfe unseres Profilers zeigt, dass sich die Zahl der Zugriffe
pro Seite bei den meisten Anwendungen vor allem zwischen verschiedenen Spei-
cherpuffern der Anwendung unterscheidet, während Seiten innerhalb desselben
Puffers meist eine ähnliche Zahl von Zugriffen aufweisen.

Ausgehend von den gesammelten Profilen untersuchen wir mehrere mögliche
Auslagerungsstrategien und ihre Anwendbarkeit auf aktuellen GPUs. Unser Proto-
typ enthält zwei dieser Strategien: Eine wählt auszulagernde Seiten zufällig aus,
während die andere einen prioritätsbasierten Ansatz verwendet. Bei der priori-
tätsbasierten Strategie weist der Benutzer ausgehend von einem Zugriffsprofil der
Anwendung jedem Puffer der Anwendung eine Priorität zu. Die Auslagerungs-
strategie wählt dann bevorzugt Speicherseiten aus Puffern niedriger Priorität.
Experimente mit beiden Strategien zeigen, dass der prioritätsbasierte Ansatz den
Overhead von GPUswap im Vergleich zu zufälliger Auswahl nicht nur deutlich re-
duziert, sondern sogar in der Lage ist, größere Datenmengen ohne jeden Overhead
auszulagern.
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