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Abstract On April 18, 2017, the International Federation of Classification
Societies (IFCS) issued a challenge to its members and the classification
community to analyze a data set of 928 low back pain patients. In this paper, we
present our contribution in terms of a cluster analysis of this data set. We will
discuss our data cleaning process, which we view as a two-pronged approach:
inferring values that are missing not at random and imputing values that are
missing at random. We will also discuss the challenges in clustering mixed
data types and the required data transformation prior to applying a clustering
algorithm. We call our proposed data transformation process split-then-join.
Finally, we offer our interpretation of the clustering results with respect to
validation variables and we present some thoughts on selecting important
variables to classify new observations.
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1 Introduction

The 2017 International Federation of Classification Societies (IFCS) cluster
analysis challenge concerns the analysis of data from 928 low back pain patients.
For each patient, 121 variables have been measured (see van Mechelen and Vach
(2018) for details). There are several challenging aspects in the data set. First,
the data come from self-reported questionnaires and examinations and contain
several missing values. The first task is to distinguish between values missing at
random and not missing at random. Specifically, we use a two-pronged approach:
inferring values missing not at random and imputing values missing at random.

A second challenging aspect is the presence of variables of mixed type; the
data set contains binary, categorical, ordinal, and continuous variables. Most of
the classical clustering techniques only work on one kind of variables. Moreover,
the data set is characterized by a high number of variables. We propose a data
transformation process called split-then-join. We divide the data set in binary
or categorical and ordinal or continuous data and we transform the categorical
data using multiple correspondence analysis (MCA) (Greenacre and Blasius,
2006). MCA is an extension of correspondence analysis (CA) (Greenacre, 1984)
for multivariate data sets. It projects the observations in a lower dimensional
subspace producing two major effects: It reduces the dimensionality of the data
set, and it projects the observations on a continuous space. Specifically, the
transformed data set contains only seven numerical dimensions derived from
73 categorical variables. The resulting data set can now "join" the continuous
variables and create a new reduced data set of continuous variables.

Several clustering techniques can now be applied. K-means clustering (Harti-
gan and Wong, 1979) is one of the most well-known cluster analysis techniques
thanks to its simplicity and speed. After a random initialization, k-means clus-
tering finds the cluster centers that minimize the within-cluster variance over all
variables. K-means works well for detecting spherical clusters; some research
on the initialization procedure has been done to improve the performance of the
method; a review can be found in (Steinley and Brusco, 2007); in our analysis
we will use multiple starting points. Despite this improvement, one of the main
drawbacks of k-means is a lack of robustness. Fuzzy k-means (FKM) (Ruspini,
1969) and Partition Around Medoids (PAM) (Kaufman and Rousseeuw, 1990)
are both more robust; FKM is a soft clustering version of k-means, while PAM
minimizes the dissimilarities between the points and the cluster centers. Unlike
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k-means, PAM uses data points as cluster centers and the Manhattan norm
instead of the Euclidean distance. Another robust algorithm is Probabilistic
Distance Clustering (PDClust) (Ben-Israel and Iyigun, 2008). It is based on the
assumption that the probability of any point belonging to a cluster is inversely
proportional to its distance from the center of that cluster.

Model-based clustering or mixture modeling, instead, assumes a density
that is a convex combination of a finite number of component density func-
tions; accordingly, it is very well suited to clustering problems. The Gaussian
distribution (Titterington et al, 1985) has been one of the most widely used
component distributions until recently. The recent literature has seen the use of
different component distributions. Among others, mixture generalized hyper-
bolic distributions (MGHD) (Browne and McNicholas, 2015) is remarkable for
its flexibility. We compared the results of several clustering techniques and we
chose the best using the validation variables.

To further describe the clusters we performed a principal component analysis
(Hotelling, 1933) on the baseline variables. The clusters are almost separable on
the first two components. The remainder of this paper is structured as follows:
Section 2 describes the data cleaning process. Section 3 describes the clustering
methods and the interpretation of the results. Section 4 contains some concluding
thoughts.

2 Data Cleaning Process

The original data set contains patient self-reported questionnaires and exam-
inations recorded by clinicians, resulting in 112 baseline variables and three
outcome variables for different time periods (two weeks, three months, and
12 months) following the initial clinical consultation. These variables covered
various domains from pain history, activity limitation, work-related questions,
validated questionnaires, fear avoidance, etc. There are many missing values
in the data, as some patients and clinicians did not fill out all the questions. To
choose the right imputation strategy, missing values need to be divided into
missing at random and not missing at random. The values that are not missing
at random can be deduced based on their relationship with other variables. For
example, many questions inquire whether activities at work impact the patients’
pain level, or whether their pain limits their activity at work. Obviously, patients
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who do not have jobs (i.e., students, unemployed, and pensioners) will not fill
out these questions as they are not applicable. Using patients’ employment
status, we can infer that some of the missing values are not missing at random
(i.e., they can be substituted with a new value indicating that the patient did
not complete the questionnaires for legitimate reasons). Table 1 shows which
missing values can be inferred. Our goal is to fill in as many missing values as
possible by inference prior to imputing values that are assumed to be missing
at random. We also removed 13 observations with more than 30% missing
values. At this point, we assume that the remaining missing values are missing
at random and thus can be imputed.

Table 1: Treatment of values missing not at random.

Variables with missing
values

Reasons for missing Inference

fabq60 – fabq 140. Questions involving pain
level with respect to work
condition; only to be
answered if patient is

working.

Replace NAs with new
category (-1) if patient’s
employment situation,
barb0, indicates not

working.

facetextrot, facetsit,
facetwalk, parasping_debut.

Questions only to be asked
if patients answer yes to
having dominating back

pain.

Replace NAs with new
category (-1) if patient does
not have dominating back
pain (i.e., domin_bp is 1).

musclegroup_palp Question involving pain
caused by different muscle

groups.

Replace NAs with new
category (-1) if patient has

no pain referred from
triggerpoint (i.e.,

triggerpoint is 0) and no
replication of pain during
palpation (i.e., musclepalp

is 0).

musclepalp Highly correlated with
musclegroup_palp

Use musclegroup_palp to
update NAs in musclepalp.
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Our next task is to determine the appropriate techniques to impute the remaining
missing values. Since the data set consists of mixed data types (i.e., binary,
continuous, and categorical), the selected techniques must be appropriate
for each type. Binary data can be forecasted with logistic regression while
continuous data can be forecasted with linear regression. Categorical data
can be forecasted with a multinomial method. For this reason, we favor the
Multiple Imputation by Chained Equations (MICE) method (van Buuren and
Groothuis-Oudshoorn, 2011). In R (R Core Team, 2016), MICE is implemented
by a function with a similar name, mice(), which handles both data missing at
random (MAR) and missing not at random (MNAR). This gives us an extra
layer of comfort in the event that the inference process did not completely
remove MNAR items. The MICE algorithm can be summarized as follows. An
incomplete column is imputed using the default imputation methods: Predictive
mean matching (numeric data), logistic regression imputation (binary data),
polytomous regression (unordered categorical data with more than two levels),
proportional odds model (ordered with more than two levels). Each incomplete
column is then predicted based on all other columns in the data. For incomplete
predictors, the most recently generated imputations are used prior to imputing
the target column.

A cycling through all variables is considered one iteration. At the end of
each iteration, the missing values are all replaced by predicted values. MICE
converges when the variance between sequences is smaller than the variance
with each individual sequence. van Buuren and Groothuis-Oudshoorn (2011)
suggest 10-20 cycles. In addition to specifying the number of iterations, users
can also set the number of imputations, m, for each missing value resulting in m
data sets. We impute our data set using 10 iterations; each missing value was
further imputed five times, which produced five imputed data sets. We then took
the average (for numeric variables) and the mode (for categorical variables)
of the five imputed values to obtain a complete data set. Some statisticians
may consider taking the average of multiple imputed data sets an improper
use of multiple imputation as this ignores the variability across the imputed
datasets. Multiple imputation is usually considered for parameter estimations.
Our ultimate goal is more complex and a subsequent combination of the different
end results is not easy as the final output of our analyses is a partition of the
units rather than a simple parameter. An improvement of our technique can be
obtained by applying the selected method (i.e. MCA of the categorical variables
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and k-means on the combined data) on all the data sets obtained with multiple
imputation and compare the clustering partition using the ARI to measure the
variability of the results.

3 Clustering Methods

Clustering mixed data types presents some challenges. Popular algorithms such
as k-means, fuzzy k-means, probabilistic distance clustering, and mixture models
work well with numeric data but not with categorical data. Some clustering
methods for categorical data have been proposed (e.g. Hwang et al (2006);
van Buuren and Heiser (1989); D’Enza and Palumbo (2013)); however, they
don’t work on continuous data. Therefore, a data transformation is needed to
obtain a final data set with a single data type, while preserving the relationships
between the variables, before applying a clustering algorithm. To transform the
data, we split our data set into two subsets: one purely categorical and the other
purely numeric. Ordinal data were treated as numeric. We then applied multiple
correspondence analysis (MCA) to the categorical subset and examined their
principal coordinates. With MCA, we were able to reduce the dimension of
the categorical subset from 73 to just seven. This was decided based on an
eigenvalue contribution analysis which suggests that 95 percent of the total
variation can be explained by seven dimensions. Since the principal coordinates
were numeric linear combinations of categorical data, we appended these seven
numeric columns to the purely numeric subset of 38 numeric variables, resulting
in one numeric data set. Figure 1 illustrates this idea. It is worth to consider that
when the number of numerical variables is much higher than the number of
selected coordinates this approach may lead to underweighting the categorical
variables. At this stage, our data is completely cleaned and ready to be clustered.
We will refer to this as the transformed data set going forward.



K-Means Clustering on Multiple Correspondence Analysis Coordinates 7

Figure 1: Data Transformation Method.

3.1 Determine the Number of Clusters

We subjected the transformed data set to the following seven clustering methods:

• K-means,

• Partition Around Medoids (PAM),

• Fuzzy K-means (FKM),

• Probabilistic Distance Clustering (PDClust),

• Mixture of Multivariate Normal Distributions (MVN),

• Mixture of Skewed-t Distributions (MST),

• Mixture Generalized Hyperbolic Distributions (MGHD).

In order to apply a clustering algorithm, we needed to determine the number of
clusters in our data. Where appropriate, we used cluster comparison metrics
such as the Caliński-Harabasz criterion (Caliński and Harabasz, 1974) and
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the Bayesian Information criterion (BIC) (Schwarz et al, 1978) to analyze the
preliminary clustering results in order to determine the number of clusters.

Clustering solutions with a higher Caliński-Harabasz value are preferred over
those with a lower Caliński-Harabasz value. In contrast, solutions with a smaller
BIC are preferred over solutions with a larger BIC. The results suggested that
three to four clusters exist within the data. We then used these values to evaluate
the performance of the algorithms.

The mentioned clustering methods and other analytical tools are available in
the following R packages:

• Clustering methods

– cluster::PAM (Kaufman and Rousseeuw, 1990)

– EMMIXskew::Emskew::mst (Wang et al, 2013)

– EMMIXskew::Emskew::mvt (Wang et al, 2013)

– fclust::FKM (Giordani et al, 2015)

– FPDclustering::PDclust (Tortora and McNicholas, 2017)

– MixGHD::ARI and MixGHD::MGHD (Tortora et al, 2017)

– stats::kmeans (Hartigan and Wong, 1979)

• Other analytical tools

– factoextra::fviz_cluster (Kassambara, 2017)

– FactoMiner::MCA and FactoMiner::PCA (Lê et al, 2008)

– MASS::mca (Venables and Ripley, 2002)

– mice::mice (van Buuren and Groothuis-Oudshoorn, 2010)

For interested readers, the R codes will be provided as supplementary materials
for reproducibility.
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3.2 Clustering Algorithm Selection

We compared the obtained clustering results using the Adjusted Rand Index
(ARI) (Rand, 1971). For the fuzzy techniques we used the hard clustering
partition derived from the fuzzy output. ARI measures the similarity of two
data partitions and ranges from zero to one. An ARI-value of zero indicates a
match not different from a random match, while an ARI-value of one indicates a
perfect match between two clustering results. Using the algorithm comparisons
in table 2, we noticed that the k-means algorithm on average produced the highest
pairwise ARI among the non-model-based clustering techniques (i.e. k-means,
FKM, PAM, and PDClust). Therefore, we considered the k-means solution for
further analysis. However, this partition is different from the partitions obtained
using model-based clustering techniques, as indicated by lower ARI-values.
This means that the partitions obtained using non-model-based and model-based
techniques are different and need further study. Multivariate skew-t and GHD
produce, on average, high ARI among the model-based techniques. Thus, we
chose their solutions, too, as potential candidates for further analysis.

We then analyzed the three selected clustering solutions with respect to the
validation variables and found that the k-means algorithm produces the best
cluster separation (see further next subsection). Additionally, the projection of
the transformed data onto the first two dimensions of a principal component
analysis (PCA) of the transformed 112 baseline variables reveals that the three
clusters produced by k-means are almost separable (figure 2). It is true that there
are no gaps between the clusters but there is also very little overlap. Therefore, we
could use the positions of the clusters on the principal components to understand
the differences among them.
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Table 2: Algorithm Comparison Using ARI.

Algorithm Comparisons Adjusted Rand Index (ARI)

k-means vs. PAM 0.8060

k-means vs. FKM 0.8735

k-means vs. PDClust 0.5293

k-means vs. MVN 0.0359

k-means vs. MST 0.0359

PAM vs. FKM 0.7077

PAM vs. PDClust 0.5856

PAM vs. MVN 0.0098

PAM vs. MST 0.0521

FKM vs. PDClust 0.5404

FKM vs. MVN 0.0173

FKM vs. MST 0.0465

MVN vs. MST 0.7129

MVN vs. GHD 0.5147

MST vs. GHD 0.6837

Figure 2: Three-Cluster Solution Resulting from K-Means Analysis Plotted in Projection of Trans-
formed 112 Baseline Variables on their first two Principal Components.
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3.3 Validation Variables

The k-means clustering algorithm separates the clusters reasonably well, as
evidenced by distinctive patterns for all three clusters with respect to the
validation variables. Figure 3 shows that patients in all three clusters experienced
a decline in both LBP intensity and Roland-Morris scores at 12 months after the
initial consultation. Patients in cluster 3 experienced the highest LBP intensity
and Roland-Morris scores at the three time points, but they had the greatest
perceived improvements compared to the other two clusters.

Figure 3: Validation Variable – Top left: Improvement, Top right: LBP Intensity, Bottom: Roland-
Morris Score.

We also noticed an interesting pattern in the validation variables: While all three
clusters exhibited a decline in LBP intensity and Roland-Morris score from
the period of two weeks to three months, their perceived improvement actually
declined in this period. One would think that when the physical condition
improves (i.e., declining LBP intensity and Roland-Morris score), patients
should experience an increase rather than a decline in perceived improvement.
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We suspect that there is a time lag between when patients feel better versus
when their conditions improve. This is also evidenced by the flattening out of
LBP intensity while the perceived improvements rose from the three-month to
the 12-month time point.

4 Concluding Thoughts

Up to this point, we have been performing all analyses based on the full set of
112 baseline variables. Plotting the first seven principal components derived
from the transformed variables shows that the clusters are separable using the
first two principal components (figure 4). Consequently, we believe it should be
possible to describe the full data set at baseline using fewer variables.

Figure 4: Pair-Plots of First 7 Principal Components Using Transformed Baseline Data Set.

To identify the important variables in the first two principal components, we
analyzed their contributions to each of these components. We found that the
data can be reduced to 27 numeric variables and 2 MCA dimensions. For this
reduction we analyzed the contribution of each variable (see table 3) and ranked
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their contribution score (from highest to lowest). Variables with a contribution
score lower than 0.1 are excluded. We will refer to the resulting smaller set
of selected variables as the reduced data set. Table 3 and figure 5 below
summarize these variables.

To validate this reduction, we reran the k-means algorithm using only the
selected variables and compared the clustering result with the result for the full
set of the transformed 112 baseline variables using the Adjusted Rand Index
(ARI). This comparison produced a high ARI of 0.92, which indicates that
the two clustering results are very similar. Figure 6 displays the three-cluster
solution resulting from the k-means analysis of the reduced baseline data plotted
in a projection of these data onto their first two principal components. This
figure confirms that the selected variables perform just as well as the larger set
with respect to separating the clusters and, therefore, are sufficient to describe
the original dataset.

Figure 7 shows how the three clusters differ with respect to the numeric
variables from the reduced data set. Note that these variables have been scaled
to eliminate the effect of different ranges in their values. Cluster 1 is described
by high scores on the Fear-Avoidance Beliefs Questionnaire (fabqs) and the
Roland-Morris summary score (rmprop). Similarly, cluster 3 is described by high
scores on items of the self-reported mood questionnaire, the Major Depression
Inventory (mdi-variables). High mdi scores indicate poor mood or mental
health. In contrast, patients in cluster 2 have the lowest scores on these items.
In words, cluster 1 is characterized by above average back pain and limited
functional activities. Patients in cluster 3 experienced higher levels of depression
characterized by having low spirit, sadness, loss of appetite, and inability to
sleep at night, and are also considered to be a higher risk group. Cluster 2
patients can be seen as the average patients as they exhibit an average score on
the variables of all three categories mentioned.
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Table 3: Contributions of Transformed Baseline Variables to first two Principal Components Derived
from these Data.

• Variable Xk ’s contribution to principal component Yi is defined as:
r 2
Yi ,Xk∑p

i=1 r
2
Yi ,Xk

where p is

the number of variables, r2
Yi ,Xk

is the squared correlation between variable Xk , and principal
componentYi and

∑p
i=1 r

2
Yi ,Xk

is the total sum of the squared correlation coefficients between
variable Xk and each of the components Yi . A larger variable contribution implies a greater
influence on the component than a smaller variable contribution.

• The contribution score for each variable is defined as:
∑p

i=1 Ckiλi where λi is the ith -
eigenvalue andCki is the contribution of the k th -variable to the ith component.

Figure 5: Biplot of first two Principal Components of Transformed Baseline Data with Patients Color
Coded on the Basis of K-Means Cluster Membership.
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Figure 6: Three-Cluster Solution Resulting fromK-Means Analysis of Reduced Baseline Data Plotted
in Projection of these Data onto their first two Principal Components.

Figure 7: Average Scores of three K-Means Clusters on 27 Scaled Numerical Variables from Reduced
Data Set.
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