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Abstract

Educated decision making involves two major ingredients: probabilistic forecasts
for future events or quantities and an assessment of predictive performance. This
thesis focuses on the latter topic and illustrates its importance and implications
from both theoretical and applied perspectives.

Receiver operating characteristic (ROC) curves are key tools for the assessment
of predictions for binary events. Despite their popularity and ubiquitous use, the
mathematical understanding of ROC curves is still incomplete. We establish the
equivalence between ROC curves and cumulative distribution functions (CDFs)
on the unit interval and elucidate the crucial role of concavity in interpreting and
modeling ROC curves. Under this essential requirement, the classical binormal
ROC model is strongly inhibited in its flexibility and we propose the novel beta
ROC model as an alternative. For a class of models that includes the binormal
and the beta model, we derive the large sample distribution of the minimum dis-
tance estimator. This allows for uncertainty quantification and statistical tests of
goodness-of-fit or equal predictive ability. Turning to empirical examples, we an-
alyze the suitability of both models and find empirical evidence for the increased
flexibility of the beta model. A freely available software package called betaROC

is currently prepared for release for the statistical programming language R.
Throughout the tropics, probabilistic forecasts for accumulated precipitation

are of economic importance. However, it is largely unknown how skillful cur-
rent numerical weather prediction (NWP) models are at timescales of one to a
few days. For the first time, we systematically assess the quality of nine global
operational NWP ensembles for three regions in northern tropical Africa, and ver-
ify against station and satellite-based observations and for the monsoon seasons
2007–2014. All examined NWP models are uncalibrated and unreliable, in partic-
ular for high probabilities of precipitation, and underperform in the prediction of
amount and occurrence of precipitation when compared to a climatological refer-
ence forecast. Statistical postprocessing corrects systematic deficiencies and real-
izes the full potential of ensemble forecasts. Postprocessed forecasts are calibrated
and reliable and outperform raw ensemble forecasts in all regions and monsoon
seasons. Disappointingly however, they have predictive performance only equal
to the climatological reference. This assessment is robust and holds for all exam-
ined NWP models, all monsoon seasons, accumulation periods of 1 to 5 days, and
station and spatially aggregated satellite-based observations. Arguably, it implies
that current NWP ensembles cannot translate information about the atmospheric
state into useful information regarding occurrence or amount of precipitation. We
suspect convective parameterization as likely cause of the poor performance of
NWP ensemble forecasts as it has been shown to be a first-order error source for
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the realistic representation of organized convection in NWP models.
One may ask if the poor performance of NWP ensembles is exclusively confined

to northern tropical Africa or if it applies to the tropics in general. In a com-
prehensive study, we assess the quality of two major NWP ensemble prediction
systems (EPSs) for 1 to 5-day accumulated precipitation for ten climatic regions
in the tropics and the period 2009–2017. In particular, we investigate their skill
regarding the occurrence and amount of precipitation as well as the occurrence of
extreme events. Both ensembles exhibit clear calibration problems and are unreli-
able and overconfident. Nevertheless, they are (slightly) skillful for most climates
when compared to the climatological reference, except tropical and northern arid
Africa and alpine climates. Statistical postprocessing corrects for the lack of cal-
ibration and reliability, and improves forecast quality. Postprocessed ensemble
forecasts are skillful for most regions except the above mentioned ones.

The lack of NWP forecast skill in tropical and northern arid Africa and alpine
climates calls for alternative approaches for the prediction of precipitation. In
a pilot study for northern tropical Africa, we investigate whether it is possi-
ble to construct skillful statistical models that rely on information about recent
rainfall events. We focus on the prediction of the probability of precipitation
and find clear evidence for its modulation by recent precipitation events. The
spatio-temporal correlation of rainfall coincides with meteorological assumptions,
is reasonably pronounced and stable, and allows to construct meaningful statis-
tical forecasts. We construct logistic regression based forecasts that are reliable,
have a higher resolution than the climatological reference forecast, and yield an
average improvement of 20% for northern tropical Africa and the period 1998–
2014.
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1 Introduction

At all times, it has been a desire of mankind to learn more about the inherently
uncertain future and to obtain an idea of how it might look like and change our
lives. Predictions for future events or quantities can thereby act as guidance and
facilitate sound decisions. Educated decision making that takes uncertainties into
account necessarily requires predictions that are probabilistic in nature. Scientif-
ically supported by fundamental results on the chaotic nature of many processes
(e.g., Lorenz, 1963), forecasting has experienced a transition from a deterministic
to a probabilistic approach. Nowadays, probabilistic forecasting is state-of-the-
art in various fields of application including, but not limited to, meteorology,
hydrology, economics, and demography.

With the introduction of probabilistic forecasts arose the need for theoretically
principled tools for their verification. Chapter 2 introduces fundamental concepts
and key tools for the assessment of probabilistic forecasts. Of particular interest
in many situations is the assessment of predictions for binary outcomes. ROC
curves are key tools in these settings, but despite their popularity and ubiquitous
use, the mathematical understanding of ROC curves is still incomplete. Chapter
3 introduces ROC curves and their properties and advances the mathematical
understanding. In particular, we argue that the class of ROC curves and the
class of CDFs on the unit interval are equivalent and elucidate the essential role
of concavity for the interpretation of ROC curves. Moving from the theoretical
analysis of ROC curves to their modeling, we analyze shortcomings of the classical
binormal and related ROC curve models and propose the novel beta ROC model
as alternative. For parameter estimation, we rely on minimum distance (MD)
estimation and derive the asymptotic distribution of the MD estimator for a
class of models that includes the classical binormal and the novel beta ROC
model. This allows then for uncertainty quantification and statistical tests of
goodness-of-fit or equal predictive ability. On empirical examples, we analyze the
suitability of the binormal and the beta ROC model and propose extensions for
the latter to account for specific features of ROC curves that are commonly found
in practice.

Chapters 5 and 6 focus on the assessment of probabilistic forecasts for precip-
itation. To this end, Chapter 4 introduces briefly the concepts of NWP models,
ensembles and EPSs, and statistical postprocessing. To evaluate the quality of
NWP ensemble forecasts, we further construct a probabilistic climatology and
investigate its properties. In a nutshell, NWP models describe atmospheric pro-
cesses by partial differential equations and are the state-of-the-art approach to
predict future weather. Started from slightly different initial conditions, ensem-
bles are a set of deterministic NWP model forecasts where each ensemble member
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represents a potential realization of the future state of the atmosphere. Despite
the advance in the formulation of NWP models and the setup of EPSs, systematic
errors remain and require statistical postprocessing to reveal the full potential of
ensemble forecasts.

One particular challenge in weather forecasting is the prediction of accumulated
precipitation, especially when it is related to moist convection. Chapter 5 inves-
tigates the quality of raw and postprocessed ensemble forecasts from nine global
NWP models for accumulated precipitation in three regions in northern tropical
Africa. To obtain a complete assessment, we verify predictions for 1–5 day accu-
mulated precipitation against station and satellite observations at various spatial
aggregations for the period 2007–2014. All results reveal clear deficiencies of raw
ensemble forecasts for accumulated precipitation, clear improvements in ensem-
ble forecast quality by statistical postprocessing, but even after postprocessing
hardly any skill when compared to a climatological reference forecast.

Based on this comprehensive assessment of NWP ensemble forecast skill for
accumulated precipitation in northern tropical Africa, one can ask if the poor
performance of NWP ensembles is exclusively confined to this region or if it
applies to the tropics in general. In Chapter 6 we evaluate the quality of raw
and postprocessed forecasts from two global NWP ensembles for amount and
occurrence of precipitation as well as the occurrence of extreme rainfall. We par-
tition the tropical land mass based on climatic properties and verify forecasts
against satellite-based observations that allow for a consistent assessment of fore-
cast quality throughout the tropics. For accumulation periods of 1–5 days, raw
ensemble forecasts suffer from the same deficiencies as in northern tropical Africa.
Nevertheless, they are slightly skillful in many regions for the period 2009–2017
relative to a probabilistic climatology, and statistical postprocessing further im-
proves forecast skill. From 2009 to 2017, the improvement in NWP forecast
quality is mostly small and even postprocessed forecasts for precipitation do not
outperform the climatological reference for tropical and northern arid Africa and
in complex terrain.

In Chapter 7, we briefly investigate alternative approaches for forecasting the
occurrence of precipitation in northern tropical Africa. We analyze the spatio-
temporal correlation of precipitation and detect clear modulations of the proba-
bility of precipitation by recent rainfall events. Subsequently, logistic regression
based forecasts for the prediction of precipitation are constructed. The evalu-
ation across 1998–2014 reveals clear improvements of our approach relative to
climatological and NWP ensemble forecasts.

Chapter 8 summarizes and discusses key results of this dissertation and provides
an outlook to future research.

1.1 Relation to previous and published work

As suggested by the title “Assessing Predictive Performance: From Precipita-
tion Forecasts over the Tropics to Receiver Operating Characteristic Curves and
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Back”, the order in which research results are presented in this thesis differs from
the chronological one. The following list of research articles is in chronological
order and all research presented in this thesis contains significant contributions
by myself.

Vogel et al. (2018) Vogel, P., Knippertz, P., Fink, A. H., Schlueter, A. and
Gneiting, T. (2018). Skill of global raw and postprocessed ensemble pre-
dictions of rainfall over northern tropical Africa. Weather and Forecasting,
33, 369–388.

This research articles forms the basis of Chapter 5 and contributes to parts of
Chapters 2 and 4. Its copyright belongs to the American Meteorological Society
(AMS).1

Gneiting and Vogel (2018) Gneiting, T. and Vogel, P. (2018). Receiver oper-
ating characteristic (ROC) curves. Preprint, arXiv:1809.04808.

Chapter 3 is almost identical to this research article. It contains additional results
on notions of forecast dominance as well as a generalization of an impossibility
result for the concavity of ROC curves.

The work presented in Chapters 6 and 7 is based on joint, ongoing research with
Tilmann Gneiting, Peter Knippertz, Andreas H. Fink, and Andreas Schlueter.

1 c© Copyright 2018 American Meteorological Society (AMS). For further information regard-
ing the AMS Copyright Policy statement, visit the AMS website http://www.ametsoc.org/

CopyrightInformation.
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2 Preliminaries on forecasting and
verification

For many decades, predictions have been deterministic in the form of point fore-
casts. While conveying information about future events, they lack information
about the uncertainty inherent to the prediction. Motivated by the fundamental
results of Lorenz (1963) and others on the chaotic and non-linear nature under-
lying many key applications of forecasting, a shift in paradigms towards prob-
abilistic forecasting has occurred (e.g., Gneiting, 2008; Gneiting and Katzfuss,
2014). In meteorology, NWP ensembles have been introduced in the 1990s (e.g.,
Toth and Kalnay, 1993; Buizza et al., 2000) and have become state-of-the-art for
generating probabilistic forecasts (see Chapter 4).

The rise of probabilistic forecasts necessitated the study of theoretically prin-
cipled tools for their evaluation. In this chapter, we review fundamentals of
probabilistic forecast assessment, in particular the concepts of prediction spaces,
calibration, reliability, proper scoring rules, and consistent scoring functions.

2.1 Prediction spaces

Murphy and Winkler (1987) introduced a mathematical framework for the eval-
uation of point forecasts based on the joint distribution of observations and fore-
casts, that Gneiting and Ranjan (2013) extended to accommodate probabilistic
forecasts. We follow Gneiting and Ranjan (2013) and consider the joint distribu-
tion of multiple probabilistic forecasts and an observation on a probability space
(Ω,A,Q). We assume that elements of the sample space Ω can be identified by
tuples

(P1, . . . , Pk, Y ),

where each of P1, . . . , Pk is a probability measure on the outcome space (ΩY ,AY )
of the observation Y . Further let each Pi, i = 1, . . . , k, be measurable with
respect to the sub-σ-algebra Ai ⊆ A that encodes the information a forecast is
based on. We restrict the discussion to the case of real-valued observations, so
that (ΩY ,AY ) = (R,B), and identify each Pi with its associated right-continuous
CDF Fi.

In this particular setting, the elements of Ω can be identified by tuples

(F1, . . . , Fk, Y, V ),
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where Y is a real-valued random variable. V has a standard uniform distribution,
is independent of A1, . . . ,Ak and Y , and allows to assess the calibration of CDF-
valued forecasts with discontinuities and ensemble forecasts in (2.3) and (2.4).
In the following, we consider often only one probabilistic forecast which we then
denote by F .

2.2 Calibration, sharpness, reliability, and resolution

Probabilistic forecasts are meant to provide information about future events. As
such, they should convey correct probabilistic statements, in that observations
behave like random draws from the forecast distributions. This property is called
probabilistic calibration and while other notions of calibration exist (Gneiting
et al., 2007), it is considered the most critical requirement for CDF-valued proba-
bilistic forecasts (Dawid, 1984; Diebold et al., 1998; Gneiting et al., 2007). Under
all probabilistically calibrated forecasts, sharper forecasts with lesser uncertainty
are preferred.

For a CDF-valued continuous random quantity F , the probability integral trans-
form (PIT) is

ZF = F (Y ) (2.1)

and probabilistic calibration of F is defined via a standard uniform distribution
of the PIT ZF . In applications, probabilistic calibration is assessed empirically
via PIT histograms. For a test set

{(Fi, yi) | i = 1, . . . , n}

representing a sample of size n from the joint distribution of the forecast and ob-
servation, a PIT histogram displays the PIT values of all n forecast–observation
pairs. For probabilistically calibrated forecasts, the PIT histogram is uniform,
and for miscalibrated forecasts, information on the type of miscalibration is dis-
played in the PIT histogram. Commonly encountered in applications are under-
dispersed forecasts that have too little variance. Consequently, the observations
fall too frequently into the tails of the forecast distribution and the PIT his-
togram has a U-shape. For overdispersed forecasts, one observes hump-shaped
histograms, while skewness of the PIT histogram indicates a bias. In applications,
one often observes both dispersion errors and biases as exemplarily displayed in
Figure 2.1.

Frequently, probabilistic forecasts for real-valued quantities are given by a dis-
crete sample fij, j = 1, . . . ,m, where each fij is drawn from Fi, j = 1, . . . ,m.
Prominent examples are NWP ensemble forecasts where each of the m ensemble
members is generated in a slightly different fashion and represents a potential
realization of Y . For historic reasons, the calibration of such forecasts is assessed
via verification rank or Talagrand histograms (Anderson, 1996; Talagrand et al.,
1997; Hamill and Colucci, 1997). The verification rank

ri = #{j | fij < yi}+ 1
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is the rank of the observation when it is pooled with the m ensemble members. If
the forecast that generated the simple random sample fi1, . . . , fim is probabilis-
tically calibrated, then ri is uniformly distributed on the set of possible ranks
{1, . . . ,m+ 1} with

prob(ri = j) =
1

m+ 1
for j = 1, . . . ,m+ 1. (2.2)

Deviations from a uniform distribution indicate miscalibration with the same
interpretation as for PIT histograms.

In many applications such as for temperature or pressure, the distribution of
the observation Y is continuous. For precipitation, however, there is a positive
probability of no precipitation and the definition of PIT and verification rank
histograms needs suitable adaptions. For the PIT, the definition is extended to
encompass discontinuities of F in that

ZF = F (Y−) + V (F (Y )− F (Y−)), (2.3)

assigns a random value between the right-hand and the left-hand limit F (y−) =
limx↑y F (x) of F at any point of discontinuity y. With this extension, the equiv-
alence is recovered as proven by Rüschendorf (2009).

In case of an ensemble forecast with k > 1 ensemble members predicting the
value of the verifying observation, define a minimum tied rank ri,min and a max-
imum tied rank ri,max by

ri,min := #{j | fij < yi}+ 1 and ri,max := #{j | fij ≤ y}+ 1.

The verification rank ri is then a random draw from {ri,min, . . . , ri,max}. In case of
precipitation, if k ensemble member predict no precipitation and no precipitation
is observed, then ri is a random draw between 1 and k + 1.

In Chapters 5 and 6, we compare discrete probabilistic forecasts from different
ensembles against each other as well as postprocessed forecasts in form of CDFs.
With varying numbers of ensemble members and hence bins in the verification
rank histograms, a visual comparison between different ensemble forecasts as well
as between ensemble and postprocessed forecasts is difficult.

To allow a compelling visual assessment of calibration in this setting, we use
unified probability integral transform (uPIT) histograms as introduced by Vogel
et al. (2018). For a CDF-valued forecast F , the uPIT Z ′F is simply the PIT ZF .
For an ensemble forecast with m members, compute the verification rank ri and
define the uPIT Z ′F as

Z ′F :=
ri − 1

m+ 1
+

V

m+ 1
, (2.4)

where V is standard uniform and independent of the forecast and observation.
Figure 2.1 displays in the top row verification rank histograms for ensemble

forecasts from the China Meteorological Administration (CMA) with 14 mem-
bers, the UK Met Office (UKMO) with 23 members, and the European Centre
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Figure 2.1: Verification rank (top row) and uPIT (bottom row) histograms for
exemplary precipitation forecasts from three ensemble systems of size
14 (CMA), 23 (UKMO), and 50 (ECMWF).

for Medium-Range Weather Forecasts (ECMWF) with 50 members for 24-hour
accumulated precipitation in West Sahel in 2013. Detailed information on these
ensembles is provided in Table 4.1 and Section 4.1. While all three ensembles
are underdispersive, the visual impression suggests that CMA is the least and
ECMWF the most underdispersive ensemble.

The uPIT histograms in the bottom row of Figure 2.1 reveal that the judge-
ment of CMA being the least underdispersed ensemble is correct. However, the
assessment of the underdispersion of ECMWF was mislead by the high number
of ensemble members and its underdispersion is actually less pronounced than
that of UKMO.

Often, probability forecasts for binary events are of particular interest. In these
settings, the CDF-valued random quantity F can be identified with a forecast
p ∈ [0, 1], representing the probability of a positive outcome Y = 1, in that

F (y) = (1− p)1(y ≥ 0) + p1(y ≥ 1),

where 1(A) shall here and in the following denote the indicator function being
one if A holds and zero else. For precipitation forecasts, the probability of precip-
itation (PoP) as well as the probability of precipitation accumulations exceeding
given amounts are of interest. A probabilistic forecast p for a binary event Y is
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conditionally calibrated or reliable if

Q(Y = 1 | p) = p almost surely. (2.5)

In applications, the reliability of a probabilistic forecast p is assessed in calibra-
tion curves or reliability diagrams (e.g., Murphy and Winkler, 1977; Bröcker and
Smith, 2007). Given a set of forecast-observation pairs

{(pi, yi) | i = 1, . . . , n}

representing a sample of size n from the joint distribution of p and Y , a reliability
diagram plots forecast probabilities on the abscissa against conditional event fre-
quencies on the ordinate. Specifically, a partition 0 = x0 < x1 < · · · < xN = 1 is
applied such that in each bin [xi, xi+1) at least a pre-specified number of forecasts
is present. One then plots the empirical estimate of the conditional probability
Q(Y = 1 | p ∈ [xj, xj+1)) given by

#{i | pi ∈ [xj, xj+1) , Yi = 1}
#{i | pi ∈ [xj, xj+1)}

against the arithmetic center of the bin, i.e. (xj + xj+1)/2. Bröcker and Smith
(2007) note that although using the arithmetic center of a bin is very common, it
has the clear disadvantage that reliable forecasts can appear unreliable. As this is
not the case for the empirical mean forecast per bin, we rely on the latter instead.
Deviations from the expected diagonal indicate a lack of forecast reliability and
different types of forecast misspecifications can be identified by the shape of the
reliability diagram (see, e.g., Wilks, 2011).

The sharpness of a forecast refers to the concentration of a predictive dis-
tribution and is a property of the forecast only. Similarly, resolution describes
the ability of probability forecasts for binary outcomes to issue predictions that
deviate from the unconditional probability Q(Y = 1).

2.3 Proper scoring rules

For the comparative assessment of forecast quality, we rely on proper scoring rules
that assess calibration and sharpness simultaneously (Gneiting and Raftery, 2007;
Wilks, 2011) and encourage honest and careful forecasting.

Let F denote a generic convex class of probability distributions F on the out-
come space ΩY = R. A scoring rule is a mapping

S : F × R→ R ∪ {∞} (2.6)

that assigns a score based on the predictive distribution F ∈ F and the obser-
vation y ∈ R. Typically, one assumes scoring rules to be negatively oriented
and calls them proper relative to the class F if the expected score function is
well-defined and

EY∼GS(G, Y ) ≤ EY∼GS(F, Y ) (2.7)

9



holds for all distributions F,G ∈ F . Here, EY∼GS(G, Y ) denotes the expected
score a forecast G attains for an observation Y that is distributed as G. Strict
propriety is attained if (2.7) holds with equality if and only if F = G.

The main benefit of propriety is that it implicitly enforces honest and careful
forecasting. If a forecaster believes that the observation follows a distribution G,
then G is a, and in case of strict propriety the, best forecast she can issue in order
to minimize her expected score. This property is crucial, and the use of improper
scoring rules can lead to misguided inferences about predictive performance as
noted by Gneiting and Raftery (2007), Gneiting (2011), and Hilden and Gerds
(2014).

As scoring rules summarize the predictive performance of probabilistic fore-
casts, they allow to assess and rank competing forecasts based on their mean
scores for a given test set (Gneiting and Raftery, 2007). For probabilistic pre-
cipitation forecasts, Scheuerer (2014) argues convincingly that as forecasting pre-
cipitation is highly challenging, a small number of suboptimal forecasts should
not have a too strong influence on the mean score. Additionally, the scoring rule
has to accommodate forecasts consisting of a discrete component for the proba-
bility of no precipitation and a continuous component for positive accumulation
amounts.

These considerations favor the continuous ranked probability score (CRPS;
Matheson and Winkler, 1976; Gneiting and Raftery, 2007), namely

CRPS(F, y) =

∫ ∞
−∞

[F (x)− 1(x ≥ y)]2 dx, (2.8)

which is a strictly proper scoring rule relative to the class F of probability dis-
tributions with finite first moment. Gneiting and Raftery (2007) show that the
CRPS admits the representation

CRPS(F, y) = EF |X − y| −
1

2
EF |X −X ′|. (2.9)

where X and X ′ are independent copies of a random variable with distribution
function F and finite first moment. Equation (2.9) implies that the CRPS is mea-
sured in the same unit as the forecast and is reasonably robust against outliers.
While the application of the CRPS was often hindered by the lack of closed form
expressions for parametric CDFs, many closed form expressions have been de-
rived in recent years and render the CRPS also a computationally efficient choice
(Gneiting and Raftery, 2007; Friederichs and Thorarinsdottir, 2012; Jordan et al.,
2018).

The PoP as an essential component of any probabilistic precipitation forecast
as well as exceedance probabilities above pre-defined thresholds can be evaluated
by the Brier score (BS; Brier, 1950). For a probabilistic forecast F and an event
threshold t it is given by

BSt(F, y) = (1(y ≤ t)− F (t))2. (2.10)
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Clearly, the BS is a strictly proper scoring rule and the CRPS is the integral of
the BS over all possible threshold values t. Besides the BS, many other choices
are possible to evaluate probabilistic forecasts for binary events, and different
choices may result in different forecast rankings.

Savage (1971) proved that subject to weak regularity conditions a scoring rule
for a probability forecast p and a binary event y is proper if it can be expressed
as

S(p, y) = φ(y)− φ(p)− φ′(p)(y − p), (2.11)

where the function φ is convex with subgradient φ′. The BS arises in the case
φ(t) = t2. Ehm et al. (2016) showed that in this setting every proper scoring rule
admits a representation

S(p, y) =

1∫
0

Sθ(p, y) dH(θ) (2.12)

in terms of elementary scores or losses Sθ, namely,

Sθ(p, y) =


θ, y = 0, p > θ,

1− θ y = 1, p ≤ θ,

0, otherwise,

(2.13)

and a non-negative measure H. The elementary scores can be interpreted eco-
nomically, in that they reflect the cost incurred by optimal decision strategies.
Given a probabilistic forecast p for a binary event y, we need to predict if it will
happen or not. If correct decisions do not incur any costs, a false alarm carries
cost θ, and a missed event has cost 1− θ for some θ ∈ (0, 1), an optimal strategy
is to predict that the event will happen when p > θ, and to predict that it will not
happen when p ≤ θ.1 Hence, θ can also be interpreted in terms of the cost-loss
ratio of the decision problem (Murphy, 1977).

For evaluation purposes, Ehm et al. (2016) advocate the use of Murphy dia-
grams which display, for each forecast considered, the mean elementary score as a
function of θ ∈ (0, 1). If a forecast receives a lower elementary score than another
for every θ, it is preferable for any decision maker, and receives lower scores under
just any proper scoring rule. Ehm et al. (2016) introduce for such settings the
concept of forecast dominance in the Murphy diagram sense.

In many types of applications, ROC curves are popular graphical tools for the
assessment of the discrimination ability of forecasts in binary prediction problems.
In contrast to proper scoring rules, which assess the actual value of a forecast in
decision making, ROC curves are insensitive to (any lack of) reliability and, there-
fore, reflect potential skill and value only (Wilks, 2011, p. 346). In Chapter 3, we
study ROC curves in detail and analyze the relationship of forecast dominance in
the Murphy diagram and ROC curve sense for conditionally calibrated forecasts.

1When p = θ, either action can be taken.
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2.4 Consistent scoring functions

While probabilistic forecasts are superior to point forecasts, many practical situ-
ations require single-valued point forecasts for a variety of reasons, ranging from
tradition and reporting requirements to decision making (Gneiting, 2011). While
one can easily transform a probabilistic forecast into a deterministic one, it is
unclear how to select the “right” point forecast without any further guidance.

It is therefore necessary to specify a priori a scoring function that will be
used for evaluation, and thus encourage forecasters to issue the optimal point
forecast or Bayes act, or to request directly a specific functional of the forecast
distribution (Gneiting, 2011). A loss or score function is called consistent for a
given functional if the Bayes act corresponds to the respective functional of the
forecasting distribution.

Commonly used scoring functions for the evaluation of a point forecast x for
an observation y are the absolute error AE(x, y) = |x− y| and the squared error
SE(x, y) = (x − y)2. It is well known that the Bayes act x̂ = arg minEFS(x, Y )
for the AE is the median of F , while it is the mean of F for squared error. In
Chapters 5 and 6, we rely on the AE to evaluate median forecasts and note that
the CRPS collapses to the AE if the forecast is deterministic, as is immediate
from equation (2.9).
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3 Receiver Operating
Characteristic (ROC) curves

In this chapter, we focus on the evaluation of the predictive ability of real-valued
markers or features for binary outcomes. In particular, we introduce the concept
of ROC curves and derive fundamental properties of ROC curves. We distinguish
raw ROC diagnostics and ROC curves, establish the equivalence between ROC
curves and CDFs on the unit interval and elucidate the crucial role of concavity
in interpreting and modeling ROC curves. These results support a subtle shift
of paradigms in the statistical modeling of ROC curves, which we view as curve
fitting. We introduce the flexible two-parameter beta family for fitting CDFs to
empirical ROC curves, derive the large sample distribution of the minimum dis-
tance estimator and currently develop software in R for estimation and testing,
including both asymptotic and Monte Carlo based inference. In a range of em-
pirical examples the beta family and its three- and four-parameter ramifications
that allow for straight edges fit better than the classical binormal model, partic-
ularly under the vital constraint of the fitted curve being concave. Throughout
Chapter 3, we closely follow Gneiting and Vogel (2018).

3.1 Introduction

Through all realms of science and society, the assessment of the predictive ability
of real-valued markers or features for binary outcomes is of critical importance. To
give but a few examples, biomarkers are used to diagnose the presence of cancer or
other diseases, NWP systems aid in the prediction of extreme precipitation events,
judges need to assess recidivism in convicts, in information retrieval documents,
such as websites, are to be classified as signal or noise, banks use customers’
particulars to assess credit risk, financial transactions are to be classified as fraud
or no fraud, and email messages are to be identified as spam or legitimate. In these
and myriads of similar settings, ROC curves are key tools in the evaluation of
the predictive ability of covariates, markers or features (Egan et al., 1961; Swets,
1973, 1988; Zweig and Campbell, 1993; Fawcett, 2006). Figure 3.1 documents
the astonishing rise in the use of ROC curves in the scientific literature. In 2017,
nearly 8,000 papers were published that use ROC curves, up from less than 50
per year through 1990 and less than 1,000 papers annually through 2002.

A ROC curve is simply a plot of the hit rate against the false alarm rate across
the range of thresholds for the real-valued marker or feature at hand. Specifi-
cally, consider the joint distribution Q of the pair (X, Y ), where the covariate,
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Figure 3.1: Number of publications per year resulting from a Web of Science topic
search for the terms “receiver operating characteristic” or “ROC” on
24 August 2018. Note the square root scale on the vertical axis, which
suggests quadratic growth.

marker or feature X is real-valued, and the event Y is binary, with the implicit
understanding that higher values of X provide stronger support for the event to
materialize (Y = 1). The joint distribution Q of (X, Y ) is characterized by the
prevalence π1 = Q(Y = 1) ∈ (0, 1) along with the conditional CDFs

F1(x) = Q(X ≤ x |Y = 1) and F0(x) = Q(X ≤ x |Y = 0).

Any threshold value x can be used to predict a positive outcome (Y = 1) if X > x
and a negative outcome (Y = 0) if X ≤ x, to yield a classifier with hit rate (HR),1

HR(x) = Q(X > x |Y = 1) = 1− F1(x),

and false alarm rate (FAR),

FAR(x) = Q(X > x |Y = 0) = 1− F0(x).

The term raw ROC diagnostic refers to the set-theoretic union of the points of
the form (FAR(x),HR(x))′ in the unit square. The ROC curve is a linearly

1Terminologies abound and differ markedly between communities. Some researchers talk of
ROC as relative operating characteristic; see, e.g., Swets (1973) and Mason and Graham
(2002). The hit rate has also been referred to as probability of detection (POD), recall, sen-
sitivity, or true positive rate (TPR). The false alarm rate is also known as probability of false
detection (POFD), fall-out, or false positive rate (FPR) and equals one minus the specificity,
selectivity, or true negative rate (TNR). For an overview, see https://en.wikipedia.org/

wiki/Precision_and_recall#Definition_(classification_context), accessed 21 Au-
gust 2018.
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Table 3.1: Proposed terminology for the potential predictive strength of a feature
based on the AUC value.

AUC Descriptor

> 0.99 nearly perfect
0.95− 0.99 very strong
0.85− 0.95 strong
0.75− 0.85 substantial
0.65− 0.75 moderate
0.50− 0.65 weak
≤ 0.50 abysmal

interpolated raw ROC diagnostic and therefore also a point set that may or
may not admit a direct interpretation as a function. However, if F1 and F0 are
continuous and strictly increasing, the raw ROC diagnostic and the ROC curve
can be identified with a function R, where R(0) = 0,

R(p) = 1− F1(F−1
0 (1− p)) for p ∈ (0, 1), (3.1)

and R(1) = 1. High hit rates and low false alarm rates are desirable, so the
closer the ROC curve gets to the upper left corner of the unit square the better.
The area under the ROC curve (AUC) is a widely used measure of the potential
predictive value of a feature (Hanley and McNeil, 1982, 1983; DeLong et al.,
1988; Bradley, 1997), admitting an appealing interpretation as the probability of
a marker value drawn from F1 being higher than a value drawn independently
from F0. Table 3.1 proposes terminology for the description of the strength of
the potential value in terms of AUC.

In data analytic practice, the measure Q is the empirical distribution of a sam-
ple (xi, yi)

n
i=1 of real-valued features xi and corresponding binary observations yi.

To generate a ROC curve in this setting, it suffices to consider the unique values
of x1, . . . , xn and the respective false alarm and hit rates. The resulting raw ROC
diagnostic is interpolated linearly to yield an empirical ROC curve, as illustrated
in Figure 3.2 on examples from the biomedical (Etzioni et al., 1999; Sing et al.,
2005; Robin et al., 2011) and meteorological (Vogel et al., 2018) literatures. Based
on AUC and the terminology in Table 3.1, the predictor strength is moderate in
the example from Robin et al. (2011), substantial for the data from Etzioni et al.
(1999) and Vogel et al. (2018), and strong in the example from Sing et al. (2005).
Arguably, the immense popularity of empirical ROC curves and AUC across the
scientific literature stems from their ease of implementation and interpretation
in concert with a wide range of desirable properties, such as invariance under
strictly increasing transformations of a feature.

The remainder of this chapter is organized as follows. Section 3.2 establishes
some fundamental theoretical results. We formalize the distinction between raw
ROC diagnostics and ROC curves, demonstrate an equivalence between ROC
curves and CDFs, and elucidate the special role of concavity in the interpretation
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Etzioni et al. (1999)
AUC = 0.80                                             n = 116
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Sing et al. (2005)
AUC = 0.90                                            n = 3450
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Robin et al. (2011)
AUC = 0.73                                             n = 113
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Vogel et al. (2018)
AUC = 0.77                                            n = 5449

Figure 3.2: Examples of empirical ROC curves.

and modeling of ROC curves. In Section 3.3 we introduce the flexible yet par-
simonious two-parameter beta model, which uses the CDFs of beta distributions
to model ROC curves, and we discuss estimation and testing based on empirical
ROC curves, including both asymptotic and Monte Carlo based approaches. We
derive the asymptotic distribution of the minimum distance estimator in general
parametric settings, and specialize to both the beta family and the classical bi-
normal model. Section 3.4 returns to our empirical examples, of which we present
detailed analyses, with the beta family and its natural three- and four-parameter
extensions that allow for straight edges in the ROC curve fitting better than the
binormal model, particularly under the concavity constraint. Section 3.5 presents
the betaROC package and this chapter closes with a discussion in Section 3.6.
Proofs of a more technical character are deferred to Appendices 3.A-3.D.
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3.2 Fundamental properties of ROC curves

Consider the bivariate random vector (X, Y ) where X is a real-valued predictor,
covariate, feature, or marker, and Y is the binary response. We refer to the joint
distribution of (X, Y ) as Q. Let π1 = Q(Y = 1) ∈ (0, 1) and π0 = 1 − π1 =
Q(Y = 0), and let F1(x) = Q(X ≤ x |Y = 1), F0(x) = Q(X ≤ x |Y = 0), and

F (x) = Q(X ≤ x) = π0F0(x) + π1F1(x)

denote the conditional and marginal cumulative distribution functions (CDFs) of
X, respectively. Furthermore, we let F0(x−) = limx′↑x F0(x′).

We use column vectors to denote points in the Euclidean plane, and given any
(a, b)′ ∈ R2 we write (a, b)′(1) = a and (a, b)′(2) = b for the respective coordinate
projections.

3.2.1 Raw ROC diagnostics and ROC curves

In this common setting ROC diagnostics concern the points of the form (FAR(x),HR(x))′,
where FAR(x) = 1 − F0(x) is the false alarm rate and HR(x) = 1 − F1(x) the
hit rate at the threshold value x ∈ R. Formally, the raw ROC diagnostic for the
random vector (X, Y ) and the bivariate distribution Q is the point set

R∗ =

{(
1− F0(x)
1− F1(x)

)
: x ∈ R

}
(3.2)

within the unit square. Clearly, the bivariate distribution Q of (X, Y ) is char-
acterized by F0, F1, and any of the two marginal distributions. In contrast, the
raw ROC diagnostic along with a single marginal does not characterize Q, due
to the well known invariance of ROC diagnostics under strictly increasing trans-
formations of X and shifts in the prevalence of the binary outcome (Fawcett,
2006). However, the raw ROC diagnostic along with both marginal distributions
determines Q.

Theorem 3.1. The joint distribution Q of (X, Y ) is characterized by the raw
ROC diagnostic and the marginal distributions of X and Y .

Proof. The mapping g : [0, 1]2 → [0, 1] defined by

(a, b)′ 7→ (1− a)π0 + (1− b)π1

induces a bijection between the raw ROC diagnostic R∗ and the range of F .
Therefore, it suffices to note that Q(X ≤ x, Y ≤ y) = 0 for y < 0,

Q(X ≤ x, Y ≤ y) = F0(x) π0

= F (x)− (1− HR(x))π1

= F (x)− (1− g−1
(2)(F (x)))π1

for y ∈ [0, 1), and Q(X ≤ x, Y ≤ y) = F (x) for y ≥ 1.
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Table 3.2: Ordered marker values x1 < x2 < · · · < x7, binary observations, and
FAR and HR at the respective threshold for the example in Figure 3.3.

X < x1 x1 x2 x3 x4 x5 x6 x7 > x7

Y 0 1 0, 0 0, 0, 1 0, 1, 1 1 1

FAR× 6 6 5 5 3 1 0 0 0 0
HR× 6 6 6 5 5 4 2 1 0 0
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Figure 3.3: Raw ROC diagnostic (left) and corresponding empirical ROC curve
(right) for the marker in Table 3.2. The broken red line completes the
concave hull of the empirical ROC curve.

Briefly, a ROC curve is obtained from the raw ROC diagnostic by linear inter-
polation. Formally, the full ROC diagnostic or ROC curve is the point set

R =

{(
0
0

)}
∪R∗ ∪ {Lx : x ∈ R} ∪

{(
1
1

)}
(3.3)

within the unit square, where

Lx =

{
α

(
1− F0(x−)
1− F1(x−)

)
+ (1− α)

(
1− F0(x)
1− F1(x)

)
: α ∈ [0, 1]

}
is a possibly degenerate, nondecreasing line segment. The choice of linear inter-
polation to complete the raw ROC diagnostic into the ROC curve (3.3) is natural
and persuasive, as the line segment Lx represents randomized combinations of
the classifiers associated with its end points. In particular, linear interpolation
allows for a fair and direct comparison between continuous, discrete, and ordinal
features. Empirical ROC curves based on samples, as illustrated in Figure 3.2,
fit this framework, as they arise in the special case where Q is an empirical mea-
sure. We illustrate the transition from the raw ROC diagnostic to the ROC
curve in Figure 3.3 using the toy data set from Table 3.2, where there are twelve
observations and seven unique marker values.
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The raw ROC diagnostic can be recovered from the ROC curve and the two
marginal distributions, as the mapping g in the proof of Theorem 3.1 induces
a bijection between the raw ROC diagnostic and the range of F that can be
expressed in terms of π1 and π0. From this simple fact the following result is
immediate.

Corollary 3.2. The joint distribution Q of (X, Y ) is characterized by the ROC
curve and the marginal distributions of X and Y .

In this sense, ROC curves and raw ROC diagnostics assume roles similar to
those of copulas (e.g., Nelsen, 2006) with the difference that ROC curves are
defined in terms of conditional distributions, whereas copulas operate on marginal
distributions.

Given a ROC curve R, an obvious task is to find CDFs F0 and F1 that realize
R. For a particularly simple and appealing construction, let F0 be the CDF of
the uniform distribution on the unit interval, and take F1 to be FNI, defined as
FNI(x) = 0 for x ≤ 0,

FNI(x) = 1−R+(1− x) for x ∈ (0, 1), (3.4)

and FNI(x) = 1 for x ≥ 1, where the function R+ : (0, 1) → [0, 1] is induced by
the ROC curve at hand, in that

R+(x) = inf {b : (a, b)′ ∈ R, a ≥ x} .

In anticipation of its repeated use in subsequent sections, we refer to this specific
realization of a ROC curve R, in which F0 is standard uniform and F1 is taken
to be FNI in (3.4), as the natural identification.

Remarkably, the natural identification applies even when the feature X is dis-
crete or ordinal. Nevertheless, the statistical models and methods that we intro-
duce in Section 3.3 target the case of a continuous marker or feature.

3.2.2 Concave ROC curves

We proceed to elucidate the critical role of concavity in the interpretation and
modeling of ROC curves.2 Its significance is well known and has been alluded
to in monographs, such as by Egan (1975, p. 35), Pepe (2003, p. 71), and Zhou
et al. (2011, p. 40). Nevertheless, we are unaware of any rigorous treatment in the
extant literature. To address this omission, we distinguish and analyse regular
and discrete settings. Unified treatments are feasible but considerably technical,
and we leave them to future work.

2Again, terminologies differ between communities. In machine learning, concave ROC curves
are typically referred to as convex (e.g., Fawcett, 2006), whereas the psychological and
biomedical literatures call them proper (Egan, 1975, Section 2.6; Zhou et al., 2011, Sec-
tion 2.7.3). The usage in this thesis is in accordance with well established, commonly used
terminology in the mathematical sciences.
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In the regular setting we suppose that F1 and F0 have continuous, strictly
positive Lebesgue densities f1 and f0 in the interior of an interval, which is their
common support. For every x in the interior of the support, we can define the
likelihood ratio,

LR(x) =
f1(x)

f0(x)
,

and the conditional event probability,

CEP(x) = Q(Y = 1 |X = x) =
π1f1(x)

π0f0(x) + π1f1(x)
.

We demonstrate the equivalence of the following three conditions:

(a) The ROC curve is concave.

(b) The likelihood ratio is nondecreasing.

(c) The conditional event probability is nondecreasing.

Theorem 3.3. In the regular setting statements (a), (b), and (c) are equivalent.

Proof. In the regular setting the ROC curve can be identified with a function
R : [0, 1] → [0, 1], where R(p) is defined as in (3.1) for p ∈ (0, 1). If the ROC
curve is concave then clearly the function R is concave as well, and so its derivative
R′(p) is nonincreasing in p ∈ (0, 1). However, the slope R′(p) equals the likelihood
ratio LR(x) at a certain value x that decreases with p, which establishes the
equivalence of (a) and (b). Furthermore,

LR(x) =
π0

π1

CEP(x)

1− CEP(x)
,

and the function c 7→ c/(1 − c) is nondecreasing in c ∈ (0, 1), which yields the
equivalence of (b) and (c).

Next we consider the discrete setting in which the support of the feature X
is a finite or countably infinite set. This setting includes, but is not limited to,
the case of empirical ROC curves, as illustrated in Figure 3.2. For every x in the
discrete support of X, we can define the likelihood ratio,

LR(x) =

{
Q(X = x |Y = 1) / Q(X = x |Y = 0) if Q(X = x |Y = 0) > 0,

∞, if Q(X = x |Y = 0) = 0,

and the conditional event probability,

CEP(x) = Q(Y = 1 |X = x).

In Appendix 3.A we prove the following direct analogue of Theorem 3.3.
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Theorem 3.4. In the discrete setting statements (a), (b), and (c) are equivalent.

The critical role of concavity in the interpretation and modeling of ROC curves
stems from the monotonicity condition (c) on the conditional event probability,
which is at the very heart of the approach and needs to be invoked to justify
the construction of just any raw ROC diagnostic or ROC curve. In the medi-
cal literature Hilden (1991) notes that “some authors do seem to overlook the
concavity problem” and Pesce et al. (2010) argue that “direct use of a decision
variable” with a non-concave ROC curve “must be considered irrational” and
“unethical when applied to medical decisions”. Similar considerations apply in
the vast majority of applications of ROC curves.

Fortunately, there are straightforward ways of restricting attention to concave
ROC curves and the associated classifiers. Generally, randomization can be used
to generate classifiers with concave ROC curves from features with non-concave
ones (Fawcett, 2006; Pesce et al., 2010). The regular setting serves to supply
theoretical models that can be fit to empirical ROC curves, such as the classi-
cal binormal model or our new beta model, and the parameters in these models
can be restricted suitably to guarantee concavity, as we discuss in Section 3.3.
Empirical ROC curves typically fail to be concave, as illustrated in Figure 3.2.
However, they can readily be morphed into their concave hull, by subjecting the
marker or feature at hand to the pool-adjacent violators (PAV: Ayer et al., 1955;
De Leeuw et al., 2009) algorithm, thereby converting it into an isotonic, cali-
brated probabilistic classifier (Lloyd, 2002; Fawcett and Niculescu-Mizil, 2007).
For example, for the toy data in Table 3.3 the PAV algorithm assigns the condi-
tional event probability p1 = 0 to x1, the value p2 = 1

3
to x2, x3, and x4, the value

p3 = 2
3

to x5, and the value p4 = 1 to x6 and x7. The ROC curve for this isotonic
and calibrated probabilistic classifier is the concave hull of the ROC curve for the
original marker, as shown in Figure 3.3.

3.2.3 Equivalence of ROC curve and Murphy diagram
dominance for conditionally calibrated forecasts

Based on the invariance of ROC curves under strictly increasing transformations
of the feature, ROC curves evaluate potential, rather than real, skill of a predic-
tor. In contrast, Murphy diagrams evaluate real skill of predictions as noted in
Chapter 2. If predictions are conditionally calibrated, then the notions of poten-
tial and real skill coincide and so should the interpretation of Murphy diagrams
and ROC curves. In particular, if a forecast has a ROC curve that is everywhere
to the top left of the ROC curve of another forecast and therefore dominates
it in the ROC curve sense, then it should also receive lower elementary scores,
introduced in (2.13), in the Murphy diagram across all thresholds and as such
dominate it in the Murphy diagram sense. Even before the introduction of Mur-
phy diagrams by Ehm et al. in 2016, Wilks (2011, p. 346) noted with reference
to Krzysztofowicz and Long (1990) that
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“On the other hand, when forecasts underlying ROC diagrams are correctly

calibrated, dominance of one ROC curve over another (i.e., one curve lying

entirely above and to the left of another) implies statistical sufficiency for

the dominating forecasts, so that these will be of greater use for all rational

forecast users.”

With the Murphy diagram indicating greater economic value by lower elemen-
tary scores, Wilks’ statement suggests the equivalence of ROC curve and Murphy
diagram dominance in case of (conditionally) calibrated forecast. In the following,
the equivalence of the notions of forecast dominance in the ROC curve and in the
Murphy diagram sense is proven for calibrated forecasts. To this end, the next
two theorems introduce characterizations of ROC curves and Murphy diagrams
in the calibrated forecast setting.

Theorem 3.5. Let X be a discrete or absolutely continuous, conditionally cali-
brated probability forecast for Y . Then the ROC curve is completely determined
by the marginal distribution of X.

Proof. We start by proving the claim for discrete forecasts X, so that the support
of X is a finite or countably infinite, ordered set of two or more points xi ∈ [0, 1],
indexed by consecutive integers i ∈ I such that xi < xj if i < j. In the case
of a finite set, we assume that it is at least of cardinality two.3 Denote by
f(xi) = Q(X = xi) > 0 for i ∈ I the probability of X attaining the value xi.
Then

π0 = Q(Y = 0) =
∑
i∈I

Q(Y = 0 |X = xi)Q(X = xi) =
∑
i∈I

(1− xi)f(xi),

as the conditional calibration of X guarantees Q(Y = 0 |X = xi) = 1 − xi.
Similarly, π1 = Q(Y = 1) is also determined by f . The Bayes theorem implies

f0(xi) = Q(X = xi |Y = 0) = Q(Y = 0 |X = xi)Q(X = xi)
1

Q(Y = 0)

= (1− xi) f(xi) π
−1
0 ,

f1(xi) = Q(X = xi |Y = 1) = Q(Y = 1 |X = xi)Q(X = xi)
1

Q(Y = 1)

= xi f(xi)π
−1
1

and the conditional distributions F0(xi) = Q(X ≤ xi |Y = 0) and F1(xi) =
Q(X ≤ xi |Y = 1) are completely determined by f . As F0 and F1 characterize
the associated ROC curve, the statement follows. In case of a continuous forecast
distribution f on [0, 1], the result follows with suitable technical adaptions in an
analogous way.

3The raw ROC diagnostic in case of a set of cardinality one is represented by one single
combination of hit and false alarm rate situated on the chance diagonal for conditionally
calibrated forecasts.

22



Theorem 3.6. Let X be a discrete or absolutely continuous, conditionally cali-
brated probability forecast for Y . Then its Murphy diagram is completely deter-
mined by the marginal distribution of X.

Proof. The Murphy diagram plots the expected elementary score ESθ(X, Y ) in-
troduced in (2.13) as a function of the threshold θ ∈ [0, 1] and can be expressed
as

ESθ(X, Y ) = θQ(Y = 0, X > θ) + (1− θ)Q(Y = 1, X ≤ θ)

= θQ(X > θ |Y = 0)Q(Y = 0) + (1− θ)Q(X > θ |Y = 1)Q(Y = 1)

= θ (1− F0(θ))π0 + (1− θ)F1(θ) π1.

As the distribution of X determines F0, F1, π0, and π1 in case of a conditionally
calibrated forecast, the statement follows.

Definition 3.7. Let X1 and X2 be probability forecasts for a binary event Y .
Then X1 dominates X2 in the Murphy diagram sense if

ESθ(X1, Y ) ≤ ESθ(X2, Y ) (3.5)

holds for all θ ∈ [0, 1]. Forecast X1 strictly dominates X2 if (3.5) holds and
ESθ(X1, Y ) < ESθ(X2, Y ) for some θ ∈ (0, 1).

Definition 3.8. Let X1 and X2 be probability forecasts for a binary event Y .
Forecast X1 dominates forecast X2 in the ROC curve sense if

FNI,1(x) ≤ FNI,2(x) (3.6)

holds for all x ∈ [0, 1]. Here, FNI,1 and FNI,2 are the CDFs obtained by the natural
identification of the ROC curves R1 and R2 corresponding to forecasts X1 and
X2. Furthermore, X1 strictly dominates X2 if (3.6) holds and FNI,1(x) < FNI,2(x)
for some x ∈ (0, 1).

Theorem 3.9. For discrete or absolutely continuous, conditionally calibrated
probability forecasts X1 and X2 for the binary outcome Y , (strict) dominance
in the Murphy diagram sense is equivalent to (strict) dominance in the ROC
curve sense.

The proof proceeds by introducing an alternative characterization of ROC curve
dominance, that allows to invoke the concavity of both ROC curves. Subse-
quently, reformulations yield the equivalence between (strict) ROC curve and
(strict) Murphy diagram dominance. See Appendix 3.B for details of the proof.

3.2.4 An equivalence between ROC curves and probability
measures

We move on to provide concise and practically relevant characterizations of ROC
curves, both with and without the critical condition of concavity.
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Theorem 3.10. There is a one-to-one correspondence between ROC curves and
probability measures on the unit interval. In particular, the natural identification
induces a bijection between the class of the ROC curves and the class of the CDFs
of probability measures on the unit interval.

Proof. Given a ROC curve, we can remove any vertical line segments, except for
the respective upper endpoints, to yield the CDF of a probability measure on the
unit interval. Conversely, given the CDF of a probability measure on the unit
interval, we can interpolate vertically at any jump points to obtain a ROC curve.
This mapping is a bijection, and save for the symmetries in (3.4) is realized by
the natural identification.

We say that a curve C in the Euclidean plane is nondecreasing if a0 ≤ a1 is
equivalent to b0 ≤ b1 for points (a0, b0)′, (a1, b1)′ ∈ C. The following result is
immediate.

Corollary 3.11. The ROC curves are the nondecreasing curves in the unit square
that connect the points (0, 0)′ and (1, 1)′.

We now state characterizations under the constraint of strict concavity. Anal-
ogous results hold under the slightly weaker assumption of concavity.

Theorem 3.12. There is a one-to-one correspondence between strictly concave
ROC curves and probability measures with strictly increasing Lebesgue densities
on the unit interval, which is induced by the natural identification.

Corollary 3.13. The strictly concave ROC curves are in one-to-one correspon-
dence to the strictly concave functions R on the unit interval with R(0) = 0 and
R(1) = 1.

Turning to methodological and applied considerations, these results support a
shift of paradigms in the statistical modeling of ROC curves. In extant practice,
the emphasis is on modeling the conditional distributions F0 and F1, such as
in the ubiquitous binormal model. Our results suggest a subtle but important
change of perspective, in that ROC modeling can be approached as an exercise in
curve fitting,4 with any nondecreasing curve that connects (0, 0)′ to (1, 1)′ being
a permissible candidate, and parametric families of CDFs on the unit interval of-
fering particularly attractive models, including but not limited to the beta family
that we introduce in the next section.

3.3 Parametric models, estimation, and testing

The binormal model is by far the most frequently used parametric model and
“plays a central role in ROC analysis” (Pepe, 2003, p. 81). Specifically, the

4While curve fitting approaches have been advocated before, such as by Swets (1986, p. 104,
his approach (b)), they lacked theoretical support.
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binormal model assumes that F1 and F0 are Gaussian with means µ1 ≥ µ0 and
strictly positive variances σ2

0 and σ2
1, respectively. We are in the regular setting

of Subsection 3.2.2, and the resulting ROC curve is represented by the function
R : [0, 1]→ [0, 1] with R(0) = 0,

R(p) = Φ(µ+ σΦ−1(p)) for p ∈ (0, 1), (3.7)

and R(1) = 1, where Φ is the CDF of the standard normal distribution, µ =
(µ1−µ0)/σ1 ≥ 0 is a scaled difference in expectations, and σ = σ0/σ1 is the ratio
of the respective standard deviations. The respective area under the curve is

AUC(µ, σ) = Φ

(
µ√

1 + σ2

)
.

For an illustration of binormal ROC curves see the left-hand panel of Figure 3.4. It
is well known that a binormal ROC curve is concave only if σ = 1 or equivalently
if F0 and F1 differ in location only. Theorem 3.14 generalizes this impossibility
result to obtain concavity under different variances to location–scale-families in
general.

Proposition 3.14. Let F denote the class of strictly increasing CDFs on R.
For any F ∈ F , set F0(x) = F (x) and F1(x) = F

(
x−µ
σ

)
for some µ > 0 and

σ > 0. Then the ROC curve associated with the conditional CDFs F0 and F1 is
non-concave whenever σ 6= 1.

Proof. A ROC curve is non-concave if it crosses the diagonal given by HR(x) =
FAR(x) for at least one x ∈ R. It holds that

HR(x) < FAR(x) ⇔ F0(x) < F1(x) ⇔ F0(x) < F0

(
x− µ
σ

)
.

Suppose σ > 1. Then F0(x) < F1(x) for all x < −µ/(σ − 1). If σ < 1, then
F0(x) < F1(x) for all x > µ/(1− σ).

Under the binormal model, concave ROC curves are necessarily symmetric
with respect to the anti-diagonal in the unit square, which strongly inhibits their
flexibility as illustrated in the left-hand panel of Figure 3.5.

3.3.1 The beta model

Motivated and supported by the characterization theorems of Section 3.2, we
propose a curve fitting approach to the statistical modeling of ROC curves, with
the two-parameter family of the cumulative distribution functions (CDFs) of
beta distributions being a particularly attractive model. Specifically, consider
the beta family with ROC curves represented by the function

R(p) = Bα,β(p) =

∫ p

0

bα,β(q) dq for p ∈ [0, 1], (3.8)
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Figure 3.4: Members of the (left) binormal family and (right) beta family of ROC
curves. The parameter values for the beta curves have been chosen
to match the overall shape of the same-color binormal ROC curve.
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Parameter combinations above and left of the black line yield concave
ROC curves.

where bα,β(q) ∝ qα−1(1 − q)β−1 is the density of the beta distribution with pa-
rameter values α > 0 and β > 0. As illustrated in Figure 3.6 and shown in
Appendix 3.C, a beta ROC curve is concave if α ≤ 1 and β ≥ 2−α, and its AUC
value is

AUC(α, β) =
β

α + β
.

In the limit as β →∞ we obtain the perfect ROC curve with straight edges from
(0, 0)′ to (0, 1)′ and (1, 1)′, corresponding to a complete separation of the supports
of F1 and F0. While the requirement of a concave ROC curve is restrictive, the
condition is much less stringent than for the binormal family, where it constrains
the admissible parameter space to a single dimension. The adaptability of the
beta family is illustrated in Figure 3.4, where we see that members of the beta
family can match the shape of binormal ROC curves, and in Figure 3.5, where
the gain in flexibility under the critical constraint of concavity is evident.

The beta family nests the time-honored one-parameter power model (Egan
et al., 1961; Swets, 1986) that arises in the special case when β = 1. While the
classical derivation of the power model does not readily generalize, our theoretical
results justify the use of the two-parameter beta family. If even further flexibility
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is desired, mixtures of beta CDFs, i.e., functions of the form

Rn(p) =
n∑
k=1

wkBαk,βk(p) for p ∈ [0, 1],

where w1, . . . , wn ≥ 0 with w1 + · · ·+wn = 1, α1, . . . , αk > 0, and β1, . . . , βk > 0,
approximate any regular ROC curve to any desired accuracy, as demonstrated
by the following result. Recall from Subsection 3.2.2 that in the regular setting
the ROC curve can be identified with the function R in (3.1), where F1 and F0

have continuous, strictly positive Lebesgue densities f1 and f0 in the interior of
an interval, which is their common support. A ROC curve is regular if it arises
in this way and strongly regular if furthermore the derivative R′ is bounded.

Theorem 3.15. For every strongly regular ROC curve R there is a sequence of
mixtures of beta CDFs that converges uniformly to R.

The proof of this result relies on Bernstein’s probabilistic approach to the
Weierstrass theorem (Levasseur, 1984) and is deferred to Appendix 3.C.

3.3.2 Minimum distance estimation

For the parametric estimation of ROC curves for continuous markers various
methods have been proposed, including maximum likelihood (Dorfman and Alf,
1969; Metz et al., 1998; Zou and Hall, 2000), approaches based on generalized
linear models (Pepe, 2000), and minimum distance estimation (Hsieh and Turn-
bull, 1996), as reviewed at book length by Pepe (2003), Krzanowski and Hand
(2009), and Zhou et al. (2011).

Maximum likelihood techniques face a conceptual challenge, in that ROC
curves do not determine the joint distribution of the marker and the binary event.
Here we pursue the minimum distance estimator, which is much in line with our
curve fitting approach.

We assume a parametric model in the regular setting of Subsection 3.2.2, where
now the ROC curve depends on a parameter θ ∈ Θ ⊆ Rk. Specifically, we suppose
that for each θ ∈ Θ the ROC curve is represented by a smooth function

R(p; θ) = 1− F1,θ(F
−1
0,θ (1− p)) for p ∈ (0, 1),

where F1,θ and F0,θ admit continuous, strictly positive densities f1,θ and f0,θ in
the interior of an interval, which is their common support. We also require that
the true parameter value θ0 is in the interior of the parameter space Θ, where the
derivative

R′(p; θ) =
∂R(p; θ)

∂p
=
f1,θ(F

−1
0,θ (1− p))

f0,θ(F
−1
0,θ (1− p))

exists and is finite for p ∈ (0, 1), and where the partial derivative R(i)(p; θ) of
R(p; θ) with respect to component i of the parameter vector θ = (θ1, . . . , θk)

′

exists and is continuous for i = 1, . . . , k and p ∈ (0, 1).
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We adopt the asymptotic scenario of Hsieh and Turnbull (1996) where at sample
size n there are n0 and n1 = n − n0 independent draws from F0,θ and F1,θ with
corresponding binary outcomes of zero and one, respectively, and where λn =
n0/n1 converges to some λ ∈ (0,∞) as n → ∞. For θ ∈ Θ we define the
difference process

ξn(p; θ) = R̂n(p)−R(p; θ),

where the function R̂n(p) represents the empirical ROC curve. The minimum
distance estimator θ̂n = (θ̂1, . . . , θ̂k)

′
n then satisfies

‖ξn(·; θ̂n)‖ = minθ∈Θ‖ξn(·; θ)‖,

where ‖ξn(·; θ)‖ = (
∫ 1

0
ξn(p; θ)2 dp)1/2 is the standard L2-norm. If n is large, θ̂n

exists and is unique with probability approaching one (Millar, 1984) and so we
follow the extant literature in ignoring issues of existence and uniqueness.

The minimum distance estimator has a multivariate normal limit distribution
in this setting, as suggested by the asymptotic result of Hsieh and Turnbull (1996)
that under the usual

√
n scaling the difference process ξn(p; θ) has limit

W (p; θ) =
√
λB1(R(p; θ)) +R′(p; θ)B2(p) (3.9)

at θ = θ0, where B1 and B2 are independent copies of a Brownian bridge. In
Appendix 3.D we review the specifics of the convergence to the limit process
(3.9) and combine results of Millar (1984) and Hsieh and Turnbull (1996) to
show the following result.

Theorem 3.16. In the above setting the minimum distance estimator θ̂n satisfies

√
n (θ̂n − θ0)→ N (0, C−1AC−1) (3.10)

as n→∞, where the matrices A and C have entries

Aij =

∫ 1

0

∫ 1

0

R(i)(s; θ0)K(s, t; θ0)R(j)(t; θ0) ds dt, Cij =

∫ 1

0

R(i)(s; θ0)R(j)(s; θ0) ds

(3.11)
for i, j = 1, . . . , k, respectively, and where

K(s, t; θ0) = λ(min{R(s; θ0), R(t; θ0)} −R(s; θ0)R(t; θ0))

+ R′(s; θ0)R′(t; θ0)(min{s, t} − st). (3.12)

is the covariance function of the process W (p; θ) in (3.9) at θ = θ0.

Corollary 3.17. In the above setting,

√
n (AUC(θ̂n)− AUC(θ0))→ N (0, GC−1AC−1G′), (3.13)

where G is the gradient of the mapping θ 7→ AUC(θ) at θ = θ0.
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Figure 3.7: Convergence to the Gaussian limit in (3.10) and (3.13). For each
sample size n, we show the Kolmogorov–Smirnov (KS) distance be-
tween the (scaled) empirical distribution of the minimum distance
estimate of the quantity of interest, as described in Subsection 3.3.2,
and the respective Gaussian limit. Left: Binormal model at (µ0, σ0) =
(0.50, 1.00). Right: Beta model at (α0, β0) = (0.67, 2.00).

Both the binormal and the beta model satisfy the assumptions for these results,
which allows for asymptotic inference about the model parameters and the AUC,
by plugging in θ̂n for θ0 in the expressions for the asymptotic covariances. For the
binormal model (3.7) we have θ = (µ, σ), R(µ)(p; θ) = ϕ(µ+σΦ−1(p)), R(σ)(p; θ) =
Φ−1(p)ϕ(µ + σΦ−1(p)), and R′(p; θ) = σϕ(µ + σΦ−1(p))/ϕ(Φ−1(p)), where ϕ is
the standard normal density, so that the integrals in (3.11) can readily be eval-
uated numerically. The gradient in (3.13) equals G = (ϕ(µ0/

√
1 + σ2

0)/(1 +

σ2
0)1/2,−µ0σ0ϕ(µ0/

√
1 + σ2

0)/(1 + σ2
0)3/2). Hsieh and Turnbull (1996) consider

binormal ordinal dominance curves, which interchange the roles of F1 and F0

relative to ROC curves, and after reparameterization we recover their results.
However, the formula for the covariance function K(s, t; θ) in the first displayed
equation on page 39 in Hsieh and Turnbull (1996) is incompatible with our equa-
tion (3.12) and incorrect, as it is independent of s and t and therefore constant.
Under the beta model (3.8) we have θ = (α, β) and R′(p; θ) = bα,β(p). While
closed form expressions for the partial derivatives of R(p; θ) with respect to α
and β exist, they are difficult to evaluate, and we approximate them with finite
differences. The gradient in (3.13) equals G = (−β0/(α0 + β0)2, α0/(α0 + β0)2).

Figure 3.7 illustrates the convergence to the Gaussian limit distributions in
Theorem 3.16 and Corollary 3.17 in a Monte Carlo study. For each sample size n
considered we let λn = 1, draw N = 200, 000 samples of size n, find the associated
empirical ROC curves, and compute the respective minimum distance estimates
θ̂n,1, . . . , θ̂n,N . Then we consider the empirical distribution of the components of

{
√
n (θ̂n,i − θ0) : i = 1, . . . , N} and {

√
n (AUC(θ̂n,i) − AUC(θ0)) : i = 1, . . . N}.

Even at moderate sample sizes n, the scaled empirical distributions are close to
their Gaussian limits.
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3.3.3 Testing goodness-of-fit and other hypotheses

We move on to discuss testing. A natural hypothesis to be addressed is whether
a given parametric model fits the data at hand. In contrast to existing methods
that are based on AUC and focus on the binormal model (Zou et al., 2005), we
propose a simple Monte Carlo test that applies to any parametric model C. For
example, C could be the full binormal, the concave binormal, the full beta, or
the concave beta family. While we describe the procedure for minimum distance
estimates and the L2-distance, it applies equally to other estimates and other
distance measures.

Given a dataset of size n with n0 instances where the binary outcome is zero
and n1 = n − n0 instances where it is one, our goodness-of-fit test proceeds as
follows. We use the notation of Subsection 3.3.2 and denote the number of Monte
Carlo replicates by M .

1. Fit a model from class C to the empirical ROC curve for the data at hand,
to yield the minimum distance estimate θdata. Compute ddata as the L2-
distance between the fitted and the empirical ROC curve.

2. For m = 1, . . . ,M ,

a) draw a sample of size n under θdata, with n0 and n1 instances from
F0,θdata and F1,θdata and associated binary outcomes of zero and one,
respectively,

b) fit a model from class C to the empirical ROC curve, to yield the
minimum distance estimate, and

c) compute dm as the L2-distance between the fitted and the empirical
ROC curve.

3. Find a p-value based on the rank of ddata when pooled with d1, . . . , dM .
Specifically, p = (#{i = 1, . . . ,M : ddata ≤ di}+ 1)/(M + 1).

Under the null hypothesis of the ROC curve being generated by a random sam-
ple within class C the Monte Carlo p-value is very nearly uniformly distributed,
as is readily seen in simulation experiments (not reported on here).

Parametric tests of the equality of ROC curves and AUC values can be based
on the limit distributions in Theorem 3.16 and Corollary 3.17 in the usual way.
Under an identifiable model the hypothesis of two ROC curves being equal is the
same as the hypothesis of the respective parameters being the same. Therefore,
the limit in (3.10) allows for a customary chi square test of the equality of ROC
curves from independent samples, based on the squared norm of the normalized
difference between the two estimates of the parameter vector, as proposed by
Metz and Kronman (1980) in the case of maximum likelihood estimates under the
binormal model. Similarly, the limit in (3.13) justifies a z-test for the equality of
the AUC values, based on the normalized difference between the two parametric
estimates of the AUC. We illustrate the use of these tests in the subsequent
section and provide software for their implementation in the case of independent
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samples. For paired, dependent samples, correlations between the estimates need
to be accounted for, a task to be addressed in future work. As an alternative,
nonparametric tests have been developed in the extant literature (Hanley and
McNeil, 1983; DeLong et al., 1988; Venkatraman and Begg, 1996; Venkatraman,
2000; Mason and Graham, 2002).

3.4 Empirical examples

We return to the empirical ROC curves in Figure 3.2 and present basic infor-
mation about the underlying datasets in Table 3.3. In the dataset from Etzioni
et al. (1999), the negative logarithm of the ratio of free to total prostate-specific
antigen (PSA) two years prior to diagnosis in serum from patients later found
to have prostate cancer is compared to age-matched controls. The datasets from
Sing et al. (2005, Figure 1a) and Robin et al. (2011, Figure 1) are prominent
examples in the widely used ROCR and pROC packages in R. They concern a score
from a linear support vector machine (SVM) trained to predict the usage of hu-
man immunodeficiency virus (HIV) coreceptors, and the S100β biomarker as it
relates to a binary clinical outcome, respectively. The dataset from Vogel et al.
(2018, Figure 6d) considers PoP forecasts from the ECMWF NWP ensemble sys-
tem for the binary event of precipitation occurrence within the next 24 hours at
meteorological stations in the West Sahel region in northern tropical Africa. This
dataset is discussed in Chapter 5 and Figures 5.1 and 5.5.

Figure 3.8 shows binormal and beta ROC curves fitted to the empirical ROC
curves, both in the unrestricted case and under the constraint of concavity. The
respective unrestricted and restricted minimum distance estimates, the fit in
terms of the L2-distance to the empirical ROC curve, and the p-value from the
goodness-of-fit test in Subsection 3.3.3 with M = 999 Monte Carlo replicates, are
given in Table 3.3. In the unrestricted case, the binormal and beta fits are visu-
ally nearly indistinguishable. The fitted binormal ROC curves fail to be concave
and change markedly when concavity is enforced. For the beta ROC curves, the
differences between restricted and unrestricted fits are less pronounced, and in the
example from Vogel et al. (2018) the unrestricted fit is concave. Generally, in the
constrained case the improvement in the fit under the more flexible beta model
as compared to the classical binormal model is substantial.

The theoretical results in Subsection 3.3.2 allow for asymptotic inference about
the model parameters. We illustrate this in Figure 3.9 for the unrestricted beta fit
for the dataset from Etzioni et al. (1999). In addition to showing confidence
ellipsoids, we indicate and separate concave and non-concave fits. If we seek
to complement the minimum distance estimate with pointwise confidence bands
for the ROC curve, we can sample from the inferred distribution for the model
parameters and display the envelope of the respective ROC curves, as exemplified
in Figure 3.11.

A closer look at the empirical ROC curves for the biomedical data from Et-
zioni et al. (1999), Sing et al. (2005), and Robin et al. (2011) in Figures 3.2 and

32



Table 3.3: Basic information about the datasets and minimum distance estimates
under the unrestricted and concave binormal and beta models for the
ROC curves in Figures 3.2 and 3.8. Fit is in terms of the L2-distance
to the empirical ROC curve, and the p-value is from the goodness-of-fit
test of Subsection 3.3.3.

Dataset Etzioni Sing Robin Vogel
et al. (1999) et al. (2005) et al. (2011) et al. (2018)

Binary outcome prostate cancer coreceptor usage clinical outcome precipitation
Feature antigen ratio SVM predictor S100β concentr. NWP forecast
Sample size 116 3450 113 5449

Binormal model
unrestricted (µ, σ) (1.05, 0.78) (1.58, 0.65) (0.75, 0.72) (1.13, 1.22)

fit 0.043 0.019 0.033 0.008
p-value 0.106 0.001 0.561 0.032

concave (µ, σ) (1.22, 1.00) (2.05, 1.00) (0.91, 1.00) (0.99, 1.00)
fit 0.056 0.039 0.060 0.031
p-value 0.138 0.001 0.147 0.001

Beta model
unrestricted (α, β) (0.34, 1.32) (0.15, 1.44) (0.36, 0.96) (0.79, 2.57)

fit 0.042 0.023 0.032 0.006
p-value 0.117 0.001 0.620 0.187

concave (α, β) (0.38, 1.62) (0.17, 1.83) (0.51, 1.49) (0.79, 2.57)
fit 0.045 0.025 0.050 0.006
p-value 0.196 0.001 0.204 0.171

3.8 reveals a striking commonality, in that the curves show vertical and/or hor-
izontal straight edges. From the definition of the raw ROC characteristic (3.2)
it is evident that straight edges correspond to marker values that may allow for
deterministic class attribution, as illustrated in the back-to-back histograms in
Figure 3.10. Importantly, straight edges might convey critical information from
a subject matter perspective, such as in medical diagnoses, where straight edges
in ROC curves correspond to particularly high or low marker values that might
identify individuals as healthy or diseased beyond doubt.

Under the beta family the statistical modeling of straight edges is straightfor-
ward. Specifically, we can generalize the two-parameter model (3.8) to a four-
parameter beta family, where

R(p) = γ + (1− γ)Bα,β

(p
δ

)
for p ∈ (0, 1], (3.14)

which allows for a vertical straight edge that connects the coordinate origin (0, 0)′

to the point (0, γ)′, and a horizontal straight edge that connects the points (δ, 1)′

and (1, 1)′ within the ROC curve. Three-parameter subfamilies with a single
type of straight edge arise if we fix δ = 1 and let γ ∈ [0, 1] vary, or fix γ = 0 and
consider δ ∈ (0, 1], respectively. While the subfamily with δ = 1 being fixed has
a direct analogue under the binormal model, there is no natural way of adapting
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Figure 3.8: Fitted binormal (red) and beta (blue) ROC curves in the unrestricted
(solid) and concave (dashed) case for the datasets from Figure 3.2 and
Table 3.3.

the subfamily with γ = 0 being fixed or the four-parameter family in (3.14) to
the binormal case.

To be clear, we do not advocate uncritical routine use of the four-parameter
family in (3.14) and the respective three-parameter subfamilies. However, we do
recommend that in any specific application researchers check for straight edges in
empirical ROC curves, and assess on the basis of substantive expertise whether or
not they ought to be modeled. Visual tools such as the back-to-back histograms
for the conditional distributions in Figure 3.10 can assist in this assessment. For
illustration, the back-to-back histograms might suggest that we fit the three-
parameter model with γ = 0 being fixed to the data from Etzioni et al. (1999)
and the three-parameter model with δ = 1 being fixed to the data from Sing et al.
(2005) and Robin et al. (2011). While in the first two cases the three-parameter
fits are nearly identical to the fits under the two-parameter beta model, the three-
parameter extension yields a substantially improved fit for the data from Robin
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Figure 3.9: Asymptotic inference under the unrestricted beta model for the data
from Etzioni et al. (1999). The confidence ellipses are at level
1/8, 2/8, . . . , 7/8, respectively.

et al. (2011) as illustrated in the lower right panel of Figure 3.10. The constrained
minimum distance estimate for (α, β, γ) is (0.70, 1.30, 0.24) with L2-distance 0.029
to the empirical ROC curve. For comparison, under the two-parameter concave
beta model the estimate for (α, β) is (0.51, 1.49) with L2-distance 0.050.

Finally, we take another look at the meteorological data from Vogel et al.
(2018). Here it is obvious from the scientific context in weather prediction that
the above three- and four-parameter extensions are irrelevant. While the data
introduced and analyzed in Table 3.3 and Figures 3.2 and 3.8 concern PoP fore-
casts over the West Sahel region, Vogel et al. (2018) consider the East Sahel
region as well.5 The respective empirical ROC curves are shown in Figure 3.11
along with the constrained two-parameter beta fit and parametric 95% pointwise
confidence bands. The p-value for the goodness-of-fit test of Subsection 3.3.3 is
0.168 for West Sahel and 0.057 for East Sahel. Our parametric tests for equality
of AUC values and ROC curves yield p-values of 0.633 and 0.015, whereas the
nonparametric tests of DeLong et al. (1988) and Venkatraman (2000) result in
p-values of 0.616 and 0.089, respectively.

3.5 R package betaROC

While studying ROC curves, we have developed software for the statistical pro-
gramming language R (R Core Team, 2018) that is currently prepared for release
as betaROC package. A preliminary version of the package is available online at
https://github.com/PeterVogel1991/betaROC. The aim of the betaROC pack-
age is to provide user-friendly tools to study and analyze the predictive ability of

5See Chapter 5 for the respective study, and Figure 5.1 for the location and extent of both
Sahelian regions.
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Figure 3.10: Histograms for the conditional distributions for data in Table 3.3,
and concave two- and three-parameter beta ROC curves fit to the
data from Robin et al. (2011). The horizontal lines in the histograms
extend to the convex hull of the respective support.

features, markers, and predictions for binary outcomes. Starting from the empiri-
cal data consisting of feature, marker, or prediction values and the corresponding
binary observations, the betaROC package allows to visualize the empirical condi-
tional distributions and their support (Figure 3.10) and to compute and visualize
the raw ROC diagnostic and corresponding ROC curve (Figures 3.2 and 3.3).

For beta ROC curves, minimum distance estimates (MDEs) can be computed
for the 2-parameter model (α, β), the 3-parameter models (α, β, γ) and (α, β, δ),
and the full 4-parameter model (α, β, γ, δ). Based on the conceptual restriction of
the binormal ROC model, only the 2-parameter model (µ, σ) and the 3-parameter
model (µ, σ, γ) are available. All MDE fits can be restricted to allow for concave
ROC curves only.

For the estimated parameters of the beta or binormal ROC curves, the asymp-
totic distribution can be visualized (Figure 3.9), and the MDE fitted curves can
be plotted along with the empirical ROC curves (Figures 3.4 and 3.8). Tests
for goodness-of-fit are available for both two-parameter fits, but are computa-
tionally demanding. Additionally tests for the equality of two ROC curves for
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Figure 3.11: Empirical ROC curve (solid), concave beta fit (dashed), and asso-
ciated pointwise 95% confidence band (shaded) for data from Vogel
et al. (2018) on PoP forecasts over West (blue) and East (red) Sahel
in northern tropical Africa.

unpaired data are available as are tests to check the hypothesis of equal predictive
performance as measured by the AUC for unpaired data.

Other R packages to compute and visualize ROC curves as well as derived
properties exist. Most noticeable are the R packages pROC (Robin et al., 2011)
and ROCR (Sing et al., 2005). ROCR computes many performance measures for
ROC curves, provides e.g. accuracy, calibration, and conditional density plots,
but does not feature theoretical models or tests for the equality of ROC curves or
predictive performance measures. Similarly, the pROC package allows to compute
ROC properties such as AUC values or confidence intervals, to smooth ROC
curves to obtain a binormal ROC curve and to apply non-parametric tests to
empirical ROC curves. As the asymptotic distribution for binormal as well as
for beta ROC curves has to the best of our knowledge not been correctly derived
and computed beforehand, all tests and visualizations that rely on the asymptotic
distribution have not been incorporated in any other software package. Addition-
ally, the betaROC package incorporates code and data to reproduce all figures in
this section except for Figures 3.7 and 3.12.

3.6 Discussion

ROC curves have been used extensively to evaluate the potential predictive value
of covariates, features, or markers in binary problems in a multitude of scientific
disciplines. Their appeal stems from attractive and desirable properties in this
context, which include the straightforward interpretation of ROC curves in terms
of attainable operating conditions (i.e., hit and false alarm rates), their invariance
under strictly increasing transformations of the feature and shifts in prevalence,
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and the interpretation of AUC as the probability of a marker value drawn from F1

being higher than a value drawn independently from F0. We emphasize that ROC
curves and AUC values “should be regarded as a measure of potential rather than
actual skill” (Kharin and Zwiers, 2003, p. 4148) tailored to serve the purposes of
variable selection and feature screening across all types of ordinal, discrete, and
continuous predictor variables.6

Despite their ubiquitous use, our understanding of fundamental properties of
ROC curves has been incomplete. The theoretical results in Section 3.2 establish
an equivalence between ROC curves and the CDFs of probability measures on
the unit interval, which motivates and justifies our curve fitting approach to the
statistical modeling of ROC curves. Concave fits are preferred, if not essential, as
they characterize the predictor variables with nondecreasing likelihood ratios and
nondecreasing conditional event probabilities. The beta family (3.8) provides a
particularly attractive parametric model. As compared to the classical binormal
model the beta family is considerably more flexible under the constraint of con-
cavity, and it embeds naturally into the four-parameter model (3.14) that allows
for straight edges in the ROC curve. If further flexibility is sought, mixtures
of beta CDFs can be fitted. With a view toward nonparametric alternatives,
one might model (minus) the second derivative of a regular ROC curve, which is
nonnegative under the concavity constraint.

For estimation we focus on the minimum distance approach. In the regular set-
ting, where features are continuous, minimum distance estimates and associated
parametric estimates of the AUC value are asymptotically normal. Goodness of
fit and other hypotheses can be tested for based on these methods and results.
In view of the critical role of concavity for the interpretation of ROC curves, an
interesting and relevant question is whether or not one should subject features
to the PAV algorithm (De Leeuw et al., 2009) prior to fitting a concave model.
The PAV algorithm morphs the empirical ROC curve into the respective concave
hull, and its use for data pre-processing in other types of shape-constrained esti-
mation problems has been examined by Mammen (1991). The derivation of the
large sample distributions in Subsection 3.3.2 is based on empirical process the-
ory (Shorack and Wellner, 2009), and it depends on the Gaussian limit in (3.9),
which does not apply under ordinal or discrete features nor when ROC curves
have straight edges. We leave the derivation of large sample distributions for
minimum distance estimates in these cases as well as adaptations to covariate-
and time-dependent settings (Etzioni et al., 1999; Heagerty et al., 2000) to future
work. Datasets and code in R (R Core Team, 2018) for replicating our results
and implementing the proposed estimators and tests will be released soon.

6 ROC curves and AUC values have limitations when they are used to assess the actual skill
of probability forecasts, as they ignore the critical requirement of calibration (Wilks, 2011,
p. 346). For evaluating the actual skill and value of probabilistic classifiers, proper scoring
rules (Gneiting and Raftery, 2007) are a preferred tool, notably in the form of Murphy dia-
grams (Ehm et al., 2016). For a direct comparison of ROC curves and Murphy diagrams and
a respective discussion in the context of probability forecasts see Figure 5.5 and Section 5.3.
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Appendix 3.A Concave ROC curves: The discrete
setting

In proving Theorem 3.4 we may assume that the support of X is a finite or
countably infinite, ordered set of two or more points xi, indexed by consecutive
integers such that xi < xj if i < j. In the case of a finite set we assume that it is
of cardinality at least 2 and adapt the arguments in obvious ways to account for
boundary effects.

Lemma 3.18. Any of the statements in Theorem 3.4 implies that either

(i) Q(X = xi |Y = 0) > 0 for all i, or

(ii) there exists an index value i∗ such that Q(X = xi |Y = 0) = 0 for all i ≥ i∗

and Q(X = xi |Y = 0) > 0 for all i < i∗.

Proof. If any of the statements in Theorem 3.4 hold and condition (i) is violated,
there exists an index i such that Q(X = xi |Y = 0) = 0}. Then CEP(xi) = 1,
LR(xi) =∞, and the ROC curve has a vertical straight edge away from the origin,
which contradicts statements (c), (b), and (a), respectively, unless condition (ii)
is satisfied.

Proof of Theorem 3.4. In view of Lemma 3.18, it suffices to show the equivalence
of the statements in Theorem 3.4 for indices i with Q(X = xi |Y = 0) > 0. The
fact that

LR(xi) =
π0

π1

CEP(xi)

1− CEP(xi)

along with the monotonicity of the function c 7→ c/(1− c) establishes the equiv-
alence of (b) and (c). Furthermore, the relationship

LR(xi) =
Q(X = xi |Y = 1)

Q(X = xi |Y = 0)

=
Q(X > xi−1 |Y = 1)−Q(X > xi |Y = 1)

Q(X > xi−1 |Y = 0)−Q(X > xi |Y = 0)

=
HR(xi−1)− HR(xi)

FAR(xi−1)− FAR(xi)

implies that

LR(xi+1) ≥ LR(xi) ⇔
HR(xi)− HR(xi+1)

FAR(xi)− FAR(xi+1

≥ HR(xi−1)− HR(xi)

FAR(xi−1)− FAR(xi)

and the right-hand side is equivalent to the ROC curve being concave, thereby
demonstrating the equivalence of (a) and (b).
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Appendix 3.B Equivalence of ROC curve and
Murphy diagram dominance for
calibrated probability forecasts

Towards the proof of Theorem 3.9, we introduce an alternative characterization
of ROC curve dominance.

Lemma 3.19. For absolutely continuous forecasts, an equivalent characterization
of ROC curve dominance is

HR1(t) ≥ HR2(t) + [FAR1(t)− FAR2(t)]
t π0

(1− t) π1

(3.15)

for all t ∈ (0, 1). For discrete forecasts it suffices to evaluate (3.15) on the ordered
support points xi of forecast X1. This yields

HR1(xi) ≥ HR2(xi) + [FAR1(xi)− FAR2(xi)]
xi+1 π0

(1− xi+1) π1

(3.16)

for all i, except at any maximum. Here we set xi π0/((1−xi)π1) =∞ for xi = 1,
such that (3.16) implies

Q(X1 = 1) ≥ Q(X2 = 1).

Forecast X1 strictly dominates X2 if (3.15) or (3.16) holds for all t ∈ (0, 1) or
all xi and with strict strict inequality for some t ∈ (0, 1) or for at least one xi,
respectively.

Proof. As X1 and X2 are conditionally calibrated forecasts, their CEPs are nonde-
creasing functions of t and the corresponding ROC curves R1 and R2 are concave.
In the following, we treat first the case of absolutely continuous forecasts X1 and
X2 before considering discrete forecasts.

Fix some t ∈ (0, 1) with corresponding hit and false alarm rate HR2(t) and
FAR2(t). Assume that X1 dominates X2 in the ROC curve sense. Which values
of HR1(t) and FAR1(t) are then admissible for R1? To answer this question, note
that the slope s(t) of a ROC curve R corresponding to a conditionally calibrated
and absolutely continuous probability forecast is given by

s(t) =
d
dt

HR(t)
d
dt

FAR(t)
=
f1(t)

f0(t)
= LR(t) =

t π0

(1− t)π1

, t ∈ (0, 1).

As s(t) is decreasing with increasing false alarm rate (or decreasing t), it follows
that

HR1(t) ≥ HR2(t) + [FAR1(t)− FAR2(t)]
t π0

(1− t) π1

(3.15)
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has to hold. To see this suppose that HR1(t) is smaller than the right-hand side
in (3.15) and that FAR1(t) < FAR2(t). Then there exists a t∗ < t such that
FAR1(t∗) = FAR2(t) and

HR1(t∗) ≤ HR1(t) + [FAR1(t∗)− FAR1(t)]
t π0

(1− t) π1

= HR1(t) + [FAR2(t)− FAR1(t)]
t π0

(1− t) π1

< HR2(t),

contradicting the assumption that X1 dominates X2 in the ROC curve sense. The
same argument applies when FAR1(t) ≥ FAR2(t).

If (3.15) holds for all t ∈ (0, 1), this implies that all tangents to the ROC curve
R1 are on or above the ROC curve R2. It further implies that for all false alarm
rates p ∈ [0, 1] the corresponding hit rate of forecast X1 is greater or equal to the
hit rate of forecast X2, which is equivalent to the definition of ROC curve domi-
nance. An illustration of the equivalent characterization of ROC curve dominance
is given in Figure 3.12. The left panel displays the ROC curves corresponding
to two continuous and conditionally calibrated probability forecasts and the tan-
gents to the ROC curve of the dominating forecast for selected thresholds.

In the discrete case illustrated in the right panel of Figure 3.12, ROC curves
are piecewise linear and all information is contained in the raw ROC diagnostic.
Here the slope for any ROC curve segment, including its right end point, is
(xi+1 π0)/((1 − xi+1)π1) for xi ≤ t ≤ xi+1. Suppose that Q(X2 = 1) = 0,
implying that R2 has a finite slope everywhere. Then X1 dominates X2 in the
ROC curve sense if (3.15) holds for all xi in the support of X1.

If Q(X2 = 1) > 0, then R2 has a vertical line segment from (0,0)’ to (0,
Q(X2 = 1)). For X1 to dominate X2, (3.16) and Q(X1 = 1) ≥ Q(X2 = 1) need
to hold such that R1 has a greater or equal hit rate for every false alarm rate
when compared to R2.

Proof of Theorem 3.9. Let F1,0 and F1,1 as well as F2,0 and F2,1 denote the condi-
tional distributions of forecasts X1 and X2, respectively. The condition of Murphy
diagram dominance in (3.5) can be reformulated as

(3.5) ⇔ θπ0 [1− F1,0(θ)− (1− F2,0(θ))] + (1− θ)π1 [F1,1(θ)− F2,1(θ))] ≤ 0

⇔ θ π0 [F2,0(θ)− F1,0(θ)] + (1− θ) π1 [F1,1(θ)− F2,1(θ))] ≤ 0 (3.17)

for every θ ∈ (0, 1). In the continuous case, X1 dominates X2 in the ROC curve
sense if (3.15) holds or if for every t ∈ (0, 1)

(3.15) ⇔ [1− F1,1(t)− (1− F2,1(t))] ≥ [1− F1,0(t)− (1− F2,0(t))]
t π0

(1− t)π1

⇔ [F2,1(t)− F1,1(t)] (1− t)π1 ≥ [F2,0(t)− F1,0(t)] t π0

⇔ t π0 [F2,0(t)− F1,0(t)] + (1− t) π1 [F1,1(t)− F2,1(t)] ≤ 0.
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Figure 3.12: Alternative characterization of forecast dominance in the ROC curve
sense. Two conditionally calibrated forecasts are depicted in the
continuous (left) and the discrete (right) setting. In the discrete
setting, all tangents to the dominating ROC curve are displayed,
while in the continuous case a subset only is shown.

As this is also the condition for Murphy diagram dominance in (3.17), ROC curve
dominance and Murphy dominance are equivalent for conditionally calibrated,
absolutely continuous forecasts. For discrete forecasts, this calculation can be
restricted to the support points xi of X1. As for strict dominance, strict inequality
for some t ∈ (0, 1) in (3.15) is equivalent to strict inequality for θ = t in (3.17)
for the continuous case, and similarly for the discrete case.

Appendix 3.C Properties of beta ROC curves

Lemma 3.20. The AUC value for the beta ROC curve is β/(α + β).

Proof. We have

AUC(α, β) =

∫ 1

0

Bα,β(p) dp =

[
pBα,β(p)− α

α + β
Bα+1,β(p)

]1

0

= 1− α

α + β
,

as claimed.

Lemma 3.21. The CDF of the beta distribution is concave if α ≤ 1 and β ≥
2− α, and it is strictly concave if furthermore α < 1.

Proof. The density bα,β of the beta distribution satisfies

b′α,β(x) =
α− 1 + (2− α− β)x

x(1− x)
bα,β(x)

for x ∈ (0, 1), from which the statement is immediate.
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Proof of Theorem 3.15. We apply the natural identification and define FNI as in
(3.4). Due to the assumption of strong regularity, FNI admits a density on (0, 1)
that can be extended to a continuous function fNI on [0, 1]. The arguments in
Bernstein’s probabilistic proof of the Weierstrass approximation theorem (Lev-
asseur, 1984) show that as n→∞ the sequence

mn(q) =
1

n+ 1

n∑
k=0

fNI

(
k

n

)
bk+1,n−k+1(q)

converges to fNI(q) uniformly in q ∈ [0, 1]. Furthermore,

an =

∫ 1

0

mn(q) dq →
∫ 1

0

fNI(q) dq = 1

as n → ∞, and for n = 1, 2, . . . the mapping p 7→ Mn(p) =
∫ p

0
mn(q) dq/an

represents a mixture of beta CDFs. The uniform convergence of mn to fNI implies
that for every ε > 0 there exists an n′ such that

|FNI(p)−Mn(p)| ≤
∫ p

0

∣∣∣∣fNI(q)−
mn(q)

an

∣∣∣∣ dq
≤
∫ p

0

∣∣∣∣fNI(q)−
fNI(q)

an

∣∣∣∣ dq +
1

an

∫ p

0

|fNI(q)−mn(q)| dq

≤
∣∣∣∣1− 1

an

∣∣∣∣+
1

an

∫ p

0

|fNI(q)−mn(q)| dq < ε

for all integers n > n′ uniformly in p ∈ [0, 1]. The statement of the theorem
follows.

Appendix 3.D Asymptotic normality of minimum
distance estimates

Here we demonstrate the asymptotic normality of the minimum distance estima-
tor θ̂n in the setting of Subsection 3.3.2. In a nutshell, we apply Theorem 2.2
of Hsieh and Turnbull (1996) and Theorem 3.6 along with the results in Section
II in the fundamental paper on minimum distance estimation by Millar (1984).
In contrast to the results in Section 4 of Hsieh and Turnbull (1996), which con-
cern minimum distance estimation for the binormal model and ordinal dominance
curves, Theorem 3.16 applies to general parametric families and ROC curves.

Proof of Theorem 3.16. We are in the setting of Theorem 2.2 of Hsieh and Turn-
bull (1996), according to which there exists a probability space with sequences
(B1,n) and (B2,n) of independent versions of Brownian bridges such that

√
n ξn(p; θ0) =

√
λB1,n(R(p; θ0)) +R′(p; θ0)B2,n(p) + o

(
n−1/2(log n)2

)
(3.18)
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almost surely, and uniformly in p on every interval [a, b] ⊂ (0, 1). We proceed to
verify the regularity conditions for Theorem 3.6 of Millar (1984). As regards the
identifiability condition (3.2) and the differentiability condition (3.5) it suffices
to note that

ξn(p; θ)− ξn(p; θ0) = R(p; θ0)−R(p; θ)

is nonrandom, continuously differentiable with respect to p and the components
of the parameter vector θ, and independent of n. The boundedness condition
(3.3) is trivially satisfied and the convergence condition (3.4) is implied by (3.18).
Finally, we apply7 (2.17), (2.18), (2.19), and (2.20) in Section II of Millar (1984)
to yield (3.10) and (3.11), where the covariance function of the process in (3.9) is

K(s, t; θ) = Cov(W (s; θ),W (t; θ))

= λCov(B1(R(s; θ)), B1(R(t; θ))) +R′(s; θ)R′(t; θ) Cov(B2(s), B2(t))

= λ(min{R(s; θ), R(t; θ)} −R(s; θ)R(t; θ)) +R′(s; θ)R′(t; θ)(min{s, t} − st),

whence K(s, t; θ0) is as stated in (3.12).

The asymptotic result in Corollary 3.17 follows in a straightforward application
of the delta method.

7We note a typographical error in eq. (2.20) of Millar (1984), where the asymptotic covariance
matrix is incorrectly specified as C−1AC; it should read C−1AC−1 instead.
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4 Numerical weather prediction
and statistical postprocessing

Perhaps some day in the dim future it will be
possible to advance the computations faster
than the weather advances and at a cost less
than the saving to mankind due to the infor-
mation gained. But that is a dream. 1

Lewis Fry Richardson, 1922

In current practice, weather forecasting relies on ensembles of NWP models. De-
spite their continuous improvement, systematic errors remain and require statis-
tical postprocessing to realize their full potential. Section 4.1 briefly reviews
the principles of NWP ensemble forecasting and discusses The International
Grand Global Ensemble (TIGGE) multi-model system and its participating sub-
ensembles. Section 4.2 introduces the statistical postprocessing methods Ensem-
ble Model Output Statistics (EMOS) and Bayesian Model Averaging (BMA) and
explains the setup of training data composition and parameter estimation as im-
plemented for Chapters 5 and 6. A probabilistic climatological reference forecast
is constructed and investigated in Section 4.3.

4.1 Numerical weather prediction and ensembles

Until the beginning of the 20th century, weather forecasts were based on expe-
rience in form of weather proverbs or oracles. Bjerknes (1904) introduced the
novel idea to describe atmospheric processes by physical laws. Richardson (1922)
formulated a numerical model of the atmosphere based on partial differential
equations and manually computed a solution by discretizing the atmosphere in
space and time. Even though his first prediction was far off and the computation
much slower than real time, it can be considered the first NWP forecast. NWP
on an operational basis started in the 1950s and since then forecast quality has
steadily increased (see, e.g., Figure 1 in Bauer et al., 2015). This improvement
was fueled by continuous increases in computational capacity, more observations,
new and superior measurement systems, better models and data assimilation, and
advances in the understanding of atmospheric processes.

To account for the chaotic nature of the atmosphere in weather forecasting,
Leith (1974) proposed a Monte Carlo type approach. Several deterministic NWP

1Richardson (1922, p. vi)
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model runs are started from slightly different initial conditions, and each predic-
tion represents a potential realization of the future state of the atmosphere. Such
a set of deterministic NWP forecasts is called ensemble, and the first operational
EPSs were introduced in the 1990s (Toth and Kalnay, 1993; Hamill et al., 2000;
Buizza et al., 2000). Nowadays several EPSs use slightly different formulations of
the numerical representation of the atmosphere for each deterministic run. This
allows to account for the uncertainty in the numerical model formulation. Palmer
(2000) reviews fundamental principles of NWP ensembles and Buizza et al. (2005)
properties of the EPSs of three leading NWP centers.

An “essentially cost-free approach” to construct an ensemble forecast is to
gather the deterministic forecasts of several NWP centers (Ebert, 2001). For the
first decade of operational NWP ensemble forecasting these multi-model ensem-
bles were more skillful than the best individual ensemble forecasts (Atger, 1999;
Ebert, 2001). The TIGGE multi-model ensemble was set up as part of the THOR-
PEX programme in order to “accelerate improvements in the accuracy of 1-day
to 2-week high-impact weather forecasts for the benefit of humanity” (Bougeault
et al., 2010, p. 1060). Since its start in October 2006, up to eleven global NWP
centers have provided their operational ensemble forecasts, which are accessible
on a common 0.5◦ × 0.5◦ grid. Park et al. (2008) and Bougeault et al. (2010)
discuss objectives and the set-up of TIGGE, including the participating EPSs,
in great detail. They also note early results using the TIGGE ensemble, while
Swinbank et al. (2016) report on research and achievements accomplished over
the last decade. Hagedorn et al. (2012) find that a multi-model ensemble com-
posed of the four best participating TIGGE EPSs, which includes the ECMWF
ensemble, outperforms reforecast-calibrated ECMWF forecasts. For the evalua-
tion of NWP precipitation forecast quality as performed in Chapter 5, TIGGE is
the most complete and best data source available.

Arguably, the ECMWF EPS is the leading one among the participating TIGGE
sub-ensembles (Buizza et al., 2005; Hagedorn et al., 2012; Haiden et al., 2012).
It consists of a high-resolution (HRES) run, a control (CNT) run, and 50 per-
turbed ensemble (ENS) members. The HRES and CNT runs are started from
unperturbed initial conditions and differ only in their spatial resolution. The
ENS members are started from perturbed initial conditions and have the same
spatial resolution as the CNT run. Molteni et al. (1996) and Leutbecher and
Palmer (2008) describe generation and properties of the ECMWF EPS in detail.

All other TIGGE sub-ensembles consist only of CNT and ENS forecasts with
differing numbers of perturbed ensemble member. Table 4.1 gives an overview
over the nine participating TIGGE EPSs that provide accumulated precipitation
forecasts and are investigated in Chapter 5.

4.2 Statistical postprocessing

In order to reveal the full potential of ensemble forecasts, we apply statistical
postprocessing to raw ensemble forecasts. Statistical postprocessing corrects for
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systematic miscalibration in form of model biases or incorrect representations of
forecast uncertainty and addresses the difference in the spatial scales of model
gridboxes and localized observations.

In the following, we review the well established concepts of EMOS (Gneiting
et al., 2005) and BMA (Raftery et al., 2005) as well as specific EMOS and BMA
models tailored to accumulated precipitation (Scheuerer, 2014; Sloughter et al.,
2007). We introduce the BMA and EMOS methods with focus on the 52-member
ECMWF EPS and precipitation observations. Adaptations of the postprocessing
schemes to other TIGGE sub-ensembles and to the reduced multi-model (RMM)
ensemble constructed in Chapter 5 are straightforward, and in case of the BMA
model also shortly explained.

We denote the ECMWF HRES, CNT, and ENS members by xHRES or x51, xCNT

or x52, and xENS or x1, . . . , x50, respectively. We write x̄ENS for the mean of the
ENS members, p̄ for the fraction of all 52 members that predict no precipitation,
and denote the observed precipitation accumulation by y.

4.2.1 Ensemble Model Output Statistics

EMOS converts an ensemble forecast into a parametric distribution based on the
ensemble forecast at hand (Gneiting et al., 2005), and the predictive distribution
is of the general form

y |xHRES, xCNT, xENS ∼ g(y |xHRES, xCNT, xENS),

where the parameters of the predictive density g(y |xHRES, xCNT, xENS) depend
on the ensemble predictions via suitable link functions. For accumulated pre-
cipitation forecasts, g must be flexible enough to accommodate a discrete point
mass for the probability of no precipitation and a continuous and right-skewed
distribution for the amount of precipitation. Scheuerer (2014) introduced the
EMOS GEV approach that relies on the three-parameter family of left-censored
Generalized Extreme Value (GEV) distributions. The left-censoring allows for a
point mass at zero and ensures a non-negative support of the forecast, while the
shape parameter allows for flexible skewness. The EMOS GEV model links the
mean m and the scale parameter σ of the left-censored GEV distribution to the
raw ensemble forecast via

m = a0 + aHRES xHRES + aCNT xCNT + aENS x̄ENS + ap p̄, (4.1)

σ = b0 + b1 MD(xHRES, xCNT, xENS). (4.2)

The predictor p̄ in (4.1) allows to discriminate between ensemble forecasts where
the majority of ensemble members predict very small amounts of precipitation
and ensemble forecasts where the majority of members predict no precipitation.
The ensemble mean difference (MD)

MD(x1, . . . , x52) =
1

522

52∑
i=1

52∑
j=1

|xi − xj| (4.3)
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is more robust than the standard deviation, though still sensitive to all ensemble
members. The shape parameter ξ is not linked to the ensemble forecast, but
estimated from training data as explained in Subsection 4.2.4.

For illustration, Fig. 4.1a shows an EMOS GEV postprocessed forecast distri-
bution for 5-day accumulated precipitation at Ouagadougou, Burkina Faso. The
52 raw ECMWF ensemble members are represented by blue marks; they include
eleven values in excess of 200 mm, with the CNT member being close to 500 mm.
The ensemble forecast at hand informs the statistical parameters of the EMOS
postprocessed forecast distribution, which includes a tiny point mass at zero, and
a censored GEV density for positive precipitation accumulations, with the 90th
percentile being at 174 mm.

4.2.2 Bayesian Model Averaging

A BMA predictive distribution is a weighted sum of component distributions,
each of which depends on a single ensemble member (Raftery et al., 2005). For
the ECMWF ensemble, this corresponds to

y |xHRES, xCNT, xENS ∼ wHRES gHRES(y |xHRES)

+ wCNT gCNT(y |xCNT) +
wENS

50

50∑
i=1

gENS(y |xi), (4.4)

with nonnegative weights wHRES, wCNT, and wENS that sum to 1, and reflect
the members’ performance in the training period. For accumulated precipitation
forecasts Sloughter et al. (2007) proposed a BMA Gamma0 model where each
of the component distributions consists of a point mass at zero and a Gamma
distribution that specifies positive accumulation amounts. The probability of
no precipitation pk = P(y = 0 |xk) for k ∈ {HRES, CNT, ENS} is estimated
independently for each member forecast xk by logistic regression

logit P(y = 0 |xk) = a0k + a1k x
1/3
k + a2k 1(xk = 0).

Sloughter et al. (2007) find the cube-root transform of ensemble member forecast
xk to be a better predictor than other power-transformations including the iden-
tity. The indicator function of member forecast xk being zero allows for a better
discrimination between forecast xk predicting no or small precipitation amounts.

The specification for positive accumulation amounts is based on a Gamma den-
sity for the cube-root transformed precipitation amount ỹ = y1/3. The Gamma
density with shape parameter αk and scale parameter βk is

hk(ỹ) =
ỹαk−1 exp(−ỹ/βk)

βαk
k Γ(αk)

(4.5)

for ỹ > 0 and 0 else. Its mean µk = αkβk and variance σ2
k = αkβ

2
k are a linear

function of the (cube-root transformed) member forecast xk given by

µk = b0k + b1kx
1/3
k ,

σ2
k = c0 + c1xk.
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Figure 4.1: EMOS and BMA postprocessed ECMWF ensemble forecasts for 5-
day accumulated precipitation at Ouagadougou, Burkina Faso, valid
03 Aug – 08 Aug 2007. The blue ticks at the bottom represent the
52 raw ECMWF ensemble members, including the HRES (H) run,
the CNT (C) run, and the 50 perturbed ENS members. (a) The
EMOS postprocessed forecast includes a tiny point mass at zero and
a censored GEV density for positive accumulations. (b) The BMA
postprocessed forecast includes a point mass at zero, which is repre-
sented by the solid bar, and a mixture of power transformed Gamma
densities for positive accumulations. The 52 component densities are
represented by the thin black curves, with the HRES and CNT com-
ponents standing out. The lower 90% prediction interval is indicated
in light blue, and the dashed bar represents the verifying precipitation
accumulation. c© Copyright 2018 AMS.
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While the statistical coefficients for the mean µk of each Gamma model are es-
timated for gHRES, gCNT, and gENS separately, the coefficients for the variance
of the Gamma model are shared. The discrete-continuous distribution of each
component gk for the cube-root transformed accumulation amount ỹ is given by

gk(ỹ |xk) = pk 1(ỹ = 0) + (1− pk)1(ỹ > 0)hk(ỹ) (4.6)

To obtain the BMA predictive distribution for the precipitation accumulation in
the unit mm, rather than the cube root thereof, a backtransformation is applied
as described by Sloughter et al. (2007).

Figure 4.1b shows such a BMA postprocessed forecast distribution for the afore-
mentioned forecast case at Ouagadougou, Burkina Faso. The postprocessed dis-
tribution involves a point mass of about 0.01 at zero, and a mixture of power
transformed Gamma densities for positive accumulations, with the 90th percentile
being at 141 mm. In this example, the BMA and EMOS postprocessed distribu-
tions are sharper than the raw ECMWF ensemble, and nevertheless the verifying
observation is well captured.

Adaptations to other ensembles considered in Chapter 5 are straightforward as
described by Fraley et al. (2010). For example, in the case of the RMM ensemble
with 15 different members, each member receives its own component distribution,
BMA weight, logistic regression coefficients for the probability of no precipitation,
and statistical parameters for the Gamma mean model, whereas the coefficients
for the Gamma variance model are shared.

4.2.3 Training data

Statistical postprocessing of raw ensemble forecasts by EMOS or BMA necessi-
tates the estimation of statistical parameters on a set of training data. Several
approaches exist for the composition of training data and we distinguish local
and regional ones. For the local approach, training data contain only forecast–
observation-pairs from the considered location, while they stem from all loca-
tions in the considered region for the regional approach. To account for temporal
changes of raw ensemble forecast errors, a rolling training period is employed,
where the training data consist of the n most recent days for which data are
available at initialization time.

In Chapter 5, we employ the regional approach with a rolling training period
of n = 20 days. The choice of 20 days is consistent with the literature (e.g.,
Thorarinsdottir and Gneiting, 2010) and we assess its appropriateness for EMOS
and BMA postprocessed precipitation forecasts for northern tropical Africa. We
rely for verification on station and satellite-based 0.25◦ × 0.25◦ Tropical Rainfall
Measurement Mission (TRMM) observations (see Section 5.2 for details) and
accumulation periods of 1 and 5 days. Results are displayed separately for West
Sahel, East Sahel, and Guinea Coast. For the geographic location of the stations
within and the spatial extent of these three regions, see Figure 5.1.

Figure 4.2 displays BS skill of EMOS postprocessed ECMWF ensemble fore-
casts for the occurrence of precipitation with rolling training periods of 10 to 50
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days in increments of 5 days relative to the same forecast with n = 20 days. Inde-
pendent of the accumulation period, we use here and in the following a threshold
of 0.2 mm to determine the occurrence of precipitation and find only minimal
changes under other choices of the threshold between 0.0 mm and 1.0 mm. In all
panels, BS skill varies from monsoon season to monsoon season around the level
of neutral skill. Consequently, the average BS skill across 2007–2014 (black line)
is typically close to zero and reveals no systematic improvement in BS skill for
any of the examined training periods. Training periods of less than 20 days of-
ten deteriorate predictive performance. Figure 4.3 displays CRPS skill of EMOS
GEV postprocessed forecasts for the amount of precipitation in the same setting
as Figure 4.2. Again, CRPS skill varies from monsoon season to monsoon season,
but training periods of less than 20 days systematically deteriorate postprocessed
forecast skill.

Figure 4.4 displays BS skill of BMA Gamma0 postprocessed predictions in
the same setting as Figure 4.2. As BMA Gamma0 is more computationally
intense than EMOS GEV, training periods are restricted to 20, 30, and 40 days.
Interestingly, the interannual variability in BS skill of BMA PoP forecasts is
lower than for EMOS PoP forecasts. Training periods of 30 and 40 days yield
no systematic improvement or deterioration of BS skill. CRPS skill of BMA
postprocessed forecasts as displayed in Figure 4.5 only confirms previous findings.
In summary, these results show that our findings in Chapter 5 are quite insensitive
to the choice of n when using training periods between 20 and 50 days, while for
training periods shorter than n = 20 days a clear deterioration can be observed.
The advantage of the regional over local approach is that it requires much shorter
training periods. Experiments for local postprocessing in the setting of Chapter 5
(not shown here) yield very similar results as regional postprocessing.

In Chapter 6, we rely on a semi-local approach for the composition of training
data in the tropics. Out of the surrounding eight 1◦ × 1◦ gridboxes, we consider
only those that belong to the same surface type (land, ocean) as the central
gridbox and use the n = 500 most recent forecast–observation-pairs available at
initialization time from each of those gridboxes.

4.2.4 Parameter estimation

For the estimation of the EMOS GEV model parameters, we rely on CRPS min-
imization. A closed form expression of the CRPS is due to Scheuerer (2014) and
allows for efficient computation. For BMA Gamma0, the parameters a0k, a1k,
a2k as well as b0k and b1k are estimated separately for each ensemble member by
logistic and linear regression, respectively. As the variance parameters vary typi-
cally only little across forecast members, all ensemble members share the same c0

and c1. For the estimation of the weights wHRES, wCNT, wENS as well as the vari-
ance parameters c0 and c1, we rely on maximum likelihood, implemented via the
expectation-maximization (EM) algorithm developed by Sloughter et al. (2007).
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Figure 4.2: BS skill of EMOS GEV postprocessed ECMWF ensemble forecasts
for the occurrence of precipitation with rolling training periods of
10 to 50 days in increments of 5 days relative to the same forecast
with n = 20 days. Results are stratified by region and year, verified
against station (left) and 0.25◦×0.25◦ TRMM (right) observations for
accumulation periods of one (top) and five (bottom) days. Details on
station and TRMM observations are provided in Section 5.2 and the
geographic location and spatial extent of West Sahel, East Sahel, and
Guinea Coast is displayed in Figure 5.1. c© Copyright 2018 AMS.
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Figure 4.3: Same as Figure 4.2, but for CRPS skill of EMOS GEV postprocessed
forecasts for the amount of precipitation. c© Copyright 2018 AMS.
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Figure 4.4: BS skill of BMA Gamma0 postprocessed ECMWF ensemble forecasts
for the occurrence of precipitation with rolling training periods of
n ∈ {20, 30, 40} days relative to the same forecast with n = 20 days.
Results are stratified by region and year, verified against station (left)
and 0.25◦×0.25◦ TRMM (right) observations for accumulation periods
of one (top) and five (bottom) days. c© Copyright 2018 AMS.
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Figure 4.5: Same as Figure 4.4, but for CRPS skill of BMA Gamma0 postpro-
cessed forecasts for the amount of precipitation. c© Copyright 2018
AMS.
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4.3 Probabilistic climatological reference forecast

For the assessment of raw and postprocessed ensemble forecast skill, the availabil-
ity of a good benchmark forecast is essential. In the following, we introduce the
concept of the Extended Probabilistic Climatology (EPC) forecast and discuss
its properties for the specific implementations in Chapters 5 and 6.

Consider a probabilistic climatology that consists of the observations during
the 30 years prior to the considered year at the considered day of the year and
the considered station. It can be understood as a 30-member observation-based
ensemble forecast that represents the climatological distribution of rainfall at a
given location and date, but does not incorporate dynamic information about the
state of the atmosphere. We extend this (standard) probabilistic climatology by
including observations in a ±2-day window around the considered day for the 30
years prior to the considered year, and refer to this as EPC.

In Chapter 5, we rely on station observations and satellite-based TRMM obser-
vations for the assessment of NWP ensemble forecast quality for three regions in
northern tropical Africa.2 Hamill and Juras (2006) note that pooling can lead to
a deterioration when performed across data with differing climatologies, leading
to a perceived, but incorrect improvement of assessed model forecast skill. In
case of the EPC, however, neighboring daily climatologies can be assumed to be
very similar and the pooling is performed over a range of ±2 days only.

To assess the correctness of this assumption, we evaluate the skill of EPC
forecasts with window lengths between 0 and ±20 days for 1- and 5-day accumu-
lated precipitation forecasts relative to the proposed EPC forecast with a window
length of ±2 days. Figure 4.6 displays the results for the EPC forecast based on
and verified against station observations. For an accumulation period of one day,
BS and CRPS skill is negative for a standard probabilistic climatology in all re-
gions, and for most years and regions positive for EPC with window lengths of
more than ±2 days. Mean CRPS and BS skill across 2007–2014 (black line) dis-
plays a better performance of EPC forecasts with window lengths of more than
±2 days, but improvement is lower than 1%. For 5-day accumulations, standard
probabilistic climatologies underperform relative to the proposed EPC forecast.
Window lengths of more than ±2 days are beneficial for most years, but average
BS and CRPS skill across 2007-2014 is lower than 2% in all regions. While a
slightly larger window would improve the skill of the reference forecast for most
regions, leadtimes, and years, average improvement is small and hence our con-
clusions in Chapter 5 are quite insensitive to this choice. As TRMM observations
are available for the period 1998–2014 only, the TRMM-based EPC relies on this
period but without the considered verification year. The assessment of ±2 days
being a reasonable choice remains.

For the investigation in Chapter 6, TRMM observations are available for the pe-
riod 1998–2017. We construct TRMM-based EPC forecasts with window lengths
of 0 to ±40 days in increments of ±5 days for each pixel as before, but rely on

2See Figure 5.1 for the geographic location and spatial extent of the three regions.
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Figure 4.6: BS and CRPS skill for EPC forecasts with window lengths of 0 to ±20
days relative to the proposed EPC forecast. Results are stratified by
region and year and displayed for accumulation periods of one (top)
and five (bottom) days. Forecasts are issued for and verified against
station observations. c© Copyright 2018 AMS.
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Figure 4.8: CRPS skill for TRMM-based EPC forecasts with window length of
0,±5, . . . ,±40 days relative to EPC forecasts with ±20 days. Results
are stratified by Köppen-Geiger climates introduced in Chapter 6.

1998–2017 instead of 1998–2014. As reference forecast in Chapter 6, we use for
each pixel the EPC forecast with the window length that achieved the best CRPS
mean score. Figure 4.7 displays the optimal window lengths for TRMM-based
EPC forecasts throughout the tropics. Except for a window length of 0 days, all
examined window lengths turn out to be optimal for several gridboxes. In gen-
eral, window lengths of ±5 to ±20 days are preferable for tropical climates with a
strong seasonal evolution of rainfall, while window lengths of more than ±20 days
are beneficial for climates with no or only a weak seasonality of rainfall. Over
ocean, the spatial distribution is less clear and longer window lengths turn out to
be optimal for the central Pacific ocean, while shorter ones are beneficial over the
tropical Atlantic and parts of the Indian ocean. For details on the definition of
climatic regions, see Subsection 6.2.4 and Figure 6.2. Figure 4.8 displays for each
of the climatic regions the CRPS skill of EPC forecasts with a window length of 0
to ±40 days in increments of ±5 days relative to an EPC forecast with ±20 days.
Except for standard probabilistic climatologies, average skill of EPC forecasts in
each Köppen-Geiger climate is within ±1% throughout.
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5 Skill of global raw and
postprocessed ensemble
predictions of rainfall over
northern tropical Africa

In this chapter, we investigate the skill of global raw and postprocessed ensem-
ble predictions of rainfall over northern tropical Africa. For the agriculturally
dominated societies in this region, accumulated precipitation forecasts potentially
have high socioeconomic benefit. We analyze the performance of nine operational
global EPSs relative to climatology-based forecasts for 1 to 5-day accumulated
precipitation based on the monsoon seasons 2007–2014 for three regions within
northern tropical Africa. To assess the full potential of raw ensemble forecasts
across spatial scales, we apply state-of-the-art statistical postprocessing methods
in form of BMA and EMOS, and verify against station and spatially aggregated,
satellite-based gridded observations.

5.1 Introduction

The bulk of precipitation in the tropics is related to moist convection, in contrast
to the frontal-dominated extratropics. Due to the small-scale processes involved
in the triggering and growth of convective systems, quantitative precipitation
forecasts are known to have overall poorer skills in tropical latitudes (Haiden
et al., 2012). This can be monitored in quasi-real time on the World Meteoro-
logical Organization (WMO) Lead Centre on Verification of Ensemble Prediction
System website (http://epsv.kishou.go.jp/EPSv) by comparing deterministic
and probabilistic skill scores for 24-hour precipitation forecasts for the 20◦N–20◦S
tropical belt with those for the northern and southern hemisphere extratropics.
There are hints that precipitation and cloudiness forecasts in the tropics show en-
hanced skill during regimes of stronger synoptic-scale forcing (Söhne et al., 2008;
Davis et al., 2013; van der Linden et al., 2017) or in regions of orographic forcing
(Lafore et al., 2017), but large parts of the tropical land masses are dominated by
convection that initiates from small-scale surface and boundary layer processes
and sometimes organizes into mesoscale convective systems (MCSs). The latter
depends mostly on the thermodynamic profile and vertical wind shear (Maranan
et al., 2018).

In this context, northern tropical Africa, particularly the semi-arid Sahel, can
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be considered a region where precipitation forecasting is particularly challenging.
The area consists of vast flatlands, MCSs during boreal summer provide the bulk
of the annual rainfall (Mathon et al., 2002; Fink et al., 2006; Houze et al., 2015),
and convergence lines in the boundary layer or soil moisture gradients at the
km-scale can act as triggers for MCSs (Lafore et al., 2017). Sahelian MCSs often
take the form of meridionally elongated squall lines with sharp leading edges
characterized by heavy rainfall. Synoptic-scale African easterly waves (AEWs)
are known to be linked to squall line occurrence in the western Sahel (Fink and
Reiner, 2003) and lead to an enhanced skill of cloudiness forecasts over West
Africa (Söhne et al., 2008).

However, NWP models are known to have an overall poor ability to predict
rainfall systems over northern Africa. For example, the gain in skill by improved
initial conditions due to an enhanced upper-air observational network during
the 2006 African Monsoon Multidisplinary Analysis (AMMA) campaign (Parker
et al., 2008) was lost in NWP models after 24 hours of forecast time, potentially
due to the models’ inability to predict the genesis and evolution of convective
systems (Fink et al., 2011). Given the substantial challenges involved in forecast-
ing rainfall in northern Africa, one might hope that EPSs provide an accurate
assessment of uncertainties and a more useful forecast overall. Despite many
advances in the generation of EPSs, ensembles share structural deficiencies and
require statistical postprocessing to realize the full potential of ensemble forecasts
(Gneiting and Raftery, 2005). Additionally, statistical postprocessing performs
implicit downscaling from the model grid resolution to finer resolutions or station
locations. In the following, we will explore whether established methods such
as BMA and EMOS can improve precipitation forecasts for northern tropical
Africa. To our knowledge, the investigation presented here and in Vogel et al.
(2018) is the first study to rigorously and systematically assess the quality of
ensemble forecasts for precipitation over northern tropical Africa. This is partly
related to the fact that for this region ground verification data from rain gauge
observations are infrequent on the Global Telecommunication System (GTS), the
standard verification data source for NWP centers.

The ultimate goal of this chapter is to provide an exhaustive assessment of
our current ability to predict rainfall over northern tropical Africa, considering
the skill of raw and postprocessed forecasts from TIGGE. Any skill, if existing,
would be expected to come from resolved large-scale forcing processes as men-
tioned above. We examine accumulation periods of 1- to 5-days for the monsoon
seasons 2007–2014 and verify against about 21,000 daily rainfall observations
from 132 rain gauge stations and satellite-based gridded precipitation observa-
tions. Section 5.2 introduces the RMM ensemble forecast based on the TIGGE
ensemble as well as station and satellite-based observations used for verification.
For postprocessing, we rely on EMOS and BMA and compare against EPC as our
benchmark forecast. These methods are explained in detail in Chapter 4. Their
verification is based on proper scoring rules, consistent scoring functions, uPIT
histograms, and reliability, Murphy, and ROC diagrams introduced in Chapter 2.
Results are presented in Section 5.3, where we verify 1-day accumulated ECMWF
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precipitation forecasts against station observations. This analysis is performed
in particular depth and serves as a fundamental exemplar. We also evaluate
ECWMF ensemble forecasts at longer accumulation times and for spatial aggre-
gations, before turning to the analysis of all TIGGE sub-ensembles. Implications
of our findings and possible alternative methods for forecasting precipitation over
northern tropical Africa are discussed in Section 5.4.

5.2 Data

5.2.1 Forecasts

Of the eleven participating ensembles of TIGGE, nine provide accumulated pre-
cipitation forecasts (see Table 4.1). In addition to the separate evaluation of each
participating TIGGE sub-ensemble, we rely on the RMM ensemble to evaluate
the benefit from intermodel variability. For each of the seven sub-ensembles avail-
able for the period 2008–2013, the RMM ensemble uses the mean of the perturbed
members, and the control run, and in case of the ECMWF EPS furthermore the
high-resolution run, as individual contributors. The RMM ensemble therefore
consists of 15 members and, as postprocessing performs an implicit weighting of
all contributions, a manual selection of sub-ensembles as performed by Hagedorn
et al. (2012) is not necessary.

5.2.2 Observations

Despite multiple advances in satellite rainfall estimation, station observations of
accumulated precipitation remain a reliable and necessary source of information.
However, the meteorological station network in tropical Africa is sparse and clus-
tered, and often observations of many stations are not distributed through the
GTS. The Karlsruhe African Surface Station Database (KASS-D) contains pre-
cipitation observations from a variety of networks and sources. Manned stations
operated by African national weather services provide the bulk of the 24-hour
precipitation data. Due to long-standing collaborations with these services and
African researchers, KASS-D contains many observations not available in stan-
dard, GTS-fed station databases. Within KASS-D, 960 stations have daily accu-
mulated precipitation observations and usually these are measured between 06–06
universal time coordinated (UTC).

After excluding stations outside the study domain, and removing sites with less
than 80% available observations in any of the monsoon seasons, the remaining
132 stations were subject to quality control, as described in the Appendix 5.A,
and passed these tests. Based on their rainfall climate (e.g. Fink et al., 2017) and
geographic clustering, the stations were assigned to three regions, as indicated in
Figure 5.1: West Sahel, East Sahel, and Guinea Coast.

As NWP forecasts are issued for grid cells, the comparison of station observa-
tions against gridded forecasts is fraud with problems. To allow for an additional
assessment of forecast quality without a gauge-to-gridbox comparison and for
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Figure 5.1: Geographical overview of the study domain, with the locations of
the observation stations (•) within the three considered regions. c©
Copyright 2018 AMS.

areas without station observations, we use satellite-based, gridded precipitation
estimates. Based on recent studies, version 7 (and also version 6) of the TRMM
3B42 gridded data set is regarded the best available satellite precipitation product
for northern tropical Africa, despite a small dry bias (Roca et al., 2010; Maggioni
et al., 2016; Engel et al., 2017).

TRMM merges active measurements from the precipitation radar with passive,
radar-calibrated information from infrared as well as microwave measurements
(Huffman et al., 2007). Based on monthly accumulation sums, TRMM estimates
are calibrated against nearby gauge observations. TRMM 3B42-V7 data are
available on a 0.25◦ × 0.25◦ grid with three hourly temporal resolution.

5.2.3 Data preprocessing

Based on 1-day accumulated station observations, we derive 2- to 5-day accumu-
lated precipitation observations by summing over consecutive 1-day observations.
As these cover the period from 06 UTC of the previous day to 06 UTC of the con-
sidered day and as all TIGGE sub-ensembles, except Météo France (MF), have
initialization times different from 06 UTC, we use the most recent run available
at that time, and adapt accordingly. Specifically, for the sub-ensembles initial-
ized at 00 UTC, we use the difference between the 30-hour accumulated and the
6-hour accumulated precipitation forecast. For initialization at 12 UTC, we use
the difference between the 42-hour accumulated and the 18-hour accumulated
precipitation forecast, and for longer accumulation times, we extend correspond-
ingly.

To obtain forecasts for a specific station location from gridded NWP forecasts,
bilinear interpolation as well as a nearest neighbor approach are possible. We use
the latter, implying that the forecast for the station is the same as the forecast
for the grid cell containing the station. Especially for large gridbox sizes, bilinear
interpolation may not be physically persuasive, and the nearest neighbor approach
is more compelling.
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TRMM observations are temporally aggregated to the same periods as the
station observations. As they do not cover the exact same periods, the first
and last 3-hour TRMM observations are weighted by 0.5. For evaluation on
different spatial scales, NWP forecasts and TRMM observations are aggregated
to longitude–latitude boxes of 0.25◦× 0.25◦, 1◦× 1◦, and 5◦× 2◦. As propagation
of precipitation systems is a potential error source and in an environment with
predominantly westward movement of them, the largest box is tailored to assess
NWP forecast quality without this potential source of error.

5.2.4 Consistency between TRMM and station observations

In light of the dry bias of TRMM observations, we evaluate the consistency of
TRMM and station observations in our data sets. Specifically, we pair each
station observation with the TRMM observation for the 0.25◦ × 0.25◦ box that
contains the station location. Figure 5.2 shows contingency tables of TRMM and
station observations above and below 0.2 mm respectively, and two-dimensional
frequency plots for TRMM and station observations above 0.2 mm, which is
our threshold for the distinction between rain and no rain. We use this threshold
irrespectively of the temporal and spatial aggregation at hand, with the results re-
ported hereinafter being insensitive to this choice1. The Guinea Coast is moistest
overall and has the highest fraction of warm rain events and isolated showers
(Maranan et al., 2018; Young et al., 2018). In the absence of radar information,
these rainfall events are often not detected by TRMM, while extensive cirrus is
often misinterpreted as rainfall by TRMM (M. Maranan, personal communica-
tion, December 12, 2018). Both effects lead to the relatively large fractions of
false positives and negatives in this region. West Sahel and East Sahel are drier
than Guinea Coast, and reveal more correct negatives. While rainfall occurs less
frequently in both Sahelian regions than in Guinea Coast, TRMM misinterprets
also in these regions frequently occurring extensive cirrus as rainfall. For all
regions the prevailing case is the one with both TRMM and the station report-
ing precipitation amounts below 0.2 mm. Among the disagreeing cases, the one
with TRMM observing more than 0.2 mm and the station less than 0.2 mm is
more frequent as suggested by the misinterpration of cirrus by TRMM and the
mismatch in spatial scales between gridboxes and stations. The least squares
regression lines in the two-dimensional frequency plots illustrate the dry bias of
TRMM (e.g., Maggioni et al., 2016) relative to station observations when both
report rain. Overall, the agreement between station and TRMM observations
is fair. Disagreements of the magnitude and type seen here arise for reasons of
differing coverage, spatial variability, and retrieval problems, among others, and
are consistent with the extant literature (see, e.g., Roca et al., 2010; Engel et al.,
2017; Maranan et al., 2018).

1Specifically, we checked thresholds from 0.0 mm to 1.0 mm, with minimal differences in
findings.
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Figure 5.2: Comparison of 1-day accumulated station and TRMM observations
of precipitation in monsoon seasons 2007–2014. The contingency ta-
bles contain the frequencies of TRMM and station observations below
and above 0.2 mm respectively. The two-dimensional frequency plots
show the joint distribution of TRMM and station observations above
0.2 mm, with the linear least squares line in red overlaid. Observa-
tions above 50 mm exist, but are very infrequent. c© Copyright 2018
AMS.

5.3 Results

Our annual evaluation period ranges from 1 May to 15 October, covering the
wet period of the West African monsoon. The assessment of ECMWF ensemble
forecasts is based on monsoon seasons 2007–2014, and for the other TIGGE sub-
ensembles we restrict the investigations according to availability as indicated in
Table 4.1.

For verification against station observations, this yields more than 3,000, 6,000,
and 12,000 forecast–observations pairs per monsoon season in East Sahel, West
Sahel, and Guinea Coast. For verification against TRMM observations, we use
30 randomly chosen, non-overlapping boxes per region at 0.25◦×0.25◦ and 1◦×1◦

aggregation, and eight sites per region for 5◦× 2◦ longitude–latitude boxes. This
covers substantial parts of the study region and results in about 5,000 forecast–
observation pairs per monsoon season at the smaller aggregation levels, and well
over 1,000 pairs at our highest level.

In Subsection 5.3.1, we study the skill of 1-day accumulated ECMWF raw and
postprocessed ensemble precipitation forecasts in detail. Subsections 5.3.2 and
5.3.3 present results and highlight differences for longer accumulation times and
spatially aggregated forecasts. Subsection 5.3.4 turns to results for all TIGGE

66



sub-ensembles, and we investigate the gain in predictability through inter-model
variability using the RMM ensemble. In our (u)PIT histograms and reliability
diagrams, we show results for the last available monsoon season only, given that
operational systems continue to be improving (Hemri et al., 2014).

5.3.1 1-day accumulated ECMWF forecasts

Figure 5.3 shows (u)PIT histograms for 1-day accumulated raw and postprocessed
ECMWF ensemble and EPC forecasts over West Sahel, East Sahel, and Guinea
Coast. The histograms for the raw ensemble indicate strong underdispersion as
well as a wet bias (panels a–c). At Guinea Coast, about 56% of the observations
are smaller than the smallest ensemble member, a result that is robust across
monsoon seasons. EMOS and BMA postprocessed forecasts generally are cali-
brated (panels g–l), as is EPC (panels d–f), except that the tails of the EMOS
predictive distributions are too light as indicated by a too high rightmost bin.
Statistical postprocessing also corrects for the systematically too high PoP values
issued by the raw ECMWF ensemble. As shown in Figure 5.4, EMOS and BMA
postprocessed PoP forecasts are reliable, but are hardly ever higher than 0.70.
Generally, the postprocessed PoP forecasts have reliability and resolution similar
to EPC.

Table 5.1 shows the mean BS, mean CRPS, and MAE for the various forecasts
and regions, with the scores being averaged across monsoon seasons 2007–2014.
We use a simple procedure to check whether differences in skill are stable across
seasons. If a method has a higher (worse) mean score than EPC in all eight
seasons, we mark the score −−; if it is judged worse in seven seasons, we put down a
−. Similarly, if a method has smaller (better) mean score than EPC in all seasons,
we mark the score ++; if it performs better in seven seasons, we label + in the
table. Viewed as a (one-sided) statistical test of the hypothesis of predictive skill
equal to EPC, the associated tail probabilities or p-values are 1/28 = 0.0039 . . .
and (1 + 8)/28 = 0.035 . . . respectively. Clearly, the raw ECMWF ensemble
underperforms relative to EPC, with −− designations throughout. EMOS and
BMA postprocessed forecasts perform at about the same level as EPC. For Guinea
Coast, BMA receives ++ for CRPS and BS scores, but scores differences are small
when compared to EPC. For the BS, the similar performance of postprocessed
and EPC forecasts stems from the fact that not only do postprocessed and EPC
forecasts show similar reliability but also similar resolution, as seen from the inset
histograms in panels d–l of Figure 5.4.

The Murphy diagrams in the top row of Figure 5.5 corroborate these findings.
For 1-day precipitation occurrence, decision makers will mostly prefer the clima-
tological reference EPC over the raw ECMWF ensemble, and only some decision
makers will have a slight preference for EMOS or BMA postprocessed forecasts,
as compared to EPC. Further light on theses issues is shed by the ROC dia-
grams in the bottom row of the figure. EMOS and BMA PoP forecasts can be
interpreted as recalibrated raw ensemble probabilities, and so it is not surprising
that for West Sahel and East Sahel, raw and postprocessed forecasts show essen-
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Figure 5.3: Unified PIT (uPIT) histograms for raw ECMWF ensemble, EPC,
and EMOS and BMA postprocessed forecasts of 1-day accumulated
precipitation in monsoon season 2014, verified against station obser-
vations. Histograms are cut at a height of 3, with the respective
maximal height noted. The dashed line indicates the uniform distri-
bution that corresponds to a calibrated forecast. c© Copyright 2018
AMS.
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Figure 5.4: Reliability diagrams for raw ECMWF ensemble, EPC, and EMOS
and BMA postprocessed forecasts of 1-day accumulated precipitation
in monsoon season 2014, verified against station observations. The
diagonal indicates perfect reliability, and the histograms show the
relative frequencies of the PoP forecast values. c© Copyright 2018
AMS.
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Table 5.1: Mean BS at a threshold of 0.2 mm, mean CRPS, and MAE for raw
ECMWF ensemble, EPC, and EMOS and BMA postprocessed fore-
casts of 1-day accumulated precipitation in monsoon seasons 2007–
2014, verified against station observations. If a method has a higher
(worse) respectively lower (better) mean score than EPC in all eight
seasons, the score is marked −− respectively ++; if it performs worse
respectively better than EPC in seven seasons, the score is marked −

respectively +. c© Copyright 2018 AMS.

BS CRPS MAE
West East Guinea West East Guinea West East Guinea
Sahel Sahel Coast Sahel Sahel Coast Sahel Sahel Coast

ENS −−0.32 −−0.32 −−0.48 −−4.50 −−2.63 −−6.99 −−5.36 −−3.13 −−8.39
EPC 0.19 0.15 0.23 3.75 2.08 5.28 4.60 2.38 6.57
EMOS 0.19 0.15 0.23 3.75 2.15 +5.25 4.65 −−2.45 6.60
BMA +0.18 0.15 ++0.22 3.71 2.07 ++5.20 4.58 2.38 6.53

tially the same discrimination skill, at a level that is slightly superior to EPC.
For Guinea Coast, EMOS and BMA have considerably higher AUC than the raw
ensemble, due to the extreme concentration of the raw ensemble probabilities at
very high levels, as illustrated in panel c of Figure 5.4. In contrast, the Murphy
curves are sensitive to calibration and show marked differences between raw and
postprocessed forecasts. Overall, these are sobering results, as they suggest that
over northern tropical Africa ECMWF 1-day accumulated precipitation forecasts
are hardly of practical use.

What could be possible reasons for the poor performance of the raw forecasts?
A number of recent studies have shown that the use of convective parametrization
is a first-order error source for realistically representing precipitation, cloudiness,
wind and even the regional-scale monsoon circulation in West Africa together
with their respective diurnal cycles (e.g., Pearson et al., 2014; Marsham et al.,
2013; Birch et al., 2014; Pantillon et al., 2015). Based on these results, and given
that all models we investigate use convective schemes, we suspect this aspect to
be a major cause of the poor performance we find. A visual comparison of 1-day
accumulated precipitation forecasts from ECMWF HRES and TRMM shows that
rainfall structures in the model tend to be too widespread and too light lacking
signs of mesoscale organization (see Figure 5.10 for an example).

Inspection of raw ensemble data suggests that for both station and TRMM
observations, agreement between forecasts and observations is modest at best.
Many observed precipitation events are either not predicted at all, are strongly
underpredicted, or are predicted by (almost) all ensembles members (with varying
amounts of precipitation), yet are not observed (see Figure 5.11 for an illustra-
tive example). The last point may indicate a form of triggering that the model
responds to too easily.
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Figure 5.5: Murphy diagrams and ROC curves (with respective AUC values) for
raw ECMWF ensemble (ENS), EPC, and EMOS and BMA post-
processed 1-day accumulated PoP forecasts in monsoon season 2014,
verified against station observations. c© Copyright 2018 AMS.

5.3.2 Longer accumulation times

One might expect NWP precipitation forecasts to improve relative to EPC at
longer accumulation times, as the main focus in forecasting shifts from determin-
ing time and location of initiation and subsequent propagation of convection to-
wards determining regions with enhanced or reduced activity, based on large-scale
conditions. Longer lead times might also lead to growth in differences between
perturbed members, and thus reduce raw ensemble underdispersion.

However, the PIT histogram in Figure 5.6a indicates only slight, if any, improve-
ment in calibration for raw ECMWF 5-day accumulated precipitation forecasts
over West Sahel, and the results for the other regions are similar (not shown).
Raw ensemble reliability improves at longer accumulation times, verified against
either station observations in panel b), or 5◦ × 2◦ TRMM observations in panels
c) and d), though at a loss of resolution.

Table 5.2 uses the same approach as Table 5.1, but the scores are now for 5-
day accumulated precipitation. The raw ECMWF ensemble still underperforms
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Figure 5.6: Calibration and reliability of raw ECMWF ensemble forecasts over
West Sahel in monsoon season 2014 at 1- and 5-day accumulations.
a) (u)PIT histogram and b) reliability diagram for 5-day accumulated
precipitation, verified against station observations. Panels c) and d)
show reliability diagrams for 1- and 5-day accumulated precipitation,
verified again 5◦×2◦ aggregated TRMM observations. Same approach
as in Figures 5.3 and 5.4. c© Copyright 2018 AMS.
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relative to EPC. EMOS and BMA postprocessed forecasts outperform EPC only
slightly, with the differences in scores being small and generally not stable across
monsoon seasons as indicated by only few + or ++. Despite the change in the
underlying forecast problem, even postprocessed ECMWF ensemble forecasts are
generally not superior to EPC.

Table 5.2: Mean BS, mean CRPS, and MAE for raw ECMWF ensemble, EPC,
and EMOS and BMA postprocessed forecasts of 5-day accumulated
precipitation in monsoon seasons 2007–2014, verified against station
observations. Same approach as in Table 5.1. c© Copyright 2018 AMS.

BS CRPS MAE
West East Guinea West East Guinea West East Guinea
Sahel Sahel Coast Sahel Sahel Coast Sahel Sahel Coast

ENS 0.14 −−0.25 −−0.10 −−12.80 −−8.42 −−19.69 16.23 −−10.76 −24.41
EPC 0.12 0.16 0.08 11.63 7.07 16.54 16.15 9.56 22.98
EMOS 0.13 0.16 −0.08 11.62 7.34 16.44 +15.99 9.96 22.74
BMA +0.11 ++0.15 0.08 ++11.47 +6.94 16.33 +16.07 +9.45 22.92

5.3.3 Spatially aggregated observations

For the assessment of forecast skill at larger spatial scales, we focus on ECMWF
raw and BMA postprocessed ensemble forecasts over West Sahel, evaluated by
BS and CRPS. This is due to the similarities in CRPS and MAE results, better
performance of BMA compared to EMOS in many instances, and results for West
Sahel that are as good for BMA postprocessed forecasts as for East Sahel, and
better than for Guinea Coast.

The use of spatially aggregated TRMM observations avoids problems of point
to pixel comparisons, and at higher aggregation we can assess forecast quality
with minimal error due to the propagation of convective systems. The dry bias
of TRMM disadvantages the raw ensemble compared to EPC and postprocessed
forecasts, but does not hinder assessments regarding systematic forecast errors.
As illustrated in Figure 5.6c, 1-day PoP forecasts from the raw ECMWF ensemble
remain unreliable even at the 5◦ × 2◦ gridbox scale. It is only under large scales
and longer accumulation times simultaneously, when precipitation occurs almost
invariably, that raw ensemble PoP forecasts become reliable (panel d).

Table 5.3 shows mean BS and CRPS scores at various spatial aggregations for
1-day precipitation accumulation, verified against TRMM observations. The raw
ECMWF ensemble forecast is inferior to EPC at all resolutions, and in every
single region and season. BMA postprocessed forecasts outperform EPC across
aggregation scales, and in every single region and season, but the improvement
relative to EPC remains small.
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Table 5.3: Performance of spatially aggregated raw ECMWF ensemble, EPC, and
BMA postprocessed forecasts of 1-day accumulated precipitation in
monsoon seasons 2007–2014, verified against TRMM gridbox obser-
vations. Same approach as in Table 5.1. c© Copyright 2018 AMS.

TRMM 0.25◦ × 0.25◦ / 1 d TRMM 1◦ × 1◦ / 1 d TRMM 5◦ × 2◦ / 1 d
BS CRPS CRPS CRPS

West East Guinea West East Guinea West East Guinea West East Guinea
Sahel Sahel Coast Sahel Sahel Coast Sahel Sahel Coast Sahel Sahel Coast

ENS −−0.30 −−0.23 −−0.48 −−2.29 −−1.44 −−4.03 −−2.24 −−1.56 −−4.43 −−1.95 −−1.53 −−4.22
EPC 0.19 0.14 0.23 1.07 0.57 1.35 0.94 0.58 1.36 0.81 0.49 1.07
BMA ++0.17 ++0.13 ++0.21 ++1.03 ++0.55 ++1.29 ++0.89 ++0.55 ++1.28 ++0.76 ++0.45 ++0.95

5.3.4 TIGGE sub-ensembles and RMM ensemble

In addition to the ECMWF EPS, which we have studied thus far, the TIGGE
database contains several more operational sub-ensembles, as listed in Table 4.1.
Figure 5.7 shows PIT histograms for the various sub-ensembles and the RMM
ensemble for 1-day accumulated precipitation forecasts over West Sahel. All
TIGGE sub-ensembles exhibit underdispersion and wet biases, though in strongly
varying degrees. The MF raw ensemble is the most underdispersive ensemble and
more than every second observation is smaller than the smallest MF ensemble
member. The RMM ensemble is better calibrated than most of its contributors,
while the Meteorological Service of Canada (MSC) model is the most calibrated
sub-ensemble of TIGGE.

Figure 5.8 displays BS and CRPS skill relative to EPC for raw and BMA
postprocessed TIGGE sub-ensemble and RMM ensemble forecasts in 2007–2014,
verified against station observations. All raw ensembles underperform relative
to EPC, in part drastically so. For most sub-ensembles, a temporal improve-
ment in skill is visible, with monsoon seasons 2011–2014 revealing higher skill
than 2007–2010. Of all TIGGE sub-ensembles, MSC typically is the most skillful
one, while MF and CPTEC perform quite poor. But also renowned models such
as NCEP, ECMWF, or UKMO struggle to issue skillful forecasts. Across 2007–
2014, the ECMWF model reveals the highest improvement in both BS and CRPS
skill. Postprocessing by BMA increases forecast quality. The ECMWF, KMA,
NCEP, and UKMO ensembles yield the best postprocessed forecasts, exhibiting
small positive skill relative to EPC for most monsoon periods. The BMA post-
processed RMM ensemble outperforms all sub-ensembles as well as EPC, but the
improvement is small. Figure 5.9 displays the BMA weights that the 15 contribu-
tors of the RMM ensemble attain (see (4.4)). The mean perturbed forecasts from
the ECMWF, UKMO, and NCEP ensembles are the top three contributors to
the BMA postprocessed RMM forecast, while the best control run only receives
a weight of about 0.05.

In further experiments, we have studied raw and postprocessed TIGGE sub-
ensemble and RMM ensemble forecasts at accumulation times up to 5 days and
spatial aggregations up to 5◦ × 2◦ gridboxes in TRMM as already presented for
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Figure 5.7: (u)PIT histograms for raw TIGGE sub-ensemble and raw RMM en-
semble forecasts of 1-day accumulated precipitation over West Sahel
in monsoon season 2013, verified against station observations. Same
approach as in Figure 5.3. c© Copyright 2018 AMS.
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Figure 5.8: BS and CRPS skill for raw and BMA postprocessed TIGGE sub-
ensemble forecasts of 1-day accumulated precipitation over West Sahel
in monsoon seasons 2007–2014, verified against station observations.
Skill equal to EPC is indicated by the dashed line. c© Copyright 2018
AMS.
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ECMWF in Subsection 5.3.3. Our findings generally remain unchanged. The raw
ensemble forecasts never reach the quality of the climatological reference EPC.
After postprocessing with BMA, the ECMWF ensemble typically becomes the
best performing TIGGE sub-ensemble, showing slightly better scores than EPC
when verified against TRMM observations, at all spatial aggregations. The BMA
postprocessed RMM forecast depends heavily on the ECMWF mean perturbed
forecast, and is superior to both EPC and the BMA postprocessed sub-ensemble.

5.4 Discussion

In a first-ever thorough verification study over northern tropical Africa, the qual-
ity of operational ensemble precipitation forecasts from different NWP centers
was assessed for several years, accumulation periods, and for station and spatially
aggregated satellite observations. All raw ensembles exhibit calibration problems
in form of underdispersion and biases, and are unreliable at high PoP forecast
values. They have lower skill than the climatological reference EPC for the pre-
diction of occurrence and amount of precipitation, with the underperformance
being stable across monsoon seasons.

After correcting for systematic errors in the raw ensemble through statistical
postprocessing, the ensemble forecasts become reliable and calibrated, but only
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few are slightly superior to EPC. While further developments of both EMOS
and BMA might be feasible (see, e.g., Fortin et al., 2006; Scheuerer and Hamill,
2015), and training sets could be augmented by using reforecast data (e.g., Di
Giuseppe et al., 2013), the respective benefits are likely to be incremental at
this time, although as the raw ensemble performance improves over time, they
might become considerable. Not surprisingly, forecast skill tends to be highest for
long accumulation times and large spatial aggregations. Overall, raw ensemble
forecasts are of no use for the prediction of precipitation over northern tropical
Africa, and even EMOS and BMA postprocessed forecasts have little added value
compared to EPC.

What are the reasons for this rather disappointing performance of state-of-the-
art global EPSs? For 1-day accumulated precipitation forecasts, the ability of an
NWP model to resolve the details of convective organization is essential. As all
global EPSs use parameterized convection, this likely limits forecast skill. The
fact that even postprocessed 1-day accumulated ensemble forecasts exhibit no
skill relative to EPC, implies that ensembles cannot translate information about
the current atmospheric state (e.g., tropical waves or influences from the extrat-
ropics) into meaningful impacts regarding the occurrence or amount of precipita-
tion. This is robust for verification against station as well as spatially aggregated
satellite observations, and can therefore not be explained by propagation errors.

For longer accumulation times and larger spatial aggregations, the large-scale
circulation has a much stronger impact on convective activity, which should
weaken the limitation through convective parameterization. The skill of 5-day
accumulated precipitation forecasts, however, increases only slightly, if at all,
compared to 1-day accumulated forecasts. The most likely reason for this is that
squall lines have feedbacks on the large-scale circulation, which are not realisti-
cally represented in global NWP models either. Marsham et al. (2013) find that
the large-scale monsoon state in (more realistic) simulations with explicit convec-
tion differs quite pronouncedly from runs with parameterized convection, even
when using the same resolution of 12 km. In the explicit-convection simulation,
greater latent and radiative heating in the Sahel weakens the monsoon flow, delays
the diurnal cycle, and convective cold pools provide an essential component to
the monsoon flux. We suspect that some or all of these effects are misrepresented
in global EPS forecasts.

The fact that EPS precipitation forecasts are so poor over northern tropical
Africa is a strong demonstration of the complexity of the underlying forecast
problem. An interesting question in this context is whether poor predictability
in the tropics is exclusively confined to northern Africa, where AEWs provide
favorable conditions for convective organization into MCSs ahead of the trough.

Furthermore, the lack of skill motivates complementary approaches to predict-
ing precipitation over this region. Little et al. (2009) compare operational NCEP
ensemble, climatological, and statistical forecasts for stations in the Thames Val-
ley, United Kingdom. They note that NCEP forecasts outperform climatological
forecasts, but demonstrate that statistical forecasts, solely based on past obser-
vations, can outperform NCEP forecasts by exploiting spatio-temporal depen-
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dencies. These also exist over northern tropical Africa and some additional pre-
dictability may stem from large-scale drivers such as convectively-coupled waves.
Fink and Reiner (2003) note a coupling of the initiation of squall lines to AEWs
and Wheeler and Kiladis (1999) the influence of large-scale tropical waves, such as
Kelvin and equatorial Rossby waves or the Madden-Julian oscillation, on convec-
tive activity. Pohl et al. (2009) confirm the relation between the Madden-Julian
oscillation and rainfall over West Africa and Vizy and Cook (2014) demonstrate
an impact of extratropical wave trains on Sahelian rainfall. Statistical models
based on spatio-temporal characteristics of rainfall and extended by such large-
scale predictors seem a promising approach to improve precipitation forecasts
over our study region, and we expect such forecasts to outperform climatology.
This approach will be explored in future work, and results of a pilot study for
northern tropical Africa are presented in Chapter 7.

As discussed in Section 5.3.1, we suspect convective parametrization to be a
major cause of the low quality of model-based forecasts here. Therefore it would
be interesting to test ensembles of convection-permitting NWP model runs, ide-
ally in combination with ensemble data assimilation, but the computational costs
are high, and it will take time until a multi-year database will become available
for validation studies. Alternatively, it could be tested whether systematic im-
provements to convection schemes (e.g., Bechtold et al., 2014) do in fact positively
impact on ensemble forecast quality. Given the growing socioeconomic impact
of rainfall in northern tropical Africa with its rain-fed agriculture, statistical and
statistical-dynamical approaches should be developed in parallel in order to im-
prove the predictability of rainfall in this region.
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Appendix 5.A Quality control for rainfall
observations within KASS-D

Rainfall exhibits extremely high spatial and temporal variability, which hinders
automated quality checks applicable to other meteorological variables such as
temperature or pressure. For precipitation, Fiebrich and Crawford (2001) sug-
gest a range and a step test only. The global range of station observed 1-day
accumulated precipitation is from 0 mm to 1,825 mm. All KASS-D observations
passed this test. The step test checks if the difference of neighboring 5-minute
accumulated precipitation is smaller than 25 mm. For 1-day accumulated precip-
itation tests of this type are not meaningful, nor are the persistence tests used
by Pinson and Hagedorn (2012) for wind speed. However, the site-specific clima-
tological distributions of precipitation accumulation should be right-skewed, i.e.,
the median should be smaller than the mean, and in the tropics they should have
a point mass at zero (Rodwell et al., 2010). As noted, we only consider stations
with more than 80% available observations in any of the monsoon seasons, and
all 132 stations thus selected passed these tests.

Appendix 5.B Consistency of ECMWF forecasts
and verifying observations

Figure 5.10 displays maps of 1-day accumulated precipitation as forecasted by
the ECMWF HRES run and observed by TRMM on 14 July 2014. Precipitation
over Guinea and Mali is well predicted in terms of location, even though the orga-
nization seems less well captured. However, most of the forecasted precipitation
over Nigeria did not to materialize, and in the East Sahel region precipitation
occurred over Sudan rather than the Ethiopian Highlands.

Figure 5.11 displays time series of 1-day accumulated ECMWF precipitation
forecasts along with the respective station and TRMM observations. The titles
of the panels indicate the WMO station number or the longitude and latitude
coordinates of the center of the considered 0.25◦ × 0.25◦ TRMM pixel. For both
types of observations, there is a modest degree of agreement between forecasts
and observations. However, many precipitation events are either not predicted
at all, are strongly underpredicted, or are predicted by (almost) all ensembles
members (with varying amounts of precipitation), yet do not occur.
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Figure 5.10: 1-day accumulated precipitation on 14 July 2014 as forecasted by
the ECMWF HRES run and observed by TRMM at a resolution of
0.25◦ × 0.25◦. c© Copyright 2018 AMS.
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6 Skill of global raw and
postprocessed ensemble
predictions of rainfall in the
tropics

In this chapter, we systematically evaluate for the first time NWP ensemble
forecast skill for amount and occurrence of precipitation as well as the occurrence
of extreme precipitation events in ten climatic regions in the tropics. We evaluate
ensemble forecasts from ECMWF and MSC for accumulation periods of 1–5 days
against TRMM observations across the period 2009–2017. In order to evaluate
the full potential of ensemble forecasts, we apply the state-of-the-art statistical
postprocessing technique EMOS and compare raw and postprocessed forecast
against EPC.

6.1 Introduction

Throughout the tropics, forecasts of precipitation have a multitude of users, both
at the short range and at seasonal timescales. Despite this, little is known about
the quality of current NWP ensemble forecasts for precipitation at accumulation
periods of one to a few days. Haiden et al. (2012) introduced the stable equitable
error in probability space (SEEPS) score that classifies precipitation forecasts
and observations into three categories based on the local climate. It allows to
assess deterministic forecast quality for different climatic regions and Haiden et al.
(2012) note that “SEEPS scores at forecast day 1 in the tropics are similar to
those at day 6 in the extratropics”. In Chapter 5, we found little to no skill in 1–5
day accumulated precipitation forecasts from ten global NWP EPSs for northern
tropical Africa. These results are robust under temporal and spatial aggregation
and point to fundamental problems in predicting precipitation in this region,
and potentially in the tropics as a whole. In contrast, Webster (2013) reports
relatively good forecasts of precipitation for southern Asia up to ten days ahead.

Without an assessment of the quality of accumulated precipitation forecasts
from current NWP ensembles, the further improvement of NWP models is hin-
dered. The ultimate aim of this chapter is to provide a detailed analysis of our
current ability to predict rainfall, rainfall occurrence, and extreme rainfall for the
tropics and at a regional level by assessing global raw and postprocessed forecasts
from two major NWP centers. We examine accumulation periods of 1–5 days for
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the period 2009–2017 and verify against satellite-based gridded precipitation ob-
servations for 21,600 gridboxes between 30◦S and 30◦N that allow a fine-grained
assessment.

Section 6.2 introduces the analyzed ensemble forecasts and satellite observa-
tions as well as the climatic regions. Section 6.3 presents the results of our
investigations and relies on the ECMWF EPS as key exemplar. We first assess
calibration and reliability of ECMWF raw and postprocessed forecasts before
considering their skill for the prediction of amount and occurrence of precipi-
tation and the occurrence of extreme precipitation. Subsequently, we compare
these results to ensemble forecasts from MSC and analyze improvement over the
period 2009–2017. Section 6.4 discusses potential reasons for and implications of
our results.

6.2 Data

6.2.1 Forecasts

Due to its high quality, the ECMWF EPS serves as key exemplar for the analy-
sis of NWP ensemble forecast skill for accumulated precipitation. Its setup and
properties are discussed in Chapter 4. For an additional evaluation, we rely on
the MSC EPS. It is among the best EPSs for predictions of accumulated precip-
itation in northern tropical Africa (see Figure 5.8) and one of the leading EPSs
worldwide. The forecast quality of both EPSs can be monitored in quasi-real time
at the WMO Lead Centre on Verification of Ensemble Prediction Systems web-
site http://epsv.kishou.go.jp/EPSv.1 It displays average scores for standard
atmospheric variables for the tropical belt between 20◦S and 20◦N, and northern
and southern hemisphere extratropics. MSC ensemble forecasts are accessible via
the TIGGE archive with a spatial resolution of 0.5◦ × 0.5◦. For both models, we
rely on forecasts initialized at 00 UTC.

6.2.2 Observations

For a spatially consistent and complete verification of NWP ensemble forecast
quality, we rely on the TRMM 3B42 gridded data set (see Section 5.2 for further
details). It is regarded the best available satellite precipitation product (see, e.g.,
Maggioni et al., 2016) despite its mediocre performance in detecting rainfall in
complex terrain and semiarid areas, and its dry bias that is particularly large
for light rain events (Huffman et al., 2007). If nearby gauge observations are
available, they are used to calibrate TRMM estimates based on monthly accu-
mulation sums. The result is an observational data set with full spatial coverage
and only a small bias on monthly scales. Over oceans, calibration is not possible
and satellite-based measurements used in the TRMM algorithm are less capable
in detecting precipitation. This holds in particular for regions where most rain

1On this webpage, the MSC is denoted as Canadian Meteorological Centre (CMC).
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Figure 6.1: Climatological PoP. A threshold of 0.2 mm is used to determine the
occurrence of precipitation for an accumulation period of 1 day.

events are light (Huffman et al., 2007). Figure 6.1 displays the climatological
PoP for an accumulation period of one day, and several oceanic and continental
deserts with very low climatological PoP are visible. In particular for the oceanic
deserts west of South America and southern Africa, (rarely occurring) rainfall is
almost exclusively light as suggested by panel a) of Figure 11 in Nesbitt et al.
(2006) and TRMM observations for these regions are least reliable.

6.2.3 Data preprocessing

We apply the exact same procedures for data preprocessing as in Chapter 5,
and aggregate TRMM observations and ensemble forecasts to a resolution of
1◦×1◦ and accumulation periods of one to five days. This yields a total of 21.600
gridboxes for the tropics between 30◦S and 30◦N and allows for a fine-grained
investigation of NWP EPS precipitation forecast quality.

6.2.4 Köppen-Geiger climates

We divide the tropics into Köppen-Geiger climates by continents for an as-
sessment of forecast quality at a regional level. The Köppen-Geiger climate
classification (Köppen, 1900; Geiger, 1961) uses five main climates, and sub-
groups within each climate that are defined by seasonal precipitation patterns.
Kottek et al. (2006) provide an updated Köppen-Geiger climate classification
with a resolution of 0.25◦ × 0.25◦, available at http://koeppen-geiger.vu-

wien.ac.at/present.htm. We rely on the main climates only and merge Con-
tinental (D) and Polar (E) climates as there only exist 6 and 91 gridboxes with
continental and polar climates at a resolution of 1◦ × 1◦ in the tropics. In the
following, we call the resulting areas “Alpine climates”. For the most frequent
climates Tropical (A) and Arid (B), we use an additional stratification by conti-

85

http://koeppen-geiger.vu-wien.ac.at/present.htm
http://koeppen-geiger.vu-wien.ac.at/present.htm


nents such that, e.g., Africa is divided into northern arid Africa, tropical Africa,
and southern arid Africa. This yields a total of ten climatic regions, displayed by
color in Figure 6.2.

6.3 Results

6.3.1 Calibration and reliability of the ECMWF ensemble

Figure 6.2 displays in the top panel PIT histograms for 1-day accumulated pre-
cipitation forecasts by the ECMWF ensemble. Here and in the following, the
distribution into climatic regions follows the Köppen-Geiger climates and their
stratification by continents introduced in Subsection 6.2.4. The PIT histograms
reveal that for all regions ECMWF raw ensemble forecasts are strongly underdis-
persive, and in many regions more than 40% of all observations are smaller than
the smallest ensemble member as indicated by a leftmost bar having a height of
more than 8. The bottom panel of Figure 6.2 displays the spatial distribution of
the (scaled) discrepancy measure between the ECMWF raw ensemble and per-
fectly calibrated forecasts as defined by Berrocal et al. (2007). It attains values
between zero and one, where lower values indicate better calibration. Typically,
the ECMWF ensemble is better calibrated over land than over ocean, but it is not
well calibrated anywhere in the tropics. Regions of particularly low calibration
are the oceanic deserts, e.g., west of South America and southern Africa. The
lack of calibration in ECMWF ensemble forecasts is robust across accumulation
times from 1–5 days (not shown).

The top panel of Figure 6.3 displays reliability diagrams for 1-day accumulated
PoP forecasts by the ECMWF raw ensemble. Raw ensemble forecasts for the
occurrence of precipitation are generally overconfident and unreliable as expressed
by too frequent PoP forecasts of very high probabilities for rainfall occurrence and
non-occurrence and less frequent realizations of the predicted event. Especially
over complex terrain as found in alpine climates, the ECMWF EPS struggles to
produce reliable forecasts. As threshold for the occurrence of precipitation, we
rely here and in the following on 0.2 mm irrespective of the accumulation period,
but note that our results change only minimally under different choices of the
threshold such as 1 mm.

After statistical postprocessing, ECMWF forecasts are fairly well calibrated
as is EPC, even though small deviations from a uniform distribution typically
remain (not shown). The bottom panel of Figure 6.3 displays reliability diagrams
for postprocessed ECMWF PoP forecasts for an accumulation period of 1 day. As
statistical postprocessing corrects for systematic overconfidence and unreliability,
EMOS postprocessed forecasts are more reliable than raw ensemble forecasts, even
though they are slightly underconfident. The increase in reliability is partially
achieved at the cost of a lower resolution of postprocessed forecasts as displayed
by the inset histograms in Figure 6.3. The EPC forecast is also reliable with a
resolution comparable to that of ECMWF postprocessed forecasts.

86



−
20020

−
15

0
−

10
0

−
50

0
50

10
0

15
0

Lo
ng

itu
de

LatitudeP
IT

 h
is

to
gr

am
s

F
or

ec
as

t: 
E

C
M

W
F

 E
N

S
, a

cc
um

ul
at

io
n 

pe
rio

d:
 1

 d
ay

9.
6

0.
0

2.
5

5.
0

7.
5

10
.0

0.
0

0.
5

1.
0

P
IT

A
rid

 A
m

er
ic

as 8.
6

0.
0

2.
5

5.
0

7.
5

10
.0

0.
0

0.
5

1.
0

P
IT

Tr
op

ic
al

 A
m

er
ic

as
8.

8

0.
0

2.
5

5.
0

7.
5

10
.0

0.
0

0.
5

1.
0

P
IT

A
lp

in
e 

cl
im

at
es

6.
6

0.
0

2.
5

5.
0

7.
5

10
.0

0.
0

0.
5

1.
0

P
IT

A
rid

 n
or

th
er

n 
A

fr
ic

a

8.
3

0.
0

2.
5

5.
0

7.
5

10
.0

0.
0

0.
5

1.
0

P
IT

Tr
op

ic
al

 A
fr

ic
a

7.
2

0.
0

2.
5

5.
0

7.
5

10
.0

0.
0

0.
5

1.
0

P
IT

A
rid

 s
ou

th
er

n 
A

fr
ic

a
7.

2

0.
0

2.
5

5.
0

7.
5

10
.0

0.
0

0.
5

1.
0

P
IT

A
rid

 A
si

a

9.
4

0.
0

2.
5

5.
0

7.
5

10
.0

0.
0

0.
5

1.
0

P
IT

Te
m

pe
ra

te
 c

lim
at

es

8.
1

0.
0

2.
5

5.
0

7.
5

10
.0

0.
0

0.
5

1.
0

P
IT

Tr
op

ic
al

 A
si

a 6.
1

0.
0

2.
5

5.
0

7.
5

10
.0

0.
0

0.
5

1.
0

P
IT

A
rid

 A
us

tr
al

ia

−
20020

−
15

0
−

10
0

−
50

0
50

10
0

15
0

Lo
ng

itu
de

Latitude

0.
00

0.
25

0.
50

0.
75

1.
00

D
is

cr
ep

an
cy

C
al

ib
ra

tio
n

F
or

ec
as

t: 
E

C
M

W
F

 E
N

S
, p

er
io

d:
 2

00
9−

20
17

, a
cc

um
ul

at
io

n 
pe

rio
d:

 1
 d

ay

F
ig

u
re

6.
2:

C
al

ib
ra

ti
on

of
E

C
M

W
F

ra
w

en
se

m
b
le

fo
re

ca
st

s
fo

r
1-

d
ay

ac
cu

m
u
la

te
d

p
re

ci
p
it

at
io

n
.

T
h
e

to
p

p
an

el
d
is

p
la

y
s

P
IT

h
is

to
gr

am
s

w
it

h
20

b
in

s
fo

r
th

e
te

n
K

öp
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6.3.2 Skill of the ECMWF ensemble

Figure 6.4 displays the mean CRPS skill of raw and postprocessed ECMWF
ensemble forecasts for 1-day accumulated precipitation and the period 2009–2017
relative to EPC. Over land, the ECMWF raw ensemble system issues skillful
forecasts for some regions such as India, Australia or eastern Brasil, but struggles
in complex terrain such as in the Himalayas or the Andes as well as in many
places in tropical and northern arid Africa. Over oceans, the raw ensemble is
skillful in many regions, but not for the oceanic deserts.

After postprocessing, the ECMWF ensemble forecast has almost everywhere
neutral or positive skill. Regions with previously negative skill tend to have neu-
tral skill, while regions with positive skill exhibit frequently a slightly higher pos-
itive skill. In particular, over complex terrain (e.g. Andes, Himalayas, mountain
ranges of Papua New Guinea) and large parts of tropical and northern Africa,
1-day accumulated ECMWF ensemble forecasts exhibit only neutral skill, and
have predictive performance equal only to EPC.

With longer accumulation periods, the distribution of ECMWF raw ensemble
forecast skill changes. The top panel of Figure 6.5 displays CRPS skill for 5-day
accumulated ECMWF raw ensemble precipitation forecasts. Compared to 1-day
accumulations, raw ensemble forecast skill deteriorates slightly in regions where
there is negative skill already for 1-day accumulation periods, and it increases
slightly in many places that reveal positive skill for 1-day accumulation periods
(e.g., Australia, arid Asia, arid southern Africa, eastern South America).

While CRPS and CRPSS allow to assess forecast quality with respect to the
full probabilistic forecast, PoP as well as probabilities for the occurrence of ac-
cumulated precipitation above given thresholds are essential components of any
precipitation forecast. The bottom panel of Figure 6.5 displays the BS skill of
ECMWF raw ensemble forecasts for the occurrence of precipitation during the
following 24 hours relative to EPC. ECMWF raw ensemble forecasts are skillful
in few places only and have clear deficiencies in predicting the PoP over tropi-
cal oceans. Over land, the ECMWF raw ensemble is skillful in several regions
such as southern Africa and southern Brasil, and quite skillful over Australia.
Along the coast of East Africa and Brasil as well as in complex terrain, South
East Asia, or tropical Africa, the ECMWF raw ensemble underperforms strongly
when compared to EPC. Presumably, this is an indication of misrepresentation
of convection and possibly its organization by the raw ECMWF EPS.

After postprocessing, the BS skill distribution for ECMWF PoP forecasts (not
shown) is almost identical to the CRPSS skill map for 1-day accumulated precipi-
tation displayed in Figure 6.4. At longer accumulation times, the negative skill of
the ECMWF raw ensemble turns to neutral or only slightly negative skill in many
parts of the oceans (not shown). Over land, the region of negative skill along the
coast of East Africa expands inland, but reduces in tropical West Africa to a
narrow band along the coast. In South America and Asia, the region of negative
skill contracts and is almost exclusively confined to regions of complex terrain.
ROC curves and Murphy diagrams (not shown) further support this analysis of
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ECMWF PoP forecast quality.

6.3.3 Skill of ECMWF forecasts for extreme rainfall events

One important aspect of precipitation forecasts is their ability to predict extreme
events such that precautionary action can be taken. Exemplarily, Webster et al.
(2011) report on extreme rainfall events in Pakistan in 2010 that were embed-
ded in the Indian monsoon during a period of anomalous large-scale flow and
predicted by the ECMWF with high probabilities 6–8 days ahead. However, not
all extreme precipitation events are connected to relatively well-predictable and
large-scale features, and it is unclear if and where models are able to predict
extreme precipitation some time ahead. As noted by Lerch et al. (2017), the im-
manent problem in evaluating forecast quality for extreme events is that sampling
uncertainty typically impedes our ability to analyze forecast skill. One potential
remedy is to increase the number of events. We achieve this by considering care-
fully selected thresholds and by relying on a long time series of events. Here,
we use 20 mm within 24 hours and 50 mm within 5 days as thresholds for the
occurrence of extreme events, and display results only for continents and those
gridboxes where the considered event occurs with a frequency of at least 1%, or
about 33 events in 2009–2017. Figure 6.6 displays BS skill for raw and post-
processed ECMWF forecasts for both types of extreme events. While ECMWF
raw ensemble forecasts for the occurrence of extreme precipitation are mostly
skillful throughout Asia, Australia, and the Americas, a clear lack of skill can
be observed for Africa west of the East African rift. After postprocessing, the
skill for the latter region is neutral, and positive almost everywhere else. Highest
skill is observed for eastern China and eastern Australia, where the average BS
skill for the prediction of these extreme events is as high as 0.30. At 5 days and
50 mm, raw ECMWF ensemble skill decreases in several regions, in particular
Africa west of the East African ridge, western South America, and over complex
terrain in Asia. Postprocessed ECMWF ensemble skill is very similar to 1 day
and 20 mm, but typically higher such as in India or Brasil. For Africa west
of the East African rift, ECMWF postprocessed ensemble forecasts have equal
predictive performance as EPC.

What are the reasons for these results, in particular for the fact that ECMWF
raw and postprocessed forecasts have predictive performance equal only to EPC
forecasts for occurrence and amount of precipitation and extreme rainfall events
in several tropical regions?

For the oceanic deserts, raw ensemble forecast skill is strongly negative. As
TRMM is known to have a comparatively large dry bias in these regions (Huffman
et al., 2007), TRMM-based EPC forecasts have a clear advantage over NWP raw
ensemble forecasts and the skill of the latter is presumably assessed worse than
it actually is.

Over complex terrain as in the Himalayas or Andes, TRMM performs relatively
poor in the detection of precipitation (Barros et al., 2006; Hirpa et al., 2010;
Maggioni et al., 2016). While observational deficiencies are one likely reason for

90



the lack of calibration and negative skill of both raw NWP ensembles in these
regions, another is the insufficient representation of complex terrain in NWP
models. Based on current resolutions, they can not fully resolve the orography
which often results in lower predictive performance as analyzed, e.g., by Richard
et al. (2007) for the European Alps.

For most of the remaining regions with negative skill of raw and neutral skill
of postprocessed NWP forecasts and in particular for tropical and northern arid
Africa, we suspect convective parameterization to be a major cause. In these
regions, a special type of (ice scattering) MCSs account for a majority of rainfall
as displayed in panels d) and f) of Figure 11 in Nesbitt et al. (2006). Recent
studies suggest that convective parameterization often can not represent the high
degree of convective organization in MCSs. This is a major impediment for their
realistic representation in NWP models and leads to forecasts with too much light
and too little intense rainfall overall (Stephens et al., 2010; Marsham et al., 2013;
Pearson et al., 2014; Birch et al., 2014; Pantillon et al., 2015).

6.3.4 Comparison to the MSC ensemble

After assessing the skill of ECMWF raw and postprocessed forecasts for rainfall
occurrence, rainfall amount, and extreme rainfall events, we now compare these
results to those for the MSC ensemble and analyze differences and similarities.

Figure 6.7 displays calibration of the MSC ensemble in the same way as Fig-
ure 6.2, but with the maximal height of the PIT histograms in the top panel now
being reduced to six instead of ten. While the MSC raw ensemble is also not cali-
brated, it is far better calibrated than the ECMWF raw ensemble, though slightly
right skewed. The geographical distribution of the calibration of the MSC ensem-
ble in the bottom panel reveals good calibration over large parts of the Indian
and western Pacific oceans as well as in tropical Africa and northwestern South
America. The reliability of the MSC raw ensemble is displayed in the top panel
of Figure 6.8 and reveals that the MSC raw ensemble is clearly more reliable than
the ECMWF raw ensemble for most regions. However, it also struggles to issue
reliable forecasts for the occurrence of precipitation in alpine climates.

The spatial distribution of MSC raw ensemble BS skill is displayed in the bot-
tom panel of Figure 6.8 and reveals skill for most regions, except oceanic deserts,
parts of arid northern Africa and the Arabian peninsula, and in complex ter-
rain. After postprocessing, the MSC ensemble is calibrated and as reliable as the
ECMWF postprocessed forecast, but with a typically slightly lower resolution
(not shown). The spatial distribution of CRPS skill for raw and postprocessed
MSC ensemble forecasts for 1-day accumulated precipitation as displayed in Fig-
ure 6.9 is similar to that of the ECMWF ensemble. However, clear differences can
be observed for tropical Africa where the MSC raw ensemble has neutral instead
of negative skill, South America, where the negative skill of the MSC raw ensem-
ble is restricted to the Andes region, and arid northern Africa, where the MSC
ensemble performs worse than the ECMWF raw ensemble and EPC. The better
skill in the MSC raw ensemble for tropical Africa and South America, however,
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Figure 6.6: Predictability of extreme precipitation. BS skill for ECMWF raw
and postprocessed ensemble forecasts for the exceedance of 20 mm
within one day (top panels) and the exceedance of 50 mm within 5
days (bottom panels). Displayed is skill only over land and where the
considered events has an occurrence frequency above 1%. The legend
applies to all panels and gridboxes over land where the considered
event has an occurrence frequency of less than 1% are gray.
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does not yield better postprocessed predictions when compared to ECMWF.
This suggests that while the MSC raw ensemble is better calibrated and more

reliable than the ECMWF raw ensemble in these two regions, it does not contain
more predictive information than the latter. In particular, the higher BS and
CRPS skill of the MSC raw ensemble compared to the ECMWF raw ensemble
might only stem from better calibration and reliability. MSC raw and post-
processed ensemble forecasts for extreme rainfall are slightly worse than their
ECMWF counterparts and have a very similar spatial distribution (not shown).

6.3.5 Improvement of ensemble forecasts from 2009 to 2017

In previous subsections, the ability of ECMWF and MSC raw and postprocessed
ensemble forecasts to predict rainfall amount, occurrence, and extreme events
was assessed with respect to the regional and spatial distribution based on the
mean skill across 2009–2017. Due to the availability of verification data for the
recent nine years, it is also possible to assess the change in skill over this period
and thus the success in improving precipitation forecasts for the tropics over the
last decade.

Figure 6.10 displays the temporal evolution of CRPS skill for raw and postpro-
cessed ECMWF forecasts for 1-day accumulated precipitation in each Köppen-
Geiger climate over the period 2009–2017. In 2009, ECMWF raw ensemble fore-
casts for all regions except for arid Asia and arid Australia have negative skill,
in particular, forecasts for arid Americas, arid northern and tropical Africa, and
for alpine climates. From 2009 to 2010, forecast skill increases strongly in most
climates and becomes mostly positive. For some regions, the increase in skill con-
tinues until 2011. After 2011, no clear improvement in CRPS skill is detectable
for most regions. We hypothesize that the increase in skill for ECMWF ensemble
forecasts from 2009 to 2010 is at least partly related to the increase in horizontal
resolution for all members as introduced on January 26, 2010, when the HRES
run changed to a horizontal resolution of 16 km from previously 25 km, and the
CNT and ENS runs to 32 km instead of 50 km (Miller et al., 2010).

As statistical postprocessing corrects for systematic forecast errors, postpro-
cessed forecasts have neutral or positive skill in all Köppen-Geiger climates. The
increase in skill gained by postprocessing is largest for alpine climates and arid
Americas. Arid northern and tropical Africa reveal similar ECMWF raw ensem-
ble skill as arid Americas, but much smaller ECMWF postprocessed ensemble
forecast skill. Presumably, this indicates that forecasts for arid Americas contain
more predictive information than for tropical and arid northern Africa, although
the raw ensemble forecasts for the three regions have similar levels of miscali-
bration. With less convective organization in arid Americas (see, e.g., Nesbitt
et al., 2006), this is a further indication of deficiencies of NWP ensembles in the
representation of strongly organized convective systems.

Over the period 2009–2017, most regions reveal no or only slight increase in
skill for postprocessed ECMWF ensemble forecasts. For most arid regions, any
larger changes in postprocessed skill are observed for 2009 to 2010 and skill stays
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Figure 6.10: Improvement of forecast skill over 2009–2017. CRPS skill for raw
(top) and postprocessed (middle) ECWMF forecasts for 1-day accu-
mulated precipitation. The bottom panel displays the temporal evo-
lution of the gap in skill between postprocessed and raw ECWMF
forecasts for 1-day accumulated precipitation.
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roughly constant afterwards. For the three tropical regions and tropical Africa
in particular, postprocessed forecast skill continuously increases over 2009–2017
and yields an increase on the order of 5% over the nine years. Similarly, forecast
skill in the alpine climates increases by about 6%, starting at almost no skill in
2009.

An interesting question regarding the temporal evolution of raw and postpro-
cessed skill is the evolution of the skill gap. Hemri et al. (2014) investigate
ECMWF forecasts of temperature and 1-day accumulated precipitation in this
regard, verified against station observations, and find a constant improvement by
postprocessing. The lower panel of Figure 6.10 displays the temporal evolution
of the CRPSS skill gap between raw and postprocessed ECMWF forecasts. It
shows a clear narrowing of the skill gap in all regions from 2009 to 2011, where it
decreases for the majority of regions from a level between 10% and 30% down to
5%–15%. After 2011, however, the gap in skill remains about constant in most
regions and increases even slightly for alpine climates.

For the MSC model, our results are similar to those for the ECMWF, and we
briefly summarize the differences. Already in 2009, MSC raw ensemble forecasts
have neutral or slightly positive CRPS skill in all regions except alpine climates
and are slightly more skillful than the ECMWF raw ensemble in most regions
(not shown). Postprocessing improves MSC forecast skill, but MSC postprocessed
forecasts are less skillful than postprocessed ECMWF forecasts in all regions (not
shown).

6.4 Discussion

For the tropics and ten continental, tropical Köppen-Geiger climates, the quality
of raw and postprocessed accumulated precipitation forecasts from two leading
operational EPSs has been assessed for several years and accumulation periods. In
particular, we have examined the ability of ECMWF and MSC ensemble forecasts
to issue predictions for rainfall amount, occurrence, and extremes relative to
the climatological reference EPC. Both raw ensembles exhibit clear calibration
problems and are overconfident and unreliable in the prediction of the PoP. For
several Köppen-Geiger climates such as arid Australia or arid southern Africa,
both raw ensembles are skillful, while they have at best neutral skill for tropical
and northern arid Africa and in alpine climates.

After correcting for systematic forecast errors by statistical postprocessing,
forecasts for amount and occurrence of precipitation are skillful in several cli-
mates. In tropical and northern arid Africa and alpine climates, however, even
postprocessed NWP forecasts have predictive performance equal only to EPC.
This suggests that for these regions NWP ensemble forecasts can not provide
more insights about precipitation events in the near future than a climatolog-
ical forecast, even though the former have access to recent information on the
state of the atmosphere. As thresholds for extreme events, we considered 20 mm
within one day and 50 mm within five days and found skill in ECMWF and MSC
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ensemble forecasts for the prediction of these events in most climatic regions.
Exceptions are as before tropical and northern arid Africa and alpine climates.

We suspect three main problems, namely convective parameterization, model
resolution, and observational errors as major causes for the poor performance
of raw and postprocessed NWP ensemble predictions in these regions. In alpine
climates with complex terrain and steep orography, TRMM observations have
known deficiencies in the detection of rainfall (e.g., Barros et al., 2006; Hirpa et al.,
2010), but also NWP models are known to have lower predictive performance
(Richard et al., 2007). As such, raw NWP ensemble forecasts for alpine climates
are likely assessed worse than they actually are, but, presumably, they are also
not skillful.

In almost all other regions with negative skill in raw and neutral skill in postpro-
cessed ensemble forecasts, MCSs account for a major proportion of total rainfall.
Convective parameterization often struggles to represent the high degree of orga-
nization in MCSs and leads to too many and too weak rain events overall (see,
e.g., Marsham et al., 2013). For tropical and northern arid Africa, one can also
suspect that the lack of ground-based observations and radiosondes is an obstacle
for skillful forecasts. For West Africa, Agust́ı-Panareda et al. (2010) show that
the predictive information gained by assimilating numerous radiosonde soundings
during the AMMA field campaign was typically lost in less than 24 hours. Thus,
improving forecast quality for this region can not be achieved by additional ob-
servations only, but requires better NWP models and process understanding. As
such, the scarcity of (good) observational data is at least an indirect cause of the
poor predictive skill of NWP ensembles in tropical and northern arid Africa.

Over the investigation period 2009–2017, ECMWF raw ensemble skill increases
strongly between 2009 to 2011 and only marginally afterwards. Raw MSC fore-
casts are more skillful than their ECMWF counterparts, but their skill improves
only slightly across 2009–2017. After statistical postprocessing, the skill of both
NWP models reveals only small improvements over 2009–2017. Most improve-
ments are confined to the moist tropical Köppen-Geiger climates and presumably
mirror the slow improvement from model physics development. While sudden
increases in forecast skill for accumulated precipitation should not be expected,
it is disconcerting that for most arid climates in the tropics no improvement in
forecast skill, neither for raw nor postprocessed forecasts, can be observed for a
period of almost one decade. This standstill in forecast improvement for accu-
mulated precipitation forecasts requires further attention and investigation.
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7 Statistical forecasts for the
occurrence of precipitation in
northern tropical Africa

In a comprehensive study, we have investigated in Chapter 5 the predictive skill
of nine global NWP ensembles for accumulated precipitation in northern tropical
Africa. Raw ensemble forecasts are uncalibrated and unreliable and underperform
in the prediction of occurrence and amount of precipitation when compared to
EPC. This assessment is robust and holds for all regions, accumulation periods,
monsoon season, and TIGGE sub-ensembles. After statistical postprocessing,
forecasts are calibrated and reliable, but only have equal predictive performance
when compared to EPC.

In Chapter 6, we have extended this assessment to the tropics between 30◦S and
30◦N and examined forecast quality for ten continental Köppen-Geiger climates.
Despite a lack of calibration and reliability, raw ECMWF and MSC ensemble
forecasts are skillful for a majority of climatic regions. Postprocessing improved
the predictive performance of both models and lead to skillful forecasts in most
climates. However, for northern arid and tropical Africa as well as alpine climates,
we found no skill of raw and postprocessed ensemble forecasts for the prediction
of rainfall occurrence, amount, or extremes at accumulation periods of 1 to 5
days.

While the results for these regions are disappointing and require further in-
vestigation, they call in addition for alternative approaches for the prediction of
occurrence and amount of precipitation. In particular, one can ask whether it is
possible to construct probabilistic precipitation forecasts that rely on a climato-
logical baseline, but obtain higher sharpness and resolution by involving recent
observations of meaningful atmospheric variables or events. In this chapter, we
investigate one alternative approach and present results of our investigations. In
Section 7.1 the spatio-temporal correlation of rainfall and its occurrence is ana-
lyzed. In Section 7.2, we construct a statistical forecast and evaluate its forecast
quality for northern tropical Africa and 1998–2014. Section 7.3 concludes.

7.1 Spatio-temporal correlation of precipitation

As any probabilistic precipitation forecast consists of and can be split into the
PoP and a probability distribution for the amount of precipitation, we restrict
the prediction of precipitation in the following to the PoP. In parts of northern
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tropical Africa, MCSs account for the majority of rainfall and are frequently
coupled with AEWs. While MCSs typically propagate for one or two days only,
the coupling with AEWs allows for propagation of MCSs properties beyond the
decay of the actual MCS. We assume that the presence an MCS increases the
PoP downstream of its current location for the near future, while its absence
decreases the PoP. To evaluate the validity of this assumption, we exemplarily
analyze the relationship between 1-day accumulated precipitation at Niamey, the
capital of Niger, and lagged observations of 1-day accumulated rainfall for the
months July–September 1998–2013 using Spearman’s rank correlation. In the
frequently occurring case of ties in 1-day accumulated precipitation observations,
we assign to the subset of these observations the average rank of the subset, and
compute Spearman’s correlation as Pearson correlation of the ranks. We base our
investigation on TRMM observations to obtain a full spatial coverage and use a
spatial aggregation of 1◦ × 1◦.1

For lags of one and two days, Figure 7.1 displays the locations and correlations
for those gridboxes that have correlation coefficients higher than the 0.99 or lower
than the 0.01 quantile of all correlation coefficients in our study regions. We find
the highest positive correlation coefficients east of Niamey, well clustered, and at
a distance that is slightly larger than the average distance AEWs travel in one
or two days, and slightly lower than the average distance MCSs travel in one or
two days. This coincides with our assumption that information on recent rainfall
events propagates with MCSs and AEWs. The interpretation of the negative
correlation is less clear and we suspect that precipitation events southwest and
southeast of Niamey are indicators for the advance or retreat of the West African
monsoon that modulates amount and occurrence of precipitation at Niamey (see,
e.g., the EPC forecast in Figure 7.3).

Figure 7.2 focuses on the modulation of the PoP at Niamey conditional on the
accumulated precipitation amounts at the highest positively correlated locations
at lags of one and two days. We classify these precipitation amounts into no,
light, and strong precipitation where the latter two correspond to precipitation
amounts below and above the climatological median of all positive precipitation
amounts at the respective location in the considered period. The top left panel
displays the PoP at Niamey conditional on the categorical precipitation event
at lag one. From an average climatological PoP of 0.44 for the period July–
September, the PoP reduces to 0.35 if no precipitation was observed at lag one in
the corresponding location, and increases to 0.62 if strong precipitation occurred
there at lag one. For the categorical observations at lag two, similar findings hold
though the deviations from the climatological PoP are slightly smaller. Consid-
ering both observations jointly reveals even stronger modulations of the PoP as
displayed in the bottom left panel. If at both lags no precipitation was observed
at the corresponding locations, then the PoP at Niamey is as low as 0.31, while
it is 0.76 if at lags of one and two days strong precipitation was observed.

1We have also studied the spatio-temporal correlation of precipitation at the native resolution
of TRMM of 0.25◦ × 0.25◦ and obtained similar results.
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Figure 7.1: Spatio-temporal correlation of precipitation. Displayed are the high-
est 1% positive (blue) and negative (red) correlations between 1-day
accumulated precipitation at Niamey (•) and 1-day accumulated pre-
cipitation in northern tropical Africa at lags of one (left) and two
(right) days, based on Spearman’s rank correlation and the period
July–September 1998–2013.

7.2 Statistical forecasts for the occurrence of
precipitation

While these results allow to build a forecast for the PoP at Niamey based on the
histogram in Figure 7.2, such a forecast is suboptimal as it necessitates a dis-
cretization of the real-valued amount of precipitation. Logistic regression models
do not have this problem and we rely for the prediction of the PoP p at Niamey
on logistic regression forecasts of the form

logit p | o1+, o2+, o1−, o2−, d =

s(d) + a1+ f(o1+) + a2+ f(o2+) + a1− f(o1−) + a2− f(o2−), (7.1)

that have also been explored by Klar (2017). Here, f(x) = log(x + 0.001) is a
transformation of the amount of precipitation and

s(d) = b0 + b1 sin

(
2πd

365

)
+ b2 cos

(
2πd

365

)
(7.2)

a parametric periodic function that depends on the day of the year d only. The
observations at lags of one and two days at the strongest positively and negatively
correlated locations are denoted by o1+, o2+, o1−, and o2−, respectively. In the fol-
lowing, we explain the generation of such logistic regression based forecasts and
distinguish between verification and training data. When issuing predictions for
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Figure 7.2: Modulation of the PoP at Niamey by 1- and 2-day lagged precipita-
tion observations. The top left and bottom right panels display the
modulation of the PoP at Niamey conditional on 1- or 2-day lagged
categorized precipitation for the period July–September 1998–2013.
The black line indicates the climatological PoP of 0.44 at Niamey for
the same period. The bottom left panel displays the modulation of
the PoP at Niamey when both 1- and 2-day lagged categorized pre-
cipitation is known, and the top left panel displays the color coding
for the PoP.
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currence of precipitation at Niamey during July–September 2014, and
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a given year in 1998–2014, the verification data contain only observations from
July–September of the considered year, and the training data all observations
from July–September 1998–2014 except for the considered year. The advantage
of this approach is that estimation of the EPC and the logistic regression based
forecast is performed on the same data set, which allows for meaningful compar-
isons. Using only the training data, we estimate Spearman’s rank correlations,
identify the locations with the highest positive and negative correlation coeffi-
cients at lags of one and two days, and estimate the parameters of the logistic
regression model in (7.1). The actual PoP forecast for each day of the considered
year is then based on o1+, . . . , o2−, d of the verification data and the parameter
estimates.

Exemplarily, Figure 7.3 displays logistic regression based and EPC forecasts
with a window length of ±2 days for the occurrence of precipitation at Niamey
in July–September 2014 and the verifying observations. Logistic regression based
PoP forecasts clearly follow the increase in the climatological PoP during July
and August as well as the decrease in the climatological PoP during September
that is associated with the advance and retreat of the West African monsoon.
Additionally, they deviate quite frequently by ±0.1 and more from the clima-
tological PoP and seem, in particular for July and August 2014, to outperform
EPC in the prediction of the occurrence of precipitation at Niamey.

For a comparative assessment of reliability and resolution of the logistic regres-
sion based forecast, Figure 7.4 displays reliability diagrams for both forecasts. As
a reliability diagram based on the period July–September of only one year does
not provide meaningful insights, we rely on the full period July–September 1998–
2014 instead and generate logistic regression based forecasts in the same fashion

107



as described earlier. This yields a meaningful cross-verification of the quality of
the logistic regression based forecast. As shown in Figure 7.4, logistic regression
forecasts have higher resolution and equal reliability as EPC.

We extend this approach to all gridboxes in our study region and assess the
quality of the logistic regression based forecast relative to EPC by the BS skill.
Figure 7.5 displays the spatial distribution of the mean BS skill of the logistic re-
gression based forecast for the period July–September 1998–2014 relative to EPC.
Almost everywhere in northern tropical Africa, logistic regression based forecasts
have positive skill and outperform EPC and current NWP ensemble forecasts in
the prediction of PoP. The Sahel, West Africa, and Ethiopia largely exhibit clear
positive skill, while South Sudan and Central African Republic typically reveal
BS skill between 0.0 and 0.1. The spatially and temporally averaged BS skill is
slightly above 0.20.

7.3 Discussion

In this chapter, we have examined whether it is possible to construct skillful sta-
tistical forecasts for precipitation in northern tropical Africa by using information
about recent rainfall events. Based on meteorological knowledge about propaga-
tion, organization, and coupling of convective systems in this region, we assumed
that MCSs modulate PoP downstream of their current location. Exemplarily, we
evaluated the validity of this assumption at Niamey, and found a modulation of
the PoP by recent rainfall events of up to ±20%. Using precipitation observa-
tions of the last two days, we constructed logistic regression based PoP forecasts
for Niamey. These forecasts are reliable and have a higher resolution than EPC.
In an extension to northern tropical Africa and the period 1998–2014, we found
clear improvements in predictive performance by logistic regression based PoP
forecasts with a spatially and temporally averaged BS skill of slightly above 0.20.
Hence, statistical PoP forecasts based on recent information about the state of the
atmosphere are an attractive alternative for forecasting precipitation and should
be further investigated.
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Figure 7.4: Comparative assessment of reliability and resolution of logistic regres-
sion based PoP forecasts. Displayed are reliability diagrams for EPC
(left) and logistic regression based (right) PoP forecasts for Niamey
and the period 1998–2014.
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Figure 7.5: Spatial map of mean BS skill for logistic regression based PoP fore-
casts relative to EPC with a window length of ±2 days and for the
period July–September 1998–2014. Temporally and spatially aver-
aged BS skill of logistic regression based PoP predictions is slightly
higher than 0.20.
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8 Conclusion

This thesis has demonstrated from theoretical and applied perspectives how the
performance of probabilistic predictions can and should be assessed. The follow-
ing concluding remarks start with a theoretical perspective before turning to an
applied one, thereby summarizing and discussing our key results.

ROC curves are frequently used tools for the assessment of potential predictive
skill for binary events as they are easy to interpret and have further desirable
properties. We proved a near-equivalence between ROC curves and CDFs on the
unit interval and elucidated the essential constraint of concavity that guarantees
nondecreasing conditional event probabilities. For the classical binormal model
and its generalization, we showed in Theorem 3.14 that ROC curves based on the
location-scale approach are necessarily non-concave whenever the variances of the
two conditional distributions are different. This strongly inhibits the applicability
of the current approach and calls for alternatives.

As suggested by the near-equivalence of ROC curves and CDFs on the unit
interval, we propose to model ROC curves by beta distributions and illustrate
that beta ROC curves are, especially under the constraint of concavity, more
flexible that binormal ones. For the estimation of model parameters, we rely
on MD estimation and derive the asymptotic distribution of the MD estimator.
Based on the asymptotic normality of the MD estimator, we construct tests for
goodness-of-fit, equality of ROC curves, and equal predictive ability. Turning
to empirical examples, we find empirical evidence for the increased flexibility of
beta ROC curves when compared to binormal ones. These methods have been
implemented and are currently prepared for release as freely available software
package betaROC for the statistical programming language R (R Core Team, 2018).

NWP ensembles are one key application of probabilistic forecasting, and the
prediction of accumulated precipitation is particularly challenging. In Chapter 5,
we investigated the predictive skill of nine global NWP ensembles for 1–5 day
accumulated precipitation in three regions in northern tropical Africa. For veri-
fication we relied on station and gridded satellite-based observations at different
spatial aggregations and made assessments relative to a climatological reference
forecast coined EPC. Raw ensemble forecasts are uncalibrated and unreliable
and clearly less skillful in predicting occurrence and amount of precipitation than
EPC, independently of region, accumulation time, monsoon season, and ensem-
ble. Differences between raw ensembles and EPC are large and partly stem from
poor predictions for low precipitation amounts. Statistical postprocessing by
EMOS and BMA ensures calibration of ensemble forecasts, but very often at the
cost of increased forecast uncertainty and lower resolution. Postprocessed fore-
casts are calibrated, reliable, and strongly improve on the raw ensembles, but are
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typically not able to outperform EPC. This negative result is disappointing and
unexpected. It suggests that current NWP ensembles are not able to translate
any recent information on the state of the atmosphere into meaningful proba-
bilistic statements regarding occurrence or amount of precipitation. We suspect
convective parameterization to be a likely cause for these results and note that al-
ternative approaches for the prediction of occurrence and amount of precipitation
should be investigated.

Chapter 6 continued the assessment of the predictive performance of NWP
ensemble forecasts for accumulated precipitation, extended it to the tropics be-
tween latitudes 30◦S, and 30◦N, and additionally assessed predictions for extreme
rainfall events. We relied on satellite-based rainfall estimates for spatially con-
sistent and complete observations and verified ensemble predictions for accumu-
lation periods of 1–5 days and the years 2009–2017. Raw ensemble forecasts
are uncalibrated and unreliable, and despite these deficiencies slightly skillful
for several climatic regions within the tropics. Statistical postprocessing yields
calibrated ensemble forecasts that have higher skill than raw ensemble forecasts
and are reasonably skillful in most regions. From 2009 to 2017, we find little
to no improvements in postprocessed forecast skill for all arid climates. This is
disconcerting and requires further investigation. In western and tropical Africa
but also over complex terrain, even postprocessed NWP ensemble forecasts for
amount and occurrence of precipitation as well as extreme rainfall event have
only neutral skill. These results are in agreement with our findings in Chapter 5
for northern tropical Africa and suggest further regions where statistical forecasts
can be an attractive alternative to NWP ensemble forecasts for the prediction of
accumulated precipitation.

In Chapter 7, we investigated an alternative approach for the prediction of
PoP in northern tropical Africa. Coinciding with meteorological knowledge about
convective systems in this region, the PoP is strongly modulated by recent rainfall
events. This allows to construct statistical forecasts for the PoP that are reliable
and have higher resolution than EPC. Across northern tropical Africa and 1998–
2014, logistic regression based forecasts yield an average improvement of 20%
above EPC and NWP postprocessed forecasts, and are a particularly attractive
alternative for forecasting the PoP. As our investigations in Chapter 7 close with
the assessment of the predictive performance of logistic regression based PoP
forecasts for northern tropical Africa, this leaves interesting scientific questions
for further research. In particular, we have so far only specified the PoP and
not provided probabilistic forecasts for the amount of precipitation. While one
can combine logistic regression based forecasts for the PoP with a climatological
distribution for the amount of precipitation, our results suggest that also the
amount of precipitation is modulated by the amount of recent rainfall events.
As triggering, growth, and propagation of convective systems depend on many
variables, we assume that some of these influence the PoP or the amount of
precipitation. Exemplarily, cold pools are known triggers for convective systems,
mid-level shear is regarded an essential ingredient for convective organization, and
the availability of moisture in the Sahel might limit the vigorousness and amount
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of precipitation. Finally, it remains open if our approach can be successfully
applied in other regions such as tropical Africa and alpine climates.
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