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Abstract 

In the present report, we deal with the question whether the equilibrium of 
the silica/water reaction shifts under tensile stresses to an increased or 
reduced hydroxyl concentration or equivalently, which sign the reaction 
volume shows. From our analysis on the basis of the Le Chatelier-Braun 
Theorem, it can be concluded that the equilibrium constant of the water-
silica reaction is enhanced due to tensile stresses and that the reaction 
volume change is positive. In additon it will be shown that the apparently 
found enlarged water solubility under compressive stresses by Nogami 
and Tomozawa [2] is an artifact of the stress-dependent diffusivity. 
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1 Water reaction with silica 
According to Doremus [1], water penetrates silica glass as molecular water. At tem-
peratures, T < 450°C, the equilibrium constant, k, of the silica/water reaction 

 Si-O-Si +H2O  SiOH+HOSi (1) 

is given by for temperatures <450°C by the following equation [2]: 

 
C

S
k 1  (2) 

where S is the hydroxyl group concentration, [SiOH], and C is the concentration of 
molecular water, [H2O]. The reason for the apparent unimolecular reverse reaction of 
eq.(1) is that the two hydroxyl groups that form during the forward reaction are not 
independent [2]; they are closely associated with one another and can react easily to 
form water during the reverse reaction. Above 450°C, it holds 
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In this case, the hydroxyl groups can move away from one another; they become inde-
pendent, and the reverse reaction behaves as a normal bimolecular reaction [1, 2]. Alt-
hough water molecules can move freely within silica glass by molecular diffusion [1], 
the hydroxyl groups, S, are immobile [1] at low temperatures. The amount of water 
tied up in SiOH is S/2. As defined by Doremus [1], the total water at the surface, Cw, is 
given by the sum of the molecular water and the water tied up in SiOH:  

 )1( 2
1

2
1 kCSCCw   (4) 

The classic work on the effect of pressure on the equilibrium constant of a chemical 
reaction was done by Le Chatelier [3]. From his work, it is well known that chemical 
reactions that exhibit a change in volume will be sensitive to the ambient pressure of 
the reaction. Changing the pressure changes the equilibrium constant of the reaction 
and hence the ratio of the concentration of reaction products to reactants.  

Using the enhanced value of the equilibrium constant and the following thermodynam-
ic equation [4]: 
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It is possible to obtain an estimate of the effective stress at the crack tip during the 
fracture experiment.  In the above equation, p is the pressure applied to the glass at the 
crack tip, V  is the reaction volume, the change in the volume of the glass during the 
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chemical reaction, i.e., the volume of the products minus the volume of the reactants 
during the reaction, R is the universal gas constant and T is the temperature in K. The 
reaction volume is normally assumed to be a constant, but clearly can be pressure de-
pendent, see reference [4] for a discussion of this point.    
Equation (5) can also be expressed in terms of the crack tip stresses: 
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where σh is the hydrostatic stress at the crack tip.   

In applying eq. (5) to mechanical problems, it must be noted that the signing in me-
chanics differs from that in chemistry. In chemistry, pressures are regarded as positive 
variables, but are counted as negative stresses in continuum mechanics. This makes it 
necessary to replace the pressure p in eq. (5) by the hydrostatic stress term h, de-
fined as the average of the three normal stress components of any stress tensor.  
Then the equivalent representation of eq. (6) is given by  
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
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V
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In literature there exist contrary assumptions and conclusions, in which direction the 
equilibrium of the reaction eq.(1) must shift, when tensile stresses are applied or 
equivalently, whether the reaction volume would be positive or negative. Whereas 
Nogami and Tomozawa [5] conclude a negative reaction volume, Agarwal et al. [6] 
come to the opposite result, namely 0V . The latter result can also be concluded 
from the positive volume in the derivation of v-K-curves on the basis of the reaction 
rate theory (for an overview see e.g. [7]). In the context with the conclusion in [5] it 
should be noted, that the observed effect is a consequence of the stress-dependent dif-
fusivity as was outlined in [8]. In section 3, we will address this point. In a newer pa-
per [9], water solubility was discussed again as an increase with applied compressive 
stress, i.e. 0V . In Section 2, we will validate the occurrence of positive reaction 
volumes, by making use of the universal Theorem by Le Chatelier [3] and Braun [10].  

2. Conclusion from the Theorem of Le Chatelier and Braun 

This finding is rather trivial. When water reacts with silica to hydroxyl S=[SiOH], a 
volume expansion occurs as was early reported by Shelby [11], Shackleford [12] and 
Brückner [13, 14]. From their measurements a volume swelling strain of the hydroxyl 
mass concentration S [15] can be derived: 

 S
S
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with the proportionality factor 

 ]02.1,92.0[97.0  (9) 

 [16,17,15]. In (9) the numbers in brackets represent the 95% confidence interval. 

 

 

 
Fig. 1 Volume expansion strain vs. the hydroxyl concentration S, derived from density measurements 

compiled by Shelby [11]; line: eq.(8)). 

Figure 1 represents the individual volume strains obtained from the measurements 
compiled by Shelby [11] as the symbols together with eq.(8) introduced as the straight 
line [16,17]. 
On the basis of eq.(8), a positive sign of the activation volume in eq.(7) can be con-
cluded from the Theorem of Le-Chatelier and Braun (principle of smallest constraint) 
[3,10]. For this purpose, let us consider a volume element in the glass (not necessarily 
located at the surface) that may contain a certain amount of water with concentration 
Cw, e.g. introduced by diffusion. In order to ensure the condition of a “closed system”, 
the volume may be surrounded by insulating walls which stop any escape or entrance 
of water and keep the total amount of water, Cw, constant, Fig. 2a. Depending on the 
temperature, the water Cw is divided into hydroxyl and molecular water according to 
eq.(4) with k=k0.  
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Experimental results for the equilibrium constant in the absence of stresses, k0, were 
presented in reference [18] for the temperature range 90°C    350°C. These data 
were fitted by the empirical relation 

  
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(A = 32.3 and Q = 10.75 kJ/mol, T = ( + 273°K)).  

 
Fig. 2 Volume element showing silica network, a) volume element with insulated bounderies 

suppresing water entrance or escape, b) stresses x=y=z applied to the volume element, c) state after 
reaching equilibrium of the water/silica reaction for total volume strain kept constant. 

Applying tensile stresses x=y=z abruptly on the volume element, Fig. 2b, the hy-
draulic stress component h =(x+y+z)/3=i causes an elastic volume increase, Fig. 
2b, i.e. an elastic volume strain v,elast that is given by  

 helastv E
 )21(3

,


  (11) 

where E is Young's modulus and  Poisson’s ratio. Under constant displacement con-
ditions, Fig. 2c, this strain defines the total strain v,total=const. 
After reaching the equilibrium of the reaction (1), the total volume strain is the sum of 
elastic and swelling strains,  

 .,,, constswvelastvtotalv    (12) 

Since v,sw >0, the initially applied elastic strain must decrease by v,sw, i.e. the re-
strictions by the externally applied elastic strains decrease. Consequently, the stresses 
decrease, too. The Theorem of Le Chatelier [3] and Braun [10] then implies that the 
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equilibrium must shift to the right side of eq.(1), i.e. that the reaction volume must be 
positive, V > 0. It is self-evident that this result must occur also for constant stress 
constraints, because any load-history can be described in the same way by dividing the 
load-application into several steps with constant total strains as in Fig. 2 with equilib-
rium of the reaction at the end of each substep. 
It has to be emphasized that the Theorem of Le Chatelier and Braun allows qualitative 
statements only and cannot provide quantitative results. An estimate of the partial mo-
lar volume for SiOH, SV , can be obtained directly from the data of Shelby [11], 
Shackleford [12] and Brückner [13, 14].  
As outlined in [16, 17]: SV  = 7.52 cm3/mole. Because two SiOH are created for each 
mole of water reacting, the total volume change per mole of water reacting is from the 
measurements at high temperatures: V   2 SV   15.03 cm3/mole. When a significant 
amount of water is present, as is the case at lower temperatures, it hold  

 .2 CS VVV   (13) 

with the reaction volume contribution of molecular water, CV . From V >0 and 

SV >0, it yields CV < 2 SV . This is one of the reasons why we neglected this volume 

in our former papers [19,20]. 

3. Negative reaction volume from literature  

All speculations on a negative reaction volume were caused by the interpretation of 
water concentration measurements on bending bars by Nogami and Tomozawa. In 
their conclusions, Nogami and Tomozawa [5] quoted: V <0. A simple interpretation 

of this discrepancy was given in [8]. Here this point may be briefly addressed.  
The experimental results by Oehler and Tomozawa [2], represented in Fig. 3, show a 
clear contradiction to the assumption of a constant surface value for the water con-
centration. There is, however, an incredible agreement with the thermal analogue of 
thermal shock behaviour under heat transfer boundary conditions, governed by a heat 
transfer coefficient. This calls for a surface condition 

 )( 0CC
D

h

dz

dC
   at  z=0, (14)  

where again C0 is the concentration of molecular water reached at z=0 for t. 

Following the suggestion by Doremus [21], (Section 4.7), the phenomenological pa-
rameter h in (14) may be interpreted as a reaction parameter for a slow surface reac-
tion that limits the entrance of molecular water species. 

On the other hand, a simpler phenomenological description is possible by assuming 
that a barrier exists to the transport of water across the surface of the glass. The barrier 
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gives rise to a mass transfer coefficient for diffusion, which slows the passage of water 
into the glass. Each of the assumptions yields the same set of mathematical equations. 

The diffusivity for the case of stress-enhanced diffusion is given by the following equa-
tion [22] 

  



 


RT

V
DD w

hexp0   (15) 

where D0 denotes the value of the diffusivity in the absence of stresses. T is the abso-
lute temperature in K; ∆Vw is the activation volume for stress-enhanced diffusion and 
R is the universal gas constant. 
As shown by Carslaw and Jaeger [23] (Section 2.7), the concentration profile, C(z) 
resulting from the boundary condition for a semi-infinite body is given by 
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At the surface, z=0: 
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In Fig. 3, the molecular water concentration at the surface is plotted versus the time 
with the concentration normalized on the saturation value. 

 
Fig. 3 Molecular water (C) and hydroxyl water content (S/2) at the surface of silica for 250°C at an 
equilibrium vapour pressure of 39atm from Oehler and Tomozawa [2].  
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Fig. 4 a) Diffusion profiles from eq.(16) under externally applied stresses for a soaking time of 

th2/D=1, b) Concentration profiles by Nogami and Tomozawa [5] as a function of the hydrostatic 
stress for bending bars at 192°C (water vapour pressure: 12.3 bars). 

Concentration profiles computed with eq.(16) are plotted in Fig. 4a as a function nor-
malized depth z for a normalized time th2/D=1. It is obvious that the surface concentra-
tion is smaller under externally applied tensile stresses than in the absence of such 
stresses. Compressive stresses cause an increase of hydroxyl water at the surface. The 
higher surface concentration for compression decreases with a steeper profile than un-
der tension. In deeper regions the concentrations under tension exceed those for the 
stress-free and the compression case.  
The computed water profiles and the measurements by Nogami and Tomozawa [5], 
Fig. 4b, agree excellently. This makes clear that the apparently increased water solubili-
ty under compression is an artifact of the stress-dependent diffusivity, eq.(15).   

In words: Due to the higher diffusivity in tension, the water at the tensile surface can 
drain easier into the bulk than in the compression state. Because of the restricted water 
entrance for a finite mass transfer coefficient, h < , the concentration must decrease at 
the tensile surface and increase on the compression surface. This is a consequence of 
the stress-dependent diffusivity and must not be understood as an enlarged solubility of 
water under compressive stresses. 

Summary 

We applied the Theorem by Le Chatelier [3] and Braun [10] to the problem of the 
stress-dependent equilibrium of the water/silica reaction in an arbitrary volume ele-
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ment that contains a fixed amount of water. It was found that the externally applied 
constraints, here the elastic tensile strains, are reduced by the positive swelling strains 
that are proportional to the hydroxyl concentration S. Consequently, the reaction must 
be forced into the direction of an increased hydroxyl content; with other words, the 
reaction volume must be positive. 
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