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Abstract— This article shows how modulating functions can
be generated automatically and used to identify selected param-
eters of commensurable fractional systems. Existing methods
use universal modulating functions. These have to be adjusted
to each single problem. The proposed method uses a model
based auxiliary system which is derived from the actual
system, but has a fixed structure. The problem of applying
a suitable modulating function is transformed into a control
problem. Taking an additional precondition into account, each
parameter can be separately identified. A study of the practical
applicability and a numerical example complete the article.

I. INTRODUCTION

In recent years, complex physical, chemical or biological
systems are described more often using fractional order
models. Due to the non-locality and memory of fractional
integration and differentiation, models are more precisely
even though less parameters are used. In addition, these are
physically interpretable [1, 2, 3]. Often, it is not possible to
calculate or measure all parameters using physical, chemical
or biological relations. Remaining parameters have to be
identified using measurements.

A lot of identification methods considering fractional order
models are based on the modulating function method (see
e.g. [4, 5, 6]). The benefit is that no measured signal has
to be differentiated. Instead, the modulating function is
differentiated. The modulating function can be chosen freely
and, therefore, it is not superposed by noise. The drawback is
that common modulating functions have a lot of parameters
which have to be adapted to the actual problem (see [7]).
Another drawback is that no modulating function with frac-
tional boundary terms is known. Therefore, fractional order
models using the definition of Riemann-Liouville instead of
Caputo are considered.

In this article, the benefit of the modulating function
method will be remained unchanged. The drawbacks are
eliminated using a model based auxiliary system which is
obtained by applying the modulating function method to the
original system under consideration of the boundary terms.
This idea is described for the integer case in [8]. It is shown
that the control input of the model based auxiliary system is
connected to the modulating function. So, if an appropriated
control input is determined, the modulating function will be
known as well. Depending on the chosen control input, it
is also possible that each parameter is separately identified.
It will also turn out that in case of noisy measurements an
energy optimal control will minimize the identification error.
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The article is structured as follows: In Section II, the basics
of fractional calculus and of the modulating function method
are provided. In Section III, a precondition for separate iden-
tification of each parameter is given, first. Afterwards, the
model based auxiliary system which is central to determine
automatically a modulating function is defined. At the end of
Section III, the control based identification is presented. The
article is completed with a view at the practical applicability
in Section IV and an example in Section V.

II. PRELIMINARIES

A. Fundamentals of Fractional Calculus

In this section, the fractional operators used in this paper
are described. For these definitions, the following notations
are used: a, b, t, e, g ∈ R+ and a ≤ e < t < g ≤ b and α ∈ R+.
⌊⋅⌋ denotes the floor-function and is used to state a modified
ceiling-function ⌈⋅⌉ ∶= ⌊⋅⌋+1. Through the paper, the functions
f(t) and h (t) are assumed to be Lebesgue integrable on the
integration interval defined by [a, b] (see [9]). In addition,
the assumption is made that f(t) and h (t) are ⌈α⌉-times
absolutely continuous on the derivation interval [a, b], where
α is the derivation order (see [9]). Furthermore, ∀t̃ ≤ a ∶

f (t̃) = 0 and ∀t̃ ≥ b ∶ h (t̃) = 0 holds. The uninitialized
as well as initialized fractional operators are described in
[10] and are given in the following definition. The initialized
fractional operators consist of the uninitialized fractional
operator and time-variant initialization functions η(⋅, t) resp.
ψ(⋅, t), which have been proven to be necessary in order to
describe fractional differential equations (FDEs) correctly.
Differing from the used notation in [10], in this paper, an
additional operator index on the top left of the fractional
operator is used. This index indicates that the function is
integrated or differentiated w.r.t. the named variable. The
calculus of two-variable functions can be directly extended
from the fractional operators for functions depending on one
variable (see [11]).

In the following definition, the uninitialized as well as
the initialized fractional integration, Riemann-Liouville (RL)
and Caputo (C) fractional derivative are summarized.

Definition 1: Fractional Operators.

● Uninitialized Fractional Integral

it αe t f(t) ∶=
1

Γ(α)
∫

t

e

f(ν)

(t − ν)(1−α)
dν (1)

● Initialized Fractional Integral

I
t α
e t f(t) ∶= it αe t f(t) + η (f,α, a, e, t) (2)
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● Uninitialized Right-Sided Fractional Integral

it αt g h(t) ∶=
1

Γ(α)
∫

g

t

h(ν)

(ν − t)(1−α)
dν (3)

● Initialized Right-Sided Fractional Integral

I
t α
t g h(t) ∶= it αt g h(t) + ηrs (h,α, g, b, t) (4)

● Uninitialized Riemann-Liouville Fractional Derivative

dRLt α
e t f(t) ∶= (

d

dt
)

⌈α⌉

[ i
t ⌈α⌉−α
e t f(t)] (5)

● Uninitialized Caputo Fractional Derivative

dCt α
e t f(t) ∶= i

t ⌈α⌉−α
e t [(

d

dt
)

⌈α⌉

f(t)] (6)

● Initialized Fractional Derivative

Dt α
e t f(t) ∶= dt α

e t f(t) + ψ (f,α, a, e, t) (7)

● Uninitialized Right-Sided Riemann-Liouville Fractional
Derivative

dRLt α
t g h(t) ∶= (−1)

⌈α⌉
(

d

dt
)

⌈α⌉

[ i
t ⌈α⌉−α
t g h(t)] (8)

● Uninitialized Right-Sided Caputo Fractional Derivative

dCt α
t g h(t) ∶= (−1)

⌈α⌉
i
t ⌈α⌉−α
t g [(

d

dt
)

⌈α⌉

h(t)] (9)

● Initialized Right-Sided Fractional Derivative

Dt α
t g h(t) ∶= dt α

t g h(t) + ψrs (h,α, g, b, t) (10)

where Γ (α) is the Gamma function.
Remark 1: In (2) and in (7), the application of the initial-

ization function η(⋅, t) resp. ψ(⋅, t) necessitates to know the
function f(t) in interval t ∈ [a, e] (see [10]). To ensure that
a system is really at rest, the initialization function implies
that the function has to be known from t → −∞ according
to [10]. In the right-sided cases, the function h (t) has to be
known for t ∈ [g, b], so t→∞. Therefore, exact initialization
is not possible in practical application.

Remark 2: In (7), the specific operator depends on the used
uninitialized operator (5) or (6) for dt α

e t f (t) and is denoted
as DRLt α

e t or DCt α
e t . According to the uninitialized operator,

the related initialization function has to be used (see [10]).
This holds also true for the right-sided definition (10).

The left- and right sided fractional operators are connected
by a reflection operator Q.

Definition 2: Reflection Operator.
The reflection operator Q maps a left-sided function onto a
right-sided one (see [12]):

Qf (t) ∶= f (e + g − t) (11)

∶= f̃ (t) . (12)

B. Fractional Order Models

In this article, a commensurable fractional order model

DCt nα
e t yo (t) +

n−1

∑
i=0

ai DCt iα
e t yo (t) =

m

∑
j=0

bj DCt jα
e t uo (t)

(13)
where ai, bj ∈ R are unknown parameters, α ∈ R+ as
well as n,m ∈ N, n > m are assumed to be known. Only
stable systems will be considered and therefore, α ∈ (0,2)
is assumed because of the extended Matignon’s theorem
(see [13]). Nevertheless, the following derivations are done
without this restriction. uo (t) is a noisy observation of the
input signal u (t) and yo (t) of the output signal.

Applying (11) to (13) and using the relation of left-sided
and right-sided definitions given in [12], results in

DCt nα
t g ỹo (t)+

n−1

∑
i=0

ai DCt iα
t g ỹo (t) =

m

∑
j=0

bj DCt jα
t g ũo (t) (14)

where

ũo (t) = ũ (t) + ũe (t) (15)
ỹo (t) = ỹ (t) + ỹe (t) (16)

with the measurement disturbance ũe (t) and ỹe (t) is as-
sumed. Note, that the reflected signals marked by a tilde have
to be used. Another assumption regarding the input signal
ũ (t) is that the input signal ũ (t) describes no homogeneous
FDE of order mα.

Assumption 1: Non-Vanishing Input Signal.
If not every coefficient bj ∈ R vanishes,

m

∑
j=0

bj DCt jα
t g ũm (t) ≠ 0 (17)

is assumed to be true.
Assumption 2: Coprime Polynomials.

It is assumed that the polynomials

anλ
αn + an−1λ

αn−1 +⋯ + a0λ
α0 (18)

bmλ
βm + bm−1λ

βm−1 +⋯ + b0λ
β0 (19)

are coprime.

C. Fractional Integration by Parts
The integration by parts can be extended to functions with

non-integer order (see e.g. [5, 14, 15]). Regardless of the
type of the fractional operator, fubini’s theorem for fractional
integration [12] and common integration by parts has to be
applied to the integral of a product [16].

Regarding a derivative of a function h (t) described in
right-sided Caputo definition (6), the resulting fractional
integration by parts is

b

∫
a

dCt α
t b h (t) f (t)dt =

b

∫
a

h (t) dRLt α
a t f (t)dt

+

⌊α⌋

∑
k=0

(−1)
k
⎡
⎢
⎢
⎢
⎢
⎣

d⌊α⌋−kh (t)

dt⌊α⌋−k
dk i

t ⌈α⌉−α
a t f (t)

dtk

⎤
⎥
⎥
⎥
⎥
⎦

b

a

.

(20)

Remark 3: The type of the fractional derivative has
switched from right-sided C- to left-sided RL-derivative.



D. Fractional Modulating Function Method

The modulating function method is based on the integra-
tion by parts (see [17]). Considering the fractional integration
by parts, boundary terms occur. To eliminate these boundary
terms, the modulating function has to fulfill two properties
(see [17]). The integration by parts as well as the properties
are generalized for the fractional case if the system is
assumed to be of RL-type (see e.g. [5, 6, 14]). In this
article, a C-type system (14) is assumed and, therefore, the
fractional modulating function method is adjusted to this type
of system.

Assumption 3: Properties of the Modulating Functions.
The modulating function ϕ (t) fulfills the following proper-
ties:

(P1) ∶ ϕ (t) ∈ Cnα([e, g]),

(P2) ∶
dk i

t ⌈iα⌉−iα
e t ϕ (e)

dtk
=

dk i
t ⌈iα⌉−iα
e t ϕ (g)

dtk
= 0

∀k = 0,1, . . . , ⌊iα⌋ and i = 0,1, ..., n.
Remark 4: (P2) eliminates the boundary terms of (20).
Remark 5: The modulating function for system using

Caputo definition needs fractional order boundary terms. In
present methods, system (13) is usually described using RL-
derivatives. Therefore, integer order boundary terms occur
such as an integer order system is considered. Multiple
modulating functions are known for the integer case (see
e.g. [7]).

In [14], another property is given. So, the initialization
function of system (14) does not need to be considered. The
property is adapted to the used system (14):

(P3) ∶ dRLt iα
e t ϕ(t) = 0 ∀i = 0,1, ..., n

where t ∈ [a, e].
Applying the modulating function method to system (13)

and considering that Ass. 3 and (P3) are fulfilled, results in
g

∫
e

ỹ (t) dRLt nα
e t ϕ (t)dt +

n−1

∑
i=0

ai

g

∫
e

ỹ (t) dRLt iα
e t ϕ (t)dt

=
m

∑
j=0

bj

g

∫
e

ũ (t) dRLt jα
e t ϕ (t)dt.

(21)

III. AUTOMATIC DETERMINING OF THE
MODULATING FUNCTION

The drawback of the known modulating functions is the
parameterization which has to be adapted to every considered
system. To overcome this drawback, a control based method
for automatic determining of a modulating function is de-
scribed in this section. In subsection III-A, a precondition
is given which allows the separate identification of any
parameter of system (14). Using the properties given in
subsection II-D and the formulated precondition, a model
based auxiliary system is described in subsection III-B. In
subsection III-C, it is shown that the energy-optimal control
described in [18] minimizes the identification error occurring
through additional noise.

A. Parameter Specific Modulating Function

In this subsection, a precondition is given to identify sep-
arately every parameter. Therefore, system (21) is rewritten
as vector equation

g

∫
e

ỹ (t) dRLt nα
e t ϕ (t)dt

= [
g

∫
e
ỹ (t)ϕ (t)dt . . .

g

∫
e
ũ (t) dRLt mα

e t ϕ (t)dt]

⎡
⎢
⎢
⎢
⎢
⎢
⎣

a0
⋮

bm

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(22)
=m⊺

(g)p. (23)

If the modulating function is chosen such that

[
g

∫
e
ỹ (t)ϕs (t)dt . . .

g

∫
e
ũ (t) dRLt mα

e t ϕs (t)dt] = e⊺s

(24)
where es ∈ Rκ×1 and κ = n +m + 1 and

{es}k =

⎧⎪⎪
⎨
⎪⎪⎩

1 for k = s
0 else

(25)

is fulfilled, the s-th parameter ps of p is identified.
Definition 3: Parameter Specific Modulating Function.

A modulating function ϕ (t) which fulfills (P1), (P2) and
(24) is called parameter specific modulating function ϕs (t).

B. Model Based Auxiliary System

In this subsection, a model based auxiliary system is de-
fined in order to calculate the parameter specific modulating
function defined in previous section. The idea is to replace
every expression of the modulating function ϕ (t) in (P2)
and (21) as a combination of dRLt nα

e t ϕ (t) and a fractional
integration with corresponding order. Then, the model based
auxiliary system has to represent the connection of the
different derivatives of the modulating function ϕ (t), the
applied modulating function method (21) and the boundary
terms depending on dRLt nα

e t ϕ (t).
This subsection is structured as follows. First, the bound-

ary terms depending on dRLt nα
e t ϕ (t) are given. Next, the

structure of the model based auxiliary system composed of
four subsystems is defined. Each subsystem is explained
afterwards. Finally, the complete structure of the system
matrix and the input vector of the model based auxiliary
system are stated.

First, (P2) is rewritten in

dk i
t ⌈iα⌉−iα
e t ϕ (t)

dtk
= i
t λα+⌈(n−λ)α⌉−k
e t dRLt nα

e t ϕ (t) (26)

where k = 0,1, ..., ⌊(n − λ)α⌋ and λ = 1,2, .., n. A vector
γ is defined to take the rewritten boundary terms which are
given in (26) into account for i = 0,1, ..., n − 1.

Definition 4: Order Vector of Boundary Terms.

γ ∶= [β
⊺

1
β⊺
2

. . . β⊺
n
] (27)



where

β⊺
k
∶= [⌈(n − k)α⌉ + kα ⌈(n − k)α⌉ − 1 + kα

. . . 1 + kα]
(28)

and z = r
n

∑
k=1

⌈(n − k)α⌉ where

r ∶= min

⎧⎪⎪
⎨
⎪⎪⎩

k ∈ N+

RRRRRRRRRRR

max{γ}

k
< 1

⎫⎪⎪
⎬
⎪⎪⎭

(29)

and γ ∈ R1×z .
The next step is the definition of the model based auxiliary

system which is based on (22) and (27). Following, the
fractional pseudo state vector is defined.

Definition 5: Model Based Auxiliary System.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

dRL
t α

w
e t x

ϕ (t)
ẋ× (t)

ẋ∂n (t)

dRL
t

γ

r
e t x

∂r (t)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ψ (xϕ (t) , α
w
, a, e, t)

−x× (e) δ(t − e)
−x∂n (e) δ(t − e)

ψ (x∂r (t) ,
γ

r
, a, e, t)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= A (t)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

xϕ (t)
x× (t)
x∂n (t)
x∂r (t)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ bu∗ (t)

(30)

u∗ (t) ∶= dRLt nα
e t ϕ (t) (31)

where x (t) ∶ R → Rnw+κ+⌈nα⌉+z and u∗ (t) ∶ R → R. A
normalization factor w

w ∶= min{k ∈ N+
∣
α

k
< 1} (32)

is used to meet the requirement that all orders of a fractional
pseudo state space have to fulfill α ∈ (0,1]. The model based
auxiliary system consists of four sub-systems marked by ϕ,
×, ∂n and ∂r. Before system matrix A (t) and input vector
b are presented, each subsystem is described. System matrix
A (t) and input vector b will be a combination of the matrices
and vectors of the subsystems. First, the fractional pseudo
state vector is defined.

Definition 6: Fractional Pseudo State Vector.

xϕ (t) ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

xϕ0 (t)
⋮

xϕn−1 (t)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, xϕk (t) ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

dRLt kα
e t ϕ (t)

dRL
t α

w+kα
e t ϕ (t)

⋮

dRL
t

(w−1)α
w +kα

e t ϕ (t)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
(33)

x× (t) ∶=m⊺
(t) (34)

x∂n (t) ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

dRL
t nα−⌈nα⌉
e t ϕ (t)

dRL
t nα+1−⌈nα⌉
e t ϕ (t)

⋮

dRLt nα−1
e t ϕ (t)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(35)

xγ (t) ∶= dRL
t γ

e t ϕ (t) (36)

x∂r (t) ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x∂r1 (t)
⋮

x∂rG (t)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, x∂rk (t) ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

{xγ}k

dRL
t

{γ}
k

r
e t {xγ}k

⋮

dRL
t

(r−1){γ}
k

r
e t {xγ}k

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
(37)

where G =
n

∑
k=1

⌈(n − k)α⌉ and xϕ (t) ∶ R → Rnw×1, x× (t) ∶

R→ Rκ×1, x∂n (t) ∶ R→ R⌈nα⌉×1 and x∂r (t) ∶ R→ Rz×1.
After defining the model based auxiliary system and the

fractional pseudo state vector, the subsystems which connect
the fractional pseudo states with each other are explained.
Subsystem ϕ is representing the connection between the
different derivatives of the modulating function which are
needed in (21). The connection is a chain of integrators
whereby each integrator is of order α

w
and this chain can

be written as a system with a Jordan matrix where all
eigenvalues are zero:

dRL
t α

w
e t x

ϕ
(t) ∶= [

0nw−1×1 Inw−1×nw−1
0 01×nw−1

]xϕ (t)

+ [
0nw−1×1

1
]u∗ (t)

(38)

= Aϕxϕ (t) + bϕu∗ (t) (39)

where Aϕ ∈ Rnw×nw and bϕ ∈ Rnw×1.
Due to the application of the modulating function method,

subsystem × and subsystem ϕ are connected by the input and
output signal

ẋ× (t) ∶= [
−ỹ (t) ⋅Hn×nw

ũ (t) ⋅Hm+1×nw
]xϕ (t) (40)

= A×
(t)xϕ (t) (41)

where A×
(t) ∶ R→ Rκ×nw and

H ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

h⊺1
⋮

h⊺λ

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, {hk}l =

⎧⎪⎪
⎨
⎪⎪⎩

1 if l = (k − 1)w + 1

0 else
(42)

and λ = n or λ = m + 1 depending on whether the output
ỹ (t) or input signal ũ (t) is considered.

The third subsystem ∂n connects the control input u∗ (t)
with the boundary terms (P2) for i = n and is a chain of
integrators whereby each integrator is of order 1

ẋ∂n (t) ∶= [
0⌊nα⌋×1 I⌊nα⌋×⌊nα⌋

0 01×⌊nα⌋
]x∂n (t)

+ [
0⌊nα⌋×1

1
]u∗ (t)

(43)

= A∂nx∂n (t) + b∂nu∗ (t) (44)



where A∂n ∈ R⌈nα⌉×⌈nα⌉ and b∂n ∈ R⌈nα⌉×1.
The last subsystem ∂r connects the control input u∗ (t)

with the remaining boundary terms (P2). Each boundary
term is represented by a chain of integrators whereby each
integrator is of corresponding order given in γ and can be
interpreted as a subsystem of the subsystem ∂r. Considering
the k-th subsystem

dRL
t

{γ}
k

r
e t x∂rk (t) ∶= [

0r−1×1 Ir−1×r−1
0 01×r−1

]x∂rk (t)

+ [
0r−1×1

1
]u∗ (t) .

(45)

Combining all subsystems of subsystem ∂r yields (46).
Regarding the structure, the model based auxiliary system
has chains of integrators which are parallel, but which have
the same input.

Finally, all matrices and vectors of the subsystems are
combined to the system matrix

A (t) ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Aϕ 0nw×κ 0nw×⌈nα⌉ 0nw×z
A×

(t) 0κ×κ 0κ×⌈nα⌉ 0κ×z
0⌈nα⌉×nw 0⌈nα⌉×κ A∂n 0⌈nα⌉×z

0z×nw 0z×κ 0z×⌈nα⌉ A∂r

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(48)

and input vector of the model based auxiliary system

b ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

bϕ

0κ×1
b∂n

b∂r

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (49)

C. Control Based Identification

A control input of the model based replacement system is
a parameter specific control input, if it is derived from the
parameter specific modulating function ϕs (t). To determine
such a control input, the initialization pseudo state and the
final pseudo state have to be stated.

Definition 7: Parameter Specific Control Input.
A control input u∗ (t) steering the model based replacement
system (30) into the final pseudo state

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

xϕ (g)
x× (g)
x∂n (g)
x∂r (g)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
es
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(50)

from the initialization pseudo state

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ψ (xϕ, α
w
, a, e, t)

−x× (e)
−x∂n (e)

ψ (x∂r ,
γ

r
, a, e, t)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(51)

in a given time is called parameter specific control input
u∗s (t).

Assuming such a parameter specific control input u∗s (t)
is applied and considering the definition of the control input
(31), (22) results in

g

∫
e

ỹ (t) dRLt nα
e t ϕ (t)dt = ps. (52)

Because the initialization pseudo state of the model based
replacement system is zero, the control input of the model
based replacement system has to be zero for t → −∞.
Therefore, the modulating function is zero by definition
for t ∈ [a, e] and, hence, all occurring derivatives. So, the
parameter specific control input fulfills (P3).

In the following, the identification error which can occur
because of noisy observation is considered.

Lemma 1: Identification Error.
The identification error is

∆ps =

g

∫
e

ỹe (t) dRLt nα
e t ϕ (t)dt −m⊺

e (g)p (53)

where

m⊺
e (g) ∶=

⎡
⎢
⎢
⎢
⎢
⎣

g

∫
e

ỹe (t)ϕs (t)dt . . .

g

∫
e

ũe (t) dRLt mα
e t ϕs (t)dt

⎤
⎥
⎥
⎥
⎥
⎦

.

(54)

considering additive noise.
Proof: Assuming the observation of the input and output

signal is superposed by additive noise (15) and (16) and
inserting the noisy observation in (22) yields

g

∫
e

ỹ (t) dRLt nα
e t ϕ (t)dt =m⊺

(g)p, (55)

g

∫
e

ỹm (t) dRLt nα
e t ϕ (t)dt −

g

∫
e

ỹe (t) dRLt nα
e t ϕ (t)dt =

(m⊺
m (g) −m⊺

e (g))p

(56)

where

m⊺
m (g) ∶=

⎡
⎢
⎢
⎢
⎢
⎣

g

∫
e

ỹo (t)ϕs (t)dt . . .

g

∫
e

ũo (t) dRLt mα
e t ϕs (t)dt

⎤
⎥
⎥
⎥
⎥
⎦

.

(57)

Considering (24) for the measured data ỹo (t) and ũo (t),
(56) results in

p̂s −

g

∫
e

ỹe (t) dRLt nα
e t ϕ (t)dt = ps −m

⊺
e (g)p. (58)

Calculating the difference ∆ps ∶= p̂s − ps leads to the in
identification error given in Lem. 1.

Lemma 2: Minimum of Identification Error.
Using the energy-optimal control (106) in appendix leads to
a minimal upper limit of the identification error

∣∆ps∣ ≤ P (e, g, p, ỹe (t) , u
∗
s (t))

⋅

√
2

Γ(2δ)
it 2−2δ
e g J(u∗s (t) , e, g)

(59)

where P (e, g, p, ỹe (t) , ũe (t)) is given in (60).



dRL
t

γ

r
e t x

∂r (t) ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0r−1×1 Ir−1×r−1
0 01×r−1

⋱

0r−1×1 Ir−1×r−1
0 01×r−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

x∂r (t) +

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0r−1×1
1
⋮

0r−1×1
1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

u∗ (t) (46)

= A∂rx∂r (t) + b∂ru∗ (t) (47)

where A∂r ∈ Rz×z and b∂r ∈ Rz×1.

P (e, g, p, ỹe (t) , ũe (t)) = (1 +
n

∑
i=1

(g − e)2i

Γ(i)(2i − 1)2i
∣pn−i+1∣)

¿
Á
Á
ÁÀ

g

∫
e

∣ỹe (t)∣
2

+
⎛

⎝

n

∑
j=n−m

(g − e)2j

Γ(j)(2j − 1)2j
∣p2n−j+1∣

⎞

⎠

¿
Á
Á
ÁÀ

g

∫
e

∣ũe (t)∣
2

(60)

Proof: Applying the triangle inequality on (53) yields

∣∆ps∣ ≤

RRRRRRRRRRRR

g

∫
e

ỹe (t) dRLt nα
e t ϕ (t)dt

RRRRRRRRRRRR

+ ∣m⊺
e (g)p∣ . (61)

Applying Cauchy-Schwarz inequality results in

∣∆ps∣ ≤

¿
Á
Á
ÁÀ

g

∫
e

∣ỹe (t)∣
2

¿
Á
Á
ÁÀ

g

∫
e

∣u∗s (t)∣
2

+
n

∑
i=1

¿
Á
Á
ÁÀ

g

∫
e

∣ỹe (t)∣
2

¿
Á
Á
ÁÀ

g

∫
e

∣ dRL
t (i−1)α
e t ϕs (t)∣

2
∣pi∣

+
m

∑
j=0

¿
Á
Á
ÁÀ

g

∫
e

∣ũe (t)∣
2

¿
Á
Á
ÁÀ

g

∫
e

∣ dRLt jα
e t ϕs (t)∣

2
∣pn+j+1∣ .

(62)

Next, a bound of the integrals depending on ϕs (t) is
calculated
g

∫
e

∣ dRL
t (n−k)α
e t ϕs (t)∣

2
dt =

g

∫
e

∣ it kαe t dRLt nα
e t ϕs (t)∣

2
dt

(63)
First, the fractional derivative is separated in a fractional
integration of order kα and a fractional derivative of order
nα. Second, the order of integration is switched and the
absolute value is drawn in the integral

g

∫
e

∣ dRL
t (n−k)α
e t ϕs (t)∣

2
dt ≤ it kαe t

g

∫
e

∣u∗s (t)∣
2

dt. (64)

Third, integrals are evaluated for α = 1 considering mean
value theorem [19]

g

∫
e

∣ dRL
t (n−k)α
e t ϕs (t)∣

2
dt ≤

(g − e)2k

Γ(k)(2k − 1)2k

g

∫
e

∣u∗s (t)∣
2

dt.

(65)

Inserting in (62) yields

∣∆ps∣ ≤ P (e, g, p, ỹe (t) , ũe (t))

¿
Á
Á
ÁÀ

g

∫
e

∣u∗s (t)∣
2 (66)

where P (e, g, p, ỹe (t) , ũe (t)) is given in (60).
The integral of the parameter specific control input is

rewritten using fractional integrals
g

∫
e

∣u∗s (t)∣
2
=

2

Γ(2δ)
it 2−2δ
e g it 2δ

e t

Γ(2δ)

2

∣u∗s (t)∣
2

(g − t)
(67)

=
2

Γ(2δ)
it 2−2δ
e g J(u∗s (t) , e, t) (68)

where δ = min{{α}k , k = 1, ..., l ∣{α}k < 1}. Because
J(u∗s (t) , e, t) is positive on [e, g] and increases with in-
creasing time, the maximum is reached for t = g

g

∫
e

∣u∗s (t)∣
2
≤

2

Γ(2δ)
it 2−2δ
e g J(u∗s (t) , e, g) (69)

and, therefore, the identification error is bounded by

∣∆ps∣ ≤ P (e, g, p, ỹe (t) , u
∗
s (t))

⋅

√
2

Γ(2δ)
it 2−2δ
e g J(u∗s (t) , e, g).

(70)

Comparing J (u∗s (t) , e, g) in (70) and (108) completes
the proof.

IV. PRACTICAL APPLICABILITY OF THE
AUTOMATIC DETERMINING

In subsection III-C, it is shown that the energy-optimal
control minimizes the upper limit of the identification error
considering additional noise. In classical case, the parallel
chains of integrators would be a reason of non-controllability.
Because of different fractional orders of the model based
auxiliary system, it is possible that the auxiliary system is
complete controllable. In this section, it is shown using the



Gramian (107) defined in [18] that the model based auxiliary
system is controllable under some condition.

Evaluating (107) for the system matrix (48) and the input
vector (49), the scaled Gramian can be written as

K (e, g) ∶=

g

∫
e

k (τ, g,A)k⊺ (τ, g,A⊺
)dτ (71)

where

k⊺ (t, g,A⊺
) =

⎡
⎢
⎢
⎢
⎢
⎣

(g − t)
nα−1

Γ(nα)
,
(g − t)

(nw−1) αw−1

Γ((nw − 1) α
w
)
, . . . ,

(g − t)
α
w−1

Γ( α
w
)

,

− I
t nα
t g ỹ (t) ,− I

t (n−1)α
t g ỹ (t) , . . . ,− It α

t g ỹ (t) ,

− I
t nα
t g ũ (t) ,− I

t (n−1)α
t g ũ (t) , . . . ,− I

t (n−m)α
t g ũ (t) ,

(g − t)
⌈nα⌉−1

Γ(⌈nα⌉)
,
(g − t)

⌈nα⌉−2

Γ(⌈nα⌉ − 1)
, . . . ,1,

(g − t)
{γ}

1
−1

Γ({γ}
1
)

,
(g − t)

(r−1)
{γ}

1
r −1

Γ((r − 1)
{γ}

1

r
)

, . . . ,
(g − t)

{γ}
1

r −1

Γ(
{γ}

1

r
)

,

. . . ,

(g − t)
{γ}

k
−1

Γ({γ}
k
)

,
(g − t)

(r−1)
{γ}

k
r −1

Γ((r − 1)
{γ}

k

r
)

, . . . ,
(g − t)

{γ}
k

r −1

Γ(
{γ}

k

r
)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(72)

where k indicates the last element in γ and (k⊺ (t, g,A⊺
))

⊺
=

k (t, g,A).
In the following, sets depending of the fractional order α

and the system order n are given as well as a Q-Function
which describes all fractional orders occurring in the model
based auxiliary system. But before, auxiliary sets have to be
defined.

Definition 8: Auxiliary Sets.

K1 ∶= {k1 ∈ N∣1 ≤ k1 ≤ nw} (73)
K2 ∶= {k2 ∈ N∣1 ≤ k2 ≤ ⌈nα⌉} (74)
K3 ∶= {k3 ∈ N∣1 ≤ k3 ≤ r} (75)
K4,k ∶= {k4 ∈ N∣0 ≤ k4 ≤ ⌊kα⌋} (76)

Definition 9: Set of Fractional Order.

M1 ∶= {m1 ∈ R ∣∃k1 ∈ K1 ∶m1 = k1
α

w
− 1} , (77)

M2 ∶= {m2 ∈ N+
∣∃k2 ∈ K2 ∶m2 = ⌈nα⌉ − k2 } , (78)

M3 ∶= M3,0 ∩ ⋅ ⋅ ⋅ ∩M3,n−1, (79)

M3,k ∶= {m3 ∈ R ∣∃k3 ∈ K3 ∧ ∃k4 ∈ K4,k ∶
⌈k⌉

r

m4 = k3
⌈kα⌉ − k4 + (n − k)α

r
− 1} . (80)

Definition 10: Q-Function.

Q (t) ∶=
nw

∑
k=1

qnw−k+1
(g − t)

k αw−1

Γ (k α
w
)

+

⌊nα⌋

∑
k=0

qnw+κ+1−k+1+⌈nα⌉ (g − t)
k

+
n−1

∑
i=0

⌊jα⌋

∑
k=0

r

∑
l=1

qi,k,l
(g − t)

l
⌈iα⌉−k+(n−i)α

r −1

Γ (l ⌈iα⌉−k+(n−i)α
r

)

(81)

Lemma 3: Controllability of the Model Based Auxiliary
System.
The model based auxiliary system is complete controllable
if the intersection of the sets M1, M2 and M3 depending
on fractional order α and the system order n is empty

M1 ∩M2 ∩M3 = ∅ (82)

and the input signal u∗ (t) is chosen, such that

d
τ nw−1

w α+1
τ te

Q (τ) +
m

∑
j=0

qnw+n+j+1 dτ jα
τ te

ũ (τ) ≡ 0 (83)

is only fulfilled for the trivial solution.
Proof: If the Gramian (107) of the model based auxiliary

system is regular resp. the time functions of k⊺ (t, g,A⊺
) are

linear independent, the model based auxiliary system will be
complete controllable (see [20]).

So, it has to be shown that k⊺ (t, g,A⊺
) q ≡ 0 holds

only true for q = 0. In the following, q ≠ 0 is assumed.
Considering the entries without output or input signal in (72),
it is equivalent to the first term of the sum in (83). Because it
is of polynomial type, single terms can only eliminate each
other if and only if the exponents are equal. So, considering
non-vanishing coefficients, Q (t) ≡ 0 can never occur if
M1 ∩M2 ∩M3 = ∅ holds true.

Assuming that all elements of q
k
= 0 for the polynomial

type elements of (72), the second term of the sum in
(83) can be transformed into the form (14) by right-sided
differentiation of order nα

− qnw+1ỹ (t) − ⋅ ⋅ ⋅ − qnw+n DC
t (n−1)α
t g ỹ (t)

+ qnw+n+1ũ (t) + ⋅ ⋅ ⋅ + qnw+n+m+1 DCt mα
t g ũ (t) ≡ 0

(84)

which is a FDE of order (n−1)α. Because of (18) and (19),
(14) is explicit and ỹ (t) and ũ (t) can only solve FDEs of
order nα. So, ỹ (t) can only vanish if ũ (t) is a homogeneous
FDE

qnw+n+1ũ (t) + ⋅ ⋅ ⋅ + qnw+n+m+1 DCt mα
t g ũ (t) ≡ 0 (85)

which is excluded by Ass. 1.
Therefore, if the input signal is chosen according to (83)

and the intersection of the sets (77)-(79) depending on
fractional order α and system order n is empty, the model
based auxiliary system is complete controllable.
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Fig. 1. Input and output signals for parameter identification.

V. NUMERICAL EXAMPLE

In this subsection, the automatic determining of a modulat-
ing function and the parameter identification are illustrated.
The following system is considered

DCt α
t g ỹm (t) + a0ỹm (t) = b0ũm (t) (86)

where n = 1, m = 0 and α = 0.35 are assumed to be known
and a0 = 2 as well as b0 = 1 are unknown. The simulation is
started at a = 0 s and the identification at e = 5 s. The duration
of simulation is 50 s with a sampling time of Ts = 0.01 s
and the duration of identification is 42.5 s. A pseudorandom
binary sequence is used as an input signal. The input, output
and noisy output (SNR = 30 dB) signals are shown in Fig. 1.
The starting time of identification is marked.

To state the model based replacement system, the frac-
tional orders of the boundary terms have to be calculated,
first. Evaluating (27) yields γ = 1.35 and r = 2. Because
⌈nα⌉ = 1, the following fractional pseudo state space yields

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

dRL
t α

w
e t x

ϕ (t)
ẋ× (t)

ẋ∂n (t)

dRL
t

γ

r
e t x

∂r (t)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0
−ỹ (t) 0 0 0 0 0
ũ (t) 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

xϕ (t)
x× (t)
x∂n (t)
x∂r (t)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
0
0
1
0
1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

u∗ (t) .

(87)

Depending on the requested parameter, here e.g. a0, the
final pseudo state is

x(g) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
1
0
0
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(88)
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Fig. 2. Parameter specific control input and course of unknown parameter.

and, therefore, the parameter is identified by evaluating (22)

g

∫
e

ỹ (t) dRLt α
e t ϕ1 (t)dt = a0. (89)

To calculate the parameter specific control input (72) has
to be evaluated. Therefore, the matrix approach of [21] is
used. Because of Lem. 6, the uninitialized integration can be
used.

Because one measurement of the input and output signal
can be used to identify all parameters, the parameter specific
control input as well as the course of the parameters of a0
and b0 are illustrated in Fig. 2. At the end of the steering
t = 45 s, parameter a0 = 2 resp. b0 = 1 in the absence of
noise and a0 = 1.995 resp. b0 = 0.996 in the illustrated noisy
case.

VI. CONCLUSIONS

The modulating function method is often used to identify
the parameter of a fractional order model (see e.g. [4, 5,
6]). The main drawback is that a lot of parameters of
the modulating function have to be adapted to the actual
problem.

In this article, a model based auxiliary system is defined.
This model based auxiliary system is used to determine
a modulating function automatically. So, the drawback of
heuristic parameterization of the modulating function is
transferred into control of the model based auxiliary sys-
tem. Another characteristic is that every parameter can be
identified separately, although only one measurement is
done. Considering additive noise, it is also shown that the
energy optimal control leads to a minimal upper limit of
the identification error regarding the used objective function.
Another advantage using the model based auxiliary system
is that no initialization function of the original system has to
be considered as long as no initialization pseudo state of the
model based auxiliary system is assumed. Considering the
control of a system, the controllability of the system has to
be shown. In the article, requirements are given which have
to be fulfilled by the model based auxiliary system and its
control input for complete controllability.



APPENDIX

A. SYSTEM THEORETICAL ASPECTS

1) Fractional Pseudo State Space:
The model based replacement system is a fractional pseudo

state space. In [18], a fractional pseudo state space is defined
as follows.

Definition 11: Fractional Pseudo State Space.

With k, nk ∈ N and n =
N

∑
k=0

nk follows

d
t α
e t x (t)+ψ (x (t) , α, a, e, t) = A (t)x (t)+B (t)u (t) (90)

where αk ∈ (0,1] , xk (t) ∶ R → Rnk and x (t) ∶ R → Rn is
denoted as fractional pseudo state vector, ψ

k
(⋅, t) ∶ R→ Rnk

and ψ(⋅, t) ∶ R → Rn is the initialization function vector,
the system matrix A (t) ∶ R → Rn×n as well as the input
matrix B (t) ∶ R→ Rn×p are continuous and bounded matrix
functions and input vector u (t) ∶ R → Rp is a piece-wise
continuous vector function.

Remark 6: It should be noted that in Def. 11, depending
whether the pseudo state space is based on (5) or (6), the
specific expression has to be used.

Remark 7: The notation for the vectorial fractional deriva-
tive d

t α
e t x (t) in (90) is

d
t α
e t x (t) = [

dt α1

e t x1 (t)

dt α2

e t x2 (t)
] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

dt α1
e t x1,1 (t)
dt α1
e t x1,2 (t)
dt α2
e t x2,1 (t)
dt α2
e t x2,2 (t)
dt α2
e t x2,3 (t)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(91)

where α ∈ R2×1, x1 ∈ R2×1 and x2 ∈ R3×1, so x ∈ R5×1.

2) Generalized Peano-Baker Series and R-Matrix Func-
tion:

In [22], the uninitialized generalized peano-baker series
and the R-matrix function are defined. These matrix func-
tions are required to solve time-variant fractional pseudo
state spaces of type (90). The drawback is that the integration
of the system matrix A (t) can only be started at t = a where
∀t̃ ≤ a ∶ A (t̃) = 0 and ∀t̃ ≤ a ∶ B (t̃) = 0 hold. Therefore, the
both matrix functions are extended to the initialized case.

Definition 12: Initialized Generalized Peano-Baker Series
● Left-Sided F -Matrix

Fα (τ, t,Λ) ∶= I + I
ξ1 α
τ t Λ (ξ1)

+ I
ξ1 α
τ t Λ (ξ1)

∞

∑
k=1

k

∏
j=1

I
ξj+1 α
τ ξj

Λ (ξj+1)
(92)

where t ≤ τ
● Right-Sided F -Matrix

Fα,rs (t, τ,Λ) ∶= I + I
ξ1 α
t τΛ (ξ1)

+ I
ξ1 α
t τΛ (ξ1)

∞

∑
k=1

k

∏
j=1

I
ξj+1 α
ξj τΛ (ξj+1)

(93)

where τ ≤ t

Definition 13: Initialized R-Matrix

● Left-Sided R-Matrix

Rα (τ, t,Λ) ∶= dRL
τ (o−α)T

τ t Fα (τ, t,Λ) (94)

where t ≤ τ and o consists only of ones and has
the dimension of α (see Rem. 7). Here, the transpose
operator ⊺ marks that the derivative is applied column-
wise instead of row-wise.

● Right-Sided R-Matrix

Rα,rs (t, τ,Λ) ∶= dRL
τ (o−α)T

t τ Fα,rs (t, τ,Λ) (95)

where τ ≤ t

The uninitialized RL-derivative in (94) and (95) is valid
because the derivative with respect to the lower bound resp.
upper bound is calculated. Therefore,

lim
τ→t−

it ατ t f(t) = 0 (96)

and

lim
τ→t+

it αt τ h(t) = 0 (97)

hold true by applying the definitions (see [12]). Because of
the definition It α

τ t f(t) = 0,∀τ > t and It α
t τ f(t) = 0,∀t > τ ,

it follows that no initialization in (94) and (95) is needed.
Lemma 4: Derivative Property of R-Matrix.

The derivative property of the left-sided

dt α
τ t Rα (τ, t,Λ) = Λ (t)Rα (τ, t,Λ) . (98)

and right-sided R-Matrix

dt α
t τRα,rs (t, τ,Λ) = Λ (t)Rα,rs (t, τ,Λ) . (99)

still holds true.
Proof: Because of the uninitialized RL-derivative in (98)

and (94), the derivative order in (98) can be commuted (see
[22]):

dt α
τ t Rα (τ, t,Λ) = dt α

τ t dRL
τ (1−α)T

τ t Fα (τ, t,Λ) (100)

= dRL
τ (1−α)T

τ t dt α
τ t Fα (τ, t,Λ) . (101)

Therefore, dt α
τ t Fα (τ, t,Λ) will be investigated first. Defi-

nitions (2) and (92) are applied in (102) and the uninitialized
part is rearranged as described in [22].

Applying (103) in (101) yields (104). The result of the
first summand is known (see [22]). Exchanging the derivative
order and using that the lower bound is constant, the second
summand becomes zero. Therefore, the derivative property
of the R-Matrix

dt α
τ t Rα (τ, t,Λ) = Λ (t)Rα (τ, t,Λ) . (105)

holds still true. The right-sided case follows these steps
applying the right-sided definitions.



dt α
τ t Fα (τ, t,Λ) = dt α

τ t I + dt α
τ t [ iξ1 α

τ t Λ (ξ1) + η (Λ (ξ1) , α, a, τ, t)]

+ dt α
τ t [ iξ1 α

τ t Λ (ξ1) + η (Λ (ξ1) , α, a, τ, t)]
∞

∑
k=1

k

∏
j=1

I
ξj+1 α
τ ξj

Λ (ξj+1)
(102)

= dt α
τ t I +Λ (t)Fα (τ, t,Λ) + dt α

τ t η (Λ (ξ1) , α, a, τ, t)
⎛

⎝
I +

∞

∑
k=1

k

∏
j=1

I
ξj+1 α
τ ξj

Λ (ξj+1)
⎞

⎠
(103)

dRL
τ (1−α)T

τ t dt α
τ t Fα (τ, t,Λ) = dRL

τ (1−α)T

τ t ( dt α
τ t I +Λ (t)Fα (τ, t,Λ))

+ dRL
τ (1−α)T

τ t

⎛

⎝
dt α
τ t η (Λ (ξ1) , α, a, τ, t) + dt α

τ t η (Λ (ξ1) , α, a, τ, t)
∞

∑
k=1

k

∏
j=1

I
ξj+1 α
τ ξj

Λ (ξj+1)
⎞

⎠

(104)

3) Energy Optimal Control of a Fractional Pseudo State
Space:

The energy optimal control of a pseudo state space (90) is
given in [18]. Because the derivative properties (98) and (99)
holds true in the initialized case, the energy optimal control
remains as stated.

Definition 14: Energy Optimal Control.

u (t) = (g − t)
2−2δ

B⊺
(t)Rα,rs (t, g,A

⊺
)K−1

⋅

⎡
⎢
⎢
⎢
⎢
⎣

x (g) +

g

∫
e

Rα (τ, t,A⊺
)ψ (x (t) , α, e, g, t)

⎤
⎥
⎥
⎥
⎥
⎦

(106)

where α ∈ Rl×1, {α}k ∈ (0,1], k = 1, ..., l and

K (e, g) =

g

∫
e

(g − t)
2−2δ

Rα (τ, g,A)B (t)

⋅B⊺
(t)Rα,rs (τ, g,A

⊺
)dt

(107)

steers a time-variant fractional pseudo state space of type
(90) from an initialization function vector ψ (x (t) , α, e, g, t)
to any given final pseudo state vector x (g) and minimizes
the specific performance index regarding the control energy

J (u (t)) =
1

2

g

∫
e

(g − τ)
2δ−2

u⊺ (τ)u (τ)dτ. (108)
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