

Alternative ways of looking at scale interactions in wall turbulence

Davide Gatti | October 18, 2018

LINNÉ FLOW SEMINAR, KTH, STOCKHOLM, SWEDEN

Global energy budgets

"how do dissipation and production of turbulent kinetic energy relate to turbulent friction drag?"

Global energy budgets

"how do dissipation and production of turbulent kinetic energy relate to turbulent friction drag?"

Global energy budgets

"how do dissipation and production of turbulent kinetic energy relate to turbulent friction drag in drag reduced flows?"

Seemingly trivial, nontrivial question! Example turbulent dissipation in drag-reduced flow:

- Ricco et al., JFM (2012): it increases
- Agostini et al., JFM (2014): it decreases

istn:

Constant Power Input (CPI)

Definitions and characteristic quantities

• Total power Π_t is kept constant

 $\Pi_t = \Pi_p + \Pi_c \rightarrow \text{control power}$ $\downarrow \qquad \qquad \Pi_c = \gamma \Pi_t$

 $\Pi_{\rho} = (1 - \gamma) \Pi_t$ pumping power

• "Drag reduction" increases flow rate $U_b/U_{b,0} > 1$

Power-based velocity scale

$$U_{\Pi} = \sqrt{\frac{\Pi_t h}{3\mu}}$$

"Stokes flow minimises the power consumption for given flow rate"

Bewley, JFM (2009), Fukagata et al., Physica D. (2009)

Power-based Reynolds number Hasegawa, Quadrio, Frohnapfel, JFM (2014)

$$\mathsf{Re}_{\mathsf{\Pi}} = rac{U_{\pi}h}{
u} \sqrt{rac{1}{
u}}$$

istn

 Introduction
 The energy box
 AGKE
 Conclusion

 0
 0
 0
 0
 0
 0

 D. Gatti – Alternative ways of looking at scale interactions in wall turbulence
 October 18, 2018
 3/26

Constant Power Input (CPI)

Definitions and characteristic quantities

• Total power Π_t is kept constant

 $\Pi_t = \Pi_p + \Pi_c \rightarrow \text{control power}$ $\downarrow \qquad \qquad \Pi_c = \gamma \Pi_t$

 $\Pi_{\rho} = (1 - \gamma) \Pi_t$ pumping power

• "Drag reduction" increases flow rate $U_b/U_{b,0} > 1$

Power-based velocity scale

$$U_{\Pi} = \sqrt{\frac{\Pi_t h}{3\mu}}$$

"Stokes flow minimises the power consumption for given flow rate"

Bewley, JFM (2009), Fukagata et al., Physica D. (2009)

Power-based Reynolds number

$$3Re_{\Pi}^{2}(1-\gamma)=Re_{\tau}^{2}Re_{B}$$

The "wind decomposition" of turbulence

A triple decomposition with analytical advanages Eckhardt et al., JFM 2007

 $u = \langle u \rangle + u'$

The "wind decomposition" of turbulence

A triple decomposition with analytical advanages Eckhardt et al., JFM 2007

 $u = \overbrace{U_{\ell} + U_{\Delta}}^{\langle u \rangle} + u'$

Production and mean dissipation

Mean dissipation decouples!

Analytical derivations

A fair amount of cumbersome algebra

[This page intentionally left blank] Gatti *et al.*, JFM (2018)

2019

D. Gatti - Alternative ways of looking at scale interactions in wall turbulence

Two integrals of the turbulent shear stress

Via FIK-like CPI derivations, it is discovered that α and β parametrize all the fluxes

$$\alpha = \int_0^1 (1 - y) r(y) dy$$
$$\beta = \int_0^2 r(y)^2 dy \ge 3\alpha^2$$

$$P_{\Delta} = -\phi_{\Delta} = Re_{\Pi} \left(3\alpha^2 - \beta \right) \leq 0$$

$$\epsilon = \left\{ \frac{(\alpha Re_{\Pi})^2}{2} \left(1 + \sqrt{1 + \frac{4(1-\gamma)}{(\alpha Re_{\Pi})^2}} \right) - \frac{\beta Re_{\Pi}^2}{3} + \gamma \right\}$$

AGKE 000000000000

October 18, 2018

Conclusio

8/26

Two integrals of the turbulent shear stress

Via FIK-like CPI derivations, it is discovered that α and β parametrize all the fluxes

$$\alpha = \int_0^1 (1 - y) r(y) dy$$
$$\beta = \int_0^2 r(y)^2 dy \ge 3\alpha^2$$

$$P_{\Delta} = -\phi_{\Delta} = Re_{\Pi} \left(3lpha^2 - eta
ight) \leq 0$$

$$\epsilon = \left\{ \frac{(\alpha Re_{\Pi})^2}{2} \left(1 + \sqrt{1 + \frac{4(1-\gamma)}{(\alpha Re_{\Pi})^2}} \right) - \frac{\beta Re_{\Pi}^2}{3} + \gamma \right\}$$

8/26

Two integrals of the turbulent shear stress

Via FIK-like CPI derivations, it is discovered that α and β parametrize all the fluxes

$$\alpha = \int_0^1 (1 - y) r(y) dy$$
$$\beta = \int_0^2 r(y)^2 dy \ge 3\alpha^2$$

Е		g	
_	7	J	

$$P_{\Delta} = -\phi_{\Delta} = Re_{\Pi} \left(3\alpha^2 - \beta \right) \leq 0$$

$$\epsilon = \left\{ \frac{(\alpha Re_{\Pi})^2}{2} \left(1 + \sqrt{1 + \frac{4(1-\gamma)}{(\alpha Re_{\Pi})^2}} \right) - \frac{\beta Re_{\Pi}^2}{3} + \gamma \right\}$$

Every flux has a physical meaning!

- ϕ_ℓ is the best way to dissipate pumping power
- P_{ℓ} is the fraction of the pumping power wasted to produce turbulence
 - it decreases when control is successful (U_b increses for given Π_t)
 - 🔹 it can be negative as $extsf{P}_\ell \propto lpha$
- ϕ_{Δ} is the penalty for not being laminar
- φ_Δ + ε is the fraction of the total power wasted by turbulence
 it cannot be negative

A drag reduction model

• Control effect on r(y) parametrised through ΔB^+

• Empirical description of velocity profile Luchini, PRL (2017) • $3Re_{\Pi}^{2}(1-\gamma) = Re_{\tau}^{2}Re_{B}$

- riblets and roughness
- superhydrophobic surfaces
- spanwise wall forcing
- some feedback controls, etc.

A drag reduction model

- Control effect on r(y) parametrised through ΔB^+
- Empirical description of velocity profile Luchini, PRL (2017)

•
$$3Re_{\Pi}^{2}(1-\gamma) = Re_{\tau}^{2}Re_{B}$$

Back to our initial question

 ϕ/ϕ_0

Back to our initial question

Back to our initial question

Back to our initial question

Key results

- "Wind" decomposition and power nondimensionalisation introduced
- Theoretical framework for the flow control problem from energy perspective...
- ...relevant also for uncontrolled flows: FIK-like identity for ϵ
- Understand how changes of r(y) modify $\phi, \epsilon,...$
- Potential for drag-reduction-aware RANS turbulence models?
- This is the global perspective: what about more detailed physics?

 Introduction
 The energy box
 AGKE

 000000000
 000000000
 000000000

 D. Gatti – Alternative ways of looking at scale interactions in wall turbulence
 October 18, 2018

12/26

Key results

- "Wind" decomposition and power nondimensionalisation introduced
- Theoretical framework for the flow control problem from energy perspective...
- ...relevant also for uncontrolled flows: FIK-like identity for ϵ
- Understand how changes of r(y) modify $\phi, \epsilon,...$
- Potential for drag-reduction-aware RANS turbulence models?
- This is the global perspective: what about more detailed physics?

Introduction The energy box AGKE 00000000● 00000000 D. Gatti – Alternative ways of looking at scale interactions in wall turbulence October 18, 2018

12/26

Key results

- "Wind" decomposition and power nondimensionalisation introduced
- Theoretical framework for the flow control problem from energy perspective...
- ...relevant also for uncontrolled flows: FIK-like identity for ϵ
- Understand how changes of r(y) modify $\phi, \epsilon,...$
- Potential for drag-reduction-aware RANS turbulence models?
- This is the global perspective: what about more detailed physics?

Introduction The energy box AGKE 000000000 D. Gatti – Alternative ways of looking at scale interactions in wall turbulence October 18, 2018

(Two) Classic approaches to turbulence

D. Gatti - Alternative ways of looking at scale interactions in wall turbulence

October 18, 2018

13/26

Exact budget equation for $\langle \delta u_i \delta u_i \rangle = \langle \delta u \delta u \rangle + \langle \delta v \delta v \rangle + \langle \delta w \delta w \rangle$

Introduction

The energy box

AGKE

Exact budget equation for $\langle \delta u_i \delta u_i \rangle = \langle \delta u \delta u \rangle + \langle \delta v \delta v \rangle + \langle \delta w \delta w \rangle$

$$\delta u_i = (u_i (\boldsymbol{X} + \boldsymbol{r}/2, t) - u_i (\boldsymbol{X} - \boldsymbol{r}/2, t))$$

D. Gatti - Alternative ways of looking at scale interactions in wall turbulence

October 18, 2018

14/26

Amount of turbulent energy at location X and scale (up to) r Davidson et al. JFM 2006

Introduction

0000000000

October 18, 2018

AGKE

15/26

Amount of turbulent energy at location **X** and scale (up to) **r** Davidson et al, JFM 2006

Production, dissipation and transport of turbulent energy in both the Space of scales & Physical space Cimarelli et al. JFM 2013, 2016

The energy box

AGKE 0000000000

October 18, 2018

15/26

 $\langle \delta u_i \delta u_i \rangle (\boldsymbol{X}, \boldsymbol{r})$

Amount of turbulent energy at location X and scale (up to) r Davidson et al. JFM 2006

Production, dissipation and transport of turbulent **energy** in both the Space of scales & Physical space _{Cimarelli} *et al.* JFM 2013, 2016

$\langle \delta u_i \delta u_i \rangle = \langle \delta u \delta u \rangle + \langle \delta v \delta v \rangle + \langle \delta w \delta w \rangle \rightarrow \dots$ anisotropy?

The energy box

AGKE 00000000000

Conclusion

D. Gatti - Alternative ways of looking at scale interactions in wall turbulence

October 18, 2018

 $\langle \delta u_i \delta u_i \rangle (\boldsymbol{X}, \boldsymbol{r})$

GKE: budget for $\langle \delta u_i \delta u_i \rangle$

In

$$\begin{aligned} \frac{\partial \phi_{k}}{\partial r_{k}} + \frac{\partial \psi_{k}}{\partial X_{k}} &= \xi \end{aligned}$$
scale flux $\phi_{k} = \underbrace{\delta U_{k} \langle \delta u_{i} \delta u_{i} \rangle}_{\text{mean transport}} + \underbrace{\langle \delta u_{k} \delta u_{i} \delta u_{i} \rangle}_{\text{turbulent transport}} \underbrace{-2\nu \frac{\partial}{\partial r_{k}} \langle \delta u_{i} \delta u_{i} \rangle}_{\text{viscous diffusion}} \end{aligned}$
space flux $\psi_{k} = \underbrace{\langle u_{k}^{*} \delta u_{i} \delta u_{i} \rangle}_{\text{turbulent transport}} + \underbrace{\frac{1}{\rho} \langle \delta \rho \delta u_{i} \rangle}_{\text{pressure transport}} \underbrace{-\frac{\nu}{2} \frac{\partial}{\partial X_{k}} \langle \delta u_{i} \delta u_{i} \rangle}_{\text{viscous diffusion}} \end{aligned}$
Source $\xi = \underbrace{-2 \langle u_{k}^{*} \delta u_{i} \rangle \delta \left(\frac{\partial U_{i}}{\partial x_{k}}\right)}_{\text{production}} \underbrace{-2 \langle \delta u_{k} \delta u_{i} \rangle \left(\frac{\partial U_{i}}{\partial x_{k}}\right)^{*}}_{\text{production}} \underbrace{-4\epsilon_{ii}^{*}}_{\text{dissipation}} \end{aligned}$

D. Gatti – Alternative ways of looking at scale interactions in wall turbulence

October 18, 2018

0000000000

Anisotropic GKEs (AGKEs): budget for $\langle \delta u_i \delta u_j \rangle$

$$\frac{\partial \phi_{k,ij}}{\partial r_{k}} + \frac{\partial \psi_{k,ij}}{\partial X_{k}} = \xi_{ij}$$
scale flux $\phi_{k,ij} = \underbrace{\delta U_{k} \langle \delta u_{i} \delta u_{j} \rangle}_{\text{mean transport}} + \underbrace{\langle \delta u_{k} \delta u_{i} \delta u_{j} \rangle}_{\text{turbulent transport}} \underbrace{-2\nu \frac{\partial}{\partial r_{k}} \langle \delta u_{i} \delta u_{j} \rangle}_{\text{viscous diffusion}}$
space flux $\psi_{k,ij} = \underbrace{\langle u_{k}^{*} \delta u_{i} \delta u_{j} \rangle}_{\text{turbulent transport}} + \underbrace{\frac{1}{\rho} \langle \delta \rho \delta u_{i} \rangle \delta_{kj}}_{\text{pressure transport}} \underbrace{-\frac{\nu}{2} \frac{\partial}{\partial X_{k}} \langle \delta u_{i} \delta u_{j} \rangle}_{\text{viscous diffusion}}$
source $\xi_{ij} = -\langle u_{k}^{*} \delta u_{j} \rangle \delta \left(\frac{\partial U_{i}}{\partial x_{k}}\right) - \langle u_{k}^{*} \delta u_{i} \rangle \delta \left(\frac{\partial U_{j}}{\partial x_{k}}\right) + \underbrace{-\frac{1}{\rho} \langle \delta \rho \frac{\partial \delta u_{j}}{\partial X_{k}} \rangle + \frac{1}{\rho} \langle \delta \rho \frac{\partial \delta u_{j}}{\partial X_{j}} \rangle + \underbrace{-\frac{1}{\rho} \langle \delta \rho \frac{\partial \delta u_{j}}{\partial X_{k}} \rangle}_{\text{production}} \underbrace{-\frac{\langle \delta u_{k} \delta u_{j} \rangle \left(\frac{\partial U_{j}}{\partial x_{k}}\right)^{*}}_{\text{production}} + \underbrace{-\frac{1}{\rho} \langle \delta \rho \frac{\partial \delta u_{j}}{\partial X_{j}} \rangle + \underbrace{-\frac{1}{\rho} \langle \delta \rho \frac{\partial \delta u_{j}}{\partial X_{j}} \rangle + \underbrace{-\frac{1}{\rho} \langle \delta \rho \frac{\partial \delta u_{j}}{\partial X_{k}} \rangle}_{\text{dissipation}} \underbrace{-\frac{\langle \delta u_{k} \delta u_{j} \rangle \left(\frac{\partial U_{j}}{\partial x_{k}}\right)^{*}}_{\text{occombox}} \underbrace{-\frac{\langle \delta u_{k} \delta u_{j} \rangle \left(\frac{\partial U_{j}}{\partial x_{k}}\right)^{*}}_{\text{dissipation}} \underbrace{-\frac{\langle \delta u_{k} \partial u_{j} \rangle \left(\frac{\partial U_{j}}{\partial x_{k}}\right)^{*}}_{\text{occombox}} \underbrace{-\frac{\langle \delta u_{k} \partial u_{j} \rangle \left(\frac{\partial U_{j}}{\partial x_{k}}\right)^{*}}_{\text{dissipation}} \underbrace{-\frac{\langle \delta u_{k} \partial u_{j} \rangle \left(\frac{\partial U_{j}}{\partial x_{k}}\right)^{*}}_{\text{dissipation}} \underbrace{-\frac{\langle \delta u_{k} \partial u_{j} \rangle \left(\frac{\partial U_{j}}{\partial x_{k}}\right)^{*}}_{\text{dissipation}} \underbrace{-\frac{\langle \delta u_{k} \partial u_{j} \rangle \left(\frac{\partial U_{j}}{\partial x_{k}}\right)^{*}}_{\text{dissipation}} \underbrace{-\frac{\langle \delta u_{k} \partial u_{j} \rangle \left(\frac{\partial U_{j}}{\partial x_{k}}\right)^{*}}_{\text{dissipation}} \underbrace{-\frac{\langle \delta u_{k} \partial u_{j} \rangle \left(\frac{\partial U_{j}}{\partial x_{k}}\right)^{*}}_{\text{dissipation}} \underbrace{-\frac{\langle \delta u_{k} \partial u_{j} \rangle \left(\frac{\partial U_{j}}{\partial x_{k}}\right)^{*}}_{\text{dissipation}} \underbrace{-\frac{\langle \delta u_{k} \partial u_{j} \rangle \left(\frac{\partial U_{j}}{\partial x_{k}}\right)^{*}}_{\text{dissipation}} \underbrace{-\frac{\langle \delta u_{k} \partial u_{j} \rangle \left(\frac{\partial U_{j}}{\partial x_{k}}\right)^{*}}_{\text{dissipation}} \underbrace{-\frac{\langle \delta u_{k} \partial u_{j} \rangle \left(\frac{\partial U_{j}}{\partial x_{k}}\right)^{*}}_{\text{dissipation}} \underbrace{-\frac{\langle \delta u_{k} \partial u_{j} \rangle \left(\frac{\partial U_{j}}{\partial x_{k}}\right)^{*}}_{\text{dissipation}} \underbrace{-\frac{\langle \delta u_{k} \partial u_{j} \rangle \left(\frac{\partial U_{j}}{\partial x_{k}}\right)^{*}}_{\text{dissipation}} \underbrace{-\frac{\langle \delta u_{k} \partial u_{j} \rangle \left(\frac{\partial U_{j}}{\partial x_{$

AGKEs for indefinite plane channels

 $\langle \delta u_i \delta u_j \rangle (\boldsymbol{X}, \boldsymbol{r}) \rightarrow \langle \delta u_i \delta u_j \rangle (\boldsymbol{Y}, \boldsymbol{r_x}, \boldsymbol{r_y}, \boldsymbol{r_z})$

Turbulent channel ($Re_{\tau} = 200$): $\langle \delta u \delta u \rangle$ in $r_x = 0$ space

Turbulent channel ($Re_{\tau} = 200$): $\langle \delta u \delta u \rangle$ in $r_x = 0$ space

Turbulent channel ($Re_{\tau} = 200$): $\langle \delta u \delta u \rangle$ in $r_{x} = 0$ space

Fluxes, field lines: attached & detached scales

Fluxes, field lines: attached & detached scales

Fluxes, field lines: attached & detached scales

 $\langle \delta u \delta u \rangle \approx \langle \delta u_i \delta u_i \rangle$

Introduction

AGKE 000000000000 Conclusion

D. Gatti - Alternative ways of looking at scale interactions in wall turbulence

The energy box

October 18, 2018

20/26

$\langle \delta u \delta u \rangle \approx \langle \delta u_i \delta u_j \rangle$ what does AGKE add to GKE?

Introduction The energy box AGKE D. Gatti - Alternative ways of looking at scale interactions in wall turbulence

000000000000

October 18, 2018

20/26

Anisotropy

Anisotropy

D. Gatti - Alternative ways of looking at scale interactions in wall turbulence

October 18, 2018

21/26

Anisotropy of attached scales

What happens with drag reduction?

Back to our original question, again

spanwise wall oscillations

AGKE

23/26

Introduction The energy box 0000000000 D. Gatti – Alternative ways of looking at scale interactions in wall turbulence

AGKE 0000000000

Conclusion •••• October 18, 2018 24/26

How will I use the AGKE?

Role and occurrence of large scales

• Very Large Scale Motions at high Re

Gatti et al. FTaC 2018

How will I use the AGKE?

Role and occurrence of large scales

Very Large Scale Motions at high Re

How will I use the AGKE?

Role and occurrence of large scales

- Very Large Scale Motions at high Re
- Secondary Motions of Prandtl second kind

Stroh et al. JFM submitted

THANKS for your kind attention!

for questions and suggestions:

davide.gatti@kit.edu maurizio.quadrio@polimi.it alessandro.chiarini@polimi.it andrea.cimarelli@unimore.it

Conclusion

26/26

000

European Drag Reduction and Flow Control Meeting

26-29 March 2019

Bad Herrenalb (near Karlsruhe), Germany www.edrfcm.science

We presented the AGKE: exact budget equations for $\langle \delta u_i \delta u_j \rangle$

In addition to GKE:

- anisotropy
- off-diagonal components
- redistribution
- In addition to spectral Reynolds stress budgets:
 - no need for homogeneity
 - allows scales in inhomogeneous directions
 - possible "fluxes" interpretation
- probably interesting for your research too!

We presented the AGKE: exact budget equations for $\langle \delta u_i \delta u_j \rangle$

- In addition to GKE:
 - anisotropy
 - off-diagonal components
 - redistribution
- In addition to spectral Reynolds stress budgets:
 - no need for homogeneity
 - allows scales in inhomogeneous directions
 - possible "fluxes" interpretation
- probably interesting for your research too!

We presented the AGKE: exact budget equations for $\langle \delta u_i \delta u_j \rangle$

- In addition to GKE:
 - anisotropy
 - off-diagonal components
 - redistribution
- In addition to spectral Reynolds stress budgets:
 - no need for homogeneity
 - allows scales in inhomogeneous directions
 - possible "fluxes" interpretation
- probably interesting for your research too!

We presented the AGKE: exact budget equations for $\langle \delta u_i \delta u_j \rangle$

- In addition to GKE:
 - anisotropy
 - off-diagonal components
 - redistribution
- In addition to spectral Reynolds stress budgets:
 - no need for homogeneity
 - allows scales in inhomogeneous directions
 - possible "fluxes" interpretation
- probably interesting for your research too!

Fluxes, divergence: donor & receiver scales

contribution of various physical processes to $\langle \delta u_i \delta u_j \rangle$ (e.g. nonlinear turbulent transport)

 $\langle \delta u_i \delta u_j \rangle (Y_c, r_x, r_y, r_z) = \underbrace{\langle u_i u_j \rangle|_{y_1}}_{y_1} + \underbrace{\langle u_i u_j \rangle|_{y_2}}_{y_2} - \underbrace{2R_{u_i|_{y_1}u_j|_{y_2}}(r_x, r_z)}_{z_1}$ sum of variances

Cross-correlation

$$\langle \delta u_i \delta u_j \rangle (Y_c, r_x, r_y, r_z) = \underbrace{\langle u_i u_j \rangle|_{y_1} + \langle u_i u_j \rangle|_{y_2}}_{sum of variances} - \underbrace{2R_{u_i|_{y_1} u_j|_{y_2}}(r_x, r_z)}_{Cross-correlation}$$

$$y_1 = Y_c - r_y/2$$

$$y_2 = Y_c + r_y/2$$

$$Y_c$$

$$Y_c$$

$$Y_c$$

$$Y_t$$

 $\langle \delta u_i \delta u_j \rangle (Y_c, r_x, r_y, r_z) = \langle u_i u_j \rangle |_{y_1} + \langle u_i u_j \rangle |_{y_2} - 2R_{u_i|_{y_1}u_j|_{y_2}}(r_x, r_z)$

Cross-correlation

 $\langle \delta u_i \delta u_j \rangle (\mathbf{Y}_c, \mathbf{r}_x, \mathbf{r}_y, \mathbf{r}_z) \neq \langle u_i u_j \rangle |_{\mathbf{y}_1} + \langle u_i u_j \rangle |_{\mathbf{y}_2}$ \downarrow $R_{u_i |_{\mathbf{y}_1}, u_i |_{\mathbf{y}_2}} (\mathbf{r}_x, \mathbf{r}_z) \neq 0$

Coherent structures!

D. Gatti - Alternative ways of looking at scale interactions in wall turbulence

000

 $\langle \delta u \delta u \rangle (\mathbf{Y}_{c}, \mathbf{0}, \mathbf{r}_{y}, \mathbf{r}_{z}) > \underbrace{\langle u u \rangle|_{y_{1}} + \langle u u \rangle|_{y_{2}}}_{\mathcal{Y}_{1}} - \underbrace{2R_{u|_{y_{1}}u|_{y_{2}}}(0, \mathbf{r}_{z})}_{\mathcal{Y}_{1}}$

sum of variances

Cross-correlation

