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Abstract

Through forward genetic screening for mutations affecting visual system development, we

identified prominent coloboma and cell-autonomous retinal neuron differentiation, lamina-

tion and retinal axon projection defects in eisspalte (ele) mutant zebrafish. Additional axonal

deficits were present, most notably at midline axon commissures. Genetic mapping and

cloning of the ele mutation showed that the affected gene is slbp, which encodes a con-

served RNA stem-loop binding protein involved in replication dependent histone mRNA

metabolism. Cells throughout the central nervous system remained in the cell cycle in ele

mutant embryos at stages when, and locations where, post-mitotic cells have differentiated

in wild-type siblings. Indeed, RNAseq analysis showed down-regulation of many genes

associated with neuronal differentiation. This was coincident with changes in the levels and

spatial localisation of expression of various genes implicated, for instance, in axon guidance,

that likely underlie specific ele phenotypes. These results suggest that many of the cell and

tissue specific phenotypes in ele mutant embryos are secondary to altered expression of

modules of developmental regulatory genes that characterise, or promote transitions in, cell

state and require the correct function of Slbp-dependent histone and chromatin regulatory

genes.
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Introduction

Mutations in a wide variety of genes are known to lead to congenital abnormalities of eye for-

mation [1,2]. Some of these genes, such as pax6 and rx3, show temporally and spatially

restricted expression within developing visual system structures and consequently, a priori, are

obvious candidates for roles in eye formation [3]. However, other genes, such as hdac1 [4] and

yap [5], are more ubiquitously expressed and consequently visual system specific phenotypes

observed upon aberrant gene function are not so easily explained. Forward genetic screens in

animal models provide a relatively unbiased approach to identify the full spectrum of genes

involved in specific developmental processes, as the initial selection is based upon phenotypes

of interest [6]. To this end, we have been using a forward genetic approach in which we screen

existing and new zebrafish lines carrying randomly induced mutations for phenotypes affect-

ing visual system development.

In this study, we observed that in eisspalte (ele)mutants, the ventro-nasal and ventro-tem-

poral lips of the forming eye cup fail to fuse, leading to prominent retinal coloboma. The eis-
spalte phenotype was originally identified on the basis of aberrant morphogenesis of the

midbrain/hindbrain boundary [7] but the affected gene had not been identified. Using both

traditional mapping approaches and a novel mapping-by-sequencing approach based on the

variant discovery mapping Cloudmap pipeline [8,9], we find that the eisspaltemutation lies

within the slbp gene. This is consistent with a description of retinal defects in another slbprw440

mutant allele [10].

Slbp is a stem loop RNA-binding protein required for all aspects of replication dependent

histone mRNA metabolism. Replication-dependent histone genes, which are predominantly

expressed during S-phase in proliferating cells, are intron-less and encode non-polyadenylated

pre-mRNAs that are processed by an unusual mechanism that requires two cis-acting elements

in their 3’ untranslated regions (UTR) referred to as the stem loop (SL) and the histone down-

stream element (HDE). Slbp binds to the stem-loop of the mRNA as it is transcribed, prevent-

ing polyadenylation[11] and recruiting factors, such as U7 snRNP, that trim the 3’-end of the

pre-RNA to from the mature histone mRNA [12–16]; reviewed in[17]). Slbp remains bound to

the histone mRNA throughout its lifetime and participates in its processing, translation and

degradation.

Due to the stoichiometric nature of the relationship of Slbp with histone mRNAs, the levels

of Slbp are believed to regulate the total level of histone mRNA that can accumulate in the

cytoplasm [18]. Slbp therefore facilitates post-transcriptional regulation of histone mRNA lev-

els and the incorporation of appropriate proportions of both replication and non-replication

dependent histone variants into chromatin [17,18].

As well as being involved in regulating cell cycle progression, Slbp is itself regulated through

the cell-cycle, with increasing levels accumulating during G1/S followed by rapid degradation

at the end of S-phase [19,20]. Slbp levels/activity are regulated at the protein level by the ubi-

quitin proteolysis pathway, a process mediated by Cyclin A-CDK1 and CK2 dependent phos-

phorylation of two threonine residues in the TTP motif located within the amino terminus of

SLBP [17–21].

Loss of Slbp in C. elegans,Drosophila and mouse leads to defects in cell-cycle dependent his-

tone mRNA production and processing, resulting in the accumulation or depletion of unpro-

cessed histone mRNA in the cytoplasm and a reduction in histone protein production [22–

25]. Such changes in histone production cause problems with chromosome condensation and

chromatin structure leading to cell cycle arrest and genomic instability [23,26]. Loss of mater-

nal Slbp function in C. elegans, Drosophila and mice as well as Slbp2 in zebrafish leads to very

early embryonic defects with embryogenesis arrested at mid-blastula transition (MBT;
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[22,24,27,28]. Transcriptomic analysis at MBT in Drosophila showed zygotic gene activation to

be severely compromised [29]. Disruption of Slbp function at later stages has revealed some

surprising phenotypes that suggest unexpectedly cell-type-specific roles: in Drosophila, most

slbp homozygous null mutants perish at late pupal stage but some survive to adulthood and

show female sterility [24]; loss of Cdl-1 (Slbp) in C. elegans results in defects in pharynx mor-

phogenesis and body elongation[23]; and, in zebrafish slpbmutants survive until 5dpf and

present defects in retinal development [10].

In this study, in addition to the initially observed retinal coloboma, we identify several

other phenotypes affecting the eyes and central nervous system (CNS) in slbpmutants. These

include deficits in axon guidance and pathway formation, particularly at midline commissures.

Despite the relatively specific nature of the nervous system phenotypes, RNAseq analysis

showed that gene expression in ele is very dysregulated. Many of the gene expression changes

are consistent with cells failing to express differentiation-related genes while retaining expres-

sion of genes linked to proliferation. Consequently, the loss of slbp function likely affects mod-

ules of spatially and temporally regulated genes that mediate the transition from proliferation

to differentiation. Indeed, we observe that whereas early born cells appear to differentiate, at

later stages, cells both in the mesoderm and neuroectoderm fail to transition from proliferation

to differentiation. This suggests that despite their specificity, some ele phenotypes are most

likely a consequence of early born neurons differentiating within an environment that fails to

mature appropriately.

Results

The eisspalte mutation is in slbp
To identify genes contributing to eye morphogenesis, we screened existing lines of fish carry-

ing genetic mutations and noticed that homozygous eisspaltety77e/ty77e (ele) mutant embryos

frequently exhibited coloboma (Fig 1A and 1B), a failure in closure of the optic/choroid fissure

of the eye. The elemutant was originally identified in a screen for mutations affecting brain

morphology with the phenotype described as a dent in the midbrain-hindbrain boundary

(MHB) [7]. In addition to this dent, slightly smaller eyes and a downward curve to the body

axis were early morphological hallmarks of the ele phenotype, evident by 32hpf (not shown)

and becoming more prominent by 2–3 days post-fertilisation (dpf; Fig 1A’). Failure of choroid

fissure closure was evident by 2 dpf (Fig 1A’ and 1B’). Two other phenotypes observed in the

mutant at this late stage were heart oedema (Fig 1A) and abnormal otolith development, with

otoliths smaller and fused together (not shown). Variations in penetrance and expressivity of

ele phenotypes were observed in different genetic backgrounds. The ele phenotype was most

severe in the TU strain such that although a downward curve to the body axis is present in TU,

AB and WIK backgrounds, no obvious coloboma or MHB dent were observed when the muta-

tion was crossed into the AB and WIK backgrounds.

Bulked segregant analysis using SSLPs localised the elemutation to chromosome14 between

markers z4896 and z6847 (10.75Mb and 17.26 Mb respectively). This location (between 10 and

20Mb) was confirmed with an RNA-seq based mapping approach using a modification of the

Cloudmap mapping pipeline on Galaxy (Fig 1C and 1C’; http://usegalaxy.org/cloudmap; [9].

RNA-seq data showed that the interval containing the elemutation harboured 14 protein-cod-

ing (non-synonymous, splice, stop) variants of which only one with a stop codon (position

14.8Mb, located in the middle of the peak; Fig 1C). The non-sense point mutation (C-to-A) is

located in exon 5 of the slbp gene that encodes Stem-loop binding protein (Slbp), introducing

a premature stop codon (Y180stop) within the 73 amino acid RNA binding domain (RBD)

(Fig 1D). This mutation is predicted to lead to a truncation in Slbp at the amino-terminus of
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the RNA binding domain (RBD), generating a protein that lacks all the conserved residues

required for RNA binding activity and histone pre-mRNA 3’UTR processing (Fig 1D). Sup-

porting the possibility that the causative mutation is in slbp, embryos injected with a splice-site

Fig 1. The ele mutation is in slbp. (A-A’) Morphology of 2dpf wildtype and elemutant embryos (red asterisk indicates heart oedema). (B, B’) Heads of 2dpf wildtype

(A) and ele (A’)mutant embryos showing the coloboma phenotype in the mutant (arrowhead in B’). (C-C’) RNAseq mapping plot of SNP homozygosity across

Chromosome 14 and 15. (D) Domain organisation of wildtype and mutant Slbp predicted proteins. (E) Dot plots of percentages of embryos showing ele phenotypes

in control clutches (blue) and in clutches injected with wildtype slbpTT-AA-RFP RNA (red). Each dot is the percentage from one of seven independent experiments.

Thick black bars = standard deviation; fine black line = mean. (F) Reverse transcriptase polymerase chain reaction (RT-PCR) for slbp and slbp2 at developmental

stages indicated. (G, H) Whole mount RNA in-situ hybridization for slbp (H) and slbp2 (I) at developmental stages indicated. Scale bars: (A, A’, H, I) 250μm; (B and

B’) 100μm.

https://doi.org/10.1371/journal.pone.0211073.g001
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morpholino, targeting the exon3-to-intron3 donor site in slbp, phenocopied various aspects of

the ele phenotype including the morphological dent caudal to the MHB and coloboma (S1A’

Fig). Furthermore, another published mutation (slbprw440) in slbp has been shown to cause ret-

inal defects [10].

To test whether reduction/loss of Slbp function causes all observed phenotypes, we injected

synthetic RNA encoding wild-type RFP-tagged Slbp into embryos from a cross between ele
heterozygous fish and assayed these embryos for rescue of phenotypes. Expression of Slbp-

RFP fusion protein was confirmed by the presence of fluorescence at early gastrulation stages

but no expression was detected by 26 hpf, suggesting that Slbp-RFP fusion protein may be

degraded by this stage. This is consistent with the notion that Slbp protein undergoes cell-cycle

regulated cycles of synthesis and degradation [20,21,30]. To overcome these cycles of degrada-

tion, we therefore mutated two threonine residues within the TTP motif to alanines creating a

construct encoding a degradation resistant SlbpTT-AA–RFP fusion protein[20].

Injected degradation-resistant slbpTT-AA-RFP RNA encodes a stably expressed nuclear

localised protein that fully rescued the curve in the body axis, the MHB dent, commissural

defects (described below) and the coloboma phenotypes over the first few days of development

(S1C’ Fig). In control, non-injected embryos, 25.7% (n = 100/389) showed an ele phenotype

and the remaining embryos appeared normal consistent with full phenotypic penetrance in

homozygous mutants. In the experimental group, injection of 150pg of degradation-resistant

slbpTT-AA-RFP synthetic RNA reduced the number of embryos with an ele phenotype (as

defined above) to 6% (Fig 1E; n = 13/206 showed an ele phenotype; n = 193/206 showed no

phenotype). This rescue confirms that altered or absent Slbp function is the cause of the phe-

notypes we observe in mutants and for the remainder of this paper elemutants will be referred

to as slbpty77e mutants.

Only slbp and not slbp2 is expressed in proliferative neural cells

To better understand how compromised Slbp function may lead to slbpty77e phenotypes, we

analysed the spatial and temporal expression of slbp and the paralogous slbp2 gene. slbp and

slbp2 transcripts are maternally expressed and ubiquitously distributed in early cleavage stage

embryos (Fig 1F–1H and [10]). slbp2 transcripts are undetectable by in situ hybridization from

50% epiboly stage but continue to be detected by RT-PCR until 4–8 somite stage suggesting

gradual depletion of a maternal transcript pool (Fig 1F and 1G). In contrast, by 16s, increased

levels of spatially restricted slbp transcripts were observed in the presumptive central nervous

system and from 24hpf, high levels of expression start to become restricted to the proliferative

zones of the brain, retina, fin buds and trunk (Fig 1H; [10,31]). The expression of slbp is main-

tained in proliferative zones of the CNS at 2dpf (Fig 1H) where it overlaps with the expression

of several replication dependent histone genes (e.g. h1f0-H1: S2A and S2B Fig).

Both slbp and slbp2 transcripts are maternally deposited suggesting that Slpb2 along with

wildtype maternally derived Slbp may compensate for loss of functionality of zygotic Slbp dur-

ing very early development. However as maternal RNA and protein is depleted and slbp2 is

not expressed after gastrula stages, this is likely to lead to the emergence of slbpty77e phenotypes

in the nervous system during subsequent development.

slbpty77e mutants have less neurons and show axonal defects

Coloboma phenotypes have been associated with retino-tectal pathfinding defects (eg. [32,33])

and indeed acetylated α-tubulin labelling of axons showed that retino-tectal projections are

severely compromised in slbpty77e mutants. In wildtype animals, retinal ganglion cell (RGC)

axons exit the eye via the choroid fissure at the optic nerve head, decussate at the optic chiasm
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and extend dorsally to innervate the contralateral optic tectum (Fig 2A and 2B). In slbpty77e

mutants, the few RGC axons present often failed to exit the eye to form the optic nerve (Fig

2A’) and instead extended in aberrant locations within the retina itself (Fig 1C’ arrowhead; see

also Imai et al, 2014). The optic tectal neuropil, formed by both RGC axons and tectal neuron

dendrites, was severely depleted in slbpty77e mutants (Fig 2B’) suggesting that tectal neurons

may also be depleted.

In addition to retino-tectal defects, several forebrain commissures, particularly those that

form later in development [34,35], were reduced or absent in slbpty77e mutants/morphants.

The brain underwent relatively normal morphogenesis and the anterior and post-optic com-

missures (AC and POC, respectively) formed but they were reduced in size and showed aber-

rant axons directed away from the main commissural pathway (Fig 2A’). In all genetic

backgrounds analysed, the stria medullaris and tract of the habenula commissure did not form

and consequently the habenula commissure (HC) was absent (Fig 2B’). In the TU background

another dorsal commissure, the posterior commissure (PC) was present in slbpty77e mutants

but was reduced to a thin bundle of axons crossing the midline, comparable to the tract in

much younger wild type embryos. Additional axons were observed in the tract of the PC ven-

trally, but these did not extend dorsal-wards to the commissure (Fig 2B’). These defects are

consistent with commissure establishment and growth stalling after the first day of

development.

Aberrant formation of the AC was the first discernable axonal defect we observed in ele
mutants/morphants. In 30 hpf wildtype embryos, telencephalic axons have crossed the midline

to form the AC (Fig 2D). In slbpty77e mutants/morphants this process was delayed and no AC

was visible at 30hpf (Fig 2D’and 2D”). The post optic commissure (POC) was present in

slbpty77e mutants by this stage but was usually defasciculated (Fig 2D’). Correlating with these

deficits, various genes encoding midline axon guidance molecules (including sema3d, slit2,

zic2.1 and netrin1a) showed misexpression in slbpty77e mutants (S2 Fig). The severity of these

commissural defects was variable in different genetic backgrounds and strongest in TU.

To assess whether the reduction in the extent of axonal labelling in slbpty77e mutants was

correlated with a reduction in the numbers of neurons, we examined expression of the Tg

(-8.4neurog1:GFP) transgene [36] which is present in many neurons throughout the anterior

CNS and the Tg(lhx5:GFP)b1205 transgene in dorsal telencephalic neurons[37]. Wildtype and

mutant embryos labelled with antibodies to GFP and acetylated tubulin showed no overt dif-

ference in the extent and pattern of neurons in either Tg(-8.4neurog1:GFP)sb1 or Tg(lhx5:

GFP)b1205 backgrounds prior to 30hpf. However at later stages, slbpty77e mutants (Fig 2E’ and

2F’) had fewer Tg(-8.4neurog1:GFP)sb1 and Tg(lhx5:GFP)b1205 positive neurons throughout

the forebrain when compared to wildtype siblings (Fig 2E and 2F). A similar phenotype was

seen in the retina in which the earliest born ath5:GFPrw021 expressing RGCs were observed in

the ventro-nasal retina of mutants but later born neurons in the central retina were depleted

and subsequent waves of neurogenesis were delayed (Fig 3A’). Later born retinal neurons were

severely depleted in slbpty77e mutants with rods (S1D’ Fig) and cone photoreceptors almost

absent (Fig 3B’). Overall, neurons in slbpty77e mutant brains initially appeared relatively normal

but after 30hpf, neuronal clusters failed to expand and late-born neurons were severely

depleted/absent suggesting production of neurons may be arrested in the mutant.

To determine if the reduction in the number of neurons was due to an increase in pro-

grammed cell death, we performed TUNEL labelling on 30hpf embryos. An increase in

TUNEL-labelled cells was observed in the tectum of slbpty77e mutants from 30 hpf (Fig 4A and

4A’). slbpty77e mutants showed no obvious cell death in the retina or forebrain at this stage and

cell death in the lens comparable to wildtype siblings (Fig 4B and 4B’). We next asked if the

axonal defects could be a consequence of the increased numbers of apoptotic cells in the brain.
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Fig 2. slbpty77e mutants have less neurons and show axonal defects. (A-D”) Acetylated α-tubulin labelling of wildtype (A-D) and elemutant (A’-D”) embryo

brains and eyes. Frontal (A-A’; D-D”) and lateral (B- B’) views of brains and lateral views of eyes (C,C’) of 3dpf (A-C’) and 30hpf (D- D”) wildtype (A-D), slbpty77e

mutant (A’-D’) and morphant (D”) embryos. Arrowhead in C’ highlights the aberrant extension of RGC axons within the retina. The asterisks in D’-D” highlight

aberrantly positioned axons near the midline commissural region in slbpmutant and morphant embryos. (E-E’) Lateral view with anterior to the left of 3dpf

wildtype (E) and slbpty77e mutant (E’) embryos showing expression of the Tg(-8.4neurog1:GFP)sb1 transgene (green) labelled neurons and acetylated α-acetylated

tubulin labelled axons/neurites (magenta). (F-F’) Frontal views of the telencephalon in 3dpf wildtype (F) and slbpty77e mutant (F’) embryos showing expression of
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Blocking cell death from 16hpf using a caspase inhibitor did increase the level of acetylated

tubulin labelling of neurites in the optic tectum and cerebellum (compare Fig 4C’ to Fig 4C”)

where apoptotic cells are prominent in slbpty77e mutants but did not rescue axonal defects. In

such embryos, aberrantly located retinal axons were still present (Fig 4C”) and habenular com-

missure and neuropil defects persisted. Overall the elaboration of axon tracts and neuropil did

not recover to wildtype levels (Fig 4C and 4C”) in caspase inhibitor treated slbpty77emutants

indicating that the axonal deficits seen in slbpty77emutants are not simply a consequence of cell

death.

Slbp is cell-autonomously required for differentiation and lamination of

retinal neurons

To address whether the slbpty77e mutation compromises neuronal differentiation in a cell

autonomous manner, we performed cell transplantation experiments in the eye in which

the Tg(lhx5:GFP)b1205 transgene (green) labelled neurons, SV2 labelled neuropil (red) and acetylated α-acetylated tubulin labelled axons/neurites (cyan).

Abbreviations: AC, anterior commissure; POC, post-optic commissure; ON, optic nerve; T, telencephalon; PC, posterior commissure; OT, optic tectum; Hb,

habenula; E,eye; P,pineal. Scale bars: (A-C”, E, E’) 100μm (D-D”, F, F’) 50μm.

https://doi.org/10.1371/journal.pone.0211073.g002

Fig 3. Slbp is required cell autonomously for retinal neuron differentiation. (A, A’) Images from live timelapse recordings of Tg(atoh7:GFP)rw021 GFP-transgene

expression in retinal neurons in control (A) and slbpty77e (A’) eyes at 30hpf. (B-B’) Frontal sections of 3dpf wildtype (B) and slbpty77e (B’) retinas showing anti-γ-tubulin

labelled neurites/neuropil (magenta) and zpr1-expressing cone photoreceptors (green). The arrowhead points to a few remaining zpr1+ cone cells in the slbpty77e

mutant eye. (C-C’) Frontal sections of 3dpf wildtype (wt) host retinas containing transplanted wildtype (C) or slbpty77e mutant (C’) GFP-labelled cells (green).(D-D’)

High magnification images of transplanted cells in C-C’. Note the break in the plexiform layer in the retina (arrowhead) in the vicinity of the slbpty77e mutant cells.

Abbreviations: nr, nasal retina. Scale bars: (A-C’) 50μm; (D-D’) 25μm.

https://doi.org/10.1371/journal.pone.0211073.g003
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patterns of neurogenesis are very stereotyped and differentiated neuronal types are easy to

visualise.

GFP-expressing wildtype cells transplanted into wildtype retinas formed clonal columns of

retinal neurons, with cells occupying all layers of the retina (n = 30, Fig 3C and 3D). In con-

trast, slbpty77e mutant cells transplanted into wildtype retinas lacked neuronal morphologies

and appeared clumped instead of being distributed throughout the three layers of the retina

(n = 7 clones in 4 retinas; Fig 3C’ and 3D’). Notably, slbpty77e mutant cells rarely, if ever, con-

tributed to the outer neural retina in which many later born neurons reside. Moreover, retinal

lamination, visualised with β-catenin antibody, was absent within, and adjacent to, the slbpty77e

mutant clones (Fig 3D’). These experiments show that Slbp is required cell autonomously for

differentiation and lamination of retinal neurons and that clones of slbpmutant cells can non-

autonomously disrupt organisation of adjacent wild-type retina.

slbpty77e mutant cells fail to transition from proliferation to differentiation

Slbp regulates histone mRNA metabolism and levels of Slbp protein are tightly cell cycle regu-

lated [18,20,22,24,27]. To examine the effect of loss of Slbp function on cell cycling we first uti-

lized flow cytometry to profile cell phasing in dissociated cells from 2dpf wildtype and slbpty77e

mutant embryos. The percentage of slbpty77e mutant cells (47.4%) in S-phase was double that

Fig 4. Suppressing cell death partially restores axonal/neuropil deficits in the tectum of slbpty77e mutants. (A-B’) Lateral view of 26hpf wild type (A,B) and

slbpty77e (A’,B’) heads and eyes stained with TUNEL. Apoptosis is prominent in the tectum (arrowhead) and dorsal hindbrain of the mutant (A’) but not within the

eye (B’). The white lines outline the lens within which there is apoptosis in both the wildtype and mutant eyes. (C-C”) Lateral view of 72hpf untreated wildtpe (C),

untreated slbpty77e (C’) and (C”) caspase inhibitor treated slbpty77e heads labelled with anti-acetylated tubulin (axons, green) and anti-SV2 (neuropil, red). Arrow

shows aberrant retinal ganglion axons in the mutant eye. Abbreviations: AC, anterior commisure; E, eye; OT, optic tectum; T, telencephalon. Scale bar: (A-A’,C-C”)

100μm; (B-B’) 50μm.

https://doi.org/10.1371/journal.pone.0211073.g004
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in wildtype (23.6%). Similarly, 10.4% of slbpty77e mutant cells were in G2/M phase compared

with 4.1% of wildtype cells. Conversely, fewer slbpty77e mutant (41%) than wildtype (71.7%)

cells with G1 DNA content were observed (Fig 5A).

To assess if proliferative cells showed abnormal spatial distributions in slbpty77e mutants, we

assessed BrdU incorporation (which labels cells in S phase) and PH3 labelling (which recog-

nises mitotic cells). In wildtype 56hpf embryos, S and M-phase proliferating retinal cells were

confined to the ciliary marginal zone whereas many BrdU and PH3 positive cells were located

in the central retina of slbpty77e mutants (Fig 5B and 5C’) as has also been shown in slbprw440

mutants[10]. Furthermore, expression analyses that showed that cyclins representative of all

stages of the cell cycle cyclin D1, cyclin E2, cyclin A, cyclin B were all upregulated in slbpty77e

mutants and were expressed in areas of the brain and eye that are largely post mitotic in wild-

type embryos (Fig 6 and S3 Fig). These results suggest that many neural cells remain prolifer-

ative in slbpty77e mutants and fail to transition to generating post-mitotic neurons.

To define the onset of cell cycle defects in slbpty77e mutants, the Tg(EF1α:mAG-zGem(1/
100))rw0410h transgene [38] that visualizes cells in S, G2 and M phases (Fucci green) and Tg
(EF1α:mKO2-zCdt(1/90))rw0405b transgene that highlights cells in G1 phase (Fucci orange)

were crossed into fish carrying the slbpty77e mutation and embryos analysed to detect the ratio

of proliferating and non-proliferating cells in live embryos. These transgenes were expressed at

low/negligible levels in the nervous system and so our analysis focussed on the transition from

proliferation to differentiation in the mesodermal somites.

Timelapse imaging of the developing somites showed that from about 14 hpf, most cells in

anterior somites (the earliest forming) of wildtype embryos were post mitotic (red) whereas in

slbpty77e embryos, the majority of cells were still expressing transgenes normally restricted to

proliferating cells (Fig 5D and 5D’). Some somitic slbpty77e cells maintained expression of S/

G2/M phase transgenes through later developmental stages (30/32hpf; Fig 5D and 5D’). Con-

sequently, although slbpty77e mutants only show an overt morphological phenotype from

around 30-32hpf, defects in the transition from proliferation to differentiation are already

present from as early as 12/14 hpf. These results are consistent with the observations above

and suggest that both in mesodermal and ectodermal tissues, slbpty77e mutant cells are compro-

mised in their ability to effectively transition from proliferation to differentiation.

RNAseq analysis of slbpty77e mutants reveals mis-regulation of histone and

chromatin remodelling genes and loss of expression of genes indicative of

differentiation

RNAseq analysis of slbpty77e mutant and wild-type embryos at 52hpf showed that gene expres-

sion in slbpty77e is strongly dysregulated in mutants with 2158 genes significantly upregulated

(S2 Table) and 2607(S3 Table) genes downregulated based on a q value� 0.01 (Fig 6A). Con-

sistent with the role of Slbp in histone RNA processing [18], we found that histone transcripts

were highly enriched in slbpty77e mutants including both canonical and non-canonical histone

subunits (49 of the top 100 highest fold over-represented transcripts are from histone subunit

encoding genes).

To determine whether the expression of certain groups of genes is particularly dysregulated

in slbpty77e mutants we used the AmiGO2 tool (The Gene Ontology Consortium) [39] to per-

form a GO term enrichment analysis for “Biological Process” on genes showing a significant

change in expression (q value� 0.01) in the RNAseq data. This enrichment analysis was per-

formed for both up (Fig 6B’, S2 Table) and down (Fig 6B”, S3 Table)-regulated genes. GO

terms significantly enriched (p� 0.05) in slbpty77e sequence datasets were compared to GO

terms assigned to 25,800 protein-coding danio rerio genes and were manually grouped into 14
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Fig 5. slbpty77e mutant cells fail to transition from proliferation to differentiation. (A,A’) DNA content of 48 hpf wildtype and slbpty77e embryos as

assessed by flow cytometry. (B,B’, C,C’) Transverse sections through 48hpf wildtype (B,C) and slbpty77e mutant (B’,C’) eyes immunostained with anti-BrdU
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categories (Fig 6B; S2 and S3 Tables). GO terms relating to DNA/RNA regulation (many of

which relate to chromatin regulation and cell cycle) were enriched, indeed accounting for 27%

of enriched GO terms in the up-regulated gene list and 6% for down-regulated genes. GO

terms relating to nervous system development (GO:0007399), neurogenesis (GO:0022008), eye

development (GO:0001654) and axogenesis (GO:0007409) (grouped under GO term category;

“system development”) were also highly represented in both upregulated (9% of all enriched

GO terms) and downregulated (27% of all enriched GO terms) gene datasets.

Further interrogation of the lists above for genes expressed with a log fold change of greater

than-2 revealed downregulation of many genes normally expressed in differentiated neurons

(S4 Table). For instance crx (Cone-Rod Homeobox Protein); syt5b (synaptotagmin Vb), neu-
rod6a (neuronal differentiation 6a), olig1 (oligodendrocyte transcription factor 1); slc6a1b (sol-

ute carrier family 6 (neurotransmitter transporter, member 1b); nr4a2a (nuclear receptor

subfamily 4, group A, member 2a); gria1a (glutamate receptor, ionotropic, AMPA1a); slitrk5a
(SLIT and NTRK-like family, member 5a); gad2(glutamate decarboxylase 2); grm2a (glutamate

receptor, metabolic 2a) were among the downregulated genes normally expressed in mature

neurons. In contrast among those genes comparably upregulated were many linked to cell

cycle and proliferation (S4 Table and S3 Fig). One of the most upregulated genes in slbpty77e

mutants was elavl2, which encodes another RNA binding protein [40] that is expressed as pro-

genitors transition to post-mitotic neurons ([41]; Reviewed in[42]) while expression of both

elavl3 and elavl4, expressed in mature neurons, was downregulated. These results are consis-

tent with many slbpty77e mutant cells failing to differentiate and maintaining expression of

genes characteristic of proliferative progenitor cells.

To validate and further interrogate the RNAseq data, we assessed expression of several

genes related to histone function or eye/nervous system development by in situ hybridization

and/or quantitative RT-PCR. qPCR of 19 selected genes showed comparable upregulation or

downregulation of expression as observed in the RNAseq dataset (Fig 6C). In situ hybridisa-

tion analysis of 10 genes from the RNAseq dataset (of which gnb3a, cyclinD1, netrin1a and

h2afx were also analysed by qPCR) showed changes in expression that confirmed RNAseq

data (Fig 6D–6F’ and S2 and S3 Figs). For instance, instead of being restricted to expected sites

of neural cell proliferation, histone h2afxmRNA was expressed very broadly throughout much

of the brain whereas the Protocadherin encoding gene pcdh10, which is expressed in neurons

and regulates axon guidance [43], was widely downregulated. Together, RNAseq data con-

firmed by qPCR and ISH showed widespread developmental transcriptional dysregulation in

slbpty77e mutants, with many changes consistent with a failure of many cells to transition to

differentiation.

Altogether, these results support that the axonal and retinal phenotypes observed in slbpty77e

mutants are potentially due to mis-regulation of modules of regulatory genes important for the

transition from proliferation to differentiation and subsequently for specific features of ner-

vous system development such as axon guidance and retinal morphogenesis.

Discussion

In this study we describe the cloning of the slbpty77e mutation and characterization of nervous

system phenotypes in slbpty77e mutants. We show that although early born neurons are present

and elaborate axons in slbpty77e mutants, later born neurons are severely depleted and

(B,B’) and anti-pH3 antibodies (C,C’). (D,D’) Series of projections of confocal images extracted from live time-lapse movies of tg(EF1α:mAG-zGem(1/
100))rw0410h; tg(EF1α:mKO2-zCdt(1/90))rw0405b transgenic wildtype (D) and slbpty77e mutant (D’) embryos showing cell cycle progression in cells of the

forming somites. Green cells are proliferative (S, G2, M) whereas red cells are differentiating somite cells. Scale bar: (B-C’) 50μm; (D-D’) 300μm.

https://doi.org/10.1371/journal.pone.0211073.g005
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Fig 6. RNAseq analysis reveals that loss of Slbp function induces large-scale changes in gene expression levels consistent with

many cells failing to transition to differentiation. (A) Volcano plot displaying differential expressed genes between wildtype and

Cells lacking Stem Loop Binding Protein function fail to transition from proliferation to differentiation

PLOS ONE | https://doi.org/10.1371/journal.pone.0211073 January 29, 2019 13 / 24

https://doi.org/10.1371/journal.pone.0211073


consequently late forming commissures are absent and early tracts and commissures fail to

grow. These results are consistent with the observation that many proliferative neural cells fail

to transition to differentiation and consequently there are major alterations in the spatial and

temporal distribution of proliferative versus differentiated cells in the developing nervous sys-

tem. One result of this phenotype is that early born neurons differentiate in a very abnormal

environment and this no doubt contributes to the axon guidance and other defects present in

mutants. Such phenotypes may be a consequence of the role of Slbp in regulating histones that

modulate chromatin structure thereby influencing expression of modules of developmental

regulatory genes.

A failure in transitioning from proliferation to differentiation may

underlie most slbp mutant nervous system phenotypes

While slbpmutants are not viable in mammals [22,44,45], the survival of fish slbpmutants

through embryogenesis allowed us to study relatively late nervous system phenotypes. The late

appearance of phenotypes in fish slbpmutants is likely due to the presence of both maternally

provided slbp transcripts and the early expression of the paralogous slbp2 gene through gastru-

lation stages. We assume that nervous system phenotypes emerge after the gradual depletion

of these pools of Slbp/Slbp2 protein.

A consistent feature of our phenotypic analyses of slbpmutants is the depletion of neurons

and continued presence of cells that fail to transition from proliferation to differentiation. For

instance, within slbpmutant eyes, the earliest born retinal neurons in the ventro-nasal retina

appear as normal but later born neurons in the central retina are severely depleted; in contrast

BrdU-incorporating cells and mitotic figures remain present within the central retina, long

after they are largely absent in wild-type eyes. This phenotype is consistent with other studies/

contexts in which loss of Slbp has been linked to cell cycle progression and differentiation defi-

cits [10,46,47].

The presence of early born neurons and early axon tracts and absence of later neurons/

tracts is perhaps most simply explained if sufficient maternal Slbp/Slbp2 protein is retained in

the precursors of these early-born neurons to enable them to exit the cell cycle. If this is indeed

correct, then small differences in the levels/perdurance of maternal Slbp/Slbp2 protein may

contribute to the variation in phenotypic severity seen in different backgrounds.

Although difficult to determine with any certainty, it is also possible that late phenotypes

such as a failure in the closure of the choroid fissure and commissural axon guidance pheno-

types could be a secondary consequence of the failure of many neural cells to differentiate. For

instance, choroid fissure closure is dependent on appropriately timed expression of genes in

neural retina and retinal pigment epithelium [33,48]; and GG and SW, unpublished data);

depigmentation of the ventral eye is associated with coloboma in slbpmutants suggesting a

failure in differentiation of the retinal pigment epithelium cells may contribute to the colo-

boma. Similarly, the altered environment along the pathways through which axons from early

slbpty77e embryos The red dots on the right represent the significant up regulated expressed transcripts (p< 0.01, false discovery

rate (FDR) q< 0.01); the red dots on the left represent the transcripts with expression significantly down regulated (p< 0.01, FDR

q< 0.01). Non-significant genes (q> 0.01) are represented by a black dot. (B) GO term categories for enriched genes. (B’, B”) Pie

charts showing percentages of GO terms relating to each category for up (B) and down (B’)-regulated genes in slbpty77e mutants

compared to wildtype. C) Graph showing real time PCR quantification of expression changes for genes selected from the RNAseq

dataset. Samples were normalized to β-actin and wildtype values for each gene were set to 1. Fold changes in mutants were plotted

relative to this value. (D-F’) Lateral views of 3dpf wildtype (D-F) and slbpty77e mutant (D’-F’) heads/eyes showing expression of

h2afx (D, D’); gnb3a (E,E’) and pcdh10 (F,F’). Note that expression changes for h2afx and gnb3a (C) are consistent with qPCR data

(yellow box in C). Scale bars: 100μm.

https://doi.org/10.1371/journal.pone.0211073.g006
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born neurons extend almost certainly contributes to the observed axon guidance phenotypes.

The early axon pathways in the brain are mostly established along boundary regions within the

neuroepithelium, many of which are sites of neuronal differentiation[49]. The depletion of

neurons in mutants coupled with the widespread misregulation of genes encoding axon guid-

ance proteins expressed in neuroepithelial cells presents the extending axons with a very

abnormal environment, no doubt contributing to their projection errors.

Slbp regulates expression levels of numerous histone genes and other genes

affecting chromatin

In slbpty77e mutants, the slbp gene encodes a predicted protein that is truncated at the amino-

terminus of the RNA-binding domain and lacks all the conserved residues required for RNA

binding activity and histone pre-mRNA 3’UTR processing. Therefore, slbpty77e mutant Slbp is

most likely devoid of all RNA binding activity. One consequence of this is a likely shortage of

histone proteins during S phase, which would lead to aberrant chromatin structure. Indeed,

RNAseq results showed genes encoding or associated with histone proteins are highly repre-

sented suggesting that the aberrant translational regulation of Slbp-dependent histones leads

to profound changes in histone gene transcription. The upregulation of histone RNA expres-

sion could be due to the production of unprocessed and aberrant polyadenylated histone

mRNAs that are more stable than corresponding wildtype RNAs as previously shown for his-

tone H3 and H4 in Drosophila Slbp mutants [24] and for all replication-dependent histones in

human cells [24]. This is in apparent contrast to recent work, again in Drosophila, showing

that histone mRNA levels can be dramatically decreased in Slbp mutants [29]. Additionally

selective downregulation of particular histones has been reported in mouse and slbp2 zebrafish

mutants [22,28].

Degradation of Slbp at the end of S phase may not be essential for its function

In mammalian cells, Slbp levels are regulated in a cell-cycle dependent manner through a

highly conserved phosphorylation motif (TTP) that targets Slbp for ubiquitin mediated degra-

dation by the proteosome at the end of S-phase [20]. This motif is present in Slbp, (but surpris-

ingly absent from maternally deposited Slbp2, [20]), suggesting that zebrafish Slbp has the

potential to be regulated in an identical manner. Indeed, exogenously expressed wildtype Slbp

is rapidly turned over (and consequently cannot rescue slbpty77e mutant phenotypes). How-

ever, in contrast, expression of a degradation resistant Slbp (slbp1TT-AA) very effectively rescues

slbpty77e phenotypes. The simplest explanation of this result is that degradation of Slbp at the

end of S phase is not required for histone mRNA regulation. Moreover, no overt phenotype

was observed in wildtype embryos overexpressing slbp1TT-AA suggesting that embryos can tol-

erate excess Slbp throughout many cell cycles.

Disrupted chromatin regulation underlies many congenital abnormalities

of visual system and brain development

If the role of Slbp in chromatin regulation underlies some of the more intriguing phenotypes

in slbpty77e mutants, then it would be consistent with an ever-increasing list of chromatin regu-

lators being linked to human congenital abnormalities of eye and brain development [50–56]).

For instance, loss of function of chromodomain helicase DNA binding protein 7 (CHD7, [57];

reviewed in [58] is the cause of CHARGE syndrome, a rare genetic syndrome that shares phe-

notypic characteristics with slbpty77e mutants. For instance, patients show congenital abnor-

malities in the visual system and brain including coloboma, cranial nerve deficits and
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intellectual disability (reviewed in [58]). Chd7 is also required for proper extension, pruning,

guidance and extension of axons in the developing central nervous system of the fly [50,59],

suggesting that such defects could contribute to the neurological symptoms in human patients.

Coloboma, small eyes, ear and neurogenesis defects are also observed when Hdac1 function

is compromised [60–62]. Hdacs (Histone deacetylases) are among the most critical histone-

modifying enzymes and their loss of function results in chromatin de-compaction and tran-

scriptional perturbation (reviewed in [63]. Various studies have linked Hdac (and indeed

Slbp) function with specific developmental genes and pathways such as Fgf [62,64], Notch

[10,62] and Wnt [4,65,66] but as we show, it is possible to observe quite specific phenotypes

even in contexts when there is massive dysregulation of gene expression. Consequently, when

chromatin regulators are implicated in developmental events, transcriptomic studies provide a

valuable overview of the expression landscape within which specific phenotypes may arise.

Materials and methods

Zebrafish lines and genotyping

AB, TU,WIK and EKWILLwild-type, eisspalte (ele/slbpty77e), Tg(-8.4neurog1:GFP)sb1[36], Tg(lhx5:
GFP)b1205[37], Tg(atoh7:GFP)rw021 [67], Tg(EF1α:mAG-zGem(1/100))rw0410h and Tg4(Xla.Eef1a1:
mKOFP2-cdt1)rw0405b [38] zebrafish (Danio rerio) lines were bred and maintained according to

standard procedures [68]. To prevent pigment formation, 0.003% phenylthiourea (PTU, Sigma)

was added to the fish water between 20 and 24hpf. For live timelapse imaging of Fucci lines

embryos were anaesthetised in 0.2% tricaine methanesulfonate (MS222, Sigma) in fish water.

Genotyping of the elety77e mutation was performed following PCR analysis of genomic

DNA using primers JH-641 (forward 50- CTCATCAGAAGACAGAAGCAGATCAACTA -30)
and JH-209 (reverse 50- TTGCCCACCCCTGTTCTA-30) followed by DdeI restriction diges-

tion of the PCR products to generate 445 bp and 418 bp fragments for the wildtype and mutant

alleles respectively. The bold C nucleotide is changed within the primer to create the DdeI
restriction site in the elety77e mutant allele. Latterly, a KASP assay (KASP, LGC genomics; ID

1234567890), performed according to the manufacturer instructions was also used for geno-

typing embryos.

SNP-mapping

ele heterozygotes in a TU background were outcrossed to WIK strain for bulk segregant

linkage analysis [69] and to EKWILL for subsequent mapping. Simple sequence length poly-

morphisms (SSLPs) were used to establish low resolution linkage[70]. Single nucleotide poly-

morphisms (SNPs) were identified by sequence analysis of PCR products derived from

heterozygote F1 ele/EKWILL fin-clip derived DNA for distantly located markers and by com-

parison to homozygous F2 EKWILL/EKWILL wildtype and elemutant embryos derived DNA

sequences for closely located markers. PCR products harbouring SNPs that gave rise to restric-

tion fragment length polymorphisms (RFLPs) were digested with appropriate restriction

enzymes and resolved by 2–4% agarose gel electrophoresis. If no restriction site was present,

dCAPS Finder 2.0 software [71] was used to design primers that generate a restriction site

polymorphism for analysis in the same manner. Sequence data was analysed using Lasergene

Navigator software.

Mapping-by-sequencing and RNAseq

We also used an RNAseq approach to map the elemutation, identify causal variants and reveal

gene expression differences in elemutants. To obtain embryos at the same developmental
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stage, elety77 heterozygotes were kept apart in breeding tanks and embryos collected 30 minutes

after divider removal. Mutant and sibling embryos were sorted by phenotype at 2 dpf. For

RNAseq analysis, we performed 2 biological replicates and 1 experimental replicate. Total

RNA was isolated from 30 embryos using 500μl of Trizol followed by homogenization with a

G30 syringe and standard chloroform extraction and ethanol precipitation. RNA integrity was

validated by RQI > 9.6, where 0 corresponds to fully degraded RNA and 10 corresponds to

intact RNA (Experion RNA HighSens Analysis, BIORAD).

RNAseq analysis was performed on an in-house Galaxy server using the Tuxedo pipeline

[72]. Briefly, reads from both mutants and siblings were mapped to the zebrafish Zv9.65

genome using TopHat2, assembled into a parsimonious list of transcripts using Cufflinks and

a merged transcript dataset from all the Cufflinks transcripts was created using Cuffmerge

[72]. Differential expression analysis was performed on the BAM files from all three biological

replicates and the merged transcript dataset using Cuffdiff (S1 Table). Differential expression

between mutant and sibling samples was only counted as significant if q< 0.01. GO term

enrichment analysis for “Biological Process” on all of the genes showing a significant change in

expression (q value� 0.01) in our RNAseq data was performed using the AmiGO2 tool (The

Gene Ontology Consortium) [39]. GO terms significantly enriched (p� 0.05) in ele compared

to a background list of 25,800 protein-coding Danio rerio genes were manually grouped into

14 categories (S2 and S3 Tables).

Mapping-by-sequencing was performed in parallel on the same in-house Galaxy server

using a modified version of the Cloudmap variant discovery mapping (VDM) platform[8,9] to

process RNAseq rather than whole-genome sequencing data. Instead of plotting individual

allele frequencies of the variants identified in the mutant sample as per the VDM pipeline, the

kernel density of homozygous/heterozygous SNPs was plotted along each chromosome. To

narrow the list of causal variants in the mutant sample we subtracted homozygous variants

identified in the sibling sample, as well as a list of common wildtype variants complied by com-

bining variants identified through our own sequencing the ekwill strain plus a list compiled

from previously published data [73,74].

Microinjection

An slbp antisense morpholino oligonucleotide was designed to target the third coding exon-

intron boundary and synthesised by Gene Tools LLC. slbpmorpholino (50-ATTCAAGAGAG
GCAACTGACCGATG-30) was injected at 2ng and to assess effectiveness of the morpholino to

block splicing, RT-PCR analysis was carried out using primers JH711 (forward: 50-CAAAGGA
GCTTCAAGGTGGT-30) and JH712 (reverse: 50-AGGGAAATCACTCGCAAGAA-30).

To generate a degradation resistant wildtype slbp expression construct for rescue analysis,

(T92A) and (T93A) mutations were created using a PCR-based mutagenesis method [75]. The

resulting fragment was cloned into CS2+RFP to generate CS2+RFP-SlbpTT-AA. Capped

mRNA was prepared using the mMachine RNA Synthesis Kit (Ambion) according to the

manufacturer’s instructions. One-cell-stage embryos resulting from elety77e heterozygous in-

crosses were injected with 50pg of CS2+RFP-SlbpTT-AA mRNA.

DNA content analysis

To obtain single cell suspensions, between 40 and 50 anesthetized mutant and wild-type 48hpf

embryos were incubated for 20 minutes on a shaker in 0.25% trypsin in L15 tissue culture

media (Sigma). Repeated trituration using fire-polished glass pipettes was performed. Cell sus-

pensions were cleaned with a mesh and re-suspended in PBS. Cells were fixed in 70% EtOH

and stored at 4ºC for several days. Cells were re-suspended in 100 microliters of propidium

Cells lacking Stem Loop Binding Protein function fail to transition from proliferation to differentiation

PLOS ONE | https://doi.org/10.1371/journal.pone.0211073 January 29, 2019 17 / 24

https://doi.org/10.1371/journal.pone.0211073


iodide solution (in 4 mM citrate buffer, pH 6.5, containing 0.1 mg/ml propidium iodide

(Sigma), 200 μg/ml RNase, and 0.1% Triton X-100) and stored at 4ºC until analysis. Data

acquisition was performed by using a Becton Dickinson FACS-Calibur machine and analyzed

by using the FlowJO programme.

Histology

Whole-mount immunolabelling procedures were performed as previously described [34,76].

For antibody staining of cryosections, embryos were first protected by sequential incubation

in 15% then 30% sucrose in phosphate-buffered saline supplemented with 0.5% Triton X-100

(PBST) for 12–16 hours at 4˚C, embedded in OCT, stored at –80˚C, and sectioned at 16–20μm

using a Leica cryostat. γ-tubulin (Sigma; 1:200); GFP (AMS Biotechnology TP401; 1:1000);

anti-acetylated tubulin (IgG2b, Sigma; 1:500); anti-SV2 (IgG1, DSHB; 1:500); BrdU (Roche;

1:300); PH3 (Upstate Biochemical; 1:500);Rho4D2(Abcam; 1:200); zpr-1 (ZIRC; 1:50) antibod-

ies were used.

Antisense mRNA probes for whole-mount in situ hybridisation were synthesised using

RNA polymerases (Promega) and digoxigenin labelled nucleotides (Roche) following manu-

facturer’s instructions. Whole-mount in situ hybridisations were performed essentially as pre-

viously described [33]. TUNEL labelling to detect apoptosis was performed using the ApopTag

Kit (Chemicon International). In ordered to block apoptosis, 24hpf embryos were treated with

300 μM of caspase inhibitor (Z-VAD-FMK, Sigma).

Cell proliferation assays

BrdU (Sigma) incorporation was performed as previously described [77]. Briefly, de-chorio-

nated embryos were incubated in 10mg/ml BrdU/15%DMSO in E3 on ice for 20 minutes,

washed in warm E3 at 28 degrees for 20 minutes prior to fixation with 4% paraformaldehyde.

Cell transplantations

Embryos from elety77e heterozygote incrosses were injected with GFP mRNA (40–50 pg per

embryo) at the one-cell stage. Thirty to 40 GFP+ cells were transplanted from the apical region

of mid-blastula donor embryos into early-gastrula-staged hosts in the region fated to become

the eye [78,79]. Donor embryos were either genotyped or allowed to grow until 3 dpf to distin-

guish mutants from siblings. Host embryos were fixed at the stages indicated in the results,

genotyped if necessary, then prepared for cryo-sectioning and antibody staining.

Imaging and data processing

Embryos subjected to whole-mount in situ hybridisation were cleared in serial incubations of

glycerol (25, 50, 75 and 95%), the eyes and brains dissected and placed in a drop of glycerol,

cover-slipped, and imaged with a 40X (0.8 NA) water-immersion lens using a Nikon E1000

microscope connected to a digital camera (Jenoptik) operated by Openlab (Improvision)

software.

Cryosections were examined by confocal fluorescence microscopy (Leica Systems) using a

40X (1.2 NA) or 63X (1.4 NA) oil-immersion lens. Whole-mount immunostained embryos

were imaged using a 25X (0.95 NA) water-immersion lens. All confocal images were processed

using Volocity (Improvision) or Imaris software and all figures were composed with Adobe

Photoshop and Adobe Illustrator.
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Quantitative RT-PCR

Mutant and sibling zebrafish embryos were sorted by phenotype at 48hpf. Total RNA was iso-

lated using Trizol according to manufacturer’s instructions. cDNA was synthesized and ampli-

fied with Transplex Whole Transcriptome Amplification Kit (Sigma) using 50 nanograms of

total RNA, according to the protocol provided. Nucleic acid concentrations were obtained

using a Nanodrop. Real-time PCR experiments were performed in triplicate using GoTaq

qPCR Master Mix (Promega) in a BioRad iCycler. Fold changes in RNA levels were calculated

according to the ΔΔCt method [80], and expression was normalized to β-actin levels. Quanti-

tect primers (Qiagen) were used to amplify aldh1a3 (QT02111613), actb1 (QT02174907),

ccnd1 (QT02178519), chd7 (QT02068584), col10a1a (QT02129708), crabp1b (QT02229297),

elavl2 (QT02092713), gnb3a (QT02129701), h2afx (QT02140278), hat1 (QT02209501),

hdac1 (QT02157099), ntn1a (QT02422490), nr2f5 (QT02125424), rx1 (QT02067786), shha
(QT02236136), shhab (QT02055312), smarcc2 (QT02101008), tdrd6 (QT02235821), tfap2
(QT02211622), and vsx2 (QT02050426).

Supporting information

S1 Fig. Morpholino, Rescue and supplementary phenotype data. (A-A’) Analysis of live

50hpf Control (A) and Morpholino injected embryos (A’) show that the morphological dent

caudal to the MHB (white arrow), indentations in the retina (black arrow) and coloboma are

successfully phenocopied.

(B) Electrophoresis gel of RT-PCR analysis confirmed that several missplicing events occur as

at least five variably sized products were generated (++ lane).

(C-C’) Injection of degradation-resistant slbpTT-AA-RFP synthetic RNA into WT(C) and ele
(C’)mutants rescues ele phenotype. Note heart oedema still present in some cases (C’).

(D-D’) Frontal sections of 3dpf wildtype (D) and slbpty77e (D’) retinas showing anti-γ-tubulin

labelled neurites/neuropil (magenta) and Rho4D2-expressing rod photoreceptors (green).

(TIF)

S2 Fig. Misregulation of expression of genes potentially implicated in midline axon guid-

ance in slbpty77e mutants. Views of heads/brains of wildtype (A-H) and slbpty77e (A’-H’)

embryos showing expression of genes indicated to the left of each row. Genotype is indicated

at top of each column. Lateral views (A,A’,C,C’,E,E’); dorsal views (B,B’,D,D’,F,F’,G,G’,H,H’).

All embryos are 60hpf apart from G,G’ which are 30hpf.

Scale bars: 100μm.

(TIF)

S3 Fig. Upregulation of cell cycle markers in slbpty77e mutants. Images of wildtype (wt, A-F)

and slbpty77e (A’-F’) heads (A-C’; E,E’) and eyes (D-F’) at 60hpf showing expression of genes

indicated to the left of each row. Genotypes indicated at top of each column. Lateral (A,A’;

C-F’) and dorsal view (B,B’). Scale bars: 100μm.

(TIF)

S1 Table. List of transcripts with differential expression between wildtype and slbpty77e

mutants. Unprocessed transcript list derived from the differential expression analysis per-

formed on the BAM files from all three biological replicates and the merged transcript dataset

using Cuffdiff.

(XLSX)

S2 Table. Gene list used for GO term enrichment analysis for “Biological Process” on all of

the upregulated genes showing a significant change in expression (q value� 0.01) in our
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RNAseq data. (Sheet 1) Upregulated genes sorted by q value.

(Sheet 2). Upregulated genes sorted by log2(fold change).

(Sheet 3) List of GO terms related to “Biological Process” generated using the AmiGO2 tool

(The Gene Ontology Consortium) manually grouped into 14 categories (Listed in Fig 6B).

(Sheet 4) Manual categories used to generate the GO term pie chart in Fig 6B’.

(XLSX)

S3 Table. Gene list used for GO term enrichment analysis for “Biological Process” on all of

the downregulated genes showing a significant change in expression (q value� 0.01) in

our RNAseq data. (Sheet 1) Downregulated genes sorted by q value.

(Sheet 2). Downregulated genes sorted by log2(fold change).

(Sheet 3) List of GO terms related to “Biological Process” generated using the AmiGO2 tool

(The Gene Ontology Consortium) manually grouped into 14 categories (Listed in Fig 6B).

(Sheet 4) Manual categories used to generate the GO term pie chart in Fig 6B”.

(XLSX)

S4 Table. Manually curated list of genes showing significant changes in expression level

related to nervous system development, cell cycle and histones. (Sheet 1) Downregulated

genes with a log2(fold change >-2) related to neural Development, axon pathfinding and

synaptogenesis.

(Sheet 2) Upregulated genes related to cell cycle.

(Sheet 3) Histone related genes all show a log2(fold change >2.5). Histone subunit genes

enriched in our dataset are largely found in two chromosomal regions on chromosome 7 and

chromosome 25.

(XLSX)
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