
A Generic User Interface for Energy
Management in Smart Homes

Zur Erlangung des akademischen Grades
Doktor der Ingenieurwissenschaften

(Dr.-Ing.)
der KIT-Fakultät für Wirtschaftswissenschaften

Karlsruher Institut für Technologie (KIT)

genehmigte
Dissertation

von

M.Eng. (Comp. Sc.) Huiwen Xu

Tag der mündlichen Prüfung: 18. 12. 2018
Referent: Prof. Dr. Hartmut Schmeck
Korreferent: Prof. Dr. Andreas Oberweis

Abstract

Considering the current energy crisis and the serious need for environmental
protection, reducing energy consumption or, expressed differently, impro-
ving energy efficiency, has become a global concern, with particular atten-
tion being paid to the saving of fossil fuels and the cutting down on environ-
mental disruption. In order to deal with this challenge, electricity generated
by renewable energy sources, such as wind and solar energy, is being inte-
grated into power grids, thereby reducing the dependence on conventional
power plants. Since renewable energy sources are characterized by higher
degrees of uncertainty, are subject to fluctuation and are by nature decentra-
lized, power grids are facing a major transformation. This transformation is
driven not only by the need to integrate the increasing share of renewable
energy but also by the need to improve energy efficiency and allow consu-
mers more control over their energy consumption. One contribution which
could solve some of the problems arising from renewable energy sources
in the power grid, could be the energy management in household buildings,
since it would enable load shifting.

By equipping a household building with a building operating system, a
smart meter and intelligent appliances, the building can be turned into a
smart home. Building operating systems can manage heterogeneous house-
hold devices by means of Internet of Things (IoT) technologies and realize
the in-house energy management by using their own solution or providing
a universal runtime environment, in which energy management applications
can be deployed. Therefore, building operating systems play an essential
role in shifting the electricity demand and improving the energy efficiency

i

Abstract

in household buildings. With an increasing need for on-demand flexibility in
the power grid, it is plausible to assume that, in the near future, an increasing
number of providers will be attracted toward offering building operating sy-
stems. However, this increasing number of competing building operating
systems will make a holistic, comprehensive overview of the energy flows
and devices in household buildings more difficult. In a fragmented market,
customers might lose control over their individual targets concerning their
building. From this arises the need for a flexible and full-featured user inter-
face which can visualize the energy data of a building and allow residents to
be able to collect and communicate individual needs and preferences to the
building operating system.

This thesis proposes a generic user interface for building operating sys-
tems, which, on the one hand, is able to communicate with building ope-
rating systems in diverse smart homes and, on the other hand, can provide
residents with holistic and transparent information about the energy con-
sumption and generation in their building as well as offer multiple types
of control over their appliances. Current building operating systems are
basically equipped with one or more proprietary user interface(s) for their
application scenarios based on their specific Application Programming In-
terfaces (APIs). An architecture for a generic user interface, which enables
it to be compatible with these heterogeneous systems, has been proposed in
this thesis. The key part of the architecture, which makes the user interface
generic and extendible, is composed of a number of abstract data models.
These data models define the logical structure of the functional units needed
by the generic user interface, as well as the relationship to each other. To
ensure that the user interface can be flexibly adapted to diverse types of buil-
dings, the data models have been designed to be independent of any building
operating system. In addition to this, three roles, namely, the administrator,
the operator, and the resident were introduced in the thesis in order to fa-
cilitate security administration and division of responsibilities in household

ii

Abstract

buildings. Furthermore, a variety of use cases related to smart homes were
collected and presented. As a result, a number of functional components
were proposed to be supported by the generic user interface so as to enrich
the features of the user interface to be able to comply with more of these use
cases.

Based on the design outlined in the thesis, a prototype of a generic user
interface named ’Building Operating System User Interface (BOS UI)’ was
developed and implemented as the user interface for the building operation
system, the Organic Smart Home (OSH), which is installed in the Energy
Smart Home Lab (ESHL) at the Karlsruhe Institute of Technology (KIT).
The detailed functions that were implemented in the BOS UI have been des-
cribed in the thesis. Subsequently, the BOS UI was evaluated qualitatively
and quantitatively by combing theoretical analysis and experiments. The
evaluation results show that the BOS UI basically meets a set of desired re-
quirements for a generic user interface of building operating systems, and
the evaluation experiments yielded very positive feedback in many aspects
including improvement of energy efficiency and user experience. The thesis
concludes by proposing corresponding solutions for improvements of the
current design in the future.

Therefore, the work of this thesis contributes to the field of energy infor-
matics by firstly proposing an architecture, roles, data models and functio-
nal components for a generic user interface for building operating systems,
secondly, by implementing a prototype of this generic user interface, and
finally, by evaluating the design, functionality and usability of the generic
user interface by combining both a qualitative and a quantitative analysis.

iii

Acknowledgement

The four years during which I have been engaged in my doctoral project
in Germany, have become an important turning point in my life and the
memory of this journey is so valuable and unforgettable that it will stay
with me for the rest of my life.

Foremost, I would like to express my sincere gratitude to my supervisor
Prof. Dr. Hartmut Schmeck who trusted me and gave me the opportunity
of pursuing my Ph.D. in his research group. Firstly, I appreciate that Prof.
Schmeck provided me with a favorable platform and a flexible research en-
vironment for my Ph.D. project. Secondly, I am grateful that Prof. Schmeck
afforded me his huge on-going support whether emotionally or financially
throughout the long period during which I was working on the project. Wit-
hout his guidance and feedback, I could never have completed this thesis.
Finally, I thank Prof. Schmeck for having such a positive impact on my
work. I had the privilege of closely working together with Prof. Schmeck,
during my time as his teaching assistant. In addition to his profound kno-
wledge, I was impressed greatly by his accuracy in teaching, his sense of
responsibility toward students, and his open mind to embrace external criti-
cisms. All of these have had a great influence on me.

In addition, I would also like to thank my colleagues at KIT and FZI for
discussing with me, inspiring me with new ideas and giving me feedback
concerning this work. A special thank you to Kaibin, who sacrificed so
much personal time to have brainstorms with me and gave me so many con-
structive suggestions throughout my Ph.D. study; to Christian, who helped

iv

Acknowledgment

me get my work on the right track during the initial phase of the project by
offering me so many insightful comments; to Jan and Ingo, who assisted me
in deploying the UI prototype for this work to the ESHL and set up a simula-
tion environment for the purpose of the evaluation experiments; and last but
not least, to Lukas and Doris, who lent me a hand with designing and orga-
nizing the evaluation experiments and helped me to finalize the thesis. Many
thanks also go to Miki, Friederike, Fabian, Marlon, Birger, Florian, Sebas-
tian, Fredy, Kevin, Mischa, Pradyumn, and many more colleagues who have
given me a lot of help during my Ph.D. study.

Furthermore, I would like to thank my friends who kept me company and
lent me emotional support in the process of realizing my dream in Germany.
I am especially grateful to Sai, a great friend, whom I have known for more
than ten years, for always being around me, talking to me, and sharing fee-
lings with me. To Kenan, who gave me the most inspiration for living a
happy life, for helping me find the inner peace to deal with pressure and
depression in life. To Stephan, Yingzhao, Rudi, Chunyan, Yaoyao, Ningyi,
Siqi, Xinshuang, Chong and many more friends that I met in Germany for
making my life better than it was. My special gratitude is given to those
wonderful friends in the free evangelical community (FeG) of Karlsruhe. I
did not realize how incredibly nice people could be until I joined this com-
munity. They have given me the feeling of home in a foreign country. Par-
ticularly, I would like to express my sincere gratitude to Sabine, who is not
only so nice as to offer me help in proofreading and correcting this thesis,
but more importantly, she has made me really feel the power and the charm
of one who has a firm faith.

Finally, with all my heart, I would like to thank my parents and my sister
for always being my rock, and for their continuous encouragement, eternal
care and love. I could not have accomplished this work without them.

Karlsruhe, May 2018 Huiwen Xu

v

Contents

1 Introduction . 1
1.1 Motivation . 1
1.2 Assumptions and Research Questions 6
1.3 Major Contributions . 12
1.4 Thesis Outline . 15
1.5 Previous Publications . 16

2 Fundamentals . 17
2.1 Smart Home . 17
2.2 Building Operating Systems 31

2.2.1 Energy Flexibility Platform & Interface (EF-Pi) . . . 31
2.2.2 Open Home Automation Bus (openHAB) 36
2.2.3 Open Gateway Energy MAnagement (OGEMA) . . 40
2.2.4 Organic Smart Home (OSH) 45

2.3 A Brief History of Graphical User Interfaces 51
2.4 Principles for User Interfaces Design 56

3 Overview of Related Work 67
3.1 User Interfaces for Building Operating Systems 68

3.1.1 EF-Pi UI . 68
3.1.2 openHAB UI . 72
3.1.3 OGEMA UI . 77
3.1.4 FHEM UI . 81
3.1.5 OSH UI . 86

vi

Contents

3.1.6 smartVISU . 91
3.1.7 HomeGenie UI . 95

3.2 Use Cases . 98
3.3 Evaluation of User Interfaces for Building Operating Systems 103

3.3.1 Use case based evaluation 104
3.3.2 Technical characteristic based evaluation 108

3.4 Conclusion and Discussion 114

4 Design . 116
4.1 The Definition . 118
4.2 System Objectives . 121
4.3 Architecture . 122
4.4 Environment Description 127
4.5 Roles . 129
4.6 Data Models . 134
4.7 Functional Components . 160
4.8 Conclusion and Discussion 163

5 Implementation . 169
5.1 The Energy Smart Home Lab 169
5.2 Connection to the Energy Smart Home Lab 174
5.3 Modules . 182
5.4 Functional Demonstration 184

5.4.1 Administrator . 184
5.4.2 Operator . 186
5.4.3 Resident . 192

5.5 Conclusion and Discussion 209

6 Evaluation . 212
6.1 Evaluation of the Design 212
6.2 Evaluation of the Usability and Functionality 222

6.2.1 Method of Experimentation 222

vii

Contents

6.2.2 System Usability Scale 224
6.2.3 Experiment Preparation 226
6.2.4 Results of the Demographic Survey 229
6.2.5 Main Part of the Survey 231
6.2.6 Evaluation Results of the Functionality 232
6.2.7 Evaluation Results of the Usability 238
6.2.8 Discussion . 246

7 Conclusion and Outlook . 249
7.1 Conclusion and Contribution 249
7.2 Outlook and Future Work 253

A Background Information of the Test Users in the Evalu-
ation Experiments . 256

B Tasks for the BOS UI and the ESHL GUI in the Evalua-
tion Experiments . 260
B.1 Tasks for the BOS UI . 260

B.1.1 Tasks for the Role of Administrator 260
B.1.2 Tasks for the Role of Operator 261
B.1.3 Tasks for the Role of Resident 263

B.2 Tasks for the ESHL GUI 266

C Comments about the BOS UI and the ESHL GUI from
the Test Users . 268

D Task Achievement of the BOS UI and the ESHL GUI in
the Evaluation Experiments 273

viii

1 Introduction

In the face of a global energy and environmental crisis, the global power
grid is continuously being challenged to gradually undergo a transition from
fossil-based energy sources to renewable energy sources. This transition
poses a threat to the stability of the power grid. Smart homes and buildings
which have potential of providing demand flexibilities can contribute toward
balancing the demand and supply in the grid. The user interface of a smart
home plays an essential role in realizing demand response, since it helps to
increase the residents’ energy-awareness and facilitates load shifting by al-
lowing residents to configure degrees of freedom for their appliances. After
outlining a motivation, this chapter continues by laying down some basic
assumptions which were made for this thesis and could apply to the smart
home of the future. After this, some research questions are stated, which
will be addressed later in the thesis. It concludes by highlighting the ma-
jor contributions of the work and then outlining the content structure of the
thesis.

1.1 Motivation

According to the latest World Population Projections1, 7.6 billion people
inhabit the earth at present, and in the next few years, the number is es-
timated to keep increasing by around 80 million per year. The growth of
the global population creates a rising demand for energy supply which on

1 http://www.worldometers.info/world-population/world-population-projections/

1

1 Introduction

the one hand leads to the excessive exploitation of natural resources and on
the other hand results in increasingly serious environmental pollution, and
enhancing the climate crisis. During the 20 years between 1984 and 2004,
primary energy consumption grew by 49% and CO2 emissions by 43%, with
an average annual increase of 2% and 1.8%, respectively [94]. It is known
from IEA Statistics2 that 80.8% of the total global energy consumption in
2015 was derived from fossil fuels, which are non-renewable resources and
will generate a large amount of greenhouse gases after combustion. Because
of this, the reduction of energy consumption has become a global concern,
with particular attention being paid to the saving of non-renewable natural
resources and the cutting down on environmental disruption.

To cope with the challenge, the European Union (EU) in 2007 set up "20-
20-20" climate and energy targets for its Member States for the year 2020,
which are 20 percent reduction of EU greenhouse gas emissions, 20 per-
cent share of renewables of overall EU energy consumption, and 20 percent
increase in energy efficiency compared to 1990. However, official data for
2015 shows that the overall target level of Member States is still insufficient:
the sum of the 28 national targets for 2020 primary energy consumption does
not match the reduction target determined at the EU level [8]. It is clear that
energy saving is still a big challenge which needs to be addressed. In 2016,
the households which use energy for the purposes of space and water he-
ating, space cooling, cooking, lighting and electrical appliances and other
end-uses represented 25.4% of the total energy consumption in the EU [6].
This indicates that improving energy efficiency in household buildings will
have a positive effect on reducing the overall energy consumption and the
carbon footprint.

Smart homes, being equipped with smart appliances and smart meters,
can be used as a solution to improve energy efficiency of household buil-
dings by displaying various energy parameters (e.g. energy price, devices’

2 https://data.worldbank.org/indicator/EG.USE.COMM.FO.ZS

2

1 Introduction

power consumption information, etc.) for residents and allowing them to
control their energy usage in intelligent ways. Compared to conventional
buildings, the feature of energy visualization provided by the user interface
of smart homes is able to improve the residents’ awareness and understan-
ding of the energy consumption in their building, which will then influence
them to change their behavior towards energy savings. It was found that,
displaying real-time information on electricity usage to users, leads them to
effectively modify their behavior to achieve an energy saving of up to 30%
[78, 58].

Another effective way to conserve natural resources is to integrate rene-
wable energy into the power grid so as to reduce the dependence on the
power generated by conventional, fossil fuel-fired plants. In contrast to fos-
sil fuels, renewable energy sources, such as solar energy and wind energy,
are not only constantly being replenished but can also be made use of wit-
hout producing pollution or contributing to global warming. However, since
renewables are usually fluctuating, decentralized, and uncontrollable, their
integration into the power grid poses a threat to its stability, therefore there
is an increasing need for on-demand flexibility in the power grid in order to
maintain the balance between supply and demand at short notice.

One contribution to ease the imbalance brought by the increasing share
of renewable energy sources in the power grid, is energy management in
household buildings, which is one of the features of a smart home. A wide
variety of information from different entities is needed in order to realize
demand side response in a smart home. The external signals (e.g. time-of-
use energy tariffs) from utilities can provide an indication of peak times or
off-peak times in the power grid. The building operating system, which is
a software deployed on smart homes, can either be equipped with its own
energy optimization algorithm or provide a platform for other energy ma-
nagement applications to analyse current and predicted external signals and
optimize the in-home energy use, by shifting the power consumption in the

3

1 Introduction

building from peak periods to off-peak periods. The load shifting can be
realized by shifting the load profiles of re-schedulable appliances (e.g. dish
washers or washing machines). Since it is important to respect the residents’
needs, in order to ensure their comfort, each resident needs to specify de-
grees of freedoms for their appliances via the user interface of the building
operating system in their building.

The user interface is an indispensable component of the building opera-
ting system in a smart home, since it is essential in order to keep the re-
sidents’ personal preferences in the loop. Without this human interaction,
the building operating system cannot work properly. The user interface is
not only able to display the external signals, such as time-variable prices for
residents, but also provides transparent information about the energy con-
sumption as well as the energy generation of a particular household. This,
in turn, enables the residents to develop an awareness of whether they are
using electricity in a reasonable way or not and so help them to develop good
habits for saving energy and money. In addition to this, the user interface
makes it possible to improve the comfort and convenience for residents of a
smart home by allowing them to give input to the automatic control of the
appliances in their building. As mentioned earlier, although building ope-
rating systems can help to optimize schedules of household appliances so
as to achieve the purpose of the demand response, they still need to respect
residents’ needs and thus ultimately be under the control of the residents.
For this reason, the user interface of the building operating systems not only
provides the residents with time options for setting degrees of freedom for
their appliances but also offers control options which allow residents to alter
the appliance scheduling any time they want.

Currently, smart appliances are becoming more and more popular on the
market. Many big brands have launched their own smart home appliances
and platforms in order to build their own smart home ecosystems. However,
the acquisition of smart home technology has been relatively slow since the

4

1 Introduction

development of smart homes is still in its infancy. One of the largest ob-
stacles that hinder the market popularization of smart homes is the lack of
a unified standard of communication. Vendors of smart appliances all try
to build their own platforms as they populate the market. This has led to a
variety of incompatible standards on the market. Under these circumstan-
ces, in order to make their homes smart, consumers either have to buy all
the household appliances for their building from the same brand, which is
expensive and unrealistic for most of consumers and few of them can accept
it, or consumers need to install various applications together with their re-
spective user interfaces in order to realize the intelligent control of their
appliances. In the latter case, consumers then have to bother about dealing
with multiple inconsistent user interfaces from different vendors.

Some building operating systems have already been implemented, which
try to work around this dilemma by introducing a unified hardware ab-
straction layer that shields the discrepancies between the various protocols
and devices. The hardware abstraction layer is able to convert the proto-
col related data to the unified data models used by the building operating
system, and depending on the particular data models, each of the building
operating systems is equipped with one or more proprietary user interface
for the interaction with users. However, these user interfaces currently still
have a lot of room for improvement. Since they are tightly coupled with
their corresponding building operating system, the functionalities they can
provide are also restricted by their underlying building operating system.
This greatly limits the number of use cases in smart homes. However, since
the current building operating systems are still in their early development
phase, their time for going on the market is a long way away. Much rese-
arch will still need to be done in order to overcome various difficulties and
challenges of the systems.

Current publications (e.g. [91, 52, 77, 96, 80]) reveal that most of the re-
search about user interfaces for building operating systems done in the past

5

1 Introduction

years has dealt primarily with method description, which is more theoretical
in nature. So far, the publications in the area of practical implementation of
the user interface for smart buildings are very few. Because of this, it is de-
sirable and valuable to not only design but also implement a user interface,
which on the one hand is generic and flexible enough to be able to interact
with users as well as communicate with heterogeneous building operating
systems, and, on the other hand, is able to support a wide range of use cases
relating to smart homes while at the same time ensuring good usability.

1.2 Assumptions and Research Questions

As previously outlined, the major motivation for the work in this thesis is the
aspect of energy saving and on-demand flexibility. With the aid of their user
interface, building operating systems can support in-house energy manage-
ment and provide residents with transparent information on external signals
and energy use in their household. This would make a valuable contribution
toward improving energy efficiency and realizing demand response. Howe-
ver, as mentioned earlier, currently, building operating systems are still at
an early stage of scientific research and have, therefore, not yet been po-
pularized on the market. In order to make the research in this thesis more
scientifically rigorous, there are a number of fundamental assumptions that
need to be declared in advance.

• It is assumed that, in the future, a great number of conventional power
plants (e.g. coal-fired plants and nuclear plants) will be forced to close
down. Instead, a large proportion of electricity in the power grid will
be coming from renewable energy sources, especially wind and solar
energy which are fluctuating, decentralized and hardly controllable
sources. As a consequence, the future power grid will face a lot of
unprecedented problems such as mismatches between demand and
supply, deviations between predicted and actual power generation and

6

1 Introduction

bottlenecks in the low voltage distribution grid. In order to tackle
the challenges arising from renewables, high degrees of flexibility in
energy demand will be required to ease the imbalance in the power
grid.

• Research at the intersection of computer science and economics has
revealed that incentives are a powerful way to allocate scarce resour-
ces [102, 57]. Therefore, it is assumed that the rising need for demand
flexibility in tomorrow’s power grid will bring with it new incentives
to promote load shifting. The incentives could be given in the form
of price signals, i.e., time-variable electricity prices, or incentive pay-
ments in order to shift the load from peak times to off-peak times.

• It is assumed that the conventional meters used in household buil-
dings today, will, in the future, be replaced with smart meters which
enable two-way communication between the meter and a utility. In
other words, the smart meters are able to not only measure and record
energy consumption during a certain time interval but also receive ta-
riff information from the energy utility. In addition to smart meters,
household buildings in the future will also be equipped with either
smart appliances which can be remotely monitored and controlled or
sensors and actuators that indirectly make normal appliances "smart"
by enabling remote interaction with them.

• The high incentives for load shifting and the public’s willingness to
make their homes smart will, in the future, attract a lot of providers
of various building operating systems, including energy management
systems, which will make full use of the potential of smart meters and
smart appliances in a building, in order to achieve certain goals. In
facing the numerous incompatible communication standards on the
market, these building operating systems will be capable of providing
their unified platform for higher level applications.

7

1 Introduction

• It is assumed that building operating systems in the future will focus
on various energy carriers (e.g. electricity, heat, gas, etc.) and support
different functionalities. In order to be able to interact with users, the
building operating systems will be equipped with their own, customi-
zed user interface. The rising number of building operating systems,
some of which may be competing with each other will make a holis-
tic and comprehensive overview of the energy flows and devices in a
household building more difficult.

• Due to the lack of unified standards, it is assumed that the smart home
market will be in a state of technological fragmentation for a long time
in the future. In such a fragmented market, customers might easily
lose control over their individual targets concerning their building.

In addition to the aforementioned assumptions, a delimitation will also
need to be made beforehand in order to define the research scope of the
thesis. The user interfaces used for this thesis are all designed for building
operating systems which are deployed in household buildings. A household
building, in this thesis, refers to either one of the apartments in a larger re-
sidential building or a free standing single or multi-storied house which is
owned by one person or family. An important feature for the "building" in
this thesis is that there is one person who is responsible for paying all the
energy costs. Residential buildings that are shared by a number of different
home owners, office buildings, commercial buildings and other public buil-
dings are beyond the scope of this thesis, but the concepts presented in this
thesis are easily extended to these scenarios.

According to the current development of smart home technologies, one
of the challenges that the smart home faces is that it cannot provide users
with a convenient and unified user interface at the application level. This
will greatly affect the development of the smart home market. In order to

8

1 Introduction

lift the smart home out of this dilemma, the core research question that this
thesis is going to answer is as follows:

Research Question: How should a generic user interface be de-

signed, so that it can deal with different kinds of building operating

systems while ensuring good usability?

The core objective of this thesis is to design and implement a generic user
interface for building operating systems, which is not coupled with any of
the existing building operating systems. The main tasks of the generic user
interface are:

i to increase the comfort of household buildings by allowing residents to
realize all kinds of home automation,

ii to provide transparent information on energy consumption and genera-
tion in the household, so as to raise the residents’ awareness about the
energy use in their building and generate financial savings,

iii to identify the degrees of freedom of the appliances in the building for
the building operating systems so that the load profiles of the appliances
can be shifted from peak to off-peak periods.

A valuable user interface is one that is not only able to provide rich functio-
nality but is also highly user friendly since the latter plays a crucial role in
determining the user’s experience of the user interface. Therefore, the final
implementation of the generic user interface needs to be evaluated by test
objects and its usability is expected to be good. The core research question
can be further divided into the following sub-questions, as considered from
different perspectives.

9

1 Introduction

Sub-question 1: What is the definition of a generic user interface

for building operating systems?

Since a generic user interface for building operating systems is the work that
has been done for this thesis, it is of great importance to define what this is
very clearly before starting on the design. The user interface as a general
term has been well defined in many publications. However, specifically,
when it comes to a generic user interface for building operating systems,
there has not been any published definition available for the concept. In
this case, the thesis defines the term by specifying and analysing a series of
conditions that need to be met.

Sub-question 2: What does the architecture have to look like for

such a generic user interface?

The architecture which defines the system elements and how they interact
is an abstraction of a system and reflects earliest design decisions about a
particular system [90]. A generic user interface is capable of exchanging
information not only with different building operating systems but also with
some external entities. To this end, its architecture needs to incorporate ap-
propriate components which can bridge the gap between the generic user
interface and its underlying building operating systems and allow commu-
nication among different stakeholders.

Sub-question 3: What are data models for such a generic user in-

terface?

Data models that create structures of the data used by the generic user in-
terface and standardize their relationship to each other play an essential role
in making the user interface independent of a specific building operating
system and translating user targets to building operating systems. The data
models in the back-end of the generic user interface should be abstracted

10

1 Introduction

properly so that the user interface can be generic and sufficiently flexible
to deal with different building operating systems while not losing effective-
ness.

Sub-question 4: What are the functional components that the gene-

ric user interface should cover?

The aforementioned tasks of the generic user interface for building opera-
ting systems can be further subdivided into a number of sub-tasks which
need to be supported by different functionalities. In order to complete the
tasks to the maximum extent, this thesis provides answers to this research
question by proposing a set of functional components to support a variety
of use cases. The functionalities supported by these components have been
implemented as well and they are also evaluated by a group of test objects
at the end.

Sub-question 5: How can such a generic user interface be made

configurable and extendible?

In order to facilitate user-friendliness, it is favorable to a user interface if it
is able to be configured or customized by users according to their preferen-
ces. Different aspects of the generic user interface need to be configurable.
For example, one important aspect might be allowing users to set langua-
ges, which is beneficial for users who prefer to use their native language. In
addition, extendibility is also a valuable feature for the generic user inter-
face. Since household buildings are basically diverse from each other and
the appliances used are also multifarious, it is important that the generic
user interface is extendible so that it can be applied to various buildings and
adapted to different situations.

11

1 Introduction

1.3 Major Contributions

The major contribution of this thesis is the design, implementation and eva-
luation of a generic user interface for building operating systems, which
mainly focuses on two dimensions relating to the field of smart homes, na-
mely, comfort and energy.

To date, there are a few building operating systems which are in the deve-
lopmental stage. However, since the goals and functionalities provided by
these building operating systems differ from one another, their user interfa-
ces are also very different. A first step in designing a better user interface
would be a careful review and evaluation of state-of-the-art user interfaces
used in current building operating systems. Since this type of comparative
review and evaluation could not be found in existing publications, this will
serve to provide the first contribution of this thesis. To begin with, then,
the thesis introduces a number of open-sourced building operating systems
and analyses the working mechanism of their user interfaces. Subsequently,
a series of use cases relating to a smart home is proposed on the basis of
research that has been done as well as scenarios of the existing building
operating systems. Furthermore, the thesis evaluates the user interfaces that
have been reviewed according to two aspects. One aspect is from the use ca-
ses, and another aspect is based on the technical characteristics of the user
interfaces. To this end, a list of technical evaluation criteria is proposed.
The final evaluation results indicate both the strengths and weaknesses of
these user interfaces. None of them can cover all of the evaluation crite-
ria. They all leave room for improvements of varying degrees in different
aspects. [107]

The current building operating systems are basically equipped with their
own proprietary user interface for their application scenarios, based on their
specific application programming interfaces (APIs). In the design phase of
this thesis, an architecture for a generic user interface for building operating

12

1 Introduction

systems has been proposed. The central part that, enables the generic user
interface to uncouple itself from its underlying building operating system is
a set of generic data models, which are appropriate abstractions of objects
that are needed by the generic user interface. The existing building ope-
rating systems with their own proprietary data models need an adapter to
convert their data models into the generic data models, so that the generic
user interface can work with them. The building operating systems of the
future will be able to directly use the generic user interface if the generic
data models are adopted into their system. The data models proposed in
this thesis are generic and flexible enough to cover hybrid energy sources in
households (e.g. electricity, heat, cold and gas), serve various buildings and
support different advanced home automation services. In order to facilitate
security administration and division of responsibilities, this thesis introduces
three roles, namely, the administrator, the operator and the resident, for the
context of a smart home. Each role is given different permissions to accom-
plish different tasks. At the end of the design phase, a number of functional
components supported by the generic user interface are listed and described.
This provides answers to the research sub-question 2.

Based on the aforementioned design, a prototype of the generic user inter-
face, named "Building Operating System User Interface (BOS UI)" is imple-
mented and applied to a building operating system, the Organic Smart Home
(OSH), which has been installed in the Energy Smart Home Lab (ESHL) at
the Karlsruhe Institute of Technology (KIT). The ESHL is an apartment with
two bedrooms that is not only equipped with basic, measurable and control-
lable household appliances (e.g. light and washing machine) but also has
an electricity generating system (e.g. PV panels) as well as a cogeneration
system (e.g. micro Combined Heat and Power Plant (µCHP)). Since the de-
sign of the BOS UI is independent of the OSH, a couple of extra components
are introduced in order to achieve the two-way communication between the
BOS UI and the OSH. The BOS UI is developed on the basis of role-based

13

1 Introduction

access control. After the connection with the OSH, the BOS UI can accept
a series of configurations in order to adapt the user interface to the environ-
ment of the ESHL. For instance, the administrator can define the layout of
the ESHL on the BOS UI and allocate devices to appropriate locations, and
the operator can manage residents by assigning them permissions to access
the devices in the ESHL. After configuration, the BOS UI can provide re-
sidents with a holistic overview of the energy flow in the ESHL as well as
provide intuitive options for specifying degrees of freedom of appliances in
order to help improve energy efficiency. In addition to that, the BOS UI also
supports all kinds of home automation services to maximize the comfort of
residents. Furthermore, the BOS UI has a responsive layout and is configu-
rable in many aspects, including themes, layouts, languages, etc. which all
contribute toward good usability.

The last contributions of the thesis are the final evaluation experiments
and the results derived from them. Besides the BOS UI, the ESHL GUI,
which is the original user interface of OSH in ESHL, has also been used
for the evaluation in order to have a comparison. To evaluate the functio-
nalities as well as the usability of the two user interfaces, experiments have
been conducted by inviting a group of test users to execute a number of pre-
determined tasks, using the user interfaces, and then asking the test users to
fill out questionnaires at the end. This thesis compares the functionalities of
the BOS UI with those of the original ESHL GUI, from various perspectives,
based on the statistical results of the experiments. To determine usability,
a robust and reliable evaluation tool, named System Usability Scale (SUS),
has been used in the experiments in order to get a quick and clear statement
about the usability of the two user interfaces. According to the test users’
feedback, as received in the questionnaires, the BOS UI has made great im-
provements with regard to both functionality and usability in comparison
to the ESHL GUI, and besides it is also able to facilitate the improvement
of energy efficiency in household buildings. What is more, many test users

14

1 Introduction

made valuable comments, some giving helpful criticism and/or advice con-
cerning the two user interfaces, which may help to detect defects in the cur-
rent systems but are also worth considering when designing user interfaces
for building operating systems in the future.

1.4 Thesis Outline

The following chapter, Chapter 2, introduces some background information
needed for this thesis. It firstly describes and analyses the functionalities of
a smart home and then gives a brief introduction to a few open-sourced buil-
ding operating systems. After that, it reviews the development of graphical
user interfaces and outlines a number of basic principles for user interface
design. Chapter 3 gives an overview of state-of-the-art user interfaces for
building operating systems and also evaluates each of these user interfaces
according to two aspects, namely, their use cases and their technical charac-
teristics. To start the design of a generic user interface for building operating
systems, a definition of the concept is given in Chapter 4, and subsequently
the chapter proposes an architecture for a generic user interface that can deal
with different building operating systems. Subsequently, three "roles" and
their corresponding "permissions" are defined, in order to ensure the secu-
rity and privacy protection of the inhabitants. The chapter further describes
a set of data models and functional components used in the generic user
interface. Chapter 5 focuses on the implementation of the generic user in-
terface. Since the prototype of the generic user interface was to be applied
in the Energy Smart Home Lab (ESHL), a brief description of the ESHL is
given at the beginning of the chapter. A few more components are introdu-
ced after that, which allow the prototype of the generic user interface to be
connected to the building operating system of the ESHL. Finally, the chap-
ter proceeds to illustrate the detailed functions that have been implemented
in the prototype. Chapter 6 evaluates the prototype of the user interface that

15

1 Introduction

is implemented in Chapter 5 according to three aspects - design, functiona-
lity and usability. The evaluation of the design of the user interface is based
on theoretical analysis. Functionality and usability are evaluated by inviting
test users to participate in experiments. Chapter 7 concludes the thesis with
a summary of the findings made, and gives an outlook for future work.

1.5 Previous Publications

This thesis summarizes the results of several years of research. During this
time, several papers were published and presented as part of journal and
conference contributions. Most of the chapters of this thesis are based upon
these previously published papers.

The introduction to the Energy Flexibility Platform and Interface (EF-Pi)
in Chapter 2 is based on the joint work with Christian Gitte, Fabian Rigoll,
Joeri van Eekelen and Michael Kaisers. This part has been presented in
the 5th D-A-CH+ Energy Informatics Conference in conjunction with 7th
Symposium on Communications for Energy Systems [67]. Chapter 3 re-
views the state-of-the-art user interfaces for building operating systems and
evaluates them with respect to different dimensions, which has been par-
tially presented in the 2017 IEEE International Conference on Smart Grid
and Smart Cities (ICSGSC 2017) [107]. At the beginning of Chapter 5, an
introduction to the Energy Smart Hone Lab (ESHL) is provided. As part of
the introduction, the decentralized service oriented architecture based on a
message-oriented middleware in the ESHL has been published in the first
International Workshop on Mashups of Things and APIs (MoTA 2016) with
Kaibin Bao, Ingo Mauser and Sebastian Kochanneck [44]. The major con-
tent of this thesis, namely, Chapter 4, Chapter 5 and Chapter 6 has been
published in the Journal of Energy Informatics [106].

16

2 Fundamentals

This chapter provides the background information relating to the topic of
the thesis. Since the smart home is the actual object that the user interface,
designed and implemented in the thesis, applies to, this chapter firstly gives
a few definitions of a smart home and then introduces the functionalities of
smart homes in terms of four aspects - comfort, health, security and energy.
The functionalities in a smart home can be achieved with the aid of buil-
ding operating systems deployed at smart homes. This chapter therefore
proceeds to outline the concept of a building operating system and gives a
few examples thereof. After providing the background information related
to the application field of the user interface presented in the thesis, a brief
review of the history of graphical user interfaces is given in order to high-
light the trends and patterns of user interfaces over the years. The chapter
concludes by listing and outlining a number of principles used in user inter-
face design. These principles will also be used for guiding the design and
implementation of the user interface in the thesis.

2.1 Smart Home

In the book, ’The Road Ahead’, which was published in 1995, Bill Gates
describes his futuristic house that was being built on Lake Washington out-
side of Seattle in Medina. He had hoped that his private home of the future
would consist of silicon and software and would be able to assimilate con-
stantly updated cutting-edge technologies. The house was finally completed
in 1997. It was equipped with fibre optic cables and every door, window,

17

2 Fundamentals

lamp and appliance was able to be remotely controlled with the aid of touch
pads. In the back-end, there was a high performance server to manage the
whole system. "First thing, as you come in, you’ll be presented with an elec-
tronic pin to clip to your clothes. This pin will connect you to the electronic
services of the house," Gates wrote in The Road Ahead. "The electronic
pin you wear will tell the house who and where you are, and the house will
use this information to try to meet and even anticipate your needs - all as
unobtrusively as possible." Most ordinary people may think that this is too
far away from their own lives, however Gates in his book said, "A decade
from now, access to the millions of images and all the other entertainment
opportunities I’ve described will be available in many homes and will cer-
tainly be more impressive than those I’ll have when I move into my house in
late 1996. My house will just be getting some of the services a little sooner."

Now twenty years have passed. The development of information and
communication technologies in reality gradually confirmed Gates’s prop-
hecy. With the rapid growth of Internet of Things (IoT), many countries
and corporations have put forward various smart home solutions in order to
satisfy peoples’ rising demand in the areas of comfort, security, entertain-
ment, energy efficiency, etc. At the Appliance & Electronics World Expo
held in Singapore in May 1998, the smart home system of the Singapore
model was introduced through the simulation of the "Home of The Future".
The functions of the system included remotely connected smart meter, se-
curity alarm, video intercom, monitoring center, appliance control, cable
access, telephone access, household information message, home intelligent
control panel, smart wiring boxes, broadband network access system and
software configuration etc. In April 2016, the Versionaire EC1, which is
the first Smart Home Executive Condominium in Singapore, was launched
and marketed. The 632-unit executive condominium is specifically designed
to embrace the IoT concept. With the aid of a tailored mobile application

1 http://www.thevisionaires-ec.com.sg/

18

2 Fundamentals

named HiLife, the Smart Home Control Centre allows residents to cont-
rol all the smart features in their home at their finger tips, e.g. automated
appliances, security monitoring, temperature control, etc. In 2015, Pana-
sonic corporation created a showcase, called Wonder Life-BOX 20202, in
the Panasonic Center Tokyo. With a total floor space of 400 square meters,
the prototype of a private apartment shows what a smart home could look
like in the future and therefore presents Panasonic’s vision for a quality life-
style in 2020. A variety of innovative services like lifestyle security support,
voice interactive, smart screens integrated with interior design, smart healt-
hcare navigation, etc. are all embraced by the Wonder Life-BOX, which is
expected to become a reality soon. In 2014 and 2016, two smart home pro-
ducts, Amazon Echo and Google Home, came out, respectively. These two
types of voice-controlled speakers are capable of performing various servi-
ces, including acting as a home automation hub to control smart devices in
a building thereby allowing residents to operate their smart home via voice
commands. The two smart speakers are increasingly gaining their popula-
rity since they were first introduced into the market. According to this year’s
smart audio report from NPR and Edison Research [25], so far around 39
million Americans, which accounts for 16% of the total population of USA,
own a smart speaker. The number of users has increased by 128% compared
to last year, and 64% of these users buy the speakers to control smart home
devices.

Smart homes aim to establish a better quality of living by deploying fully-
automated control of appliances and providing assistive services [37, 78].
Since the first smart building in the world was built in the United Sates in
1984, the term of the smart home was first used in an official way by the
American Association of House Builders [71]. Henceforward the concept
has been widely used in both academia and industry. However, so far, no

2 https://www.panasonic.com/global/corporate/center/tokyo/floor/lifebox.html

19

2 Fundamentals

unified definition has been put forward. The following are several definiti-
ons that have been collected from recently published literature.

"The Smart Home concept is the integration of different services within a

home by using a common communication system. It assures an economic,

secure and comfortable operation of the home and includes a high degree

of intelligent functionality and flexibility." [79]

"A smart home is a home which is smart enough to assist the inhabitants

to live independently and comfortably with the help of technology is termed

as smart home. In a smart home, all the mechanical and digital devices are

interconnected to form a network, which can communicate with each other

and with the user to create an interactive space." [99]

"A smart home can be defined as a residence equipped with computing

and information technology which anticipates and responds to the needs of

the occupants, working to promote their comfort, convenience, security and

entertainment through the management of technology within the home and

connections to the world beyond." [71]

"A smart home is an application of ubiquitous computing that is able to

provide user context-aware automated or assistive services in the form of

ambient intelligence, remote home control, or home automation." [37]

In a survey published in 2012 [37], the authors categorized the smart
home projects at the time, according to the three intended services: com-
fort, healthcare and security (cf. Figure 2.1). Broadly looking at the various
current definitions of the smart home concept, it would seem that, impro-
ving the comfort of the residents, is considered to be the basic goal of the
smart home. One of the most important means of achieving this goal, is
home automation, which enables lights, blinds, heating, washing machines
and other appliances in a building to be automatically controlled via a user
interface, thereby saving the trouble of manual operation. The basic home
automation can be further enhanced by the introduction of so-called scenes.

20

2 Fundamentals

Normally more than one device is involved in a scene and each one’s target
state needs to be specified in advance in the so-called scene definition. A
number of devices in a scene can be controlled at the same time when the
scene is triggered so that the comfort of residents can be further improved.
Another way of extending the basic home automation is by introducing the
use of the timed switch. Residents can set a time to the target state of devices
in order to realize the timed automation of devices in their building. Activity
identification is another feature that is mentioned in the survey [37], which
can help ease the residents’ daily life. In this case, the smart home needs to
be aware of context information in the building in order to be able to make
corresponding responses to the changes in the smart home environment. The
context information in a building can be classified into four essential cate-
gories - identity, location, status (or activity) and time [60]. By collecting
and analysing the context data, the context-aware applications or services
provided by the smart home are able to automatically adjust the state of pro-
per devices according to different needs so as to maximize the residents’
comfort. The following is an exemplified scene, which could happen in a
context-aware smart home. When a resident falls asleep while watching te-
levision at night, his smart wristband or sleep monitor will detect his sleep
state based on the body index and will alert the smart home system, which
will then send commands to turn off the television, music player, lights, etc.
and shut down the blinds in order to create a good sleeping environment for
the resident.

Nowadays, many countries are stepping into an aging society, but, at the
same time, the pace of young people’s lives is becoming faster and faster.
This leads to a growing concern about health and security issues of elderly
people, especially of those, who are living by themselves. Because of this,
the healthcare service for elderly people, patients or disabled people is anot-
her functional dimension of a smart home that has been the focus of many
projects recently. Being equipped with all kinds of sensors (e.g. environ-

21

2 Fundamentals

Figure 2.1: Categorization of smart home projects according to the intended servi-
ces [37]

mental, activity and physiological sensors), smart homes have the potential
of providing an ambient assisted living environment for elderly or disabled
people, who need to be taken care of. The authors in the above mentio-
ned survey [37] classified the healthcare services provided by smart homes
into local monitoring and remote monitoring services. Through the service
of local monitoring, the patients’ various vital signs, including physiologi-
cal parameters like heart rate, body temperature, respiration rate and blood
pressure, etc. are monitored and recorded in smart homes, and can gradually
reflect a health trend of the patients which can later be analysed by health
care providers. In addition to this, any activity disorders such as falls, immo-
bility, reaction incapacity, etc. can equally be detected in a timely manner
and local warnings or alarms can be generated in smart homes to inform the
caregivers. The remote monitoring, on the other hand, is mostly used for
the rescue of patients in case of an emergency. When patients get involved
in an emergency situation, this dangerous situation will be detected by their
on-body sensors and an emergency call will be automatically dialled to the
nearest emergency service provider. Figure 2.2 shows a smart home solu-
tion for elderly healthcare, which was proposed in a recent survey, where

22

2 Fundamentals

a comprehensive review of the state-of-the-art research and development in
smart home based remote healthcare technologies was presented [81].

Figure 2.2: Schematic diagram of a smart home showing the network among diffe-
rent stakeholders [81]

Security is one of the most pressing issues of residents these days and,
therefore, constitutes another major functional dimension that needs to be
taken care of by smart homes. The survey mentioned earlier [37] categori-
zed security in smart homes into user authentication and device authentica-
tion, both relating to the software framework of smart homes and having the
purpose of eliminating security holes in the framework. To prevent poten-
tial security threats from the outside, authentication mechanisms need to be
introduced to smart homes in order to secure the access to the smart home
network and prevent the unauthorized use of devices. Besides this, firewalls
and anti-virus software can be installed in the smart home gateway which is
also an effective way of withstanding outside attacks. Considering all kinds
of threats in the physical world, home security and safety need also to be
ensured in smart homes. To this end, various threat detection and automatic
alarm functions (e.g. smoke detection and alarm, burglar alarm, etc.) need
to be integrated in smart homes. Due to the development of modern digital
technology, a wide variety of safety equipment such as security cameras,

23

2 Fundamentals

smart locks, motion detectors, video doorbells, etc. are constantly emerging
on the market, which all help to enhance smart home security systems.

Because of the constant improvement of the standards of living, residents
have a growing demand for a good entertainment experience in their smart
home. With the video-on-demand service increasing in popularity, people
may now get instant access to video or radio content of their own choice,
instead of having to passively accept the pre-scheduled programs. This gre-
atly improves convenience. Furthermore, thanks to the increasing number
of smart entertainment devices, such as smart speakers and multi-room sy-
stems, movies, series and music can not only be voice-controlled but also
streamed in different rooms of the building by tracking the location of the
residents, so that an immersive smart entertainment experience can be achie-
ved for the residents.

In recent years, with the increasing share of renewable energy sources
being integrated into the power grid, the power supply is no longer as stable
as before, but only partially controllable and decentralized. This requires a
more flexible demand in order to even out the fluctuating supply in the power
system. At the same time, the electricity tariff is transiting from ’single rate’
to ’time-of-use tariff’. For these reasons, energy management, as a new di-
mension, is being integrated into smart home functions. The Home Energy
Management System (HEMS) is an application that needs to be deployed
in smart homes so as to monitor and optimize in-home energy consumption
and generation by considering all kinds of factors, including the residents’
needs and preferences, the devices’ limits and potentials, external pricing
and load signals, etc. Figure 2.3 shows an overall architecture of a represen-
tative home energy management system [109], which includes five major
functionalities: monitoring, logging, control, alarm and management. The
appliances in smart homes can be classified into two types, non-schedulable
appliances and schedulable appliances, depending on their degrees of free-
dom. The degrees of freedom of devices refer to devices’ flexibility to re-

24

2 Fundamentals

scheduling their work-item. Devices like televisions, lights, microwaves,
etc. have poor degrees of freedom. They need to be working whenever
residents want to use them. Therefore they belong to non-schedulable ap-
pliances. On the other hand, appliances, such as washing machines and
water heaters, belong to schedulable appliances since their work-item can
be rescheduled on the premise of respecting the needs of residents. The
HEMS can make use of degrees of freedom of schedulable appliances in
order to optimise in-home energy use and, in this way, also accomplish the
residents’ goal of saving money. It is worth noting that the authors in [109]
classified the refrigerator to be non-schedulable appliance, which can be ex-
plained from the point of view of human control. To maintain food quality,
the inner temperature of the refrigerator has to be kept between a minimal
temperature and a maximal temperature. The working schedule of normal
refrigerators is usually independent of outside control. As appliances be-
come more and more intelligent and controllable, the working periods of
refrigerators will be able to be shifted from an expensive pricing time to a
cheap one, within a certain range of temperatures. In this case, the refrige-
rator would then be considered to be a schedulable appliance.

With the advent of smart meters which enable billings based on variable
electricity tariffs, the power consumption in the building can be real-time
visualized for residents. This, on the one hand, increases the transparency
of billing. On the other hand, together with time- of-use electricity tariffs, it
provides residents with incentives for load shifting. Benefiting from smart
meters, the HEMS can quickly be informed of peak consumption in smart
homes and subsequently take corresponding countermeasures. To connect
devices in the home seamlessly into an overall smart metering system, a
Home Area Network (HAN), as the backbone of the communication bet-
ween smart meter and home appliances, is needed. Figure 2.4 shows the
sketch of the HEMS, including the HAN and the smart meter. The HEMS
in the central position on the one hand interfaces with the smart meter to

25

2 Fundamentals

Figure 2.3: Overall architecture of a representative home energy management sy-
stem [109]

get in-home energy consumption data, and on the other hand communicates
with home appliances in the HAN and controls them in different ways.

Figure 2.4: Outline of HEMS including HAN and smart meter [35]

Since smart home interconnection specifications and communication techno-
logies are relatively new and still under development, most available com-
munication protocols were developed prior to the advent of the smart home
vision [84]. As a result, instead of having one unified communication

26

2 Fundamentals

protocol for the HAN, so far a dozen of HAN communication and net-
work technologies, which include wired protocols such as HomePlug, X10,
Insteon. etc. as well as wireless protocols, such as Z-Wave, EnOcean, Zig-
Bee, etc. coexist on the market. These different kinds of heterogeneous
protocols are a challenge for the HEMS to become independent from its un-
derlying protocols. A potential solution for addressing this challenge, is to
integrate a protocol conversion middleware which can translate and convert
protocol related information to the standard formats used by upper layer
services in the HEMS controller, and vice versa. In this way, information
exchange and interoperability with HAN devices using various protocols
can be achieved.

As more and more roofs are installed with photovoltaic panels, residents
are able to produce electricity from renewable sources themselves, rather
than merely consuming electricity from the power grid as before. This turns
the residents from consumers into "prosumers". The use of electricity from
local generation is handled by the HEMS in such a way so as to help the
residents to improve their benefits. It does this by maximizing the use of
locally generated electricity in smart homes. Because of this, an in-home
load management is needed to balance the local power consumption and
the local power generation. An efficient device that can be made use of to
achieve this goal is the Combined Heat and Power plant (CHP), which offers
the capability of co-generating power and heat while consuming a variety of
fuels. This device can be extended by installing an electricity-driven heating
cartridge into its water tank so that electricity can also be used as another
source for generating heat. When the power consumption in smart homes
exceeds the local power generation, a CHP can be used to generate power by
having it consume gas or other fuels so that the self-supply will be improved.
In the opposite, if there is a surplus in the local power generation, a CHP
can be used to consume the surplus electricity to heat its water tank, instead
of using gas, so that the self-consumption will be improved. In this case,

27

2 Fundamentals

the CHP is acting as a bivalent system which helps to convert power to
gas in a virtual way. Additionally, the HEMS can also adjust the working
schedules of the schedulable appliances in smart homes to respond to the
variable amount of electricity from renewable sources.

In addition to load shifts of household appliances and virtual conversion
of power to gas in bivalent systems (e.g. CHP), the surplus electricity gene-
rated from renewable sources in residents’ smart home can be dealt with in
different ways according to the optimization strategy of the HEMS.

1.) The electricity can be directly fed into the power grid through an
inverter and, in return, the home owner will get a credit or a payment for
this electricity. Usually the feed-in tariff varies from one kind of renewable
to another. Right now, the feed-in tariffs of renewable energy are usually
lower than the price of retail electricity purchased from the power grid. So
compared to feeding the locally generated electricity into the power grid, it
is, at the moment, more cost-efficient to use locally generated electricity to
cover the daily power requirements in households as much as possible.

2.) The surplus electricity can be stored in a thermal storage system.
The thermal storage can, for example, be a hot water boiler, which provides
daily-used hot water for residents in smart homes. Instead of being fed into
the power grid, the surplus electricity can thus be used to heat the water in
the water tank, and, in this way, the electricity can be stored in the form of
thermal energy.

3.) A stationary battery can be installed in smart homes to provide ca-
pacity for power storage. When there is surplus electricity from renewa-
bles or when the external electricity price is low, the stationary battery in
a smart home can store some amount of electricity which later can be used
for powering the smart home, especially at peak demand times. So far,
the common stationary batteries such as lead-acid batteries and lithium-ion
batteries, have not been widely implemented in households yet, because of

28

2 Fundamentals

various factors like high purchase prices, relatively short service life, high
maintenance costs, etc.

4.) Taking into account rising oil prices and the need to reduce greenhouse
gas emissions, many countries in the world are starting to advocate and pro-
moting electric vehicles. Since electric vehicles are equipped with rechar-
geable batteries. They can be integrated into smart homes and function as
flexible load to help balance power demand and supply. According to a mo-
bility survey from the European Commission [93], the average daily travel
time of cars in many European countries (e.g. France, German, Italy, etc.) is
less than 1.5 hours, which means that, most of the time, cars are in the state
of parking. In addition to this, the capacity of batteries in electric vehicles
is increasing. All of these factors give electric vehicles a huge potential for
high flexibility in power storage and load shifting. While electric vehicles
can be used for flexible power storage, the residents’ demands for their ser-
vices need to be respected, which means that the travel plans of residents
may not be affected. This is the limitation that electric vehicles have, com-
pared to stationary batteries and this limitation will need be taken care of by
the HEMS.

The in-home energy use can be optimized in two ways. On the one hand,
the HEMS can optimise it, by either backwardly or forwardly shifting load
profiles of certain devices with degrees of freedom. On the other hand, re-
sidents in smart homes can also be involved in the optimization, by consci-
ously changing their behavior patterns when using devices in their everyday
life. Therefore, from the point of view of the residents, it is able to improve
energy efficiency and reduce the home’s energy costs, and from the point of
view of power grids, it can contribute toward the realization of smart grids,
by dynamically responding to the imbalance between electricity production
and demand introduced by renewable energy. To this end, smart homes need
to interface with external entities such as the Distribution Service Operator
(DSO) and energy utilities (cf. Figure 2.5), in order to obtain the real-time

29

2 Fundamentals

feedback information from the power grid. Smart meters, which enable two-
way communication with the metering system operator, can receive real-
time updated tariff information via their Advanced Metering Infrastructure
(AMI). Besides this, the HEMS can obtain external incentives and demand
respond signals, such as load limit signals from the utility or other service
providers in the power system, via certain HAN interfaces so that the in-
home energy use can be adjusted automatically or manually to achieve the
goal of demand response of smart grid.

Figure 2.5: Realizing smart grids in smart homes [75]

According to the Smart Home Report 2017, provided by Statista [26],
the smart home energy management system market looks promising. Glo-
bal revenues of the smart home energy management segment in 2017 com-
prised 2.83 billion US dollars, which is expected to increase by 27.5% in
2022. There are two major reasons for customers to purchase smart home
energy management solutions, namely, energy and cost savings, and additi-
onal comfort. Thus far, research and products related to smart homes have
mainly been focusing on energy conservation. The expected trends of fu-
ture energy management smart homes include a shift towards local energy
production, and storage and integration of electric vehicles.

30

2 Fundamentals

2.2 Building Operating Systems

In view of all the benefits that the smart home can bring, and the rapid de-
velopment of information and communication technology, more and more
household buildings in the future will realize digitalization and intelligenti-
zation. However, smart home technology, is, at present, still in its primary
stage and many challenges remain to be addressed. Examples of difficul-
ties that smart homes, are currently facing, can be seen in many areas, such
as, compatibility of device communication standards, data sharing of dif-
ferent appliance brands, and unification of data structures used by various
co-existing energy management systems in one building. A number of buil-
ding operating systems have emerged in order to cope with the challenges.
Similar to the computer operating system, which coordinates hardware com-
ponents and provides services for applications software, the building opera-
ting system, on the one hand, manages heterogeneous household devices,
sensors, storages and other equipment by means of internet of things (IoT)
technologies, and, on the other hand, it either optimizes energy use for a
building by using its own solution or provides a universal runtime environ-
ment, where energy management applications can be deployed. This section
gives a brief introduction of a few currently open-sourced building operating
systems which mainly focus on aspects relating to comfort and energy.

2.2.1 Energy Flexibility Platform & Interface (EF-Pi)

The Energy Flexibility Platform and Interface (EF-Pi) [5] has previously
been known as the FlexiblePower Application Infrastructure (FPAI). It is a
building operating system for smart homes which was developed by Flex-
iblepower Alliance Network (FAN). The mission of EF-Pi is to provide an
energy interoperable framework, which, on the one hand, is able to bring to-
gether different kinds of household devices using different communication

31

2 Fundamentals

protocols, and, on the other hand, enables compatibility of heterogeneous
energy management services. In a smart home, the EF-Pi software is instal-
led in a so-called FlexiblePower Homebox (FP Hombox), whose running
environment is called FlexiblePower Runtime (FP Runtime). Figure 2.6
shows the scope of EF-Pi in a smart home and the stakeholders associated
with EF-Pi.

Figure 2.6: The scope of EF-Pi in a smart home and its associated stakeholders [55]

In order to be able to communicate with its ecosystem, the FP Homebox
provides various interfaces for different external entities, which include an
application store (AS) interface for communicating with the FP AppStore
which in turn provides the energy applications for the FP Homebox in a
smart home, a service and management (SM) interface for communicating
with the FP Management Center which centrally manages all of the FP Ho-
meboxes and is run by an independent party, and an interface for allowing
developers to deploy corresponding user interfaces for their applications that
are developed based on EF-Pi.

32

2 Fundamentals

Within a smart home, EF-Pi provides a connect layer to support various
communication protocols used by household devices, e.g. Zigbee, Z-wave,
PLC, etc. This layer enables the connection between the physical world in
a smart home and the EF-Pi environment. On top of the connect layer is a
resource abstract layer (RAL) which shields the heterogeneity of the under-
lying devices by modelling their energy flexibility into unified structures for
the upper energy applications. The unified data structure of devices’ energy
flexibility is named Control Space. In the philosophy of EF-Pi, household
devices can be classified into four types, whose corresponding Control Spa-
ces are shown in Table 2.1, according to the characteristics of their energy
flexibility. In EF-Pi, it is the devices’ energy flexibility, rather than the devi-
ces themselves, that are modelled. Because of this, the upper energy appli-
cations are independent of the details of household devices since the energy
applications only learn about their capability in an abstract form of Control
Space, which, in fact, is also their only ’concern’.

Table 2.1: The four Control Spaces in EF-Pi [104]

Control Space Description Examples

Uncontrollable Has no flexibility, is measurable and may
provide forecast.

Photo voltaic, Wind Turbine,
TV, indoor lighting, etc.

Time Shiftable Operation can be shifted in time, has a
deadline.

Washing machine, Dishwas-
her, etc.

Buffer/Storage Flexible in operation for either pro-
duction or consumption and operation is
bound by a buffer.

Freezer, Heat Pump, CHP,
Batteries, EV, etc.

Unconstrained Flexible in operation for production. The
operation is not bound by a buffer.

Gas Generators, Diesel Gene-
rator, etc.

The RAL (resource abstract layer) communicates with the upper energy
applications by exchanging a number of Energy Flexibility Interface (EFI)
messages which are part of the Resource Abstraction Interface (RAI). When
a device becomes available to be controlled by an energy application in EF-
Pi, it will inform the energy application of its arrival by sending the energy
application an EFI message, named ControlSpaceRegistration, via the RAL.

33

2 Fundamentals

Once the energy flexibility of the device has been changed, an EFI message,
named ControlSpaceUpdate, will be sent from the RAL to the energy ap-
plication. In response, the energy application will send back an Allocation
message, which contains instructions on how to use the flexibility described
in the ControlSpaceUpdate. Similar to Control Spaces, Allocations gene-
rated by different energy applications also have unified and generic data
structures. Thanks to the generic Control Space and Allocation, the energy
applications can completely decouple from the various household devices
that use different protocols and vice versa. This makes the EF-Pi an inter-
operable platform (cf. Figure 2.7) that can not only integrate all kinds of
devices but also can support diverse energy management approaches.

Figure 2.7: Architectural overview of the EF-Pi and the place of Control Spaces
and Allocations [28]

In the RAL, each device is usually provided with two components, na-
mely, a device driver, and a device manager, which are used to monitor and
control the device. A device driver knows the details of its corresponding
device, and exchanges information directly with the device. It is responsible

34

2 Fundamentals

for reporting the current state of its device and for providing the device-
related attribute information, such as commodities that can be produced or
consumed by the device, and energy profiles of the device, etc. The device
driver does not directly communicate with the energy applications. Instead,
it passes data to the device manager which will have further contact with
the energy applications. On the one hand, the device manager constructs
the Control Space based on the data coming from the device driver, and on
the comfort preferences set by the residents, and sends this Control Space to
one or more energy applications. On the other hand, it receives the Alloca-
tions from the energy applications and translates them into device specific
instructions for the device driver which will achieve direct control of the
device. In the EIT Digital project HEGRID (Hybrid Energy Grid Manage-
ment)3, the µCHP, as a bivalent system, has been integrated into the multi-
commodity energy management in smart buildings, on the basis of the EF-Pi
framework. To this end, a driver and a manager in the RAL were created
for the µCHP. Their state machine diagrams are shown in Figure 2.8, which
shows the state transitions and transitional behaviors of the µCHP driver and
the µCHP manager.

Figure 2.8: The state machine diagram of the µCHP driver and the µCHP manager
in the EF-Pi [67]

3 http://www.aifb.kit.edu/web/HEGRID

35

2 Fundamentals

In order to achieve data visualization and interaction with the residents,
the EF-Pi provides a web-based user interface where residents can manage
and view the status of all the installed smart appliances, energy applications
and smart grid services. They can also configure and control their devices,
and gain more insight into the energy consumption and production inside
their building, via this interface [104].

The energy applications can be downloaded from the FP AppStore which
is an online repository containing all the applications available for the EF-
Pi. So far, a relatively mature energy application that can be integrated into
the EF-Pi, is the PowerMatcher4, which is a smart grid service that aims
to achieve demand response based on market mechanisms. Since 2010, the
PowerMatcher has been installed in many buildings in different cities of the
Netherlands in order to coordinate the energy production and consumption
in the buildings.

2.2.2 Open Home Automation Bus (openHAB)

Open Home Automation Bus (openHAB) is an open-sourced home auto-
mation platform for integrating different home automation systems, devices
and technologies into a single solution. It provides uniform user interfa-
ces, and a common approach to automation rules across the entire system,
regardless of the number of manufacturers and sub-systems involved [21].
The developer of openHAB is Kai Kreuzer5, who released the first version
of openHAB in 2010. Since its release, version 1.x of openHAB has been
increasingly growing in popularity. To ensure the legitimacy of the use of its
open source code, the core framework of openHAB was contributed to the
Eclipse Foundation and became the new Eclipse SmartHome framework,
based on which a new branch, version 2.x, has been developed. Dozens of

4 https://fan-ci.sensorlab.tno.nl/builds/powermatcher-documentation/master/html/
5 http://www.kaikreuzer.de/about/

36

2 Fundamentals

home automation technologies are currently capable of being integrated into
openHAB, e.g. KNX, HomeMatic system, Philips Hue Lighting system, etc.

OpenHAB runs on top of OSGi runtime, which allows modular compo-
nents (bundles) in a system to be dynamically managed. The core service
provided by openHAB is the Event Bus (cf. Figure 2.9) which acts as a
communication channel between openHAB services and external systems
(e.g. household devices). To enable the interoperability, the external sy-
stems connect to the Event Bus via their respective Bindings, which are
essentially OSGi bundles and function as adapters, which ’hide’ the techni-
cal details of the external systems from the openHAB. Bindings constantly
update the current states of their underlying devices or systems to the Event
Bus and receive commands sent by the openHAB services (e.g. the automa-
tion logic or the user interface) via the Event Bus and then translate them
into the specific commands to control the corresponding devices or systems.

Figure 2.9: The communication mechanism of openHAB [20]

37

2 Fundamentals

The capabilities of household devices and external services (e.g. weather
forecast) are abstracted as so-called Items which are basic data models used
by the automation logic and the user interface of openHAB. So far, a set
of Item types including Color, Contact, DateTime, Dimmer, Group, Image,
Location, Number, Player, Rollershutter, String and Switch are available
in openHAB. In the case of complicated conditions, these atomic function
units can be organized together to form Group Items which can be displayed
as single entries in the user interface of openHAB. One example could be
defining a living room as a Group Item to harbour other Number items or
device Items such as Dimmers, Rollershutters, etc. The openHAB Reposi-
tory which connects to the Event Bus, on the one hand, keeps track of the
states of all of the Items and, on the other hand, forwards the commands of
changing the state of Items from the user interface or the automation logic
to the Event Bus.

Besides Items, which are the abstract representations of the functionali-
ties used by the applications, the external physical entities that can be added
to the system, such as household devices, web services and sources of in-
formation, are abstracted into so-called Things by openHAB. A Thing can
potentially provide many functionalities at once, and each of the functio-
nalities can be represented by a specific Channel. Therefore, a Thing is
composed of one or more Channels, which on the other side link to Items,
so that a Thing can react on events sent for an Item that is linked to one of its
Channels, and likewise, it can also actively send out events for Items linked
to its Channels [4]. Things connect to the Event Bus via their correspon-
ding Bindings, which could also implement discovery services, so that the
Things in a building can be automatically discovered once they are available
to the system.

As a generic home automation solution, openHAB allows developers to
define Rules for automation processes, e.g. roll down the roller shutter at a
certain time in the evening. Rules are texts written in a certain syntax defi-

38

2 Fundamentals

ned by openHAB. As with Items, Rules are defined in textual configuration
files. The Rules and Items can be built by means of the Eclipse SmartHome
Designer, which is a special editor provided by openHAB for the purpose of
building Rules and Items. So far, Rules in openHAB can only be defined by
manually editing text files. A graphical user interface that can replace the
textual configuration has not yet been developed. This means, that users are
required to have some programming knowledge in order to be able to use
the system. The Rules will start working after being triggered. OpenHAB
provides users with four kinds of Rule triggers, namely, Item-based trig-
gers, Time-based triggers, System-based triggers and Thing-based triggers,
and they can be used to react to different conditions. The interpretation and
execution of Rules is taken care of by an integrated rule engine of openHAB.

To enable system configuration and interaction with users, openHAB of-
fers a setup and administration user interface and several user interface alter-
natives for data visualization and home automation. Except for the adminis-
trative user interface, whose content has been pre-determined by openHAB,
all other user interfaces can be freely customized to suite the actual situation
in different buildings or the different needs of users. This can be achieved by
constructing so-called sitemaps which are essentially text files in which the
structure of the user interface and the elements that need to be displayed can
be defined. A detailed description of these user interfaces and the sitemaps
can be found in Chapter 3.

Due to its flexibility, extendibility and customizability, openHAB has in-
creasingly attracted attention and won many awards (e.g. the Duke’s Choice
Award 2013 at JavaOne and the People’s Choice Winner at the post Capes
IoT Awards 2014/15) in recent years, which reflects its popularity and in-
fluence in the field of home automation. However, just as described on its
website, openHAB is not a commercial off-the-shelf product that customers
can merely plug in and use. It always requires its users to set up the system
before implementation, and many system configurations (e.g. definitions

39

2 Fundamentals

about Items, Rules and sitemaps) can only be done by editing textual con-
figuration files, which requires certain programming skills. This is a major
drawback for laypeople and novice users, who therefore need to be excluded
from the target audience of openHAB.

2.2.3 Open Gateway Energy MAnagement (OGEMA)

OGEMA (Open Gateway Energy MAnagement) is a building operating sy-
stem that provides a common execution environment and a manufacturer-
and hardware-independent platform that not only allows to deploy various
smart home applications on it, but also supports connections of a variety
of devices from different vendors in order to realize building automation
and energy management. Its frame architecture is shown in Figure 2.10.
OGEMA is being developed in the project "OGEMA 2.0" by three leading
Institutes in Germany (Fraunhofer IEE, Fraunhofer IIS and Fraunhofer ISE)
within the context of the German and European "Energiewende".

Figure 2.10: Framework architecture of OEGMA [17]

The OGEMA framework is Java-based and runs on top of an OSGi fra-
mework, which enables components and services in OGEMA to be dynami-

40

2 Fundamentals

cally loaded and updated. Within a smart building environment, OGEMA
works as an operating system, which on one hand, comes with a set of com-
munication drivers (e.g. drivers for KNX, Z-Wave, etc.) that hide the phy-
sical realization of protocol connections so that all kinds of devices from
different manufacturers can be integrated into the system, and, on the other
hand, provide generic and flexible data models which can be considered as a
hardware abstraction layer for various smart building applications deployed
on the framework. Besides this, OGEMA offers a variety of services such
as resource administration, access control, web interface, etc. for the appli-
cations running on it, in order to ensure the security and practicability of the
system.

In OGEMA, all kinds of states, parameters and communication data are
represented as so-called Resources, and all of the Resources in OGEMA
form the nodes of a tree-like structure called the Resource graph, which
can represent the current state of the whole system. In spite of having a
tree structure, the concept of the Resource graph in OGEMA is different
from the traditional resource trees, because a branch of an OGEMA Re-
source tree can be shared by other OGEMA Resource trees via references,
so that this can lead to multiple paths that can possibly be traced to a Re-
source. When it comes to the location of Resources, paths with references
are excluded from the scope of consideration, which means that only the
path that does not contain a reference is the location of a Resource. Figure
2.11 shows an exemplary Resource graph in OGEMA where both "My-
Building/LivingRoom/AirConditioner/ TemperatureSensor" and "MyBuil-
ding/BedRoom/AirConditioner/TemperatureSensor" are paths of the tempe-
rature sensor of the air conditioner, when starting from the top-level resource
"MyBuilding". However, only the first path is the location of the sensor re-
source.

The Resources provided by OGEMA can be classified into four catego-
ries. They are: Value Resource, which contains actual values, Schedule,

41

2 Fundamentals

Figure 2.11: An exemplary Resource graph in OEGMA

which represents time series, Resource List, which is a collection of Re-
sources, and Complex Resource, which is made up of some sub-resources
and may represent a physical device, a connection, a data container or some
configuration settings. The Resources in OGEMA can be monitored by ad-
ding different types of event listeners on the Resource graph. For instance,
a Resource Demand Listener can be used to monitor the state of a certain
Resource type. Once a Resource of the respective type is activated or de-
activated, a callback function will be invoked [18]. A Resource Structure
Listener informs about the structural change of a certain resource. A Re-
source Change Listener keeps track of the value or the time series of an
individual resource. It is because of all these ’listeners’ that the applications
deployed in the OGEMA framework can be informed about state changes of

42

2 Fundamentals

the current system in real time and can then initiate corresponding measures
for them.

To ensure the security of the system, OGEMA introduces three diffe-
rent roles, namely, the natural user, the machine user and the framework
administrator, in order to implement permissions management. The natu-
ral user has access to web resources (e.g. the installed applications) within
their permissions via a web user interface. The machine user is mostly used
for applications which are assigned certain permissions to perform access
to the REpresentational State Transfer (REST) interfaces provided by the
OGEMA framework. The framework administrator is an extended form
of the natural user who has all of the permissions to create users, view
a Resource graph, manage applications and configure the loggers for the
OGEMA system. The natural user and the machine user have to be assigned
permissions by the framework administrator in order to be able to access the
system. The permissions for the two kinds of users are, however, different.
For the natural user, the permissions are related to the user interface access,
whereas, the permissions assigned to the machine user are about resource
access. All the permissions that are defined in the OGEMA framework to
control the access to Resources are listed in Table 2.2.

The OGEMA framework comes with a set of abstract data models to des-
cribe all kinds of Resources in smart buildings. The most basic data mo-
dels, from which all other data models are derived, are Configuration, Con-
nection, PhysicalElement and Data. Among them, PhysicalElement is the
most important prototype since it can be extended to represent all physical
objects in a building, including different kinds of sensors, actors, house-
hold devices, rooms and buildings. Inherited from PhysicalElement, a great
variety of device models, ranging from simple sensor or actor devices to
complex devices, such as white goods, Electric Vehicles and energy storage
devices etc., are provided by the OGEMA framework.

43

2 Fundamentals

Table 2.2: The permissions that are defined in the OGEMA framework [19]

Permission
Name

Description Filters Actions

Resource
Permission

Restrict access of
machine users to
Resources.

Path: The path infor-
mation of a resource
instance.
Type: The full name
of the type definition
class of a resource.

CREATE: Create a re-
source in a path with a
type. ADDSUB: Add
a sub resource to a re-
source. READ: Read
a resource. WRITE:
Write a resource. DE-
LETE: Delete a re-
source. ACTIVITY:
Change the active status
of a Resource.

Channel
Permission

Restrict access
of applications
to the low le-
vel driver (bus
driver).

Busid: The address
of the local interface
the device is con-
nected. Devaddr:
The address of a de-
vice. Chaddr: The
address of a channel.

READ: Read the regis-
ters. WRITE: Write the
registers. DELETE:
Delete an existing chan-
nel.

Admin Per-
mission

Used to distribute
administrative
rights to the users
and application
of the system.

No filters. USER: Installing users,
and removing them, de-
finition of their access
rights. APP: Installing
applications, restricting
their rights, and remo-
ving them. SYSTEM:
Configuring the system
settings (e.g. logger set-
tings).

WebAccess
Permission

a. Restrict access
of applications to
the servlets re-
gistered by other
applications. b.
Grant users rights
to access registe-
red applications

Name: Symbolic
name of the bundle
associated with the
application to be
accessed. Version:
Version or version
range of the applica-
tion.

No actions.

Furthermore, OGEMA is equipped with a flexible web-based user inter-
face framework, where application developers are allowed to design the user

44

2 Fundamentals

interface for their applications. The user interfaces of installed applications
can easily be integrated into the OGEMA web user interface, in the form of
widgets. A detailed description of the working mechanism of the OGEMA
user interface can be found in Chapter 3.

2.2.4 Organic Smart Home (OSH)

The Organic Smart Home (OSH) is a building operating system that was
designed as an organic computer system based on the concept of Organic
Computing (OC). OC is a form of nature-inspired computing with a series
of life-like (organic) properties. An organic system is a self-organized sy-
stem that is adaptive and robust and possesses various self-x properties (e.g.
self-aware, self-optimizing, self-healing, etc.), and yet maintains its trust-
worthiness and controllability for a human user. Compared with autonomic
computing systems such as the MAPE-K, developed by IBM, organic com-
puting systems are not completely self-organized but rather put emphasis
on the interaction with human users and the need for respecting the users’
needs. In so doing, the systems are able to adapt robustly to dynamically
changing environments without getting out of control. The architecture of
organic computing systems is Observer/Controller-based, which is shown in
Figure 2.12.

An organic system is usually composed of three essential parts. SuOC
is the acronym for System under Observation and Control and refers to the
complex system that consists of a set of interacting agents/robots/entities.
The SuOC can, on the one hand, receive input values from the external en-
vironment and, on the other hand, output some values that can be accessed
by its outside entities. The system objective is to adapt dynamically to the
external changing environment and so maintain some desired behavior. The
’Observer’ is a component that monitors, processes, analyses and predicts
the status of the SuOC by looking at certain system parameters. The obser-

45

2 Fundamentals

Figure 2.12: Observer/Controller architecture of the organic system [86]

ver reports information about the current and predicted status of the SuOC
to the controller, which is then responsible for taking the most appropri-
ate action to influence the SuOC in such a way that the desired behavior is
achieved or an undesired emergent behavior can be disrupted. The process
in which the controller selects the best action that it needs to take in order
to control the SuOC, is influenced by the human user, since she is able to
observe the status of the SuOC and define system goals which need to be
achieved by the controller.

Smart homes that contain a variety of interacting devices and needs,
which are to remain under the control of residents, are a typical environ-
ment that is well suited to be managed by the solution of organic computing.
Thus the OSH is such an organic system, which has been designed to have

46

2 Fundamentals

a hierarchical Observer/Controller architecture (cf. Figure 2.13). All kinds
of in-home appliances, batteries, sensors, smart meters and gateway devices
constitute the SuOC whose goals are specified by the owner of smart homes.

Figure 2.13: Architecture of the Organic Smart Home [83]

Due to the heterogeneity of data formats, interfaces, supported pro-
tocols of various devices from different vendors, a hardware abstraction
layer which contains corresponding device drivers of the household devi-
ces, needs to be added to the SuOC in order to expose the functions of the
devices by converting their proprietary data schemes into unified abstracti-
ons.

In the architecture of the OSH, there are two Observer/Controller (O/C)
layers. The first O/C layer is a device management layer which consists of
local O/C-units of in-home devices. Every device is equipped with a local

47

2 Fundamentals

observer to monitor and characterize its current states and a local control-
ler to receive instructions from the upper layer and control the device by
sending commands to the device driver, so as to realize the management
of the device status. The second O/C layer is the global optimization layer
which consists of a global observer and a global controller. In order to rea-
lize unified global optimization, a specific sub-problem is defined for every
device, by constructing abstract ’Problem Parts’, which can be generically
used in the global optimization of the building [39]. Every ’Problem Part’
consists of three components, a Bit Vector, an Evaluation Function and a
Back Transformation Function. The Bit Vector stores the current solution
(e.g. a starting time of a device) which is encoded to a bit string of a speci-
fic length. The Evaluation Function returns the expected load profile of the
household device, having the instance of the Bit Vector as input. The Back
Transformation function re-transforms the abstract Bit Vector into a con-
crete solution (e.g. a starting time that can be understood by the household
device) for the sub-problem. In the following example, a washing machine
is used to explain how the Problem Part works in the OSH.

Scenario description: A washing machine has been set by a resident. It is

allowed to start running at 2 p.m. and it has to finish the laundry by 5 p.m.

The whole washing process will last 30 minutes.

Solution in OSH: The washing machine’s degree of freedom at this mo-

ment is 150 minutes (2 p.m. - 4:30 p.m.). Assume that the time resolution is

one minute, so 8 bits (28 = 256> 150) are needed for the Bit Vector whose

value is the time shifts into the future. Assume that the specific instance of

the Bit Vector coming from the optimizer is 00010011 (its corresponding de-

cimal value is 19). By handing the Bit Vector to the Evaluation Function,

the Evaluation Function will output the resulting load profile of the washing

machine. The Back Transformation Function will calculate the starting time

for the washing machine, which is 2:19 p.m. (2 p.m. + 19 minutes).

48

2 Fundamentals

After the Problem Part of each device has been constructed by local O/C-
units, it is sent to the second O/C layer - the integrated optimization layer,
which contains a global O/C-unit consisting of a global observer and a glo-
bal controller. The global observer assimilates all of the information coming
from the local O/C-units and predicts the future system’s status. The global
controller receives data from the global observer and optimizes the running
schedule for all devices in the smart home by learning and controlling the
system to achieve the desired behavior.

The global controller realizes the global optimization by using an evoluti-
onary algorithm, whose basic process is shown in Figure 2.14. The starting
point of an evolutionary algorithm is to generate an initial population, which
is a set of individuals. Each individual is a possible solution encoded in a
genotype which, in OSH, is represented by connecting the potential bit vec-
tor of each device into the whole. Before starting to optimize, the global
O/C-unit randomly generates a group of individuals as the initial popula-
tion. After that, each individual enters into the evaluation process, which
will evaluate the global schedules of household devices, i.e., using the dif-
ferent individuals in the population. During the evaluation, each individual
needs to be split up into isolated bit vectors for devices. The load profiles of
each device will be generated by inputting every Bit Vector to its correspon-
ding Evaluation Function in the device’s Problem Part. The load profiles of
all devices will then be combined together so that a global load profile for
the whole building will be created. By considering the external signals and
the residents’ preferences, a so-called fitness value of the individual which
represents the quality with respect to the objective function, will be calcula-
ted. If the fitness values of all the individuals in the population are not good
enough, an evolutionary iteration will be initiated. Firstly, based on a certain
selection mechanism, some individuals will be selected as parents for later
breeding. In the stage of recombination, one or more offspring will be ge-
nerated according to different survival schemes. With a certain probability,

49

2 Fundamentals

some mutations i.e., random changes might occur during recombination be-
tween two parents, so that one or more gene values in their offspring will
be altered. After recombination and mutation, a new population will be ge-
nerated. The individuals in this new population will then enter the process
of evaluation once more, just like the initial population did. The iteration
process will continue until certain stopping criteria are satisfied. This could
happen, when a fitness level has been reached, or a maximum number of
generations have been reached, or if there have been no improvements over
a certain number of iterations. After jumping out of the iteration loop, the
global O/C-unit will choose the individual with the highest fitness value as
the currently best solution of the whole building.

Figure 2.14: The general process of an evolutionary algorithm

The individual generated by the evolutionary algorithm needs to be split
up into a number of separated bit vectors for household devices. After being
decoded by the back transformation function of the Problem Part of each
device, a specific starting time for each device will be generated and sent to
its corresponding local O/C-unit, which will further realize the control of the
device. Over and above this, the schedule of each device can be interrupted

50

2 Fundamentals

and rewritten any time by residents according to their wishes, since the OSH
puts priority on respecting the needs of the residents in their smart home.

Between the global O/C layer and external entities such as energy utilities
and the user, there is a communication abstraction layer which contains a
group of communication drivers whose purpose is to decouple the OSH from
the external entities.

To date, the OSH has been deployed on two real buildings - the Energy
Smart Home Lab6 at the Karlsruhe Institute of Technology, and the House
of Living Labs7 at the FZI (a research center of computer science). Af-
ter several years of practice testing, the OSH showed its great potential in
providing optimized running schedules for household devices in terms of
realizing load shifting and reducing the energy costs.

2.3 A Brief History of Graphical User Interfaces

Since 1962, when the Spacewar, which is the first graphical computer video
game, was invented, the evolution of graphical user interfaces has progres-
sed rapidly. It is worth taking a look at the history of user interface design
in order to see whether any kinds of trends and patterns of the past might
still be helpful in informing today’s practice. Unfortunately, software de-
signers who have not understood history and past developments, have often
found themselves falling into the same traps and repeating history, but of-
ten at much higher costs and lower productivity than the first time around
[95]. Just like the continuous development of hardware and Internet techno-
logies, graphical user interfaces have undergone three stages of evolution,
namely, desktop user interfaces, web user interfaces and mobile device user
interfaces.

6 https://www.aifb.kit.edu/web/Energy_Smart_Home_Lab
7 https://www.fzi.de/forschung/fzi-house-of-living-labs/

51

2 Fundamentals

The programs of computers of the era of batch computing received input
information in the form of punched cards. Due to limited computing po-
wer, the response time of a normal task was extremely long. As a result, a
user interface at that time was considered to be a burden and an unnecessary
expense. Until the 1960s, the advent of Command Line Interfaces (CLIs)
dramatically improved the situation by reducing the latency from hours to
seconds. The interaction model of CLIs was a series of request-response
transactions, with requests expressed as textual commands in a specialized
vocabulary [95]. However, the disadvantage was, that users needed to re-
member a large number of commands and parameters in order to be able to
complete tasks.

In the 1970s, researchers at Xerox Palo Alto Research Center (Xerox
PARC) developed the first graphical user interface based on WIMP (Win-
dows, Icons, Menus, Pointers) paradigm that is still used today. The first
personal computer that was equipped with a graphical user interface was
named Apple Lisa and was developed by the Apple company in 1983. Ap-
ple Lisa introduced drop-down menus which were missing in prior systems
(e.g. Xerox Alto). However, the user interface of Apple Lisa did not have
color and, lacked the pseudo-3D sculptural effects of modern graphical user
interface buttons as well as other impedimenta [95]. The Apple Lisa even-
tually turned out to be commercially unsuccessful. In the subsequent year,
Apple released the Macintosh on the market. Being a major focus of the
overall goal of the new product, the graphical user interface of Apple Ma-
cintosh has all three main components of a graphical user interface today,
i.e., the windowing system, an imaging model, and an API [74]. So, Macin-
tosh had a great impact on the design of subsequent user interfaces. Even
today, the Apple Human Interface Guidelines are still recommended reading
for anyone desiring to develop good graphical user interfaces [95].

Microsoft tried to release WIMP-based graphical user interfaces since
1985. However, their user interfaces were not successful until Windows

52

2 Fundamentals

3.1 was released in 1992. Responsiveness to customer feedback, saturation
marketing, and the steadily rising resolution of color screens, helped make
Windows 3.1 a huge success [95], and from then on, Microsoft released the
Windows 9x series, Windows 2000, Windows XP, Windows 7, Windows 8,
and Windows 10 in succession, which occupied the market dominance of
desktop user interfaces.

By upgrading of the version of operating systems, user interfaces are
also constantly evolving to meet the direction of the consumers’ needs. In
the past two decades, desktop user interfaces have shifted from the initial
stage of having only a limited number of black-and-white and crude com-
ponents, to a transitional stage in which three-dimensional (3D) effects (e.g.
shadows, gradients, highlights, etc. in Windows 9x series) and skeuomor-
phism (e.g. Apple’s dashboard design), which mimics the behavior of real-
world objects, were popular. However, as the amount of digital informa-
tion has been expanding and diversifying over the years, the pseudo-3D and
skeuomorphism user interfaces were gradually abandoned because of the
distraction and cognitive load they brought to users.

As a takeover, the flat design, which is tailored to fit an on-screen expe-
rience, as opposed to earlier styles, which were made to mimic a physical
experience, has been growing in popularity in recent years [54]. In order to
achieve the purpose of rapid transmission of information, the redundant, he-
avy and complex decorative effects have been removed from the flat design.
In terms of design elements, it emphasizes abstraction, minimization and
symbolization so that "information" itself can be highlighted as the core for
users. Microsoft started to introduce the flat design principles in its release
of the operating system Windows 8, which was equipped with a stripped-
down user interface that is flat and without frills.

The web user interface normally refers to web pages, which are made up
of a set of HTML tags that determine the pages’ display in a browser. Its
history can be traced back to 1993, when the World Wide Web (WWW)

53

2 Fundamentals

started growing and the Internet Engineering Task Force (IETF) published
a draft of Hypertext Markup Language (HTML). The web pages in those
days were simple and static and offered no interaction with users, which
mean that, the content delivered by the pages was the same for every visitor.
In 1995, the HTML 2.0 specification was published. Web user interfaces
at that time already had the strong capability of static display. The year
1997 marks a milestone in the development of HTML, since HTML 3.2 and
HTML 4.0 were published in succession as a World Wide Web Consortium
(W3C) Recommendation. Powered by the scripting language - JavaScript
and Cascading Style Sheets (CSS), the web user interfaces at that time were
already able to interact with users to dynamically modify page elements and
adjust style properties so as to realize the dynamic HTML (DHTML) pages.
Nevertheless, DHTML gradually faded away and, due to the lack of unified
standards, was replaced by many different advanced technologies.

As a new version of WWW, the concept of Web 2.0, which emphasizes
user-generated content, usability and interoperability for end users, was po-
pularized in 2004 [34]. Since then, WWW has entered a more open and
interactive phase in which content can be read and written by users. The
Asynchronous JavaScript and XML (AJAX) is an important technology that
is associated with Web 2.0. Instead of the synchronized interaction in traditi-
onal Web user interfaces, AJAX has implemented asynchronous interaction
between browsers and servers with the help of the asynchronous JavaScript.
For example, requests generated by a Web page can be sent to the server
without reloading the entire page. In 2014, HTML 5 was released as a W3C
Recommendation to replace the previous version HTML 4.01 and XHTML
1.0 standards, set up in 1999. Compared to the previous versions, HTML 5
was designed specifically to support multimedia on mobile devices. To this
end, new elements and attributes that can change the way in which users in-
teract with documents were introduced into the HTML 5 specification. This
plays an important role in the user interface design of recent years, since the

54

2 Fundamentals

number of mobile devices (e.g. smart phones, tablets, etc.) keeps increasing
in people’s daily lives.

Unlike traditional computers or laptops, mobile devices usually have
small touch-sensitive screens, whose user interfaces, nevertheless, need to
transmit the same amount of information to users, as those of computers
and laptops. Therefore, the visual style, navigation and layout of content of
mobile user interfaces needs to be designed, keeping special considerations
in mind. In order to avoid the unnecessary effort of developing multiple
versions of user interfaces for different kinds of devices, a new design ap-
proach, based on HTML 5 and CSS3, named responsive design, has become
popularized recently to create responsive user interfaces, whose layouts can
automatically adapt to different screen sizes. Over the last few years, a
variety of front-end frameworks which adhere to responsive design stan-
dards have emerged, while, at the same time, new ones continue to emerge
constantly.

In order to help create user interfaces which have a more consistent look
and feel for mobile phones, tablets, desktops and other platforms, Google
released a new cross-platform and cross-terminal design language, named
Material Design, at the 2014 Google I/O conference. Material Design ma-
kes more liberal use of grid-based layouts, responsive animations and tran-
sitions, padding, and depth effects such as lighting and shadows [14]. A set
of material components can be used to create a consistent development en-
vironment for applications and websites across various platforms (e.g. An-
droid, iOS or operating systems of personal computers). So far, Google’s
Material Design has been implemented in many modern front-end frame-
works such as Materialize and AngularJS, which can help to create web
user interfaces that comply with the latest web standards.

In conclusion, in terms of appearance, the evolution of graphical user
interfaces has gone through a process of moving from primary crudity to
medium-term 3D effects and skeuomorphism and then onto today’s flat de-

55

2 Fundamentals

sign. From the point of view of media, graphical user interfaces have moved
from desktop to web and, now to mobile devices. Consequently, the design
philosophy has also had to change from the previously fixed-size layout,
to the responsive design today. All of these evolutionary processes reflect
people’s ever-changing needs for user interfaces over the different epochs.
However, no matter how user interfaces have developed in the past, present
or will develop in the future, they all have the same common goal of trans-
mitting information to users. How to deliver information efficiently and
effectively to users in a satisfactory manner is always a core issue that needs
to be considered by user interface designers.

2.4 Principles for User Interfaces Design

“Design principles can guide the designer during the design pro-

cess and can be used to evaluate and critique prototype design

ideas.”

– David Benyon, Designing Interactive Systems

Instead of moving directly into user interfaces that are applied to building
operating systems only, it makes more sense to firstly focus on basic design
principles for general user interfaces, which are applicable to user interfaces
for all kinds of systems. In order to ensure that the final user interface can be
used by its target users in an effective, efficient and comfortable way, it is in-
dispensable to introduce some basic principles that are to be followed during
the design process. Unlike user interface design guidelines, which are more
specific and usually intend to guide design details at lower level, e.g. rules
for organizing buttons, the design principles laid out in this section consist
of more general, fundamental statements that give advice on user interface
design issues and problems. Although generally accepted principles for user
interface design have not been made available yet, some work has been done

56

2 Fundamentals

toward that end [103]. For instance, Schneiderman et al. (1987) described
the eight golden rules of interface design. Nielsen (1993) developed ten ge-
neral principles, which are called heuristics, for interaction design. Mandel
(1997) proposed his golden rules for user interface design. This section will
review these principles as well as other principles which have appeared in
different literature and articles on the Internet.

• Know the target user

“When given the choice between obsessing over competitors or

customers, always obsess over customers. Start with customers

and work backward.”

– Jeff Bezos, Three Things I Know

As implied by the literal meaning, user interfaces are meant to serve
users. Successful user interfaces should be user-centered, which me-
ans their design should always revolve around the needs of their target
users. It is not uncommon to find literature which places emphasis on
the importance of users in the process of user interface design. For
instance, Dayton et al. (1997) presented a Bridge methodology with
three steps, to map the user requirements to the final graphical user in-
terface design. Lewis et al. (1993) came up with a task-centered user
interface design, which emphasizes knowing users and their tasks.

Since the user interface is designed for users, knowing target users
including knowing their goals, their expectations, their habits, their
skill levels, their limitations, etc. is the most basic principle for desig-
ning a good user interface. A versatile and fancy-looking user inter-
face with abundant features, which are, however, not what its target
users need, is most certainly of no value. Good interfaces have to pro-
vide functionalities to satisfy the users’ needs, whilst at the same time
ensuring that, the functionalities can be naturally utilized by users

57

2 Fundamentals

without difficulty or confusion. The best interface is one that is not
noticed, and one that permits the user to focus on the information and
tasks at hand, instead of on the mechanisms used to present the in-
formation and to perform the task [65]. To achieve this goal, what
firstly needs to be done, is to know the target users, to then identify
the tasks that have to be carried out by different users, and lastly to es-
tablish appropriate solutions to allow users to accomplish these tasks
as easily as possible.

• Keep users in control

When using a user interface, users feel comfortable and confident if
they are able to be in control of the user interface and also get ex-
pected responses from it, rather than having to passively accept fea-
tures etc., which have been pre-set in the user interface. However, it
would equally become very cumbersome for users if user interfaces
required them to perform every tedious task manually. Thus a trade-
off has to be made to ensure that the user interface is smart enough
to understand the users’ needs and automate some routine tasks so
as to help relieve the burden on users as much as possible, whilst, at
the same time, still giving users the feeling that the user interface is
under their control, by allowing them a satisfactory degree of control
freedom.

One way to keep users in control is to allow them to customize their
user interface. Users feel more comfortable and in control of the in-
terface for their desktop if they can personalize it with their favourite
colours, patterns, fonts, and background graphics [82]. A good user
interface should not force users to have to adapt to what the interface
offers, but it should provide users with possibilities of setting their
own preferences toward their most natural interaction style.

58

2 Fundamentals

Configurability could be another feature of the user interface, which
allows users to stay in control. Users have different levels of skills as
well as different needs. Thus the user interface needs to be flexible
so that users will be able to configure what should be displayed in the
user interface according to their individual wishes, instead of assu-
ming that ’one fits all’. For instance, novices or basic users, who do
not have so much knowledge of the system, may not be interested in or
might even feel overwhelmed if the many advanced options which are
frequently used by professional users, appeared in the user interface.
In this case, users will feel more comfortable if they can configure the
user interface by choosing different roles which determine different
display modes or directly choose the content to display based on their
interests.

To give users more control, Mandel (1997), in his book "The Ele-
ments of User Interface Design", recommended allowing users to di-
rectly manipulate interface objects. Wherever possible, encourage
users to directly interact with objects on the screen, rather than using
indirect methods, such as typing commands or selecting from menus
[82]. Schneiderman et al. (2009), in the book "Designing the user in-
terface", gave a comparative overview of five primary interaction sty-
les, including direct manipulation, menu selection, form fill-in, com-
mand language and natural language. Each of them has advantages
and disadvantages. They can be used alone or combined together in
different scenarios or for different target users. For example, direct
manipulation is appealing to novices, since tasks can be simplified
by directly manipulating their familiar interface objects. However,
command languages provide a strong feeling of being in control for
frequent users, since they learn the syntax and can often express com-
plex possibilities rapidly [101].

59

2 Fundamentals

In addition, constant and consistent feedback will also enhance the
feeling of control [48]. Users feel clear and confident when they are
always informed of what will happen before they start an action, and
of what has happened, after they have completed the action, by recei-
ving timely and informative feedback in their familiar and understan-
dable language, instead of in machine or developer language. A good
user interface should also be forgiving to mistakes made by users and
provide solutions e.g. reversible actions to help users recover from an
undesired system state.

• Prevent errors

“As much as possible, design the system such that users cannot

make serious errors.”

– Ben Schneiderman, Designing the user interface

Making errors is a part of being human. It is inevitable for users to
make various errors in the process of interacting with the user inter-
face. Better than providing solutions to recover the system after errors
have been made, the best way to reduce loss brought by errors is to
prevent errors from occurring in the first place. Don Norman in his
book "The design of everyday things", presented two types of errors:
slips and mistakes, which represent unconscious errors caused by ca-
relessness or lack of caution on the behalf of users, and conscious er-
rors, caused by wrong judgements or decisions made by users. Page
Laubheimer8, who is a User Experience Specialist in Nielsen Norman
Group9, wrote a few articles which elaborate on how to prevent user
slips and mistakes in the user interface design. The following para-
graph will present some strategies, which have been collected from

8 https://www.nngroup.com/articles/author/page-laubheimer
9 https://www.nngroup.com

60

2 Fundamentals

these articles, that can help to prevent both slips and conscious mista-
kes.

Since slips usually happen accidentally as a result of users giving
too little attention to the task at hand, one efficient way of avoiding
slips is by including helpful constraints in the user interface, e.g. disa-
bling inappropriate options. In so doing, the users’ choices are limited
within the range of acceptable values so that unnecessary slips can be
avoided. Besides this, providing suggestions is also a helpful way of
preventing some slips. For human beings, it is always easier to recog-
nize than to recall information since more cues are included during
recognition. Reasonable suggestions on hand e.g. search suggesti-
ons or good defaults, provide cues for users so that they are able to
recognize the useful information they want, instead of providing bot-
hering to recall everything on their own, which is, on one hand, time
and energy consuming, and, on the other hand, easily prone to er-
ror in most cases. Using user-friendly forgiving formatting is another
way to prevent user slips whenever information needs to be entered
by users in a specific format, e.g. formatting phone numbers into a
natural style for users to check by adding spaces, parentheses, or hyp-
hens.

To avoid conscious mistakes, Page Laubheimer suggested gather-
ing user data to identify specific gaps between the users’ mental mo-
dels and the designers’ mental models10. Using some methods such
as contextual inquiry, field studies, and ethnographic studies which
are able to figure out the users’ mental models and expectations, de-
signers could then be made aware of corresponding mistakes and take
corresponding measures to prevent these from occurring. Some other
strategies, like using standard design conventions, having the design

10 https://www.nngroup.com/articles/user-mistakes

61

2 Fundamentals

communicate how it can be used, or showing preview results, are also
helpful in avoiding conscious mistakes of users.

There are some more guidelines that can be utilized to prevent both
slips and mistakes, including removing memory burdens, which could
be done by providing suggestions or default values as aforementio-
ned, requesting confirmation before destructive actions, thus allowing
users to double-check their actions, and through supporting undo and
warning before errors are made.

Besides these strategies, Schneiderman (2009) suggested using the
design technique of completing sequences in order to reduce user er-
rors for those actions, in which a number of steps need to be com-
pleted. Compared to asking users to achieve their goal via a step by
step action, it is more reasonable and not as error-prone to integrate a
sequence of those steps into a single action, provided that it is feasible
to combine these actions in the user interface so that the errors which
could have occurred in each step can be eliminated.

What is more, when errors inevitably occur, it is always essential
for the user interface to provide informative and constructive error
messages, which are helpful for users in order to raise the success
rates in repairing the errors, to lower future error rates, and to increase
subjective satisfaction (Schneiderman, 1982).

• Minimize memorization

The human brain is not always good at memorizing, so that a good
user interface should help users to relieve their memory load. This
goal can be achieved by splitting it into two sub goals: minimizing
short-term memory and minimizing long-term memory.

62

2 Fundamentals

Users may always be interrupted while in the middle of a process,
either by some unexpected incident, e.g. phone call, email, etc. or
by another task that they might be working on in parallel. Therefore,
it is difficult for users to track and memorize the information in the
user interface from the last screen to the next one, and a user interface
should thus not force users to do so. Computers are great at storing
information, but humans not. Good user interfaces should help users
to store necessary information that might be needed at a later stage
and automatically transfer this information to the users whenever and
wherever the information needs to be entered again to relieve users’
short-term memory burden. For example, instead of asking users for
the data that they have provided before, the user interface should store
the previous data and retrieve it for users, as soon as it is needed again
and, in addition to this, provide possibilities for users to modify the
previous data. This is such a simple interface principle, but one that
is often neglected [82].

User interfaces should also support the long-term memory retrie-
val of users, by providing them with options which can be recogni-
zed rather than leaving the user to recall the information without cues
[82]. Budiu (2014) in her article "Memory Recognition and Recall in
User Interfaces", analyzed how the human memory works and why
recognition is better than recall. To promote recognition in user inter-
faces, she suggested making information and interface functions vi-
sible, intuitive and easy to remember. For instance, providing access
to history and previously visited content can help users to quickly re-
member their previous tasks without the strain of having to recall this
information themselves. Visible and intuitive interface elements e.g.
buttons and menus in the graphical user interface are able to relieve
the burden of user recall, resulting from command-line interfaces. In-
dividual tips appearing at the appropriate position at the right time in

63

2 Fundamentals

the user interface can be accepted more easily than a long intensive
tutorial, which, in most cases, can usually not to be kept in the users’
memory for a longer period of time.

Beside the aforementioned principles, Mandel (1997) proposed
some other principles to reduce the users’ memory load, such as
providing visual cues, e.g. different indicators to show users where
they are, what they are doing and what they can do next, providing
interface shortcuts to shorten the number of keystrokes or mouse acti-
ons, and using real-world metaphors to transfer knowledge about how
things should look and work, etc.

• Make the user interface consistent

An important goal for designers is a consistent user interface [101].
Consistent user interfaces are easy to learn and to use, because, on
one hand, users can apply their previously accumulated knowledge
about how to work with the user interface to the new functionalities
and, on the other hand, the consistent user interface makes the user
confident to explore since users will not worry about being startled
by unexpected consequences from the user interface that are contrary
to their previous experience. When it comes to interface consistency,
both conceptual consistency and physical consistency are important
[48].

Conceptual consistency relates to the consistent conceptual model
of the user interface. The conceptual model is a logic model which has
nothing to do with the physical implementation of the user interface.
It includes the intrinsic objects from the task environment of the user,
the relationships among the objects, and the operations possible in or-
der to manipulate the objects[100]. Conceptual consistency ensures
the mappings are consistent and the conceptual model remains clear.
This involves being consistent both internally within the system and

64

2 Fundamentals

externally as the system relates to its outside environment (Benyon,
2014). Satzinger (1998) did an empirical research to test the effects
of conceptual consistency across applications on the end user’s men-
tal models, by conducting an experiment. Some evidence was found
during the experiment that indicates that more accurate mental mo-
dels might be developed when conceptual models are inconsistent.
As a result, the author urged designers not only to simply focus on
improving interface consistency but also to attach importance to de-
sign guidelines in order to make the user interface easy to learn and
use, even at the expense of consistency.

Physical consistency relates to the physical implementation of the
user interface. It can be analysed from two aspects: consistency in
presentation and consistency in behaviour. Consistency in presenta-
tion means that users should see information and objects in the same
logical, visual, or physical way throughout the product [82]. Interface
elements like buttons, menus, icons, etc. should have a consistent
style, layout, name, color scheme, etc. throughout the whole user in-
terface. Inconsistency in elements such as the positioning of buttons
or colors will slow users down by 5-10%, while changes to termino-
logy slow users down by 20-25% [101]. But in some cases, when it
is necessary to highlight some elements in order to attract the users’
attention, the use of inconsistent elements is very effective (Benyon,
2014 and Schneiderman, 2009). So keeping consistency is not a prin-
ciple that every designer has to conform to at all times. Violation of
this principle could be of advantage in some special cases. Consis-
tency in behavior means that the way an object works is the same
everywhere [82]. For example, if one object is clickable and allows
users to modify its attributes, then other similar objects or objects,
of the same type, should also be provided with the same interactive
mode.

65

2 Fundamentals

During the design phase, designers can follow some design stan-
dards in order to ensure that the user interface remains consistent.
Existing design standards which are generally accepted, e.g. the beha-
vior of common interface elements like menus, buttons etc. should be
followed so that users will be able to transfer their prior knowledge of
interaction with the user interface. In addition, detailed guideline do-
cuments for specific designs should be developed by designers to en-
force consistency (Schneiderman, 2009). To this end, Nielsen (1999)
proposed a number of rules for design standards [88], and Schneider-
man (2009) presented recommendations for guideline documents and
processes.

In the 1940s, at the time when computers had just appeared on the market,
the applications were designed not from the user’s point of view but from
the point of view of the system. That is why they were hard to use. But more
recently, increasing attention has been placed on the user, and so, improving
the usability of the user interface has become a major concern for designers.
Paying attention to design principles can help sensitize the designer to key
aspects of a good design (Benyon, 2014). This section collects and analyses
design principles from a number of user interface experts. These principles
need to be interpreted and extended during the design process of a specific
user interface. More specific design guidelines can further be derived from
the principles which are used by designers to determine design details. It is
worth noting that trade-offs have to be made in some cases where conflicts
exist between principles and product goals, under specific circumstances.
Principles are not meant to be followed rigidly, rather they are meant as
guiding lights to ensure a sensible interface design (Mandel, 1997).

66

3 Overview of Related Work

Building operating systems can make normal buildings controllable and
smart by knitting together different kinds of actors in the building, e.g. ap-
pliances, sensors, smart plugs, meters, etc. into one single system. Within
a building operating system, actors can exchange information and coope-
rate with one another in order to achieve common goals. The user interface
plays an essential role in interacting with the users and is an indispensable
component of a building operating system, since building operating systems
cannot work properly without user involvement. Thus, building operating
systems always need to remain under the control of users and provide users
with timely information relating to system states, e.g. by providing informa-
tion about local energy use. Since the goals and functionalities provided by
different building operating systems vary, their user interfaces are also very
different. A first step toward improving user interfaces would be a careful
review and evaluation of state-of-the-art user interfaces for current building
operating systems. Therefore, this chapter firstly reviews a number of user
interfaces used for current building operating systems and also proposes a
collection of use cases related to smart homes. The user interfaces are then
further evaluated with respect to the proposed use cases as well as a series
of technical characteristics, respectively. Part of the work in this chapter has
been published in 2017 IEEE International Conference on Smart Grid and
Smart Cities (ICSGSC) [107].

67

3 Overview of Related Work

3.1 User Interfaces for Building Operating Systems

This section reviews user interfaces for a number of currently popular buil-
ding operating systems and analyses their working mechanisms. Most of
the current building operating systems have already been introduced in the
previous chapter. The user interfaces evaluated in this section were selected
according to the following two criteria: firstly, they are open-sourced, and
secondly, their use cases are related to smart homes or home automation.

3.1.1 EF-Pi UI

In order to facilitate configuration and data visualization for its applications,
EF-Pi (Energy Flexibility Platform & Interface) provides a widget-based
user interface framework, which, due to OSGi, supports modular set-up. For
instance, Figure 3.1 shows an exemplified user interface of EF-Pi, including
four widgets, which are named ’household performance’, ’powermatcher
controller’, ’smartpv panel’ and ’storage device manager’. The user inter-
face framework consists of a number of web-based pages, each of which is
a container for widgets with different themes. Widgets can be created freely
and customized by developers. Usually, every energy application working
on top of the EF-Pi runtime has at least one widget to interact with users. De-
vice drivers may also provide their respective widget to display information
regarding the current states of the device. Some third party information pro-
viders can also offer their applications, along with their widgets, to display
useful information such as weather forecast information. In the exemplified
user interface showed in Figure 3.1, the current page is named Dashboard,
and consists of four widgets. Other inactive pages are Applications, Apps,
AppStore and Settings.

The UI (User Interface) framework of EF-Pi and the page templates to-
gether determine the layout of the EF-Pi user interface, which is pre-defined

68

3 Overview of Related Work

Figure 3.1: An exemplified user interface with widgets of EF-Pi [36]

and compiled by the EF-Pi core and can therefore not be changed by UI
developers. EF-Pi places the total design flexibility of its user interface on
widgets which give developers full control and freedom to customize their
own content. A widget consists of a user-defined Java class in the back-end
which can communicate directly with the EF-Pi runtime, and three front-end
resources: an html file, a JavaScript file and a cascading style sheet (CSS)
file. The Java class defines attributes that will be displayed to end users on
the widget and provides methods to access them. The html file and the CSS
file determine how and in which style the data should be displayed. The
JavaScript file is the connector between the Java class and the html file. It
periodically receives updated data from the EF-Pi runtime by invoking met-
hods defined in the Java class, and this data will be further accessed by the
html file. Figure 3.2 shows a screenshot of two widgets which were de-
veloped based on an EF-Pi framework in a project named HEGRID1. The

1 http://www.aifb.kit.edu/web/HEGRID/en

69

3 Overview of Related Work

two widgets serve as an example to help explain the working mechanism of
widgets in the user interface of EF-Pi.

Figure 3.2: Two µCHP driver widgets from the HEGRID project [62]

The two widgets in Figure 3.2 are designed to visualize different para-
meters and states of a micro Combined Heat and Power Plant (µCHP) in
the test-bed of the HEGRID project. One widget is a temperatures widget
which shows the temperature at different points in the hot water storage of
the µCHP, the outside temperature as well as different circuit temperatures
in the test-bed. Another one is an operational details widget which shows
the detailed real time parameters (e.g. states, power outputs, etc.) of two
actuators of the µCHP - an Otto engine and a heating element. Figure 3.3
uses the example of the µCHP operational details widget to show how the
back-end Java class relates to the front-end files of widgets in the EF-Pi and
how they work together. The µCHP temperatures widget and widgets from
other device drivers or applications share the same working mechanism as
the µCHP operational details widget.

In the back-end Java class, there is an inner class, called Update, which
contains various attributes of the µCHP, such as current running mode, active

70

3 Overview of Related Work

Figure 3.3: The working mechanism of the µCHP operational details widget in EF-
Pi

power, thermal power, etc. The attributes defined in the Update class are in-
tended to be displayed on the µCHP widgets. A method named ’update’,
instantiates an Update object by receiving µCHP’s state updates from the
µCHP driver and then return the Update instance. With the aid of the techno-
logy of Ajax and servlet, the JavaScript file (Script.js) in the web client is
able to invoke the update method and get the returned Update instance that
contains current states of the µCHP from the EF-Pi runtime. After that, it
will extract corresponding attributes from the Update instance and reprocess
them by adding appropriate units for the data. The reprocessed data will be
accessed by the html file (Index.html), which defines the layout of the wid-
get. Combined with the CSS file (Style.css), the content of the widget will
finally be rendered on the EF-Pi UI framework.

The user interface provided by the EF-Pi is simply a framework, which
provides possibilities for developers to define their own widgets. It brings
high flexibility and customizability, but, at the same time, also weakens the
power of the EF-Pi user interface, since the data model provided by the EF-
Pi user interface is merely an empty Java class, such as the Update class in

71

3 Overview of Related Work

the µCHP operational details widget seen in the example above. Application
developers thus need to construct the Java class on their own, which makes
every widget proprietary to its underlying device driver or application. In
other words, widget developers have to design and develop their widgets
from scratch. There are no reusable UI modules provided by the EF-Pi user
interface, to help developers simplify or unify their widget development.

3.1.2 openHAB UI

Currently, openHAB (open Home Automation Bus) provides three kinds of
user interfaces in its standard configuration, namely, the Paper UI, the Basic
UI and the Classic UI. The Paper UI is an administration tool for confi-
guring openHAB instances. The functionalities supported by the paper UI
include add-on management, discovery services of Things, configuration of
the system, bindings, services and Things, and setting of preferences. Ne-
vertheless, the Paper UI is not able to cover all of the configuration tasks.
For instance, there is no way of editing and managing Items via the Paper
UI. As a result, it is still necessary for developers to resort to textural confi-
guration files in some cases.

Other than the Paper UI, which primarily focuses on configuration, the
Basic UI and the Classic UI are user interfaces designed for operating the
openHAB. These two user interfaces have the same functionalities but dif-
ferent visual effects (cf. Figure 3.4). The Basic UI is the user interface of
openHAB 2. Its layout takes advantage of the Material Design Lite2, which
is a front-end template offered by Google. Because of this, the Basic UI
not only has a more modern look and feel about it but also has a responsive
layout. The Classic UI is the user interface of the early versions (1.x) of
openHAB. It is developed on the basis of the WebApp.Net framework and
offers the same services as the Basic UI. Compared to the Basic UI, howe-

2 https://getmdl.io/

72

3 Overview of Related Work

ver, the Classic UI has less visual appeal, since its style resembles the style
of the old iOS which does not match modern style standards.

(a) The Basic UI of openHAB (b) The Classic UI of openHAB

Figure 3.4: The user interfaces of openHAB [31]

Besides the visual differences, the Basic UI and the Classic UI share the
same design philosophy. They use a so-called Sitemap, which is a declara-
tive UI definition that defines the layout of the UI page. A number of UI
elements, including Colorpicker, Chart, Frame, Group, Image etc. are avai-
lable for utilization in Sitemaps. These elements show information or status
data of household devices and some of them provide options for interacting
with users. The UI elements can be flexibly incorporated into a Sitemap and
afterwards rendered to the UI page. OpenHAB specifies a clear syntax for
organising the UI elements in a Sitemap. The definitions of Sitemaps are
stored in a text configuration file. The operation of this file cannot, as yet,
be achieved via the Paper UI. To avoid directly working on a pure text file,
openHAB provides an integrated development environment, called Eclipse
SmartHome Designer, which supports syntax check and content assist for
editing Sitemaps and other text-based system configurations, such as Items
and Rules. The following is an example which shows how to define Items
and a Sitemap to customize the content on a UI page.

Assume that two switch Items, which represent a light in a kitchen and a
dimmer in a bedroom, are defined as follows:

73

3 Overview of Related Work

Switch Light_Kitchen "Light in Kitchen" <light> { channel="

zwave:device:bb4d2b80:node30:switch_binary"}

Switch Dimmer_Bedroom "Dimmer in Bedroom" <light> { channel="

zwave:device:73ed5f0c:node2:switch_multilevel"}

The names of these two Items are Light_Kitchen and Dimmer_Bedroom
and their corresponding descriptions are "Kitchen Light" and "Bedroom
Dimmer", respectively. Both Items use a light as their icons, which are
chosen from a default icon set of openHAB. The information in the curly
brackets refers to a channel link between an Item and a Thing, which ena-
bles the Items to take control of real world home automation devices. Both
switch Items are linked to a Z-Wave Thing. After defining the Items, a Site-
map can be defined to specify the structure of the UI page and the elements
that will be displayed on the UI page.

sitemap demo label="My Demo House" {

Frame {

Switch item=Light_Kitchen icon="switch"

Slider item=Dimmer_Bedroom icon="slider" }

}

The name of the Sitemap that is described above is "demo", and "My
Demo House" is the title which will be displayed at the top of the main
screen of the openHAB’s user interface. In the Sitemap, a Switch element
which connects to the Item named Light_Kitchen, and a Slider element,
which connects to the Item named Dimmer_Bedroom, are defined. It is
worth noting that elements in a Sitemap do not always have the same names
as the Items that the elements are connecting to. For instance, the dimmer
in the above example is defined as a switch Item, whereas it is rendered
with a Slider element in the Sitemap since dimmers can be dimmed down
or up within a certain range rather than merely two states of ’on’ and ’off’.

74

3 Overview of Related Work

According to the properties of the two elements, they are rendered in the
Sitemap with a switch icon and a slider icon, respectively. The textual des-
cription of the elements in the Sitemap are not set which means that they are
the same as the descriptions set for their respective Item. Figure 3.5 shows
the final result displayed on the Classic UI of openHAB. The layout of the
icons, labels, widgets, etc., which finally appear on a user interface, is de-
termined by the openHAB system, therefore the layout cannot be changed
by programmers.

Figure 3.5: A demo user interface of openHAB

The Basic UI and the Classic UI of openHAB are implemented in the
way of an OSGi bundle. They firstly register a servlet with a Jetty web
server which processes incoming requests, and then make use of the Sitemap
that has been defined by users, to render corresponding UI pages. This
section will now proceed to describe the main components of the bundle
of the user interface in more detail. The WebAppServlet is a component,
which is responsible for generating corresponding html code based on the
Sitemap definition. To this end, a component named SitemapProvider firstly
accesses the Sitemap files, loads them and retrieves the one that needs to
be parsed. A PageRenderer component then processes the Sitemap page,
which is composed of widgets, and constructs the html code by providing
the HTML header and skeleton, and delegating the rendering of widgets on
the page to the dedicated WidgetRenderers. These then proceed to produce

75

3 Overview of Related Work

code snippets for specific widgets. Figure 3.6 shows the entity relationship
of these components.

Figure 3.6: Entity relationship diagram of components of the user interface bundle
in openHAB

Concluding then, some of the system configurations of openHAB instan-
ces can be achieved with the aid of the Paper UI. The direct use of textual
configuration files is, however, still needed because of the limited functions
provided by the Paper UI. As for the system visualization and control, the
Basic UI and the Classic UI are important as they are responsible for parsing
the Sitemap file. Thus, to construct a customized user interface for an open-
HAB instance, developers do not need any front-end programming know-
ledge apart from mastering the necessary syntax for the Sitemap definition.
At the moment, the Basic UI and the Classic UI can only be customized via
modifying the Sitemap file, which requires users to know the syntax of the
sitemap and to know well the item definitions. In the user interfaces, there

76

3 Overview of Related Work

are no visual elements available that allow novices or non-professional users
to directly manipulate them to do customizations. In addition to the afo-
rementioned three standard user interfaces, HABmin3 and HABPanel4 are
also alternative user interfaces for openHAB. HABPanel uses dashboards
as content container which consists of different types of widgets. HABmin
provides both user and administrative functions. But compared to the Paper
UI, it does not support the functionality of installing Add-ons.

3.1.3 OGEMA UI

OGEMA (Open Gateway Energy MAnagement) provides a web-based user
interface which is based on AngularJS technology. Similar to the user in-
terface of the EF-Pi, the start page of the OGEMA user interface is also
composed of widgets which represent the user interfaces of the installed ap-
plications or services in OGEMA. Unlike in the EF-Pi, the widgets on the
OGEMA UI page only show simple descriptions of the respective applicati-
ons. By clicking on any widget, a new web page for the specific application
will be opened. OGEMA does not provide any pre-defined data models for
the application web pages. They need to be totally taken care of by appli-
cation developers, which is similar to EF-Pi. Figure 3.7 shows a demo user
interface of OGEMA, which appears when running the OGEMA demokit5.

As described in Section 2.2.3 of the previous chapter, the framework ad-
ministrator, the natural user and the machine user are three roles allocated
in OGEMA. Since the framework administrator is an extension of the natu-
ral user, the UI page for the administrator in the user interface of OGEMA
is similar to that of the natural user, except that the administrator has three
additional options that allow him to do user administration, resource view
and logger configuration. The machine users mostly refer to applications,

3 http://docs.openhab.org/addons/uis/habmin/readme.html
4 http://docs.openhab.org/addons/uis/habpanel/readme.html
5 https://www.ogema-source.net/wiki/display/OGEMA/OGEMA+Demokit

77

3 Overview of Related Work

Figure 3.7: A demo user interface of OGEMA

and therefore there is no specific UI page for the role of machine user. Ba-
sically, the following components are essential to accomplish the functiona-
lities provided by the OGEMA user interface.

• FrameworkGUI implements the application interface. It provides
a start method that is called by the framework once this application
has been detected, as well as a stop method that is called when the
application is stopped by the framework. Within the start method,
components of FrameworkGUIController and FrameworkGUIServlet
(described below) will be created.

• FrameworkGUIController provides a method to get all of the in-
stalled applications that the current user has permissions to access
and instantiate respective data instances that will be accessed by web
resources, based on the properties of those acquired applications. The

78

3 Overview of Related Work

installed applications are retrieved with the aid of an OSGi service
which keeps track of all installed services.

• FrameworkGUIServlet deals with incoming requests from the web
client. Particularly, when it receives a request to open the start page
of the user interface, it will ask FrameworkGUIController to collect
a list of available installed applications and return them to the web
client.

• Web resources include html files, JavaScript files, cascading style
sheets and so on, which can be divided into two categories - frame-
work web resources and application web resources. Framework web
resources define the content and style of the start page (cf. Figure 3.7)
of the OGEMA user interface. They are pre-defined and compiled
in the OGEMA core. Therefore they leave no space for application
developers to apply any changes. The application web resources are
prepared by application developers, and they can be dynamically loa-
ded with data sources coming from the response of FrameworkGUI-
Servlet.

• Applications can be flexibly implemented by application developers.
The UI pages of applications can be implemented by defining corre-
sponding web resources. Without web resources, applications will not
appear on the user interface of OGEMA. Applications display current
system states and provide controllability to users by reading and mo-
difying resource graphs so as to realize the purpose of interacting with
the OGEMA framework.

An important aspect for the technical design and implementation of the user
interface is the back-end data models for the user interface. For the user
interface of OGEMA, the data models in the back-end can be classified into
two types: data models for the UI framework and data models for UI pages
of applications. As mentioned above, there are no pre-defined data models

79

3 Overview of Related Work

for the application UI pages in OGEMA. Application UI pages are totally
taken care of by application developers, which is the same as in the case of
the EF-Pi. Developers are free to define their own UI data models for their
applications if needed.

Unlike the application UI pages, the UI framework of OGEMA already
has a number of defined data models for different purposes in its core. Since
content displayed on the user interface of OGEMA varies from role to role,
UI data models for users with different roles are also different. Natural users
are only allowed to view installed applications within their permissions, so
data models for natural users are simple. Only two data models, AppsJson-
Get and AppsJsonWebResource are needed for showing basic application
information on widgets. In contrast, data models for the framework admi-
nistrator are more diverse, because OGEMA provides administrators with
more rights, such as user administration, resource view and logger confi-
guration, except for the basic application management. Table 3.1 lists these
data models which are classified according to their supported functions. The
definitions of these data models can be found by referring to the source code
of OGEMA on its GitHub6.

To summarise, the working mechanism of the user interface of OGEMA
is similar to that of the user interface of EF-Pi. Although a number of data
models are available for the UI framework of OGEMA, these data models
can, however, not be used by application developers to construct user inter-
faces for their applications. Instead, OGEMA gives full freedom for appli-
cation developers to define their own user interfaces tailored to their applica-
tions. But at the same time, it has the same disadvantages as the EF-Pi user
interface. Since it has no predefined UI data models for the user interface of
its applications, which means no modules, that can be reused, are available
to application developers.

6 https://github.com/ogema

80

3 Overview of Related Work

Table 3.1: Data models of the UI page for OGEMA administrators

Application
Management User Administration Logger Configuration

Data
Models

AppsJsonGet
AppsJsonAppConditions
AppsJsonAppFile
AppsJsonAppPermissions
AppsJsonAppPolicies
AppsJsonAppPolicy
AppsJsonGetAppFiles
AppsJsonWebResource

UserInformationJsonGet
UserJsonGet
UserJsonGetList
UserJsonChangePassword
UserJsonCopyUser
UserJsonCreateUser
UserJsonDeleteUser
UserJsonPost
UserJsonAppId
UserJsonAppIdList
UserJsonCondition
UserJsonPermission
UserJsonPermissionCondition
UserJsonPermittedApps
UserJsonPoliciesList
UserJsonResourcePolicy
UserJsonResourcePolicyList

LoggerJsonGet
LoggerJsonGetList
LoggerJsonPost
LoggerJsonPostList
LoggerJsonSizeResponse

3.1.4 FHEM UI

FHEM (Friendly Home Automation and Energy Measurement)7 is a cen-
tral home automation server which supports different home automation har-
dware systems, e.g. FS20, HomeMatic, etc. In the midst of a fragmented
market that is full of incompatible home automation technologies, FHEM
provides a platform that can combine hardware from different manufactu-
rers into a complete home automation system. It has built-in interfaces bet-
ween the FHEM server and various hardware systems. These interfaces are
capable of converting FHEM control commands sent to corresponding de-
vices and also converting the radio telegrams from the devices to the FHEM
server, so that interactions between actuators and sensors from different sy-
stems can be achieved.

7 https://fhem.de/

81

3 Overview of Related Work

A standard built-in user interface called PGM2 (cf. Figure 3.8) is pro-
vided by the FHEM installation to provide users with easy access to the
FHEM. This is the default user interface of FHEM and implements a simple
web server. Since FHEM is controlled via its predefined readable/ASCII
commands, PGM2 provides a command field which allows end users to
send FHEM commands directly to the back-end system in order to manage
or control devices in their household, e.g. defining grouping and turning
devices on/off. FHEM provides a great number of commands to support
various functionalities, e.g. setting attributes of devices, switching devices,
monitoring events, etc. Some of them can also be implemented with the aid
of graphical components on the user interface, e.g. buttons and drop-down
menus. A link to FHEM’s command reference is available in the menu of
PGM2.

Figure 3.8: The default user interface of FHEM: PGM2 [9]

PGM2 is able to automatically create many radio devices as soon as it
receives a message from these devices. The automatically created devices

82

3 Overview of Related Work

need to be renamed and this can only be done by entering commands into the
command field. The attributes of the added devices can also be edited, either
by using commands, or with the aid of graphical components. Any events
(e.g. switch on/off) triggered by devices will be recorded and displayed in
the event monitor of PGM2. FHEM also comes with a command to support
event-based execution. This means the state changes of some devices can
trigger the execution of certain events, such as changing the states of other
devices. For this purpose, PGM2 has an editor as well as drop down menus
which support command editing. However, in order to implement event no-
tifications, users still need to make use of the command field, since there are
no available graphical components in PGM2 to support this functionality.
Another feature supported by FHEM, is timed switching (i.e., switching de-
vices, not immediately, but at specific time). Similar to event notification,
this feature can only be achieved via the direct entry of commands.

In addition, a floor plan module is available in FHEM which supports the
placing of icons of switchable devices on the floor plan of a building. A floor
plan extension can be integrated into the PGM2 to enable the implementa-
tion of this function in the front-end. This floor plan extension allows users
to import any background image as the floor plan. Devices that have been
added to FHEM can equally be added to the floor plan and can be displayed
in one of 9 different styles (cf. Table 3.2). All devices on the floor plan can
be dragged and dropped to any places and can also be switched on or off
via command tags attached to them. This therefore is supposed to offer a
flexible and intuitive way for users to be able to view and manage devices.

An alternative lightweight but feature-rich user interface for PGM2 is cal-
led FHEM Tablet UI, which is based on HTML/CSS/JavaScript and thus
does not impose any additional requirements on the FHEM server. The
Tablet UI is a dashboard which is composed of a number of widgets (cf.
Figure 3.9). Compared to PGM2, the Tablet UI is much more flexible for
third-party user interface developers to customize their own user interface.

83

3 Overview of Related Work

Table 3.2: Display styles of devices in the floor plan of PGM2

Display Style Description

Style 0 Device icon only (device state)

Style 1 Device name and icon (device name and device state)

Style 2 Device name, icon and commands

Style 3 Device measured value and optional name

Style 4 S300TH temperature and humidity

Style 5 Device icon and commands

Style 6 Device measured value including time stamp and optional name

Style 7 Commands only

Style 8 Device icon and commands popup up

With the help of a drag-and-drop and multi-column jQuery grid plugin, the
web page of the Tablet UI can be divided into a number of cells which can be
used as ’containers’ for organizing widgets according to different topics. At
this stage, the FHEM Tablet UI comes with more than 20 types of widgets
(e.g. thermostat, switch, label, etc.) in its standard installation.

Figure 3.9: FHEM Tablet UI [10]

84

3 Overview of Related Work

Unlike PGM2, which requires users to directly send commands to the
FHEM server via a command field, Tablet UI converts FHEM commands
into the various attributes of corresponding widgets, which function as the
API in interacting with the FHEM server. Although different types of wid-
gets usually have different attributes, there are some attributes which are
common to all widgets, such as data-type, data-device and class. In the
same way, some actions such as receiving and sending data are also sup-
ported by most widgets in the Tablet UI. The corresponding attributes that
support these actions, together with the common attributes for all widgets,
are listed in Table 3.3.

Table 3.3: Attributes for general widgets of the FHEM Tablet UI [10]

Attributes related to re-
ceiving data

Attributes related to sen-
ding data

Common attributes for
all widgets

data-get: name of the rea-
ding to get from FHEM

data-set: name of the rea-
ding to set from FHEM

data-type: the type of the
widget

data-get-on: value for ON
status to get

data-set-on: value for ON
status to set

data-device: FHEM de-
vice name

data-get-off: value for
OFF status to get

data-set-off: value for OFF
status to set

class: CSS classes for
look and formatting of the
widget

When comparing PGM2 and FHEM Tablet UI, each has its respective
strengths and weaknesses. In order to change styles and adjust to termi-
nal devices with various screen sizes, PGM2 offers a list of different styles
from which users may select one. Nevertheless, its appearance is relatively
crude and it does not look as modern as the FHEM Tablet UI. Since the
layout of PGM2 is hard-coded, it offers no flexibilities for UI developers
to do customization. However, in terms of the provided functions, it sup-
ports comprehensive features for home automation, including event-based
execution, timed switching, device grouping, event monitoring, a floor plan,
etc. The main challenge here is, that most of these advanced functions can

85

3 Overview of Related Work

only be implemented by sending FHEM commands. This places high de-
mands on users to be able to handle these high level commands, and can
thus hinder novices or lay users from accessing the system. Compared to
PGM2, the dashboard-based FHEM Tablet UI is more flexible, since it al-
lows UI developers to customize the style and content that will be displayed,
according to their personal needs. However, the FHEM Tablet UI provides
only basic widgets with different attributes, and does not directly support
complex home automation activities, such as event-based execution, event
monitoring, etc. These functionalities all need to be taken care of by UI
developers.

3.1.5 OSH UI

As described in Section 2.2.4 of the previous chapter, the OSH puts spe-
cial emphasis on the interaction with human users and on respecting the
users’ needs. This is, of course, also reflected in its user interface. The
user interface of the OSH is called the Energy Management Panel (EMP).
Currently, there are two versions of EMP available: the KIT EMP [46] and
the FZI EMP [45]. These two EMPs are being used in two different buil-
dings. The KIT EMP (cf. Figure 3.10a) is the user interface designed for
the KIT Energy Smart Home Lab (ESHL) [7]. The basic hardware setup of
the ESHL is presented in [76]. The FZI EMP (cf. Figure 3.10b) has been
developed to satisfy the needs of the FZI House of Living Labs (HoLL) [47].

In the KIT ESHL and the FZI HoLL, the communication between the
EMP, the OSH and the devices is achieved by means of the Web Applica-
tion Messaging Protocol (WAMP). WAMP is an open standard WebSocket
subprotocol that provides two application messaging patterns, Remote Pro-
cedure Calls (RPC) and Publish&Subscribe (PubSub), in one unified proto-
col [33]. To this end, a router which combines a dealer and a broker to route
both calls and events is provided by WAMP. The WAMP router is used as

86

3 Overview of Related Work

(a) EMP in KIT ESHL (b) EMP in FZI HoLL

Figure 3.10: The two versions of EMP in KIT ESHL and FZI HoLL [45]

a message bus in both the KIT ESHL and the FZI HoLL to connect the
EMP to the OSH and the devices in the building. Figure 3.11 shows how
the OSH, the devices and the EMP in the KIT ESHL are connected via a
WAMP router and how the information flows between them.

Figure 3.11: Information flows between the EMP, the OSH and the devices in the
KIT ESHL

The intelligent devices in the KIT ESHL, such as the washing machine
and the dishwasher, are from Miele@home which was developed by the
German home appliance manufacturer, Miele, with a view to realizing the

87

3 Overview of Related Work

vision of the smart home. The Miele@home appliances in the KIT ESHL
are connected to a gateway which can measure the energy consumption of
the Miele appliances and publish the corresponding data to the WAMP rou-
ter where the OSH and the EMP can subscribe topics that they are interested
in. On the other hand, the gateway can also forward the commands from the
OSH and the EMP to control the appliances. In addition to intelligent ap-
pliances, the non-intelligent appliances in the KIT ESHL are connected to a
3-Phase power measurement module from WAGO Corporation, which ena-
bles the monitoring and controlling of non-intelligent appliances. Compared
to the KIT ESHL, which is a laboratory simulation of a household building,
the environment of the FZI HoLL is more complicated, because the FZI
HoLL is more than a smart home. It offers additional functional dimensions
such as smart automation, smart energy and smart mobility which allow it
to incorporate many more devices that cover different types of energy com-
modities. For this reason, a standardized communication bus called EEBus
is used in the FZI HoLL to hide the details of the heterogeneous communi-
cation protocols of the various devices.

By using the WAMP router, the EMP can be decoupled from the system
details of the OSH. The interaction between the EMP, the OSH and the
devices can be realized by registering/calling remote procedures and publis-
hing/subscribing topics via the WAMP router. In both the KIT ESHL and
the FZI HoLL, a variety of topics, that expose data from different sources in
the system, have been published to the WAMP router. Table 3.4 shows some
of the published topics in the KIT ESHL. The EMP and other external sys-
tems can subscribe to the topics that they are interested in from the WAMP
router, so that afterwards, they will receive the corresponding state updates
once the data related to these topics has been updated. The RPC (Remote
Procedure Call) supported by the WAMP router, enables the EMP to realize
the control over the devices by calling up the remote procedures that have
been registered.

88

3 Overview of Related Work

Table 3.4: Available topics published on the WAMP router in OSH

Topic Name Description

wizTopic Readouts of the µCHP, heating cartridge of the µCHP, hy-
brid storage system and photovoltaic from Wago 3-Phase
Power Measurement Module

extendedWizTopic Readouts of the the whole ESHL from Wago 3-Phase Po-
wer Measurement Module

meterTopic Readouts of the the normal appliances in the ESHL from
Wago 3-Phase Power Measurement Module

epsTopic Energy price signals for the next 24 hours

plsTopic Energy load limit signals for the next 24 hours

schedulesTopic Optimization results of the working schedules of applian-
ces

mieleTopic Readouts of the Miele appliances from Miele home bus

mieleDofTopic Degree of freedom information for Miele appliances

mieleStartTimesTopic Start time information for Miele appliances

dachsTopic Readouts of the the water boiler of Dachs (a µCHP pro-
duct) from Dachs webservices

tempSensors The temperature information in the ESHL from BACnet

weatherPredictionTopic Weather prediction information from OpenWeatherMap
service

weatherCurrentTopic Current weather information from OpenWeatherMap
service

The functionalities provided by the EMP in the KIT ESHL deal mainly
with the following three aspects: the visualization of energy data, a floor
plan based household overview and energy use predictions. For the visua-
lization of energy data, the real-time power consumption and generation in
the household, the current energy tariff, external signals from the utility as
well as a history of energy use, are displayed. In order to help convey a
complete picture of the current energy use in the household, the EMP provi-
des an overview of the energy flows in the ESHL by displaying the energy
flow between the ESHL, the power grid and also four high power electrical

89

3 Overview of Related Work

units, namely, a photovoltaic cell, a µCHP, an air conditioner and an elec-
tric vehicle. By using arrows with different directions as well as frames of
different colors in the display, it is easy for a user to obtain a clear picture
of the running states of the four electrical units as well as the overall energy
condition in the ESHL. The EMP also offers a clickable floor plan for the
ESHL so that the status and energy use of each of the devices in the ESHL
can be checked individually. So by clicking on different areas in the floor
plan, devices located in the corresponding areas, along with their status and
power value, will be displayed. These devices can then be further controlled
by turning them on or off, or by specifying a degree of freedom for them. In
addition to these features, predictions regarding future energy use of certain
devices as well as of the entire building are also available in the EMP.

Figure 3.12: The overview of energy flows provided by the KIT EMP [46]

Compared to the EMP in the KIT ESHL, the EMP in the FZI HoLL offers
more comprehensive features. For example, its overview of energy flows
(cf. Figure 3.10b) is multi-modal, i.e., based on different energy commodi-
ties. So besides electricity, it also integrates gas, heat and cold. The floor
plan provided by the EMP in the FZI HoLL is configurable and can there-

90

3 Overview of Related Work

fore be extended to other buildings beyond FZI HoLL. However, the feature
of overview of energy flows cannot automatically adapt to other buildings,
when those buildings have different devices from the FZI Holl. This deter-
mines that the EMP in the FZI HoLL can only be applied to the FZI Holl.
Additionally, some more features, like allowing users to be able to set the
thermal degree of freedom for the meeting room with the help of a calendar
widget, are also supported by the EMP in the FZI HoLL.

As a a user interface of the OSH, the EMP provides transparent informa-
tion on household energy consumption and generation, and helps discover
and specify degrees of freedom for appliances. Although the EMP in the
FZI HoLL offers some improvements on the EMP in the KIT ESHL, there
is still more room for further enhancements. For instance, the layout of the
EMP is not responsive, and the configuration feature of the EMP is also not
well developed. In addition, many features, like overview of energy flows,
are proprietary of either the KIT ESHL or the FZI HoLL. They are hard-
coded and specifically designed for these two buildings, which limits the
flexibility of the EMP in its application to other household buildings.

3.1.6 smartVISU

SmartVISU8 is an open-sourced UI framework aimed at the visualization of
KNX home automation systems. It creates solutions for visualizing KNX-
installations by using simple html pages whose content is organized into
different types of blocks. Figure 3.13 shows a screenshot of a smartVISU
demo. Being a front-end framework, smartVISU can work smoothly with
different back-ends, e.g. SmartHome.py, DomotiGa, FHEM, etc. Home au-
tomation back-ends have to implement their own drivers in order to integrate
smartVISU as their user interface. Since the recommended back-end for

8 http://www.smartvisu.de/

91

3 Overview of Related Work

smartVISU is SmartHome.py9, the following description of the smartVISU
is based on the assumption that SmartHome.py is the back-end system.

Figure 3.13: The smartVISU demo [27]

In order for the user to be able to visualize different types of device values,
home status and other information in a household building, smartVISU pro-
vides a collection of widgets which can be classified into the following ty-
pes: Basic, Calendar, Device, Multimedia, Phone, Plots, Status, Time/Clock
and Weather. Syntactically, the widgets in smartVISU are always expressed
in a double quoted encapsulated string which contains a widget name and
a unique identifier, the "item" or GAD (GAD, short for Group Address, is
interchangeable with the term "item" in smartVISU.), which the widget will
address, plus some other setting parameters. For example, a button in smart-
VISU can be expressed in the front-end as follows: {{ basic.button(id, gad,
txt, pic, val, type) }}, where basic.button is the name of the widget. The
parameters needed by the button widget are: an identifier of the button, an
associated GAD/item which will be defined by the back-end system, the text
that will be displayed on the button, an icon of the button, a value that will

9 https://mknx.github.io/smarthome/

92

3 Overview of Related Work

be sent out if the button is pressed, and finally, the type of the button’s size,
which is an enumerated type whose value represents a certain dimension
type.

As mentioned above, items (or GADs) play an essential role in widget
definitions, since they act as connectors between smartVISU and the back-
end system, by specifying different types of KNX addresses within them
(e.g. destination addresses for listening and sending information). Besides
this, an item also contains the data type, access right, and the Datapoint Type
(DPT)10 of the item. In SmartHome.py, items are defined in a configuration
file whose content is organised in a tree-like structure in order to reflect the
hierarchical relationship between items. The following is an example of a
definition of items in the configuration file.

[GroundFloor]

[[LivingRoom]]

[[[Spot3Switch]]]

type = bool

visu_acl = rw

knx_dpt = 1

knx_listen = 0/1/3

knx_send = 0/0/3

knx_init = 0/1/3

In the configuration file, the number of square brackets determines the
depth of corresponding items. An item is addressed according to its path,
using dots as separators (e.g. Branch1.Sub-branch_1.1.Sub-branch_1.1.1...).
In the aforementioned example, the item "Spot3Switch" is addressed in
widgets as "GroundFloor.LivingRoom.Spot3Switch", under which a list of

10 https://support.knx.org/hc/en-us/articles/115001133744-Datapoint-Type

93

3 Overview of Related Work

attributes is specified. According to the attributes in this example, the data
type of the item is boolean. The item is allowed to be read and written. The
DPT of the item is 1 (bit), which represents a boolean. The item is liste-
ning to a KNX group addressed 0/1/3, and it will send commands to another
KNX group addressed 0/0/3. It also initializes a KNX group addressed 0/1/3
when SmartHome.py starts up.

Furthermore, in order to facilitate the organization of the widgets which
are in same scenes or have similar attributes, smartVISU provides five dif-
ferent design blocks attached to respective html templates which can be uti-
lized directly by developers. Within these blocks, developers are allowed to
add any number of devices by simply inserting corresponding widget defi-
nitions, as explained above.

Powered by SmartHome.py, smartVISU supports some advanced home
automation functionalities. For instance, an automatic timer can be set to
perform specific actions, and different scenes can be created to adjust de-
vice states in order to match the various needs of the different scenes. These
functionalities are all implemented by operating configuration files of the
SmartHome.py. Besides this, smartVISU also provides six kinds of wid-
gets to display different charts, including a comfort chart, which indicates
comfort zones of relative humidity and effective temperature in a building,
and a temperature rose chart which shows the actual and set temperature
of every room in one diagram. Furthermore, some configurations of the
system, such as configurations concerning the visual appearance, the inter-
face to the back-end, the weather, the phone and the calendar, can also be
achieved with smartVISU. Because of its responsive layout, its rich features
and its flexible design elements, smartVISU has been implemented in many
KNX-enabled home automation systems as the user interface. One aspect
that limits the application of smartVISU is the limited variety of widgets
available for complex devices. Currently, only five device widgets, inclu-
ding blind, codepad, dimmer, room temperature regulator and shutter are

94

3 Overview of Related Work

available. This is because smartVISU was specifically designed for the vi-
sualization of KNX home automation systems.

3.1.7 HomeGenie UI

HomeGenie11 is an open-sourced home automation server that can integrate
devices, services and a few of the currently popular communication stan-
dards, e.g. Z-Wave, Philips Hue, KNX, etc., into a common home automa-
tion environment. For data visualization, it is equipped with a built-in web
user interface (cf. Figure 3.14) which is customizable, configurable and ex-
tensible. To this end, HomeGenie offers a series of design measures and
implementation tools.

Figure 3.14: The demo web user interface of HomeGenie [11]

In HomeGenie, all devices and services are abstracted into so-called mo-
dules, whose parameters indicate corresponding features or states of the de-
vices or services. Specifically, each module is identified by a Domain and
an Address, a Type and a Widget. The Domain is used to divide all modules
into different groups according to protocols or other features. The Address
refers to the identifier of a module in its Domain. The Type indicates what

11 http://www.homegenie.it/

95

3 Overview of Related Work

kind of devices or services the module belongs to. Common Types in Home-
Genie include Program, Switch, Light, Dimmer, etc. The Widget displays
status information and some control options about the module in the user
interface.

The widgets in HomeGenie are implemented according to the MVC (Mo-
del, View, Controller) design pattern, where View refers to some html code
which determines the content that will be displayed on the widget and also
what the widget will look like. Model refers to some JavaScript code that
will access data from the bound module and render it to the View. Finally,
Controller refers to an automation program that, on the one hand, receives
commands from the View upon user interaction or other entities and, on the
other hand, implements the business logic of the module [12]. In order to
facilitate the customization of the system, HomeGenie is equipped with a
widget editor to extend its user interface by implementing the first two parts
of the design, the Model and View, and with a program editor to implement
the third part, i.e., the Controller.

There are already a number of widgets available in HomeGenie. Howe-
ver, the existing widgets can still be customized. Besides this, users are
also provided with possibilities to create their own widgets by means of
the widget editor and the program editor. HomeGenie utilizes automation
programs, which can be coded in the program editor using different pro-
gramming languages, to implement and extend system functionalities. A
multitude of helper classes are available to ease the programming. Each
automation program can associate one or multiple modules so that it can
display information in the bound widget of the modules and interact with
users by adding program options and features to corresponding modules.
The added information will be further displayed as option fields in the user
interface where users can configure parameters for the programs. In ad-
dition, HomeGenie also allows users to create different scenarios (e.g. a
scenario for switching group lights on) which can be executed either ma-

96

3 Overview of Related Work

nually or automatically to meet different needs in the lives of users. The
scenarios can be created by using the function of Record Macro12, provided
by HomeGenie. Through recording macros, all performed commands will
be recorded into Wizard scripts, which can either be manually executed by
users or be triggered by some time-based events.

The web user interface of HomeGenie is designed as a control panel for
the end-users to communicate with the HomeGenie server. It is mainly in-
tended for administration purposes to configure and access all aspects of the
system [12]. The user interface consists of a dashboard for displaying vari-
ous widgets and a number of configuration pages to set up the system (e.g.
integrating new devices and installing additional drivers). In addition to the
web user interface, which can be used either from a desktop PC or a mobile
client, the HomeGenie Plus13 is another feature rich user interface, which
has been especially designed for mobile clients. Because the user interface
of HomeGenie is equipped with the widget editor and the program editor, it
is flexible and can easily be configured and customized. Nevertheless, since
HomeGenie is dedicated to providing solutions for home automation rather
than energy management, some services (e.g. setting optimization goals for
the building or degrees of freedom for devices) that can help optimize the
energy use in a building, are not supported by its user interface. Also, some
features that can reflect holistic energy use in a building, such as an over-
view of energy flows of the building, are equally missing. Furthermore, in
order to integrate additional features into the system, users have to be able
to develop their own widgets by programming in the widget editor and the
program editor which might be applicable to expert users but may exclude
novices and laity.

12 https://genielabs.github.io/HomeGenie/#/docs/scenarios
13 https://genielabs.github.io/HomeGenie/#/clients

97

3 Overview of Related Work

3.2 Use Cases

Due to the lack of unified technical standards, the current market of building
operating systems is highly fragmented. A wide range of services related to
energy management and home automation is being offered by different buil-
ding operating systems. Research about defining use cases for building ope-
rating systems in different scenarios has been done in some projects. For
example, Energy@home14 has suggested different kinds of use cases for
customer energy management systems in residential and commercial buil-
dings. In the FINSENY project15, a series of different use cases for various
building typologies has been defined in one of its deliverables [1]. This
section will outline some use cases collected from these reports as well as
from the scenarios of the existing building operating systems.

Use Case 1: Basic Home Automation

Devices in the household building can be remotely controlled e.g. switching
on or off lights or a washing machine, rolling blinds down or up, etc. via the
user interface of the building operating system. The control can be achie-
ved by the intelligent control module embedded in the device or with the
aid of smart plugs, if devices are not smart. The reason why this is called
basic home automation is that appliances are merely controlled manually by
residents in times of need.

Use Case 2: Advanced Home Automation

Advanced home automation is more complex than basic home automation.
It allows residents to create different scenarios by executing a series of com-
mands on devices using a single action, or by configuring devices to auto-
matically respond to certain events when some pre-configured conditions
are satisfied. For instance, residents in the summer can configure the roller

14 http://www.energy-home.it/SitePages/Home.aspx
15 http://www.fi-ppp-finseny.eu/

98

3 Overview of Related Work

shutters in their building from the user interface to automatically roll down
when the temperature is above a certain value inside the building. Another
example could be the time-based control of devices, such as regularly swit-
ching on or off lights at a certain time. The major difference between basic
and advanced home automation, is that advanced home automation provi-
des residents with possibilities to automate devices in the future rather than
having to manually control devices every time there is a need.

Use Case 3: Possibilities to Specify Degrees of Freedom for Devices

The term "degree of freedom" carries different meanings in many fields.
When applied to household devices, it refers to the potential of re-scheduling
devices. Some devices, like stoves or televisions, do not have degrees of
freedom since they have to start working as soon as residents want to use
them. Devices like washing machines or hot water boilers have high degrees
of freedom since their working schedules can be shifted along the timeline,
as long as their own operation constraints can be met. For schedulable de-
vices, users can specify degrees of freedom in the user interface by adding
some constraints, such as the required end time of the washing program for
their laundry in the washing machine, based on their needs. After speci-
fying degrees of freedom, the building operating system could make use of
its optimization algorithms to calculate an optimized working schedule for
the devices.

Use Case 4: Visualization of Building-level Energy Data

Residents can view the current states (e.g. voltage, frequency, total power
consumption and generation, etc.) or energy flows of the entire building.
This use case only refers to the global building-level energy data. It is not
about energy data of a single device.

99

3 Overview of Related Work

Use Case 5: Visualization of Device-level Energy Data

Residents can view the current state as well as the energy data of every
single device, smart plug or sensor in the household. The devices which are
viewed in this use case refer to those which are consuming power.

Use Case 6: Visualization of In-house Power Generation

With the increasing popularity of domestic photovoltaic panels, more and
more consumers are becoming prosumers. Some buildings are also equip-
ped with µCHP, a bivalent system that can generate heat and electricity at
the same time by using different energy sources. Residents can be informed
of the power generated by every generating unit in their household.

Use Case 7: Visualization of External Signals

External signals, such as energy cost information or warning messages from
the utility company, the demand side manager or other actors, can be acces-
sed by residents. For instance, the EMP of the OSH is not only able to
visually display the external signals relating to the current energy tariff and
load limits from the utility but also the energy signals for the next 24 hours.

Use Case 8: Role-based Access Control

In order to facilitate security administration and privacy protection, the sy-
stem access needs to be restricted to authorized users. In so doing, the users
that access the user interface of building operating systems can be classified
into different roles. Each of them is granted different permissions. Users are
only allowed to access the system within the scope of their permissions. For
example, the OGEMA system provides three roles including the framework
administrator, the natural user and the machine user.

Use Case 9: Floor Plan-based Device Organization

Residents can intuitively view and manage their devices based on a floor
plan of a household building. Since there is a visual consistency from the
physical world to the floor plan, residents can easily transfer the physical

100

3 Overview of Related Work

location of devices in their building to the floor plan. Examples could be the
floor plan module in FHEM’s default user interface PGM2 and the EMP of
the OSH. The floor plan should be flexible and configurable so that it can
adapt to different buildings.

Use Case 10: Visualization of Historical Energy Costs

Residents can view the historical energy costs of their entire building. If
generating equipment, e.g. photovoltaic panels, are installed, residents can
earn money by selling the surplus electricity to the energy supplier. In this
case, residents can also view their historical profits from the self-generated
electricity. By looking at historical energy costs, residents are able to obtain
an overview of the energy use in their household.

Use Case 11: Visualization of Historical Energy Data

Residents can view the historical data of the energy consumption or gene-
ration of the devices in their household. Historical energy prices and load
limit signals could also be provided together with the energy history of the
devices, so that residents can be made aware of whether they have used the
devices appropriately the past.

Use Case 12: Prediction of In-house Energy Use

The prediction of energy consumption or generation of devices along with
price and load limit signals can be visually displayed in the user interface.
However, it would be unnecessary and also impractical to predict energy use
for every device in the household. Energy use predictions are worth making
for devices which have a high power consumption or generation, such as
photovoltaic or µCHP. With this energy prediction information, residents
can adjust their power usage to more suitable times in the future in order
to either improve the self-consumption/self-supply or shift loads to a cheap
tariff period.

101

3 Overview of Related Work

Use Case 13: Support for System Configuration

The user interface provides residents with options to configure the under-
lying building operating system such as integrating new devices, loading
additional drivers for specific appliances, adding new users to the system,
and configuring parameters for the optimization algorithm used by the buil-
ding operating system, etc.

Use Case 14: Provision of Value-added Services

Besides the normal services pertaining to home automation and energy ma-
nagement, residents also have access to some other value-added services,
e.g. weather information, entertainment, security services, etc. which could
help to make daily life more convenient, comfortable and secure.

Use Case 15: Visualization of Historical Data for a Single Resident

It is highly probable that more than one resident resides in one household
building. Every resident is able to view their own historical energy data.
This use case could be achieved by implementing role-based access control.
Each resident can be assigned to a certain role. They might need to be
authenticated before viewing their historical energy data in order to protect
privacy.

Use Case 16: Integration of Electric Vehicles

The electric vehicle can be integrated into the building operating system
and can be used as a flexible mobile energy storage device. The use of elec-
tric vehicles always needs to put priority on respecting the residents’ actual
needs or wishes. To this end, the user interface has to provide options for
residents to specify some parameters, e.g. the next use time of the electric
vehicle, minimal mileage that the electric vehicle should be able to cover,
etc. The building operating system needs to ensure that the battery of the
electric vehicle is charged enough whenever residents would like to use it.

102

3 Overview of Related Work

Use Case 17: Connection to a User Community

The building operating system of the future could possibly connect to cor-
responding communities for the purpose of exchanging information, for ga-
mification or for statistic calculation. As a result, residents could view their
historical energy data and compare it to the average value of the counterpart
in the user community. They may also get suggestions about energy use
from residents in the same community.

Use Case 18: Support for Setting Building Optimization Goals

The building operating system allows residents via its user interface to set
single or multiple building optimization goals, which could be optimizing
for the lowest cost, the maximal self-consumption or self-generation, or the
minimal greenhouse gas emission, etc. Different optimization goals can
be taken into consideration at the same time, and an optimal solution for the
energy use in a building can be provided by using multiple-criteria decision-
making methodologies.

In summary, the aforementioned use cases can be regarded as a collection
of the available functionalities of the currently popular building operating
systems, combined with the suggestions of relevant researchers in the field
of smart buildings. On the one hand, they can be used as the implementation
reference for the design of the generic user interface for building operating
systems. On the other hand, they can also be used as evaluation criteria to
evaluate the functional integrity of the user interface for building operating
systems.

3.3 Evaluation of User Interfaces for Building Operating
Systems

In Section 3.1, a number of popular user interfaces for building operating
systems were introduced. These user interfaces provide a wide range of

103

3 Overview of Related Work

functions and features which differ from one another in the way they help
users getting insight into their in-house energy use, having access to energy
data of appliances as well as the whole building, and gaining control over the
appliances to make their building smart and energy efficient. This section
will evaluate these user interfaces from two angles. One is from the point
of view of the use cases presented in Section 3.2. Another is based on the
technical characteristics of user interfaces. To this end, a list of technical
evaluation criteria is proposed.

3.3.1 Use case based evaluation

This section compares the user interfaces described in Section 3.1 and eva-
luates them according to the degree of support for the use cases proposed in
the last section. The evaluation result can be found in Table 3.5.

EF-Pi and OGEMA only provide a front-end framework for integrating
widgets, which has no predefined data models. The content of the widget in
the user interface is open to corresponding application developers. Since it
makes no sense to evaluate a user interface framework with empty widgets,
the demo user interface of OGEMA (cf. Figure 3.7) has been used for the
purposes of the evaluation. EF-Pi does not provide a demo user interface,
therefore the µCHP widgets which are developed based on EF-Pi (cf. Figure
3.2) have been used in the evaluation. OpenHAB comes with three standard
user interfaces, but this section only evaluates two of them, the paper UI and
the Basic UI, because the other user interface, the Classic UI, is essentially
the same as the Basic UI, but merely looks different. Since FHEM Tablet
UI and smartVISU are also just UI frameworks to create visualization, their
user demos ([29] and [30]) have equally been used in the evaluation.

The µCHP widgets of EF-Pi are specially designed for displaying energy
data of the µCHP, including power generation from an Otto-engine and a
heating element. It therefore, only supports use cases 5 and 6.

104

3 Overview of Related Work

Table 3.5: Evaluation results of the user interfaces in Section 3.1 based on use cases
in Section 3.2

Use

Case
UI

EF-Pi
µCHP

widgets

openHAB OGEMA
Demo

UI

FHEM OSH Smart-
VISU
Demo

Home-
Genie

UI
Paper

UI
Basic

UI PGM2
Tablet

UI
KIT
EMP

FZI
EMP

use case 1 7 7 3 3 3 3 3 3 3 3

use case 2 7 7 3 7 3 7 7 7 3 3

use case 3 7 7 7 7 7 7 3 3 7 7

use case 4 7 7 7 7 7 7 3 3 3 3

use case 5 3 7 3 3 3 3 3 3 3 3

use case 6 3 7 7 7 7 7 3 3 7 7

use case 7 7 7 7 7 7 7 3 3 7 7

use case 8 7 7 7 3 7 7 7 7 7 7

use case 9 7 7 7 7 3 7 3 3 7 7

use case 10 7 7 7 7 7 7 7 7 3 7

use case 11 7 7 3 3 3 3 3 3 3 3

use case 12 7 7 7 7 7 7 3 7 7 7

use case 13 7 3 7 3 3 7 7 3 3 3

use case 14 7 7 3 7 7 3 3 3 3 3

use case 15 7 7 7 7 7 7 7 7 7 7

use case 16 7 7 7 7 7 7 3 3 7 7

use case 17 7 7 7 7 7 7 7 7 7 7

use case 18 7 7 7 7 7 7 7 7 7 7

The Paper UI of openHAB is not intended for control, but is used to set
up and configure the openHAB instance, therefore it only supports use case
13. The Basic UI supports both basic and advanced home automation. The
visualization of energy data of devices can be achieved with the aid of power
consumption measuring modules. Since the feature of persistence is avai-
lable in openHAB, solutions for visualizing time series of historical energy
data are provided in the Basic UI. In addition, value-added services, such as
weather forecasts and Google maps, are also available to be integrated into
the user interface.

The demo user interface of OGEMA comes with a few widgets. One of
them is a basic switch GUI, which allows residents to view the states of

105

3 Overview of Related Work

controllable devices and to switch them. Therefore use case 1 and 5 are
supported. Besides this, the user interface also supports role based access
control (use case 8) since three roles with different permissions are available
in OGEMA. One of the available widgets, called log data visualization, is
able to display logged sensor readings, so use case 11 is also supported.
Another widget is called OGEMA framework administration. It allows the
administrator to configure the system by managing applications, users and
resources (use case 13).

Since the built-in user interface of FHEM, called PGM2, provides resi-
dents with possibilities to interact with the FHEM server by directly sending
commands, both basic and advanced home automation, such as timed swit-
ches and event notifications, can be achieved. The Tablet UI, however, does
not directly support advanced home automation, since it provides only basic
widgets with corresponding attributes. Advanced home automation needs
to be taken care of by developers. PGM2 supports use case 9 because it can
be extended by a floor plan module. For the visualization of historical log
files, PGM2 can directly use the Plot command to create plots, and in Tablet
UI, a third party chart widget can be used. What is more, PGM2 supports
system configuration by sending commands to the server in the command
field. Tablet UI is able to provide value-added services, such as weather
forecasts, via integrated or third party widgets.

The two user interfaces, the KIT EMP and the FZI EMP of the Orga-
nic Smart Home (OSH), support only basic home automation. These user
interfaces allow residents to specify degrees of freedom for appliances. In
addition, building-level and device-level energy data as well as the in-house
power generation from photovoltaic panels and a µCHP can be visualized
in these two user interfaces. External signals such as energy tariff and load
limit signals can also be accessed via them. They both have a floor plan to
organize the devices in a building, with the difference, that the floor plan
provided by the FZI EMP is configurable while the one in the KIT EMP

106

3 Overview of Related Work

is not. The historical energy data of devices can also be displayed in both
user interfaces. The prediction of in-house energy use is only supported
by the KIT EMP. Value-added services and integration of electric vehicles
are again supported by both of them. Although OSH is able to optimize
in-building energy use, its two user interfaces do not provide residents with
options of setting their optimization goals (use case 18).

SmartVISU allows residents to achieve both basic and advanced home
automation and to view the energy data of devices. It also provides different
kinds of widgets to visualize historical data by creating charts using multiple
series. In the demo, historical energy costs, including those for ’yesterday’,
’the last seven days’ and ’the last thirty days’, can be accessed. Use case 13
is supported by smartVISU as well, since it comes with a configuration page
providing options for configuring the interface for the back-end, e.g. setting
driver, address, port, etc. SmartVISU also provides value-added services,
e.g. weather forecast, calendar reminder, caller ID display of the phone
system.

The user interface of HomeGenie supports basic home automation as well
as advanced home automation, such as creating scenarios. In addition, it
is also possible for residents to view both building-level and device-level
energy data by creating corresponding modules. Use case 11 is supported
by the HomeGenie user interface since it can retrieve the historical data of
certain modules with the aid of a Statistics module. The user interface comes
with a configuration page, via which residents can configure the system,
e.g. enabling control adapters and interfaces, adding groups and modules,
etc. Value-added services, such as weather information and security alarm
system, are also supported by the HomeGenie user interface.

In conclusion, it can be seen, that none of aforementioned ten user interfa-
ces are able to support all of the use cases proposed in the previous section.
Most of them support basic home automation (use case 1), visualization of
device-level energy data (use case 5), visualization of historical energy data

107

3 Overview of Related Work

(use case 11) and provision of value-added services (use case 14). System
configuration (use case 13) is supported by 50% of these user interfaces.
Only the demo user interface of OGEMA supports role based access control
(use case 8). Only KIT EMP and FZI EMP support specifying degrees of
freedom for devices (use case 3), and it is also only these two user interfaces
that support integration of electric vehicles (use case 16). Only smartVISU
demo supports visualization of historical energy costs (use case 10). Pre-
diction of in-house energy use (use case 12) is supported only by the KIT
EMP of Organic Smart Home. Finally, none of the user interfaces supports
visualizing historical energy data for the single resident (use case 15), con-
necting to a user community (use case 17) or setting building optimization
goals (use case 18).

3.3.2 Technical characteristic based evaluation

The previous section evaluated popular user interfaces of building opera-
ting systems from the point of view of smart home related use cases. In
this section, a number of technical characteristics related to successful user
interfaces are firstly collected. These characteristics will then be used as cri-
teria for the evaluation of the technical implementation of the user interfaces
described in Section 3.1. In order to be able to make an objective evaluation,
the criteria selected in this section are those that can be definitely determi-
ned, in other words, for which the evaluation result will not depend on the
subjective views of different evaluators. For examples, some features rela-
ted to good user interfaces, like attractiveness or conciseness, are subjective,
so that whether the user interfaces satisfy these criteria vary from evaluator
to evaluator. For this reason, these subjective features will be excluded from
this section.

108

3 Overview of Related Work

• Easy to learn and use

Good user interfaces should be quick and easy to learn and use by
their target users. This characteristic could be subjective, since users
with different skill levels could make different evaluations for the
same user interface. To avoid ambiguity, this particular aspect of the
user interfaces of Section 3.1 is evaluated, by determining whether
professional knowledge of the building operating system in their hou-
sehold is required by users, for the implementation of the use cases of
Section 3.2. A user interface is evaluated as ’easy to learn and use’ if
professional knowledge is not required for residents to achieve their
goal, i.e., if users simply need to operate the graphical elements in the
user interface.

• Responsive

A user interface is responsive when its layout can fluidly change and
respond to fit different screen sizes. This means that it looks good
on different types of terminal devices, such as laptops, tablets and
phones, by changing its layout dynamically to adapt differently sized
screens of devices, e.g. by hiding unnecessary parts. This is an im-
portant factor for improving the user experience. The feature helps
developers to reduce efforts and costs for user interface development
and maintenance, since there is no need for the implementation of
different versions of the user interface for differently sized screens.

• Customizable

A customizable user interface allows users to change the appea-
rance and behavior of the user interface according to their preference.
When it comes to customization, there is the customization which
can be done by the developer, i.e., developer-oriented customization,
in which developers have freedom to customize the user interface in
terms of its appearance and behavior, e.g. modifying existing compo-

109

3 Overview of Related Work

nent templates. However, in this section, this feature will be evaluated
according to what extent users, not developers, are allowed to custo-
mize the user interface based on their personal needs without having
to leave the user interface to do so. Examples could be changing
widget features, color schemes, font sizes and so on.

• Modularized

Modularity is the degree to which a system’s components may be se-
parated and recombined [15]. Modularized user interfaces consist of
a number of loosely coupled and reusable components. Because of
this, they are more easily manageable and maintainable than tightly
integrated user interfaces, whose components are hard-coded, tightly
knitted with each other and specially designed for one specific sce-
nario. Usually the loosely coupled components in modularized user
interfaces also provide developers with possibilities for customiza-
tion. This corresponds to the developer oriented customization which
is mentioned but not considered in the previous characteristic of the
’Customizable’.

• Consistent

Consistent user interfaces can help users to improve efficiency and sa-
tisfaction and reduce confusion while they seek to complete tasks in
the user interface. Making the user interface consistent is also one of
the important design principles for the user interfaces, which was out-
lined in Section 2.4. Consistency can be reflected in different aspects
including using the same terminology to represent the same thing,
complying with generally accepted conventions, adhering to a consis-
tent style scheme (e.g. layout, color, font and graphical elements) and
so on.

110

3 Overview of Related Work

• Multilingual

Multilingual User Interface (MUI) originally refers to the Microsoft
products that allow users to switch between different languages on a
single system [16]. However, the term "multilingual" in this context
is not Windows-specific, but applies to user interfaces in general. If
a user interface is multilingual, end users can adapt it to various lan-
guages at runtime by switching between multiple language options
provided by the user interface, without needing to change the source
code. In computing, this is referred to as internationalization and lo-
calization [13]. This feature is favored by users who prefer different
native languages.

The user interfaces in Section 3.1 are now further evaluated in this section,
by using the aforementioned technical characteristics as evaluation criteria.
The results can be found in Table 3.6.

Table 3.6: Evaluation results of the user interfaces in Section 3.1 based on the
technical characteristics

Criteria

UI EF-Pi
µCHP
widget

openHAB OGEMA
Demo

UI

FHEM OSH Smart-
VISU
Demo

Home-
Genie

UI
Paper

UI
Basic

UI PGM2
Tablet

UI
KIT
EMP

FZI
EMP

Easy to learn
& use

3 3 7 3 7 3 3 3 3 7

Responsive 7 3 3 7 7 7 7 7 3 3

Customizable 7 7 7 7 3 7 7 7 3 3

Modularized 7 7 3 3 7 3 7 7 3 3

Consistent 3 3 3 7 3 3 3 3 3 3

Multilingual 7 7 7 7 7 7 7 7 7 7

Among the user interfaces of Section 3.1, the Basic UI of openHAB is
evaluated as ’not easy to learn and use’, since the functionality of advanced
home automation provided by openHAB has to be defined via corresponding

111

3 Overview of Related Work

rules. To do this, users need know the syntax of the rule definition as well
as have knowledge of some system configurations, e.g. Item definitions.
FHEM’s built-in user interface, PGM2, is also evaluated as ’not easy to
learn and use’. The reason for this is that not all functionalities provided
by PGM2 can be achieved via simply operating graphical elements in the
user interface. Some functionalities used in advance home automation, e.g.
event notification, can only be achieved via sending FHEM commands to
the server. In this case, users are required to master the professional FHEM
commands in order to achieve certain goals. This restricts non-professional
or lay users from learning and using the user interface. The user interface of
HomeGenie is equally evaluated as ’not easy to learn and use’ because users
have to resort to a widget editor and a program editor in order to be able to
achieve the customization of widgets and features. To this end, users are
required to have programming knowledge, such as C#, Javascript, Python
and Ruby, which makes it relevant only for professional users.

The Paper UI and the Basic UI of openHAB, smartVISU and the user
interface of HomeGenie have a responsive layout. Other user interfaces are
either not responsive at all or only partly responsive. For instance, the µCHP
widgets of the EF-Pi are not responsive, since the content of widgets is me-
rely visualized via a normal HTML table. FHEM’s built-in user interface
PGM2 requires users to manually select different styles to adapt to diffe-
rent devices. The KIT EMP of thte OSH is partly responsive. Some of its
components, like the chart widget for displaying historical energy use of
appliances, can automatically reset scales whenever window sizes change.

Only the built-in user interface PGM2 of FHEM, the smartVISU and the
user interface of HomeGenie are customizable. PGM2 provides users with
possibilities for selecting different displaying styles. In the configuration
page of smartVISU, there are options available to change the visual appea-
rance of smartVISU. With the user interface of HomeGenie, users are able to

112

3 Overview of Related Work

customize existing widgets or add new ones with the aid of a widget editor
and a program editor.

The Basic UI of openHAB is modularized because there is a series of
predefined Sitemap elements that can be reused by user interface developers.
As for OGEMA, its application pages are not modularized, since there are
no available data models. Nevertheless, for the role of administrator and
natural user, there are some predefined data models (cf. Table 3.1) that can
be used for different purposes. FHEM Tablet UI is also modularized because
it offers developers a wide variety of widget templates. In a similar way,
smartVISU also provides a collection of various widgets that can be reused.
In HomeGenie, all devices and services are abstracted into different modules
which contain corresponding customizable widgets. There are already a
number of widgets available in HomeGenie. Therefore, smartVISU and
HomeGenie are also modularized.

All of these user interfaces are consistent, except for the OGEMA demo
user interface. The reason why it is evaluated as being ’not consistent’ is that
the layout styles of the UI pages designed for different applications are very
different from one another. For example, Figure 3.15 shows UI pages of four
applications in the demo user interface of OGEMA. It is very clear, that the
four application user interfaces do not have any visual consistency. They
use different background colors, different styles for graphical elements, and
different color schemes for highlights.

All of these user interfaces support only one language. There are no pos-
sibilities for users to adapt the user interfaces to other languages.

In conclusion, of these ten user interfaces for different building operating
systems, none can comply with all of the six technical characteristics which
are related to successful user interfaces. In more detail, most of them are
consistent and easy to learn and use. Half of them support modularization.

113

3 Overview of Related Work

(a) Log data visualization (b) Device configurator

(c) Basic switch GUI (d) KNX GUI

Figure 3.15: Four application user interfaces in OGEMA demo user interface

Four of them have a responsive layout. Only two of them are customizable,
and not one provides multilingual support for users.

3.4 Conclusion and Discussion

In recent years, a rising number of local energy management applications
and building operating systems have been deployed. Along with these sy-
stems there are their respective user interfaces. This chapter is to serve
as a reference for a more comprehensive design of the user interface for
building operating systems in the future. It started by giving an overview
of state-of-the-art user interfaces for different building operating systems.
Subsequently, a number of use cases relating to smart buildings were pro-
posed. Finally, the user interfaces were evaluated from the point of view of
the smart building related use cases and then with regard to some technical
characteristics pertaining to successful user interface design. From the final
evaluation results, both strengths and weaknesses of these user interfaces
have become evident. None of them can meet all of the evaluation crite-

114

3 Overview of Related Work

ria. They all have room for enhancement of varying degrees and in different
aspects.

With the future trend of more than one building operating system ser-
ving different purposes and operating simultaneously in a building, resi-
dents might lose control over their individual targets concerning their buil-
ding since different building operating systems might interfere with each
other. In this case, a common user interface that can be applied to different
building operating systems might be required in order to be able to provide
a holistic and comprehensive overview of the energy flows as well as ensure
a compatible control of various devices. Also, according to findings made,
users were more satisfied with the results of the common user interface and
performed better with the common interface than with the integrated inter-
face [70]. The common user interface should be generic and flexible enough
to interact with users as well as communicate with heterogeneous building
operating systems. Thus far, common user interfaces such as these do not
yet exist because there are certain difficulties and challenges, but their de-
sign should be feasible and it will be of great valued to have them in the
future.

115

4 Design

Design is not just what it

looks like and feels like.

Design is how it works.

Steve Jobs, Co-founder and

CEO of Apple Inc.,

1955-2011

With a rising number of competing building operating systems appearing
on the future market, it will become increasingly difficult to obtain a holis-
tic and comprehensive overview of the energy flows and devices in a smart
home. In a fragmented market, customers could lose control over their in-
dividual targets related to their building. This chapter presents the design of
a generic user interface for building operating systems, which can be used
as a reference for future user interfaces of smart homes to overcome the
heterogeneity of different building operating systems and provide various
services for residents to increase the comfort and energy efficiency of their
building. The design of the user interface can be divided into four aspects -
structure, access, content and style (cf. Figure 4.1), which are closely rela-
ted and complementary to each other. This chapter introduces the design of
a generic user interface by mainly focusing on three aspects of the design,
namely, on structure, access and content. The style of the user interface will
depend on the actual implementation and will be presented in Chapter 5.

Since the concept of a generic user interface for building operating sys-
tems is not clear, this chapter begins by, first of all, giving a definition of

116

4 Design

Figure 4.1: Aspects of user interface design [69]

this concept and then presenting a number of system objectives for a gene-
ric user interface. After that, an environmental model of a smart home, in
which the generic user interface is to be implemented, is introduced, before
moving onto the different design aspects of the generic user interface. The
aspect of structure, as shown in Figure 4.1, is first focused on in the next
section in which an architecture of the user interface, which will make the
user interface generic, is proposed. The section that follows, then deals with
the aspect of access, as shown in Figure 4.1. Due to the complex environ-
ment of a smart home, the users of the generic user interface are classified
into different roles. These roles, together with their permissions, are des-
cribed in this section. After this, a series of generic data models, which are
needed by the user interface in order to facilitate the mutual access between
the user interface and building operating systems, are introduced. and lastly,
the aspect of content, as shown in Figure 4.1, is dealt with at the end of this
chapter in which a number of functional components of the generic user in-
terface as well as their relationships are presented. Part of the work in this
chapter has been published in the Journal of Energy Informatics [106].

117

4 Design

4.1 The Definition

Since the beginning of the 21st century, smart home or home automation
technologies have been increasingly becoming popular and changing the
way people live. At the same time a variety of smart home related termi-
nologies have also been widely used but not uniformly defined, such as the
term ’generic user interface’ for building operating systems, which is the
focus of the work done in this thesis. As a general term, a user interface has
different commonly accepted definitions. More specifically, it can apply to
a building operating system, in which case its concept is still self-evident.
However, when it comes to the term ’generic user interface’ for building
operating systems, no definition for this concept has yet been found in the
existing publications. For the sake of clarity, the concept therefore needs to
be clearly defined in the initial stage of the design. In this thesis, a generic
user interface for building operating systems is defined to meet the following
requirements:

• Remote reachability. In order to enable a user interface to be re-
motely reachable, it is highly desirable to provide a web-based GUI
(Graphical User Interface) system since it is a cross-platform software
that is not dependent on any specific hardware or operating system
[51]. The traditional desktop user interfaces which need to be instal-
led on a local computer are very platform dependent and require much
effort for maintenance and upgrading. The web-based user interfaces,
on the other hand, are flexible and can be accessed from any computer
which is connected to the Internet via a standard browser. This is the
reason for its wide-spread increasing popularity.

• Responsiveness. A generic user interface should be responsive. Ac-
cording to a survey1 conducted by the Pew Research Center in 2015,
68% of Americans are smart phone owners, up from 35% in 2011.

1 http://www.pewinternet.org/2015/04/01/us-smartphone-use-in-2015/

118

4 Design

At the same time, 45% of all adults also own a tablet. This growth
has continued throughout the years. With the increasing number of
mobile devices of different screen sizes, it is important to create a
responsive user interface by using the Responsive Web Design [64],
which can ensure that the user interface looks good on different types
of devices by adapting the layout to suit different screen sizes, thus
delivering a good and consistent experience to users.

• Configurability. If a user interface is configurable, some features
(e.g. appearance, layouts, displayed content, etc.) of the user inter-
face can be tailored by users according to their needs or preferences.
As one of the design principles for user interface design, configurabi-
lity enables users to realize the personalization of their user interface.
This personalization enhances the sense of control of the user and en-
courages an active role in understanding. It also makes allowance for
personal preferences and differences in experience levels, thus leading
to a higher user satisfaction [65].

• Role management. A generic user interface should be applicable to
users who hold different roles. Most designers understand at some
level that it is not so much users themselves but the roles that they
play in relation to a system that must be taken into account in user
interface design [56]. When it comes to the field of smart buildings or
smart homes, although usually not too many residents live in a house-
hold building, in many cases (e.g. multi-tenancy) household members
do have different roles associated with different household practices.
By failing to recognize that users value time, roles and relationships
in their domestic lives, there are growing concerns that smart home
technology could start dominating people, rather than the other way
around [105, 59]. A role-based user interface is able to assign users to
different roles which have different permissions to access the system.
This leads to a higher protection of privacy and a better acceptance by

119

4 Design

users. The restricted access to data or certain functionalities ensures
confidentiality, integrity, and accountability [68].

• Flexibility. A generic user interface should be based on generic data
models which are flexible to deal with different building operating
systems. A generic user interface is not specifically designed for a
particular building operating system, but on the contrary, the architec-
ture of the generic user interface should be loosely coupled with its
underlying building operating system, so that it is flexible enough to
apply to different household buildings with different kinds of devices.

• Generality. A generic user interface should be able to cover extensive
use cases relating to the context of the smart home. From the point
of view of functionalities, the more use cases that can be covered by
the generic user interface, the better. Supporting only limited features
will place restrictions on the scope of application of a user interface,
i.e., it will affect the applicability and generality of the user interface
to a great extent. Chapter 3 reviews the state-of-the-art user interfaces
for building operating systems and then proposes a series of common
smart home related use cases, which can be used as a reference for
the functional design and evaluation of a generic user interface for
building operating systems. This set of use cases is referred to in the
following chapters when discussing generality.

The aforementioned definition is aimed at eliminating ambiguity and de-
lineating the scope of the work in this thesis. The requirements of a generic
user interface for building operating systems listed above, on the one hand,
serve to provide guidelines for the design of the generic user interface des-
cribed later in this chapter, and, on the other hand, they also provide criteria
and a basis for the evaluation of the prototype of this generic user interface.
The evaluation will be presented in Chapter 6.

120

4 Design

4.2 System Objectives

As discussed in Section 2.1 of Chapter 2, the traditional uses of smart homes
have been in the areas of comfort, security and health. In recent years, with
the increasing awareness of energy conservation, energy, as a new dimen-
sion, has been integrated into the smart home functionalities. A services
aggregation system that can cover all the aspects could be implemented,
but this is not thought to be an optimal solution since users are too diverse
and the home is a difficult application context, therefore, any future system
should meet these different needs with different solutions, by providing an
in-context system that is flexible to meet the wide range of the users’ needs
[69].

The user interface designed in this chapter cannot provide solutions to
solve all the problems in a smart home. Instead, it mainly focuses on the
aspects of comfort and energy, since currently the main motivation for con-
sumers to receive smart home technology is to save energy, and to increase
the comfort of their homes [50]. Therefore, the major goal of the user in-
terface in this thesis is to help users to improve the comfort as well as the
energy efficiency in their building whilst at the same time ensuring good
usability. Specifically, the overall goal of the system can be broken down
into the following smaller objectives:

• Provide generic data visualization and control for heterogeneous buil-
ding operating systems in smart homes

• Provide options to help building operating systems to exploit the po-
tential of load shifting in household buildings

• Provide smart home users with not only a holistic but also a clear view
of the energy use in their building

• Provide smart home users with as many possibilities as possible to
control appliances in their building

121

4 Design

• Provide useful reference information to help smart home users to im-
prove their energy awareness so as to achieve the goal of saving mo-
ney

• Provide a relatively large application scope, which means the user
interface is able to meet the different needs of different household
buildings

• Provide intuitive displays which allow users to learn to use the user
interface quickly and to complete tasks by using the user interface
efficiently and effectively

This thesis is limited to the aforementioned system objectives related to
comfort and energy. Other aspects related to smart homes, such as healt-
hcare, security and entertainment, do not fall within the scope of this the-
sis. The corresponding use cases pertaining to these latter aspects include
ambient assisted living (e.g. providing assistance for elderly and disabled
people), various security alarms (e.g. burglar alarm and smoke alarm) and
entertainment systems (e.g. multi-room systems for music), etc. What is
more, the user interface designed in this chapter only accepts traditional
media (i.e., text, graphics drawings, images) for information transmission.
Other media objects such as audio and video are not supported by the user
interface.

4.3 Architecture

Current building operating systems are basically equipped with their own
proprietary user interface for their application scenarios based on their spe-
cific APIs (Application Programming Interfaces). For instance, the Energy
Management Panel is the user interface of the OSH. EF-Pi provides a UI
framework, which provides some empty widgets that need to be developed
by application designers as its user interface. OpenHAB uses the Paper UI

122

4 Design

and the Basic UI as user interfaces to realize different goals. These user in-
terfaces are tightly coupled to their underlying building operating systems.
Since the smart home market, at this stage, is still highly fragmented, cur-
rent building operating systems all use different standards and support only
their own functionalities, with the result that their user interfaces are heavily
coupled with them and can only support a limited number of use cases re-
lating to smart homes or are not flexible to be extended to other household
buildings.

Having a generic user interface which can be used for different building
operating systems is a solution to deal with the aforementioned problems.
Figure 4.2 shows the architecture of the generic user interface designed for
this thesis. The key part that makes the user interface generic and extendible
is the generic data models, which are appropriate abstractions of objects
that are needed by the generic user interface. The details related to the data

Figure 4.2: Architecture of the generic user interface for building operating systems

123

4 Design

models will be explained in Section 4.6. The existing building operating
systems (e.g. the OSH, the EF-Pi or another random building operating
system named BOS A, which are represented by the first three dotted boxes
in Figure 4.2) have their own APIs or web services therefore they need an
adapter to convert their proprietary data models to the generic data models
so that the generic user interface can apply to them. The adapter component
can be located in different places except in the generic user interface. It
would be undesirable to do the conversion inside the generic user interface,
because in that case, the generic user interface needs to know the APIs or
data models of every single building operating system, which is supposed to
be neither logical nor realistic. The adapter can be implemented either inside
the building operating systems, or as an outside isolated component, such as
a NodeJS component, which receives data from a building operating system
via web services and then implements the data conversion for the generic
user interface. Some future building operating systems might even forego
designing their own data models for their user interface. Instead, they could
directly benefit from the design presented in this chapter by accessing the
generic data models so that they could utilize the generic user interface to
interact with users rather than design their own user interfaces from scratch.
In so doing, a lot of effort could be saved.

Although building operating systems usually have their own database to
store configurations or historical data, the data stored by the building opera-
ting system might not meet the needs of the generic user interface. In this
case, the generic user interface will, however, still need to access the data-
base in order to realize specific functions. The interaction with the database
can be achieved by means of web services.

Furthermore, building operating systems of the future cannot be seen to
exist as isolated units, especially in this era of information explosion where
information sharing and exchange have become increasingly popular. To
begin with, it is very clear that the generic user interface for building ope-

124

4 Design

rating systems needs to be able to connect to a utility company in order to
not only keep users informed about the status of power supply and demand
in the power grid by receiving time-varying electricity prices, but also to
provide users with customized services (e.g. reminding users of their billing
limits) from the utility. If the energy information from utility companies
were available as structured data instead of the usual files (e.g. PDF files),
in other words, if the energy data were organized with standard data models,
there would be a huge potential for the generic user interface to extract use-
ful data from the information provided by utility companies and reuse the
data for providing users with a more comprehensive visualization of their
historical energy use or for other purposes.

Furthermore, nowadays more and more people, especially the young ge-
neration, desire to share their lives on social media, such as Facebook and
Twitter. For this reason, it would be beneficial if the generic user interface
would allow users to share their achievements related to energy consump-
tion and generation in their building with their friends on popular social
networks. This would also be a disguised incentive for users to improve
their awareness for energy conservation.

Finally, the current trend indicates that in the near future, more and more
smart homes will be built and the technology inside them will grow very fast
in order to create a more responsive and active environment able to respond
to the users’ needs [78]. Especially with the rising number of smart meters
being produced and rolled out, real-time energy consumption information
is being made available to an increasing number of household buildings. In
order to make the best use of this valuable information and to gain increased
benefit from it, it is anticipated that, in the future, smart home owners will
have the option of joining together to form communities. They would then
be able to share their in-house energy data with the communities for which
they have obtained permissions and be informed about the energy use of
like-minded residents in these communities in reward. Additionally, the

125

4 Design

potential of offering gamification, i.e., the use of videogame elements and
concepts from non-gaming contexts to improve user experience and enga-
gement with an interface has started to be explored in recent years [78, 97].
Having the option of comparing personal energy usage with that of others
may include a potential gamification element [78]. A community of smart
homes can provide an ideal environment to facilitate such a gamification.
"Support Online Community" is one of the use cases for smart homes that
has been proposed in different articles (e.g. [107] and [1]). Consequently, it
would be of advantage for the generic user interface if it were able to con-
nect to different communities and display the various average energy usages
of the communities to users.

However, it is noteworthy that the widespread deployment of smart me-
ters has serious privacy implications since they inadvertently leak detailed
information about household activities [85]. Therefore, while benefiting
from the sharing of smart meter data with a utility company or a commu-
nity, residents are also at the risk of exposing their privacy. To avoid this
threat, smart meters should not transmit any sensitive data such as customer
names or addresses, but to some extent, it will involve transmitting personal
data through the use of a smart meter ID number, which can be associated
with a recipient [108]. In addition, some privacy-preserving smart metering
protocols could also be used to prevent from privacy violation of residents.
For instance, the SMART-ER Protocol [63] achieves the goal of privacy
protection by aggregating smart meter readings from a number of household
buildings and then calculating masked readings for utility companies, whilst
at the same time, ensuring providing utility companies with an accurate view
on the current power consumption of their customers. Furthermore, recent
work [108] proposes that certain initiatives should be undertaken, including
(1) guidelines regulating access to data for customer services, (2) strong
user control over information leaving the customer location and, (3) pro-

126

4 Design

tocols that can process most of the data at customer locations, in order to
assure customer privacy and data protection.

4.4 Environment Description

The generic user interface designed in this chapter is dedicated to serving
smart homes in which a building operating system has been deployed to
provide energy management services in order to achieve certain goals set by
users, such as improving energy efficiency or reducing carbon emissions. A
simplified model of the physical environment of the smart homes is illus-
trated in Figure 4.3. The building operating system in a smart home cannot
work properly without the support of a smart meter which enables the real-
time measurement of energy consumption in a building. The metering data
can be sent back to utility companies or community service providers for
the purpose of data analysis and statistics via the smart meter gateway by
applying anonymization and encryption measures to ensure privacy.

Figure 4.3: Environment of the smart home on which the generic user interface is
oriented

127

4 Design

The smart home on which the user interface designed in this chapter is
oriented, is not limited to a single-storey household building. The user in-
terface can also be applied to multi-storey buildings. For this reason, the
smart home is modelled as a building which is composed of n(n> 1) floors.
If the value of n equals 1, it means the building is single-storey. If it is gre-
ater than 1, the building is multi-storey. Each floor consists of a series of
locations (e.g. kitchen, living room, etc.) in which a variety of devices have
been placed. A floor plan that shows the relationships between the different
locations on a floor is assumed to be available for each floor. The generic
user interface is to provide a logical and intuitive way for users to view their
devices.

The devices in a smart home can be classified into different categories.
From the perspective of schedule flexibility, home devices could be either
reschedulable (e.g. washing machine, dishwasher, water heater, etc.) or
non-reschedulable (e.g. oven, light, etc.). Users are allowed to set degrees
of freedom for reschedulable devices (e.g. by specifying cut off time for
expected programs) if their schedules can be shifted within certain range.
The building operating system could decide on an optimal schedule for the
devices to minimize the energy cost for users. However, since the generic
user interface is to be user-centered, it will give users the right to overrule
the optimized schedules and allow them to use the devices when they are
needed. As for non-reschedulable devices, they have to start working as
soon as they are needed by users. Therefore the generic user interface only
needs to provide users with options to control these devices.

In addition to the conventional devices that consume electricity, many
other devices which enable decentralized generation of renewable energy
are becoming available in smart homes. For instance, photovoltaic (PV)
panels can be installed on the roof of a smart home to convert the solar
energy into electricity, and a Combined Heat and Power (CHP) unit can be
used to produce heat and electricity simultaneously by being fueled with

128

4 Design

natural gas. Furthermore, electric vehicles (EV) can also be integrated into
the energy management of a smart home both in the form of consumer loads
and electrical storage systems [87].

4.5 Roles

The home dweller, which represents all categories of persons who live in a
home permanently, is thought of being the only home domain actor in the
deliverable of smart buildings "scenario" definition [1] from the FINSENY
project2, and the authors later pointed out that distinctions can be made
for more specialized roles/actors. In fact, the circumstances in a household
building could be more complex than only having the role of home dwellers,
who permanently live in the building. There are many conditions in which
more than one role are needed to be dealt with. Some of them can be seen
from the following exemplary scenarios.

Scenario 1: One family lives in a building and the father does not want

his children to control devices at home via the user interface since they are

too young to rationally use the devices.

Scenario 2: There are visitors coming into the home. The home owner is

not comfortable if the visitors can see all the energy data in his building, so

he wants to restrict the amount of information displayed on the user inter-

face or limit their use of some devices via the user interface.

Scenario 3: The home owner owns the building and the appliances in it

but he himself does not live in the building. Instead, he rents out all rooms

to different tenants who do not want the home owner to track their energy

use, in consideration of privacy protection.

Scenario 4: The home owner owns appliances in a building and also lives

in the building. But he rents out rooms, which he does not need, to other

2 http://www.fi-ppp-finseny.eu/

129

4 Design

tenants. He will want to monitor his own energy use in the building through

the user interface which is the same interface used by the other tenants. In

addition to this, he also wants to be able to view the more global energy use

of the building since he is the one to pay the energy bill.

There could be more complex scenarios, but even for the aforementioned
simple scenarios, one role is not enough to meet the needs. In order to ad-
dress the challenges resulting from these different scenarios, the users of the
generic user interface are classified into three roles in this section: the ad-
ministrator, the operator and the resident. Figure. 4.4 shows the relationship
between these three roles.

Figure 4.4: The three user roles of the generic user interface for building operating
systems in smart homes

The administrator is in charge of the configuration of a building. His re-
sponsibilities in using the user interface include defining physical locations
(e.g. floors and rooms) for the building, specifying relationships between
the locations and arranging devices in their proper locations, in a virtual
building within the user interface according to the actual situation in the
building.

130

4 Design

The resident is the role ascribed to users who are living in the building.
Therefore a resident can use the user interface to control the home devices
in the building to achieve various forms of home automation, and to view
energy flows in the building as well as the energy data of devices of which
he has been assigned corresponding operation permissions by the role of
operator.

The operator is the role held by the one who needs to pay the energy
bills for the building. The operator is responsible for managing the resi-
dents in the building, which means that the accounts for different resident
roles in the user interface are created by the operator. He can also limit the
residents’ access to household devices by assigning residents with different
permissions for the use of different devices. Each permission consists of
two parts. One part refers to the devices that the residents have the right
to access and the other part indicates the corresponding operations that re-
sidents are permitted to use in these devices. There are the following four
kinds of operations which can be used to restrict the residents’ access to
devices:

• View Device General Information. This operation allows residents
to view the general global information about the device. This infor-
mation is usually static or not updated frequently, for example, the
location of the device in a building, the time that the device was pur-
chased, or some other factory information about the device.

• View Device Channel Information. The household devices in this
thesis are considered to be made up of one or more so-called channels.
A channel refers to an independent component of a device which can
provide a certain function. A detailed description of channels can be
found in the next section. This operation allows residents to view in-
formation about device channels which are usually dynamically chan-
ging, such as running states and power values, etc.

131

4 Design

• Control Device. This operation allows residents to remotely control
devices (e.g. switching on or off devices) via the generic user interface
in order to realize different kinds of home automation.

• Set Degree of Freedom. The degree of freedom of household de-
vices refers to the time interval within which the devices can be re-
scheduled [92]. The working schedules of some white goods in hou-
sehold buildings, such as washing machines or dishwashers, can be
shifted either backward or forward within certain limits. With this
operation, the residents can define these limits by specifying the time
interval for running the devices on the generic user interface.

The scope of the permissions needed to perform the aforementioned ope-
rations increases progressively, and their relationship to each other can be
seen in Figure 4.5. If a resident is allowed to view the channel information
of a device, it implies that he can also view the general information of the
device. If he is assigned the permission to control the device then he also
obtains the right to view both general information and channel information
of the device. Similarly, the permission for setting the degree of freedom for
devices covers all the other operation permissions.

Figure 4.5: The permission hierarchy of the four operations for devices

132

4 Design

If the operator also resides in the building, he can authorize himself to be
a resident, which implies that he is given the possibility to assign himself
permissions to access all the devices in the building by virtue of his privile-
ges. To prevent the operator from misusing his privileges, the information
concerning which users have the rights to access a device and what operati-
ons they are allowed to execute should be transparent to every resident for
each device in the building. In this way, residents will be able to detect any
invasive use or unauthorized monitoring of their devices.

The design idea of the roles in this section was inspired by Role-Based
Access Control Models [98], whereby the author defined a family of four
conceptual models for various dimensions of Role-Based Access Control
(RBAC). The models in [98] have the common assumption that there is a
single security officer, who is the only one authorized to manage the RBAC.
However, the context of household buildings should be different. For rea-
sons of personal privacy protection in household buildings, it is not reaso-
nable to have one chief security officer. Only the people who reside in the
building should have permissions to access the devices in the building. Even
the operator, who is responsible for paying the energy bills in the building, is
denied access the devices by the generic user interface, if he does not live in
the building. The administrator and the operator are two independent roles,
whose permissions are neither mutually exclusive nor inherited. Under cer-
tain circumstances, they could represent two different parties. It is certainly
possible for one person to hold both roles at the same time. The simplest
as well as the most extreme circumstance is that, one person owns the rig-
hts of the three roles. In this case, it means there is no role differentiation
in a building, which is the normal situation in many households. Although
the most common role in a household building is the resident, this does not
cause much overhead to include the roles of administrator and operator in
the design, and on the other hand, the addition of different roles is even
necessary since they are needed in some special situations.

133

4 Design

4.6 Data Models

As the central part of the architecture of the generic user interface for buil-
ding operating systems (cf. Figure 4.2), flexible data models play a decisive
role in making the user interface "generic". It is not challenging to design
data models for specific devices in a certain building, as for the KIT EMP
which is implemented specifically to cater for the ESHL. The problem of
these data models is that they are not flexible to be extended to other buil-
dings. Some of the current user interfaces for building operating systems
(e.g. EF-Pi and OGEMA) are not even provided with data models. The data
models for these user interfaces therefore need to be designed from scratch
by UI developers. There are some building operating systems which pro-
vide generic data models for their user interface. However, the data models
either cover only a few device types or support limited functionalities. For
instance, in openHAB, the functionalities that are used by its user interfaces
and automation logic are abstracted into so-called Items. The way of ab-
straction in openHAB is generic but since openHAB is designed for home
automation solutions, its range of application is only limited to devices with
simple functions, e.g. lights, players, roller shutters, etc. Complicated devi-
ces, like a washing machine, which can be assigned a degree of freedom, or
a micro Combined Heat and Power unit (µCHP), which consists of different
components, are not supported by openHAB. Another problem of openHAB
is that the designer of its user interfaces need to know how the Items are de-
fined in the openHAB instance in order to be able to design a user interface
which again leads to the tight coupling between the user interface and the
instance definition of the system.

In this section, a series of generic data models which are independent
of any building operating system are designed in the scope of the generic
user interface. These data models enable the generic user interface to not
only serve various household buildings which are equipped with all kinds of

134

4 Design

devices but also to support different kinds of home automation and facilitate
a holistic overview for energy flows and devices in household buildings.
To this end, a generic data structure, named HouseholdDevice, that models
household devices for the generic user interface is designed. Its UML class
diagram is shown in Figure 4.6.

Figure 4.6: The UML class diagram of the household device model

The class HouseholdDevice is derived from a parent class, named Device,
which consists of the basic information about a device. The attributes of the

135

4 Design

Device class include a ’uuid’, which is an identifier that uniquely identifies
this particular device in a building, a device name which can be changed
later by users, and a list of the device factory information. In the Device
class, the factory information is not specific since this varies from device
to device and is full of unknowns. Instead, for the generic user interface,
a piece of information is abstracted by a special Information class which
consists of a name of the information, a value corresponding to the name,
and a unit for that value which can be empty when it is not needed for the
information. By using this abstract representation, the Device class can be
used to integrate any factory information about a device. The generic user
interface does not need to know what exact information is contained in the
list. Instead, it simply needs to iterate the list and display each piece of
information in the list on its web page. Table 4.1 shows a washing machine
instance of the Device class.

Table 4.1: An exemplified Device instance of a washing machine

Device Id 1609555631

Device Name Washing Machine

Information Name Information Value Unit
A List of Producer Robert Bosch GmbH

Factory Information Brand Bosch

Model WAK28227

Energy Efficiency Class A +++

...

In addition to the attributes inherited from its parent class, the class Hou-
seholdDevice has an attribute ’deviceImage’, which records the address of
the device image in the web server. To be able to display across-the-board
information for all kinds of devices including some large complicated ones,
the household devices are considered to be made up of one or more chan-
nels. A channel in this chapter refers to a functional component of a device.

136

4 Design

Most household devices, such as lights or the television, provide only a sin-
gle function and therefore only have one channel, where the current status,
power value or some other information about the device can be stored. Many
devices are more complex and are made up of different components which
can provide their own independent functions. For these devices, more than
one channel is needed to represent the different components and to store
various kinds of information about each. For instance, a dual-temp refri-
gerator can be considered to contain two channels, which correspond to its
refrigerator and freezer compartments, respectively. Another example is the
µCHP, where a boiler and a small power plant are combined in a single du-
rable device, so that the boiler and the power engine are abstracted into two
channels of the µCHP. Sometimes the µCHP might be extended with an
electrically driven heating coil as an alternative actuator to produce heat. In
this case, a third channel is needed to represent the heating coil.

In the HouseholdDevice model, the attribute ’deviceChannels’ is the col-
lection of all channels in a device. A channel is modelled as a Device-
Channel class which consists of two attributes: ’channelName’ which is the
name of the channel and, ’channelInfo’, which is a list of information about
the channel. The information about a channel is also represented by a list
of Information objects. Table 4.2 shows an example of three channels of
a µCHP. The information about the channels is provided by the building
operating system and will be further displayed on the generic user interface.

In addition to the information about device channels, there is some global
general information about the devices. This general information does not
merely apply to a single channel but to the device as a whole, such as the
location of the device, or the list of residents who are allowed to access the
device, etc. An attribute named ’deviceGeneralInfo’, which also consists of
a list of Information objects, is used to store this general information of a
device.

137

4 Design

Table 4.2: Example of device channels of a µCHP

Channel Information
Channel Name Information Name Information Value Unit

Power engine
State Running

Power -7400 W

Heating Cartridge
State Running

Power 2000 W

Water Boiler
Top Temperature 77 °C

Middle Temperature 41 °C

Bottom Temperature 39 °C

With decentralized generation increasingly becoming an option in house-
hold buildings, the role of the smart home will gradually make a transition
from being a conventional consumer to a future prosumer. At the same time,
the home devices will also become increasingly diverse. In order to facili-
tate the classification of devices, based on energy types which they support,
on the generic user interface, the HouseholdDevice model provides two at-
tributes, i.e., ’consumedEnergyTypes’ and ’generatedEnergyTypes’. These
two attributes represent a list of energy types that the corresponding devi-
ces consume, and a list of energy types that they produce, respectively. The
possible energy types include electricity, gas, heat, cold and water.

In addition to displaying information about the device on the generic user
interface, the HouseholdDevice model provides possibilities for users to in-
teract with devices. In order to support the setting of degrees of freedom
for devices, it is equipped with an attribute named ’deviceDoFInfo’, which
consists of an ’allowed start time’ and a ’required end time’ for the run-
ning program of devices. The values will be specified by users on the user
interface.

Except for sensors, most of the household devices provide one or more
functions that can be controlled by residents. Each of the functions is consi-

138

4 Design

dered to be a controller which is abstracted into a DeviceController model.
The HouseholdDevice model contains an attribute named ’deviceControl-
lers’ which represents a list of DeviceController instances. For example,
some multifunctional air conditioners can regulate and control the tempe-
rature, humidity and cleanliness of the air, so that, in this case, each of
the functions provided by the air conditioners corresponds to a controller
which can be modelled by a DeviceController class. The DeviceController
contains attributes including a name of the controller, a description of the
controller and a list of DeviceAction instances. The DeviceAction is an ab-
stract representation of a function unit of a device controller. In addition
to a name and a description, attributes of the DeviceAction class include
a Widget instance and a list of DeviceCommand instances relating to the
Widget. The Widget is a base class for user interface elements. Specific
interface elements such as buttons, switches or sliders, etc. can extend the
class by adding their own attributes. The DeviceCommand model includes
the attributes of a widgetState and a commandString, which records which
command (covered by the attribute ’commandString’) should be sent to the
building operating system and in which state of the Widget (covered by the
attribute ’widgetState’). When the state of the Widget of a device is changed
by residents, the generic user interface will find the command string corre-
sponding to the widget state, and send it to the building operating system so
as to realize the control of the device. In addition, another attribute, name
’isAvailable’, is also attached to the DeviceAction class. This attribute is
used to indicate whether the device action is available on the user interface.
For instance, users should not turn on the dishwasher via the user interface
when it is already in a state of running. In this case, the action of turning on
the dishwasher should be set to ’not available’ (isAvailable = false), so that
the user interface will disable this option for users.

139

4 Design

According to the Electric Vehicle Outlook 20173 from the International
Energy Agency (IEA), the global electric car stock surpassed two million
units in 2016 after crossing the one million vehicle threshold in 2015, and
the number has been growing continuously. These electric vehicles can be
connected to household buildings via charging stations when they are not
in use. While the charging process of the car’s battery can be controlled
by the building operating system to prevent grid overload, the battery can
also be used as storage for electrical energy [46]. Since electric vehicles are
different from the conventional household devices, the HouseholdDevice
model cannot cover the scenario of electric vehicles. In this case, a special
ElectricVehicle class (cf. Figure 4.7) is designed for them.

Figure 4.7: The UML class diagram of the electric vehicle model

Besides an identifier (id), a name and an image of an electric vehicle,
the ElectricVehicle class includes a ’generalInfo’ attribute, which is an in-
stance of the EVGeneralInfo class, in order to cover the basic generality

3 https://www.iea.org/publications/freepublications/publication/GlobalEVOutlook2017.pdf

140

4 Design

information about an electric vehicle, such as the current status and power
value. The potential status of an electric vehicle could be either connected
or disconnected to a charging station. In case that the electric vehicle is con-
nected to the charging station, it may be in one of the following three states:
charging, discharging and idle. In addition to the status and power, other
general information about an electric vehicle can be included in the ’other-
Info’ attribute. The ’otherInfo’ attribute is a list of customized Information
instances, which have been explained in the HouseholdDevice model. The
detailed information about the battery of an electric vehicle is covered by
the ’batteryInfo’ attribute, which is an instance of the EVBatteryInfo class.
Attributes of the EVBatteryInfo class include the full capacity of the bat-
tery, the current state of charge (SOC), the distance that the car can drive
with the current battery capacity, the remaining charging time and a list of
other information.

Although an electric vehicle can be used as a flexible mobile energy
storage device in a household building, such a potential of the electric vehi-
cle can only be exploited by the building operating system on the premise
of fulfilling the needs of users. Concerning this, the ElectricVehicle model
provides another attribute named ’nextPlannedDrive’ to record the parame-
ters configured by users for their next drive. These parameters include a
departure time for the next drive, the distance from the target location, the
minimum range that the car needs to reach, etc. All the requirements speci-
fied by users indicate a degree of freedom of the electric vehicle.

As discussed in Section 4.5, the users of the generic user interface desig-
ned in this chapter are classified into three roles, namely, the administrator,
the operator and the resident. A so called User class (cf. Figure 4.8) models
the users of the generic user interface in a building. Since the generic user
interface aims to implement role-based access control, a user of the generic
user interface is allowed to cover more than one role. Therefore, in addition
to the basic attributes such as user name, password and some personal data

141

4 Design

about the user, the User class also has an attribute to indicate a list of roles
that the user owns. Residents live in a building and use the household devi-
ces on a daily basis, however they are only allowed to use the devices that
the operator has assigned to them in a specified way. Therefore the class,
Resident, extends the User class by adding a list of permissions for the re-
sident to operate devices in a building. The permission is modelled by a
Permission class, which contains a list of household devices as well as a list
of operations allowed by the devices.

Figure 4.8: The UML class diagram of the user model

As described in Section 4.4, a household building in this thesis is con-
sidered to have one or more floors. A single apartment is regarded as a
building having one floor which is the apartment itself. Figure 4.9 shows
the UML class diagram of the floor model. The floor model represents the

142

4 Design

global configuration of a building which therefore will be managed by the
administrator via the generic user interface.

A Floor class is made up of the following attributes: an id, which uniquely
identifies this floor in a building, a name of the floor, which is defined by
the administrator, a list of locations (e.g. rooms or hallway) and a floor plan.
Locations in a floor are modelled by a Location class which has attributes of
an id, a name, which is defined by the administrator, and a list of household
devices, whose data model is shown in Figure 4.6.

In order to give users an intuitive and overall overview of the devices in
their building, one of the design concepts of the generic user interface in
this thesis is to display the users’ household devices on the floor plan of
their building. This concept was inspired by PGM2, the user interface of
FHEM, and the EMP, the user interface of the OSH (cf. Section 3.1). A
FloorPlan class (cf. Figure 4.9) is designed for this purpose. The floor plans
of a building on the generic user interface are represented in the form of
images. The FloorPlan class defines a group of basic attributes pertaining
to a floor plan image, including address, width, height and scale of the floor
plan image. The reason for having a scale attribute is to enable users to scale
up or scale down the original image of the floor plan on the user interface
according to their needs.

Another attribute of the FloorPlan class is a list of devices that are placed
on the floor plan by the administrator. The images of the household devices
in a building can be placed in corresponding positions on its floor plan ac-
cording to the actual location of the devices in the building. The devices on
the floor plan are abstracted into a class named DeviceOnFloorPlan which
contains attributes of the device images that are on the floor plan, such as
their coordinates, width and height. In order to visualize different states of
devices on a floor plan and provide anchors for resizing the device images,
every device on a floor plan is designed to be surrounded by four small cir-
cles which are attached to the four corners of the device image on the floor

143

4 Design

Figure 4.9: The UML class diagram of the floor model

plan. The style of the circles is specified in the class AnchorStyle which in-
cludes a radius attribute and a color attribute to specify the size and color of
the circles. Different colors of the circles are used to indicate different sta-
tes of a device. Furthermore, each device on a floor plan is associated with
a particular household device in the building so that detailed information
about the device and the executable controls over the device is achievable.
For this purpose, the DeviceOnFloorPlan class has a ’device’ attribute which
is a reference to a HouseholdDevice instance. Because of this, users are able
to not only view devices in their building but can also interact with them on
the basis of a floor plan.

144

4 Design

Figure 4.10 shows data models relating to household buildings. Firstly,
the Building class contains some static information pertaining to the en-
tire building or information that is not updated frequently. Attributes of the
Building class include a list of global information (e.g. floor area, year built,
etc.) related to a building, a list of Floor instances and a list of stakeholders
of a building which is a collection of the users of the three roles (i.e., the
administrator, the operator and the resident) of the generic user interface in
a building. In addition to static data, the BuildingRealtimeData class is used
to model the real-time changing data in a building. Its attributes include a
timestamp which identifies when the current data was generated, voltage at
a building, frequency at a building, power consumption of the whole buil-
ding, power generation of the whole building and a list of other dynamically
changing information about a building. The values of the attributes will be
provided by a building operating system, and the generic user interface will
be responsible for displaying them for users.

Figure 4.10: The UML class diagram of building related models

145

4 Design

As one of the basic use cases in the context of smart home, simple home
automation, such as changing the state of a specific device (e.g. switching a
light on/off) can be implemented based on the HouseholdDevice model (cf.
Figure 4.6). In addition, the generic user interface designed in this chapter
allows users in a smart home to realize some more advanced home automa-
tion. One of them is to allow residents to organize a number of devices into
a group in order to facilitate residents to view the status of these devices or
to control them in a uniform way. The devices which are used frequently by
residents or devices of the same type may be classified as a group. Figure
4.11 shows the class diagram of the model of the device group.

Figure 4.11: The UML class diagram of the model of the device group

A device group is owned by the resident who created the group. Resi-
dents can specify a group name and an image for a device group. That is
why the DeviceGroup model includes attributes of ’a name’, ’an image’ and
’an owner’. Besides this, it also includes a list of household devices which

146

4 Design

are added to the group by the owner of the group. Since the residents’ access
to the household devices in a building is restricted by the operator via cer-
tain permissions, residents can only make groups for those devices that they
have permissions to access. After having defined a device group, on the one
hand, residents are able to view the states of the devices in the group with
one glance. On the other hand, devices in the group can be controlled by re-
sidents by using unified group operations, provided that the devices belong
to the same type. This is due to the fact, that controllers of the same type of
devices are represented by the same widgets on the generic user interface.
Due to the flexibility of the HouseholdDevice model, the widgets there-
fore can be extracted from the corresponding HouseholdDevice instances of
these devices and can then be included in group operations for residents to
be able to control all the devices in the group simultaneously. For instance,
all the lights in a building can be organized into a group. The common wid-
gets relating to the lights could be a switch component or two buttons which
can be used to switch a light on and off. By having the common widgets as
group operators, residents are able to turn on or off all the lights in the group
simultaneously instead of having to control them individually.

In addition to device groups, the generic user interface enables residents
to create various scenes in their building according to their needs. In the
general context of home automation, a scene is a defined set of states of one
or more home devices, and an example of such a scene could be a night
scene, which turns on all the indoor lights [24]. After being created, scenes
can be triggered by users whenever they need. The class diagram of the
scenes is shown in Figure 4.12. A scene is owned by the resident who
created it on the generic user interface. The resident can add devices, that
they have permissions to control, to the scene. Therefore, the Scene model
consists of the following attributes: an ’id’ which uniquely identifies this
scene, a ’name’ of the scene which is given by the owner of the scene, a
’resident’ who created the scene and owns it, and a ’list of devices’ that

147

4 Design

have been added to the scene by the resident. The residents in a household
building are abstracted into a Resident class which extends the User class.

The device that has been added to the scene is abstracted by the class
DeviceInScene which is associated with a HouseholdDevice instance. As
shown in Figure 4.6, if a household device is controllable, its data model
HouseholdDevice will contain one or more DeviceController members. The
DeviceController model further has one or more DeviceAction members.
Each of them contains a Widget instance and a list of DeviceCommand in-
stances which store different widget states and their corresponding com-
mand strings that need to be sent to the building operating system in order
to control the devices to physically reach the corresponding states. After ad-
ding some devices to a scene, on the generic user interface, the resident who
owns the scene can specify the target states for the devices. These target
states, together with their command strings, will be stored in a list of Tar-
getStateAndCmd instances, which is another attribute of the DeviceInScene
class. The TargetStateAndCmd class contains a ’controllerName’, attribute
which identifies a DeviceController instance of the device in a scene, an
’actionName’, which identifies a DeviceAction instance in that DeviceCon-
troller and a ’commandID’ attribute, which identifies a DeviceCommand
instance in the DeviceAction. Through these three identifiers in the Hou-
seholdDevice model, the generic user interface can easily find the device’s
target state that was set by the resident and the command string correspon-
ding to the target state, which needs to be sent to the building operating
system, by accessing the HouseholdDevice model.

When a resident triggers a scene that he has created, the generic user in-
terface will traverse a list of TargetStateAndCmd instances for every device
that has been added to the scene and get the command string for the target
state of the device. It will send this to the underlying building operating sy-
stem which will translate it into specific instructions and further send these
to the device in a building so as to control the device to reach the desired

148

4 Design

Figure 4.12: The UML class diagram of the scene model

target state. The detailed process of adding and triggering a scene can be
found in Figure 4.13.

The generic user interface in this chapter is designed to support a number
of advanced home automations aimed at improving the residents’ comfort in
their building. In addition to supporting the creation of scenes, it also allows
residents to create automation events on the user interface, with the aid of a
normal calendar. This chapter abstracts the automation events on a calendar
into a CalendarEvent model, whose UML class diagram is shown in Figure
4.14. The CalendarEvent model is composed of the following attributes: an
’id’, which uniquely identifies the event, a ’title’ of the event, a ’resident’,
who created the event, the ’date and time’ of the beginning and end of the
event, the ’location’ settings for the beginning and end of the event, a ’list

149

4 Design

of device settings’ for the beginning and end of the event, and the ’repeat
mode’ of the calendar event.

The settings concerning a location of a calendar event are modelled as
a LocationSetting class, which consists of the following attributes: an ’id’,
which uniquely identifies the location setting, a ’location’ in a building, a
’temperature value’ of the location, a ’humidity value’ of the location, a
’Boolean value’ (i.e., ’isTempRequired’), which indicates if the temperature
value of the location is required for the event and a ’Boolean value’ (i.e.,

Figure 4.13: The sequence diagram of creating and triggering a scene

150

4 Design

Figure 4.14: The UML class diagram of the calendar event model

’isHumidityRequired’), which indicates if the humidity value of the location
is required for the event. If the value of the ’isTempRequired’ attribute or the
’isHumidityRequired’ attribute is set to false, the building operating system
will not consider optimizing the temperature or the humidity in the location.

In addition to setting a location for the beginning and end of the event,
residents are also allowed to configure the state of devices for the event.
The settings related to the devices of a calendar event are modelled as a
DevicesSetting class. In general, the same type of devices in a location (e.g.
all the lights of a room) need the same target state for a certain event. In
this case, these devices can be configured as a whole. Therefore, a list of
household devices is one of the attributes of the DevicesSetting class. Since
household devices could provide different controllers to interact with users,

151

4 Design

the DevicesSetting class includes an attribute of a list of ’deviceTargetState’
instances to cover different target states of a set of devices of the same type.

The last attribute of the CalendarEvent is the repeatMode which indicates
in which way the calendar event needs to be repeated. For each calendar
event, it can be set to not repeat, which means the event will only occur
once. It can also be set to repeat every day or every week. If the mode
of repeating every day is chosen, the event will be triggered every day at a
fixed time within the given period of dates. If the mode of repeating every
week is chosen, the resident has to specify a weekday for the event. In so
doing, the calendar event will be triggered at a fixed time on the same day of
every week within the given period of dates. By triggering a calendar event,
it means the devices that have been added to the event will be automatically
set to the specified target states.

The settings that are specified for a calendar event are supposed to be ta-
ken care of by the generic user interface as well as the building operating
system. The generic user interface is supposed to trigger the target states
of the devices in the event, by sending the command strings corresponding
to the target states to the building operating system. The settings (i.e., the
temperature and the humidity) of a location for the event are supposed to
be taken care of by the building operating system, since these settings are
equivalent to the degrees of freedom of an air-conditioner in the location.
The working process of the air-conditioner is schedulable in order to reach
the setting goals of the location for the event. This provides possibilities for
the building operating system to realize load shifting. In the generic user
interface, two threads are needed in order to implement the functions of in-
tegrating events into a calendar. The first thread is responsible for accepting
the residents’ instructions to manage (including create, view, update and de-
lete) events on the calendar. Another thread ensures that the events that have
been created on the calendar are activated on time. Their sequence diagram
can be found in Figure 4.15 and Figure 4.16, respectively.

152

4 Design

Figure 4.15: The sequence diagram for creating and managing an event via the
calendar of the generic user interface

As described in Section 4.3, the owner of a smart home in the future
may choose to join one or more communities so that they can compare the
energy usage of their building with that of their counterparts in a community.
To achieve this, the communities are abstracted into a Community class
(cf. Figure 4.17), which will be used by the generic user interface to not
only display information about the communities for users but also provide
options for users to configure connections to the communities.

153

4 Design

Figure 4.16: The sequence diagram for realizing advanced home automation via the
calendar in the generic user interface

The attributes of the Community model include a ’name’ of the commu-
nity which also uniquely identifies the community and a logo of the com-
munity. Additionally, a ’connectionStatus’ attribute indicates the connection
status between the building and the community which could be one of the
following: joined, connected, disconnected and unjoined. Depending on
the current connection status, proper actions can be made to change the
connection status. The optional actions include joining a community, con-
necting to a community, disconnecting from a community and quitting from
a community. For instance, if the building has not joined a community, the
home owner can choose to join the community. After that, the building is
still disconnected from the community by default which means the energy
data in the building will not be sent to the community for statistics. As a

154

4 Design

Figure 4.17: The UML class diagram of the community model

result, the home owner does not have access to the average energy data from
that community. In order to connect to the community, a manual connection
needs to be made by the home owner via the generic user interface. Under
special circumstances, he can also cut off the connection or even quit from
the community. In the Community class, the ’availableActions’ attribute co-
vers the available actions that the home owner is allowed to make based on
the current connection status. Furthermore, the Community model provides
a ’selectedGranularity’ attribute which indicates the level of the data granu-
larity (i.e., time intervals) for uploading the energy data of the building to a
community. The value of the attribute is configured by the home owner to
ensure privacy protection.

A community is usually a collection of different kinds of buildings. In
order to provide home owners with the general information about the buil-
dings in a community, the Community model includes an attribute named

155

4 Design

’buildings’, which is the combination of different types of buildings. The
information about the same type of buildings is abstracted into a Buildngs-
OfSameType class. It includes an attribute to indicate a building type, for
example, a household building, an office building, an industrial building or
a commercial building, and another attribute to show the number of buil-
dings of this type which exist in the community. Other information about
buildings of a certain type and about the community is covered by a list of
customized Information instances.

One of the most important features that the generic user interface needs
to have is to provide residents with a holistic and intuitive overview of the
current energy use in their building. Current user interfaces for building
operating systems basically organize the household devices on the basis of
their locations in the building. It is clear that organizing devices in this way
makes it logical and intuitive for residents to be able to find devices. Ho-
wever, it is not supposed to be an intuitive way when it comes to residents
desiring to get a full picture of the energy use in their building since the
different kinds of devices that are running are scattered in many different
places. The HouseholdDevice model (cf. Figure 4.6), which contains con-
sumed energy types and generated energy types as its attributes, enables the
generic user interface to organize devices in a different way, so as to help
residents to have a clearer understanding of the energy use in their building.
The in-house energy overview provided by the generic user interface is clas-
sified into multiple levels which are organized as a tree structure (cf. Figure
4.18).

The first level of the energy overview tree is about different energy types,
which include electricity, heat, cold, gas and water. Under each energy type
in Figure 4.18, the second level, which consists of various running modes of
the different devices for this energy type, can be seen. So, for each type of
energy, devices in a building could be consuming the energy, generating the
energy, or be in a state of storage. For instance, for the energy type of electri-

156

4 Design

Figure 4.18: The structure of the energy overview provided by the generic user
interface

city, household devices could be classified into types of power consumption
(e.g. lights, TVs, etc.), power generation (e.g. photovoltaic panels) and
storage (e.g. batteries) according to devices’ real-time running state. The
third level refers to either devices or device groups which are a group of
devices defined by residents according to their preferences. The members
of device groups could be devices or nested device groups. For example, a
light group could be defined to contain all the lights in the building. Within
the light group, a nested group could be further defined to contain lights in a
certain room. It is worth mentioning that some multi-modal household de-
vices, which can deal with different kinds of energy forms, will be grouped
into different energy types at the same time whenever they are in operation.
This means that a device may appear in different places of an energy over-
view tree at the same time. For instance, a µCHP, as a co-generation plant,
will simultaneously appear in the following locations of the energy over-
view tree when it is running: Electricity/Generation, Heat/Generation and
Gas/Consumption. If a µCHP is extended with an electrically driven hea-

157

4 Design

ting cartridge, it will also appear under the path of Electricity/Consumption
when the heating cartridge is working. The data structure used by the ge-
neric user interface to render the energy overview tree is represented in the
form of JavaScript Object Notation (JSON). A JSON snippet can be found
in Figure 4.19 which shows an exemplified representation of part of the
energy overview tree showing the devices that are consuming electricity in
a building.

JSON is made up of a collection of key/value pairs. The generic user
interface will render the energy overview tree according to the JSON re-
presentation provided by a building operating system. The type of ’energy
group’ in the JSON representation indicates the root of an overview tree for
a certain type of energy. The type of ’running mode’ refers to a subtree in
the second level. The type of ’device group’ refers to a subtree in the third
level. The values corresponding to the key ’children’ in different levels re-
present children of the corresponding subtree. The type of ’device’ refers
to the leaf node of a tree, which has no more children. A device can be di-
rectly a child of subtrees about a ’running mode’ (e.g. the oven and the dish
washer in the JSON snippet above) or a child of subtrees about a ’device
group’ (e.g. the lights in the JSON snippet above). If a device changes its
state from idle to running, a new record about the device will be appended
as a child to the JSON file. Similarly, if a device stops running, its rela-
ted record will also be removed from the JSON file. The overall energy
consumption/generation/storage for each tree/subtree in a building can be
calculated by collecting corresponding energy values from the devices in
that tree/subtree. By doing so, residents can have a holistic overview of the
energy usage in their building from the energy overview tree. In addition
to this, residents have access to detailed information about a specific de-
vice. This can be achieved with the aid of the identifier of devices which
corresponds to the value of the key ’id’ of each device record in the JSON
file.

158

4 Design

{
"name": "Electricity",
"icon": "electricity.png",
"type": "energy group",
"children": {
{

"name": "Consumption",
"icon": "powerConsumption.png",
"type": "running mode",
"children": {

{
"name": "Lights in my home",
"icon": "lights.png",
"type": "device group",
"children": {

{ïd": "1609551312", "name": "light_kitchen", "icon":
"light.png", "type": "device"} ,

{ïd": "1609554862", "name": "light_livingRoom",
"icon": "light.png", "type": "device"} ,

{ïd": "1609555628", "name": "light_bedroom",
"icon": "light.png", "type": "device"}

}
} ,
{ "id": "1609551312", "name": "dish washer", "icon": "dishWas-

her.png", "type": "device" } ,
{ "id": "1609557469", "name": "oven", "icon": "oven.png", "type":

"device" }
}

} ,
...

}

Figure 4.19: An exemplified JSON representation of part of the energy overview
tree which shows devices that are consuming electricity

By fragmenting the whole ’level’ of the energy usage in a building into
different levels, it is on the one hand straightforward for residents to get a
clear picture of the global energy flows in their building. On the other hand,

159

4 Design

the tree-structured organization provides a flexible and scalable way of dis-
playing the devices in a building. Adding or removing a device is equivalent
to adding or deleting a leaf node from the energy overview tree. In addition,
the generic user interface renders the energy overview tree by parsing the
JSON representation according to the key/value pairs from a building ope-
rating system, which further ensures generality of the user interface.

4.7 Functional Components

As shown in Figure 4.1, the content is an essential part of a user interface
design. Based on the requirements (cf. Section 4.1) of the generic user
interface for building operating systems, this section introduces the detailed
functional components (cf. Figure 4.20) of the generic user interface.

Figure 4.20: The functional components of the generic user interface for building
operating systems

As was described in the previous section, three roles are created for va-
rious responsibilities in the household building: administrator, operator and
resident. The administrator is responsible for configuring the building by

160

4 Design

adding floors to the building and adding locations to the floors, assigning
devices to appropriate locations, uploading floor plans for the building and
adding devices to corresponding floor plans. As soon as the configuration is
complete, the generic user interface is ready to be accessed by the operator
and the resident.

The operator is responsible for managing residents and paying energy
bills in the building. He can assign different permissions to different resi-
dents, which means that the residents can be restricted to perform only those
operations on certain devices for which they have received authorization.
Since the operator needs to pay the energy bills, he can, besides checking
the invoices sent from the utility company on the generic user interface, also
set optimization goals for the building, e.g. minimizing the energy costs,
energy consumption and CO2 emissions or maximizing energy consumption
from renewables, etc. It is possible for the operator to be able to set multi-
ple (even conflicting) optimization goals by having him specify weightings
for different goals. The building operating system is supposed to balance
these goals and define a reasonably good trade-off between the competing
goals. In order to be able to get a better impression of the energy use in
the building, the operator can check the building’s energy consumption and
generation history by using electricity prices and load limits as reference. In
addition to this, the operator can choose to join "communities" to exchange
information, or involve in gamification and statistic calculation. In return
for sharing some of the energy data in the building with communities, he
can compare the energy use as well as the utilization of devices in his buil-
ding with the corresponding statistical average values of the other buildings
in the community. The per capita power consumption or generation in a
building could be used for comparing the energy use in a community. The
devices in a building can be compared according to different aspects, such
as average power use per person, average cost per person, average power
use per usage, and average cost per usage, etc. After a comparison such as

161

4 Design

this, the operator will be able to not only become aware of the state of the
overall energy use in his building but also notice whether a particular device
in his building is being utilized appropriately by the residents or whether
devices in his building are energy efficient when compared to those of other
buildings in a community.

The residents, who are living in the building, can view the real time
energy data as well as the predicted energy data of the building along with
various external signals, including energy tariffs and load limits. As for the
historical energy information, residents can view both their personal histo-
rical energy use or the historical data of a specific device. Besides this, they
can also configure the next drive for the electric vehicle and set degrees of
freedom for devices. In addition to the function of basic home automation,
the generic user interface enables residents to implement advanced home
automation, which makes possible the execution of multiple actions at spe-
cific times, locations, or events, thus allowing them to manage their building
in a smart way.

Firstly, it allows residents to customize their own device groups. For in-
stance, they can group all the lights in the building into one light group, so
that they will be able to control all of the lights by sending commands to this
group. In addition to this, the residents can create different scenes according
to their needs. They can add devices to the scene and specify target states
for the devices via the generic user interface. After configuration, a scene
can be triggered any time by the resident who created it. Furthermore, the
generic user interface provides a calendar service which plays an important
role in the energy optimization of the building. The residents’ schedule in-
formation, marked on the calendar, can be used as auxiliary information for
the optimization process of the building operating system. From the resi-
dents’ point of view, the calendar service enables them to realize advanced
home automation by allowing them to add calendar events. For instance, a
resident can add an event on the calendar to roll up the blinds in the building

162

4 Design

in the morning and roll them down in the evening on a specific day or to
repeat this every day. Another example would be a party, which is a more
complicated event. For such an event, the resident can, on the one hand, set
parameters (e.g. temperature or humidity) on the calendar for the location
where the event is to take place. On the other hand, he can select the devices
needed for the event and set target states for these devices. The generic user
interface, together with the building operating system, are supposed to take
care of the event on the calendar and make sure the settings will be met when
the event begins. Finally, all operations on the devices in a building will be
recorded in an operation log, which is allowed to be checked by residents
via the user interface.

In terms of the system as a whole, the generic user interface provides
authorization, role-based access control and identity verification in order
to ensure security and privacy. Moreover it provides multilingual support
which is helpful to users who prefer different native languages. And, last but
not least, the generic user interface provides layout management to ensure
that the user interface will look good on different-sized screens so as to
improve the user experience.

4.8 Conclusion and Discussion

This chapter describes the design of a generic user interface for building
operating systems by mainly focusing on the aspects of structure, access and
content about a user interface. Since the concept of a generic user interface
for building operating systems has not been commonly defined, this chapter
begins with a proposed definition of the concept which consists of a number
of conditions that the user interface needs to meet. In Section 4.2, a list
of detailed system objectives was proposed for the design of such a user
interface. This section discusses how these objectives are achieved by the
following design in this chapter.

163

4 Design

System Objective 1: Provide generic data visualization and control

for heterogeneous building operating systems in smart homes

In order to realize this objective, an architecture of a generic user interface
for building operating systems in smart homes has been proposed. By ap-
plying this architecture, existing building operating systems can utilize such
a generic user interface as their user interface for data visualization, control
and interaction with residents in smart homes. However, some certain data
conversions are inevitable since the existing building operating systems usu-
ally have already been equipped with their own proprietary interfaces. The
essential part of the architecture of such a generic user interface for building
operating systems is a number of generic data models, which ensure that a
generic user interface is able to deal with the heterogeneity of different buil-
ding operating systems. To this end, this chapter comes up with a variety
of data models, which are not only independent of any building operating
system, but also flexible enough to be applicable to different buildings and
provide users with multiple possibilities to realize various home automati-
ons.

System Objective 2: Provide options to help building operating sy-

stems to exploit the potential of load shifting in household buildings

The design of the generic user interface in this chapter provides three pos-
sibilities for users to specify options according to their needs in order to
help building operating systems to exploit the potential of load shifting in
household buildings.

Firstly, as for the conventional appliances, whose working schedules can
be shifted, the household device model (cf. Figure 4.6) allows users to spe-
cify degrees of freedom for the appliances by providing a deviceDoFInfo
attribute to cover the allowed starting time and the required end time of
work-items of the appliances.

164

4 Design

Secondly, this chapter introduces a calendar event service (cf. Figure
4.14) in the generic user interface. Through this service, users can plan
events that will take place in their building by specifying a starting time and
an end time of the events, parameters about locations where the events will
take place, and target states of the devices needed by the events in order
to inform building operating systems of the requirements of futuristic or
periodic events in advance.

Finally, the design of the generic user interface in this chapter includes an
electric vehicle model (cf. Figure 4.7). This model allows users to plan their
next drive via the generic user interface by specifying various requirements
including a departure time for the next drive, the distance from the target
location and the minimum range that the car needs to reach.

The aforementioned information identifies the users’ needs and preferen-
ces, which need to be respected by building operating systems. On the other
hand, this information also meanwhile indicates the potentials of load shif-
ting in the users’ buildings. By taking this information into consideration,
building operating systems can work out an optimized schedule for house-
hold devices in order to shift the domestic energy load from peak periods
to off-peak periods, thus realizing demand response and saving money for
users.

System Objective 3: Provide smart home users with not only a ho-

listic but also a clear view of the energy use in their building

In this chapter, different ways of displaying devices are proposed in order
to facilitate the realization of this objective. On the one hand, household
buildings are modelled as being composed of one or more floors with cor-
responding floor plans. Devices in a household building can not only be
viewed by using a device list, but can also be visualized on the basis of a
floor plan of the floors in the building, which is supposed to be a clear global
way of displaying devices, and therefore provides another perspective for

165

4 Design

users to understand the energy use in their building. On the other hand, the
generic user interface designed in this chapter is able to deal with multiple
energy types. The devices that are currently running in a household buil-
ding are organized into different tree maps according to the particular type
of the energy commodity which they are consuming or generating. These
tree maps are to provide users with not only a holistic but also a clear view
of global energy flows in their building.

System Objective 4: Provide smart home users with as many pos-

sibilities as possible to control appliances in their building

In addition to the basic home automation, namely, controlling individual de-
vices separately, the generic user interface designed in this chapter supports
three aspects of advanced home automation. Firstly, users are able to group
a number of devices into a customized device group. If the devices in a de-
vice group belong to the same device type, they can be controlled together
via group operations. In so doing, users do not need to control the devices
individually. Secondly, the generic user interface supports the creation of
various scenes. By adding devices in a scene and setting target states for
the devices, the scene can be triggered by the users whenever needed. After
triggering a scene, the devices in the scene will automatically move into the
target states that had been configured beforehand. Thirdly, events that lie
in the future or those that occur regularly can be defined as calendar events
on the generic user interface designed in this chapter. A calendar event can
be configured by specifying parameters (i.e., temperature and humidity) for
a location where the event will take place, setting target states for the devi-
ces in the event, and choosing a repeat mode for the event. Unlike device
groups and scenes, a calendar event is not manually triggered by users but
by the generic user interface and a building operating system. The generic
user interface is responsible for activating the target states of the devices
in a calendar event, and the building operating system needs to ensure that

166

4 Design

the temperature and the humidity that have been configured for the particu-
lar location of the calendar event, are reached when the time of the event
comes.

System Objective 5: Provide useful reference information to help

smart home users to improve their energy awareness so as to achieve

the goal of saving money

The generic user interface designed in this chapter integrates diverse refe-
rence information in order to improve the users’ energy awareness. Firstly,
the concept of communities is introduced into the user interface. By pro-
viding users with the average energy use in a building community and the
rankings of the users’ performance within a community, users can compare
the energy use and utilization of the devices in their own building with data
from other buildings in the community so as to improve their awareness of
energy conservation. Besides this, the proposed functional components of
the generic user interface indicate that the users who are living in a house-
hold building, i.e., the residents, are allowed to not only view the real-time
energy data in their building together with the current energy tariffs but also
view their personal energy history as well as the historical energy data of a
single device. These are also different ways of helping users to develop an
awareness of whether their energy use is reasonable or not.

System Objective 6: Provide a relatively large application scope,

which means the user interface is able to meet the different needs of

different household buildings

This chapter introduces three roles, namely, the administrator, the operator
and the resident, to the generic user interface in order to facilitate the se-
paration of responsibilities of users, and to deal with the diverse scenarios
brought about by different circumstances. Furthermore, a generic building
model (cf. Figure 4.10) is designed in order to allow for its implementa-

167

4 Design

tion in every type of household building. For the various devices of the
household buildings, a household device model (cf. Figure 4.6) is used to
represent a wide range of devices with different functions and from different
manufacturers. All of the data models proposed in this chapter are designed
in a generic way so that the application scope for the generic user interface
designed in this chapter can be expanded.

System Objective 7: Provide intuitive displays which allow users

to learn to use the user interface quickly and to complete tasks by

using the user interface efficiently and effectively

This objective emphasizes a good usability of the generic user interface de-
signed in this chapter. The usability mainly depends on the implementation
of such a generic user interface, which will be described in detail in Chapter
5 and will be evaluated in Chapter 6. Nevertheless, the data models designed
in this chapter indirectly facilitate a good usability of the generic user inter-
face since the flexibility of the data models enable the generic user interface
to be implemented easily and to be user-friendly. For instance, the design
of the scene model (cf. Figure 4.12) along with the household device model
(cf. Figure 4.6) enable scenes to be created by users in graphical ways on a
user interface thereby increasing the user-friendliness of the user interface,
instead of forcing users to remember technically demanding commands,
which would make the user interface hardly usable by non-professionals
or novice users.

168

5 Implementation

To evaluate the design outlined in the previous chapter in a real living en-
vironment, a prototype of the generic user interface, named Building Ope-
rating System User Interface (BOS UI), has been implemented and app-
lied to a building operating system, the Organic Smart Home (OSH) [40],
which was described in Section 2.2 of Chapter 2. Since 2009, the OSH
has been deployed at the Energy Smart Home Lab of the Karlsruhe Insti-
tute of Technology (KIT). This chapter begins with an introduction to the
ESHL and then explains how the user interface prototype is connected with
the OSH. Furthermore, it introduces the modules used by the BOS UI and
presents the detailed functionalities that have been implemented in the user
interface. Part of the work in this chapter has been published in the Journal
of Energy Informatics [106].

5.1 The Energy Smart Home Lab

The Energy Smart Home Lab (ESHL) was developed at the KIT by the pro-
jects MeRegioMobil1, iZEUS2, grid-control3 and C/sells4. It demonstra-
tes possibilities of combining in an integrated approach the areas of living
(smart home), transport (electric mobility), and energy (smart grid) such
that best possible use of renewable energy sources is ensured and comfort

1 https://meregiomobil.forschung.kit.edu/
2 http://www.izeus.de/
3 http://projekt-grid-control.de/
4 http://www.csells.net/de/

169

5 Implementation

of living is increased at the same time [7]. Covering an area of 80 square
meters, the ESHL is an advanced research and demonstration laboratory on
energy management, future microgrids, integration of electric vehicles, and
security as well as privacy in energy applications [44, 76]. It is built as a
two bedroom apartment whose reality images are shown in Figure 5.1.

(a) The exterior of the ESHL (b) The living room of the ESHL

(c) The kitchen of the ESHL (d) The bedroom of the ESHL

Figure 5.1: The reality images of the ESHL

In addition to the rooms intended for human occupancy, the ESHL also
includes a technical room where some mechanical equipment (e.g. water
boiler) and electrical equipment (e.g. smart meter) is installed. Figure 5.2
shows the complete floor plan of the ESHL including both the apartment
and the technical room.

The ESHL is equipped with modern household appliances which are con-
nected to a central communication gateway via a power line, thus, no addi-
tional cable is needed for the ICT-integration of the appliances [46]. Speci-

170

5 Implementation

Figure 5.2: The floor plan of the ESHL [46]

fically, the ESHL is not merely a conventional apartment but rather a smart
home, mainly because it is equipped with the following components:

• Intelligent appliances, which are able to be programmed to run from
a central system. After connecting to the communication gateway of
the ESHL, these intelligent appliances (e.g. washing machine and
dishwasher) can be remotely configured and controlled.

• Non-intelligent appliances, which are simply conventional applian-
ces (e.g. lights) that support only manual operations. In order to
achieve remote control and monitoring of these appliances, additional
sensors and actuators (e.g. smart plugs and relays) are provided for
them in the ESHL.

• A smart meter, which enables the two-way communication between
the meter and a utility company. This meter can therefore not only
periodically provide the power consumption data of a building but
can also receive tariff information from a utility.

171

5 Implementation

• An energy management system, the OSH, which was described in
Chapter 2 (Section 2.2) of this chapter. It is responsible for optimizing
the schedule of appliances so as to minimize energy costs for residents
[40].

• ESHL GUI, which is the user interface of the OSH in the ESHL. It
has been further developed on the basis of the Energy Management
Panel (EMP) by integrating some new engineering-related features
into it. The ESHL GUI therefore can not only display the energy
usage in the ESHL and help to discover user preferences for the OSH,
but also support the visualization of many technical parameters in the
ESHL.

• A micro Combined Heat and Power Plant (µCHP) which enables
the co-generation of electricity and heat by burning any kind of fuel
(e.g. natural gas and oil). In the ESHL, the µCHP has been extended
by inserting an electrically driven heating coil into its water boiler to
work as an alternative actuator to produce heat.

• Photovoltaic (PV) panels, which are installed on the roof of the
ESHL (see Figure 5.1a). In the technical room, a solar inverter is
installed in order to convert the direct current, generated by the PV
panels, into alternating current that can be used locally or fed into the
power grid.

• An electric vehicle, which is connected to the ESHL through a char-
ging station. While the charging process of the car’s battery can be
controlled by the OSH to prevent grid overload, the battery can also
be used as storage for electrical energy [46].

The OSH was originally designed to work as a building operating system
that directly deals with devices in the ESHL. With the increasing number
of challenges in the smart home environment, such as the heterogenity of
devices, services, protocols and data formats, a decentralized service orien-

172

5 Implementation

ted architecture, based on a message-oriented middleware (cf. Figure 5.3),
was developed and has been applied to the ESHL since 2016. It is shown in
this architecture that the OSH and the user interface of the ESHL are all tre-
ated as applications which interact with components from different layers,
instead of dealing with devices directly so as to realize device abstraction
and modularity, and further facilitate extendibility and maintainability of
the system.

Figure 5.3: The decentralized service oriented architecture based on a message-
oriented middleware in the ESHL [44]

The aforementioned architecture is composed of the following layers: a
protocol adaption layer, which is dedicated to adapt data and functions
from different protocols to standardized data formats; a domain-specific
abstraction layer, which plays a role in converting the data after the pro-
tocol adaption into unified abstractions by means of corresponding device
drivers; an auxiliary services layer, which helps to split system functio-
nalities into reusable microservices; an applications layer, that uses these
auxiliary services to provide various functionalities for users; and a conflict
resolution layer, which is used for resolving conflicts of device operations
caused by different applications. Besides this, a key element of the architec-

173

5 Implementation

ture is an IoT Message Bus which supports the necessary communication
schemes between all components [44].

5.2 Connection to the Energy Smart Home Lab

As described in the last section, the IoT Message Bus, which supports the
necessary communication schemes between all components, is an impor-
tant element in the decentralized service oriented architecture based on
a message-oriented middleware. In the ESHL, the schemes Publish &
Subscribe (PubSub), bulletin board, and Remote Procedure Call (RPC)
are required. Because of this, the Web Application Messaging Protocol
(WAMP)5 has been selected as the communication scheme for coupling and
interaction between the sensors, actuators, and services in the ESHL, since
this protocol supports both PubSub and routed RPC, and bulletin boards are
supported by the event history of Crossbar.io, which is its reference router
implementation. [44]

The WAMP is an open standard WebSocket subprotocol that provides the
two application messaging patterns, RPC and PubSub, in one unified pro-
tocol [32]. In order to achieve unified application routing for applications,
WAMP provides a router which is used by the ESHL as the IoT Message
Bus to realize the communication between sensors, actuators and services
in the ESHL. Within the WAMP router, there are two components, a bro-
ker and a dealer, which are used as intermediaries to route PubSub events
between subscribers and publishers, and RPC calls between callers and cal-
lees. As applications, the OSH and the ESHL GUI connect to the WAMP
Router (cf. Figure 5.4) to interact with each other and with the sensors and
actuators in the ESHL, by means of PubSub events and RPC calls.

5 http://wamp-proto.org/

174

5 Implementation

Figure 5.4: The communication among ESHL GUI, OSH, and appliances in the
ESHL via a WAMP router

Generally speaking, the appliances in the ESHL can be classified into
intelligent appliances and non-intelligent appliances. The intelligent appli-
ances, which are mainly located in the kitchen of the ESHL, are from the
German home appliance manufacturer, Miele. These appliances are con-
nected to a Miele@Home gateway, which enables the Miele appliances to
be networked together and to be monitored and controlled intelligently. As
for the non-intelligent appliances, a so-called Wago box, a product from a
German company named Wago, has been installed in the ESHL. The Wago
box is able to, on the one hand, monitor the power consumption of every
electrical consumer as well as each power socket in the ESHL and, on the
other hand, control the state of appliances so as to realize home automation.

175

5 Implementation

The measurement data from the Wago box and the Miele@Home gate-
way is published as different topics to the WAMP router. In addition, some
other topics, such as price signals topic and weather forecast topic, are also
published to the WAMP router regularly. A list of all the topics and their ex-
planations can be found in Table 3.4. The data provided by these topics can
be shared with the OSH and the ESHL GUI by subscribing to corresponding
topics of interest. To this end, the WAMP router provides a Broker compo-
nent, which maintains a book of subscriptions to forward the updated data
of different topics to their respective subscribers. In addition to the Broker,
the WAMP router includes another component, named Dealer, to take care
of RPC calls. Similar to the Broker’s role to PubSub, the Dealer keeps track
of the procedures that have been registered in the WAMP Router. When the
OSH and the ESHL GUI try to call the remote procedures in the WAMP
Router, the Dealer will help to invoke them by looking up his book of all re-
gistered procedures, which records where the procedures reside and how to
reach them [32]. The WAMP router in the ESHL currently supports RPC to
control states of appliances and retrieve historical energy data of appliances
in the ESHL as well as price signals from the utility. The RPC calls to alter
states of appliances, will be forwarded to either the Miele@Home gateway
or the Wago box which are responsible for controlling appliances.

Due to the function of unified application routing provided by the WAMP
router, the OSH and its user interface are allowed to be loosely coupled with
each other, which makes it easy to introduce the BOS UI as its new user
interface, without affecting the normal operation of its original user inter-
face, i.e., the ESHL GUI. Nevertheless, since the BOS UI is designed as a
generic user interface rather than a special user interface for the OSH, a few
extra components need to be added to the system in order to complete the
connection with the WAMP router and realize the communication between
the BOS UI and other entities in the ESHL. The relationship between these
components, the WAMP router and the BOS UI is shown in Figure 5.5.

176

5 Implementation

Figure 5.5: The relationship between the newly added components, the WAMP
router and the BOS UI

The components that need to be added to the system will now be specified
in this section, together with an explanation of their functions.

The WAMP Client/HTTP Server is a component that includes two
functions. Firstly, it acts as a WAMP client, which communicates directly
with the WAMP router. To this end, a few parameters need to be provided
in the initialization stage to configure the client in order to create a con-
nection to the WAMP router. After the establishment of the connection, the
WAMP client subscribes the topics that the BOS UI is interested in from
the WAMP router, and will then keep receiving the updated information of
these subscribed topics. The WAMP client also publishes its own topics
to the WAMP router which can then be subscribed to by the BOS UI so
as to provide it with extensive information, such as, for example, the two
following topics:

177

5 Implementation

• Global energy data topic which reflects some building-level energy
parameters, such as the ESHL’s overall power, voltage, and frequency,
etc.

• Power consuming devices topic which reports a list of devices that are,
at that instant, either consuming (with a positive value) or generating
power (with a negative value).

What is more, as a WAMP client, the component also registers procedures
at the WAMP router. The remote procedures will be called by the BOS
UI in order to get specific information it needs especially when variables
are required for retrieving this information. For instance, when the BOS
UI calls a procedure named "get_a_device" by passing a device identifier
as a parameter, it will receive an instance of a certain device as a return
from which various property values about the device can be derived. Since
the biggest advantage of WAMP is the fact that it allows a web-based user
interface to talk to its back-end system in real-time, the WAMP client in this
case is mainly responsible for helping the BOS UI to get the real-time states
of the OSH and the devices in the ESHL.

In addition to acting as a WAMP client, the WAMP Client/HTTP Server
component also acts as an HTTP server for RESTful Web Services that will
be accessed by the BOS UI. The reason for the introduction of Web Servi-
ces is that a lot of information in the ESHL, such as building locations and
configurations, which usually only need to be set once, will not be updated
dynamically or frequently in the future. In order to enable access and ope-
ration of this static data in the ESHL, a number of RESTful web services,
which take advantage of the existing HTTP protocol, have been implemen-
ted to bridge the gap. The Application Programming Interfaces (APIs) of
some of the important services and their descriptions can be found in Table
5.2.

178

5 Implementation

Table 5.1: Some important RESTful APIs designed for the BOS UI

Resource Methods Descriptions

Floor

• GET /floors Return a list of floors in the building

• GET /floors/{floorId} Return a floor with an id of floorId

• POST /floors Create a floor in the building

• PUT /floors/{floorId} Update a floor with an id of floorId

• DELETE /floors/{floorId} Delete a floor with an id of floorId

Location

• GET /locations/{floorId} Return a list of locations in the floor with
an id of floorId

• GET /locations/{floorId}/{locationId} Return a location with id = locationId in
the floor with an id of floorId

• POST /locations/{floorId} Create a new location in the floor with an
id of floorId

• PUT /locations/{floorId}/{locationId} Update a location with an id of locatio-
nId in the floor with an id of floorId

• DELETE /locations/{floorId}/{locationId} Delete a location with an id of locationId
in the floor with an id of floorId

User

• GET /users/verification (QueryParam1: user-
name, QueryParam2: password)

Verify if the given username and pass-
word are correct. If correct then return
the user

• GET /users/residents Get all of the residents in the building

• POST /users Create a user in the system

• PUT /users/{username} Update a user with an id of username

• DELETE /users/{username} Delete a user with an id of username

Scene

• GET /scenes/{username} Return the scenes that have been created
by the resident with an id of username

• POST /scenes/{username} Create a scene for the resident with an id
of username

• PUT /scenes/{username}/{sceneName} Update the scene with an id of sceneN-
mae for the resident with an id of user-
name

• DELETE /scenes/{username}/{sceneName} Delete the scene with an id of sceneN-
mae for the resident with an id of user-
name

Continued on next page

179

5 Implementation

Table 5.1 – continued from previous page

Resource Methods Descriptions

Group

• GET /deviceGroups/{username} Get device groups that have been created
by the resident with an id of username

Device • POST /deviceGroups/{username} Create a device group for the resident
with an id of username

• PUT /deviceGroups/{username}/{group-
Name}

Update the device group with an id of
groupName for the resident with an id of
username

• DELETE /deviceGroups/{username}/
{groupName}

Delete the device group with an id of
groupName for the resident with an id of
username

Log

• GET /logs/{username} Return a list of logs which are related to
the resident with an id of username

• POST /logs/{username} Create a log for the resident with an id of
username

• DELETE /logs/{username} (QueryParam1:
startTime, QueryParam2: endTime)

Clear the logs for the resident with an id
of username from startTime to endTime

As mentioned above, the WAMP client receives data from the WAMP
router by subscribing topics that it is interested in. The format of the data
is, however, defined by the entities who publish the topics and therefore
cannot be directly used by the BOS UI. As a solution, this data is further
sent to another component, named Adapter, which receives the original data
published by different entities in the ESHL as the input, and then converts
this data into unified data models (cf. Section 4.6) that can be consumed by
the BOS UI. To this end, the Adapter needs to know both the structures of the
data from the WAMP router and of the unified data models used by the BOS
UI. This makes the Adapter an intermediary component, since the services it
provides will further be called by the DynamicServiceProvider component
in order to realize the data conversion. The DynamicServiceProvider is a
component that provides all kinds of integrated services (cf. Table 5.2) for

180

5 Implementation

the BOS UI by collecting the dynamic data from the WAMP client, such
as varying power values of devices, and converting them into standard data
models with the help of the Adapter. These services will be used by the
WAMP client to publish new topics or register new procedures to the WAMP
Router.

Table 5.2: Integrated services provided by the DynamicServiceProvider component

Service Name Parameters Descriptions

getADevice deviceId, language

Return a device with an id of deviceId. The re-
turned object is expressed with the given lan-
guage (English, German or Chinese, similarly
hereinafter).

getAllDevices language
Return all devices in the building. The retur-
ned objects are expressed with the given lan-
guage.

getPoweringConsumingDevices language

Return all devices in the building that are con-
suming (positive value) or generating (nega-
tive value) power. The returned objects are
expressed with the given language.

getBuildingGlobalEnergyData language

Return global energy data (e.g. total power,
voltage, frequency) of the building. The retur-
ned objects are expressed with the given lan-
guage.

In conclusion, with the aid of the aforementioned components, the BOS
UI is able to communicate with the OSH and with sensors and actuators
of a variety of devices in the ESHL. As for dynamically updated data (e.g.
device states) or different historical energy data of the ESHL, the BOS UI
can retrieve this by either subscribing to certain topics which have been
published to the WAMP router or calling the remote procedures that have
been registered in the WAMP router. Data which is not updated dynamically
or frequently in the ESHL, can be accessed and updated by the BOS UI by
means of a number of RESTful Web Services.

181

5 Implementation

5.3 Modules

The BOS UI was developed on the basis of Fuse6, which is an AngularJS
template that uses Angular Material library. AngularJS7 is a client-side
JavaScript web framework for creating single-page web applications ba-
sed on a Model-View-ViewModel (MVVM) design pattern. The difference
between the MVVM design pattern and the commonly used Model-View-
Controller (MVC) design pattern is that the MVC pattern supports only one-
way data-binding while the MVVM enables two-way data-binding. Data
binding in AngularJS is the synchronization between the model and the
view, which means, when data in the model changes, the view reflects the
change, and when data in the view changes, the model is updated as well
[2]. The feature of two-way data-binding supported by AngularJS can help
applications to improve their user experience since there is a direct visual
feedback of the user’s actions on the applications.

In order to keep the code clean, AngularJS supports a modular approach.
A module in AngularJS is a feature or a container for the different parts of
an application. It allows grouping of related features so as to make reusable
and maintainable components for applications. In the BOS UI, a variety of
modules (cf. Table 5.3) have been created in order to cover all the features
proposed in Section 4.7 of the previous chapter. These modules are imple-
mented based on the generic data models in Chapter 4. Nevertheless, some
of the modules are not completely generic yet, since the historical energy
data series used by the BOS UI for creating various charts are currently still
from the result of directly accessing data records stored in the database of
the ESHL via topic subscriptions. In order to extend these modules to other
smart homes, the way of extracting information from historical energy data
series might need to be adjusted due to different data formats in different

6 http://fusetheme.com/angularjs/
7 https://angularjs.org/

182

5 Implementation

smart homes. Considering the fact that historical energy data normally con-
sist of a large amount of data records (depending on a certain data resolution
and time period), it would be time intensive and also not practical to convert
each of the data records to a unified data structure. Therefore, unified data
structures are not designed for historical energy data series in this thesis.

Table 5.3: The modules that have been created for the BOS UI

core login administrator operator
navigation • administrator.locations • operator.residents

toolbar • administrator.devices • operator.optimization-goals

quick-panel • administrator.floor-plan • operator.building-history

• operator.community

• operator.utility

resident • resident.energy-history • resident.event-logger

• resident.energy-overview • resident.energy-history.personal-
history

• resident.electric-vehicle

• resident.device-overview • resident.energy-history.device-
history

• resident.life-assistant

• resident.device-overview.device-
list

• resident.device-groups • resident.life-assistant.notes

• resident.device-overview.floor-
plan

• resident.scenes • resident.life-assistant.weather-
forecast

• resident.energy-prediction • resident.calendar

The modules in Table 5.3 can generally be divided into three categories.
The first category has the modules for the UI framework, which are provided
by the Fuse template. It includes a core module which provides core functi-
onalities and services for the UI framework, a navigation module which
is responsible for rendering the side navigation menu, the toolbar module
which adds a toolbar component to the UI framework, and a quick-panel
module which is used to add an extra side panel, called Quick Panel, to the
UI framework in order to extend the content space for the BOS UI. The
second category is the login module which is designed for controlling the
users’ access to the BOS UI by authenticating their identity. The third ca-
tegory consists of a number of modules to realize the functionalities of the

183

5 Implementation

three roles in the BOS UI. There are three main modules, an administrator
module, an operator module, and a resident module, which correspond to
the three roles, respectively. Each of the main modules is composed of a
number of sub-modules so that the code of different features of the BOS
UI can be organized into separate logical containers. By taking advantage
of sub-modules, new functionalities can easily be introduced (i.e., load cor-
responding sub-modules) to the BOS UI and, at the same time, undesired
features (i.e., unload corresponding sub-modules) can be flexibly removed
from the BOS UI. All these operations on sub-modules can be performed
under the premise of keeping the existing code base unaltered.

5.4 Functional Demonstration

This section demonstrates the detailed functionalities that have been imple-
mented in the BOS UI. In view of the fact that the users of the BOS UI are
classified into three roles, namely, the administrator, the operator and the
resident, the BOS UI also offers three different views for these three roles.
The implementation of the BOS UI will be introduced in this section from
the perspective of the three roles, respectively.

5.4.1 Administrator

The major responsibility of the administrator is to configure the building.
The user interface for the administrator consists of three menu items. The
first item is "Manage Locations" where the administrator can add floors to
the building model in the BOS UI and define locations for the floors. Figure
5.6 shows an example of a floor that has been configured for the ESHL. The
administrator can also add a new location to the floor or add another floor
to the building model in the BOS UI if the physical household building is
multi-storey. The second menu item is "Assign Device to Floor" in which

184

5 Implementation

the administrator can assign the devices in the building to their proper loca-
tions, which were defined in the first menu item.

Figure 5.6: BOS UI for the administrator: the location management

The last menu item is "Add Device to Floor Plan" (cf. Figure 5.7). The
content under this menu item consists of a list of tabs, which represent the
floors that have been previously added to the building via the first menu item,
namely, "Manage Locations". By entering each of the tabs, the administrator
can upload the corresponding floor plan image for that floor. According to
the design of the data model of the Floor (cf. Figure 4.9), the floor plan of a
building and the devices in the building can be combined together in order
to create an intuitive overview for users. For this purpose, a device panel is
provided to display all the devices that can be added to the floor plan. The
device images on this device panel can be dragged to the positions on the
floor plan corresponding to their physical locations in the building. The size
of the devices on the floor plan can also be changed by dragging any of the

185

5 Implementation

four round circles around the devices. After the configuration, the floor plan
and all the devices on it can be accessed by the residents in their views.

Figure 5.7: BOS UI for the administrator: adding devices to a floor plan

5.4.2 Operator

The operator is responsible for managing residents and paying the energy
bills of a building. Figure 5.8 shows a content page in which the operator
can add a new resident to the building. Three steps are needed in order to
complete the addition of a resident. Firstly, the operator needs to specify the
resident’s personal information including a username, an initial password,
a phone number, an email address, etc. Secondly, proper permissions need
to be assigned to the resident. Every permission consists of a number of
devices that are allowed to be used by the resident together with the per-
missible operations corresponding to these devices. The optional operations
include "view device general information", "view device channel informa-
tion", "control device", and "set degree of freedom". These operations have
already been explained in Section 4.5. It should be noted that, electric vehi-
cles in this thesis are not considered to belong to household devices. Instead,
electric vehicles have their own data model (cf. Figure 4.7), which has been

186

5 Implementation

explained in Chapter 4. For an electric vehicle, optional operations include
only "view device general information", "view device channel information",
and "set degree of freedom". These operations correspond to viewing the
car’s general information, viewing battery information of the car and set-
ting next drive for the car, respectively. Finally, the operator needs to check
all the information that was configured in the previous two steps and then
submit the information to the server in order to complete the creation of the
account for the resident.

Figure 5.8: BOS UI for the operator: adding a resident

Besides this, since the operator is responsible for paying the energy bills
of the building, he is allowed to set optimization goals for the building (cf.
Figure 5.9). In the BOS UI, four optimization goals are provided, namely,
minimal costs, minimal energy consumption, minimal CO2 emissions and
maximal self-consumption of renewable generation. Each of these goals is
presented with a slider with which the operator can set a particular weighting
(within the range of 0 to 1) for the goal to indicate its relative importance.
Competing goals set by the operator are supposed to be balanced according
to their weightings via the multi-objective optimization methods of the buil-

187

5 Implementation

ding operating system. It is noteworthy that the optimization goals formula-
ted in this thesis are neither predefined nor achieved by the BOS UI. Rather
than the BOS UI, it is a building operating system that supports a list of op-
timization goals, and that makes the achievement of these goals transparent
to the household residents. Optimization of in-house energy consumption
itself has to be realized by combining the optimization algorithm used in
the building operating system and the residents through adapting their be-
havior according to the BOI UI suggestions. As a user interface, the BOS
UI is only displaying the goals provided by the building operating system,
which further justifies the requirement that the BOS UI is not coupled with
a specific building operating system.

Figure 5.9: BOS UI for the operator: setting optimization goals for a building

In order to get a clear overview of the building’s historical energy use, the
BOS UI enables the operator to check the energy history of the building (cf.
Figure 5.10). The operator merely needs to specify a start time and an end
time for the history records that he would like to see displayed on the BOS
UI. The type of the historical data that may be viewed includes the building
power consumption, the building power generation, the building net power
use, the electricity price, the load limits, the PV feed-in price and the µCHP

188

5 Implementation

feed-in price. The operator can decide which of the data they would like
to have displayed on the diagram by checking or unchecking the options
corresponding to the data type on the top of the selection panel.

Figure 5.10: BOS UI for the operator: the energy history of the building

A novel feature that has been implemented in the BOS UI is the integra-
tion of community services, which have, up until now, only been mentioned
as in some research papers as future concepts (e.g. [1] and [78]). Since this
feature is currently not supported by the OSH, communities in the BOS UI
are a preliminary design feature which makes provision for the future. Via
the BOS UI, the operator will be able to get an overview of all the commu-
nities that they have either joined or not joined (cf. Figure 5.11). According
to the design of the data model of the community described in Section 4.6
(cf. Figure 4.17), the basic information pertaining to a community, e.g. the
building types which are part of the community (household building, of-
fice building, industrial building or commercial building) and the number
of buildings for each building type in the community, are predefined by the
data model. Some more detailed information that might be beneficial to the
operator to give them a clearer picture of the community could be provided
by the community service provider. The BOS UI will be responsible for

189

5 Implementation

displaying this information for the operator. By joining a community, the
operator will be able to enjoy the services rendered by the community, e.g.
comparing the energy consumption in his building with the average value in
the community. To this end, the operator will be required to agree to share
the meter data of his building with the communities. Considering privacy
concerns, the operator can define the time granularity (which could be 15
minutes, 30 minutes, 1 hour or two hours in the current version of the BOS
UI) for the smart meter in the building, thus specifying the frequency with
which it is to deliver the load profiles to the community. After joining a
community, the building is, by default, first of all disconnected from the
community, i.e., the building will not start transferring the meter data at the
specified interval to the community until the operator manually connects the
building to the community. Over and above this, the operator can choose to
disconnect from the community at any time or to even ’quit’ the community.

Figure 5.11: BOS UI for the operator: the community overview

The advantages of the feature offered by the BOS UI, of being able to join
a community can be discussed from two points of view. Firstly, the operator
can compare the energy use in the building with that of the community du-
ring a particular month. The content of the comparison is classified into four
types in the BOS UI, namely, energy consumption in the building, energy
generation in the building, net energy use in the building, and greenhouse

190

5 Implementation

gas emission from the building. Each type of content can, in the current
version of the BOS UI, be compared by means of using one of the following
two modes, namely, per person or per square meter. For instance, the opera-
tor can choose to compare the average energy consumption per person in his
building in December 2017 with other same type buildings in a community,
named "Community_1". The comparison report (cf. Figure 5.12) illustrates
the average energy consumption per person (KWH/person) and the average
energy cost per person (Euro/person) in the building as well as the counter-
parts in the community along with the building’s corresponding rankings in
this community. Furthermore, the two bar charts in the report display the
number of buildings that consumed the same averages of ’energy consump-
tion per person’ (KWH/person) and the number of buildings that spent the
same averages of ’energy cost per person’ (Euro/person) in the community,
respectively. The report can be downloaded in the form of a PDF file or can
be shared on various popular social networks by the operator, thus fulfilling
the goal of enabling the sharing of the energy achievement in the building
with friends on social networks (e.g. facebook, twitter, etc.).

In addition to the energy comparison relating to the whole building, the
operator can also choose to compare the energy use of a specific device in
his building with data from other buildings in a community. To this end,
the operator needs to select a certain month for the comparison, a specific
device which is to be compared, a community in which the device will be
compared, and a comparison mode. On the BOS UI, a device in a building
can currently be compared in one of the following four modes: power use
per person (KWH/person), energy cost per person (Euro/person), power use
per usage (KWH/usage) and, energy cost per usage (Euro/usage). Utilizing
the comparison capability of the BOS UI, the operator is able to analyze
whether the devices in his building are energy efficient and whether they
are being used by the residents in the building in an appropriate manner, by
comparing them with the use of devices of the same type in the community.

191

5 Implementation

Figure 5.12: BOS UI for the operator: building energy comparison in a community

Furthermore, the BOS UI is able to collect the invoices which are sent
regularly by the utility company and show them to the operator. Various
other utility functions of this type could be implemented in a future version
of the BOS UI.

5.4.3 Resident

In addition to the administrator and the operator, another role in the BOS
UI is the resident, which represents the users who live in the building and
use the devices on a daily basis. The BOS UI not only provides residents
with all encompassing and intuitive views for visualizing their energy use
in their home but also offers various functionalities to support advanced
home automation in order to improve the residents’ comfort and facilitate
their daily lives. Figure 5.13 shows the content page of the energy overview
provided by the BOS UI for the role of resident. The energy overview page

192

5 Implementation

is made up of two parts, namely, a main panel in the middle and a side panel
on the right.

Figure 5.13: BOS UI for the resident: energy overview

On the top of the main panel (middle), there are five tree-map widgets
of different colors, which display the devices that are consuming power, the
devices that are generating power, the devices that are generating heat, the
devices that are generating cold and the devices that are consuming gas, re-
spectively. This tree-map is the implementation of the design of the data
structure for energy overview described in Section 4.6 (cf. Figure 4.18) of
the previous chapter. The tree-map is organized into the tree structure. It
consists of a number of tiles which are equivalent to the nodes of a tree.
Each tile represents a device group or a device in the building. The advan-
tage of using the tree-map widget is that the size of each tile can be set to be
proportional to the amount of energy that the corresponding device is con-
suming or producing, so that residents can intuitively identify which devices
are comparatively bigger energy consumers or generators. When the mouse
hovers over a tile, some basic information about the device (e.g. power and
location, etc.) is displayed. By clicking on a tile, residents can view the
detailed information about the device and control it. Device groups are pre-

193

5 Implementation

sented as a group of tiles that are integrated together and can be spread out
or folded up by clicking on the tiles in the group. Because the tree-map wid-
gets are composed of a number of dynamically resizable tiles, they can give
residents a holistic and clear view of the energy use of the different devices
in their building.

Below the tree-map widgets on the main panel, there is a chart which
shows the tariff (including external electricity price, PV feed-in price and
µCHP feed-in price) and load limit (including load upper limit and load
lower limit) signals for the next twenty-four hours. The predicted signals
coming from the Distribution System Operator (DSO) and the energy pro-
vider are to help residents to rationally improve their use of the devices in
their building with regard to energy efficiency, load shifting, etc.

The widgets in the main panel (middle) are flexible so that residents can
change their size and/or move them to different positions according to perso-
nal preferences. For instance, Figure 5.14 shows a different layout in which
the widgets have been resized and organized in a different manner, to allow
for different preferences of residents.

Next to the main panel in the middle of the energy overview page is a side
panel (cf. Figure 5.15a), which displays some real-time auxiliary informa-
tion, including the current energy prices (i.e., external electricity price, gas
price, PV feed-in price and µCHP feed-in price), the instantaneous technical
parameters in the building (i.e., voltage and frequency), the current direction
of the energy flow in the building and the global power use information of
the building. Since the energy prices and technical parameters in the buil-
ding are continuously changing, this data is presented as gauges, similar to
the speedometer gauges for cars. The gauges on the BOS UI are combi-
ned with different colors in order to indicate different price levels and se-
curity information concerning the power use in the building. This makes it
more intuitive for residents to understand the meaning behind the numbers

194

5 Implementation

Figure 5.14: BOS UI for the resident: resized and rearranged widgets for the
energy overview

quickly, so that they will be able to adjust their behavior in time and thus
enable a quick response on their part.

.

Below the gauges in the side panel (cf. Figure 5.15b), residents can view
the current energy flow of the building, whose direction is either from the
building to the power grid or the other way around, depending on the re-
lationship between the amount of energy that is being consumed and the
amount of the energy that is being generated in the building. The actual
relationship is illustrated by the bar-chart widget at the bottom of the side
panel. From this widget, residents can determine exactly the global power
consumption/generation in their building. The orange bar above the X-axis
represents the current power consumption in the building, and the green bar
under the X-axis represents the current power generation in the building.
The third bar on the right represents the net power use in the building, which
also determines the direction of the energy flow.

195

5 Implementation

(a) Current energy prices
and technical parame-
ters in a building

(b) The current energy
flow and power use in a
building

Figure 5.15: BOS UI for the resident: real-time auxiliary information on the side
panel of the energy overview page

The daily life of residents is driven by the use of household devices. The-
refore, the BOS UI provides residents with different perspectives for vie-
wing and controlling the devices in their building in order to achieve home
automation in a more user-friendly way. One perspective is to display de-
vices based on a floor plan. The BOS UI is initially configured by the ad-
ministrator who is responsible for uploading floor plans for the floors of the
building and placing devices on the corresponding floor plans according to
their physical location in the building. After the configuration is complete,
residents can see the floor plan with their devices (cf. Figure 5.16) in their
views after logging into the BOS UI.

Since the operator assigns residents with different permissions for acces-
sing devices, only those devices that the residents have been given permissi-
ons to access will be visible on the floor plan. In accordance with the design
of the Floor model (cf. Figure 4.9) described in the previous chapter, every

196

5 Implementation

Figure 5.16: BOS UI for the resident: overview of devices on the floor plan

device on the floor plan is surrounded by four small circles, whose color
indicates the current running state of the device. The four colors used by the
BOS UI together with their corresponding meanings are:

• Gray: the device is off and its power consumption is zero.

• Yellow: the device is idle or standby and consuming very little power
(which is usually a few Watts).

• Orange: the device is running and consuming power.

• Green: the device is generating electricity.

The allocation of different colors to the device images on the floor plan,
provides residents with an intuitive, clear and holistic overview of the run-
ning states of the devices in their building. Devices can also be controlled
by ’clicking on’ the device images on the floor plan. Figure 5.17 shows the
pop-up dialog box which appears when ’clicking on’ the washing machine
of the floor plan. Besides looking at the basic information of the washing
machine, residents can also set a degree of freedom by specifying the al-
lowed starting time and the required end time for their laundry. Over and

197

5 Implementation

above this, there is a "Turn On" button which gives residents full control by
allowing them to turn on their washing machine at any point in time. All
the information which is displayed in the dialog box comes from the buil-
ding operating system. The latter provides this information by instantiating
the generic HouseholdDevice model (cf. Figure 4.6). Thus the BOS UI
itself does not define the content of the dialog box for the device, but sim-
ply retrieves the information from the HouseholdDevice instance provided
by the building operating system, and then displays the attributes and their
corresponding values in the dialog box. This guarantees the generality and
scalability of the user interface.

Figure 5.17: BOS UI for the resident: detailed information of a washing machine
on the floor plan

In addition to displaying the devices on the floor plan, the BOS UI also
allows residents to view their devices in the form of a device list. The de-
vices in the building are grouped into different lists according to different
criteria, such as locations, energy types, and customized device groups etc.
The alternative modes for viewing devices, which are provided by the BOS
UI, enable residents to choose their preferred mode, in order to be able to
get a quick overview of the energy use of the devices in their building.

198

5 Implementation

Home automation is a basic function of a smart home. The BOS UI not
only implements the basic automation, which enables residents to control
devices in the building individually, but also supports different aspects of
advanced home automation, namely, device groups, scenes and calendar
events. These three types of advanced home automation are implemented in
the BOS UI, based on the design of the device group model, the scene model
and the calendar event model introduced in the previous chapter. Firstly,
the BOS UI allows residents to customize their own device groups. By
combining a number of devices into one group, residents are able to have
centralized control over the devices in the group. Figure 5.18 shows two
customized device groups in the BOS UI, namely, one containing blinds
and one containing lights. The devices in the group can either be controlled
separately by clicking on the corresponding items in the group panel or can
be controlled together as one, by clicking on the group menu on which a
global controller is provided to set a state for the entire group of devices.

Figure 5.18: BOS UI for the resident: customized device groups

199

5 Implementation

Secondly, the BOS UI implements advanced home automation based on
scenes. Residents can create different scenes according to their needs and
add corresponding devices to the scenes. Due to the flexible design of the
HouseholdDevice model (cf. Figure 4.6), the BOS UI is able to extract
the available actions for the individual devices in the scene, and display the
widgets corresponding to these actions for residents so that they can specify
the target states for these devices. The command strings corresponding to
the target states of the devices will be saved by the BOS UI. When the
resident triggers a scene, the BOS UI will iterate through the devices in the
scene, obtain the command strings for their target states and send them to the
building operating system so as to realize the control over the devices in the
scene. Figure 5.19 shows an exemplary scene named "Sleep". Five devices,
including two lights whose target state is off, two blinds whose target state
is 100% closed, and an air conditioner whose target temperature is 23°C,
have been added to this scene. The target states of the devices are specified
by adjusting the widgets in the column of "Available Actions". The scenes
that have been created can be triggered at any time by the resident.

Figure 5.19: BOS UI for the resident: an exemplary scene

200

5 Implementation

Thirdly, apart from device groups and scenes, the BOS UI integrates a
calendar component which not only provides the basic functions of a ca-
lendar but also allows residents to add events to facilitate advanced home
automation. The calendar events can be added by configuring devices or
locations or both. Figure 5.20 shows the dialog box for adding a calendar
event, which has been divided into four parts, namely, the title of the event,
the configuration for the event start, the configuration for the event end and,
the repeat mode. In order to add an event, the resident firstly needs to enter
a title for the event and specify a starting time. After that, he can choose
to ’set location’ or ’set device(s)’ for the event. By choosing ’set location’,
he can select a location in the building where the event is to take place and
configure the temperature and/or humidity for that location. The resident
can also choose to ’set device(s)’ for the event by specifying target states
of certain devices which are favorable for the event. After the configuration
of the event start, the resident may configure states of the location and/or
devices at the end of the event. Finally, the repetition mode of the event can
be configured. Non-recurring events, which will happen only once, can be
set not to repeat. If events are expected to be repeated, they can be set to
repeat, either every day or every week over a period of time.

For example, the following two calendar events could be added to the
BOS UI:

Calendar event 1: Blinds automation. At 8:00 am, open all blinds in

the building and close them at 7:00 pm. Repeat the event every day from

01.02.2018 to 01.05.2018.

Calendar event 2: A meeting event. The event will be held in the meet-

ing room from 4:00 pm - 5:00 pm, 01.03.2018. During the event, the tem-

perature and the humidity of the meeting room should be 22°C and 60%,

respectively. Switch on the lights and roll up the blinds for the event. When

the event is over, disable the temperature and humidity settings, switch off

the lights and roll down the blinds.

201

5 Implementation

Figure 5.20: BOS UI for the resident: the dialog box of adding a calendar event

After configuration, the events will be marked on the particular building
calendar of the BOS UI, which will ensure that the devices in each event will
reach their target states set by the resident. The device and location settings
defined by the resident will be sent by the BOS UI to the building operating
system so that they can be integrated into the global energy optimization for
the building.

In addition to normal household devices, the integration of electric vehi-
cles (cf. Figure 5.21) is also supported by the BOS UI. Having the capability
for storing energy and for bidirectional utilization, the electric vehicle can
connect to the building and be used by the building operating system as a
controllable load or a mobile storage. This may only be done on the premise
of meeting the needs of the owner of the electric vehicle. Therefore, apart
from displaying the current charging state and some external signals, the
BOS UI allows the owner of the electric vehicle to plan his next journey by
specifying a number of parameters, including the departure date and time,

202

5 Implementation

the distance of travel for the next trip, and the minimum range that the car
needs to be able to cover. The requirements specified by the resident have to
be respected by the building operating system. Together with the Time-of-
Use tariff, load limits, and the electric vehicle’s maximum charging power,
the charging flexibility for the electric vehicle can be determined. By ex-
ploiting the flexibility of charging demand, the building operating system is
supposed to be able to devise a charging schedule for the electric vehicle as
the result of the optimization algorithm of in-house energy use supported by
the building operating system. Nevertheless, the BOS UI, can also control
the electric vehicle to start charging immediately without taking the optimi-
zation strategy of the building operating system into account. The purpose
of having this option on the BOS UI is to give residents a sense of control
over their electric vehicles.

Figure 5.21: BOS UI for the resident: the configuration of the electric vehicle

Residents can not only control devices in a variety of ways via the BOS
UI, but can also monitor the energy history of the building. Since the re-
sidents of a building have different permissions for accessing devices, for
the sake of privacy protection, the BOS UI allows residents to only view
the history of their personal energy use as well as the energy use history of
individual devices for which they have obtained permissions. Figure 5.22 il-
lustrates a resident’s historical energy use of the coffee system in the ESHL,

203

5 Implementation

on 26th January, 2018. At the top of the display is the selection panel where
the resident can choose a historical date, a device that he has permissions
to use, and a community in which he would like to make comparisons. The
device history data consists of two parts. One part is the day’s overall data,
and the other part is the real-time energy consumption/generation diagram.
The day’s overall data is composed of the total energy data, i.e., power con-
sumption/generation of the device in the building on the selected day and
its corresponding cost/profit, together with the average energy consump-
tion/generation and cost/profit of the same type of device in a community,
as well as the ranking of the data of this device in the community. Another
part of the device history is the real-time energy consumption/generation
diagram, which illustrates the real-time energy consumption or generation
of the device during the day as well as the corresponding external energy
signals (including a load limit signal and an external electricity price signal)
that can be used as references for the use of the device.

Figure 5.22: BOS UI for the resident: the historical energy use of a single device

In addition to monitoring the historical energy use of a single device, a re-
sident is also able to view the history of his personal energy use, which is the
sum of all the power consumption/generation of the devices for which he has

204

5 Implementation

permissions in the building. Similar to the energy history of a single device,
the personal energy history is also composed of two parts. One part is for the
resident’s overall energy use (including energy consumption/generation and
corresponding cost/profit along with their average values of a community
and the ranking in the community), and another part is the real-time energy
use (including a load limit signal and an external energy price signal) during
the selected day.

In order to support residents in adjusting and optimizing their energy use
in the future, the BOS UI is able to display a prediction, over the next 24
hours, of the energy use of their building together with the external energy
signals (cf. Figure 5.23). The types of data available for the ’predicted
energy use’ include the base load power and the net load power of the buil-
ding, the energy generation from the photovoltaic (PV) and the energy ge-
neration/consumption from the µCHP. The future external energy signals
displayed on the BOS UI are the external electricity price, the load limits
(including both the load upper limit and the load lower limit), and the elec-
tricity feed-in prices of the PV and the µCHP, respectively. In order to
facilitate a comparison, the different types of predicted energy data and the
external signals are displayed in one diagram, but the resident can choose
to display or hide these items on the diagram by ’checking’ or ’unchecking’
the corresponding options on the top panel.

What is more, the BOS UI provides residents with a device operation log
(cf. Figure 5.24), which records a chronological documentation of how the
devices in the building have been controlled. Detailed information inclu-
des the device name, the location of the device, the time that device was
operated, the command executed by the device, the operation mode and the
executor who sent the command to the device. The operation mode descri-
bes how the devices were controlled. In the BOS UI, there are five operation
modes which are defined as follows:

205

5 Implementation

Figure 5.23: BOS UI for the resident: energy prediction of the building

• Device operation: The device is directly controlled by a resident by
sending a command to it.

• Group operation: The device is indirectly controlled by a resident
by sending a command to a device group which includes the device.

• Scene trigger: The device is indirectly controlled by a resident by
triggering a scene which includes the device.

• Calendar event response: The device is controlled by the building
operating system in order to respond to a calendar event specified by
the resident.

• System optimization: The device is controlled by the building ope-
rating system that has defined the working schedule for the device in
order to achieve a global optimization of the building. This opera-
tion mode is only applicable to appliances with a degree of freedom.
The building operating system cannot change the working schedu-
les for devices with low/no a degree of freedom, e.g. televisions,
lights etc. since these devices can only be controlled by residents.
Re-schedulable appliances which can be controlled to a certain extent

206

5 Implementation

by the building operating system can be classified into three catego-
ries according to the adjustable direction of their degree of freedom.
There are devices that can be re-scheduled bidirectionally on the ti-
meline, e.g. refrigerators, devices that can only be re-scheduled bac-
kward on the timeline, e.g. hot-water boilers, and devices that can
only be re-scheduled forward on the timeline, e.g. washing machines.

Figure 5.24: BOS UI for the resident: the device operation log

All the historical records can be displayed either in an ascending or des-
cending order, according to any attribute of the records, and they can also
be filtered by residents with corresponding keywords. By checking the ope-
ration log, residents are able to obtain the information about when, how and
by whom their devices were controlled in the past.

The BOS UI is a web-based user interface which was implemented based
on AngularJS technologies. Therefore, on the one hand, it can be accessed
easily from any web browser by entering its URL address. On the other
hand, the responsive layout enables the BOS UI to adapt to different screen
sizes. Figure 5.25 shows several screenshots of a tablet which was used to
access the BOS UI.

207

5 Implementation

Figure 5.25: BOS UI on a tablet

In order to further improve usability, the BOS UI provides users with a
number of global options which enhance user-friendliness. Firstly, because
of the many functions covered by the BOS UI, a search service is available
to enable users to quickly find the desired information by entering keywords
into a search box. As for items that need to be accessed frequently, shortcuts
can be generated for them on the top toolbar of the user interface. Secondly,
because of the Angular Material library and the Fuse template, both layouts
and visual themes of the BOS UI are configurable. Users are allowed to
choose from available layouts and color schemes, thus providing them with
personalized experience. Furthermore, the BOS UI gives users multilingual
support so that they are able to switch between different languages on-the-
fly without needing to refresh the page. This function is implemented with
the help of angular-translate which is an AngularJS module. The languages
that are currently supported by the BOS UI include English, German and
Chinese. Extending the BOS UI to support other languages can be achieved
by introducing their corresponding translation files to the system. These
language translation files can be loaded asynchronously when users switch
the display language for the BOS UI.

208

5 Implementation

5.5 Conclusion and Discussion

Based on the design outlined in Chapter 4 of this thesis, the BOS UI pro-
totype was developed, implemented and is being applied to a real smart
home environment, namely, the ESHL at the KIT. The BOS UI is able to
achieve the real-time communication with the OSH and the devices in the
ESHL via the mechanisms of publication/subscription and the remote proce-
dure call with the aid of a WAMP router. Furthermore, a number of RESTful
Web Services are available in order to enable the BOS UI to access and ope-
rate the resources that are not constantly being updated in the ESHL. The
BOS UI was developed on the basis of AngularJS Material. AngularJS Ma-
terial is both a UI Component framework and a reference implementation
of Google’s Material Design Specification [3]. Benefiting from this techno-
logy, on the one hand, the BOS UI is capable of producing a rich and modern
visual experience for users. On the other hand, functionalities of the BOS
UI can be realized by means of using modules. A variety of modules have
been created in order to provide the services needed by the UI framework
and support various features of the BOS UI.

From the point of view of UI realization, the BOS UI in general consists
of the navigation menu panel on the left-hand side, the toolbar at the top,
and the content panel in the middle. Compared to the cockpit display (e.g.
the FHEM Tablet UI), the tab-based display (e.g. the EMP), and any other
forms of display that do not use menus (e.g. the Basic UI of openHAB, the
OGEMA UI, the smartVISU, etc.), the system used by the BOS UI is able to
display more content on the user interface in a logical and concise manner.
Instead of displaying all of the content on one screen, the data that needs
to be displayed on the BOS UI has been organized into different categories,
whose titles can be found in the navigation menu on the left side of the
screen. However, this navigation menu is also collapsable, which means,
that it can either be locked open on the left-hand side of the user interface

209

5 Implementation

or it can be hidden in order to expand the display area of the content for
users. The information in the content panel is designed to be as intuitive as
possible in order to make the user interface easy to use. The effectiveness,
efficiency and degree of satisfaction arising from the way in which the BOS
UI has been implemented, that, the usability of this user interface, will be
evaluated in the next chapter.

Furthermore, as outlined in the design description in Section 4.5 of the
previous chapter, the BOS UI was developed based on role-based access
control. This can be seen by the way in which the menu options pertaining
to different user roles have been integrated in the BOS UI into one naviga-
tion menu panel. To this end, the Login module of the BOS UI needs to
ascertain the roles of users when they log into the system. The specific dis-
play options on the menu navigation panel for them will therefore depend
on the respective roles which they hold.

Although the BOS UI has been applied to the ESHL, which is a real smart
home environment at KIT, as indicated by the name, the ESHL is still a la-
boratory for research and demonstration. When it comes to realization of
the design in this thesis in an actual household building or turning the pro-
totype into a product, some challenges are still needed to be addressed. For
instance, household buildings need to be equipped with intelligent applian-
ces, which either have smart technologies built in or connect to extra smart
plugs which allow energy consumption measurement and remote control to
those conventional home appliances, so that an IoT environment could be
created. However, intelligent appliances are currently much more expensive
than conventional appliances. This impedes the transition from traditional
homes to smart homes. Additionally, building operating systems are re-
quired to be installed to those household buildings since on the one hand,
various household appliances from competing vendors need a unified plat-
form to enable them to work together seamlessly. On the other hand, many
features provided by the BOS UI, such as the realization of the optimization

210

5 Implementation

goals in a building, need to be supported by the BOS UI’s underlying buil-
ding operating system. Besides this, since the user interface proposed in this
thesis is designed in a generic way, a certain middleware or adapter should
be prepared separately in order to implement the communication between
the BOS UI and different building operating systems unless those building
operating systems are compatible with the BOS UI. However, considering
the current smart home market is highly fragmented and full of incompati-
ble technologies, the implementation of middlewares for building operating
systems with different standards requires also a great deal of operating ex-
pense.

211

6 Evaluation

This chapter evaluates the design, functionality and usability of the BOS UI
by way of a theoretical and experimental analysis, respectively. It firstly
evaluates the design of the BOS UI by checking to what extent the BOS UI
meets the proposed criteria for a generic user interface for building operating
systems. As for the functionality and usability, the BOS UI along with the
original user interface of the ESHL, namely, the ESHL GUI, are evaluated
at the same time by inviting test users to use both user interfaces and asking
the test users to fill out questionnaires at the end. Part of the work in this
chapter has been published in the Journal of Energy Informatics [106].

6.1 Evaluation of the Design

At the beginning of Chapter 4, a set of requirements or criteria, that are
considered necessary for any generic user interface for building operating
systems, were proposed. These requirements or criteria included remote re-
achability, responsiveness, configurability, role management, flexibility and
generality. Specifically, as described in Section 4.1 of Chapter 4, for the dis-
cussion concerning generality of a generic user interface for building opera-
ting systems in this thesis, the use cases in Table 6.1 are used as a reference.

The aim of this section is to evaluate theoretically whether the BOS UI
has met the required criteria. Figure 6.1 shows a summary of the evaluation
results, and the following are explanations of the results:

212

6 Evaluation

Table 6.1: The use cases relating to a smart home

No. Use Case No. Use Case

1 Basic Home Automation 10 Visualization of Historical Energy Costs

2 Advanced Home Automation 11 Visualization of Historical Energy Data

3 Possibilities to Specify Degrees of Freedom
for Devices

12 Prediction of In-house Energy Use

4 Visualization of Building-level Energy Data 13 Support for System Configurations

5 Visualization of Device-level Energy Con-
sumption

14 Provision of Value-added Services

6 Visualization of Device-level Energy Genera-
tion

15 Visualization of Historical Data for the Single
Resident

7 Visualization of External Signals 16 Integration of Electric Vehicles

8 Role Based Access Control 17 Connection to a User Community

9 Floor Plan Based Device Organization 18 Support for Setting Building Optimization
Goals

Figure 6.1: Evaluation results for the design of the BOS UI

• Remote reachability. The BOS UI is a web-based single-page appli-
cation, which is built for the web and can be accessed anywhere via
any web browser by entering its URL address.

• Responsiveness. As discussed in Chapter 5, the BOS UI is developed
on the basis of AngularJS Material library, which provides responsive
layouts for different views (e.g. mobile, tablet, and desktop). Because

213

6 Evaluation

of the library, the BOS UI is able to adapt to different screen sizes,
either by resizing or reorganizing its components on different views.

• Configurability. The BOS UI is configurable according to different
aspects, including visual themes, layouts, languages and sizes and
positions of the widgets, etc. One defect concerning the configurabi-
lity of the current BOS UI is that most of the options customized by
users cannot be saved for the next use once the user has logged out.
This is something, which needs to be improved in the future by provi-
ding a configuration file for each of the users to record their personal
settings instead of asking them to reconfigure the user interface every
time after logging in.

• Role management. Role-based access control is one of the features
supported by the BOS UI. To facilitate security administration and
privacy protection, the BOS UI controls the users’ access according
to the roles held by the particular users and the permissions attached
to these roles. For this purpose, three roles, namely, administrator,
operator and resident are introduced in the BOS UI.

• Flexibility. The data models behind a user interface determine the
flexibility of the user interface. In terms of the BOS UI, its data mo-
dels are designed in a generic way, which means they do not exclu-
sively apply to one specific building operating system in a particular
household building. This contributes to the high flexibility of the BOS
UI to extend to different building operating systems and cover various
scenarios.

• Generality. As described in the definition of a generic user interface
for building operating systems in Chapter 4, the generality of a user
interface can be reflected in its support of a wide range of smart home
related use cases (cf. Table 6.1). At this stage, all of the use cases
in Table 6.1 can be covered by the current BOS UI except for the

214

6 Evaluation

use case dealing with the support of system configurations, which is
currently only partly supported by the BOS UI.

The system configurations in this thesis refer to the configurations for
the building operating system rather than for the user interface itself.
So far, this use case is only supported by the BOS UI to some extent.
On the one hand, the administrator is able to configure a building with
respect to different aspects, such as location management, device de-
ployment, etc. On the other hand, the BOS UI supports user manage-
ment by allowing the operator to add/edit/remove residents and assign
permissions to them to access devices in the system.

However, one limitation of the current BOS UI is that it can only
manage the devices that have already been integrated into a building
operating system. Discovering and adding new devices to the building
operating system are not yet supported by the BOS UI on account of
the heterogeneity of different building operating systems. The wor-
king mechanisms vary from one building operating system to anot-
her. Consequently, the configuration parameters for adding devices
to their corresponding system may differ. For example, according to
the introduction of the building operating systems in the Section 2.2
of Chapter 2, components including a proper device driver, an OX
(Observer eXchanger) object and a CX (Controller eXchanger) ob-
ject need to be loaded in order to add a device to the OSH. In order
to add a device in openHAB, one needs to firstly import a so-called
Thing to the system and then link Thing channels to predefined Items.
Furthermore, for adding devices to EF-Pi, one needs to load the cor-
responding device drivers and device managers to the system. It is not
challenging to create a custom user interface for adding devices to a
specific building operating system. However, the BOS UI is designed
as a generic user interface, which means that it is not tailored to any
particular building operating system. Up until now, there is no such a

215

6 Evaluation

"one-size-fits-all" plan for adding devices or configuring various pa-
rameters for different types of building operating systems does not
exist. For this reason, the BOS UI does not yet support this function.

Among all the data models of the BOS UI, the household device model
(cf. Figure 4.6) is the innermost and therefore the most important model,
since the other data models (e.g. scene, device group, location, etc.) are
either made up of it or associated with it. Whether the household device
model is generic or not determines whether the BOS UI is applicable to dif-
ferent building operating systems. To prove the generality of the household
device model, the following are a few examples which illustrate the results
of converting the proprietary device models from two building operating
systems, namely, the OSH and the openHAB, into the generic household
device model used by the BOS UI.

Example 1: an exemplary data representation of a washing machine in
the ESHL used by the OSH

"-1609555631": {

"name": "Washing Machine",

"room": "kitchen",

"stateName": "Running",

"deviceDetails": {

"stateName": "Running",

"programName": "Delicates",

"phaseName": "Spin",

"remainingTime": "3",

"applianceTypeName": "Washing Machine"

}

"type": "W3985",

216

6 Evaluation

"class": 22020,

"uid": -1609555631

}

The washing machine in the OSH has more data pertaining to it than re-
flected in the aforementioned data representation. Other related information
about a washing machine (e.g. power and degree of freedom, etc.) is stored
separately in other, different data sets, as for other devices. In other words,
the OSH does not provide a complete data model for any of the devices in
the ESHL. Neither does the Energy Management Panel (EMP), which is the
OSH’s original user interface. The EMP accesses the energy data in the
ESHL according to its understanding of the system. As a result, the design
of the EMP is tightly coupled with the OSH, which makes it difficult to ex-
tend to other building operating systems. On the contrary, the BOS UI is
implemented based on a number of generic data models. In order to apply
the BOS UI to the OSH, the data from the OSH or the ESHL need to be
converted into the format of the generic data models used by the BOS UI.
For instance, the aforementioned information about the washing machine in
the ESHL can be represented by the household device model of the BOS
UI after conversion. Table 6.2 shows the result after the conversion. For
the sake of brevity, part of the attributes, which have empty values, are not
displayed in the table.

Example 2: an exemplary switch Item in the openHAB

Switch Bedroom_Light "Bedroom Light" <light> { mqtt="

> [mybroker:myhouse/bedroom/light:command:ON:1],

>[mybroker:myhouse/bedroom/light:command:OFF:0]"}

In openHAB, Items represent all properties and capabilities of the user’s
home automation, which are mainly used by user interfaces or the automa-
tion logic of an openHAB instance [22]. Items store different kinds of values
which can be read or written, and on the other hand, they specify the way

217

6 Evaluation

Table 6.2: The result of converting the data about the washing machine in the
ESHL from the OSH into the data model of the BOS UI

Uuid -1609555631
DeviceName Washing Machine
DeviceImage washingmachine.png

Device infoName infoValue
General room kitchen
Info type W3985

class 22020
channelInfochannelName

infoName infoValue unit
Device

Washing
Machine

stateName Off
Channels programName Delicates

phaseName Spin
remainingTime 3 min

power 442 w
deviceActionscontrollerName

name commands widget available

State
Controller

turn
on

cmdString
Button false

Device
Controllers

eshl.miele.v1
.home-
bus.start -
1609555631

turn
off

cmdString
Button true

eshl.miele.v1
.home-
bus.stop -
1609555631

allowedStartTime requiredEndTimeDOFInfo
09:00, 07.02.2018 15:00, 07.02.2018

Consumed
Energy electricity
Energy
Generated
EnergyEnergy

to connect with external physical devices. Devices involved in home auto-
mation can be represented by different types of Items (e.g. Color, Dimmer,
Number, etc.) inside the openHAB world. The above example is a definition
of a switch item which is used to describe a light in the bedroom. In like
manner, the data can be easily converted into the generic data model of the

218

6 Evaluation

BOS UI. Table 6.3 shows the result of converting this switch Item into the
household device model used by the BOS UI.

Table 6.3: The result of converting a switch Item in openHAB into the data model
of the BOS UI

Uuid Bedroom_Light
DeviceName Bedroom Light
DeviceImage light.png

Device infoName infoValue
General
Info

room bedroom

Channel channelInfo
Device Name infoName infoValue unit
Channels Bedroom

Light
state Off

power 0 w

Controller deviceActions
Name name commands widget available

State
Controller

turn
on/off

state cmdString

Switch true
Device
Controllers 1 mybroker:

myhouse
/bedroom
/light ON

state cmdString
0 mybroker:

myhouse
/bedroom
/light OFF

allowedStartTime requiredEndTimeDOFInfo

Consumed
Energy electricity
Energy
Generated
EnergyEnergy

The aforementioned two examples show how to convert the exclusive data
models of two building operating systems into the generic data model used
by the BOS UI. Similarly, other building operating systems need to undergo
the same adaptation so that they are able to utilize the BOS UI as their user
interface. To this end, a middleware (cf. Figure 6.2) between the BOS
UI and a building operating system is required. In order to complete the
connection, at least the two components, namely, the Adapter and the Buil-
dingConfig, need to be included in the middleware.

219

6 Evaluation

The Adapter is the component responsible for the data conversion. It fe-
tches data from a building operating system and converts the data into the
generic data models for the BOS UI. For example, the work of converting
the data of two building operating systems in the aforementioned two exam-
ples into the data shown in Table 6.2 and Table 6.3 is done by the Adapter
component. In order to do so, the Adapter needs to know the exact data
structure of the information provided by the building operating system.

Figure 6.2: The component diagram of the middleware between the BOS UI and a
building operating system

The BuildingConfig component, on the other hand, is responsible for pro-
viding all kinds of integrated services for the BOS UI to obtain information
from the building or to communicate with the building operating system.
For instance, it might provide a service to get all the devices that are consu-
ming power in the building, or a service to get the detailed information for
a specific device, and so on. In order to realize these integrated services, the
BuildingConfig component usually needs to process and assemble some sin-
gle energy values generated from sensors or other measuring equipment in
a building in order to provide integrated services. This information is obtai-
ned not directly by communicating with the building operating system, but
rather by invoking the interfaces provided by the Adapter. In so doing, the

220

6 Evaluation

BuildingConfig component does not need to deal with the building opera-
ting system, which allows the BuildingConfig component to be independent
of building operating systems.

To sum up, because the BOS UI is equipped with this type of middleware
between itself and the building operating system, it can be concluded that
it is able to apply to different building operating systems. When it comes
to the implementation on the market in the future, the middleware could be
implemented by either building operating system providers or some other
third parties which specifically provide services to implement a generic user
interface for building operating systems. Building operating system provi-
ders can choose to design their own user interfaces by using their specific
data models. Alternatively, they can also directly benefit from the design of
the generic user interface in this thesis by using the generic data models to
interact with their user interfaces. On the other hand, in the face of having
many incompatible building operating systems on the market, there could
be some third parties which provide generic user interfaces for customers to
deal with different building operating systems installed in their household
buildings in order to have a unified and holistic energy visualization and
control at customers’ houses.

Overall, according to the above analysis, it can be seen that, the BOS UI
meets all the proposed requirements or criteria for a generic user interface
for building operating systems, except for the fact, that the system configu-
ration can not be fully supported yet. Functions such as adding new devices
and configuring parameters for building operating systems still need to be
done by the special configuration interface of each building operating sy-
stem. The BOS UI is at this stage, mainly designed for the display and ope-
ration of the data in the building rather than the setup and configuration of
the building operating system. The missing part of this function is relevant
to the fourth initial research sub-question, namely, "What are the functional
components that the generic user interface should cover?" The current solu-

221

6 Evaluation

tion provided by this thesis mainly focuses on the needs of residents rather
than those of building operating systems. Therefore system configuration
has not yet been included as a functional component into the generic user
interface implemented in this thesis.

6.2 Evaluation of the Usability and Functionality

Usability is defined by ISO 9241-11 as the extent to which a product can
be used by specified users to achieve specified goals with effectiveness, ef-
ficiency and satisfaction in a specified context of use [49]. Usability evalua-
tion plays an important role in the overall user interface design process since
usability provides an important contribution to user experience [72]. This
section evaluates the usability of the BOS UI by testing it with end users
which is the most fundamental usability evaluation method and is in some
sense indispensable. It provides direct information about how people use
the system and their exact problems with a specific interface [73]. Along
with the usability, a range of important functionality aspects have also been
evaluated using the same experiments.

6.2.1 Method of Experimentation

The evaluation of the usability and the functionality of the BOS UI was done
by means of conducting experiments by inviting a number of test users to
complete some pre-determined tasks and asking the test users to fill out que-
stionnaires concerning the user interface. The detailed evaluation process is
displayed by the flow chart in Figure 6.3. The first step was to design a test
plan for the experiment, then to establish corresponding evaluation tasks and
design questionnaires that needed to be completed by test users. The next
step was to write the test users’ instructions for the experiment in order to
help the test users to deepen their understanding of the experimental pro-

222

6 Evaluation

cess and content. This step concluded the design phase of the experiment.
The last step in the preparation of the test was to recruit a certain number
of test users for the experiment. Before the actual test, pre-tests had to be
conducted in order to eliminate potential errors in the code of the BOS UI
and design flaws of the test plan. The actual test could get started as soon
as no more problems were identified in the pre-tests. The last step of the
experiment was to analyze the experimental results from which evaluation
results of the usability and the functionality of the BOS UI could be derived.

Figure 6.3: The experimental process of the usability evaluation of the BOS UI

Since the BOS UI was introduced as a replacement of a user interface spe-
cifically designed for the ESHL, named ESHL GUI, it made sense to evalu-
ate the ESHL GUI along with the BOS UI, and then to provide a comparison
between the two user interfaces. The ESHL GUI was further developed on

223

6 Evaluation

the basis of the Energy Management Panel (EMP) by integrating more di-
versified features into it. In addition to supporting the basic functionalities
provided by the EMP, which were introduced in Chapter 3, the ESHL GUI
is able to display more energy data, such as different sensor data, for users.
Besides this, some other features which are more engineering-oriented, such
as the visualization of parameters of different kinds of storage devices (e.g.
hot water tank, cold water tank, battery, etc.) in the ESHL, and the visuali-
zation of various technical parameters about the power supply in the ESHL,
were also integrated into the ESHL GUI in order to give users a more holis-
tic understanding about the energy situation at the ESHL.

6.2.2 System Usability Scale

As mentioned above, the usability of the BOS UI and the ESHL GUI was
evaluated in a user-based manner, namely, via a number of test users per-
forming a set of pre-determined tasks, which are generally considered to
yield the most reliable and valid estimate of an application’s usability [61].
To establish a proper and effective way of measuring usability, a robust and
reliable evaluation tool, named System Usability Scale (SUS), was used.

The SUS was invented by John Brooke in 1980s as a "quick and dirty"
survey scale that allows the usability practitioner to easily estimate the usa-
bility of a given product or service. It has been tried and tested throughout
30 years of use and has proven a valuable and robust tool in helping as-
sess the quality of a broad spectrum of user interfaces [42]. Besides this, as
Brooke put it, the SUS is particularly relevant to compare two versions of
an application that are based around different technologies [53].

The SUS is a Likert Scale which consists of the following ten statements.
Each of them is given five response options from "strongly disagree" to
"strongly agree" which represent different strengths of agreement.

224

6 Evaluation

1. I think that I would like to use this system frequently.

2. I found the system unnecessarily complex.

3. I thought the system was easy to use.

4. I think that I would need the support of a technical person to be able

to use this system.

5. I found the various functions in this system were well integrated.

6. I thought there was too much inconsistency in this system.

7. I would imagine that most people would learn to use this system very

quickly.

8. I found the system very cumbersome to use.

9. I felt very confident using the system.

10. I needed to learn a lot of things before I could get going with this

system.

A final SUS score which represents a composite measure of the overall
usability of the system being studied is yielded based on the answers from
the respondents to the above questionnaire. To calculate the SUS score, the
fact that the positive statements and negative statements in the questionnaire
are alternately arranged needs to be considered. For statements 1, 3, 5, 7
and 9 the score contribution is the scale position minus 1. For statements 2,
4, 6, 8 and 10, the contribution is 5 minus the scale position, therefore the
score contribution of each statement will range from 0-4. Multiplying the
sum of the score contribution of each statement by 2.5 will yield an overall
SUS score which has a range of 0-100. The greater the SUS score, the better
the usability of the system being evaluated.

After analyzing more than 2300 surveys over the course of 206 studies,
the mean SUS score for all surveys is 70.14 and the mean SUS score for
Web user interfaces is 68 [42], which means 68 is around the 50th percen-

225

6 Evaluation

tile. In other words, a Web user interface’s SUS score above 68 would be
considered above the average and therefore, 68 can be taken as a minimal
limit a Web user interface has to cross in order to be considered fairly usa-
ble. This is also mirrored in the acceptability estimate correlated to SUS
scores. According to the analysis of nearly 1000 SUS surveys, an adjective
rating scale which can help practitioners interpret individual SUS scores is
highly correlated with SUS scores [41]. Figure 6.4 shows the corresponding
relations between the SUS scores, the adjective ratings, the school grading
scale and the acceptability ranges.

Figure 6.4: A comparison of the adjective ratings, acceptability scores, and school
grading scales, in relation to the average SUS score [41]

The average SUS score for each adjective rating derived from the nearly
1000 SUS surveys is listed in Table 6.4, which can be used as a reference for
judging how good the usability of the two user interfaces is in this evaluation
according to their SUS scores.

6.2.3 Experiment Preparation

After this theoretical preparation, a series of experiments needed to be con-
ducted in order to collect feedback from the test users on the two user in-
terfaces. In this study, the experiments were carried out in the Karlsruhe
Decision & Design Lab (KD2Lab)1. The KD2Lab is funded by the German

1 https://www.kd2lab.kit.edu/english/index.php

226

6 Evaluation

Table 6.4: The statistical average values of SUS scores for adjective ratings accor-
ding to nearly 1000 SUS surveys [41]

Adjective SUS Score

Best Imaginable 90.9

Excellent 85.5

Good 71.4

OK 50.9

Poor 35.7

Awful 20.3

Worst Imaginable 12.5

Research Foundation. As one of the largest computer-based experimen-
tal laboratories world-wide, the KD2Lab can provide favorable conditions
and psycho-physiological sensors for experiments, particularly for research
on human behaviour and decision-making in economics and NeuroIS. For
the experiments in this study, the KD2Lab offers 20 soundproofed and air-
conditioned computer cubicles (cf. Figure 6.5). Every computer in the cu-
bicles is installed with a screencasting software, which is used to capture
and synchronize the screen during the experiment and output a video file for
the purpose of analysis after the experiment. In addition to this, a cockpit
cubicle is available for the experimenter to observe the test users’ compu-
ter screens during the experiment. What is more, a microphone can also be
used by the experimenter for announcing necessary information to the test
users.

As for the participants of the experiments, the KD2Lab provides the ex-
perimenters with a participants pool which has more than 2800 registered
users. With the help of a KD2Lab experimental portal, experimenters can
invite any number of participants for their experiments by sending invita-
tion emails to the users in the pool. Before starting to send the invitation
emails, the KD2Lab experimental portal allows experimenters to filter the

227

6 Evaluation

Figure 6.5: The KD2Lab

users in the pool with some keywords, e.g. gender, language, degree, course
of studies, etc., so that only the eligible users will receive the invitations.

In this study, no particular restrictions were placed on the participants
except for language. The BOS UI supports switching between three langua-
ges, namely, English, German and Chinese, whereas, the ESHL GUI only
offers German. As a result, the invitation emails were only sent to users who
were able to speak both English and German.

The number of participants needed for a usability test was one of the most
hotly debated issues in the field [38]. According to Nielson’s article [89],
testing with 5 people will find almost as many usability problems as the pro-
blems that would be found using many more test participants. However, for
quantitative studies where statistics instead of insights are the aim, at least
20 participants are needed in order to get statistically significant numbers.
According to a recent analysis of an internal SUS survey from SAP [23],
30 participants are needed to get a fairly accurate quantitative assessment
of the overall quality of the system being studied. In order to ensure the
reliability of the experimental results, around 10 participants were invited to
attend the pretests. For the actual test, 42 participants were invited, which
can be considered a large enough sample size to derive statistically stable
insights.

228

6 Evaluation

In the experiment for this study, the objects to be evaluated were the two
user interfaces: the BOS UI and the ESHL GUI. The participants of the ex-
periment, namely, the test users, were asked to use first the one and then the
other user interface for performing a number of pre-determined tasks. After
that, they were asked to provide feedback for both user interfaces. To this
end, a special evaluation website which integrates all the evaluation tasks
and the questionnaires was developed for the participants. The organization
structure of the evaluation website is illustrated in Figure 6.6.

Figure 6.6: The organization structure of the evaluation website

6.2.4 Results of the Demographic Survey

After logging into the evaluation website, the first thing that the test users
need to do was to fill out a demographic survey. The purpose of this section
was to collect background information (e.g. age, major subject, degree, etc.)
of the test users, the level of their knowledge about smart home technology
and their familiarity with user interfaces for smart homes, if they had ever
used one before. The complete background information of the test users
which was collected from the demographic survey is listed in Appendix A.

229

6 Evaluation

In terms of knowledge about smart home technology, there were five levels
available for participants to choose from, namely, no knowledge, basic kno-
wledge, good knowledge, advanced knowledge and expert knowledge. In
the experiment of this study, the ages of the 42 participants were between
18 and 40 years. The distribution of the number of participants with dif-
ferent knowledge levels about smart home technologies is shown in Table
6.5. Among the 42 test users, four had used smart home related user inter-
faces before. The description about the user interfaces and the participants’
comments can be found in Table 6.6.

Table 6.5: The distribution of different knowledge levels about smart home techno-
logies

Knowledge level Number of participants

No knowledge 5 (11.9%)

Basic knowledge 28 (66.7%)

Good knowledge 7 (16.7%)

Advanced knowledge 2 (4.8%)

Expert knowledge 0 (0%)

Table 6.6: Smart home user interfaces that had been used by the participants before
the test and their comments on the user interfaces

The user interface description Comment

A user interface that can show all the states of the
apartment.

At the beginning I was satisfied, but the more I used
the interface, the more I felt that it missed some ad-
vanced features, e.g. time scheduled / event-based
tasks.

It is an application to control the light in our home. The application is really slow and not working suf-
ficiently.

The sonos sound system I am very happy with it.

Interfaces for heat regulation and air/ventilation sy-
stem

N.A.

230

6 Evaluation

6.2.5 Main Part of the Survey

After the demographic survey, the evaluation website showed the test users
some instructive information about the experiment and gave a brief intro-
duction of the two user interfaces under evaluation. From the experimental
introduction, the test users were able to obtain a general impression of what
they needed to do during the experiment and how.

The test users were then asked to start the tasks for the BOS UI and the
ESHL GUI. Since there are three roles in the BOS UI, the tasks for the
BOS UI were organized into three parts according to the responsibilities
of the different roles. The test users were given different roles to complete
corresponding tasks on the BOS UI. In total, there were 22 tasks for the BOS
UI which are listed in Appendix B.1. The ESHL GUI, on the other hand,
does not support multiple roles, therefore only 8 tasks were designed for this
user interface. These tasks can be found in Appendix B.2. Before the actual
test, it could be seen from the results collected from the pre-tests that most
of the test users only had a basic knowledge of smart home technologies and
that they basically did not have any experience of using a user interface for
a building operating system. In order to prevent the test users in the actual
test from having a prejudice against any one of the two user interfaces, the
evaluation website was programmed to display the tasks for the two user
interfaces in different orders. More specifically, according to the username,
with which the test users logged themselves into the evaluation website,
half of the test users started with the tasks for the BOS UI and the other half
started with the tasks for the ESHL GUI, so as to balance potential bias.

After the completion of all tasks, the test users were expected to be fami-
liar with the two user interfaces. The last task which they needed to perform,
was to fill out two different questionnaires. The purpose of the first questi-
onnaire was to get the test users’ overall impression of the BOS UI and the
ESHL GUI, ask the test users to provide their views on the functionalities of

231

6 Evaluation

the two user interfaces, and then to make some comparisons between them.
Consequently, the questionnaire includes a number of statements with diffe-
rent options and some questions about the two user interfaces. The second
questionnaire consists of the aforementioned 10 standard SUS statements.
The aim of this questionnaire was to evaluate the usability of the BOS UI
and the ESHL GUI, respectively.

6.2.6 Evaluation Results of the Functionality

42 participants took part in the actual test in the KD2Lab. After processing
and calculating the data collected from the experiment, the statistical results
of the statements concerning the BOS UI in the first questionnaire are illus-
trated in Figure 6.7. There are six statements which exclusively deal with
the BOS UI in the first questionnaire. The statements are listed as follows:

1. The BOS UI provided me with enough information and functionalities

that I would need in my daily life based on my experience so far.

2. The BOS UI gave me a holistic view about the energy use in my buil-

ding.

3. The BOS UI provided me with useful information which can help me to

use appliances more reasonably in order to save money.

4. The BOS UI can help to achieve different optimization goals in the

building, e.g. reducing energy costs or being environment-friendly, etc.

5. Having roles with different permissions to restrict system access is a

crucial part of the user interface for smart buildings.

6. The way of showing devices on the floor plan of the building in the

BOS UI is intuitive.

From the Figure 6.7, it can be seen that, except for one test user who
remained neutral, all of the test users agreed (most of them strongly agreed)

232

6 Evaluation

Figure 6.7: The statistical results of the six statements about BOS UI

that the BOS UI provided them with enough information and functionalities
that they would need in their daily lives. 25 participants strongly agreed
and 16 agreed that the BOS UI had given them a holistic view about the
energy use in their building. Similarly, the third statement and the fourth
statement were also strongly agreed to by half and more than half (23/42) of
the participants, respectively. Compared to the first four statements, the test
users’ opinions about statement 5 and 6 were more diverse. Especially for
the fifth statement, although more than half of the test users (26/42) agreed
to this statement, there were still 6 test users who disagreed to it. According
to the comments they left, they thought that having different roles might
only be necessary in a big building in which more than one family lives,
which is not the case in their current apartment, where everyone shares the
same power. It is understandable that the test users made the decision based
on their own circumstances. However, the BOS UI is designed not only for
one particular situation, but for having the potential of covering a variety
of use cases. In order to avoid unnecessary complexity and redundancy
in simple situations, the BOS UI was designed on the basis of role-based
access control (RBAC) in which permissions are associated with roles and
users are made members of appropriate roles. A user, depending on different

233

6 Evaluation

situations, may have multiple roles. However, each user in the BOS UI only
has one account, which means that he is able to access all the permissions
owned by his roles by only logging in once. Because of this, the BOS UI is
flexible and can be extended to apply to different situations.

As for the last statement, most of the test users (36/42) agreed that the
way of showing devices on the floor plan of the building in the BOS UI is
intuitive. While watching the recorded videos, it could be seen that two of
the four test users who remained neutral and one of the two test users who
disagreed with the statement, in fact did not turn to the menu item about
displaying devices on the floor plan when they were using the BOS UI to
perform the tasks. Instead, they tried to complete the related tasks by using
other ways provided by the BOS UI. Since the three test users were not
aware of this function, their choices for this statement should be considered
as invalid. After removing the three invalid data sets from the total data
set, the conclusion can be made that 92.3% of the test users believed that it
is intuitive to show devices on the floor plan of the building after they had
experienced this function. From this it can be concluded, that it is valuable
to integrate this function into a user interface for building operating systems.

By replacing "BOS UI" with "ESHL GUI" in the statement 1 - 4, the test
users also evaluated the ESHL GUI according to the same aspects as the
BOS UI. The opinions expressed by the test users concerning the statements
about the ESHL GUI were much more diverse. As shown in Figure 6.8, for
any of these four statements, the number of test users who agreed with it
only accounts for less than half of all of the participants. Most of the test
users either remained neutral or disagreed with the statements.

In addition to the statements above, the test users in the first questionnaire
were asked to choose the purpose for using the BOS UI. The statistical re-
sults are shown in Figure 6.9. Among the total of 42 test users, 35 of them
believed that the BOS UI would be able to help them save money and 34 of
them wanted to use the BOS UI to get a clear view of their energy use in

234

6 Evaluation

Figure 6.8: The statistical results of the first four statements about ESHL GUI

their building. There were 28 test users who would use the BOS UI for the
purpose of convenience. In spite of functions like role-based access control,
restricted permissions to residents, operation log, etc. provided by the BOS
UI, fewer test users (12 to be exact) would use the BOS UI with the aim of
improving security in their home. There were 5 test users who thought of
other purposes for which they would like to use the BOS UI. The purposes
which they expressed included: "schedule the things/machines in the buil-
ding depending on my timetable", "control blinds and lights in the building
while being on vacation", "control and to schedule/manage my devices", "if
I have a large duplex house, it will definitely come in handy and allows you
to check out the lights, windows, etc." and "I’d love to use it for convenience
but it seems too heavy for now".

After getting familiar with both user interfaces by using them to perform
a number of tasks, the test users were asked to make the following compari-
sons between the BOS UI and the ESHL GUI.

1. Compare BOS UI and ESHL GUI, which user interface offers more

useful functionalities?

235

6 Evaluation

Figure 6.9: Purposes of using the BOS UI as stated by the test users

2. Compare BOS UI and ESHL GUI, which user interface is more intui-

tive to use?

3. Compare BOS UI and ESHL GUI, which user interface can help you

save more money?

4. Compare BOS UI and ESHL GUI, which user interface provides more

security features?

5. Compare BOS UI and ESHL GUI, which user interface has a bigger

range of application?

6. Compare BOS UI and ESHL GUI, from which user interface did you

get a more clear view about energy use in your building?

7. Considering the above reflections, which user interface do you like

better?

The statistical results are illustrated in Figure 6.10, from which, one can
see that, it would seem that, the vast majority of test users think that the
BOS UI outperformed the ESHL GUI in many respects. When taking all

236

6 Evaluation

the aspects into consideration, 41 out of the total 42 participants considered
that the BOS UI to be better than the ESHL GUI.

Figure 6.10: The statistical results of the comparisons between BOS UI and ESHL
GUI

At the end of the first questionnaire, the test users were encouraged to
leave their comments concerning the two user interfaces. The following are
a few of the comments left by some of the test users. The complete list of
comments concerning the BOS UI and the ESHL GUI, left by the test users
in the test, can be found in Appendix C.

“BOS UI seems easy to use once you get used to it. It doesn’t need much

know-how to understand the interface. Whereas the ESHL GUI is not suita-

ble for anybody like elder people who are not good with technology.”

“BOS UI is extremely easy to use, so that it was quite fun. ESHL GUI on

the other hand is annoyingly difficult. A lot of functionalities are missing.”

“I really like the intuitive BOS UI for its very accessible interface with

the different folders. Idiot-proof even for beginners. It was intuitive to

find everything. The floor plan was great. I like the devices were colou-

red orange (consuming electricity) or green (producing electricity), giving

a user a quick overview of what’s going on.

237

6 Evaluation

I had some problems with ESHL GUI, it was quite clunky to work with.

The devices weren’t as comfortable accessible and the charts where to find

what information were kind of confusing. More or better ways to group your

devices or have an overview where the most power is used at this moment,

maybe even on the floor plan, that would be great.”

“The ESHL GUI is not very clear. You have to make a lot more clicks

to get there. Also in terms of color, the BOS UI is much better designed,

which improves clarity. However, in the Energy Overview tab, for example,

I find the technical parameters unnecessary. The end user is certainly not

interested in what voltage is currently available.”

“I find ESHL GUI very unintuitive for use. For somebody who might be

already familiar with this system it might be reasonable but I had a hard time

finding specific features. BOS UI feels much smoother, however it would be

great if BOS UI can keep track of the frequency of use of my devices so that

all my devices can be sorted based on the frequency of their use.”

It is suggested by the comments above, that the feedback of the test users
concerning the ESHL GUI, is basically centered around complaining about
its usability. The ESHL GUI is not considered to be intuitive and user
friendly. On the contrary, the test users gave the BOS UI a positive eva-
luation in terms of usability, and in addition to that, provided some useful
suggestions for the future, e.g. removing technical parameters that residents
are not interested in and keeping track of user habits.

6.2.7 Evaluation Results of the Usability

In the second part of the questionnaire, the participants were asked to score
the 10 statements of the SUS survey for the two user interfaces, respectively.
After collecting answers from the participants and calculating, the mean
value and the standard deviation of the 42 SUS scores for the BOS UI are

238

6 Evaluation

79.0 and 12.3, respectively. The results of the usability test for the BOS UI
are positive. With the final SUS score of 79.0, which is 11 points more than
the average SUS score for Web user interfaces, the corresponding adjective
rating of the usability of the BOS UI is "good", according to Figure 6.4.
The frequency distribution of the SUS scores of the BOS UI from the 42
test users is illustrated in Figure 6.11.

Figure 6.11: Histogram of the SUS scores of the BOS UI

By having the 42 discrete SUS scores, it was first assumed that this set
of data was normally distributed, and then this assumption was checked by
making use of statistical analysis. The Q-Q plot (quantile-quantile plot),
which displays the observed values against normally distributed data, is one
of the visual methods to check normality of sample data. Figure 6.12 shows
the Normal Q-Q Plot of SUS scores of the BOS UI from the 42 test users,
from which it can be seen that the points form a line that is roughly straight.
The Q-Q plot in Figure 6.12 provides a visual judgement that the data set
conforms to a normal distribution.

239

6 Evaluation

Figure 6.12: Normal Q-Q Plot of the SUS scores of the BOS UI

It is preferable that normality be assessed both visually and through nor-
mality tests, of which the Shapiro-Wilk test, provided by the SPSS software,
is highly recommended [66]. Compared to the visual method, statistical
tests for normality are more precise since actual probabilities are calculated.
In this case, both the Kolmogorov-Smirnov (K-S) with Lilliefors correction
and the Shapiro-Wilk tests were applied to test the normality of the SUS
scores from the 42 test users. The results generated by the SPSS software
are shown in Table 6.7. It is clear that both tests have a p-value greater than
0.05, which indicates normal distribution of the SUS scores.

Table 6.7: Tests of normality of the distribution of the SUS scores of the BOS UI

Kolmogorov-Smirnovaa Shapiro-Wilk

statistic dfb p-value statistic dfb p-value

SUS score .119 42 .149 .965 42 .214

a. Lilliefors Significance Correction b. Abbreviation: df, Degree of freedom

240

6 Evaluation

It can be seen from the above analysis that the SUS scores of the BOS UI
from the 42 participants conform to a normal distribution. If the SUS score
is presented by the random variable X, then: X ∼N (µ,σ2), where µ is the
mean of SUS scores for the BOS UI, which is 79.0, and σ represents the
standard deviation of the distribution, which in this case is 12.3. With this
information, it can be calculated, that the probability that the SUS score for
the BOS UI is higher than 68 (which is the average SUS score of the Web
user interfaces) is 81.4%. Based on the statistical average values of SUS
scores for adjective ratings in Table 6.4, the probability, that users think the
usability of the BOS UI is "good" or higher, is 73.2%. There are 29.9% of
users who would consider the usability of the BOS UI to be "excellent" and
"best imaginable".

Compared to the BOS UI, the usability of the ESHL GUI was graded
less favorably. The statistical results show that the SUS score of the ESHL
GUI is only 34.8, which is far less than the average SUS score, namely,
68. According to Figure 6.4, the adjective rating corresponding to this SUS
score is in between "awful" and "poor". The frequency distribution of the
SUS scores of the ESHL GUI from the 42 test users is shown in Figure 6.13,
where it can be seen that only 5 test users (which takes up around 12% of
the total) scored the usability of the ESHL GUI greater than 68.

When it comes to the test users’ answer to the statements in the SUS sur-
vey, it would be better to divide them into two parts for statistics according
to the parity of the number of the statements since the positive and negative
statements in the SUS survey were alternately arranged. Figure 6.14 illustra-
tes the results of the participants’ answers to the odd numbered statements
about the BOS UI and the ESHL GUI by means of stacked bars.

Figure 6.14 shows that 32 of the 42 test users agreed that they would like
to use the BOS UI frequently. Only 3 test users disagreed with this. As for
the ESHL GUI, most of the test users thought they would not like to use it
frequently. The third statement was about ease of use. 39 test users, which

241

6 Evaluation

Figure 6.13: Histogram of the SUS scores of the ESHL GUI

accounts for 92.9% of the total, agreed that the BOS UI is easy to use, while
for the ESHL GUI, the feedback for this question was quite the opposite.
There are 38 test users who did not think that the ESHL GUI is easy to use.
95.2% of the test users found that the various functions in the BOS UI were
well integrated and the same number of test users could imagine that most
people would be able to learn how to use the user interface very quickly.
However, only 5 test users and 9 test users, respectively, agreed on the two
statements when applied to the ESHL GUI. Finally, the number of test users
who felt very confident in using the BOS UI is 39, which stands in stark
contrast to 5 users who felt this way about using the ESHL GUI.

The even numbered statements in the SUS survey are expressed in a nega-
tive way, therefore for these statements, the more the test users disagree with
them, the better. The results of the test users’ answers to these statements
for the BOS UI and the ESHL GUI can be found in Figure 6.15. Although a

242

6 Evaluation

Figure 6.14: Stacked bar chart of the participants’ answer to the odd numbered
statements in the SUS questionnaire concerning the BOS UI and the
ESHL GUI

large number of features are integrated in the BOS UI, 33 test users, which
takes up 78.6% of the total, did not agree that it is unnecessarily complex.
Compared to the BOS UI, the ESHL GUI does not provide many functiona-
lities, nevertheless, more than half of the participants found it unnecessarily
complex. There is only one test user who thought he/she would need the
support of a technical person in order to be able to use the BOS UI. 13 test
users, however, had this same feeling about the ESHL GUI. Another sharp
contrast arises from the statement regarding inconsistency. The number of
test users who thought that there was too much inconsistency in the BOS UI
and the ESHL GUI were 1 and 19, respectively. Statement 8 uses the oppo-
site way to express the same problem addressed in statement 3. The results
indicate consistency of the answers to the two statements given by the test
users. Nobody found the BOS UI very cumbersome to use, but 29 test users
found the ESHL GUI cumbersome. In the end, 30 test users did not agree
that they needed to learn a lot of things before they could get going with the

243

6 Evaluation

BOS UI, while more than half of the test users agreed with this statement
when it was applied to the ESHL GUI.

Figure 6.15: Stacked bar chart of the participants’ answer to the even numbered
statements in the SUS questionnaire about the BOS UI and the ESHL
GUI

Figure 6.16 shows the SUS scores of the BOS UI and the ESHL GUI
from the 42 test users after sorting them into a descending order, so as to
reveal the significant difference in scores between the two user interfaces.
Statistical analysis can further be done from the perspective of the smart
home related knowledge that the test users had. As shown in Table 6.5,
there were two test users who had advanced knowledge about smart home
technologies. The SUS scores which they gave for the BOS UI are 97.5
and 90, respectively. The corresponding adjective rating that these scores
match is "excellent". The ESHL GUI, on the other hand, got 30 and 17.5,
respectively, from these two test users. The average SUS score of the BOS
UI from the test users who had a good knowledge of smart home technolo-
gies is 78.9, which is almost the same as the overall average SUS score of
the BOS UI. The corresponding SUS score of the ESHL GUI is 38.2, which
is greater than its overall averages. Those, who knew nothing about smart

244

6 Evaluation

home technologies, scored the BOS UI and the ESHL GUI with averages
of 69.5 and 28.5, respectively, which are much lower than their correspon-
ding overall average. This is, however, not surprisingly since the test users
lacked the necessary background knowledge. Most test users had a basic
knowledge about smart homes. These test users also have relatively high
scores on the BOS UI and the ESHL GUI. The averages of the two user in-
terfaces for these test users are 81.0 and 37.1, respectively. In addition, there
were 4 test users who had experience of using some kind of user interface
for smart home before the experiment. The average SUS score they gave to
BOS UI is 88.8. The adjective rating that matches the score is "excellent".
However, the average score that these test users gave to the ESHL GUI is
only 18.75.

Figure 6.16: The SUS scores of the BOS UI and the ESHL GUI from the 42 parti-
cipants

Finally, the test users’ completion rate of the tasks related to the BOS UI
and the ESHL GUI is also different. Appendix B lists all of the tasks desig-
ned for both user interfaces. As for the BOS UI, there were 4 tasks for the
role of administrator. All of the test users completed these tasks successfully
during the experiment, which leads to a completion rate of 100%. There
were 6 tasks for the role of the operator. Except for the fact that each of 4

245

6 Evaluation

test users failed one task, the other test users completed every task success-
fully, which leads to a completion rate of 98.4%. 12 tasks were prepared
for the role of resident. Many test users did not successfully complete all
of the tasks, especially the first two, which were only partially completed
by these test users. The reason was, that their answers either missed some
information, or that the test users could not find the right information in the
proper place of the BOS UI. The completion rate of the 12 tasks related to
the resident is 88.7%. As for the ESHL GUI, test users needed to work on
8 tasks in total. The tasks, that could not be completed successfully, mainly
concerned the first task and the third task. Overall, the completion rate of
all the tasks for the ESHL GUI is 68.8%. Many test users had problems
finding an effective solution for the tasks with the ESHL GUI due to the
inferior usability of the user interface. The detailed information concerning
achievements of these tasks related to both user interfaces can be found in
Appendix D.

6.2.8 Discussion

According to the test users’ feedback in the two questionnaires, it can be
concluded that the BOS UI has made great improvements both in terms of
functionality and usability relative to the ESHL GUI. In addition to the lack
of many functions needed by the test users in their daily life and the shor-
tcomings in the design of the ESHL GUI, there are several non-technical
reasons that could have caused the test users to make more favorable state-
ments about the BOS UI than about the ESHL GUI.

Firstly, the ESHL GUI was specifically designed for the Energy Smart
Home Lab (ESHL) at the KIT. Its major tasks are to provide transparent
information about energy consumption and generation in the ESHL for the
residents who are already familiar with it and to discover degrees of free-
dom of the devices in the ESHL. Therefore the original intention of the

246

6 Evaluation

ESHL GUI was not to be used as a general user interface which focuses on
serving uncertain users who know nothing about it in an efficient and a user
friendly way. This makes its learning curve very steep for beginners. All
test users in the experiment had no prior knowledge about the ESHL GUI.
As a result, most of them experienced many difficulties finding out how the
user interface worked, especially when they tried to work things out sitting
in a booth of the laboratory, where they were generally not very relaxed and
could easily become impatient.

Secondly, the ESHL GUI was further developed on the basis of the pre-
vious Energy Management Panel (EMP) in the ESHL by integrating many
new engineering-related features. For instance, in addition to the common
true power information about the devices, the ESHL GUI also displays re-
active power which is measured in the unit of Volt-Amps-Reactive (VAR)
for some devices as well as for the entire energy use in the building. Only
professionals, and not ordinary residents can understand the term of re-
active power. Besides this, some other information provided by ESHL GUI,
such as power network parameters (e.g. voltage, frequency, current, etc.),
the identifier and residual electricity of the Bluetooth Low Energy / Smart
(BLE) beacons owned by the people working for the ESHL and the tempe-
rature of the both warm and cold water storages, etc. did not seem to be of
much interest to the test users. Although this engineering-focused informa-
tion was not involved in the tasks that were asked to be performed by the
participants, this information could still distract the test users more or less.

Thirdly, the organization form of the content in the ESHL GUI was un-
clear and even overwhelming for some of the test users. By integrating too
much information into one page and repeating some information on diffe-
rent pages, the ESHL GUI made the test users feel confused while they tried
to find out the organizational logic of the content of the ESHL GUI. What
made the participants even more frustrated is the lack of text descriptions or
labels for the icons representing different functions in the ESHL GUI. Many

247

6 Evaluation

test users left their comments to complain that the ESHL GUI was either too
abstract or too complex to understand and their suggestion was to add ex-
planations to the icons and group the functions according to their features
rather than showing them all in one page without any clues. By doing so,
the user interface might become more tidy, intuitive and user friendly.

Although when compared to the ESHL GUI, the BOS UI has been greatly
improved in many respects, the SUS score given by the test users indicates
that its usability is good but not yet excellent, which means that there is
still room for improvement. Many test users left valuable feedback on this.
For instance, some of them suggested adding a submit button or popping
up timely feedback for users after some operations have been performed,
so that users may know whether the operations they performed worked or
not. Also, the BOS UI at this stage, does not respond very fast to certain
operations since a large amount of live data related to device states needs to
be updated frequently in the back-end in order to ensure that the BOS UI can
reflect the power use in the ESHL in real time. The delay in the response
is a factor that can affect user satisfaction. There are a few of test users
who commented that the BOS UI, with its many options on the left menu
panel, was complicated to use. The suggestions they gave include hiding
infrequently used options and regrouping options in the menu panel to make
them tidier. Apart from the evaluation results of the two user interfaces,
the biggest achievement of conducting this experiment was the feedback
received from the test users. No matter whether positive or negative, they
provided valuable information that helped not only to uncover defects in
the current system but also formulated good suggestions for enhancing the
performance of the BOS UI in the future.

248

7 Conclusion and Outlook

After designing, implementing and evaluating a generic user interface for
building operating systems, this chapter concludes the work that has been
done in the previous chapters and analyzes the achievements of this thesis.
Subsequently, it provides an outlook for future systems and gives suggesti-
ons for the further development of the work presented in this thesis for the
future.

7.1 Conclusion and Contribution

At the beginning of the thesis, a major research question was raised: How

should a generic user interface be designed, so that it can deal with different

kinds of building operating systems while ensuring good usability? In order
to provide a solution for this research question, in the ensuing chapters of the
thesis, the concept of a generic user interface for building operating systems
was proposed and a complete study on the topic, including design, imple-
mentation and evaluation was presented. This is also the major contribution
of this thesis. The major research question was divided into multiple sub-
questions, as considered from different perspectives. These sub-questions
were concretized and answered one by one in this thesis.

The first sub-question was "What is the definition of a generic user in-

terface for building operating systems?" This question was dealt with in
Section 4.1, where a generic user interface was defined as having to meet
the criteria of remote reachability, responsiveness, configurability, role ma-

249

7 Conclusion and Outlook

nagement, flexibility, and generality. The reasons why these criteria are
important were also explained in this section. The proposed definition for
a generic user interface not only identifies guidelines for its design, which
was outlined in the following part of the thesis, but also provides criteria for
the evaluation of the prototype of a generic user interface, implemented on
the basis of this design.

The second sub-question was "What does the architecture have to look

like for such a generic user interface?" This question was answered in
Section 4.3, where an architecture of generic user interfaces for building
operating systems in smart homes was proposed. The architecture shows
that the essential part that makes a user interface generic and extendible, is
a collection of generic data models, which are appropriate abstractions for
objects that are needed by the generic user interface. In order to make a
generic user interface applicable to existing building operating systems, an
adapter component, which is responsible for the data conversion between
the user interface and these building operating systems, is indispensable.
Furthermore, the architecture also indicates that many favorable services,
which can be used to reach some external stakeholders, such as communi-
ties, social networks and utility companies, should be provided by a generic
user interface for building operating systems.

The third sub-question is "What are data models for such a generic user

interface?" This question was answered in Section 4.6. As described previ-
ously, the central part that enables a generic user interface to uncouple itself
from its underlying building operating system is a series of generic data
models. For this reason, this thesis has proposed a number of data models,
which are generic and flexible enough to be able to deal with heterogene-
ous building operating systems of different household buildings. Besides
this, these data models enable a generic user interface to provide multiple
possibilities not only for users to manage their building in a smart way but

250

7 Conclusion and Outlook

also for building operating systems to exploit potentials of load shifting in
household buildings.

The fourth sub-question is "What are the functional components that the

generic user interface should cover?" According to a wide range of smart
home related use cases presented in Section 3.2, a number of functional
components that should be supported by the a generic user interface for
building operating systems were listed and explained in Section 4.7, which,
therefore, provides answers to this research question. The proposed functio-
nal components can be classified into two categories, namely, the functional
components which are related to user roles and the functional components
which are related to the whole UI framework. Three roles, namely, the ad-
ministrator, the operator and the resident, were proposed in this thesis in
order to facilitate the separation of responsibilities and improve security and
privacy protection. Nevertheless, as discussed in Section 6.1 of Chapter 6,
due to certain challenges, the functional component of system configuration
is missing in the current implementation of the user interface in this thesis.
So far, the solution provided by this thesis mainly lays stress on the needs
of residents rather than those of building operating systems.

The last sub-question is "How can such a generic user interface be made

configurable and extendible?" This question was answered in two ways. On
the one hand, the generic data models designed for such a generic user inter-
face for building operating systems, as well as the role-based access control,
enable the user interface to extend to a number of household buildings and
adapt to different situations. For instance, the building model (cf. Figure
4.10) provides the basis for the implementation of the building configuration
on the generic user interface. At the same time, many more configurable at-
tributes, such as layouts, visual themes, languages, etc. have been added to
the prototype of such a generic user interface, namely, the BOS UI, to allow
users to customize the user interface according to their preferences.

251

7 Conclusion and Outlook

In order to facilitate the evaluation of the design, the BOS UI was imple-
mented and applied to a real smart home environment, namely, the ESHL
at KIT. The functionalities that have been implemented in the BOS UI were
described in detail in Chapter 5.

At the end of the thesis, the design, functionality and usability of the BOS
UI were evaluated by combining theoretical analysis and experiments. The
following results can be derived from the evaluation.

• In terms of the design, the BOS UI meets the proposed criteria for a
generic user interface for building operating systems, except for the
fact, that the system configuration can not be fully supported yet.

• In terms of the functionality, almost all (more than 90%) of the test
users in the test agree that: (1) the BOS UI can provide them with
enough information and functionalities that they would need in their
daily lives; (2) the BOS UI can give them a holistic visualization about
the energy use in their building; (3) the BOS UI can provide them
with useful information which can help them to use their appliances
more reasonably in order to save money; and (4) the BOS UI can help
them to achieve different optimization goals in their building. The
statistical results also show that most of the test users prefer to use the
BOS UI for the purpose of saving money, getting a clear view of the
energy use in their building, and to increase convenience.

• In terms of the usability, a robust and reliable evaluation tool named
System Usability Scale (SUS) was used. The final SUS score of the
BOS UI in the experiment indicates that the usability of the BOS UI
is good. More specifically, the vast majority of the test users believed
that (1) they would like to use the BOS UI frequently (76.2%), (2) the
various functions in the BOS UI are well integrated (95.2%), (3) the
BOS UI is easy to use (92.9%). (4) they felt that most people would

252

7 Conclusion and Outlook

learn to use the BOS UI very quickly (95.2%), and (5) they felt very
confident about using the BOS UI (92.9%).

The ESHL GUI, which is the original user interface of the ESHL at the
KIT, was also evaluated in the experiment, along with the BOS UI. It can be
seen from the evaluation results that the BOS UI makes great improvements
in many aspects when compared to the ESHL GUI. The reasons which could
cause the test users to make unfavorable statements about the ESHL GUI
were analyzed at the end of Section 6.2. Furthermore, many test users gave
valuable comments concerning the two user interfaces, which on the one
hand, affirm the advantages of the user interfaces, on the other hand, point
out the shortcomings of the user interfaces that need to be improved in the
future.

7.2 Outlook and Future Work

Although the BOS UI received much positive feedback from the test users in
the evaluation experiment, there are many potential extensions to the current
work that may help to strengthen the functionality of the user interface so
as to expand its scope of application. As described previously, the BOS UI
thus far does not support the configuration of its underlying building opera-
ting system due to the heterogeneity of different building operating systems.
To this end, an additional interface is still needed in order to complete the
system configuration. To address this challenge, potential future research
may focus on collecting and analyzing configuration requirements of vari-
ous building operating systems and designing flexible components for the
generic user interface which can be customized to meet different system
configurations.

As for the configuration of the user interface itself, the functionality of
individual customization of the BOS UI can be further strengthened by pro-
viding a configuration file for each user so as to save their configured prefe-

253

7 Conclusion and Outlook

rences. Besides this, according to the feedback received from the test users
in the evaluation experiment, it would be beneficial for users to have the
freedom to configure the user interface to show or hide some of the menu
items according to the frequency at which some of the functions provided
by the user interface are used. Giving users as much freedom as possible
to customize their own user interface is another area in which it is worth
investing in the future.

Some of the functionalities provided by the BOS UI at this point in time
can also be further extended in the future. The floor plans of a building are
one example: Presently, they are images that are uploaded to the BOS UI
by the administrator. After uploading a floor plan, device icons need to be
placed in their proper positions on the floor plan according to the actual lo-
cation of the devices in a building. To this end, the administrator needs to,
first of all, prepare floor plan images for a building and then manually place
the device icons onto the floor plan images. The potential future work that
might enhance this function could be to integrate a floor plan designer into
the BOS UI. A floor plan designer would enable the administrator to create
logical layouts for any floor in the building. By establishing an association
between the actual location of devices in a building and the logical locations
designed on a floor plan via the floor plan designer, device icons could auto-
matically be loaded to the corresponding locations of a floor plan. However,
even if this could be achieved, device icons on a floor plan would inevitably
still need to be slightly adjusted, since different devices are usually at dif-
ferent positions of a building, even if they are in the same room. Finding a
solution which will not only maximize convenience but also minimize effort
for users to configure their building is also part of the suggested future work.

Furthermore, the BOS UI currently focuses on the aspects of comfort and
energy relating to smart homes. Future research might be done toward other
aspects pertaining to smart homes, such as healthcare and security. Another
interesting aspect for future designs could be the integration of user interfa-

254

7 Conclusion and Outlook

ces for energy into audio or audio-visual interfaces. The increasing popu-
larity of smart speakers, such as Amazon Alexa and Google Assistant, in-
dicate that the trend towards voice-controlled user interfaces would become
mainstream in the future. Besides this, according to the feedback of the test
users in the evaluation experiment, it could be of advantage if some featu-
res, such as multi-room digital music systems and security alarms could be
integrated into the BOS UI in the future. Additionally, some other features
such as privacy-enhancing energy visualization [43], which implements me-
chanisms to avoid surveillance of fellow residents, could also help to enrich
and strengthen the functionality of the user interface.

In conclusion, with smart home technologies becoming increasingly po-
pular, it can be expected that residents of smart homes will, in the future,
also gradually raise their expectations and requirements for the user interfa-
ces of building operating systems. Because of this, it can be foreseen that, in
addition to the work mentioned above, more extensions and improvements
will need to be made continuously in the future in order to ensure that the
user interface keeps pace with the times.

255

A Background Information of the Test
Users in the Evaluation Experiments

Table A.1: Background information of the test users in the evaluation experiments
No. Gender Age Education Major

Subject
Knowledge
about smart
home techno-
logies

Experience
about UI for
smart home

The descrip-
tion of the UI
that was used

1 Male 30 Bachelor Mechanical
Engineer-
ing

Nothing No -

2 Male 26 Master Economics Basic No -

3 Male 25 Master Industrial
engineering

Basic No -

4 Male 26 Bachelor Industrial
engineering

Basic No -

5 Female 22 Master Industrial
engineering

Nothing No -

6 Female 20 Master Industrial
engineering

Nothing No -

7 Male 22 Bachelor Technology Basic No -

8 Male 24 Bachelor Education Nothing No -

9 Female 30 Bachelor German
studies

Basic Yes Interfaces
for heat re-
gulation and
air/ventilation
system

10 Male 40 Lectureship Chemistry Nothing No -

Continued on next page

256

A Background Information of the Test Users in the Evaluation Experiments

Table A.1 – continued from previous page

No. Gender Age Education Major
Subject

Knowledge
about smart
home techno-
logies

Experience
about UI for
smart home

UI description

11 Male 19 Bachelor Electrical
and in-
formation
engineering

Basic No -

12 Male 20 Bachelor Physics Basic No -

13 Male 19 Bachelor Electrical
Engineer-
ing

Basic No -

14 Male 21 Bachelor MechatronicsBasic No -

15 Male 26 Bachelor Computer
science

Advanced Yes I can’t re-
member the
name, but
the interface
showed all the
status of the
apartment. At
the beginning I
was satisfied,
but the more
I used the
interface, the
more I felt that
it misses some
advanced fea-
ture, e.g. time
scheduled/event-
based tasks.

16 Female 27 Bachelor Information
technology

Basic No -

17 Male 22 Bachelor Electrical
engineering

Basic No -

18 Female 22 Bachelor Biology Basic No -

19 Male 21 Bachelor Mechanical
engineering

Basic No -

20 Male 24 Master Economics
engineering

Good No -

Continued on next page

257

A Background Information of the Test Users in the Evaluation Experiments

Table A.1 – continued from previous page

No. Gender Age Education Major
Subject

Knowledge
about smart
home techno-
logies

Experience
about UI for
smart home

UI description

21 Female 22 Bachelor Chemical
engineering

Basic No -

22 Male 29 Master Industrial
engineering

Basic No -

23 Male 19 High-
school
diploma

Engineering Basic Yes I have used the
sonos sound
system and i
am very happy
with it.

24 Female 23 Master Food che-
mistry

Basic No -

25 Male 22 Bachelor Electrical
engineering

Basic No -

26 Male 22 Bachelor Computer
science

Advanced No -

27 Female 23 High-
school
diploma

Computer
science

Good No -

28 Male 37 Bachelor History Good No -

29 Male 27 Bachelor Computer
science

Basic No -

30 Male 29 Bachelor Economical
engineering

Good No -

31 Male 25 Master Mathematical
economics

Basic No -

32 Male 22 Bachelor Electrical
engineering
& infor-
mation
technology

Good No -

33 Male 26 Master Industrial
engineering

Basic No -

34 Male 20 High-
school
diploma

Mechanical
engineering

Basic No -

Continued on next page

258

A Background Information of the Test Users in the Evaluation Experiments

Table A.1 – continued from previous page

No. Gender Age Education Major
Subject

Knowledge
about smart
home techno-
logies

Experience
about UI for
smart home

UI description

35 Male 20 Bachelor Chemical
engineering

Basic No -

36 Female 26 Bachelor Mechanical
engineering

Basic No -

37 Male 26 Bachelor Electronic
engineering

Basic No -

38 Male 23 Bachelor Industrial
engineering

Good No -

39 Female 21 Bachelor Electrical
engineering

Basic No -

40 Male 21 Bachelor Mechanical
engineering

Good Yes It is an app
to control
the light in
our home.
The app is
really slow and
not working
sufficiently.

41 Male 23 Master Information
economy

Basic No -

42 Female 19 Bachelor Computer
science

Basic No -

259

B Tasks for the BOS UI and the ESHL GUI
in the Evaluation Experiments

B.1 Tasks for the BOS UI

B.1.1 Tasks for the Role of Administrator

Task 1: Switch languages of the user interface to your desired lan-
guage (English, German or Chinese)

Task 2: Building configuration

• a. Add a new floor to the building and name this new floor as "Floor
2".

• b. On Floor 2, add a bed room (name: "Bed Room"), a living room
(name: "Living Room"), a kitchen (name: "Kitchen") and a toilet
(name: "Toilet").

Task 3: Assign devices to the Floor 2

• a. Assign a coffee machine to the kitchen in Floor 2.

• b. Assign an air conditioner to the living room in Floor 2.

• c. Assign a light to the bed room in Floor 2.

Task 4: Add devices to the floor plan of Floor 2

• a. Upload a floor plan image (name: "floor_plan.png") for Floor 2.
The image is on your desktop.

260

B Tasks for the BOS UI and the ESHL GUI in the Evaluation Experiments

• b. Click the the coffee machine on the right panel to add it to the floor
plan and drag it to the kitchen area.

• c. Click the air conditioner on the right panel to add it to the floor plan
and drag it to the living room area.

• d. Click the light on the right panel to add it to the floor plan and drag
it to the bed room area.

• e. Drag the circles around the device images to adjust their size.

B.1.2 Tasks for the Role of Operator

Task 1: Add a new resident to the building

The following is the personal information of this new resident. Name:
test_2, Initial Password: 123456, Phone Number: 015733590751, Email:
resident@gmail.com, Personal Note: created on 26.2.2018.

Now please set the following permissions for this resident.

• The allowed operations for him to use dishwasher (in kitchen) and
washing machine (in kitchen) include (1) viewing these devices’ ge-
neral information and (2) channel information, (3) controlling these
devices and (4) setting degree of freedom for these devices.

• The allowed operations for him to use freezer (in kitchen) and fridge
(in kitchen) include only (1) viewing these devices’ general informa-
tion and (2) channel information.

• Review the above information and then submit them.

Task 2: Set optimization goals for the building

As the operator of the building, you have your own concern about energy
use in your building. Therefore you want to set up some optimization goals

261

B Tasks for the BOS UI and the ESHL GUI in the Evaluation Experiments

for your building. The energy management system of your building will
balance these goals and define the best trade-off between competing goals.

Let’s say, you want to minimize your energy costs, energy consumption
and CO2 emissions, and you also want to consume as much electricity gene-
rated by your photovoltaic on your rooftop as possible. You have different
preferences for these goals, so you set different weights to them to indicate
the relative importance. Suppose

• the weight of the goal of the maximal self-consumption of photovol-
taic generation is 0.2.

• the weight of the goal of the minimal costs is 0.4.

• the weight of the goal of the minimal energy consumption is 0.3.

• the weight of the goal of the minimal CO2 emissions is 0.1.

Please specify these optimization goals for your building.

Task 3: Check energy history of the building

Check energy history of the building from 09:00h, 20.12.2017 to 09:00h,
21.12.2017. Please enter the power use in this building at the time point
17:00h, 20.12.2017. If the historic data are currently not available, please
enter "0".

Task 4: Building energy comparison

As an operator in the building, you want to know information about
energy use in your building, and you also want to know if the energy has
been used in a proper way in comparison with a community. Therefore ple-
ase generate the comparison report between the average energy consumption
per square meter in this building in October and the value in the community
named "community_1". Check the comparison report and enter the energy
consumption per square meter in this building as well as the average value
in the community_1.

262

B Tasks for the BOS UI and the ESHL GUI in the Evaluation Experiments

Task 5: Device energy comparison

As an operator in the building, you want to know whether some devices
in your building are energy efficient or not when they are compared with
the devices of the same type in a community. Therefore please generate a
comparison report between the power use per usage for the washing machine
in this building in October and the average value in the community named
"community_1". Please check the comparison report and enter the power
use per usage of the washing machine in this building as well as the value in
the community_1.

Task 6: Check the invoice for October and enter the electricity char-
ges you have to pay that month

B.1.3 Tasks for the Role of Resident

Task 1: Find out real-time building level energy data

• a. Find out all the devices in the building that are currently consuming
electricity. Please use semicolons (;) to separate devices.

• b. Enter current voltage in the building.

• c. Check the direction of the current energy flows in the building. Is
it from building to power grid or from power grid to building?

Task 2: Basic home automation

• a. Switch on the light in kitchen.

• b. Change the state of the blind in Bed Room1 to open: 100%.

Task 3: Set Degree of Freedom (DoF) for devices

Suppose you put the clothes in the washing machine at 23:00 o’clock
on 24.12.2017. Since it is too late, you do not want to start the washing
until tomorrow. In the morning of the next day (25.12.2017), you think

263

B Tasks for the BOS UI and the ESHL GUI in the Evaluation Experiments

the earliest time that is allowed to start the washing procedure is at 9:00
o’clock. The washing procedure has to be finished before 14:00 o’clock.
Please apply this Degree of Freedom for the washing machine.

Task 4: Check your personal energy history

As a resident living in this building, you want to know how much power
you had consumed in the past. Please write down your personal energy
consumption and energy cost on 20.12.2017 and compare them with those
of average in the community named "community_1".

Task 5: Check energy history of a specific device

Please check the energy history of the coffee system and find out its power
use at 15:00 o’clock on 20.12.2017. If the historic power use of the device
are currently not available, please enter "0".

Task 6: Add a new device group and control the devices in the group
by setting a state for the group

• Create a new device group and name it "All Blinds".

• Add all blinds in the building (Blind1 in Bed Room1, Blind2 in Bed
Room2, Blind3 in Kitchen, Blind4 and Blind5 in Living Room) to
this group.

• Set the state of the group to "closed: 25%" in order to set all blinds in
the group to that state.

Task 7: Create a scene and trigger it

In the building, you can create different scenes according to your needs.
Please create a scene with the following information.

• The scene’s name is "evening".

• Add the lights and the blinds in Bed Room1 and Bed Room2 to the
scene.

264

B Tasks for the BOS UI and the ESHL GUI in the Evaluation Experiments

• In that scene, the target state of the lights is supposed to be on. The
target state of the blinds is supposed to be closed:100%.

• After having this scene, please trigger it.

Task 8: Advanced home automation: calendar event only for devices

Add a calendar event for the building and implement the following function.

• The title of the event: blind automation.

• At 8:00 o’clock, set the state of the blind in Bed Room1 to state: open:
100%.

• At 18:00 o’clock, set the state of the blind in Bed Room1 to state:
closed: 100%.

• Repeat this event every day from 24.12.2017 to 26.12.2017.

Task 9: Advanced home automation: calendar event for location and
devices

If there will be some events in your building, you can mark these events
on the building’s calendar. Now suppose you will throw a birth party in your
building. When that event starts, you hope some devices should be in some
specific states. When the event is finished, you also want some devices to be
in certain states. The detailed information and requirements about the event
is as followed. Please add this event to the building’s calendar. The energy
management system in your building will take care of your settings for the
event.

• The event title: birthday party.

• The start date & time of the event: 28.12.2017, 17:00 o’clock.

• Location of the event: living room.

• During the event, the temperature of the living room should be 23 °C.
Disable the humidity setting. The state of the lights in the living room

265

B Tasks for the BOS UI and the ESHL GUI in the Evaluation Experiments

should be on. The state of the blinds in the living room should be
open: 100%.

• End date & time of the event: 28.12.2017, 23:00 o’clock.

• After the event is finished, disable the temperature settings in the li-
ving room. Disable the humidity settings in the living room. Set state
of the lights in the living room to off. Set state of the blinds in the
living room to closed:100%.

Task 10: Check the energy prediction in the building

Please enter the prediction of the basic load in the building at 19:00
o’clock this evening (22.12.2017).

Task 11: View devices’ operation log

• Try to show the operation records in an ascending order by time.

• Filter the records with the keyword "light".

Task 12: Set next planned drive for the electric vehicle with the follo-
wing settings.

• The departure date & time for the next drive: 9:00 o’clock on 24.12.2017.

• The distance for the next drive: 30km.

• The minimum range that has to be guaranteed for the car to drive:
20km.

B.2 Tasks for the ESHL GUI

Task 1: Find out real-time building level energy data

• a. Find out all the devices in the building that are currently consuming
electricity. Please use semicolons (;) to separate devices.

266

B Tasks for the BOS UI and the ESHL GUI in the Evaluation Experiments

• b. Enter the current net power use ("Hausanschluss") of the whole
building.

• c. Check the direction of the current energy flows in the building. Is
it from building to power grid or from power grid to building?

Task 2: Check energy history of the building

Please enter the power consumption ("Verbraucher") in this building at
the time point 22:00h last night (20.12.2017).

Task 3: Check energy history of a specific device

Enter the power use of the washing machine at 18:00 o’clock, 20.12.2017
and enter the electricity price at that moment

Task 4: Check the energy prediction in the building

Please enter the prediction of the net power use ("Hausanschluss") in the
building at 20:00 o’clock this evening (22.12.2017).

Task 5: Basic home automation

Check the state of the light in kitchen. If it is on, please switch it off. If it
is off, please switch it on.

Task 6: Set Degree of Freedom (DoF) for devices

Suppose now you put the clothes in the washing machine. You want the
washing procedure to be finished before 19:00 o’clock. Please specify the
Degree of Freedom for the washing machine.

Task 7: Enter the remaining capacity of the battery in the building

Task 8: Enter the current voltage and frequency in the building

267

C Comments about the BOS UI and the
ESHL GUI from the Test Users

"I find there are too many options on the left menu of the BOS UI. My

feedback would be to try to regroup these options a bit."

"BOS UI might suit more people as it uses the average Google Overview

as it is very intuitive."

"Maybe before using the user interfaces, there should be a tutorial first.

ESHL GUI it’s too complex too understand without any explanation. In BOS

UI , I don’t know if I already save the change I have made or not."

"BOS UI seems easy to use once you get used to it. It doesn’t need much

know-how to understand the interface. Whereas the ESHL GIU is not suita-

ble for anybody like elder people who are not good with technology."

"ESHL GUI was missing the lights in kitchen."

"ESHL GUI offers too many information at once, so it is hard to get an

overview of the possibilities and information."

"Music system (Multiroom) is necessary! An alarm system is optional."

"BOS UI is extremely easy to use, so that it was quite fun. ESHL GUI on

the other hand is annoyingly difficult. A lot of functionalities are missing.

Bad translation into German (e.g. Prädiktionen –>the word really used in

German is ’Vorhersagen’ or ’Prognose’), a device overview, where you also

can turn them on and off, is really missing."

268

C Comments about the BOS UI and the ESHL GUI from the Test Users

"BOS UI didn’t work perfectly, but it looks good and tidy, intuitive to use.

ESHL GUI can be a little bit confusing."

"ESHL GUI was nice animated but confusing to use. Sometimes it took

me to long to get the informations. That was frustrating BOS UI: Looked

not so nice but was more clear to use. Best would be a combination between

these two. Nice animated and easy to use."

"ESHL GUI should be as clear and refined as BOS UI."

"Why can’t I click on the time itself instead of always having to click on

the little clock on BOS UI?"

"In the ESHL GUI, it’s a bit harder to find and organize everything at first

because there are only pictures and no labels."

"Make a submit button when the user sets things. Otherwise a lot of users

will not know if it worked."

"I think BOS UI is cool. Especially the function of scene, which I also

want to have in my home."

"For BOS UI, at the beginning, I am helpless. But after a few tasks, I am

more and more confident to use it."

"In the overview of the ESHL GUI, I could not find the price at the 19th

of December for the washing machine. I think this could be a useful add for

the future."

"It is more like a nice feature, but maybe a bit over engineered. I would

not set permissions for example for a party, because it is to time consuming

to do that for every event."

"ESHL GUI is really unintuitive. I did not manage to find the history

of yesterday, there was only the last 24 hours history. I did not like the

interface. But I liked BOS UI."

269

C Comments about the BOS UI and the ESHL GUI from the Test Users

"ESHL GUI is very abstract, on the other hand, BOS UI is very user

friendly."

"BOS UI has a clear surface and is easy to control. It has a lot of functi-

ons. It was no problem to solve the tasks for BOS UI, but it took more time or

was not possible to solve all the tasks for ESHL GUI because of the unclear

user surface."

"I really like the dynamic icons in BOS UI. They give a very quick visual

response of the state of a device."

"I didn’t get the structure of ESHL GUI. But the problem could be that

the question/tasks for BOS UI were more detailed and the description what

to do was better."

"ESHL GUI is not intuitive, hard to find the needed."

"I didn’t understand the ESHL GUI very well. I think, it is not very intui-

tive. It upset me a little bit."

"ESHL GUI didn’t work properly in my opinion. BOS UI was too slow in

this test."

"The ESHL GUI shows to many values. It should be kept more simple."

"I really like the intuitive BOS UI for its very accessible interface with

the different folders. Idiot-proof even for beginners. It was intuitive to

find everything. The floor plan was great. I like the devices were coloured

orange(consuming e) or green(producing e), giving a user a quick overview

of what’s going on.

I had some problems with ESHL GUI, it was quite clunky to work with.

The devices weren’t as comfortable accessible and the charts where to find

what information were kind of confusing. More or better ways to group your

devices or have an overview where the most power is used at this moment,

maybe even on the floor plan, that would be great."

270

C Comments about the BOS UI and the ESHL GUI from the Test Users

"The ESHL GUI is not very clear. You have to make a lot more clicks

to get there. Also in terms of color, the BOS UI is much better designed,

which improves clarity. However, in the Energy Overview tab, for example,

I find the technical parameters unnecessary. The end user is certainly not

interested in what voltage is currently available."

"I find ESHL GUI very unintuitive for use. For somebody who might be

already familiar with this system it might be reasonable but I had a hard

time finding specific features. BOS feels much smoother, however it would

be great if BOS UI can keep track of the frequency of use of my devices so

that all my devices can be sorted based on the frequency of their use."

"About BOS UI:

There were several things which did not work properly:

1.) The German translation were really bad.

2.)I could not really use the Scene creator: Although there were Target

States specified (sometimes even this did not work) it said that I still had to

set target states.

3.)It was really unpleasant to have to click on the small arrow to set dates.

It would be great if you could also click on the date itself to open the context

menu.

4.)When you set things like the blinds state it would be extremely conve-

nient to show a description of what the regulator does(e.g. on the left open,

on the right closed).

5.)After using the UI for some time the computer slowed down quite hea-

vily. I still could use everything but I don’t know why a UI should generate

such high load on your computer.

6.)The adding of devices was not fast enough. If this process was fastened

up it would be a really great system to use.

271

C Comments about the BOS UI and the ESHL GUI from the Test Users

About ESHL GUI:

1.)The GUI as such was not easy to understand. I have to admit I did not

really understand what even half of the functions were displaying.

2.)All the pictures need way more descriptions!

3.)I did not really understand what the different tabs were supposed to

do!?

4.)After opening a menu there should be a button to close it afterwords.

5.)The graph with the history of the electricity price was really stupid to

use: After one wrong click everything displayed disappeared. I could not

figure out how to go back to previous state.

6.)’Predikitionen’. Who is even using this word? Is this UI supposed to

be used by customers? It did not feel this way...

–>Overall, it was extremely unpleasant to use this system because it was

in no way easy to use. Nobody wants to study a UI for hours just to be able

how much electricity his coffee system needs..."

"I find ESHL GUI very unintuitive for use. For somebody who might be

already familiar with this system it might be reasonable but I had a hard

time finding specific features. BOS UI feels much smoother, however as I’ve

written before, it is great for checking e.g. my efficiency. For convenience

there is too little of predictions or too many clicks to get to the ’sub-page’

or tab to which I want to get. I have the impression that nowadays web

applications have more of (what I called) ’predictions’. For example one

could should a grid of all my devices sorted by frequency of usage with a

field above to choose the room my device is in to filter the grid. Here I

wouldn’t be forced to fill out the first and then the second field to fill out the

form. The same thing would happen with suggestions for the optimization,

even if I don’t use them they might save some time. All in all, less nested

forms, more icons and grids and more user interactions & predictions."

272

D Task Achievement of the BOS UI and the
ESHL GUI in the Evaluation Experiments

Table D.1: Task achievement of the BOS UI for the roles of administrator and ope-
rator

Test

User

Task Tasks for the BOS UI

Role: Administrator Role: Operator

1 2 3 4 1 2 3 4 5 6

1 3 3 3 3 3 3 7 3 3 3

2 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3

4 3 3 3 3 3 3 3 3 3 3

5 3 3 3 3 3 3 3 3 3 3

6 3 3 3 3 3 3 3 3 3 3

7 3 3 3 3 3 3 3 3 3 3

8 3 3 3 3 3 3 3 3 3 3

9 3 3 3 3 3 3 3 3 3 3

10 3 3 3 3 3 3 3 3 3 3

11 3 3 3 3 3 3 3 3 3 3

12 3 3 3 3 3 3 3 3 3 3

13 3 3 3 3 3 3 3 3 3 3

14 3 3 3 3 3 3 3 3 3 3

15 3 3 3 3 3 3 3 3 3 3

16 3 3 3 3 3 3 3 3 3 3

17 3 3 3 3 3 3 3 3 3 3

18 3 3 3 3 3 3 3 3 3 3

19 3 3 3 3 3 3 3 3 3 3

20 3 3 3 3 3 3 3 3 3 3

Continued on next page

273

D Task Achievement of the BOS UI and the ESHL GUI in the Evaluation

Experiments

Table D.1 – continued from previous page

Test

User

Task Tasks for the BOS UI

Role: Administrator Role: Operator

1 2 3 4 1 2 3 4 5 6

21 3 3 3 3 3 3 7 3 3 3

22 3 3 3 3 3 3 3 3 3 3

23 3 3 3 3 3 3 3 3 3 3

24 3 3 3 3 3 3 3 3 3 3

25 3 3 3 3 3 3 3 3 3 3

26 3 3 3 3 3 3 3 3 3 3

27 3 3 3 3 3 3 3 3 3 3

28 3 3 3 3 3 3 3 3 3 3

29 3 3 3 3 3 3 3 3 3 3

30 3 3 3 3 3 3 3 3 3 3

31 3 3 3 3 3 3 3 3 3 3

32 3 3 3 3 3 3 3 3 3 3

33 3 3 3 3 3 3 3 3 3 3

34 3 3 3 3 3 3 3 3 3 3

35 3 3 3 3 3 3 3 7 3 3

36 3 3 3 3 3 3 3 3 3 3

37 3 3 3 3 3 3 3 3 3 3

38 3 3 3 3 �X 3 3 3 3 3

39 3 3 3 3 3 3 3 3 3 3

40 3 3 3 3 3 3 3 3 3 3

41 3 3 3 3 3 3 3 3 3 3

42 3 3 3 3 3 3 3 3 3 3

P.S.: 3: successful, �X: partly successful, 7: failed

274

D Task Achievement of the BOS UI and the ESHL GUI in the Evaluation

Experiments

Table D.2: Task achievement of the BOS UI for the role of resident

Test

User

Task Tasks for the BOS UI

Role: Resident

1 2 3 4 5 6 7 8 9 10 11 12

1 3 �X 3 3 3 3 3 �X �X 3 3 3

2 �X �X 3 3 3 3 3 3 �X 7 �X 3

3 3 3 3 3 7 3 3 3 3 3 3 3

4 3 3 3 3 3 3 3 3 3 3 3 3

5 �X 3 3 3 3 3 3 3 3 3 3 3

6 3 �X 3 3 7 3 �X 3 �X 7 3 3

7 3 3 3 3 3 3 3 3 3 3 3 3

8 3 3 3 3 3 3 3 3 3 3 3 3

9 3 3 3 3 3 3 3 3 3 3 3 3

10 3 3 3 3 3 3 3 3 3 3 3 3

11 3 3 7 3 3 3 3 3 3 3 3 3

12 3 3 3 3 3 3 3 3 3 3 3 3

13 3 �X 3 3 3 3 3 3 3 3 3 3

14 3 3 3 3 3 3 3 3 3 3 3 3

15 3 3 3 3 3 3 3 3 3 3 3 3

16 3 3 3 3 3 3 3 3 �X 3 3 3

17 3 3 3 3 3 3 3 3 3 3 3 3

18 3 �X 3 3 3 3 3 3 �X 3 3 3

19 �X 3 3 3 3 3 3 3 �X 3 �X 3

20 3 3 3 3 3 3 3 3 3 3 3 3

21 �X �X 3 3 3 3 3 3 3 3 3 3

22 �X �X 3 3 3 3 3 3 3 3 �X 3

23 �X �X 3 3 7 3 3 3 3 3 3 3

24 3 �X 3 3 7 3 3 3 �X 3 3 3

25 �X �X 3 3 7 3 3 3 3 3 3 3

26 �X 7 3 3 3 3 3 3 3 3 3 3

27 3 �X 3 3 3 3 3 3 3 3 3 3

28 �X �X 3 3 3 3 3 3 3 3 3 3

29 �X 3 3 3 3 3 3 3 3 3 3 3

30 3 �X 3 3 3 3 3 3 3 3 3 3

31 3 3 3 3 3 3 3 3 3 3 3 3

Continued on next page

275

D Task Achievement of the BOS UI and the ESHL GUI in the Evaluation

Experiments

Table D.2 – continued from previous page

Test

User

Task Tasks for the BOS UI

Role: Resident

1 2 3 4 5 6 7 8 9 10 11 12

32 3 �X 3 3 3 3 3 3 3 3 3 3

33 �X 3 3 3 7 �X 3 3 3 3 3 3

34 3 �X 3 3 7 3 3 3 3 3 3 3

35 3 3 3 3 7 3 3 3 3 7 3 3

36 3 3 3 3 3 3 3 3 3 3 3 3

37 3 �X 3 3 3 3 �X �X 3 3 3 3

38 3 3 3 3 3 3 3 3 3 3 3 3

39 �X 3 3 3 3 3 3 3 3 3 3 3

40 �X 3 3 3 3 3 3 3 3 3 3 3

41 3 �X 3 3 3 �X 3 3 3 3 3 3

42 3 3 3 3 3 3 3 3 3 3 3 3

P.S.: 3: successful, �X: partly successful, 7: failed

276

D Task Achievement of the BOS UI and the ESHL GUI in the Evaluation

Experiments

Table D.3: Task achievement of the ESHL GUI

Test

User

Task
Tasks for the ESHL GUI

1 2 3 4 5 6 7 8

1 �X 7 �X 7 7 7 3 3

2 �X 7 7 3 3 3 3 7

3 3 3 �X 3 3 3 3 3

4 3 3 �X 3 7 3 3 3

5 �X 3 �X 3 3 3 3 3

6 �X 3 7 7 7 3 7 3

7 �X 3 �X 3 3 3 3 3

8 3 3 �X 3 7 7 3 3

9 3 3 3 3 3 3 3 3

10 3 3 �X 3 3 3 3 3

11 �X 3 3 3 7 3 3 3

12 �X 3 3 3 3 3 3 3

13 3 3 3 3 3 3 3 3

14 3 3 3 3 3 3 3 3

15 �X 3 �X 3 3 3 3 3

16 �X 3 3 3 3 3 3 3

17 �X 3 �X 3 3 3 3 3

18 �X 3 �X 3 3 3 7 3

19 �X 3 7 3 7 7 3 3

20 3 3 �X 3 3 3 3 3

21 �X 3 �X 7 3 3 3 3

22 �X 3 7 3 3 3 7 3

23 �X 7 7 3 3 3 3 3

24 3 7 �X 3 3 3 3 3

25 �X 7 7 3 3 3 3 3

26 3 3 �X 3 7 3 3 3

27 �X 3 �X 3 3 3 3 3

28 �X 3 7 3 3 3 3 3

29 �X 3 �X 3 3 3 3 3

30 �X 3 �X 3 3 3 3 3

31 3 3 �X 3 3 3 3 3

Continued on next page

277

D Task Achievement of the BOS UI and the ESHL GUI in the Evaluation

Experiments

Table D.3 – continued from previous page

Test

User

Task
Tasks for the ESHL GUI

1 2 3 4 5 6 7 8

32 �X 3 �X 3 7 3 7 3

33 �X 3 �X 3 7 3 3 3

34 �X 3 7 3 3 7 3 3

35 �X 3 �X 3 7 7 3 3

36 �X 3 �X 3 7 3 7 3

37 �X 7 7 7 7 7 7 7

38 �X 3 �X 3 3 7 7 3

39 3 3 �X 3 3 3 7 3

40 �X 3 �X 3 3 3 3 3

41 �X 3 �X 3 7 3 7 3

42 3 7 �X 3 3 3 3 3

P.S.: 3: successful, �X: partly successful, 7: failed

278

List of Figures

2.1 Categorization of smart home projects according to the intended
services [37] . 22

2.2 Schematic diagram of a smart home showing the network among
different stakeholders [81] . 23

2.3 Overall architecture of a representative home energy manage-
ment system [109] . 26

2.4 Outline of HEMS including HAN and smart meter [35] 26

2.5 Realizing smart grids in smart homes [75] 30

2.6 The scope of EF-Pi in a smart home and its associated stakehol-
ders [55] . 32

2.7 Architectural overview of the EF-Pi and the place of Control
Spaces and Allocations [28] 34

2.8 The state machine diagram of the µCHP driver and the µCHP
manager in the EF-Pi [67] . 35

2.9 The communication mechanism of openHAB [20] 37

2.10 Framework architecture of OEGMA [17] 40

2.11 An exemplary Resource graph in OEGMA 42

2.12 Observer/Controller architecture of the organic system [86] . . . 46

2.13 Architecture of the Organic Smart Home [83] 47

2.14 The general process of an evolutionary algorithm 50

3.1 An exemplified user interface with widgets of EF-Pi [36] 69

3.2 Two µCHP driver widgets from the HEGRID project [62] 70

279

List of Figures

3.3 The working mechanism of the µCHP operational details widget
in EF-Pi . 71

3.4 The user interfaces of openHAB [31] 73

3.5 A demo user interface of openHAB 75

3.6 Entity relationship diagram of components of the user interface
bundle in openHAB . 76

3.7 A demo user interface of OGEMA 78

3.8 The default user interface of FHEM: PGM2 [9] 82

3.9 FHEM Tablet UI [10] . 84

3.10 The two versions of EMP in KIT ESHL and FZI HoLL [45] . . 87

3.11 Information flows between the EMP, the OSH and the devices
in the KIT ESHL . 87

3.12 The overview of energy flows provided by the KIT EMP [46] . 90

3.13 The smartVISU demo [27] . 92

3.14 The demo web user interface of HomeGenie [11] 95

3.15 Four application user interfaces in OGEMA demo user interface 114

4.1 Aspects of user interface design [69] 117

4.2 Architecture of the generic user interface for building operating
systems . 123

4.3 Environment of the smart home on which the generic user inter-
face is oriented . 127

4.4 The three user roles of the generic user interface for building
operating systems in smart homes 130

4.5 The permission hierarchy of the four operations for devices . . . 132

4.6 The UML class diagram of the household device model 135

4.7 The UML class diagram of the electric vehicle model 140

4.8 The UML class diagram of the user model 142

4.9 The UML class diagram of the floor model 144

4.10 The UML class diagram of building related models 145

4.11 The UML class diagram of the model of the device group 146

280

List of Figures

4.12 The UML class diagram of the scene model 149

4.13 The sequence diagram of creating and triggering a scene 150

4.14 The UML class diagram of the calendar event model 151

4.15 The sequence diagram for creating and managing an event via
the calendar of the generic user interface 153

4.16 The sequence diagram for realizing advanced home automation
via the calendar in the generic user interface 154

4.17 The UML class diagram of the community model 155

4.18 The structure of the energy overview provided by the generic
user interface . 157

4.19 An exemplified JSON representation of part of the energy over-
view tree which shows devices that are consuming electricity . . 159

4.20 The functional components of the generic user interface for
building operating systems . 160

5.1 The reality images of the ESHL 170

5.2 The floor plan of the ESHL [46] 171

5.3 The decentralized service oriented architecture based on a message-
oriented middleware in the ESHL [44] 173

5.4 The communication among ESHL GUI, OSH, and appliances
in the ESHL via a WAMP router 175

5.5 The relationship between the newly added components, the
WAMP router and the BOS UI 177

5.6 BOS UI for the administrator: the location management 185

5.7 BOS UI for the administrator: adding devices to a floor plan . . 186

5.8 BOS UI for the operator: adding a resident 187

5.9 BOS UI for the operator: setting optimization goals for a building188

5.10 BOS UI for the operator: the energy history of the building . . . 189

5.11 BOS UI for the operator: the community overview 190

5.12 BOS UI for the operator: building energy comparison in a com-
munity . 192

281

List of Figures

5.13 BOS UI for the resident: energy overview 193

5.14 BOS UI for the resident: resized and rearranged widgets for the
energy overview . 195

5.15 BOS UI for the resident: real-time auxiliary information on the
side panel of the energy overview page 196

5.16 BOS UI for the resident: overview of devices on the floor plan . 197

5.17 BOS UI for the resident: detailed information of a washing ma-
chine on the floor plan . 198

5.18 BOS UI for the resident: customized device groups 199

5.19 BOS UI for the resident: an exemplary scene 200

5.20 BOS UI for the resident: the dialog box of adding a calendar event202

5.21 BOS UI for the resident: the configuration of the electric vehicle 203

5.22 BOS UI for the resident: the historical energy use of a single
device . 204

5.23 BOS UI for the resident: energy prediction of the building . . . 206

5.24 BOS UI for the resident: the device operation log 207

5.25 BOS UI on a tablet . 208

6.1 Evaluation results for the design of the BOS UI 213

6.2 The component diagram of the middleware between the BOS
UI and a building operating system 220

6.3 The experimental process of the usability evaluation of the BOS
UI . 223

6.4 A comparison of the adjective ratings, acceptability scores, and
school grading scales, in relation to the average SUS score [41] . 226

6.5 The KD2Lab . 228

6.6 The organization structure of the evaluation website 229

6.7 The statistical results of the six statements about BOS UI 233

6.8 The statistical results of the first four statements about ESHL GUI235

6.9 Purposes of using the BOS UI as stated by the test users 236

282

List of Figures

6.10 The statistical results of the comparisons between BOS UI and
ESHL GUI . 237

6.11 Histogram of the SUS scores of the BOS UI 239
6.12 Normal Q-Q Plot of the SUS scores of the BOS UI 240
6.13 Histogram of the SUS scores of the ESHL GUI 242
6.14 Stacked bar chart of the participants’ answer to the odd num-

bered statements in the SUS questionnaire concerning the BOS
UI and the ESHL GUI . 243

6.15 Stacked bar chart of the participants’ answer to the even numbe-
red statements in the SUS questionnaire about the BOS UI and
the ESHL GUI . 244

6.16 The SUS scores of the BOS UI and the ESHL GUI from the 42
participants . 245

283

List of Tables

2.1 The four Control Spaces in EF-Pi [104] 33

2.2 The permissions that are defined in the OGEMA framework [19] 44

3.1 Data models of the UI page for OGEMA administrators 81

3.2 Display styles of devices in the floor plan of PGM2 84

3.3 Attributes for general widgets of the FHEM Tablet UI [10] . . . 85

3.4 Available topics published on the WAMP router in OSH 89

3.5 Evaluation results of the user interfaces in Section 3.1 based on
use cases in Section 3.2 . 105

3.6 Evaluation results of the user interfaces in Section 3.1 based on
the technical characteristics . 111

4.1 An exemplified Device instance of a washing machine 136

4.2 Example of device channels of a µCHP 138

5.1 Some important RESTful APIs designed for the BOS UI 179

5.2 Integrated services provided by the DynamicServiceProvider
component . 181

5.3 The modules that have been created for the BOS UI 183

6.1 The use cases relating to a smart home 213

6.2 The result of converting the data about the washing machine in
the ESHL from the OSH into the data model of the BOS UI . . . 218

6.3 The result of converting a switch Item in openHAB into the data
model of the BOS UI . 219

284

List of Tables

6.4 The statistical average values of SUS scores for adjective ratings
according to nearly 1000 SUS surveys [41] 227

6.5 The distribution of different knowledge levels about smart home
technologies . 230

6.6 Smart home user interfaces that had been used by the partici-
pants before the test and their comments on the user interfaces . 230

6.7 Tests of normality of the distribution of the SUS scores of the
BOS UI . 240

A.1 Background information of the test users in the evaluation ex-
periments . 256

D.1 Task achievement of the BOS UI for the roles of administrator
and operator . 273

D.2 Task achievement of the BOS UI for the role of resident 275
D.3 Task achievement of the ESHL GUI 277

285

Bibliography

[1] ACCIONA: Smart Buildings scenario definition. http://www.fi-

ppp-finseny.eu/wp-content/uploads/2012/05/D4.1_Smar

t-Buildings-scenario-definition_v1.1.pdf, . – [Online;
Accessed: 09-01-2018]

[2] AngularJS Data Binding. https://www.w3schools.com/angul

ar/angular_databinding.asp, . – [Online; Accessed: 09-05-
2018]

[3] AngularJS Material. https://material.angularjs.org/lates
t/, . – [Online; Accessed: 11-05-2018]

[4] The concept of channels in openHAB. https://docs.openhab.o

rg/concepts/things.htm#channels, . – [Online; Accessed: 20-
03-2018]

[5] EF-Pi. http://flexible-energy.eu/ef-pi/, . – [Online;
Accessed: 08-01-2018]

[6] Energy consumption in households. http://ec.europa.eu/eur

ostat/statistics-explained/index.php/Energy_consump

tion_in_households, . – [Online; Accessed: 29-03-2018]

[7] The Energy Smart Home Lab (ESHL) at KIT. http://www.aifb

.kit.edu/web/Energy_Smart_Home_Lab, . – [Online; Accessed:
17-01-2018]

[8] European Environment Agency (EEA) report No 17/2017.
https://www.eea.europa.eu/publications/trends-and-

286

http://www.fi-ppp-finseny.eu/wp-content/uploads/2012/05/D4.1_Smart-Buildings-scenario-definition_v1.1.pdf
http://www.fi-ppp-finseny.eu/wp-content/uploads/2012/05/D4.1_Smart-Buildings-scenario-definition_v1.1.pdf
http://www.fi-ppp-finseny.eu/wp-content/uploads/2012/05/D4.1_Smart-Buildings-scenario-definition_v1.1.pdf
https://www.w3schools.com/angular/angular_databinding.asp
https://www.w3schools.com/angular/angular_databinding.asp
https://material.angularjs.org/latest/
https://material.angularjs.org/latest/
https://docs.openhab.org/concepts/things.htm#channels
https://docs.openhab.org/concepts/things.htm#channels
http://flexible-energy.eu/ef-pi/
http://ec.europa.eu/eurostat/statistics-explained/index.php/Energy_consumption_in_households
http://ec.europa.eu/eurostat/statistics-explained/index.php/Energy_consumption_in_households
http://ec.europa.eu/eurostat/statistics-explained/index.php/Energy_consumption_in_households
http://www.aifb.kit.edu/web/Energy_Smart_Home_Lab
http://www.aifb.kit.edu/web/Energy_Smart_Home_Lab
https://www.eea.europa.eu/publications/trends-and-projections-in-europe-2017
https://www.eea.europa.eu/publications/trends-and-projections-in-europe-2017

Bibliography

projections-in-europe-2017, . – [Online; Accessed: 25-03-
2018]

[9] FHEM. https://fhem.de/fhem.html, . – [Online; Accessed: 02-
03-2018]

[10] FHEM Tablet UI. https://github.com/knowthelist/fhem-ta
blet-ui, . – [Online; Accessed: 02-03-2018]

[11] HomeGenie. http://www.homegenie.it/, . – [Online; Accessed:
13-06-2017]

[12] HomeGenie website. http://genielabs.github.io/HomeGeni

e, . – [Online; Accessed: 08-03-2017]

[13] Internationalization and localization on Wikipedia. https:

//en.wikipedia.org/wiki/Internationalization_and_loc

alization, . – [Online; Accessed: 11-03-2017]

[14] Material Design on Wikipedia. https://en.wikipedia.org/wik
i/Material_Design, . – [Online; Accessed: 25-03-2018]

[15] Modularity on Wikipedia. https://en.wikipedia.org/wiki/Mo
dularity, . – [Online; Accessed: 11-03-2017]

[16] Multilingual user interface on Wikipedia. https://en.wikipedia
.org/wiki/Multilingual_User_Interface, . – [Online; Acces-
sed: 11-03-2017]

[17] OGEMA. http://www.ogema.org/, . – [Online; Accessed: 12-01-
2018]

[18] OGEMA introduction of concepts, terminology and framework ser-

vices. http://www.ogema.org//wp-content/uploads/2014/

12/OGEMA_2.0_introduction_v2.0.2.pdf, . – [Online; Acces-
sed: 19-03-2018]

287

https://www.eea.europa.eu/publications/trends-and-projections-in-europe-2017
https://www.eea.europa.eu/publications/trends-and-projections-in-europe-2017
https://fhem.de/fhem.html
https://github.com/knowthelist/fhem-tablet-ui
https://github.com/knowthelist/fhem-tablet-ui
http://www.homegenie.it/
http://genielabs.github.io/HomeGenie
http://genielabs.github.io/HomeGenie
https://en.wikipedia.org/wiki/ Internationalization_and_localization
https://en.wikipedia.org/wiki/ Internationalization_and_localization
https://en.wikipedia.org/wiki/ Internationalization_and_localization
https://en.wikipedia.org/wiki/Material_Design
https://en.wikipedia.org/wiki/Material_Design
https://en.wikipedia.org/wiki/Modularity
https://en.wikipedia.org/wiki/Modularity
https://en.wikipedia.org/wiki/Multilingual_User_Interface
https://en.wikipedia.org/wiki/Multilingual_User_Interface
http://www.ogema.org/
http://www.ogema.org//wp-content/uploads/2014/12/OGEMA_2.0_introduction_v2.0.2.pdf
http://www.ogema.org//wp-content/uploads/2014/12/OGEMA_2.0_introduction_v2.0.2.pdf

Bibliography

[19] OGEMA security technical notes. https://www.ogema-

source.net/wiki/display/OGEMA/Security+Technical+

Notes#SecurityTechnicalNotes-WebAccessPermission, . –
[Online; Accessed: 19-03-2018]

[20] OpenHAB 1.x documentation. https://github.com/openhab/o

penhab1-addons/wiki, . – [Online; Accessed: 19-03-2018]

[21] OpenHAB introduction. https://docs.openhab.org/introdu

ction.html, . – [Online; Accessed: 20-03-2018]

[22] OpenHAB Items. https://docs.openhab.org/configuration

/items.html, . – [Online; Accessed: 08-02-2018]

[23] SAP’s article about System Usability Scale. https:

//experience.sap.com/skillup/quick-ux-assessment-

start-with-the-system-usability-scale/, . – [Online;
Accessed: 14-02-2018]

[24] Scenes in eclipse smarthome. https://www.eclipse.org/smar

thome/documentation/features/scenes.html, . – [Online;
Accessed: 13-05-2018]

[25] The smart audio report from NPR and Edison Research.
http://nationalpublicmedia.com/wp-content/uploads/

2018/01/The-Smart-Audio-Report-from-NPR-and-Edison-

Research-Fall-Winter-2017.pdf, . – [Online; Accessed:
04-03-2018]

[26] Smart home report 2017 - energy management. https://de.sta

tista.com/statistik/studie/id/39188/dokument/smart-

home-report-energy-management/, . – [Online; Accessed:
10-03-2018]

[27] SmartVISU. http://www.smartvisu.de/, . – [Online; Accessed:
12-01-2018]

288

https://www.ogema-source.net/wiki/display/OGEMA/Security+Technical+Notes#SecurityTechnicalNotes-WebAccessPermission
https://www.ogema-source.net/wiki/display/OGEMA/Security+Technical+Notes#SecurityTechnicalNotes-WebAccessPermission
https://www.ogema-source.net/wiki/display/OGEMA/Security+Technical+Notes#SecurityTechnicalNotes-WebAccessPermission
https://github.com/openhab/openhab1-addons/wiki
https://github.com/openhab/openhab1-addons/wiki
https://docs.openhab.org/introduction.html
https://docs.openhab.org/introduction.html
https://docs.openhab.org/configuration/items.html
https://docs.openhab.org/configuration/items.html
https://experience.sap.com/skillup/quick-ux-assessment-start-with-the-system-usability-scale/
https://experience.sap.com/skillup/quick-ux-assessment-start-with-the-system-usability-scale/
https://experience.sap.com/skillup/quick-ux-assessment-start-with-the-system-usability-scale/
https://www.eclipse.org/smarthome/documentation/features/scenes.html
https://www.eclipse.org/smarthome/documentation/features/scenes.html
http://nationalpublicmedia.com/wp-content/uploads/2018/01/The-Smart-Audio-Report-from-NPR-and-Edison-Research-Fall-Winter-2017.pdf
http://nationalpublicmedia.com/wp-content/uploads/2018/01/The-Smart-Audio-Report-from-NPR-and-Edison-Research-Fall-Winter-2017.pdf
http://nationalpublicmedia.com/wp-content/uploads/2018/01/The-Smart-Audio-Report-from-NPR-and-Edison-Research-Fall-Winter-2017.pdf
https://de.statista.com/statistik/studie/id/39188/dokument/smart-home-report-energy-management/
https://de.statista.com/statistik/studie/id/39188/dokument/smart-home-report-energy-management/
https://de.statista.com/statistik/studie/id/39188/dokument/smart-home-report-energy-management/
http://www.smartvisu.de/

Bibliography

[28] Technical implementation details of EF-Pi. https://fan-

ci.sensorlab.tno.nl/builds/fpai-documentation/develo

pment/html/, . – [Online; Accessed: 15-03-2018]

[29] The user demo of FHEM Tablet UI. https://github.com/ovibo

x/fhem-ftui-user-demos, . – [Online; Accessed: 02-03-2018]

[30] The user demo of smartVISU. http://demo.smartvisu.de/inde
x.php, . – [Online; Accessed: 02-03-2018]

[31] The user interfaces of OpenHAB. https://docs.openhab.org/a
ddons/uis.html, . – [Online; Accessed: 17-04-2018]

[32] The WAMP protocol. http://wamp-proto.org/, . – [Online;
Accessed: 18-01-2018]

[33] The WAMP protocol website. http://wamp-proto.org, . – [On-
line; Accessed: 08-03-2017]

[34] Web 2.0 on Wikipedia. https://en.wikipedia.org/wiki/Web_

2.0, . – [Online; Accessed: 24-03-2018]

[35] Wi-SUN Alliance-interoperable communications solutions.
http://docplayer.net/55461542-Wi-sun-alliance-

interoperable-communications-solutions.html, . –
[Online; Accessed: 04-03-2018]

[36] ADRIAANSE, Joost ; KONSMAN, Mente J. ; COENE, G.: High level

functional specification of the flexiblePower application infrastruc-

ture. 2013. – Technical report, TNO

[37] ALAM, Muhammad R. ; REAZ, Mamun Bin I. ; ALI, Mohd Alaud-
din M.: A review of smart homes - past, present, and future. In: IEEE

Transactions on Systems, Man, and Cybernetics, Part C (Applicati-

ons and Reviews) 42 (2012), Nr. 6, S. 1190–1203

289

https://fan-ci.sensorlab.tno.nl/builds/fpai-documentation/development/html/
https://fan-ci.sensorlab.tno.nl/builds/fpai-documentation/development/html/
https://fan-ci.sensorlab.tno.nl/builds/fpai-documentation/development/html/
https://github.com/ovibox/fhem-ftui-user-demos
https://github.com/ovibox/fhem-ftui-user-demos
http://demo.smartvisu.de/index.php
http://demo.smartvisu.de/index.php
https://docs.openhab.org/addons/uis.html
https://docs.openhab.org/addons/uis.html
http://wamp-proto.org/
http://wamp-proto.org
https://en.wikipedia.org/wiki/Web_2.0
https://en.wikipedia.org/wiki/Web_2.0
http://docplayer.net/55461542-Wi-sun-alliance-interoperable-communications-solutions.html
http://docplayer.net/55461542-Wi-sun-alliance-interoperable-communications-solutions.html

Bibliography

[38] ALBERT, William ; TULLIS, Thomas: Measuring the user expe-

rience: collecting, analyzing, and presenting usability metrics. New-
nes, 2013

[39] ALLERDING, Florian ; MAUSER, Ingo ; SCHMECK, Hartmut: Cus-
tomizable energy management in smart buildings using evolutionary
algorithms. In: European Conference on the Applications of Evoluti-

onary Computation Springer, 2014, S. 153–164

[40] ALLERDING, Florian ; SCHMECK, Hartmut: Organic Smart Home:
Architecture for Energy Management in Intelligent Buildings. In:
Proceedings of the 2011 Workshop on Organic Computing. New
York, NY, USA : ACM, 2011 (OC ’11). – ISBN 978–1–4503–0736–
9, 67–76

[41] BANGOR, Aaron ; KORTUM, Philip ; MILLER, James: Determining
what individual SUS scores mean: Adding an adjective rating scale.
In: Journal of usability studies 4 (2009), Nr. 3, S. 114–123

[42] BANGOR, Aaron ; KORTUM, Philip T. ; MILLER, James T.: An
empirical evaluation of the system usability scale. In: Intl. Journal of

Human–Computer Interaction 24 (2008), Nr. 6, S. 574–594

[43] BAO, Kaibin ; BRÄUCHLE, Thomas ; SCHMECK, Hartmut: Towards
privacy in monitored shared environments. In: 10th Future Security

Conf, 2015, S. 469–472

[44] BAO, Kaibin ; MAUSER, Ingo ; KOCHANNECK, Sebastian ; XU, Hui-
wen ; SCHMECK, Hartmut: A microservice architecture for the in-
tranet of things and energy in smart buildings. In: Proceedings of the

1st International Workshop on Mashups of Things and APIs ACM,
2016, S. 3

[45] BECKER, Birger: Interaktives Gebäude-Energiemanagement. KIT
Scientific Publishing, 2014

290

Bibliography

[46] BECKER, Birger ; KELLERER, Anna ; SCHMECK, Hartmut: User in-
teraction interface for energy management in smart homes. In: Inno-

vative Smart Grid Technologies (ISGT), 2012 IEEE PES IEEE, 2012,
S. 1–8

[47] BECKER, Birger ; KERN, Fabian ; LÖSCH, Manuel ; MAUSER, Ingo ;
SCHMECK, Hartmut: Building energy management in the FZI house
of living labs. In: D-A-CH Conference on Energy Informatics Sprin-
ger, 2015, S. 95–112

[48] BENYON, David: Designing interactive systems: A comprehensive
guide to HCI, UX and interaction design. (2014)

[49] BEVAN, Nigel: Extending quality in use to provide a framework
for usability measurement. In: International Conference on Human

Centered Design Springer, 2009, S. 13–22

[50] BHATI, Abhishek ; HANSEN, Michael ; CHAN, Ching M.: Energy
conservation through smart homes in a smart city: A lesson for Sin-
gapore households. In: Energy Policy 104 (2017), S. 230–239

[51] BLADOW, Chad R. ; DEVINE, Carol Y. ; SCHWARZ, Edward ;
SHAMASH, Arieh ; SHOULBERG, Richard W. ; WOOD, Jeffrey A.:
Graphical user interface for Web enabled applications. September 5
2000. – US Patent 6,115,040

[52] BORODULKIN, L ; RUSER, H ; TRANKLER, H-R: 3D virtual "smart
home" user interface. In: Virtual and Intelligent Measurement Sys-

tems, 2002. VIMS’02. 2002 IEEE International Symposium on IEEE,
2002, S. 111–115

[53] BROOKE, John: SUS: a retrospective. In: Journal of usability studies

8 (2013), Nr. 2, S. 29–40

[54] CLUM, Luke: A look at flat design and why it’s significant. In:
Retrieved from UX Magazine: https://uxmag.com/articles/a-look-at-

flat-design-and-why-its-significant (2013)

291

Bibliography

[55] COENE, G. ; KONSMAN, Mente J. ; ADRIAANSE, Joost: Flexible-

Power application infrastructure detailed functional design. 2013. –
Technical report, TNO

[56] CONSTANTINE, Larry L. ; LOCKWOOD, Lucy A.: Structure and style
in use cases for user interface design. In: Object modeling and user

interface design (2001), S. 245–280

[57] COURCOUBETIS, Costas ; WEBER, Richard: Pricing communication

networks: economics, technology and modelling. John Wiley & Sons,
2003

[58] DARBY, Sarah u. a.: The effectiveness of feedback on energy con-
sumption. In: A Review for DEFRA of the Literature on Metering,

Billing and direct Displays 486 (2006), Nr. 2006, S. 26

[59] DAVIDOFF, Scott ; LEE, Min K. ; YIU, Charles ; ZIMMERMAN, John
; DEY, Anind K.: Principles of smart home control. In: International

conference on ubiquitous computing Springer, 2006, S. 19–34

[60] DEY, Anind K. ; ABOWD, Gregory D. ; SALBER, Daniel: A con-
ceptual framework and a toolkit for supporting the rapid prototyping
of context-aware applications. In: Human-computer interaction 16
(2001), Nr. 2, S. 97–166

[61] DILLON, Andrew: The evaluation of software usability. In: Encyclo-

pedia of human factors and ergonomics. London: Taylor and Francis,
2001

[62] EEKELEN, Joeri v. ; GITTE, Christian ; KAISERS, Michael ; RIGOLL,
Fabian ; XU, Huiwen: HEGRID pilot implementation. 2015. – EIT
Digital, internal, unpublished

[63] FINSTER, Soren ; BAUMGART, Ingmar: SMART-ER: Peer-based
privacy for smart metering. In: Computer Communications Works-

hops (INFOCOM WKSHPS), 2014 IEEE Conference on IEEE, 2014,
S. 652–657

292

Bibliography

[64] FRAIN, Ben: Responsive web design with HTML5 and CSS3. Packt
Publishing Ltd, 2012

[65] GALITZ, Wilbert O.: The essential guide to user interface design: an

introduction to GUI design principles and techniques. John Wiley &
Sons, 2007

[66] GHASEMI, Asghar ; ZAHEDIASL, Saleh: Normality tests for statis-
tical analysis: a guide for non-statisticians. In: International journal

of endocrinology and metabolism 10 (2012), Nr. 2, S. 486

[67] GITTE, Christian ; XU, Huiwen ; RIGOLL, Fabian ; EEKELEN, Joeri
van ; KAISERS, Michael: Multi-commodity energy management ap-
plied to micro CHPs and electrical heaters in smart buildings. In:
5th D-A-CH+ Energy Informatics Conference in conjunction with

7th Symposium on Communications for Energy Systems (ComForEn)

Bd. 84, 2016

[68] GUO, Bin: Creating personal, social, and urban awareness through

pervasive computing. IGI global, 2013

[69] HAINES, Victoria ; MAGUIRE, Martin ; COOPER, Catherine ; MIT-
CHELL, Val ; LENTON, Fran ; KEVAL, Hina ; NICOLLE, CA: User
centred design in smart homes: research to support the equipment
and services aggregation trials. (2005)

[70] HARIRI, Nadjla ; NOROUZI, Yaghoub: Determining evaluation cri-
teria for digital libraries’ user interface: a review. In: The Electronic

Library 29 (2011), Nr. 5, S. 698–722

[71] HARPER, Richard: Inside the smart home. Springer Science & Bu-
siness Media, 2006

[72] HARTSON, Rex ; PYLA, Pardha S.: The UX Book: Process and

guidelines for ensuring a quality user experience. Elsevier, 2012

293

Bibliography

[73] HOLZINGER, Andreas: Usability engineering methods for software
developers. In: Communications of the ACM 48 (2005), Nr. 1, S.
71–74

[74] JANSEN, Bernard J.: The graphical user interface: an introduction.
In: SIGCHI Bulletin 30 (1998), Nr. 2, S. 22–26

[75] KAILAS, Aravind ; CECCHI, Valentina ; MUKHERJEE, Arindam: A
survey of communications and networking technologies for energy
management in buildings and home automation. In: Journal of Com-

puter Networks and Communications 2012 (2012)

[76] KOCHANNECK, Sebastian ; MAUSER, Ingo ; BOHNET, Bernd ;
HUBSCHNEIDER, Sebastian ; SCHMECK, Hartmut ; BRAUN, Mi-
chael ; LEIBFRIED, Thomas: Establishing a hardware-in-the-loop
research environment with a hybrid energy storage system. In: Inno-

vative Smart Grid Technologies-Asia (ISGT-Asia), 2016 IEEE IEEE,
2016, S. 497–503

[77] LATFI, Fatiha ; LEFEBVRE, Bernard ; DESCHENEAUX, Céline:
Ontology-Based Management of the Telehealth Smart Home, Dedi-
cated to Elderly in Loss of Cognitive Autonomy. In: OWLED Bd.
258, 2007

[78] LOBACCARO, Gabriele ; CARLUCCI, Salvatore ; LÖFSTRÖM, Erica:
A review of systems and technologies for smart homes and smart
grids. In: Energies 9 (2016), Nr. 5, S. 348

[79] LUTOLF, R: Smart home concept and the integration of energy me-
ters into a home based system. In: Metering Apparatus and Tariffs for

Electricity Supply, 1992., Seventh International Conference on IET,
1992, S. 277–278

[80] MACIK, Miroslav: Automatic user interface generation, Faculty of
Electrical Engineering Department of Computer Graphics and Inte-

294

Bibliography

raction Automatic User Interface Generation Doctoral Thesis by Mi-
roslav Macık A thesis submitted to the Faculty of Electrical Engi-
neering, Czech Technical University in Prague, Diss., 2016

[81] MAJUMDER, Sumit ; AGHAYI, Emad ; NOFERESTI, Moein ;
MEMARZADEH-TEHRAN, Hamidreza ; MONDAL, Tapas ; PANG,
Zhibo ; DEEN, M J.: Smart homes for elderly healthcare - recent
advances and research challenges. In: Sensors 17 (2017), Nr. 11, S.
2496

[82] MANDEL, Theo: The elements of user interface design. Bd. 20. Wi-
ley New York, 1997

[83] MAUSER, Ingo ; HIRSCH, Christian ; KOCHANNECK, Sebastian ;
SCHMECK, Hartmut: Organic architecture for energy management
and smart grids. In: Autonomic Computing (ICAC), 2015 IEEE In-

ternational Conference on IEEE, 2015, S. 101–108

[84] MENDES, Tiago D. ; GODINA, Radu ; RODRIGUES, Eduardo M. ;
MATIAS, Joao C. ; CATALAO, Joao P.: Smart home communica-
tion technologies and applications: Wireless protocol assessment for
home area network resources. In: Energies 8 (2015), Nr. 7, S. 7279–
7311

[85] MOLINA-MARKHAM, Andrés ; SHENOY, Prashant ; FU, Kevin ;
CECCHET, Emmanuel ; IRWIN, David: Private memoirs of a smart
meter. In: Proceedings of the 2nd ACM workshop on embedded sen-

sing systems for energy-efficiency in building ACM, 2010, S. 61–66

[86] MÜLLER-SCHLOER, Christian ; SCHMECK, Hartmut ; UNGERER,
Theo: Organic computing-A paradigm shift for complex systems.
Springer Science & Business Media, 2011

[87] MÜLTIN, Marc ; ALLERDING, Florian ; SCHMECK, Hartmut: In-
tegration of electric vehicles in smart homes-an ICT-based solution

295

Bibliography

for V2G scenarios. In: Innovative Smart Grid Technologies (ISGT),

2012 IEEE PES IEEE, 2012, S. 1–8

[88] NIELSEN, Jakob: Do interface standards stifle design creativity. In:
Jacob Nielsen’s Alertbox (1999)

[89] NIELSEN, Jakob: How many test users in a usability study. In:
Nielsen Norman Group 4 (2012), Nr. 06

[90] NORTHROP, Linda: The importance of software architecture. In:
Software Engineering Institute, Carnegie Mellon University. Availa-

ble: http://sunset. usc. edu/gsaw/gsaw2003/s13/northrop. pdf (2003)

[91] ORPWOOD, Roger ; GIBBS, Chris ; ADLAM, Timothy ; FAULKNER,
Richard ; MEEGAHAWATTE, D: The design of smart homes for pe-
ople with dementia-user-interface aspects. In: Universal Access in

the information society 4 (2005), Nr. 2, S. 156–164

[92] PAETZ, Alexandra-Gwyn ; BECKER, Birger ; FICHTNER, Wolf ;
SCHMECK, Hartmut u. a.: Shifting electricity demand with smart
home technologies–an experimental study on user acceptance. In:
30th USAEE/IAEE North American conference online proceedings

Bd. 19, 2011, S. 20

[93] PASAOGLU, G ; FIORELLO, D ; MARTINO, A ; SCARCELLA, G ;
ALEMANNO, A ; ZUBARYEVA, A ; THIEL, C: Driving and parking
patterns of European car drivers-a mobility survey. In: Luxembourg:

European Commission Joint Research Centre (2012)

[94] PÉREZ-LOMBARD, Luis ; ORTIZ, José ; POUT, Christine: A re-
view on buildings energy consumption information. In: Energy and

buildings 40 (2008), Nr. 3, S. 394–398

[95] RAYMOND, Eric S. ; LANDLEY, Rob W.: The art of unix usability.
In: Retrieved 3 (2004), Nr. 1, S. 2012

296

Bibliography

[96] ROSCHER, Dirk ; BLUMENDORF, Marco ; ALBAYRAK, Sahin: A
meta user interface to control multimodal interaction in smart envi-
ronments. In: Proceedings of the 14th international conference on

Intelligent user interfaces ACM, 2009, S. 481–482

[97] SALEN, Katie ; ZIMMERMAN, Eric: Rules of play: Game design

fundamentals. MIT press, 2004

[98] SANDHU, Ravi S. ; COYNE, Edward J. ; FEINSTEIN, Hal L. ; YOU-
MAN, Charles E.: Role-based access control models. In: Computer

29 (1996), Nr. 2, S. 38–47

[99] SATPATHY, Lalatendu: Smart housing: Technology to aid aging in

place: New opportunities and challenges, Mississippi State Univer-
sity, Diss., 2006

[100] SATZINGER, John W.: The effects of conceptual consistency on the
end user’s mental models of multiple applications. In: Journal of

Organizational and End User Computing (JOEUC) 10 (1998), Nr. 3,
S. 3–15

[101] SCHNEIDERMAN, Ben ; PLAISANT, Catherine: Designing the user

interface. 1998

[102] SHEN, Bochao ; NARAYANASWAMY, Balakrishnan ; SUNDARAM,
Ravi: SmartShift: expanded load shifting incentive mechanism for
risk-averse consumers. In: AAAI, 2015, S. 716–722

[103] SMITH, Sidney L. ; MOSIER, Jane N.: Guidelines for designing
user interface software / Mitre Corporation Bedford, MA. 1986. –
Forschungsbericht

[104] WAAIJ, Bram van d. ; WIJBRANDI, Wilco ; KONSMAN, Mente:
White paper energy flexibility platform and interface (EF-PI) /
Technical report, TNO. 2015. – Forschungsbericht

297

Bibliography

[105] WILSON, Charlie ; HARGREAVES, Tom ; HAUXWELL-BALDWIN,
Richard: Smart homes and their users: a systematic analysis and key
challenges. In: Personal and Ubiquitous Computing 19 (2015), Nr.
2, S. 463–476

[106] XU, Huiwen ; KÖNIG, Lukas ; CÁLIZ, Doris ; SCHMECK, Hartmut:
A generic user interface for energy management in smart homes. In:
Energy Informatics 1 (2018), Nr. 1, S. 55

[107] XU, Huiwen ; SCHMECK, Hartmut: State-of-the-art user interfaces
for building operating systems. In: Smart Grid and Smart Cities

(ICSGSC), 2017 IEEE International Conference on IEEE, 2017, S.
283–292

[108] ZĄBKOWSKI, Tomasz ; GAJOWNICZEK, Krzysztof: Smart metering
and data privacy issues. In: Information Systems in Management 2
(2013), Nr. 3, S. 239–249

[109] ZHOU, Bin ; LI, Wentao ; CHAN, Ka W. ; CAO, Yijia ; KUANG,
Yonghong ; LIU, Xi ; WANG, Xiong: Smart home energy manage-
ment systems: Concept, configurations, and scheduling strategies. In:
Renewable and Sustainable Energy Reviews 61 (2016), S. 30–40

298

	Introduction
	Motivation
	Assumptions and Research Questions
	Major Contributions
	Thesis Outline
	Previous Publications

	Fundamentals
	Smart Home
	Building Operating Systems
	Energy Flexibility Platform & Interface (EF-Pi)
	Open Home Automation Bus (openHAB)
	Open Gateway Energy MAnagement (OGEMA)
	Organic Smart Home (OSH)

	A Brief History of Graphical User Interfaces
	Principles for User Interfaces Design

	Overview of Related Work
	User Interfaces for Building Operating Systems
	EF-Pi UI
	openHAB UI
	OGEMA UI
	FHEM UI
	OSH UI
	smartVISU
	HomeGenie UI

	Use Cases
	Evaluation of User Interfaces for Building Operating Systems
	Use case based evaluation
	Technical characteristic based evaluation

	Conclusion and Discussion

	Design
	The Definition
	System Objectives
	Architecture
	Environment Description
	Roles
	Data Models
	Functional Components
	Conclusion and Discussion

	Implementation
	The Energy Smart Home Lab
	Connection to the Energy Smart Home Lab
	Modules
	Functional Demonstration
	Administrator
	Operator
	Resident

	Conclusion and Discussion

	Evaluation
	Evaluation of the Design
	Evaluation of the Usability and Functionality
	Method of Experimentation
	System Usability Scale
	Experiment Preparation
	Results of the Demographic Survey
	Main Part of the Survey
	Evaluation Results of the Functionality
	Evaluation Results of the Usability
	Discussion

	Conclusion and Outlook
	Conclusion and Contribution
	Outlook and Future Work

	Background Information of the Test Users in the Evaluation Experiments
	Tasks for the BOS UI and the ESHL GUI in the Evaluation Experiments
	Tasks for the BOS UI
	Tasks for the Role of Administrator
	Tasks for the Role of Operator
	Tasks for the Role of Resident

	Tasks for the ESHL GUI

	Comments about the BOS UI and the ESHL GUI from the Test Users
	Task Achievement of the BOS UI and the ESHL GUI in the Evaluation Experiments

