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Abstract. Large process model collections in use today contain hundreds or even thousands of conceptual
process models. Search functionalities can help in handling such large collections for purposes such as
duplicate detection or reuse of models. One popular stream of search functionalities is similarity-based
search which utilizes similarity measures for finding similar models in a large collection. Most of these
approaches base on an underlying alignment between the activities of the compared process models. Yet,
such an alignment seems to be quite difficult to achieve according to the results of the Process Model
Matching contests conducted in recent years. Therefore, the Latent Semantic Analysis-based Similarity
Search (LS3) technique presented in this article does not rely on such an alignment, but uses a Latent
Semantic Analysis-based similarity measure for retrieving similar models. An evaluation with 138 real-life
process models shows a strong performance in terms of Precision, Recall, F-Measure, R-Precision and
Precision-at-k, thereby outperforming five other techniques for similarity-based search. Additionally, the
run time of the LS3 query calculation is significantly faster than any of the other approaches.
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1 Introduction

Calculating the similarity between business pro-
cess models has been the focus of many research
publications in the past years due to its importance
regarding the management of large collections of
process models. These collections can contain
hundreds or even thousands of models nowadays,
see, e. g., the collections mentioned by Lau et
al. (2011) and Song et al. (2011), which makes
sophisticated operations like conformance check-
ing, duplicate detection, or the reuse of (parts
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of) models hard to conduct without automated
support. For example, searching for duplicates
or partially duplicated models in such collections
would require an enormous manual effort. Auto-
matic detection of similar models greatly helps in
realizing such operations as, for instance, manual
duplicate detection effort could only be applied
to model pairs whose similarity value is above
a certain threshold. Besides these application
areas, process model similarity measures are also
utilized for searching process model collections,
which is also called similarity-based search (Du-
mas et al. 2009). In this context, a process model
is used as query model, the input, with the aim
to find similar models as output. These output
models are then usually ranked by a decreasing
similarity value to the input model.

Regarding the automatic similarity measure-
ment between process models used in similarity-
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based search techniques, many approaches have
been published during the last years, see, e. g., the
surveys by Schoknecht et al. 2017b and Becker
and Laue (2012) for an overview. But while there
are quite a lot of approaches, most of them base
on an underlying alignment between the activities
of the compared process models, which is also
called Process Model Matching (Antunes et al.
2015). Thus, before calculating a final similarity
value, these approaches require an alignment and,
hence, the quality of the similarity calculation
depends on it. Yet, such an alignment—and even
more so a high quality alignment—seems to be
quite difficult to achieve according to the results
of the process model matching contests conducted
in recent years (Antunes et al. 2015; Cayoglu
et al. 2014). With respect to the results of the
Process Model Matching Contest 2015 (Antunes
et al. 2015), the participating matching techniques
performed quite poorly. Even the best Recall
values were below 0.7, which means that each
matching technique did not detect at least 30 % of
the correct matches. For one dataset the authors
of the matching contest publication even stated
that 36 % of the correct matches were not detected
at all. Regarding the results of the first contest
(Cayoglu et al. 2014), the overall performance
had been even weaker compared to Antunes et al.
(2015) with F-Measure values below 0.5.

The Semantic Analysis-based Similarity Search
(LS3) approach described in the following circum-
vents the matching challenge by not requiring such
a matching. Instead, it uses a Latent Semantic
Analysis-based Similarity Measure (LSSM) which
treats a whole process model as a text corpus and
calculates a similarity value based on the con-
tained words. It leaves aside the structure and the
behavior of process models as these aspects are
regarded less relevant with respect to the appli-
cation in a search function. As an example, the
order of activities might arguably be less impor-
tant in a search function than in the context of
conformance checking. While certain execution
sequences of activities might be prohibited by
legal regulations—which should be detected in
the conformance checking case—from a search

point of view the order of execution seems to be
less relevant. In this case, it is more important to
return models that describe the same process.

This article extends the work described in
Schoknecht et al. (2017a) by additionally pro-
viding an algorithm for process model search
using one specific process model as query. Be-
sides, algorithms for handling model collection
changes, i. e., insertion and deletion of models,
are described. Finally, further comparative eval-
uations have been conducted, which include a
comparison with five other state-of-the-art pro-
cess model similarity measures. In Schoknecht et
al. (2017a) the LS3 approach had been compared
to a syntax-based information retrieval technique.

The evaluation results of the LS3 for a model
collection containing 138 models are very promis-
ing as they yield an average F-Measure of 0.93
with a very high average Precision value of 0.97.
Also average Precision-at-5 and R-Precision1 are
very high with values of 0.99 and 0.96. Besides,
the run time is very competitive as a query is
answered in 4.5 milliseconds on average. These
results clearly outperform the performance of five
other similarity-based search approaches.

The rest of the article is organized as follows:
In Sect. 2 the underlying problem is described
while also introducing basic terminology and def-
initions. Besides, related work with regard to
similarity-based search and querying of process
model collections is described. Afterwards, the
newly proposed Latent Semantic Analysis-based
Similarity Search is presented in Sect. 3. Thereby,
we present algorithms for finding all similar mod-
els for each model in a collection, for finding
similar models for a specific query model, and for
handling insertion and deletion of models with
respect to the underlying search structure. The
evaluation and discussion of the results in Sect. 4
focuses then on the performance in terms of Pre-
cision, Recall, F-Measure, Precision-at-k, and
R-Precision as well as the run time. Additionally,

1 For further information on the used evaluation measures
Precision, Recall, F-Measure, Precision-at-k, and R-Precision
see Sect. 4 or Manning et al. (2008).
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we compared the LS3 approach to five other tech-
niques for similarity-based search. Finally, Sect. 5
summarizes the results of the article and provides
an outlook on future research.

2 Similarity-based Search for Process
Models

2.1 Business Process Models
The term ’Business Process’ refers to sequences
of manual or (partly) automated activities exe-
cuted in a company or organization according to
specific rules with a certain aim. Such processes
are typically represented as process models with
the help of business process modeling languages
like EPC (Keller et al. 1992), BPMN (Business
Process Model and Notation (BPMN) 2011), or
Petri Nets (Reisig 1985) for various reasons like
documentation or process analysis. While the LS3
approach could generally be applied for all the
mentioned languages, the process models in the
paper at hand are represented as Petri Nets as we
used this representation for our prototypical im-
plementation. The following definition provides a
formal description based on Reisig (1985).

Definition 1 Petri Net: A Petri Net is a 4-Tuple
PN = (P,T, F, ℓ) with

• P = {p1, p2, · · · , pm} being a finite set of
places,

• T = {t1, t2, · · · , tn} being a finite set of transi-
tions, i. e., the activities of a process,

• F ⊆ (P × T) ∪ (T × P) being a set of arcs
representing the control flow of a process and

• ℓ : P ∪T → L being a labeling function which
assigns a label l ∈ L to each place p ∈ P and
to each transition t ∈ T with L being a set of
labels.

• Additionally, it holds that P∩T = ∅ and P∪T ,
∅.

Note that we specifically included a labeling
function for the transitions and places as the Latent

Semantic Analysis-based Similarity Measure used
in the LS3 utilizes these labels to determine a sim-
ilarity value between process models. In principle,
these labels can contain information for various
process perspectives. For instance, a transition
label might describe the action, which has to be car-
ried out by a specific role on a specific data object
in the context of a process. An overview on differ-
ent approaches and their specifics for transforming
various business process modeling languages to
Petri Nets can be in found in (Lohmann et al.
2009).

2.2 Problem Description
The similarity-based search approach described
in the following section can be used to find pro-
cess models from a process model collection M
which have a certain degree of similarity to a
query model q. Thereby, the similarity of models
is based on a threshold value θ, i. e., a model is
considered similar to another model if their degree
of similarity is equal to or higher than θ. The sim-
ilarity measure used in the following is based on
Latent Semantic Analysis (LSA) (Dumais 1991),
which has originally been developed for informa-
tion retrieval. As the LSA analyzes the word
choice of text passages based on so called doc-
ument vectors representing word occurrences, a
corresponding representation has to be defined for
process models. Therefore, each process model
is considered a document for which a document
vector is created (Schoknecht et al. 2017a):

Definition 2 Document vector of a process
model: Let Wall be a set of terms, which con-
tains all distinct terms of a process model collec-
tion. M is a set of process models (the process
model collection) and w(m) is a function, which
returns the set of all terms (Bag-of-Words) Wm

of a process model m ∈ M with Wm ⊆ Wall,
i. e., Wall =

⋃
w(m) for all m ∈ M. The vec-

tor dm = (w1m,w2m, . . . ,wtm) then represents the
document vector of process model m, whereby
each index i represents a term of the set of all
terms Wall, which are contained in the process
model collection. An entry wim reflects the term
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frequency weight which describes how often a
certain term exists in a process model.

Important to note is that we treat a query model
q in principle as any other process model of a
collection, i. e., we represent q as a document vec-
tor, too. The Latent-Semantic Similarity Measure
(LSSM) introduced in Sect. 3.1 calculates a sim-
ilarity value between the vector representations
of q and each model m ∈ M of a collection in
the interval [0, 1]. As a result of such a query, all
models in M exhibiting a similarity value equal
to or higher than a threshold value θ are returned.
Hence, the following result set QR is calculated
by the LS3:

QR = {m | m ∈ M ∧ LSSM(q,m) ≥ θ} (1)

Note also that, although we use only Petri Net-
based process models, the LS3 approach for sim-
ilarity search could also be applied to models in
other notations. We restrict the presentation of the
LS3 approach to Petri Net-based models for two
reasons. Firstly, the current implementation of
the LS3 only allows the processing of Petri Nets
stored as PNML files (Weber and Kindler 2003).
Secondly, the document vector representation of a
process model depends on the modeling language
used. One example would be the consideration of
pools and lanes or data elements in BPMN dia-
grams, which could be treated differently than the
labels of Petri Nets in definition 2. One decision
to make would be if the words from lane labels
should be included only once or if the word fre-
quency should be weighted based on the number
of activities in a lane.

2.3 Related Work
Two major streams of research can be identified
which are related to the LS3 approach. The first
one focuses on querying languages for process
model collections, while the second one uses ex-
isting process models for similarity-based search.
Works falling into the first category include, e. g.,
the specification of query languages for process
models in BPMN (Awad 2007) or BPEL (Beeri et
al. 2008). Going one step further, APQL has been

published recently, which can be used indepen-
dently of a particular process modeling language
(ter Hofstede et al. 2013). Besides, the GMQL
query language (Delfmann et al. 2015) has also
been developed for querying process model col-
lections with models in arbitrary notations. Fur-
thermore, an approach for querying model-based
process descriptions as well as corresponding tex-
tual process descriptions is described in (Leopold
et al. 2016). Process model labels and natural
language texts are thereby stored in a common
data format, which can be queried using SPARQL.
Another query language heading in this direction
is described in (Fill 2016). It uses semantic model
annotations as the foundation for model querying.

Yet, common to all these approaches is the
need to formulate a query with the respective
query language, whereas existing process models
cannot be used as a query. In this respect the LS3
approach differs from the aforementioned works
as it uses existing models as queries. Hence, it is
closer to the second research stream.

An early work on similarity-based search is
described in Dijkman et al. (2009). The pre-
sented algorithms focus on the graph structure of
process models to determine a similarity value,
while requiring similarity values of labels, i. e., an
alignment of process model elements. The LS3
approach, however, explicitly focuses on the tex-
tual labels and does not require such an alignment.
The approach described in Kunze et al. (2015)
does also require an alignment while focusing
on the behavior of process models. Furthermore,
Kunze et al. (2015) does not calculate a similarity
value, but requires models to include all of the
behavior of a query model. The approach by Gater
et al. (2012) uses an index based on behavioral
characteristics of a model to speed up the query
answering. Speeding up the querying process is
also the aim of Yan et al. (2012) by using simple
but representative abstractions of process models,
so called features. Kastner et al. (2009) focuses on
the structural aspects and clustering of workflows
for similarity-based search, which the LS3 does
not use. The technique described by Awad et al.
(2008), however, is closer to our approach. They
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use an Enhanced Topic-based Vector Space Model,
which is based on an ontology, for the compari-
son of a BPMN-Q query against process models.
The LS3 in contrast does not rely on an ontology
but on LSA to calculate a similarity value, hence
there is no effort required for constructing such an
ontology. Another approach by Qiao et al. (2011)
uses topic language modeling, specifically the La-
tent Dirichlet Allocation (LDA) (Blei et al. 2003),
combined with a matching-based structural simi-
larity calculation and clustering to retrieve similar
models. The LDA aspect is closely related to our
Latent Semantic Analysis approach. But while the
LSA compares vectors in a k dimensional space
to determine a similarity value, the LDA-based
approach requires the estimation of the probabil-
ity that a process model can generate a certain
query. However, this approach performed quite
poorly in the reported evaluation with average
precision values ranging from 0.4 to 0.79 for dif-
ferent model collections so that we decided to go
one step back and proceed with the conceptually
simpler LSA approach instead of the LDA. But
although the evaluation results are very good for
the LS3 search (see Sect. 4), incorporating LDA or
similarity calculations based on word embeddings
using, e. g., word2vec (Mikolov et al. 2013)
might be a promising future research direction as
such methods are generally considered to exhibit
a better performance in computational linguistics
than LSA (Baroni et al. 2014).

Another recent approach described in Li and
Cao (2015) performs a similarity search based on
the structure of process models and by calculating
an alignment of model elements using wordnet
(Miller 1995) to calculate the semantic relatedness
of labels. In contrast, the LS3 approach does not
require such an alignment nor wordnet.

We acknowledge that there exist further publica-
tions describing a similarity measure for process
models which could be used in a search tech-
nique. To our knowledge, the aforementioned
publications relate most closely to our approach
of similarity-based search. For an overview of
further related publications see, e. g., the surveys
in Becker and Laue (2012) and Schoknecht et al.

(2017b). Furthermore, in the context of Process
Model Matching, Klinkmüller et al. (2013) use a
general bag-of-words approach for calculating an
alignment of activities.

To conclude, most existing similarity-based
search techniques require an alignment of process
model elements (usually between activities) to de-
termine a similarity value. Thereby, the alignment
calculation itself is typically based on a linguistic
comparison of the labels of the model elements
combined with further structural or behavioral
properties, see, e. g., Antunes et al. (2015) and
Cayoglu et al. (2014) for an overview on different
matching techniques. Additionally, the existing
similarity measures use structural or behavioral
properties of process models like Graph-Edit Dis-
tance to determine the final similarity score. The
LS3 on the contrary focuses only on the textual
content of process models, i. e. the labels, with-
out considering structure or behavior. Therefore,
it is conceptually simpler than most existing ap-
proaches, yet the evaluation shows that this is a
promising direction.

2.4 Latent Semantic Analysis
Latent Semantic Analysis (LSA) is both a theory
and a mathematical/statistical method for captur-
ing the meaning of words and documents. It
was developed to improve document retrieval
based on user queries (Deerwester et al. 1990).
LSA goes one step further than ordinary indexing
techniques—which are based on a syntactical com-
parison of terms of the query and the documents
(so called word matching approach)—by adding
a semantic aspect to these comparisons. As a
consequence, meanings of terms and documents
can be used to improve retrieval results (Dumais
et al. 1988).

LSA as a theory is based on the assumption
that the semantics of terms are determined by the
meanings of documents in which they appear and
vice versa that the semantics of a document is deter-
mined by the meanings of the terms contained in
it. Therefore the LSA is associated with the bag of
words approach (Landauer 2007). The LSA aims
at analyzing the choice of words, which reflects
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a hidden respectively latent semantic structure
of a document (Landauer et al. 1998). This can
be summed up by the following equation, which
describes that the meaning of a text passage is
the sum of the meanings of the terms it contains
(Landauer 2007):

meaningpassage =∑
mterm1,mterm2, . . . ,mtermn

(2)

Equation 2 shows the LSA’s main difference to
common bag of words approaches: common bag
of words techniques are based on the assumption
that a bag of words (as a unit) reflects the semantics
of the corresponding document, whereas the LSA
uses (in addition) the semantics of each term
(contained in a bag of words) to determine the
semantics of a document (Landauer 2007; Turney
and Pantel 2010).

LSA as a mathematical/statistical method is
based on the vector space model, which can be
represented by a Term-Document Matrix (TDM).
In this context a document is a text passage with a
predefined length and a term is a word or a mean-
ingful unit (e. g. statue of liberty). Figure 1 shows
the schematic structure of a Term-Document Ma-
trix.

©­­­­«

D1 D2 . . . Dn

t1 w11 w12 . . . w1n
t2 w21 w22 . . . w2n
...

...
...

. . .
...

tt wt1 wt2 . . . wtn

ª®®®®¬
Figure 1: Schematic structure of a Term-Document
Matrix

The columns of the matrix represent the doc-
uments D1,D2, . . . ,Dn, whereas the rows rep-
resent the terms t1, t2, . . . , tt . An entry in the
Term-Document Matrix represents the weight
(w11, . . . ,wtn) of a specific term in a specific docu-
ment such as the term frequency. By applying sin-
gular value decomposition, a t×n Term-Document
Matrix A with rank r is decomposed into three
matrices T , Σ and DT . The rows of the orthogonal

matrix T describe the term vectors whereas the
columns of the orthogonal matrix DT describe
the document vectors. Matrix Σ contains the cor-
responding singular values sorted in decreasing
order.

For analyzing semantics, the LSA uses a so
called semantic space. It is created by keeping
only the k largest singular values and the corre-
sponding values of the term and document vectors
thereby effectively reducing the dimensionality of
the vector space spanned by the term or document
vectors. This step is supposed to reduce noise
within the document collection, i. e., handling
problems related to synonymy and polysemy of
words (Deerwester et al. 1990). Figure 2 shows
how the dimension reduction (combined with the
singular value decomposition) effects the vector
representations and thus revealing semantics and
similarities (Dumais 2007).

In a common vector space model the orthogonal
dimensions are formed by unique terms and docu-
ments are represented as vectors by their contained
terms. By using less dimensions than unique terms
the relation of terms to specific latent semantic
dimensions is revealed. Consequently the seman-
tics of a term is determined by the direction of its
vector.

The product Ak of the generated matrices Tk ,
Σk and Dk

T is the best least squares approximation
of the original Term-Document Matrix A (Martin
and Berry 2007). The explained singular value
decomposition and the reduction on k dimensions
is shown in Figure 3. The four main steps of
the LSA-based retrieval procedure according to
Dumais (2007) are then as follows:

1. Extraction of terms for generating a Term-
Document Matrix: In this process step, terms
are extracted from each document of the ex-
amined collection. It can be useful to apply
Natural Language Processing concepts before
constructing the Term-Document Matrix (e. g.,
removal of stop words). The result of this step
is a Term-Document Matrix containing term
frequencies.
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𝐿𝑆𝐴_𝐷𝐼𝑀1

Figure 2: Schematic effect of dimension reduction on vector representations

2. Transformation of the Term-Document Matrix:
In this step, the entries of the Term-Document
Matrix (term frequencies) are transformed by
applying a weighting scheme like log-entropy
weighting (Landauer et al. 1998), which enables
better differentiation of documents.

3. Singular value decomposition and dimension
reduction: This step decomposes the Term-
Document Matrix and truncates the resulting
matrices as shown in Figure 3. The result of
this step is the so called semantic space.

4. Retrieval in semantic space: Term-Term,
Document-Document and Term-Document
comparisons are computed in the semantic
space by applying an appropriate similarity
measure for vectors such as the cosine similar-
ity (Rijsbergen 1979, p. 25).

For further information on the LSA and its
specifics (e. g., dimension reduction and different
weighting schemes), we refer to (Landauer et al.
1998). This article also provides an example for
the calculations conducted for querying document
collections.

3 LS3: Latent Semantic Analysis-based
Similarity Search

We describe the Latent Semantic Analysis-based
Similarity Search (LS3) in this section, whereby
we first introduce an approach for finding simi-
lar models for each model in a collection (LS3-
QueryAll approach). Subsequently, we describe
how a specific query model can be used for query-
ing a model collection (LS3-Query approach).

Thirdly, we explain how insertion, deletion and
updating of models can be handled with respect to
the underlying search structure of the LS3 search
approaches.

3.1 Finding Similar Models in a Model
Collection

The similarity-based search between all process
models of a collection is conducted according
to the following five steps, which are also illus-
trated in Figure 4. Thereby, the first four steps
represent the similarity value calculation of the
Latent Semantic Analysis-based Similarity Mea-
sure (LSSM), while the fifth step represents the
actual query result calculation. The underlying
algorithm is shown in Algorithm 1.

1. Extraction of terms for generating a
Term-Document Matrix: For generating a Term-
Document Matrix every process model has to
be represented by its document vector as spec-
ified in Definition 2. These vectors then form
the columns of the Term-Document Matrix after
step 1 in Figure 4.

In our case of Petri Net-based process models,
we first extract the distinct terms of all transition
and place labels L from each process model m ∈

M, whereby the set M contains all models of a
collection (L according to Definition 1). Then, the
following three preprocessing steps are executed:
(1) All words are transformed into lower-case
letters, (2) stop words are removed and (3) the
remaining terms are stemmed2 according to Porter
(1980) (Porter-Stemmer).

2 In the evaluation all labels are in English. For other natural
languages different stemmers would be need.
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Figure 3: Singular value decomposition and dimension reduction
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Figure 4: Conceptual LS3 search approach for calculating all similar models in a process model collection
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Algorithm 1: QueryAll(M,t,k)

input : Model collection M , threshold t,
dimensionality parameter k.

output : A set of tuples QR = {(m,Msim)} each
containing a model m ∈ M and the set of
similar models Msim.

/* Calculate similarity values matrix
SimM. */

1 TDM = calculateTDMatrix(M);
2 WTDM = weightTDMatrix(TDM);
3 SVD = calculateSVD(TDM);
4 SVDK = calculateReducedSVD (SVD,k);
5 SimM = calculateLSSM(SVDK);
/* Calculate QueryAll results. */

6 QR = ∅;
7 for each (row i in SimM) do
8 results = ∅;
9 for each (column j in SimM) do

10 if (SimM[i][ j] ≥ θ) then
11 Add model mj to results;
12 end
13 end
14 Add tuple (mi, results) to QR;
15 end
16 return QR;

This preprocessing is conducted to reduce the
vector space by eliminating terms (stop words) that
do not contribute to the semantics of a process
model. The stemming of terms is executed to
ensure that words which have the same stem are
assigned to the same term. Through that originally
syntactically different terms increase the count of
the same stemmed term in the Term-Document
Matrix instead of being listed as separate terms.

Finally, this step results in a Term-Document
Matrix containing absolute term frequencies ti j
as matrix entries. These term frequencies specify
how often a term i occurs in model j. It holds that
1 ≤ i ≤ t with t being the amount of unique terms
and 1 ≤ j ≤ n with n being the amount of models
within the process model collection M . This step
is conducted in line 1 of Algorithm 1.

2. Transformation of the Term-Document Ma-
trix: As the usage of absolute term frequencies is
discouraged in studies (Zaman and Brown 2010),

we apply the log-entropy weighting scheme (Lan-
dauer et al. 1998) on the values of the Term-
Document Matrix generated in step 1. The log-
entropy weighting scheme is defined as follows:

lei j = log2(t fi j + 1)·

(1 +
n∑
j=1

pi j · log2pi j
log2 n

), ∀ t fi j > 0 (3)

Thereby, pi j =
t fi j
gfi

is the quotient of the term
frequency t fi j and the global frequency g fi of
term i. The global frequency indicates how often
a term i appears in the whole process model
collection.

The log-entropy weighting scheme consists of
two parts. On the one hand there exists a local
weighting function reducing big differences be-
tween term frequencies by a logarithmic transfor-
mation. On the other hand, the Shannon entropy
(Shannon 1948) is selected as a global weighting
function. By this, high weights are assigned to
terms having high information content as they en-
able better differentiation between process models,
whereas terms with low information content re-
ceive low weights. Terms have a high information
content when they appear in few models and a low
information content when they appear in many
models (Cover and Thomas 2006). See also the
second step of Figure 4 and line 2 of Algorithm 1.

The intuition behind this weighting scheme is
that terms appearing infrequently in the models
should receive a higher weight as they can be used
to differentiate models. E.g., in case of finding
similar customer process models the term “cus-
tomer” might appear in all models, whether it
might be a complaints handling or a customer con-
tact process model. Hence, the term “customer”
is less suited for differentiating these models and
should therefore receive a lower weight compared
to “complaint”, which can be used to differentiate
the two process models.
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3. Singular value decomposition and dimen-
sion reduction: In this step, the transformed Term-
Document Matrix is decomposed into three ma-
trices (see step 3 in Figure 4 and line 3 of Algo-
rithm 1). Only the matrices Σ and DT are relevant
for the purpose of determining the similarity be-
tween process models. The matrix DT contains
the calculated process model vectors, while ma-
trix Σ contains the corresponding singular values
sorted in descending order. The amount of singu-
lar values greater than zero corresponds to the rank
r of the original Term-Document Matrix. There-
fore the upper boundary for choosing a certain
amount of dimensions for the following dimension
reduction is determined by the rank r . By choos-
ing r dimensions the calculated similarity values
in step 4 are the same as if they were calculated
with the original (transformed) Term-Document
Matrix.

For values k < r the k highest singular values
are kept, whereas the remaining values are set to 0.
The grey colouring of the matrices in Figure 4
visualises this dimension reduction step (see also
line 4 of Algorithm 1). The determination of a
dimension k is application-dependent—thus, there
exists no general recommendation for an optimal
retrieval quality (Dumais 1991).

4. Similarity value calculation: Before calcu-
lating the similarity between two column vectors,
it is necessary to scale the entries of these vectors
with their corresponding singular values (Deer-
wester et al. 1990; Martin and Berry 2007). The
semantics of a process model is represented by
the direction of its document vector, whereas the
length of a vector might be misleading. To be
independent of the vector length, we prefer the
cosine similarity over distance measures (e. g.,
the euclidean distance) (Turney and Pantel 2010).
As the degree of similarity between two models
respectively their vector representations is based
on the cosine similarity (Rijsbergen 1979, p. 25),
the angle between the vector representations is de-
cisive. The cosine similarity is defined as follows:

cossim(d1, d2) =
d1 · d2

|d1 | · |d2 |
=

n∑
i=1

di1 · di2√
n∑
i=1

(di1)2 ·
√

n∑
i=1

(di2)2

(4)

While the numerator calculates the scalar prod-
uct of the two vectors d1 and d2, the denominator
calculates the product of the euclidean lengths of
the two vectors. This results in a value range in
the interval [−1, 1] for the cosine similarity with
1 indicating the highest possible similarity and
−1 indicating the largest possible difference. In
a vector space model, the value 1 corresponds to
a degree of 0◦ and the value −1 corresponds to a
degree of 180◦.

For the actual determination of the similarity
between two models mx and my , we then use the
cosine similarity of their vector representations
transformed on the interval [0, 1] as specified
in Equation 5. This interval is used frequently
for expressing the degree of similarity with 0
indicating dissimilarity and 1 indicating equality.

LSSM(mx,my) =
cossim(mx,my) + 1

2
(5)

For the calculation of the n×n similarity matrix
SimM Equation 5 is applied on every combina-
tion of models respectively vectors. The entries
of the matrix SimMxy, 1 ≤ x, y ≤ n then corre-
spond to the similarity values LSSM(mx,my). For
clarification see step 4 in Figure 4 and line 5 in
Algorithm 1.

5. Retrieval of query results: After generating
the similarity matrix SimM, all similar models
in a process model repository are calculated by
comparing the similarity values to a threshold
value θ (0 ≤ θ ≤ 1). Eventually, the retrieval
result of a similarity based search QR(M) contains
a set of tupels (mx, {my}), which specify the set of
similar models {my} for a model mx by applying
Equation 6 (see also lines 6–16 in Algorithm 1):
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QR(M) = {(mx, {my}) | SimMxy ≥ θ}

∀ x, y, 1 ≤ x, y ≤ n
(6)

3.2 Model Querying
The computation of query results based on a query
model q is shown in Algorithm 2. Thereby, the
first four lines represent the same steps as in
the LS3-QueryAll approach described previously.
I. e., a weighted Term-Document Matrix is gener-
ated, which is then decomposed by singular value
decomposition and projected onto k dimensions.
The remaining lines represent three new steps:

1. Generation of a pseudo document: To be
able to find similar models in a model collection,
the query model q has to be projected into the
k-dimensional vector space computed according
to the LSA concept. Therefore, a so called pseudo
document has to be created (line 5 in Algorithm 2),
which is essentially a document vector of a process
model (see Definition 2). Referring to Deerwester
et al. (1990), a pseudo document of a query model
q can be calculated according to Equation 7.

pseudoDoc = qTUkΣ
−1
k (7)

Thereby, qT is a log-entropy weighted vector
of the term frequencies of query model q while
term frequencies of further terms appearing in the
model collection M but not in q are set to 0. Uk

and Σk are the k-dimensional term and singular
value matrices of the LSA.

Two further aspects should be noted with re-
spect to vector qT . (1) Terms appearing in q but
not in M are not considered, i. e., the original
Term-Document Matrix from M is not changed.
This makes sense as we want to project q into the
existing vector space for finding similar models but
we do not want to include q into the model collec-
tion M . (2) Regarding the log-entropy weighting
of terms in q, we decided to not change the ab-
solute frequency of terms. Hence, we weigh the
terms with the same term frequency and document
number values as when originally generating the

weighted Term-Document Matrix of M . The rea-
son is, again, that we want to project q into the
existing vector space without changing M .

2. Calculation of similarity values: After gen-
erating a pseudo document from q, the LSSM sim-
ilarity values between pseudoDoc and all models
m ∈ M are calculated (line 6 in Algorithm 2). This
calculation is proceeded as previously described
in Equation 5.

3. Finding similar models: Finally, the result
set of similar models to q is determined according
to lines 7–13 of Algorithm 2. Each model in M
having an equal or higher LSSM similarity value
to q than θ is added to the result set QR:

QR(q,M) = {mi | LSSM(q,mi) ≥ θ}

∀ mi ∈ M
(8)

Also note that the reduced singular value de-
composition has to be created only once for a
model collection to answer any number of queries
as long as the collection is not changed, i. e., no
models are inserted, deleted, or changed.

3.3 Insertion, Deletion and Updating of
Models

When a model collection is changed through the
insertion of a new model, the deletion of an ex-
isting model or through updating a model, i. e.,
changing an existing model, the LS3 search cannot
directly incorporate the changes of the collection
in the querying results. As the semantic querying
space is constructed once from a Term-Document
Matrix, a mechanism is needed which enables
the inclusion of changed model data in terms of
the contained terms and term frequencies into
the semantic vector space. To do this, the al-
gorithms described in the following base on a
Term-Document Matrix which has been created
from a model collection and change the corre-
sponding matrix. Afterwards, the newly created
Term-Document Matrix has to be processed again
to be able to calculate LSSM similarity values and
query the semantic space.
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Algorithm 2: Query(M,q,t,k)

input : Model collection M , query model q, threshold
t, dimensionality parameter k.

output : A set of models QR containing the models
similar to q.

/* Calculate reduced singular value
decomposition. */

1 TDM = calculateTDMatrix(M);
2 WTDM = weightTDMatrix(TDM);
3 SVD = calculateSVD(TDM);
4 SVDK = calculateReducedSVD (SVD,k);

/* Calculate pseudo document. */
5 pseudoDoc = generatePseudoDoc (q,SVDK);
/* Calculate similarity values. */

6 SimValues[] = calculateLSSM(SVDK,pseudoDoc);
/* Calculate query results. */

7 QR = ∅;
8 for (i = 0 to SimValues.length − 1) do
9 if (SimValues[i] ≥ θ) then

10 Add model mi to QR;
11 end
12 end
13 return QR;

The algorithms for updating the semantic query
space of a model collection operate on a Term-
Document Matrix thereby limiting the perfor-
mance penalty when changing a model collection.
Only newly inserted or changed models have to be
parsed for the terms they contain and their term
frequencies, while the Term-Document Matrix is
adapted based only on these data. In case of model
deletions it is even only necessary to know which
models should be deleted.

The pseudo code in Algorithm 3 shows the
procedure for updating a Term-Document Matrix
(TDM) in case new models are inserted in a col-
lection. First, the terms and frequencies contained
in the new model m are extracted and stored in a
multi set (line 3). After that, lines 4–16 calculate
the frequency entries for a vector representation
of m according to Definition 2. For each term
contained in the original Term-Document Matrix
in case the term is also contained in m, the cor-
responding vector entry is set to the number of
occurrences in model m (line 9) and the term
is removed from the multi set created in line 3

Algorithm 3: InsertModel(TDM,m)

input : Term-Document Matrix T DM[i][ j], model m.
output : Output Term-Document Matrix with m

included.
1 int n = amountColumns (TDM);
2 int t = amountTerms (TDM);
3 MultiSet<String> termsM = extractTerms(m);
4 String[] termsTDM = getTerms(TDM);
5 int[t] mVector;

/* Calculate column vector of m. */
6 for (i = 0 to t − 1) do
7 term = termsTDM[i];
8 if (termsM .contains(term)) then
9 mVector[i] = termsM .count(term);

10 termsM.remove(term);
11 end
12 else
13 mVector[i] = 0
14 end
15 end
16 TDM = addColumn (TDM, mVector);

/* Add additional terms of m. */
17 for (k = 0 to termsM .size() − 1) do
18 TDM = addRow (TDM, termsM.get(k));
19 for ( j = 0 to n − 1) do
20 TDM[t+k][j] = 0;
21 end
22 TDM[t+k][n] = termsM.count(termsM.get(k));
23 end
24 return TDM;

(line 10). Otherwise the entry is set to 0 (line 13).
Afterwards, a new column vector for m is added
to the TDM.

As a new model might contain terms not already
included in the TDM, these new terms have to be
added to the TDM, too. This is done in lines 17–
23. For each term remaining in the multi set of m a
new row vector is added to the TDM (line 18), the
entries are set to 0 in case the column represents
a model other than m (lines 19–21), and for the
column representing m the entry is set to the term
frequency in m (line 22). Finally, an updated
TDM is returned in line 24.

Algorithm 4 shows the procedure for deleting
an existing model m from a collection. As in the
case of model insertion, the TDM for the model
collection has to be updated to reflect the model
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Algorithm 4: DeleteModel(TDM,m)

input : Term-Document Matrix T DM[i][ j], model m.
output : Output Term-Document Matrix with m

removed.
1 TDM = removeColumn (TDM, m);

/* Remove empty term rows of T DM. */
2 int n = amountColumns (TDM);
3 int t = amountTerms (TDM);
4 boolean isNull = true;
5 for (i = 0 to t − 1) do
6 for ( j = 0 to n − 1) do
7 if (T DM[i][ j] , 0) then
8 isNull = false;
9 end

10 end
11 if (isNull == true) then
12 TDM = removeRow (TDM, i);
13 t = t − 1;
14 i = i − 1;
15 end
16 isNull = true;
17 end
18 return TDM;

deletion. Therefore, the column representing
model m is deleted first (line 1). Afterwards
we need to check whether any term vectors are not
necessary anymore, i. e., we remove row vectors
which only contain frequency values of 0 as this
means that the corresponding term is not contained
in any model of the model collection anymore.
The search and removal for such term vectors are
conducted in lines 2–17. Finally, the new TDM is
returned in line 18.

Lastly, an update of a model—e. g., changes
in a model like adding activities or changing a
label—is treated as removal of the original model
according to Algorithm 4 and then adding the
updated model to the collection according to Al-
gorithm 3 afterwards. Hence, an update is just
a combination of the deletion and insertion algo-
rithms presented previously.

In principle, we could have also updated the
semantic querying space according to existing pro-
posals from the LSA literature. These folding-in
and folding-out approaches (Berry et al. 1995)
might be faster than our solution as they do not

have to recalculate the semantic space. Yet, these
techniques might have also reduced query accu-
racy so we decided against them. Besides, our
evaluation in Sect. 4 shows that at least for medium
sized model collections the semantic space cal-
culation does not prevent the LS3 search from
being used in practical usage scenarios. If the
performance would decrease for very large model
collections, one could also resort to other dis-
tributed algorithms for SVD calculation (Řehůřek
2011).

4 Evaluation

4.1 Evaluation setup
For the empirical evaluation of the LS3 we used
three real-life process model collections. These
three can be divided into the categories mined
models, field models, and models from controlled
modeling environments to provide for different
model sets with varying matching difficulty as
has been described in Thaler et al. (2017). This
is especially interesting as the results show that
matching-based similarity search approaches per-
form indeed worse in case of higher matching
difficulty.

The first model set, which has been used, was
introduced by Vogelaar et al. (2011). This collec-
tion contains models of eight different business
processes performed by 10 different dutch mu-
nicipalities (DM). Hence, there exist 80 process
models in the collection. This model collection
is linguistically harmonized, i. e., node labels are
unambiguous and consistent. Thus, same activi-
ties are labeled in the same manner, which should
be helpful to search approaches calculating simi-
larity values based on an alignment of activities.
To provide an example of the term linguistically
harmonized, consider an activity “Fill in payment
data and approve” from one process model of one
of the municipalities. If in any of the other nine
municipalities payment data has to be filled in
and be approved, then the corresponding activity
would also be labelled “Fill in payment data and
approve”. As also described in Thaler et al. (2017),
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these models belong to the mined models cate-
gory, for which correct matches can be calculated
comparatively easy.

The second model collection contains two
model sets of the Process Model Matching Con-
test 2015 (Antunes et al. 2015), namely the Univer-
sity Admission (UA) and Birth Registration (BR)
data sets. Each model set contains nine models de-
scribing the admission processes of nine German
universities and, respectively, the birth registration
processes of different countries. These models are
not linguistically harmonized, i. e., they contain
semantically equal activities described with labels
using a differing word choice. This collection
belongs to the field category according to Thaler
et al. (2017) for which correct matches are difficult
to calculate.3

Finally, the third model collection belongs to
the controlled environment category. We used
models provided by Camunda.4 This model col-
lection (CM models) resulted from various BPMN
training sessions, in which students had to model
processes according to a textual description. We
selected ten models for each of the four processes
of the complete data set for the evaluation.

Further characteristics of the different model
sets can be found in Tab. 1. We combined all
models in one collection so that the total amount
of models used for the evaluation is 138, which
refer to 14 underlying processes.5

For our purpose, we transformed these models
from the original representations into Petri Nets
and stored them in the XML-based format PNML
(Weber and Kindler 2003), which enables an auto-
matic processing of the models. A prototype6 of
the LS3 has been implemented in JAVA using the
Stanford Parser for tokenizing labels (Klein
and Manning 2003). The evaluation has been

3 See also the matching results in Antunes et al. (2015).
4 For further details on this model set see https://github.com/
camunda/bpmn-for-research.
5 The models can be obtained from http://butler.aifb.kit.edu/
asc/models.zip
6 The JAVA code can be obtained from https://github.com/
ASchoknecht/LS3.

conducted on a laptop with the following speci-
fications: Intel(R) i7-4750HQ CPU, 4 GB RAM,
Windows 8.1 and JAVA 1.8.

To evaluate the LS3 we, firstly, determined
Precision, Recall and F-Measure on the basis
of the described process model sets. Thereby,
Precision is defined as the fraction of relevant and
received results (true positives TP) to all received
results (B); Recall is defined as the fraction of
relevant and received results to all relevant results
(A); and F-Measure is defined as the harmonic
mean of Precision and Recall. Formally, these
values are calculated as follows:

P =
|TP |
|B|
, R =

|TP |
|A|
, F = 2 ·

P · R
P + R

To calculate these measures we used each model
as a query model with all 138 models in one
collection and expected the search approaches to
return the corresponding relevant models from
the collection including the query model itself,
i. e., we did not delete the query model from the
collection. As the four model sets only contain
different processes, the relevance of a model with
respect to a query is determined by the underlying
modeled process. E. g., in case a model from the
UA collection was used as query only the nine
UA models were relevant results, while returned
models from the DM, BR, or CM collections were
considered false positives.

Hence, in case of the Dutch municipalities
model set, ten corresponding models should have
been returned for each model used as query. In
case a query model was from the University Admis-
sion or Birth Registration sets nine corresponding
models should have been returned. And in case of
a query from the CM model collection, again, ten
corresponding models should have been returned.
This means that the amount of relevant results |A|
for a specific query model is determined by the
number of models per process, which is shown in
the third row in Tab. 1.

Besides these quality measures for the query
results, we secondly measured the run time by
calculating the average millisecond values of ten
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Table 1: Characteristics of the evaluation model sets

DM UA BR CM

Number of processes 8 1 1 4
Number of models per process 10 9 9 10
Total number of models 80 9 9 40

Total number of distinct terms1 391 149 141 191
∅ number of terms per model 78.08 71.22 61.56 36.25
STD number of terms 49.08 32.46 17.78 10.94
Min. number of terms 19 38 37 21
Max. number of terms 236 134 87 68
1 Terms sometimes occur in more than one model. Such terms are only

counted once for the total number of distinct terms.

runs. This means in case of the LS3-QueryAll ap-
proach that we measured the time for calculating
all results ten times including the generation of
the LSSM matrix each time. In case of the single
query LS3 approach (LS3-Query) we measured
the time for generating a pseudo document, cal-
culating similarity values, and determining query
results.

Thirdly, we calculated R-Precision and
Precision-at-k values to evaluate the ranked
retrieval results. R-Precision measures Precision
with respect to the first |A| models, i. e., with
respect to the amount of relevant results |A| for
a query. Considering again a query from the
UA model set, for instance, Precision would be
determined for the nine models with the highest
similarity values to the query. Precision-at-k
proceeds in the same direction, but considers k
models instead of |A|. As the maximum value of
|A| is ten, i. e. the maximum number of models
per process, we decided to use k = 5 to provide
a value which is not too close to ten but also not
too small. The provided ranked result lists for
determining R-Precision and Precision-at-5 values
were calculated by setting θ = 0.0 and ordering
the results by decreasing similarity values. For
further details on all the used measures have a
look at Manning et al. (2008).

Besides calculating these metrics for the LS3
approaches, we compared the results with five
other approaches for similarity-based search for

process models.7 These comprise of van Dongen
et al. (2008), Dijkman et al. (2009), Akkiraju and
Ivan (2010), La Rosa et al. (2010), and Yan et al.
(2012). van Dongen et al. (2008) is based on causal
footprints describing the precedence relations be-
tween process model activities. The underlying
matching is based on equally labeled nodes in our
comparison and parameters were set as described
in the publication. Dijkman et al. (2009) use a
graph edit distance similarity measure for search-
ing model collections. In our comparison the
concept of edit distances is applied to both, node
labels (string edit distance) and the graph structure
(graph edit distance). We used the Greedy algo-
rithm for the optimization of the similarity matrix
and the three quotients mentioned in Dijkman
et al. (2009) are equally weighted. In Akkiraju
and Ivan (2010), the similarity is calculated based
on the number of identically labeled activities.
La Rosa et al. (2010) extend Dijkman et al. (2009)
by also considering control flow connectors and
by calculating a node matching not only based on
the Levenshtein similarity (Levenshtein 1966) but
also using a linguistic similarity measure. The
original implementation has been used with stan-
dard parameters. Yan et al. (2012) calculate the
Levenshtein similarity for the labels of each node

7 Regarding a comparison of the LS3 with a naive syntax-
based Information Retrieval approach as has, e. g., been used
in (Dijkman et al. 2011) see (Schoknecht et al. 2017a).
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pair and also consider graph-structural aspects
by defining five roles characterizing a node. The
thresholds are set as proposed in the original pub-
lication, while the resulting similarity matrix is
optimized using the Greedy algorithm. Hence,
all compared approaches use an underlying node
matching for calculating similarity values and
query results.

The calculations for these search approaches
were conducted using the RefMod-Miner Ser-
vice8 to determine similarity values. Afterwards,
we determined query results for each model by
applying a threshold value on the similarity values.
For each approach we used the threshold value
which maximized the corresponding F-Measure
value. Regarding the LS3 approaches we deter-
mined the best values for dimensionality k = 25
and a threshold value of 0.79. The thresholds of
the other techniques are listed in Tab. 2.

4.2 Results
The results of the evaluation are summarized in
Tab. 2 and Tab. 3. Tab. 2 shows the average
values for Precision, Recall and F-Measure for all
138 queries. The fifth column shows the number of
perfect queries, i. e., queries for which Precision as
well as Recall values are 1. The next column shows
the average run time of the ten runs conducted,
while the last column shows the threshold value
θ for which the highest F-Measure value could
be achieved. The results for the R-Precision and
Precision-at-5 evaluations are presented in Tab. 3.

Regarding Precision, Recall and F-Measure
values, the LS3 query approaches generally have
high to very high values. Precision values are very
high with 0.97 and 0.98 respectively, while Recall
values are lower (0.88 and 0.81) but still high
with respect to the compared approaches. Yet,
the resulting F-Measure is still very high for both
the LS3-QueryAll and the LS3-Query approaches
with values of 0.93 and 0.89.

Three of the compared techniques nearly
achieve the same F-Measure values: SSBOCAN
scored 0.78, GEDS 0.76 and LAROSA 0.75.

8 http://rmm.dfki.de

FBSE follows with an F-Measure value of 0.32
due to a very low Precision of 0.23. Finally, no
values could be calculated for CF due to a memory
overflow for the evaluated model collection.

With respect to the amount of queries for which
the search approaches achieved an F-Measure
value of 1, again, the LS3 approaches performed
best. The LS3-QueryAll approach scored an F-
Measure of 1 for 77 of the 138 queries followed
by the LS3-Query approach with 69. SSBOCAN
was ranked third with 51, GEDS fourth with 44
and LAROSA fifth with 6 queries. The FBSE
approach did never achieve an F-Measure of 1 for
a query.

When looking at the R-Precision and Precision-
at-5 values in Tab. 3 the difference between
the LS3-QueryAll approach and the SSBOCAN,
LAROSA and GEDS techniques is not that high
compared to the differences in F-Measure values.
The LS3-QueryAll approach ist still best with
very high values of 0.96 for R-Precision and 0.99
for Precision-at-5, but SSBOCAN as second best
approach is quite close with values of 0.93 and
0.98 respectively. LAROSA and GEDS are very
close once more with values of 0.81 and 0.78 for
R-Precision and 0.93 and 0.91 for Precision-at-5.
The FBSE approach however performed quite
poorly with values of 0.38 and 0.53.

Regarding the final evaluation aspect—the run
time to calculate query results—the biggest differ-
ence could be observed. While the LS3-Query all
approach needed only 1551 milliseconds on aver-
age of the ten runs to calculate all query results,
LAROSA as the next fastest approach already
required about 105 minutes. For the remaining
compared approaches the average execution time
was even higher. As to the execution time of a
single query, in the LS3-Query case it took only
4.5 milliseconds on average to calculate the result.

4.3 Discussion
The evaluation showed four aspects which will be
discussed in this section: (1) The LS3 as well as
the matching-based approaches achieve good or
very good results with respect to the ranking-based
measures R-Precision and Precision-at-5; (2) LS3
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Table 2: Precision, Recall, F-Measure and run time values for the compared search approaches

P R F F = 1 Run time θ

LS3-QueryAll 0.97 0.88 0.93 77 1551 Millisec. 0.79
LS3-Query 0.982 0.81 0.89 69 4.5 Millisec. 0.79
CF (van Dongen et al. 2008)1 n.a. n.a. n.a. n.a. n.a. n.a.
GEDS (Dijkman et al. 2009) 0.94 0.63 0.76 44 298:33 Min. 0.48
SSBOCAN (Akkiraju and Ivan 2010) 0.94 0.67 0.78 51 295:37 Min. 0.58
LAROSA (La Rosa et al. 2010) 0.82 0.69 0.75 6 104:50 Min. 0.18
FBSE (Yan et al. 2012) 0.23 0.53 0.32 0 681:52 Min. 0.92

1 No values could be determined for van Dongen et al. (2008) due to memory overflow.
2 Bold entries represent best values in each column.

Table 3: R-Precision and Precision-at-5 values. Bold
entries represent best values in each column.

R-Precision Prec. at 5

LS3-QueryAll 0.96 0.99
GEDS 0.78 0.91
FBSE 0.38 0.53
SSBOCAN 0.93 0.98
LAROSA 0.81 0.93

search is better compared to the matching-based
approaches in terms of Precision, Recall and F-
Measure; (3) difficulty of matching is reflected
in query results; (4) run time of the LS3 is much
faster than for the compared approaches.

Regarding the first aspect, it can be stated
that all search approaches except of FBSE re-
turn mostly correct results for the first five models
with the highest similarity values to a query model
(Precision-at-5). And also the R-Precision val-
ues are still reasonably high, although the differ-
ence between LS3-QueryAll and GEDS is already
quite considerable with 0.18. Hence, the resulting
ranked list would be suitable for a person searching
for similar models to reuse or refactor.

What is also interesting is that the two ap-
proaches which do not consider the structure or

behavior9 of a process model—LS3-QueryAll and
SSBOCAN—perform considerably better regard-
ing R-Precision than the other approaches. This
is somewhat counter intuitive at first sight as LS3
and SSBOCAN actually use less information. Yet,
using structural and behavioral information for
similarity calculation turns out to be problematic,
as correct matches are required, which can not be
calculated reliably (see also the third discussion
aspect). GEDS, e. g., uses a Graph-Edit distance
to calculate the similarity of models thereby using
structural information like inserted or substituted
nodes and edges. But, for instance, to correctly
decide if a node is inserted or substituted requires
a correct matching of nodes. As this is not the case
the query results are impacted. However, it might
be interesting to see how techniques using struc-
tural and behavioral information perform against
the LS3 when provided with a correct matching,
which was out of scope for this evaluation.

With respect to the second aspect the aim of
the evaluation is slightly different than with the
R-Precision and Precision-at-5 evaluation. By
using Precision, Recall and F-Measure we wanted
to assess how good the result quality of the search
approaches is in terms of returning exactly the
relevant models to a query. This could be useful

9 For an overview on possible dimensions used for similarity
calculation and a classification of the compared approaches
see Thaler et al. (2017).
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for clone detection or in cases multiple models
should be merged. In these cases the similarity
value of models should typically not be below a
certain threshold to reduce the effort of selecting
suitable models. As the evaluation shows the LS3
approaches clearly outperform the matching-based
search techniques with differences between 0.11
and 0.18 points for the F-Measure values. Thereby,
false positives seem to be no real problem for most
of the compared approaches as can be seen from
the high Precision values. GEDS, SSBOCAN and
the LS3 approaches all have values above 0.93 and
LAROSA still has 0.82. False negatives however
impact the F-Measure values negatively. Except
of the LS3 all other techniques miss more than
30 % of the correct results.

The poorer performance of the matching-based
approaches is due to poor query results for the
UA and BR model sets, which pose the most dif-
ficult sets for all approaches. For the 18 queries
related to the UA and BR collections 162 relevant
models should have been returned by the search
techniques. But while the LS3-QueryAll approach
performs reasonably well with 76 (47 %) relevant
and returned models, the LS3-Query approach
only returns 60 models (37 %). For LAROSA,
GEDS and SSBOCAN the performance is even
worse with 40 (25 %), 38 (24 %) and 32 (20 %)
relevant returned models. Considering the DM
model collection, which has the easiest match-
ing difficulty, the performance between the LS3
approaches and the compared techniques is even
partly reversed. While the LS3-QueryAll ap-
proach returns 758 (95 %) of the 800 relevant
models, LAROSA, SSBOCAN and GEDS return
638 (80 %), 782 (98 %) and 768 (96 %) relevant
models.

The same pattern can be detected for the R-
Precision results. While for the UA and BR
model sets the LS3-QueryAll approach returns
130 (80 %)10 of the 162 relevant models, SS-
BOCAN returns 111 (68 %), GEDS 83 (51 %),

10 Note that these values differ from the ones above as R-
Precision measures Precision of the ranked result list without
applying a threshold value.

and LAROSA 63 (39 %). For the DM model
set however, LS3-QueryAll delivers 782 (98 %),
SSBOCAN 781 (98 %), GEDS 779 (97 %), and
LAROSA 679 (85 %). Hence, the matching qual-
ity indeed has an impact on the quality of the
search results.

The performance differences between LS3-
QueryAll and LS3-Query are obviously not due
to differences in matching quality but base on the
calculation of a pseudo document. Including a
vector for a query model in the constructed vec-
tor space does decrease the query result quality
slightly. The difference in terms of F-Measure
values between LS3-QueryAll and LS3-Query is
0.04 points in the evaluation.

Finally, another big difference between the LS3
and the compared techniques is the run time for
calculating query results. While the LS3 calcu-
lates the result of a query in a few milliseconds,
the other approaches need multiple seconds or
even minutes. LAROSA as the next fastest ap-
proach required about 45 seconds on average to
calculate the result of one query. The long run
time of the matching-based approaches is also a
consequence of the calculation of matches. For
the determination of matches between two process
models each pair of activities has to be compared,
which is computationally expensive.

4.4 Limitations
One limitation of the LS3 approach is the difficulty
of finding an appropriate number of dimensions k.
As can be seen in Figure 5, the results regarding
Precision, Recall and F-Measure are quite different
depending on the chosen number of dimensions
k. For very low values of k Recall is very good,
yet Precision values are quite bad, which leads
to bad or medium F-Measure values. For higher
values of k nearly the opposite can be observed.
The Recall values are trending down while the
optimal Precision value of 1 is achieved. Hence,
some training on test data or experimentation is
necessary to find the best k-value for a given model
collection in terms of F-Measure.

Another limitation is the omission of structural
or behavioral information contained in process
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Figure 5: Coomparison of Precision, Recall and F-Measure for different values of k

models in the sense that models with the same ac-
tivities and labels cannot be distinguished depend-
ing on their graph structure or behavior. Hence, if
a model collection would contain multiple models
only differing in structure or behavior and not in
their labels (or more precisely if each of those
models would be mapped to the same document
vector), then each model pair would receive a
similarity value of 1. Yet, in case a distinction be-
tween these models is desired, another similarity
approach could be executed on these models to
distinguish them on the structural or behavioral
level. In our opinion, the usefulness of such dis-
tinctions depends on the use case and should be
evaluated empirically in the future.

Finally, the models used for the evaluation could
in general be favorable for the LS3 approaches
compared to the matching-based techniques. How-
ever, such a distortion is unlikely as model sets
with different characteristics have been used (see
Section 4.1). And as discussed in the previous
subsection, the matching-based techniques per-
formed good for the DM set while they performed
poorly for the UA and BR sets. Hence, our results
should also apply for other model sets, but this
has to be confirmed.

5 Conclusion
Two approaches for similarity-based search, called
Latent Semantic Analysis-based Similarity Search
(LS3) have been described in this article. The
first one, the LS3-QueryAll approach, can be
used for finding similar models for each process
model in a process model collection. The second
one, the LS3-Query approach, can be used to
find similar models with respect to a specific
query model. These search techniques base on the
Latent Semantic Analysis concept which is used
in the Latent Semantic Analysis-based Similarity
Measure to determine the similarity of process
models. All models having a similarity value
equal to or higher than a certain threshold value are
judged as results of a query. Besides, algorithms
for updating the underlying search structure in
cases of model insertions, deletions and changes
of the model collection have been presented.

The evaluation of the LS3 approaches against
five other similarity-based search techniques
showed a superior performance, especially with
respect to run time, for a model collection consist-
ing of 138 real-life models. The LS3 approaches
achieved the highest Precision, Recall, F-Measure,
R-Precision and Precision-at-k values. In terms of

http://dx.doi.org/10.18417/emisa.12.2


Enterprise Modelling and Information Systems Architectures
Vol. 12, No. 2 (2017). DOI:10.18417/emisa.12.2

20 Andreas Schoknecht, Andreas Oberweis
Corrected version

run time performance the LS3 approaches clearly
outperformed the other techniques. All queries
could be processed in about 1.5 seconds with the
LS3 approaches which is significantly faster even
compared to the next fastest technique which took
about 105 minutes to calculate all query results.

Future work could tackle the problem of how
to determine, in terms of query performance, the
optimal dimensionality reduction for the under-
lying singular value decomposition. As possible
dimensionality numbers depend on the rank of
the singular value decomposition the optimal di-
mensionality might be difficult to detect. In the
evaluation with 138 models, for instance, the
rank of the singular value decomposition was 128,
which means that there exist 128 possible and rea-
sonable values for the dimensionality reduction.
Furthermore, the inclusion of additional process
documentation into the search procedure as con-
templated in Leopold et al. (2016) could be useful.
As the underlying Latent Semantic Analysis works
especially well for large text corpora such addi-
tional textual process information might improve
the LS3 querying performance even further. From
a practical point of view, we plan to extend the doc-
ument vector definitions so that process models
in other notations can also be included.

Additionally, further comparative experiments
with other model sets, which exhibit differing
characteristics to the used collections would be
useful to, e. g., investigate the run time for larger
model collections. One especially interesting com-
parison between matching-based techniques and
the LS3 would be when the matching-based tech-
niques would be provided with a correct matching.
Then, one could more precisely assess whether
structural or behavioral information contained in
process models is indeed helpful for similarity cal-
culation. Until now this is unclear as apart from
Thaler et al. (2017) and Dijkman et al. (2011)
comparative evaluations have not been published.

Another research direction would be the usage
of topic modeling techniques like the LDA (Blei
et al. 2003) or word embedding approaches like
word2vec (Mikolov et al. 2013) instead of the
LSA. Such approaches might be even better suited

as they are associated with better results in the
computational linguistics field (Baroni et al. 2014).
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