
Semantic Modelling of Control Logic in
Automation Systems

Knowledge-Based Support of the Engineering and Operation of Control
Logic in Building and Industrial Automation Systems

Zur Erlangung des akademischen Grades eines

DOKTORS DER INGENIEURWISSENSCHAFTEN (Dr.-Ing.)

von der KIT-Fakultät für Maschinenbau des
Karlsruher Instituts für Technologie (KIT)

genehmigte

DISSERTATION

von

M. Sc. Georg Ferdinand Schneider

Tag der mündlichen Prüfung: 18. Februar 2019

Hauptreferentin: Prof. Dr. Dr.-Ing. Dr. h. c. Jivka Ovtcharova
Korreferent: Prof. Dr.-Ing. Hendro Wicaksono

This document is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0):
https://creativecommons.org/licenses/by-sa/4.0/deed.en

This document is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0):
https://creativecommons.org/licenses/by-sa/4.0/deed.en

https://creativecommons.org/licenses/by-sa/4.0/deed.en

Zusammenfassung

Automatisierungssysteme schaffen in vielen Bereichen die Grundlagen, auf denen heutige, mo-
derne Industriegesellschaften basieren. Obwohl in der Vergangenheit wichtige Errungenschaften
in der Forschung zur Automatisierungstechnik erreicht wurden, bestehen weiterhin Herausfor-
derungen bezüglich des Engineerings und des Betriebs von Automatisierungssystemen, die die
Nutzung und den Einsatz dieser Systeme erschweren. Als Gründe für diese Probleme sind
die Komplexität dieser Systeme durch ihre schiere Größe und ihre Komplexität aufgrund der
Kombination von cyber und physikalischen Komponenten zu nennen. Des Weiteren führt der
zunehmende Einsatz von Informations- und Kommunikationstechnologien zu einer weiteren
Verflechtung dieser System über ihre bisherigen, hierarchischen Strukturen hinaus und damit
zu einer weiteren Zunahme der Komplexität. Eine weitere Herausforderung ist, dass für ein
reibungsloses Engineering und einen reibungslosen Betrieb dieser Systeme eine Vielzahl von
Beteiligten aus unterschiedlichen Fachdisziplinen zusammenarbeiten müssen. Dies wird durch
die Heterogenität der eingesetzten Softwarewerkzeuge und Datenformate erschwert, die einen
automatisierten Austausch von Wissen behindern.
Folglich besteht ein dringender Bedarf an Methoden, die die wissensintensiven Aufgaben in
Zusammenhang mit dem Engineering und dem Betrieb von Automatisierungssystemen im
Kontext heterogener Softwarewerkzeuge und Datenformate unterstützen und, als Antwort auf
die Komplexitätszunahme, automatisieren. Eine Voraussetzung für die Entwicklung solcher
Methoden ist die formale Repräsentation von Domänenwissen mit Hilfe eines Modells. Die
Analyse des Stands der Technik in dieser Arbeit zeigt, dass kein Ansatz existiert der es erlaubt
einen wesentlichen Bestandteil der Domäne Automatisierungssystem, die Domänen Regelung
und Steuerung und Regelungslogik, explizit zu beschreiben und dieses Wissen mit angren-
zenden Domänen zu vernetzen.
Ein wesentlicher Beitrag dieser Arbeit besteht in der Vorstellung eines neuartigen, semantischen
Modells, dass es erlaubt, sowohl Wissen der Domänen Regelung und Steuerung, als auch
der Domäne Regelungslogik explizit und formal zu beschreiben. Zusätzlich ist es nun erst-
mals möglich dieses Wissen mit angrenzendem Domänenwissen, wie zum Beispiel aus dem
Maschinenbau oder der Elektrotechnik, zu vernetzen. Das Modell wird unabhängig von der
Implementierung in der Unified Modeling Language spezifiziert und mit Hilfe von Semantic
Web Technologien implementiert. Das Modell ist in zwei Schichten aufgebaut. Auf der oberen
Ebene wird allgemeines Wissen der Domäne Regelung und Steuerung modelliert, dass, wie
in der Arbeit demonstriert, leicht mit angrenzenden Domänen verbunden werden kann. Auf

i

Zusammenfassung

der unteren Ebene wird das allgemeine Wissen der Domäne Regelung und Steuerung, um die
Domäne der Regelungslogik erweitert und für die jeweilige Regelungslogik explizit spezifiz-
iert.
Zur Validierung des Modells wird in zwei separaten Fallstudien evaluiert, ob es das not-
wendige Wissen für zwei neuartige wissensbasierte Methoden repräsentieren kann. In der
ersten Fallstudie wird eine wissensbasierte Methode zur Verbesserung des Betriebs von Auto-
matisierungssystemen in Gebäuden prototypisch umgesetzt und getestet. Dabei ermöglicht
das entwickelte Modell Faktenwissen, das aus dem Engineering der Regelungslogik gewonnen
wurde, formal zu beschreiben. Dieses Wissen wird dann genutzt, um automatisiert Regeln
zu instanziieren, die es ermöglichen automatisiert zu überprüfen, ob die tatsächlich imple-
mentierte Regelungslogik sich im Betrieb genauso verhält wie ursprünglich entworfen. In der
zweiten Fallstudie wird eine wissensbasierte Methode zur Unterstützung des Engineerings von
industriellen Automatisierungssystemen vorgestellt. Hier wird gezeigt, dass, basierend auf
dem neuen Modell, die gleichzeitige formale Verifikation von verschiedenen Regelungsver-
fahren und die gleichzeitige formale Verifikation von Regelungsverfahren und Wissen über
die automatisierte Anlage möglich ist. Zusätzlich, wird gezeigt, dass die Methode inkremen-
telle Aktualisierungen des Faktenwissens ermöglicht und ein bidirektionaler Austausch von
Fallwissen zwischen dem ursprünglichen Format und der Wissensbasis möglich ist.
Durch die Schaffung des neuen Modells ist nun die Möglichkeit gegeben formal und explizit
Wissen der Domänen Regelung und Steuerung, sowie Regelungslogik zu beschreiben. Basi-
erend auf diesem Modell werden zwei neuartige, wissensbasierte Methoden vorgestellt, die es
ermöglichen das Engineering und den Betrieb von Automatisierungssystemen zu vereinfachen
und zu verbessern.

ii

Abstract

Automation systems are a key component of modern society. Despite important achievements
by automation science and technology in the past, challenges related to the engineering and
operation remain in the future and impede their deployment and use. In particular, this is
caused by their complexity arising from their size, their cyber-physical nature and the further
introduction of advanced information and communication technologies in the domain, which
cause the dissipation of former hierarchical architectures prevalent in both building automation
and industrial automation systems. In addition, the heterogeneity of tools and data formats
utilised by various stakeholders during their engineering and operation causes problems in
their development and deployment.
Hence, there is a strong need to develop methods, which support the knowledge-intensive tasks
associated to the engineering and operation of these systems as well as automate these tasks to
cope with the inherent complexity. A prerequisite to develop these methods is the represent-
ation of domain knowledge by means of a formal domain model. The analysis of the current
state of the art as presented in this thesis reveals the absence of a formal model to explicitly
describe domain knowledge on the automatic control and control logic domains.
The contribution aspect and novelty of this thesis is the presentation of a semantic model, to
formally and explicitly describe domain knowledge on the automatic control and control logic
domains in automation systems and link this knowledge to adjacent domains. The model is
specified independently from its implementation in the Unified Modelling Language (UML)
using an object-oriented modelling methodology and is implemented using semantic web tech-
nologies following an ontology-based approach. The model is separated in two layers to enable
a seamless integration of the novel model with adjacent domains, such as mechanical and elec-
trical engineering, and extend the model with explicit formal descriptions of different control
logic types.
To validate the capabilities of the model in describing the respective domain knowledge, its
ability to fulfil the knowledge requirements of two novel knowledge-based methods presented
in two separate use cases is tested. In the first use case, a knowledge-based method to support
the operation of control logic in building automation systems is introduced. The developed
method allows the automated, rule-based verification of designed control logic with monitoring
data obtained from a building. In the second use case, again, the novel formal domain model
is used to enable a knowledge-based method for the support of the engineering of control
logic in industrial automation. The method allows to automate the formal verification of the

iii

Abstract

designed control logic for different types of control logic and plant data, to incrementally verify
changes and updates to the automatic control logic design and to support the bidirectional flow
of information from the model to the target format and vice versa.
The formal definition of domain knowledge in automation systems offers the possibility to
reduce the effort required for the engineering and operation of these systems. This thesis con-
tributes to this effort by providing means to integrate knowledge on the control and control
logic domains.

iv

Acknowledgements

This thesis is the result of my research activity carried out from February 2015 until October
2018 during my time as a research associate at the Fraunhofer Institute for Building Physics
(IBP) in Nürnberg, Germany as well as a PhD candidate at the Department of Mechanical
Engineering at the Karlsruhe Institute of Technology (KIT) in Karlsruhe, Germany.
First of all I would like to express my special thanks for my supervisor Prof. Dr. Dr.-Ing.
Dr. h. c. Jivka Ovtcharova, Head of the Institute for Information Management in Engineering
(IMI) at KIT. Her thorough advice and guidance encouraged me many times and thrived me to
pursue my research.
I would like to thank Prof. Dr.-Ing. Hendro Wicaksono for taking the role as the co-supervisor
of my thesis as well as being a mentor and friend.
Special thanks go to my colleagues and supervisors from IBP. First of all, I would like to thank
Simone Steiger for giving me the opportunity and freedom to pursue the research documented
in this thesis as well as her advice and guidance in many occasions. I would like to thank
Dr. Georgios D. Kontes for his support, his excellence in being a devil’s advocate and his
friendship. Special thanks go to Prof. Dr.-Ing. Gunnar Grün for his support, advice and
guidance in many occasions. Additionally, I would like to express my gratitude to Dr. Dimitrios
V. Rovas for giving me the opportunity to pursue this research, for planting the initial seed and
for being an inspiring source on what research is about. I would like to thank our students Viet-
Tung Hoang, Georg A. Peßler, Haonan Qiu, Wang Lingzhe, Michael Rißmann, Lars Nolting,
Andre Michaelis, Markus Deschler and Max Blanck for the great time and for the great working
attitude.
I would also further like to thank my fellow PhD students and colleagues within IBP including
Dr. Matthias Mitterhofer, Aude Bougain, Peter S. Noisten, Maximilian Kienberger, Stephanie
Türkdogan, Christina Kuba, Christa Dürig, Dr. Victor Norrefeldt, Arnav Pathak, Dr. Sebastian,
Stratbücker, Dr. Sumee Park, Thomas Kirmayr, Marie Pschirrer, Georg Haag and Matthias
Kersken. From the Energie Campus Nürnberg (EnCN) special thanks go to the EnCN BBQ
friends including Susanna Bordin, Christina Betzold, Kyriaki Koutrouveli, Julian Buderus,
Kutralingam Kandasamy, Christian Allar, Nelly Wedel, Eva Kränzlein, Frank Piepenbreier,
Rajesh Chanda, Friedmann Eppelein, Ioanna Dimopoulou and Rudolf Heindel.
Being myself not based at the IMI but closely related to it I would like to express my special
thanks to the colleagues and staff which I met at the IMI for including me as an ’external’ very
openly on every occasion I was visiting the institute. This includes in particular Karin Schmid,

v

Acknowledgements

Thomas Maier, Kiril Tonev, Polina and Victor Häfner, Matthes Elstermann. Special thanks
go to Klemens Haas and Andreas Kimmig for the many pleasant conversations during lunch
breaks and for the supply of excellent coffee.
Additionally, I would like to express special thanks to the members of the W3C Linked Build-
ing Data Community Group for their great discussions and exchange on semantic web techno-
logies in the engineering domain. This includes in particular Prof. Dr. Pieter Pauwels, Mads
H. Rasmussen, Dr. Walter Terkaj, Dr. Kris McGlinn, Dr. Maxime Lefrançois, Dr. Ana Roxin,
Matthias Bonduel, Jyrki Oraskari, Ekatarina Petrova and many more from the group. Special
thanks go to Prof. Dr. Pieter Pauwels for his support, guidance and friendship as well as for
the great time while following his invitation to Ghent University, Ghent, Belgium.
I would like to acknowledge the generous funding provided by the state of Bavaria through the
Energie Campus Nürnberg and financial support through the ’Aufbruch Bayern (Bavaria on the
move)’ initiative of the state of Bavaria.
Special thanks go to my parents for their support and for making me love science. In addition,
special thanks go to my siblings, Alex W. Chatterton and Sebastian Brixner, who have provided
tremendous help in the final part of this thesis on revisions, proofreading and for being such a
wonderful bunch.
Finally, I would like to thank Pia for her support and patience and for letting me be an import-
ant part of her life.

Nürnberg, October 2018 Georg F. Schneider

vi

Everyone has the right to education. Education shall be free, at least in the
elementary and fundamental stages. Elementary education shall be compulsory.

Technical and professional education shall be made generally available and higher
education shall be equally accessible to all on the basis of merit.

United Nations General Assembly: Universal Declaration of Human Rights, Article 26 (1)

Table of Contents

Zusammenfassung . i

Abstract . iii

Acknowledgements . v

Table of Contents . ix

1 Introduction . 1
1.1 Background and Motivation . 1
1.2 Problems and Challenges of Building and Industrial Automation Systems . . 3

1.2.1 Complexity of Automation Systems 3
1.2.2 Heterogeneity in Automation Systems Engineering and Operation . 7
1.2.3 Summary and Gap Identification 9

1.3 Objectives . 11
1.4 Contribution and Outline . 12

2 Foundations and State of the Art 15
2.1 Automatic Control, Control Logic and Automation Systems 15

2.1.1 Overview on the Automatic Control and Control Logic Domains . 15
2.1.2 Building Automation Systems . 20
2.1.3 Industrial Automation Systems 22

2.2 Foundations of Knowledge Representation 24
2.2.1 Data, Information and Knowledge 24
2.2.2 Knowledge Classification . 25
2.2.3 Knowledge Representation . 27
2.2.4 Knowledge-Based System . 28

2.3 Knowledge-based Methods Related to the Engineering and Operation of
Control Logic in Automation Systems . 29

2.4 Formats and Models for Automation Systems 33
2.4.1 Data Formats for Building Automation Systems 34
2.4.2 Ontology-based Modelling of Building Automation Systems . . . 37

ix

Table of Contents

2.4.3 Data Formats for Industrial Automation Systems 40
2.4.4 Ontology-based Modelling of Industrial Automation Systems . . . 42
2.4.5 Domain Independent Ontologies for Automation Systems 44
2.4.6 Other Formats and Models . 46

2.5 Summary . 47

3 Requirements . 53
3.1 General requirements . 53
3.2 Requirements for Knowledge Representation and Knowledge-based Methods 55
3.3 Requirements for the Domain Model . 56
3.4 Summary . 57

4 Semantic Modelling of Control Logic in Automation Sys-
tems . 59
4.1 Modelling Methodology . 59

4.1.1 Object-Oriented Modelling Methodology 60
4.1.2 Ontology-based Formalisation . 61

4.2 Layered Model Architecture . 63
4.3 Semantic Model of the Automatic Control Domain 64
4.4 Semantic Models of the Control Logic Domain 69

4.4.1 Algebraic Expressions . 69
4.4.2 Schedules . 72
4.4.3 Sequence Control . 73
4.4.4 Two-Point Discrete Control . 77
4.4.5 Transfer Function Element . 78
4.4.6 UML State Machines . 81
4.4.7 State Graphs from VDI 3814-6 84

4.5 Summary . 87

5 Validation . 91
5.1 Automated Rule-Based Verification of Designed Control Logic in Building

Automation Systems . 91
5.1.1 Problem Description . 91
5.1.2 Methodology . 92
5.1.3 Use Case and Implementation . 93
5.1.4 Results . 98

5.2 Knowledge-Enhanced Engineering of Control Logic in Industrial Automation 100
5.2.1 Problem Definition . 101
5.2.2 Methodology . 102

x

Table of Contents

5.2.3 Implementation . 104
5.2.4 Scenario-Based Evaluation . 110

5.3 Summary . 115

6 Conclusion and Outlook .119
6.1 Conclusion . 119
6.2 Outlook . 122

Bibliography .125

Bibliography of the Author .141

Appendix .143

A Foundations of the Semantic Web143
A.1 Description Logics . 144
A.2 Resource Description Framework (Schema) - RDF(S) 146
A.3 Web Ontology Language - OWL . 148

A.3.1 Components of OWL . 148
A.3.2 A Closer Look on Properties in OWL 149
A.3.3 Specific Features of OWL . 150
A.3.4 OWL Profiles . 152

A.4 SPARQL Protocol and RDF Query Language - SPARQL 153
A.5 Assumptions in the Semantic Web: Unique Naming, Closed World, Open

World . 154
A.6 Ontology Engineering Methods . 155

A.6.1 Ontology Development 101 . 155
A.6.2 METHONTOLOGY . 156

A.7 Tools for Developing SWT applications . 157

B Supplementary Ontology Material159
B.1 Specification of the Basic Datatype Ontology 159
B.2 Additional Visualisation . 162

C Implementation .165
C.1 Implementation of SPARQL Queries for the Automated Rule-Based Verific-

ation of State Graphs and Schedules . 165
C.2 Implementation of SPARQL queries for the Knowledge-Enhanced Engineer-

ing of Control Logic in Automation Systems 168

xi

Table of Contents

C.2.1 Implementation of SPARQL queries for the Verification of Control
Logic . 168

C.2.2 Implementation of SPARQL queries for the Simultaneous Verific-
ation of Different Control Logic Types 169

C.2.3 Code examples for the Verification of Control Logic Designs and
Plant Data . 170

C.2.4 Code examples Demonstrating the Bidirectional Exchange and In-
cremental Verification . 172

D Namespaces .175

List of Figures .179

List of Tables .185

List of Code Listings .187

List of Acronyms .189

xii

1 Introduction

1.1 Background and Motivation
Automation of processes is at the heart of modern society. Traffic light systems in cities,
autonomous driving, mass-production of goods, heating control in buildings, autopilots in
planes and safety control in nuclear power plants are only some of the examples to be men-
tioned where automation takes a key role in enabling the reliable and safe operation of the
respective processes. In particular, automation comes into play when processes are repetitive,
or dangerous to humans and often machines can perform these tasks with higher precision,
faster, more efficient and at lower cost [SSKD11]. The beginnings of automation technology
can be traced back to the 1800s where mechanical feedback control by means of a centrifugal
governor controlled the speed of James Watt’s steam engine. The technology quickly advanced
from mechanical systems to analogue electronics and, finally, digital control by the introduction
of micro-electronics and communication networks in the 1970s and 1980s [SSKD11]. Depend-
ent on the application area of automation technology different specialised domains emerged,
such as building [DCVK16], industrial [SSKD11] and process [FSUT17] automation. In the
past frequently novel technological advances made in one domain quickly have been adopted
by the other domains [SSKD11].
The successful application of automation technology is associated with solving some of the
existing global challenges [VDI15]. One major challenge is the reduction of energy-related
emissions of greenhouse gases originating from burning fossil fuels to meet the primary energy
demand in industrialised and emerging countries. Figure 1.1 shows the concentration of green-
house gases in the earth’s atmosphere calculated from measuring the variation of deuterium
(δD) in ice cores extracted from Antarctic glaciers [SQM+07]. The measurements indicate
that over the past 650,000 years changes in the concentration of relevant greenhouse gases oc-
curred. However, the levels as observed in the past 150 years, when human activities related to
burning fossil fuels set off, has not previously been identified. Hence, developing technologies
to reduce the emissions is of utmost importance.
The buildings and industry sector together are responsible for a significant share in the primary
energy demand in industrialised countries (e.g. buildings 43.3%, industry 28.5% in Germany
[AGE17]). In the buildings sector the development of energy efficient buildings, which pre-
serve the set comfort conditions and maintain a healthy indoor climate is an ultimate goal for

1

1 Introduction

Figure 1.1: ’Variations of deuterium (δD) in antarctic ice, which is a proxy for local
temperature, and the atmospheric concentrations of the greenhouse gases carbon
dioxide (CO2), methane (CH4), and nitrous oxide (N2O) in air trapped within the
ice cores and from recent atmospheric measurements. Data cover 650,000 years
and the shaded bands indicate current and previous interglacial warm periods’
[SQM+07]. Source: Figure TS.1 in Solomon et al.: Contribution of Working
Group I to the Fourth Assessment Report of the Intergovernmental Panel on
Climate Change, Cambridge University Press.

scientists in the field to reduce the emissions of greenhouse gases. Building Automation Sys-
tems (BAS) are a prerequisite for energy efficient operation of buildings and the highest rating
in terms of energy efficiency can only be achieved by deploying BAS [EN 17, USG16]. Similar
efforts can be observed in the industrial domain and, in particular, the further introduction of
Information and Communication Technologies (ICT) in the domain is understood as an enabler
for energy efficient operation of productions plants [Eur08, Wic16]: ’Embedded, smart com-
ponents and systems, sensor/actuator networks and control algorithms can be used to achieve a
positive effect on emissions.’ [Eur08].
Automation technology can help to significantly reduce the primary energy demand needed by
technical processes and subsequently can help to reduce the emissions from greenhouse gases
emitted from burning fossil fuels. Hence, an ultimate goal is to lower the barriers for deploy-
ing automation technologies for their successful usage. In addition, successful conversion of
energy from renewable power plants depends on automation technology, e.g. modern wind
turbines have automation systems installed, e.g. for pitch control of rotor blades.

2

1.2 Problems and Challenges of Building and Industrial Automation Systems

1.2 Problems and Challenges of Building
and Industrial Automation Systems

As outlined above, automation systems are an essential ingredient for tackling some of the
future global challenges. Despite the rapid technological advancements of automation tech-
nology in the past [SSKD11], future challenges still remain. This section identifies problems
and open challenges of automation systems, which are in the scope of this thesis: building and
industrial automation systems.

1.2.1 Complexity of Automation Systems
The complexity of automation systems is a challenge for engineers. For the design and oper-
ation of these systems a significant share of domain and expert knowledge is required. Due
to the complexity of the systems this knowledge needs to be shared across the distributed and
multidisciplinary stakeholders. Main sources for this complexity are the size of the systems,
their combination of physical and cyber parts and the paradigm change initiated through the
digital transformation in automation systems.
The size of automation systems can be challenging as these are used for operating large and
complex technical systems, such as refineries, car production plants or airports. For instance,
the number of datapoints, i.e. an entity in a BAS with ’an addressable point of interaction
between the control system and its domain objects’ [DCVK16], in a commercial building, such
as an airport or shopping mall, is in the range of 100,000.
A second reason for their complexity arises from their inherent combination of physical com-
ponents, i.e. the actual plant under control, with cyber components, i.e. for example a control
algorithm executed on a Programmable Logic Controller (PLC). These systems of combined
computation and physics are termed Cyber-Physical Systems (CPS) [Lee08]. In particular,
automation systems as described qualify as CPS [HVA16]. To distinguish the components of
CPS, here, the three layered architecture proposed by Sztipanovits et al. [SKK+12] (see Fig-
ure 1.2) is adopted here. According to the authors CPS can be divided into a physical, platform
and computation layer:

• Physical Layer: Physical systems, mechanical or electrical; The tangible part of CPS;

• Platform Layer: The computational platform of CPS is needed to execute the cyber
part;

• Computation Layer: Here, cyber objects (software) of CPS are actually described,
which can be generic algorithms or actual control logic of a physical plant. This soft-
ware performs the computations, which significantly determine the resulting behaviour
of a CPS.

3

1 Introduction

Physical Layer

Platform Layer

Computation Layer

Electrical Mechanical

Computational Platform

Cyber-Physical Systems

Computational Objects

Figure 1.2: Layered structure of cyber-physical systems (adapted from Sztipanovits et al.
[SKK+12]).

To cope with the complexity arising from automation systems being CPS, scholars conclude
that appropriate means of abstraction need to be considered for each of the defined layers
[SKK+12, Lee08]. This differentiation into components is also reflected in the distinguished
steps in the engineering of automation systems, which typically involve mechanical (physical),
electrical (platform) and software (computation) engineering [SH17]. Again, a considerable
amount of domain specific and expert knowledge is required for the successful implementation
of the respective tasks. However, to achieve the goal of delivering one CPS, the respective
domain and expert knowledge of both domains needs to be integrated.
As emphasised above, the computation part of automation systems has a significant impact on
the overall performance of the resulting system. In an automation system even if the physical
part of the system has been designed in an excellent manner, an insufficient cyber part can
spoil the efforts made. For instance, if highly efficient technical equipment and a sophisticated
envelope are installed and designed for a building, an insufficiently designed and parametrised
BAS is identified as one cause for the perceived gap between the predicted and actual energy
demand of buildings [DW14].
In recent years, ICT originating from the world wide web are increasingly introduced in
the automation domain, partly in response to global challenges, such as fulfilling the rising
primary energy demand. These efforts align with the ubiquitous introduction of ICT tech-
nologies in various domains and industries termed digital transformation (e.g. Gimpel &
Röglinger [GR15]). The digital transformation introduces a paradigm change in the automa-

4

1.2 Problems and Challenges of Building and Industrial Automation Systems

tion domain from several hierarchical to two distinguished layers (see Figure 1.3). Classical
approaches (left hand side in Figure 1.3) typically structure automation systems hierarchic-
ally into several layers, e.g. for BAS in the standard International Standards Organization
(ISO) 16484 [ISO04b] and Industrial Automation Systems (IAS) in International Electrotech-
nical Commission (IEC) 62424 [IEC16]. In the hierarchical structures sensors and actuators
attached to some physical system are placed at the bottom layer (Field layer/ Level 0). Low-
level control logic embedded in field devices is placed in the layers above (Automation layer/
Level 1,2) and communicates with the sensors and actuators to operate some piece of equip-
ment or process. At the top layers (Management layer/ Level 3,4) high-level functionalities are
placed, which perform calculations or predictions and have access to other additional informa-
tion apart from the physical system, e.g. a weather forcast for model-predictive control in BAS
[KKGR16] or Enterprise Resource Planning (ERP) system for production and maintenance
planning in IAS.

Applications

Intelligent Devices

Semantic

Integration

 Layer

Figure 1.3: Paradigm change in automation domain [KDKO14] from hierarchical structures
(upper left, [ISO04b], adapted; lower left, [IEC13d], adapted) to a two layered
approach (right, e.g. Vogel-Heuser et al. [VHDB13]), where intelligent devices
communicate with each other and applications through a semantic integration
layer. ERP - Enterprise Resource Planning, MES - Manufacturing Execution
System, PLC - Programmable Logic Controller, I/O - Input/ Output.

5

1 Introduction

These hierarchical architectures tend to dilute nowadays into two distinct layers (right hand
side in Figure 1.3). This paradigm shift envisions future automation systems to be constituted
of one layer of intelligent devices, which communicate with each other (Internet of Things
(IoT) [GBMP13]) and expose the captured information to a common semantic integration
layer (e.g. Krueger et al. [KDKO14]). In a second layer applications leverage on the con-
sistent, semantically unambiguously defined information from devices and other sources to act
on the intelligent devices, while providing additional services alongside. To enable this seam-
less interaction of devices and software agents realising novel services, the semantics and the
knowledge for the interaction and analysis need to be represented machine-understandable. In
general, four key technological advances can be associated with the paradigm change and can
be considered as enablers as well as prerequisites towards reaching the defined goals for two
layered future architectures:

1. The processing power of embedded devices placed near to the actual equipment in-
creased significantly over the past decades; Hence, more complex applications might
be running on the equipment allowing the machines to communicate directly with each
other (i.e. IoT) [KDKO14];

2. Availability of computational resources and data storage from cloud computing, which
allow computational expensive applications, such as real-time data analysis [KDKO14];

3. Latency between low-level embedded devices and cloud services has decreased by
magnitudes through novel communication technologies, e.g. fourth and fifth generation
mobile data transfer (4G/5G), thus, enabling real-time communication and exchange;

4. Formal methods for the semantically precise, machine-interpretable definition of do-
main and expert knowledge to enable the seamless interoperation among heterogeneous
devices and services [KDKO14].

Within the context of the digital transformation [GR15] the further introduction of advanced
ICT in industrial automation is considered as the fourth step in the evolution of industry
[KDKO14]. Associated with this a number of initiatives started, which aim at bundling re-
search, funding and standardisation activities [KWH13, EA07, RCW13]. The Industrie 4.0
initiative [KWH13] is a prominent example for an initiative started by a German consortium.
In their report, Kagermann et al. [KWH13] present recommendations on how the strategic
initiative Industrie 4.0 can be implemented and formulate a research roadmap as well as re-
quirements. The scholars conclude that, amongst others, semantic models are needed to enable
self-descriptive devices and production systems exposing case and domain specific knowledge
to others. In particular, this includes aspects of standardised descriptions of the automatic
control domain, such as procedures and functions [KWH13, p. 45]. Also, from industry, e.g.
Krueger et al. [KDKO14], there is the demand for the semantic description of engineering
information and knowledge artefacts associated to the control of a plant. Similar demands are

6

1.2 Problems and Challenges of Building and Industrial Automation Systems

made by Vogel-Heuser [VH14b] and Kleinemeier [Kle14], where in future the knowledge on
how a production entity can be integrated with other entities or on how it can reconfigure itself
to produce different goods is specified machine-interpretable. Hence, machines can integrate
and configure themselves [HZ16]. With respect to IAS a key demand is to enable the seamless
exchange of all related information among software tools and stakeholders [VH14b].
In the Architecture, Engineering, Construction and Facility Management (AEC/FM) industry
increasingly ICT are introduced to interconnect systems, tools and stakeholders. Associated
terms used within this context are smart home, smart buildings or smart cities dependent on
the scale of interest. Over the life cycle of a building case specific information and knowledge
from different domains [SBNM16] are generated, which typically are stored in disparate silos
[COC+13]. This heterogeneity is a reason for the increased introduction of ICT in the AEC/FM
domain and integrates particularly well with the Building Information Modeling (BIM) method
[ETSL11]. BIM is a method, which focusses on the seamless exchange of information between
stakeholders by means of model-based information exchange [ETSL11]. In the described con-
text, BAS play a vital role in enabling these future smart systems in the AEC/FM domain. They
provide the access to sensors and actuators placed in a building as well as allow the connectiv-
ity through the web to intelligent applications and services, which analyse the data in a context
through specified knowledge and potentially integrate with other knowledge sources, such as
formalised knowledge originating from BIM. Again, for the seamless integration of the various
formats and tools as well as the scalable deployment of intelligent services, such as automated
configuration and deployment of Fault Detection and Diagnosis (FDD) services (e.g. Dibowski
et al. [DHR16a]), the semantics of the associated knowledge needs to be specified.

1.2.2 Heterogeneity in Automation Systems
Engineering and Operation

In addition to the problems arising from the complexity of automation systems as presented
above, the heterogeneity of data format, tools and stakeholders involved in the engineering and
operation of automation systems is a problem when dealing with these systems. In particular,
the engineering of control logic is a complex, knowledge-intensive task and needs to be closely
interconnected with the actual engineering of the plant [Vya13, VHFST15, SH17]. In this col-
laborative effort, the exchange of engineering knowledge between multiple stakeholders over
consecutive stages in a development cycle is required [SH17, ESS+17]. Typically, losses oc-
cur at handover between stages as heterogeneous tools and formats are used, which make the
exchange cumbersome time and cost-consuming. During the course of the engineering of con-
trol logic in automation systems various knowledge artefacts are produced, such as conceptual
designs, abstract specifications of control behaviour, contact plans to real hardware, etc.

7

1 Introduction

For instance, Strahilov & Hämmerle [SH17] enumerate for the engineering of a production
plant seven steps in the engineering process, where in each step one or more stakeholders are
involved. These stakeholders work on and share knowledge spanning fifteen domains [SH17].
Typically, multiple, often incompatible tools with own formats exist for each domain. The com-
binatorial combination of stakeholders and domains with associated tools and formats causes
the complexity as mentioned.
Various artefacts are related to control knowledge, which are generated during engineering
and operation [Che15]. Figure 1.4 presents a control diagram as specified in ISO 16484-5
[ISO04b], which allows to visualise control knowledge in a very condensed fashion. These
schemas are structured in three separated sections and the respective, depicted knowledge is
explained in the following.
A common practice in control logic engineering is to encapsulate some functionality into re-
usable blocks. These blocks can be connected by their inputs and outputs, which is referred
to as logical topology1. The logical topology is often illustrated in block diagrams, e.g. the
lowest area in Figure 1.4.
Another important part of knowledge in the automatic control domain relates to the relation-
ship of the controller to the actual physical plant (Middle area in Figure 1.4). This is enabled
through sensors and actuators, which convert between real physical measurements or control
actions and virtual values usually exposed as datapoints [DCVK16] on the communication
bus of an automation system. Various ways exist to specify how the actual control logic be-
haves. For instance, a number of formalisms are developed to describe discrete control logic
[Har87, IEC14a, LS17]. In particular, in linear control the transfer function and their plots
[Abe10] are common practice to describe how the response of an element depends on its input
signal. In the top area of Figure 1.4 control sequences [VDI07, ISO11] are depicted, which
describe how the outputs of each depicted control actor can be derived from its inputs.
At some point in time the control logic design is implemented as actual source code. This
source code then can be executed on a PLC. Also, the source code is part of the control know-
ledge. The conversion from the specification as a design to source code can depend on the
implementation technology and, thus, certain capabilities of the programming language may
require a certain way for the implementation. Knowledge of the parameters and alarming
[DCVK16] is important and in combination with expert knowledge can be used for verification
and debugging of operation [SPS17]. For instance, in Figure 1.5 the view provided by an In-
tegrated Development Environment (IDE) for the programming of control logic in automation
systems is given (Beckhoff TwinCAT 3.1 [Bec18]). The project structure with physical Inputs
and Outputs (I/O) and reusable blocks of control logic separated in Program Organizational
Unit (POU)s [IEC14a] is displayed. Also, code for the implementation of interfaces of a piece
of control logic and the actual specification of the control logic is graphically illustrated using

1 See Definition 2.5.

8

1.2 Problems and Challenges of Building and Industrial Automation Systems

Figure 1.4: Control diagrams [ISO04b] are a method to visualise control logic knowledge in a
very condensed manner. (Source: [VDI07], Wiedergegeben mit der Erlaubnis des
Verein Deutscher Ingenieure (VDI) e.V., engl.: Reproduced with permission of the
German Association of Engineers).

the Sequential Function Chart (SFC) [IEC14a] formalism. The design made and implemented
can be exported and exchanged via the PLCopen XML [PLC09] format. However, in most pro-
jects the current mode of information exchange is often based on spreadsheets, drawings and
textual descriptions [SPS17], [SH17]. This keeps the knowledge concealed for further reuse
and exploitation in downstream services.

1.2.3 Summary and Gap Identification
In essence, the described problems and challenges associated with building and industrial auto-
mation systems are:

1. The complexity of automation systems arising from their size, their cyber and physical
nature and the paradigm change for future automation systems through introduction of
advanced ICT technologies. This complexity is only manageable through the use of
software programs and automated engineering methods;

9

1 Introduction

SFC

Formalism

Interface

I/O

POUs

Figure 1.5: Example for programming a programmable logic controller in Beckhoff TwinCAT
3.1 [Bec18] using the Sequential Function Chart (SFC) formalism [IEC14a].
Interface variables can be defined and signals from sensors or actuators can be
connected to these (I/O). Reusable blocks of control logic are separated in
Program Organizational Units (POUs).

2. The heterogeneity of tools and data formats utilised in the design and operation of
automation systems by various stakeholders involved over the life cycle. Consequently,
engineering knowledge is distributed across these disparate silos and concealed for
reuse and exploitation.

For instance, in BAS best practices and standards exist on how to control specific technical
equipment to reduce energy consumption, while keeping comfort levels acceptable [ISO11]. It
would be very useful if an embedded device shipped along with a piece of Heating Ventilation
and Air Conditioning (HVAC) equipment explains to some supervisory control how it is con-
trolled, such that the equipments energy demand is at its minimum. This avoids the repetitive
implementation or copying of the same code (code clones [VHFST15]) in engineering pro-
jects. Also, potential errors when implementing might occur resulting in inefficient operation
of the equipment. These defects and inconsistencies need to be automatically identified to be
removed from the design. With respect to IAS these novel methods are even more important
when designing self-explaining cyber-objects as envisioned for the next generation of automa-
tion systems [KDKO14]. For example, the novel methods should enable automated verification
of the specified, implemented and executed control logic. In particular, the automated verific-
ation should be possible for different types of control logic as well as considering information
and knowledge from adjacent domains, such as the physical plant [VHFST15]. During com-

10

1.3 Objectives

missioning of an automation system often manual changes are applied to the code implemented
in a PLC. These changes need to be fed back to the model hosting the control logic design and
the same verification mechanisms should apply [VHFST15].
Hence, there is a strong need for novel, automated methods, which support the knowledge-
intensive tasks conducted during the engineering and operation of control logic in automation
systems. In particular, there is the strong need to address the prevalent heterogeneity in auto-
mation systems by enabling the sharing of use-case, domain and expert knowledge.

1.3 Objectives
To overcome the above stated problems the following objectives as well as research questions
arising from these objectives are defined.

Objective 1 Development of knowledge-based methods to support and automate the engin-
eering and operation of control logic in automation systems.

This objective addresses particularly the problem of complexity in the engineering and oper-
ation of automation systems. This complexity is not manually manageable by humans and,
hence, to support the knowledge-intensive processes associated with the engineering and oper-
ation of control logic in automation systems, automated, knowledge-based methods need to be
developed. The following research questions are formulated in association with the formulated
objective.

• What formalisms do exist to enable automated, knowledge-based support for the en-
gineering and operation of automation systems?

• What artefacts of use-case, domain and expert knowledge in control logic engineering
can be formally specified?

• Which possibilities exist for the formal representation of knowledge to enable the sup-
port by machines?

Objective 2 Development of a semantic model of control logic in automation systems.

The described novel methods to support the knowledge-intensive tasks related to the engineer-
ing and operation of control logic in automation systems are only possible, if the respective
domain knowledge is formally specified. Hence, a semantic model needs to be developed to
address the problem of the utilised heterogeneous tools and formats. The semantic model is
needed to integrate the distributed knowledge and to describe the control logic domain to form
the basis for further intelligent applications. Associated research questions are:

11

1 Introduction

• What are the fundamental concepts and relationships to explicitly model control logic
in automation systems?

• What are the fundamental concepts and relationships to relate control logic to adjacent
domains of automation systems?

• Which formal models do exist for reuse in formally specifying the domain of automa-
tion systems?

1.4 Contribution and Outline
This thesis aims to identify novel ways to describe the semantics of control logic in automation
systems. The thesis structure aligns with the course of the research conducted and an overview
is provided in Figure 1.6.
In Chapter 1 the research is first placed into its context and it is explained why BAS and IAS are
relevant in solving some of the future global challenges such as energy. The relevant problems
and challenges of BAS and IAS are identified, i.e. their complexity arising from their size,
cyber and physical nature and the paradigm change in automation systems architectures as
well as the heterogeneity of associated engineering tools and formats hiding this knowledge in
disparate silos. Based on the described problems and challenges two objectives for this thesis
are defined: Development of automated methods for the support of the knowledge-intensive
tasks undertaken in the engineering and operation of control logic in automation systems and
development of a semantic model for control logic in automation systems.
In response to these objectives Chapter 2 provides an overview of the basic concepts and terms
related to the control logic domain in automation systems. Next, foundations of Knowledge
Representation (KR) are discussed, which allow machines to process engineering knowledge
as required by the objectives. Finally, a detailed analysis of the current state of the art is
performed related to knowledge-based methods for the support of control logic engineering
and operation of automation systems and existing formats and models for the description of
domain knowledge of automation systems in general, automatic control and control logic in
particular.
The findings and limitations arising from the analysis of the state of the art are summarised and
requirements to overcome these limitations are defined in Chapter 3.
In response to the gap and identified shortcomings the main contribution of the thesis, a novel,
layered semantic model for the automatic control domain and formal models to explicitly de-
scribe control logic in automation systems, are presented in Chapter 4. The semantic model is
formalised using an ontology-based approach and explicit formal models of different control
logic types are presented.
The modelling is evaluated in two use cases, as presented in Chapter 5, where the developed se-
mantic models provide the basis for two knowledge-based methods. The first method presented

12

1.4 Contribution and Outline

Chapter 1

Introduction Background and motivation, problem definition for

research

Definition of research questions and objectives

Definition of requirements to overcome limitations

with respect to the defined objectives

Chapter 3

Requirements for the Semantic

Modelling of Control Logic

Validation of developed model in its ability to fulfil

requirements in BAS and IAS domains

Chapter 5

Validation

Summary of contributions and future work
Chapter 6

Conclusion and Outlook

Definition of terms

and treatment of the

foundations

Chapter 2

Foundations and State of the Art Review of related

work to identify

existing limitations

Development of a

semantic model for

the automatic control

domain

Chapter 4

Semantic Modelling of Control

Logic in Automation Systems

Development of

explicit, semantic

models of control

logic

Figure 1.6: Overview of the organisation and structure of this thesis. BAS - Building
Automation Systems, IAS - Industrial Automation Systems.

in Section 5.1 allows the automated rule-based verification of control logic in building automa-
tion. The second method described in Section 5.2 enables the knowledge-enhanced engineer-
ing of control logic in an application from industrial automation. Also, means to integrate this
model with adjacent information domains are investigated in the use cases.
Finally, in Chapter 6 the contributions of the thesis to reach the defined goals are summarised
and topics and open questions for future research are presented.

13

2 Foundations and State of the
Art

This chapter briefly summarises the foundations of this thesis and provides a detailed analysis
of the current state of the art of related work with respect to the defined objectives.
First, in Section 2.1 the terms and fundamental cornerstones of the domains of automatic con-
trol and control logic in BAS and IAS are briefly summarised, hence, providing a thorough
description of the domain of interest as defined in the objectives. Next, the foundations and
terms of KR are condensed in Section 2.2 as these technologies are the foundations for the
intended development of knowledge-based methods.
Based on the defined objectives the current state of the art related to knowledge-based methods
for the support of engineering and operation of control logic in automation systems are analysed
in detail in Section 2.3. Furthermore, existing contributions related to formats and models for
the description of the automatic control and control logic domains in automation systems is
analysed in Section 2.4.
Finally, Section 2.5 summarises the findings of the analysis and identifies shortcomings in the
reviewed works.

2.1 Automatic Control, Control Logic and
Automation Systems

This section presents the basic building blocks of automatic control in automation systems.
Where suitable, relevant terms are defined. A specific description of BAS and IAS is provided
as these are the domains within the scope of the present thesis.

2.1.1 Overview on the Automatic Control and Control
Logic Domains

Automation is an important domain in engineering science and many of today’s achievements
in engineering would not be possible without automation. It is particularly interesting when
processes are repetitive or dangerous to humans and need to be executed fast, precisely and

15

2 Foundations and State of the Art

automatically [SSKD11]. Automatic control is a specific domain within automation and is
defined by IEC 60050-441 [IEC13b] as:

Definition 2.1 Automatic Control: ’control of an operation without human intervention, in
response to the occurrence of predetermined conditions’ [IEC13b].

The main goal of automatic control in technical systems is to align a controlled variable of a
system with a given reference variable [Abe10]. In particular, this is of interest if changes to
the reference variable happen or if external disturbances occur. The IEC 60050-351 [IEC13a]
defines and standardises the terminology for the description of automatic control. In particular,
closed-loop as defined in Definition 2.2 and open-loop control as defined in Definition 2.3 need
to be differentiated.

Definition 2.2 Closed-loop control is defined as: ’process whereby one variable quantity,
namely the controlled variable is continuously or sequentially measured, compared with an-
other variable quantity, namely the reference variable, and influenced in such a manner as to
adjust to the reference variable’ [IEC13a].

The important feature of closed-loop control is that through its closed loop, the controlled
variable effectuates itself by constant feedback. In Figure 2.1 terms and structure of a closed-
loop controller as defined in the IEC 60050-351 is given. The abbreviated characters of the
following discussion and as used in Figure 2.1 are given in Table 2.1.
The controlled variable (x) is measured by a measuring equipment and the resulting feedback
variable (r) is compared in the comparing element with its reference variable (w). The calcu-
lated control difference variable (e) is then converted by the controlling element into a control-
ler output variable (m), which then effectuates through the actuator the controlled system via
the manipulated variable (y). Disturbances described by the disturbance variable (z) change the
behaviour of the controlled system and cannot be changed by the controlling element directly.
Only its effects on the controlled system can be mitigated. A number of terms are defined for
referring to aggregates of the basic components. A controller constitutes of the controlling and
comparing element. The final controlling equipment is constituted by the actuator and the final
controlling element, which is also part of the controlled system. A controlling system includes
both the controller and its actuator. Elements, which generate the final controlled variable (q)
from the controlled variable (x), or, which convert the command variable (c) to the reference
variable (w) are considered as part of the control system. The elements of the controlling
system usually cannot access these directly. Finally, the whole aggregate, which includes all
mentioned elements, is termed control system.
An example for closed-loop control is the control of a room temperature using a thermostat
valve (e.g. [Abe10]). By turning the handle of the valve, a set point for the temperature of a
room is defined. This setpoint is constantly compared with the room air temperature by some

16

2.1 Automatic Control, Control Logic and Automation Systems

Controlling

Element

e m y

Reference-variable

generating element

Measuring

Element
Generation of the final

controlled variable

Comparing

Element

Controller

w

Controlling System

Final Controlling

Equipment

q c

Control System

z

x

Final

Controlling

Element

Controlled

System

Actuator

r

Figure 2.1: Structure and terms of a controller for closed-loop control (adapted from
IEC 60050-351 [IEC13a]). The final controlling element is defined to be part of
the controlled system. Abbreviated characters are summarised in Table 2.1 and are
described in the text.

comparing element and, dependent on the calculated control difference variable, the valve is
opened or closed by the thermostat. Thus, the thermostat can increase the amount of hot water
to increase the amount of heat transmitted from the heater to the room air. Disturbances in this
system are for example changes in the outdoor air temperature.
In contrast to closed-loop control, in open-loop control there is no feedback of the controlled
variable to the controller.

Definition 2.3 Open-loop control is a ’process whereby one or more variable quantities as
input variables influence other variable quantities as output variables in accordance with the
proper laws of the system’ [IEC13a].

Figure 2.2 presents a schema of an open-loop control system [IEC13a]. The terms and vari-
ables used are equally as in closed-loop control. The command variable (c) is an input to the
control system and is processed by a controlling element. The controlling element generates
the controller output variable (m), which is converted by an actuator to a manipulated variable
(y). External disturbances (z) exist and can effectuate on the controlled variable (x) but are not
evaluated by the controlling element for deriving the controller output variable. A feedback of
the controlled variable to the controlling system is not realised.
An example for open-loop control is a heating curve [ISO05], which realises a constant-change
of the feed temperature of a heating system dependent on the outdoor air temperature. The

17

2 Foundations and State of the Art

Table 2.1: Description of abbreviated characters used in Figure 2.1.

Character Description

c Command variable
w Reference variable
e Control difference variable
m Controller output variable
y Manipulated variable
z Disturbance variable
x Controlled variable
q Final controlled variable
r Feedback variable
◦ Summing point
• Branching point

outdoor air temperature can, obviously, not be changed by the controller, but their is an effect
on the heating system. Closed-loop and open-loop control can be combined, e.g. the constant
change of the feed temperature of a heating system is combined with a closed-loop control of
a thermostat.

Controlling

Element

c x m y

z

Controlling

System

Actuator

Final Controlling

Equipment

Generation of the final

controlled variable

q

Control System

Controlled System

Final

Controlling

Element

Figure 2.2: Structure and terms of a controller for open-loop control (adapted from
IEC 60050-351 [IEC13a]). The final controlling element is defined to be part of
the controlled system. Abbreviated characters are summarised in Table 2.1 and are
described in the text.

18

2.1 Automatic Control, Control Logic and Automation Systems

In the automatic control domain the controller can be vertically and horizontally structured into
distinct entities. A controller can be composed from several of these entities, which represent
some encapsulated functionality. The entities can be connected to form larger networks for the
automatic control of complex systems. Each of these entities has inputs and outputs as well as
some means of processing, which performs the conversion from inputs to outputs.
Despite the definitions given in the IEC 60050-351, different terms are used in the domain when
referring to such an entity, for instance, actor in generic actor oriented modelling [EJL+03],
function block in IEC 61499 [IEC12], POU in IEC 61131-3 [IEC14a], Block from hybrid
modelling and simulation [Mod17a], controlling element for open-loop control in IEC 60050-
351 [IEC13a], and controller for closed-loop control in the standard IEC 60050-351 [IEC13a].
In this thesis the term control actor is used when referring to such an entity. This generalises
the definition given by IEC 60050-351 as the definition introduced here also includes open-loop
control.

Definition 2.4 A control actor is an entity in a control system, which receives inputs and
processes these inputs to determine its outputs [SSKD11]. The processing of the inputs to
determine its outputs is defined by its control logic.

As mentioned above several control actors can be connected vertically and horizontally to
form control networks. This connection of control actors can have significant implications on
the overall performance of the network. To avoid ambiguity in this regard the term logical
topology is defined as follows:

Definition 2.5 Logical topology: The logical topology refers to the connection of interfacing
elements of control actors with the interfacing entities of other control actors or the connection
of interfacing entities to datapoints [DCVK16].

It should be noted that this definition goes beyond the term binding as defined by Domingues
et al. [DCVK16], which refers to the connection of datapoints of distinct devices via the auto-
mation network.
How a control actor actually processes its inputs to determine its outputs is an important charac-
teristic of each control actor. A plethora of methods exists for the control of technical systems.
Various terms are used synonymically to refer to the actual behaviour of a controlling ele-
ment, e.g. control sequences [CTM16, Dub11], functional block [IEC13a] or function profiles
in BAS [ISO11]. To prevent ambiguity within this thesis the following term and definition is
given when referring to the processing part, the control logic, of a control actor:

Definition 2.6 The control logic in a control actor defines how information obtained from one
or more inputs is utilised to determine one or more outputs.

19

2 Foundations and State of the Art

Typically control logic is differentiated into continuous control and non-linear control [Abe10].
The field of continuous control offers a theoretical rich set of methods and theories for the
analysis, composition and prediction of the behaviour of the resulting control system [Abe10].
However, due to the linearity requirement, continuous control is often restricted to low-level
control applications. Non-linear control includes a wide range of methods and formalisms
spanning from simple two-point control [Abe10] to finite state machines [Lun09].
For the particular modelling of discrete control logic finite state machines are found to be
a sufficient abstraction mechanism. Within automata theory finite state machines constitute
a specialisation of the generic Turing machine [Lun09]. The basic building blocks for fi-
nite state machines used are the Mealy machine [Mea55] and the Moore machine [Lun09].
These have been mixed, adapted and extended to meet the specific needs of automation. Ex-
amples are GRAphe Fonctionnel de Commande Etapes/Transitions (GRAFCET) [IEC13c],
SFCs [IEC14a] or Grafchart [VJS+98]. Not restricted to the automation domain are variants,
such as state charts [Har87] and Unified Modeling Language (UML) [Obj15a] state machines.
As mentioned, automatic control is a domain within automation systems. Automation systems
combine physical entities, such as embedded devices, sensors and actuators, and virtual entities,
such as control logic and, thus, are CPS. Two main application areas for automation technology,
building and industrial automation, are introduced in the following sections.

2.1.2 Building Automation Systems
BAS evolved over the past decades to complex technical systems and are an important com-
ponent of modern buildings. Emerging from hard-wired control units for Air Handling Unit
(AHU), nowadays digital control and communication via buses represents the state of the
art [SSKD11]. BAS encompass a number of services in residential and commercial build-
ings. These services aim to maintain the set comfort conditions for humans and enable a
healthy indoor climate by controlling technical equipment, such as HVAC equipment or light-
ing [SSKD11]. Besides indoor comfort BAS also provide services related to safety, security,
transportation, announcement systems, energy management, supply and disposal, communic-
ation and others [SSKD11]. BAS are a prerequisite for energy efficient operation of buildings
and the highest rating with regard to the energy efficiency can only be achieved by deploying
BAS [EN 17, USG16]. According to the definition given below building automation includes
building control [MHH09].

Definition 2.7 BAS are defined as ’Equipment, software and services for automatic con-
trols, monitoring and optimisation as well as operation and management, and for the energy-
efficient, economic and reliable human intervention of the building services’ [VDI13].

When deploying BAS a variety of goals are expected to be reached including reduced costs, re-
duced energy consumption, reduced wiring, increased indoor comfort and flexibility [MHH09].

20

2.1 Automatic Control, Control Logic and Automation Systems

The main concepts and cornerstones of BAS are rigidly defined by Domingues et al. [DCVK16]
and will be introduced in the following.
The classical way to structure BAS is a three layered approach [ISO04b], where a field, auto-
mation and management layer are distinguished (see Figure 2.3). Typically the functions and
capabilities of components at these layers increase in complexity starting at the field layer and
ending at the management layer.

Field Layer

Automation

Layer

Management

Layer

Figure 2.3: The differentiation of Building Automation Systems (BAS) into three layers
according to the standard ISO 16484-2 [ISO04b]. Sensors and actuators (circles)
at the field layer are connected (lines) via a computer network to BAS devices
(rectangles), which also can be connected via the internet (cloud).

Starting at the field layer (bottom, Figure 2.3) sensors, actuators and controllers [DCVK16]
are placed typically close to the actual associated equipment or space. At the automation
layer embedded devices are placed, which connect to devices on the field layer as well as
provide communication connections to the upper most management layer. Communication
networks [DCVK16] connect the respective layers and a variety of protocols is used to enable
the communication, for example the Building Automation and Control Networks, network
protocol (BACnet) [ISO17a], Local Operating Network (LON) protocol [ISO12] and KNX
(KNX) protocol [ISO07]. The control logic can be differentiated into low-level control logic,
such as Proportional-Integral-Derivative (PID) control [Abe10] often deployed at the field and
automation layer and supervisory control logic often deployed on the management layer. To
avoid disambiguation the terms are defined as follows:

Definition 2.8 Low-level control logic is control logic deployed on embedded devices, which
are placed on site typically close to the actual piece of equipment. It processes a limited
number of inputs with only simple information related to it, such as sensor measurements. The
behaviour of low-level control logic can be changed by a supervisory control logic either by
changing its input values or its parameters.

21

2 Foundations and State of the Art

Definition 2.9 Supervisory control logic has access to input information that goes beyond
simple sensor measurements possibly available from outside of the actual automation network.
Supervisory control logic is not restricted to run on devices actually installed on site, often
is placed at the management level and is, potentially, hosted somewhere else. Supervisory
control logic provides information to low-level control logic by means of changing inputs, e.g.
set points or parameters.

However, it should be noted that the differentiation between low-level and supervisory control
logic cannot always be clearly drawn.
During the evolution of BAS it became apparent that best practices on how to control a cer-
tain type of technical equipment need to be standardised to enable reuse and interoperability
as well as comparability of vendors. Additionally, the procurement in public construction
projects needs to be manufacturer-independent. Several national standards exist, e.g. the Ger-
many VDI 3813 [VDI11a] for room automation, the German VDI 3814 [VDI09a], the German
VDI 3525 [VDI07] or other national efforts (Hydeman et al. [HTE15]). Some of these national
efforts are the basis for the international ISO 16484 family of standards for BAS [ISO11]. A
more general overview on control logic types is published in Salsbury [Sal05]. Also, manufac-
turers provide best practices for the control of technical equipment, e.g. Honeywell [Hon97].

2.1.3 Industrial Automation Systems
A broad range of systems qualify as IAS. Here, the focus is set on automation systems,
which produce goods and commodities, such as cars or consumer electronics [SSKD11]. A
classical [FVC+17] approach to structure IAS is the automation pyramid as standardised in
IEC 62264 [IEC13d] (see Figure 2.4). The bottom layer (Level 0) constitutes the field layer
where sensors, actuators, drives, i.e. the production plant is abstracted. On the next layer Level
1 the physical inputs and output (I/O) of the system as well as control functionalities executed
by PLCs are placed. Supervisory Control and Data Acquisition (SCADA) is considered in
the following layer Level 2, which constitutes of more sophisticated control and information
processing tasks compared to Level 1. Systems executing tasks on Level 3 are termed Manufac-
turing Execution System (MES). These tasks involve coordination of production execution and
management [FVC+17]. On the highest Level 4 long-term business activities of the enterprise
including for example logistics are active [FVC+17], typically executed by an ERP system.
Time scales vary significantly from milliseconds to minutes on Level 0 to 2 and from days to
months on Level 3 and 4 [FVC+17]. The distinction into layers as defined in the IEC 62264
is one possibility for the structuring and other hierarchical approaches exist [SSKD11]. In
particular, with the introduction of novel ICT the strict hierarchy from ERP to field level tends
to dissolve more and more [FVC+17].

22

2.1 Automatic Control, Control Logic and Automation Systems

ERP

MES

SCADA

Control (PLC) and
I/O

Field

Figure 2.4: The structure of industrial automation systems into five hierarchically separated
layers [IEC13d]. ERP - Enterprise Resource Planning, MES - Manufacturing
Execution System, SCADA - Supervisory Control and Data Acquisition, PLC -
Programmable Logic Controller, I/O - Input/ Output.

Scholars envision for future architectures a two level structure (e.g. Vogel-Heuser et al. [VHDB13]).
The main idea inherited from the service-oriented architecture paradigm is the definition of a
distributed service-based integration layer (see Figure 2.5). All software agents can access rel-

Distributed Service-based Integration Layer

ERP MES SCADA
Simu-

lation
Data

PLC CNC Robot Field
Motion

Control

Figure 2.5: Future architecture of factory automation systems (adapted from Foehr et al.
[FVC+17]). ERP - Enterprise Resource Planning, MES - Manufacturing
Execution System, SCADA - Supervisory Control and Data Acquisition, PLC -
Programmable Logic Controller, CNC - Computer Numerical Control.

evant services of components to provide or to retrieve information across hierarchies between
the different components [FVC+17]. An example from automation systems engineering real-

23

2 Foundations and State of the Art

ising such an architecture is the engineering service bus [NSMŠ15], which is analysed in detail
in Section 2.3.

2.2 Foundations of Knowledge
Representation

The knowledge-intensive processes related to the engineering and operation of automation sys-
tems require a deeper understanding on knowledge. In particular, a clear differentiation needs
to be made among the terms data, information and knowledge (Section 2.2.1). Moreover, know-
ledge can be classified (Section 2.2.2) to identify, which part can be represented (Section 2.2.3)
to be used in a Knowledge-Based System (KBS) (Section 2.2.4).

2.2.1 Data, Information and Knowledge
Often the terms data, information and knowledge are utilised synonymically in publications and
documents. These terms need to be differentiated properly to avoid ambiguity. The guideline
VDI 5610-1 [VDI09b] defines terms and concepts related to knowledge management in the
domain of engineering and gives the following definitions for data, information and knowledge:

Definition 2.10 ’Data are objective facts, they cannot be interpreted without context and fur-
ther backgrounds. They are to be taken as ”raw material”’ [VDI09b].

Definition 2.11 ’Information are structured data with relevance and purpose, which can be
put into a context, categorised, calculated and corrected.’ [VDI09b].

Definition 2.12 ’Knowledge is linked information, which enables to draw comparisons, to
establish links and to make decisions.’ [VDI09b].

To illustrate and discuss the differences between data, information and knowledge an example
is given in Figure 2.6. Following North [Nor98] the relationships in between the three entities
can be described by a stair-like structure. However, it should be noted that this does not neces-
sarily mean that there is an implicit hierarchy or quality difference among them [VDI09b].
In Figure 2.6 a time series of measurements of a temperature sensor is given. The data has
a defined syntax as it is organised in columns and rows. In each cell characters are used to
describe its content. To perform calculations or corrections on the data additional information
is required, here presented as some meta-information provided along with the tabular data.
This meta-data allows to put the tabular data into context, i.e. identify that the column headed
by OAT is of type Temperature and has the unit Celsius. Now it would be possible to
convert the observed values to other temperature units, e.g. Fahrenheit. The knowledge to

24

2.2 Foundations of Knowledge Representation

Data

Knowledge

Temperature(?x)^

hasValue(?x,?v)^

hasUnit(?x,“Celsius“)^

lessThan(?v,0)

-> Freezing(?x)
time OAT

2017/11/11-08:09:11 -1.0

2017/11/11-11:11:00 2.0

Information

dp_OAT

hasID

Temperature

type

hasUnit
"OAT"

"Celsius"

time OAT

2017/11/11-08:09:11 -1.0

2017/11/11-11:11:00 2.0

time OAT

2017/11/11-08:09:11 -1.0

2017/11/11-11:11:00 2.0

Figure 2.6: Example illustrating the difference between data, information and knowledge.
Tabular data of a time series can be combined with contextual facts (e.g. unit is
Celsius) to information for interpretation. Knowledge expressed as a rule allows to
decide whether the freezing point of fresh water is reached or not (Stair like
structure adapted from North [Nor98]).

identify if some measurement is below the point where fresh water freezes is formulated as a
rule in Figure 2.6 (Knowledge). Hence, an entity having both the information and the described
knowledge could decide whether a particular measurement is below the freezing point. To
allow machines to utilise knowledge as defined by the rule KR is required as introduced in
Section 2.2.3.

2.2.2 Knowledge Classification
A number of disciplines show interest in understanding and reusing the principles of knowledge-
based processing of information artefacts. For instance, anthropologists and neurobiologists
are interested to determine how individuals, both animals and humans, use knowledge for
decision making. From a business management perspective knowledge is one of the most
valuable assets companies have [TSD11].
In computer science expert systems, a sub-domain of Artificial Intelligence (AI), deal with the
representation of knowledge in a knowledge base such that software programs can provide a
response to questions or derive a decision based on this knowledge [BL04]. With respect to
KR in the context of AI (see Section 2.2.3) it needs to be considered that different categories
of knowledge exist and some cannot be externalised. According to Polanyi [Pol09] knowledge
can be differentiated into explicit and tacit (also implicit) knowledge. This initial differentiation
is revised in Nonaka and Konno [NK98] and Probst et al. [PRR12] in the context of a business
perspective. As a result of these efforts the ASHEN model presented by Snowden [Sno05]

25

2 Foundations and State of the Art

aims to overcome some of the identified limitations of the first models to classify knowledge.
The ASHEN model is illustrated in Figure 2.7 and supports to identify knowledge suitable
for KR. It provides useful means to distinguish between knowledge categories and to assess if
some certain kind of knowledge can be specified for the purpose of KR in AI. It may be noted
that approaches exist to convert implicit to explicit knowledge and vice versa [NK98]. The
following categories can be distinguished [Sno00]:

Im
p

li
ci

t
E

x
p

li
ci

t

Heuristics

(Rules of thumb)

Artefacts

(e.g. Documents)

Natural abilities

(Not transferable)

Skills

(Measurable abilities)

Experiences

(Bound to persons

and

groups)

Figure 2.7: Schema of the ASHEN model [Sno00] to differentiate knowledge categories into
implicit and explicit knowledge (adapted from VDI 5610-1 [VDI09b]).

• Artefacts include all artefacts produced by humans, which might be codified to be ma-
chine readable. Typically a large share of this knowledge can be represented by means
of KR. For example this includes technical drawings or manuals describing how a cer-
tain process works [Sno00];

• Skills are the abilities a person can acquire, e.g. through practising. The successful
acquisition of skills can be measured by some quality measure [Sno00];

• Heuristics or ’rules of thumb’ [Sno05] are possibilities to derive decisions without com-
plete information or with only a limited amount of time. This way of thinking might
incorporate a simple set of questions, which are sequentially asked [Sno00];

• Experiences consist of mainly tacit knowledge. It is considered more valuable above
the other mentioned artefacts [Sno00] as experience in the context of an organisation is
distributed across individuals and might not be replicated simply through time restric-
tions;

26

2.2 Foundations of Knowledge Representation

• Natural abilities or natural talent is the final component being intrinsically implicit
knowledge, which is a characteristic of an individual or not. In particular, it cannot be
manufactured or transferred [Sno00];

The classification scheme of the ASHEN model helps to identify, which knowledge is suitable
for representation. In an engineering context artefacts, such as simulation files, drawings, con-
tact plans or tables with component specifications or product data occur. Hence, according to
the ASHEN model, these artefacts are particularly suitable for KR.

2.2.3 Knowledge Representation
The intelligent behaviour of humans or animals through the use of knowledge is a fascinat-
ing phenomenon. Researchers related to the field of AI are interested in developing software
programs, which may use knowledge to deduce novel insights by means of reasoning [BL04].

Definition 2.13 KR is ’the field of study concerned with using formal symbols to represent a
collection of propositions believed by some putative agent.’ [BL04].

Hence, formal symbols are use to represent a collection of propositions, e.g. as embodied in the
following sentence: Georg studied mechanical engineering. Within this sentence the symbols
Georg are used to refer to the author of this thesis and the symbols studied to a verb. The
proposition of this sentence is if the statement encoded in this sentence may be evaluated to be
true or not. Brachman and Levesque [BL04] describe a putative agent as a generic abstraction
for human persons as well as computer programs.
To enable computer programs to deduce new insights from symbolically represented know-
ledge reasoning is required. Here, reasoning refers to the formal manipulation of represented
knowledge to produce new representations [BL04].
A different approach to define KR is given by Davis et al. [DSS93]. Instead of providing a
single definition the authors describe five main roles of KR in the context of AI.

1. KR is a surrogate meaning that there is a need to have a surrogate for the real world to
enable an entity to determine consequences through thinking. In contrast there could
be also the possibility to simply act upon the real world [DSS93];

2. KR is associated with some ontological commitment. Davis et al. stress the fact that
when representing the real world there always are decisions on what should be con-
tained in the surrogate and what should be omitted. ’The commitments are, in effect, a
strong pair of glasses that determine what we can see, bringing some part of the world
into sharp focus at the expense of blurring other parts.’ [DSS93];

3. KR involves the notion of intelligent reasoning meaning to generate new expressions
from old. They conclude that a diverse set of intelligent reasoning methods exist and
can be quite diverse dependent on the tools utilised;

27

2 Foundations and State of the Art

4. Davis et al. make the claim for pragmatically efficient computation, where computation
is used synonymically to thinking. To enable the use of KR methods and tools it needs
to be computationally efficient. In particular, the need for guaranteed computational
efficiency is made [DSS93];

5. KR is considered as ’a medium of human expression and communication’. Formally
specifying knowledge means also specifying human expressions. The results of KR
should be easily understandable, in particular, when results obtained from machines
need to be communicated to humans again.

The actual technology used for representing knowledge should be separated from the theor-
etical understanding of KR. Different technologies exist for the symbolic representation of
knowledge [PA16, BL04]. This includes logics such as First Order Predicate Logic (FOL)
[HKR10], rules [HPSB+04, KB13], frames [Min74] and semantic networks [Sow14]. Each of
these technologies has its benefits and drawbacks, which need to be considered when imple-
menting solutions using one of them [BL04].

2.2.4 Knowledge-Based System
The original goal in formally representing knowledge is to enable intelligent applications
through a KBS. Examples are the automated verification of compliance to standards [PVDV+11]
or checking of the interoperability of devices for the automated design of BAS [Dib13]. In Fig-
ure 2.8 a generic architecture of a KBS is presented. The architecture is adapted and simplified
from Runde [Run11].

Knowledge

Acquisition

Knowledge-base

Assertional

Knowledge

Terminological

Knowledge

Procedural

Knowledge

Inference

Engine

Feedback

and Decision

Support

Knowledge Processing

Figure 2.8: A generic architecture of a knowledge-based system (adapted, simplified from
Runde [Run11]).

A KBS consists of a knowledge base and a knowledge processing component. The knowledge
base stores the symbolical representation of knowledge. Following the ASHEN model (see

28

2.3 Knowledge-based Methods Related to the Engineering and Operation of Control Logic in
Automation Systems

Figure 2.7) only explicit knowledge can be considered here. The stored knowledge can be
distinguished dependent on the originating source [Run11, BHS07] as well as its use [Run11,
BKI03, Sab16] into assertional, terminological and procedural knowledge.
Assertional knowledge constitutes knowledge, which often consists of facts on a specific use
case. For example instantiating the individual AHUController as an individual of the
concept ControlActor constitutes such knowledge. Terminological knowledge constitutes
knowledge on an abstract level, which can be transferred to different use cases. This includes
descriptions of the domains of interest, such as concepts and the relationships among them.
Following the previous example relating the concept ControlActor via the hasInput re-
lationship to a concept Input is an example for such knowledge. Finally, Procedural Know-
ledge includes knowledge, which can be represented using causal relationships, such as rules.
Here the antecedent (’IF’) implies the consequence. Extending the previous example the rule If
the unit of an input and output are equal, then they can be connected specifies some procedural
knowledge, which could be used to infer the connection of ControlActors.
The components of the knowledge-processing module have access to the stored knowledge in
the knowledge-base. Each knowledge type needs to be acquired by some processing compon-
ent. For assertional knowledge this often requires the formalisation of use case specific instant
data and information by implementing suitable adapters for automated processing. Termino-
logical and procedural knowledge typically is defined manually by formalising the domain of
interest, e.g. through ontologies or rules. A prerequisite for a KBS is the availability of an in-
ference engine, which automatically draws conclusions on the available knowledge by means
of reasoning. Finally, the feedback and decision support component communicates the inferred
results of the KBS back to human agents or to technical systems.
After presenting the corner stones of KR in this section, Section 2.3 analyses the properties of
contributions from literature, which use KR to develop KBS in the context of BAS and IAS.

2.3 Knowledge-based Methods Related to
the Engineering and Operation of
Control Logic in Automation Systems

As defined in Objective 1 one goal of this thesis is the development of knowledge-based meth-
ods to support and automate the engineering and operation of control logic in automation sys-
tems. During the engineering process of automation systems a variety of artefacts are created,
which are particularly suitable for KR.
KR and semantic technologies are understood to provide means for the design of automated
methods to solve knowledge-intensive tasks related to the engineering and operation of tech-
nical systems [TAO98]. This approach is particularly interesting in multi-disciplinary, hetero-

29

2 Foundations and State of the Art

geneous engineering environments of automation systems and increasingly gets into the focus
of industry and academia [BS16a, ESS+17].
From decades of research in computer science a wide variety of formalisms for KR is avail-
able. This includes amongst others logics, such as FOL [HKR10] or F-Logic [KLW95], rules
[HPSB+04, KB13], frames [Min74] and semantic networks [Sow14]. Each of these techno-
logies has its benefits and drawbacks, which need to be carefully balanced [BL04]. A recent
contribution by Ekaputra et al. [ESS+17] analyses literature from semantic web and automa-
tion systems engineering research areas and their effect on ontology-based data integration.
A finding of the authors is that the de facto standard for knowledge-representation in auto-
mation systems are ontologies and most works use Semantic Web Technologies (SWT) (see
Chapter A), such as Web Ontology Language (OWL) [W3C12] for implementation. Never-
theless, other means for implementation exists such as frames and successful applications are
reported by Wiesner et al. [WMM11] and Tudorache & Alani [TA16].
In the following contributions are analysed with respect to their potential to reach Objective 1,
i.e. knowledge-based methods to support and automate the engineering and operation of con-
trol logic in automation systems. The contributions are analysed with respect to the following
properties and the results are summarised in Table 2.2. Finally, findings drawn from this ana-
lysis are presented in Section 2.5.

• the applied KR methodology;

• the used knowledge modelling language;

• the utilised technology for reasoning;

• the means for knowledge acquisition;

• if reported, the utilised knowledge engineering methodology

• the potential reuse of existing formal knowledge, e.g. through ontology reuse.

An interesting piece of research using knowledge-based methods for the engineering of auto-
mation system allow the automated design [DPK10, Dib13] and the semi-automated engineer-
ing and commissioning [RFW09, Run11] of control logic in BAS.
Dibowski & Kabitzsch [DPK10] and Dibowski [Dib13] present a knowledge-based approach
to automatically design room automation systems. The approach relies on the definition of a
semantic model for BAS devices and BAS function profiles. It allows to define requirements
to the automation functionality of a room and then the presented solution derives automatically
a logical topology. In addition it matches the resulting network of function profiles to devices
and generates, ultimately, interoperable, multi-vendor BAS. A related contribution presents
the concept of KBS to support the engineering of automation systems [RFW09, Run11]. The
approach describes the semi-automatic configuration of BAS devices based on matching re-
quirements with actual functionalities of the devices.

30

2.3 Knowledge-based Methods Related to the Engineering and Operation of Control Logic in
Automation Systems

Ta
bl

e
2.

2:
R

es
ul

ts
fr

om
th

e
an

al
ys

is
of

kn
ow

le
dg

e-
ba

se
d

m
et

ho
ds

re
la

te
d

to
th

e
en

gi
ne

er
in

g
an

d
op

er
at

io
n

of
co

nt
ro

ll
og

ic
in

au
to

m
at

io
n

sy
st

em
s.

K
R

-K
no

w
le

dg
e

R
ep

re
se

nt
at

io
n,

K
E

-K
no

w
le

dg
e

E
ng

in
ee

ri
ng

,O
W

L
-[

W
3C

12
],

Se
m

an
tic

W
eb

R
ul

e
L

an
gu

ag
e

(S
W

R
L

),
SP

A
R

Q
L

Pr
ot

oc
ol

an
d

R
D

F
Q

ue
ry

L
an

gu
ag

e
(S

PA
R

Q
L

),
Pe

lle
t-

[S
PG

+
07

],
JE

SS
-[

H
il0

3]
,H

er
m

it
-[

G
H

M
+

14
],

if
cO

W
L

-
[P

T
16

],
B

A
S

-B
ui

ld
in

g
A

ut
om

at
io

n
Sy

st
em

s,
U

M
L

-U
ni

fie
d

M
od

el
in

g
L

an
gu

ag
e.

R
ef

er
en

ce
K

R
m

et
h-

od
ol

og
y

K
no

w
le

dg
e

m
od

el
lin

g
la

ng
ua

ge

R
ea

so
ni

ng
K

E
m

et
h-

od
ol

og
y

O
nt

ol
og

y
re

us
e/

im
po

rt

A
pp

lic
at

io
n

ar
ea

[D
ib

13
]

O
nt

ol
og

y
O

W
L

/
SW

R
L

/
SP

A
R

Q
L

Pe
lle

t,
Q

ue
ry

en
gi

ne
ow

n
-

A
ut

om
at

ed
de

si
gn

of
ro

om
au

to
m

at
io

n
sy

s-
te

m
s

[R
un

11
]

O
nt

ol
og

y
O

W
L

/
SW

R
L

JE
SS

ow
n

-
Su

pp
or

to
f

B
A

S
en

gi
ne

er
in

g
an

d
co

m
m

is
-

si
on

in
g

[D
H

R
16

b]
O

nt
ol

og
y

O
W

L
/

SW
R

L
/

SP
A

R
Q

L

Pe
lle

t/
Q

ue
ry

en
gi

ne
ow

n
if

cO
W

L
A

ut
om

at
ed

se
tu

p
of

vi
rt

ua
lB

A
S

se
ns

or
s

[H
K

13
]

O
nt

ol
og

y
O

W
L

/
SW

R
L

Pe
lle

t
ow

n
-

C
on

tr
ol

ap
pl

ic
at

io
n

en
gi

ne
er

in
g

[M
B

12
]

O
nt

ol
og

y
O

W
L

/
SW

R
L

/
SP

A
R

Q
L

Q
ue

ry
en

gi
ne

ow
n

-
In

te
gr

at
ed

kn
ow

le
dg

e
sh

ar
in

g
in

th
e

au
to

-
m

at
io

n
sy

st
em

s
en

gi
ne

er
in

g
lif

e
cy

cl
e

[H
W

D
+

13
]

O
nt

ol
og

y
O

W
L

/
SW

R
L

Pe
lle

t
ow

n
-

V
er

ifi
ca

tio
n

of
th

e
se

m
an

tic
s

of
U

M
L

be
-

ha
vi

ou
ra

lm
od

el
s

[K
P1

5]
O

nt
ol

og
y

O
W

L
/

SW
R

L
Pe

lle
t/

H
er

m
iT

ow
n

-
V

er
ifi

ca
tio

n
of

U
M

L
m

od
el

s

31

2 Foundations and State of the Art

Both approaches follow an ontology-based approach for the KR and implement their do-
main models using OWL. Due to the complexity [Dib13] of the expressed knowledge Dibow-
ski [Dib13] determines interoperable BAS solutions by defining integrity constraints in the
SPARQL [PS17]. Additional knowledge is specified using the SWRL [HPSB+04]. For reas-
oning the Pellet reasoner [SPG+07] and a query engine for the processing of the SPARQL
queries is used. Runde [Run11] follows a different approach. In addition to knowledge ex-
pressed using OWL, Runde [Run11] uses rules defined in the SWRL. To reason upon the
expressed knowledge he uses the JESS reasoning engine [Hil03]. No explicit knowledge en-
gineering method is mentioned. Both develop novel ontologies from scratch without explicitly
mentioning ontology reuse.
Contributions related to automate tasks needed for FDD in BAS are presented in Dibowski et
al. [DHR16b, DVHR16, DHR16a], where, with regard to control logic, the automated setup of
virtual sensors in BAS [DHR16b] is particularly interesting. The methodology and designed
KBS of the respective approaches are similar. Here, the analysis is based on the descriptions
related to the automated setup of virtual sensors [DHR16b]. The approach specifies formally
the needs for setting up a virtual sensor for FDD. This specification can be matched against a
formal domain model of the building and its technical equipment to determine, which virtual
sensors can be instantiated automatically. The necessary knowledge is represented via ontology
and implemented using OWL and SWRL. The matching procedure is realised by executing
SPARQL queries on the processed knowledge-base. Additionally, reasoning is performed using
the Pellet [SPG+07] reasoner for consistency checking of the existing knowledge-base. No
specific knowledge engineering method is described. The approach reuses the ifcOWL [PT16]
ontology.
A KBS presented by Hästbacka & Kuikka [HK13] supports the engineering of control applica-
tion development through formal semantics provided by ontologies. It allows to check interface
semantics or to identify potential control interlocks. The approach formalises a UML profile
using an ontology implemented in OWL and additional procedural knowledge is implemented
using SWRL. In the approach reasoning is performed using the Pellet reasoner and the reuse
of existing ontologies is not described.
The Engineering Knowledge Bus (EKB) [MB12, Mos16] sets out to overcome the heterogen-
eity of formats and tools used for the general engineering of complex mechatronic systems,
such as automation systems. The approach proposes the development of abstract domain on-
tologies for the mechanical, electrical and software (control) domains. Tools within these do-
mains are integrated via tool specific ontologies. The ontologies described are implemented
using OWL and additional rules using SWRL. Additional expert knowledge is encoded as
SPARQL queries, which are executed against the knowledge base to ensure for example model
consistency and an own structured knowledge engineering approach is followed. The reuse of
existing ontologies is not detailed in the approach.

32

2.4 Formats and Models for Automation Systems

He et al. [HWD+13] present an approach, which utilises the formal basis of SWT for verific-
ation purposes of control logic. The approach relies on the specification of UML behavioural
models including state invariants for the verification. A mapping of UML models and UML
meta models is defined and the formal semantics allow, among others, to detect inconsistencies
between different behavioural models, such as activity and sequence models. An ontology-
based approach is used for KR implemented using OWL and SWRL. The Pellet reasoner is
utilised to perform the inference task and no use of a knowledge engineering method and no
reuse of existing models is reported.
To support model-driven engineering of software based on the UML Khan and Porres [KP15]
present a logic-based approach for the validation of designs. The approach follows a similar
path as presented by the authors He et al. [HWD+13] and allows to check the consistency of of
UML class, object and state machine models. The authors provide translations to convert from a
UML model to OWL. The approach is based on representing knowledge using ontology, where
for implementation OWL and SWRL are used. The off-the-shelf Description Logics (DL)
reasoners Pellet and HermiT [GHM+14] are used for the reasoning and neither the knowledge
engineering method nor the reuse of existing ontologies is described.
A finding of this review, for the specific focus area of knowledge-based methods for the sup-
port of control logic engineering in automation systems, is that all found knowledge-based
approaches use ontology for KR and implement their solutions using SWT. Different know-
ledge modelling languages and reasoners are used by the reported approaches and all do not
specify a specific knowledge engineering methodology. This can be caused by the fact that
SWT are the de facto standard when implementing KBS in automation systems engineering
[BS16b, ESS+17].
All approaches review existing ontologies in the domain and discuss their benefits and short-
comings. Hence, a shared understanding of used terminology and knowledge can be assumed.
However, the explicit knowledge reuse, e.g., through the import of an existing ontology is not
reported by most approaches. Only [DHR16b] report on the reuse of the ifcOWL ontology
[PT16]. A reason for this can be that the reuse of existing conceptualisations is a cumbersome
and time-consuming process [Sch17]. Most alignment work needs to be down manually and
methods automating this process are still under research [SE13].

2.4 Formats and Models for Automation
Systems

This section reviews existing formats and models related to the modelling of BAS and IAS. The
cited contributions are analysed and evaluated in terms of their ability to fulfil the criteria listed
in Table 2.3. The criteria are defined with respect to reach Objective 2 of this thesis: develop-

33

2 Foundations and State of the Art

ment of a semantic model of control logic in automation systems. Each referenced contribution
is analysed whether it provides means to describe the following domains of interest:

• Physical system: Components, aspects and parts of physical systems, such as tech-
nical building equipment, valves, damper flaps, buildings, plants, pneumatic cylinders,
conveyors, etc.;

• Physical devices: Real physical devices in an automation system, such as a temperature
sensor mounted to a wall or a rail-mounted embedded device;

• Interface entities: The interfacing entities of a control actor1, such as input, output or
parameters;

• Interface semantics: Further annotation of interface entities through, e.g. its unit,
quantity, medium or basic data type;

• Logical topology: Means to describe the logical topology of an automation solution2;

• Logical hierarchy: Often a hierarchy can be established among several control entit-
ies, where some supervisory control actor supervises a low-level controller3 by, e.g.
changing its setpoint [ISO04b, IEC13d];

• Control logic: Core interest of this thesis is to analyse, whether contributions exist
to explicitly specify control logic4 apparent in BAS and IAS. This criterion evaluates
positively, if this is technically possible by the evaluated approaches;

• Data format: The underlying data format and implementation language used for the
specification for the respective format or model is reported. For example, Comma
Separated Value (CSV), eXtensible Markup Language (XML) [BPSM+06] or OWL.

In the following sections contributions related towards the description and modelling of auto-
mation systems are analysed. First, in Section 2.4.1 and Section 2.4.2 data formats and on-
tologies from the domain of BAS are analysed. Next in Section 2.4.3 and Section 2.4.4 the
respective contributions from the domain of IAS are analysed. Finally, in Section 2.4.5 and
Section 2.4.6 generic ontologies and other approaches related to the topic are reviewed.

2.4.1 Data Formats for Building Automation Systems
Within this section existing data formats related to the information exchange between stake-
holders from the BAS domain are analysed. Moreover, fundamental conceptualisations of the
BAS domain and the definition of associated knowledge [DCVK16, CTM16] are reviewed.

1 See Definition 2.4.
2 See Definition 2.5.
3 See Definition 2.8 and 2.9
4 See Definition 2.6.

34

2.4 Formats and Models for Automation Systems

Table 2.3: Criteria for the analysis of related work; Criterion fulfilled (+), criterion partly
fulfilled (◦), criterion not fulfilled (-). CSV - Comma Separated Value, OWL -
[W3C12]. Layout adapted from Dibowski [Dib13].

Criteria Possible evaluation

Physical system + / ◦ / -
Physical devices + / ◦ / -
Interface entities + / ◦ / -
Interface semantics + / ◦ / -
Logical topology + / ◦ / -
Logical hierarchy + / ◦ / -
Control logic + / ◦ / -
Data format for Example: CSV, OWL, ...

The findings on analysing data formats and approaches for the BAS domain are summarised in
Table 2.4.

Table 2.4: Results from the analysis of data formats related to the modelling of building
automation systems. EXPRESS - [ISO04a], XML - [BPSM+06], OWL - [W3C12].

Criteria Schein Domingues BCK CDL Benndorf
et al. et al.

[Sch07] [DCVK16] [CTM16] [Wet18] [BRCR17]

Physical system - - - - +
Physical devices + + - - +
Interface entities + + + + +
Interface semantics - + ◦ ◦ ◦
Logical topology + + + + +
Logical hierarchy + + + - -
Control logic - + + + +
Data format EXPRESS None Data base Mode- XML/

lica (OWL)

A domain model for BAS using the EXPRESS [ISO04a] data modelling language is presented
by Schein [Sch07]. Using the model, it is possible to describe the building automation network
and respective connections of devices. The model includes concepts to describe control actors
and their logical topology as well as the hierarchy among them. The interface semantics of
inputs and outputs can be specified using strings and a naming convention with limited ex-
pressibility. A downside of this methodology is that the naming convention provides the risk
to introduce ambiguity and limits the maintainability of the approach. Actual control logic of
a control actor cannot be described explicitly.

35

2 Foundations and State of the Art

The prevalent heterogeneity among solutions for building automation is a major challenge in
developing these systems. The ’unclear definitions and terminology’ as mentioned by Domin-
gues et al. [DCVK16] provided in literature and documentations of BAS are recognised as one
source of this heterogeneity [DCVK16]. To address this issue the authors describe the basic
building blocks of BAS including devices in BAS network, the interface and its semantics of
BAS device along virtual datapoints, the connection of these datapoints into a logical topology
and the hierarchy among them. Also, a textual description of control logic, such as schedules
is provided. The valuable contribution of this work is the rigid definition of the basic building
blocks of BAS. However, in this evaluation the absence of a formal model, though not the goal
of the authors, is a limitation of their work.
Building Control Knowledge (BCK) as defined by Chen et al. [Che15, CTM16] refers to ’in-
formation that conveys the functionality, detailed control logics, algorithms, sequences, pro-
gramming code, and the hierarchical structure of a (number of) controller(s)’ [CTM16]. The
domain knowledge related to the control of technical equipment in buildings is discussed on an
abstract level by this contribution. The logical topology and hierarchy of control logic entities
is mentioned and the authors conclude that control logic is manufacturer dependent and served
in various formats and programming languages. The approach relies on a data base schema
termed M-BCK [Che15], which provides means to exchange the specified knowledge but is not
a formal model.
The OpenBuildingControl project [Wet18] constitutes an effort in developing and unifying the
existing best-practice control sequences (control logic) for air handling systems in buildings.
The goal of this efforts is to provide highly energy efficient control logic to stipulate its reuse for
the operation of the controlled HVAC equipment. To exchange the specified control logic the
effort aims at developing the Controls Description Language (CDL) [Wet18] and the model and
documentation are available on the web. The definition of the CDL is based on the modelling
language Modelica [Mod17a], which is an acausal modelling language for the simulation of
technical systems and does not support KR. The scope of the approach is solely on control
logic and their interfaces restricted to air handling systems in building HVAC. The connection
of control actors can be described but not the hierarchy among them.
An attempt to extend the Industry Foundation Classes (IFC) [ISO13] model to specify com-
monly occurring control logic in the control of HVAC systems is presented in Benndorf et
al. [BRCR17]. Via custom property sets [ISO13] the authors implement ways to model a heat-
ing curve, a time schedule and a PID temperature control. As the approach relies on the IFC it
allows to describe buildings and their technical systems as well. Additionally, the authors claim
to use reasoning for formal verification and exposing the data through a triple store, however,
the evidence provided is limited.

36

2.4 Formats and Models for Automation Systems

2.4.2 Ontology-based Modelling of Building
Automation Systems

Within the domain of building automation a number of contributions exist, which use ontology-
based modelling for the description of the BAS domain. A recent overview is presented in
[BGT17], where relevant and additional references are analysed in the following. In addition,
a review on the use of SWT in the built environment is presented in Pauwels et al. [PZL17].
The Haystack Tagging Ontology (HTO) [CKAK15] is an approach to formalise knowledge on
meta-describing datapoints in BAS and building management systems. A conversion method is
provided to convert the tag system developed by the contributors to the Project Haystack5 effort
to HTO. The project aims at providing additional semantics to building monitoring data for the
IoT. HTO provides means to describe technical equipment in buildings and their interfaces via
datapoints in BAS. It is possible to specify, e.g. the quantity of a datapoint. Specific aspects
of control logic are not within the scope of this contribution, such as logical topology and
hierarchy as well as the explicit modelling of control logic.
The Datenmodell- und Austauschformat für das Engineering in der Gebäudeautomation, (eng.:
Data model and exchange format for the engineering of BAS) (DEG) is a format and model
specifically designed to support the engineering of BAS through knowledge-based methods.
The approach is used to support and partially automate the commissioning of BAS [RFW09,
Run11]. It allows to describe physical systems of a building and devices in BAS. Input and
outputs of a control actor can be described and the logical topology among them but not hier-
archical relationships among them. No detailed semantics of the interface entities can be spe-
cified. For the description of control logic a taxonomy is used and no explicit descriptions of
control logic is possible.
To address interoperability issues arising from the heterogeneous communication protocols
available in BAS, Reinisch et al. [RGPK08] describe an ontology-based integration approach.
The work includes a description of control actors and their interfaces as ’function blocks’ and
uses a taxonomy to differentiate between them. The logical topology of several function blocks
as well as annotations of the input and output variables can be defined. No means are provided
to describe the logical topology and explicitly control logic.
A facility management model specifically designed for the integration of heterogeneous in-
formation sources required for energy management as developed in the CASCADE ICT for En-
ergy Efficient Airports (CASCADE) research project is presented in Tomašević et al. [TBB+15].
Concepts and relationships to describe buildings, technical equipment and components of the
BAS are modelled. Interface entities, their semantics and topology can be defined. However,
control logic cannot be explicitly modelled.

5 https://project-haystack.org/, Last accessed: 22 October 2018

37

https://project-haystack.org/

2 Foundations and State of the Art

For the modelling of energy systems the Energy System Information Model (ESIM) [KS15] is
defined, which contains a submodel to describe BAS. Similar to the former reported approaches
the focus lies on the description of aspects of physical systems and control actors. For the
description of control logic a taxonomy is utilised and the explicit description of control logic
is not possible.
The findings from analysing contributions related to the ontology-based modelling of BAS
domain so far are summarised in Table 2.5.

Table 2.5: Results (1/3) from the analysis of ontologies related to the modelling of building
automation systems. OWL - [W3C12].

Criteria HTO DEG Reinisch et al. CASCADE ESIM
[CKAK15] [Run11] [RGPK08] [TBB+15] [KS15]

Physical system + + - + +
Physical devices + + + + +
Interface entities + + + + +
Interface semantics ◦ ◦ + + ◦
Logical topology - + + + +
Logical hierarchy - - - - -
Control logic - - - - -
Data format OWL OWL OWL OWL OWL

The Domotic Ontology (DogOnt) [BC08] is an ontology for intelligent domotic devices. It
sets out to serve as a domain model for smart home systems. A main distinction made by the
modellers is the description of controllable and uncontrollable entities in a smart home. Hence,
the ontology allows to describe the physical components of a home. Control logic descriptions
are modelled by developing a taxonomy of functions, rather then explicitly describing control
logic. These then are associated with devices, which execute the respective functionality. The
current operation mode of a device can be specified from a finite set of states. The description of
the interfaces of control actors and their semantics is not possible. Hence, the logical topology
and hierarchy of control actors cannot be specified. Explicit modelling of control logic is not
considered.
Extending on the work of DogOnt the ThinkHome project [RKK10, RKIK11, KRK12] con-
stitutes a family of ontologies for energy related intelligent applications in smart homes. In
addition to smart devices, it covers adjacent domains of interest, such as buildings, weather,
energy and comfort conditions. The ontologies provide a strong means for describing the
physical artefacts associated with the smart home domain. However, with respect to control
logic only classifications can be utilised. Hence, knowledge related to the interfaces, logical
topology and explicitly the actual control logic cannot be specified.

38

2.4 Formats and Models for Automation Systems

Driven by industry a reference ontology for smart appliances termed Smart Appliances REFer-
ence Ontology (SAREF) has been developed [DdHR15]. In the development process existing
ontologies related to the smart home domain are reviewed and amalgamated to the resulting
SAREF core ontology. The initial version [DdHR15] is revised and extended into various
domains [PVGC18, ETS17b]. A revision of the initially published version of SAREF is stand-
ardised in European Telecommunications Standards Institute (ETSI) TS 103 264 [ETS15].
Domain specific extensions are developed to describe physical systems from the buildings
[PVGC18] and energy [ETS17b] domains. Similar to the above reviewed ontologies, e.g.
DogOnt, ThinkHome, etc., which can be seen as predecessors of SAREF, it focusses largely
on the description of devices and physical components in smart home systems and appliances.
To describe actual control logic a taxonomy of functionalities, such as actuating, sensing or
metering can be used. Interface entities and their semantics as well as knowledge related to the
logical topology cannot be specified. In particular, control logic knowledge cannot be explicitly
modelled.
To enable the automated design of BAS a generic semantic device description model is presen-
ted in Dibowski and Kabitzsch [DPK10] and Dibowski [Dib13]. The main contribution of the
work includes a semantic model for devices in BAS as well as function profiles. The models
are a module in BASont [PHDK12], a layered ontology to formalise the BAS domain. BASont
provides a number of concepts and relationships to describe the physical aspects of a building
including buildings, technical equipment in buildings, BAS devices, etc. It allows to specify in
detail the interface entities and semantics as well as the logical topology and hierarchy of the
specified control functions. The approach uses a finite set of potential function profiles derived
from a standard for room automation [VDI11b] to describe the control logic in BAS. The actual
control logic cannot be explicitly modelled.
The results of analysing the mentioned ontologies are presented and can be compared in
Table 2.6.

Table 2.6: Results (2/3) from the analysis of ontologies related to the modelling of building
automation systems. OWL - [W3C12].

Criteria DogOnt ThinkHome SAREF BASont
[BC08] [RKIK11] [DdHR15] [PHDK12]

Physical system + + + +
Physical devices + + + +
Interface entities - - - +
Interface semantics - - - +
Logical topology - - - +
Logical hierarchy - - - +
Control logic - - - -
Data format OWL OWL OWL OWL

39

2 Foundations and State of the Art

Balaji et al. [BBF+16, BBF+18] present the BRICK ontology, which sets out to provide a
unified meta data schema for buildings. It particularly focusses on describing the concepts
and relationships of buildings, the technical equipment and datapoints exposing sensor meas-
urements and actuator settings in BAS. The schema provides concepts to describe the logical
topology of automation solutions. However, apart from the description of the semantics of
control actors including the interfaces and the topology, no explicit description of control logic
is included.
A widely accepted, open exchange format in the domain of AEC/FM are the IFC. The format
is developed by buildingSMART6 a non-profit organisation of experts from academia and in-
dustry. The released versions of the format are internationally standardised in ISO 16739 [ISO13].
The format is defined using the EXPRESS modelling language [ISO04a]. A version converted
to OWL (ifcOWL) is available as well [PT16]. Within its most recent release IFC4 the standard
provides some support to describe control logic in BAS. This includes the logical topology of
automation solutions. The respective control logic is not included and a taxonomy is given to
specify the type of a control logic.
The results of analysing the mentioned ontologies are presented and can be compared in
Table 2.7.

Table 2.7: Results (3/3) from the analysis of ontologies related to the modelling of building
automation systems. OWL - [W3C12].

Criteria BRICK ifcOWL
[BBF+18] [PT16]

Physical system + +
Physical devices + +
Interface entities + +
Interface semantics ◦ ◦
Logical topology + +
Logical hierarchy - -
Control logic - -
Data format OWL OWL

2.4.3 Data Formats for Industrial Automation
Systems

A number of data formats exists for the exchange of information between software tools of
automation engineers and control logic designers in the industrial automation domain.

6 https://www.buildingsmart.org/, Last accessed: 22 October 2018

40

https://www.buildingsmart.org/

2.4 Formats and Models for Automation Systems

The AutomationML format is a XML based format, which is developed by an industrial con-
sortium (AutomationML e.V.7). It is internationally standardised as IEC 62714-1 [IEC14b],
and a detailed description can be found in Lüder et al. [LSD17]. It is build on top of the
Computer Aided Engineering Exchange (CAEX) format [IEC16], which allows to specify
the hierarchical structure and functions of manufacturing processes and plants, and exchanges
various information about them [FD04]. Within AutomationML the PLCopen XML [PLC09]
format is used to describe control logic of automation systems. The PLCopen XML format
is an open, XML-based format developed by the non-profit PLCopen organisation8. It offers
means to exchange PLC projects implemented in one of the five programming languages of the
IEC 61131-3 [IEC14a]. Using the format, the logical topology of an automation solution and
some semantics including the basic data types of the interface variables can be specified. The
format includes the actual implemented control logic. For implementations using the textual
programming language Structured Text (ST) the bare source code is stored.
Lüder et al. [LEHM11] present the transformation of Gantt charts, PERT charts, impulse dia-
grams, UML state machines and SFCs from IEC 61131-3 via an Intermediate Modeling Layer
[LEHM11] (IML) meta model. Mapping rules are defined between the respective domain mod-
els to the IML meta model. Target format for exchange is the PLCopen XML format. Besides
control logic the model is used to describe discrete manufacturing processes. The model forms
the basis of a framework, which is used to evaluate the approach in studying a drill mechat-
ronic unit [LEHM11]. The approach is connected to the development of the AutomationML
and PLCopen XML standards with similar capabilities when combined.
To support engineers in developing control logic in automation systems the MeiA• method
[ASB+18] is proposed. It implements an incremental development process, which allows dif-
ferent stakeholders involved in the design of the control logic of an automation system to col-
laboratively work on the analysis, design and implementation of the system. Aspects of phys-
ical systems related to the control logic in an automation system are not within the scope and
cannot be modelled explicitly. The descriptions of control actors with interfaces is possible,
however, the detailed interface semantics and hierarchy among control actors are not included.
The format used in the methods allows the description of a single type of control logic using
SFCs from IEC 61131-3.
The vueOne integrated development platform for the engineering and simulation of cyber-
physical automation systems is presented by Harrison et al. [HVA16]. Within the system a
number of tools and services are available, which exchange engineering information via an
XML based format. The final result in terms of control logic can be generated as source code
to be executed on a real PLC. The approach focusses on the design of the physical systems
and control logic is considered more in the direction of source code implementation. An actual

7 https://www.automationml.org, Last accessed: 22 October 2018
8 http://www.plcopen.org/, Last accessed: 22 October 2018

41

https://www.automationml.org
http://www.plcopen.org/

2 Foundations and State of the Art

explicit formal description of control logic is not provided. The description of SFC according
to IEC 61131-3 is possible and the source code of these can be generated and exchanged.
Horn & Ebert [HE08] model all five languages of the IEC 61131-3 using the UML. They
provide similar capabilities as the PLCopen XML format, but, additionally, support to specify
source code implemented in the language ST [IEC14a]. The scope of the described meta-
model is control logic and its interface entities. No specific semantics of the interface entities
is described and discrete control logic, such as finite state machines can be specified. The
approach reuses the IML model [LEHM11] for the representation and exports the result to an
SFC specified in the PLCopen XML format.
The findings with respect to the data formats in IAS are summarised in Table 2.8.

Table 2.8: Results from the analysis of data formats related to the modelling of industrial
automation systems, XML - [BPSM+06], UML - [Obj15a].

Criteria Automa IML MeiA• vueOne Horn
-tionML & Ebert
[IEC14b] [LEHM11] [ASB+18] [HVA16] [HE08]

Physical system + - - + -
Physical devices + - - + -
Interface entities + - + + +
Interface semantics ◦ - - - ◦
Logical topology + + + + +
Logical hierarchy - - - - -
Control logic + + ◦ ◦ +
Data format XML XML XML XML UML/XML

2.4.4 Ontology-based Modelling of Industrial
Automation Systems

The use of ontology for the modelling of IAS has gained attention in academia and industry. A
comprehensive overview on generic ontology-based data integration approaches in the domain
is given in Ekaputra et al. [ESS+17] and Biffl & Sabou [BS16b].
To improve the energy management of production systems the SERENE model [WJRO14,
Wic16] allows the ontology-based integration of knowledge on a production plant. The model
supports the description of knowledge on physical objects of a production plant including ma-
chines, tools, engineering resources as well as engineering processes, industrial automation
devices and human actors. The focus of the approach is related to the energy management in
production plants. With respect to the interfaces of control actors and their logical topology
and hierarchy no knowledge can be specified. Additionally, the explicit modelling of control
logic in IAS is not within the scope of the approach and, hence, not included.

42

2.4 Formats and Models for Automation Systems

The current standardised version of AutomationML [IEC14b] is implemented in XML. Re-
searchers are aiming in converting it into the formal knowledge representation language OWL
[KGG18]. The approach up to the time of writing focusses on the very top layer of the Automa-
tionML format without going into detail, e.g. how to formalise the embedded PLCopen XML
format. Hence, the evaluation is similar to the XML-based version. A detailed description is
as well provided in Sabou et al. [SKN16]. As the ontology only captures the top-level of the
AutomationML format, no explicit formal description of control logic is possible.
The Common Concepts Ontology (CCO)9 is designed to serve as a domain ontology for
mechatronical systems. It differentiates between mechanical, electrical and software engin-
eering domains on a high level and may be extended with domain specific ontologies. Its
structure and domains are detailed in Sabou et al. [SKN16]. It covers all domains on an upper
level, however the detailed explicit specification of control logic is not described.
The Automation Ontology (AutomOnto) [NSMŠ15] is an ontology developed to support the
simulation based engineering of production systems. It considers the physical plant, simulation,
tag and parameter domains to allow the integration of virtual simulated pieces of the plant
and physical components. All components are integrated in the automation service bus. The
topology of control actors can be specified as well as its interfaces and their semantics. Control
logic itself cannot be explicitly specified and is not discussed in the case of simulation.
An approach presented by Hästbacka & Kuikka [HK12, HK13] allows to enhance the engin-
eering and reasoning on meta models to support the development of control applications by
means of formal semantics through ontologies. The approach formalises the UML Automation
Profile (UML AP) [RK07], an automation systems specific profile for the UML. The described
ontology prototype allows to describe control actors and their interface entities including their
semantics. The connection of interface entities and the hierarchy among control applications
can be defined. In the approach the actual control logic is not specified in detail; rather function
blocks representing ’parametrizable functionality provided by devices or subsystems’ [HK13]
can be modelled.
The findings of the above analysed contributions are summarised in Table 2.9.
Focussing on automation systems in the process industry the data model defined in standard
IEC 61512-3 [IEC08] strives for being a single domain model for the definition of batch pro-
cesses in process automation including their control logic. Ontology-based formalisation of the
standard is proposed [VH+14a, MEP10, HZ16] and allows to formally specify the respective
physical systems, the interface entities and the logical topology of associated control actors.
Interface semantics and the logical hierarchy are not detailed. The standard only allows the
explicit description of a specific type of control logic, which complies to some recipe type of
control logic using a finite set of states.

9 http://data.ifs.tuwien.ac.at/engineering/cco, Last accessed: 22 Octo-
ber 2018

43

http://data.ifs.tuwien.ac.at/engineering/cco

2 Foundations and State of the Art

Table 2.9: Results from the analysis of ontologies related to the modelling of manufacturing
automation systems. OWL - [W3C12].

Criteria SERENE Automa- CCO Autom- UML AP
tionMLOWL Onto

[Wic16] [KGG18] [SKN16] [NSMŠ15] [HK13]

Physical system + + + + -
Physical devices + + + + -
Interface entities - + + + +
Interface semantics - ◦ - + +
Logical topology - + + ◦ +
Logical hierarchy - - ◦ - +
Control logic - - - - ◦
Data format OWL OWL OWL OWL OWL

To exchange information during the engineering of chemical process engineering the Ontology
for Computer-Aided Process Engineering (OntoCAPE) [MMWY09] is a family of ontologies,
which is developed to serve this purpose. The model provides basic building blocks of tech-
nical systems in general and then further details the descriptions down to a granularity level
relevant to process automation. The focus of the ontologies is on exchanging engineering in-
formation on process engineering systems and includes for example the capability to describe
differential equations required for the simulation of components. Aspects of the interfaces and
topology/hierarchy of control actors can be defined. With respect to the explicit modelling of
control logic it follows a taxonomy based approach, where a number of classes are specified to
describe reoccurring control logic types in process automation.
An upper ontology to formalise the data model developed within the standard ISO 15926 [ISO03]
is presented in Batres et al. [BWL+07]. Again and similar to the previous reviewed approaches
from process automation a taxonomy is established to describe the various types of control lo-
gic usually occurring in process automation domain.

2.4.5 Domain Independent Ontologies for
Automation Systems

A number of domain independent ontologies exist, which cover aspects of the automation
system domain. The respective ontologies are analysed in the following and the results are
summarised in Table 2.11.
Researchers and practitioners in the semantic web domain have recognised that the description
of sensors and actuators is a reoccurring pattern, which can be observed in various domains.
Hence, the Semantic Sensor Network Ontology (SOSA) [HKC+17], a World Wide Web Con-

44

2.4 Formats and Models for Automation Systems

Table 2.10: Results from the analysis of ontologies related to the modelling of process
automation systems, XML - [BPSM+06], OWL - [W3C12].

Criteria IEC 61512-3 OntoCAPE ISO 15926
[IEC08] [MMWY09] [BWL+07]

Physical system + + +
Physical devices + + +
Interface entities + + +
Interface semantics - + -
Logical topology + + +
Logical hierarchy - + -
Control logic ◦ - -
Data format XML/OWL OWL XML/OWL

Table 2.11: Results from the analysis of generic ontologies related to the modelling of
automation systems. OWL - [W3C12].

Criteria SOSA SEAS oneM2M
[HKC+17] [LKGZ17] [TS 18]

Physical system ◦ + -
Physical devices + + ◦
Interface entities + + +
Interface semantics - + -
Logical topology ◦ + -
Logical hierarchy - - -
Control logic - - -
Data format OWL OWL OWL

sortium (W3C) recommendation, provides standardised concepts and relationships to describe
sensor and actuator data on the web. Sensors and actuators form a part of each automation
system and SOSA provides concepts and relationships for their description and its particular
strength lies in the ability to serve as a top level ontology for this purpose. The ontology is
defined independently of any application domain, such as automation systems. The general
concept of a Procedure with inputs and outputs can be seen as a high level abstraction of
a process converting inputs to outputs, e.g. control actors. However, the specification of how
such a procedure actually behaves is not possible.
The Smart Energy Aware Systems (SEAS) ontology [LKGZ17] represents a family of ontolo-
gies, which formally describe technical systems on a generic level. The modelling of SEAS is
closely connected to the modelling from the SOSA ontologies but extends it further into the

45

2 Foundations and State of the Art

technical domain. The Procedure Execution Ontology (PEP)10 within the SEAS framework
provides generic concepts to describe a procedure with inputs and outputs, which can be seen
as an abstraction of a control actor. Simple means, to describe the assignment of a command to
an actuator, are provided but no explicit description of control logic itself. The SEAS System
ontology provides the concept CommunicationConnectionPoint, which can be used
to model datapoints in an automation system. The specific semantics and hierarchical relation-
ships among control actors cannot be specified.
The oneM2M consortium is an international initiative to support and enable interoperability in
the IoT. A number of standards are published by the initiative in this regard. The oneM2M
base ontology [TS 18] is a core ontology to describe IoT devices. It needs to be extended
to respective domains to describe aspects of physical systems. Within the ontology concepts
are defined to describe interface entities of IoT devices. With respect to the automatic control
domain the logical topology and hierarchy of IoT entities cannot be defined. Moreover, the
ontology designers stipulate to use textual descriptions to specify the actual conversion between
variables, i.e. control logic in a control context. Hence, the explicit formal description of
control logic is not possible.

2.4.6 Other Formats and Models
Apart from the application area of automation systems other approaches exist, which are related
to the modelling of control logic.
The UML [Obj15a] offers a rich set of modelling options for the description of various sys-
tems and artefacts. It is not restricted to a specific domains, hence, own classes for these
systems need to be defined. Its abstraction mechanism to specify behaviour, such as UML
state machines and activity diagrams, may be used for the specification of control logic. In
particular, UML state machines are a possibility to specify discrete control logic. The format
XML Metadata Interchange (XMI) [Obj15b] is defined to enable the exchange of UML models
among software tools. Interfaces of classes can be defined without detailed semantics. Control
actors can only be specifed when defined, e.g., as a new class.
One of the first ontologies to describe UML state machines, implemented using OWL, is de-
scribed by Dolog [Dol04]. UML state machines provide generic descriptive capabilities and
are used in a number of applications to specify discrete behaviour of systems. This is reflected
by the use case presented in Dolog [Dol04], which is related to model web services using the
described ontology. The ontology is only capable of describing UML state machines without
relating them to other control actors or physical systems.
The Ptolemy II tool [EJL+03] is a widely accepted, freely available and open-source tool for
the hybrid simulation of CPS [Lee08]. Amongst others it allows to specify finite state machines

10 https://w3id.org/pep/, Last accessed: 22 October 2018

46

https://w3id.org/pep/

2.5 Summary

as well as continuous control logic. To exchange and store models developed using the tool
the Modeling Markup Language (MoML) [LN00] is utilised. The basic building blocks of
simulation models in Ptolemy II are termed actors, which can be a model of a physical process
using first principle equations or a discrete control algorithm. The tool supports the export
of these actors with interfaces and additionally the actual control logic can be exported to
the format. Despite its ability to specify the behaviour of CPS for modelling and simulation
through modelling equations, the tool and format do not describe the specification of the aspects
of the physical system or devices hosting the actual control logic. In Leung et al. [LML+09]
an ontology-based approach is described implemented in the Ptolemy II tool, which allows to
check the compatibility of interface variables of actors.
The models reviewed in this section form potential candidates for the formal explicit specifica-
tion of control logic in automation systems. However, all of them focus on one type of control
logic and do not consider how to link to adjacent domains, e.g. from mechanical and elec-
trical engineering. The underlying technology mostly is XML with associated limitations with
regard to formal methods. The results of the analysis are summarised in Table 2.12.

Table 2.12: Results from the analysis of other formats and ontologies related to the formal
modelling of control logic. XML - [BPSM+06], OWL - [W3C12].

Criteria XMI - MoML
[Obj15b] [Dol04] [LN00]

Physical system ◦ - -
Physical devices ◦ - -
Interface entities + - +
Interface semantics + - +
Logical topology + - +
Logical hierarchy ◦ - +
Control logic + ◦ +
Data format XML OWL XML

2.5 Summary
Within this chapter the foundations of control logic and the basic building blocks of BAS and
IAS are briefly summarised in Section 2.1. This is particularly of importance as knowledge
of this domain of interest is supposed to be represented through formal modelling later in this
thesis as defined in Objective 2. Consequently the foundational terms and concepts of KR are
introduced in Section 2.2. This is important as the formal representation of domain knowledge
on control logic is required for developing novel automated knowledge-based methods as de-
manded by Objective 1. The current state of the art of existing knowledge-based methods,

47

2 Foundations and State of the Art

formats and models related to various aspects of control logic in automation systems are ana-
lysed in Section 2.3 and Section 2.4. The findings drawn from this analysis are summarised
below and an overview is visualised in Figure 2.9.

Finding 2.1 Ontology is appropriate to represent knowledge from the automation systems do-
main.

The use of ontology has evolved into the de facto standard for KR (see also [ESS+17, BS16b]).
Other means for KR exist, e.g. frame like formalisms (see Section 2.2.3), but have not been
pursued in current research and standardisation efforts. In particular, ontology provides benefits
over other vocabulary types as it supports inheritance to describe specialisation of concepts,
binary relationships between entities and the specification of attributes and logical statements
to encode knowledge [Dib13]. An interesting rather recent development is that ontologies are
standardised by international standardisation bodies, e.g. the initial version of SAREF [ETS15]
in 2015 with a revised version in 2017 [ETS17a] or oneM2M [TS 18].

Finding 2.2 OWL is an appropriate implementation language to formalise domain knowledge
from the automation systems domain.

The numerous successful examples reported in literature (see Section 2.4.2 and Section 2.4.4),
which use OWL [W3C12] as a knowledge modelling language provide a strong evidence for
its appropriateness to formalise domain knowledge in engineering applications. In comparison
to other technologies, such as relational databases or structured data formats, e.g. XML, its
strength lies in its formal syntax [MPSP12] and semantics [MPSCG12]. The formal semantics
allow to automatically draw conclusions from a knowledge base through inference by an al-
gorithm, i.e. a reasoner. In addition, compared to knowledge representation languages such as
Resource Description Framework Schema (RDFS) additional more expressive constructs can
be defined in OWL such as DL-rules. Its sound theoretical foundations in DL (see Section A.1
in the appendix) offer the possibility for semantic search and reasoning. Moreover, the various
existing ontologies implemented in OWL allow to easily link different domain models with
each other and reuse existing, formal domain knowledge.

Finding 2.3 SWT offer the possibility to integrate heterogeneous data formats and tools util-
ised for the engineering of complex systems.

SWT provide a set of technologies to address a number of challenges in the engineering domain
[BS16b, ESS+17]. In particular, their ability to integrate heterogeneous formats is interesting
with respect to current engineering environments, which use various disparate formats and
tools. By specifying the semantics of a respective format the integration on the ontology level
allows linking and cross-domain reasoning, e.g. [COC+13, Mos16]. An additional benefit is

48

2.5 Summary

K
n

o
w

le
d

g
e-

b
a
se

d
 m

et
h

o
d

s
to

 s
u

p
p

o
rt

a
n

d
 a

u
to

m
a
te

 t
h

e
en

g
in

ee
r
in

g
 a

n
d

o
p

er
a
ti

o
n

 o
f

co
n

tr
o
l

lo
g
ic

S
em

a
n

ti
c

m
o
d

el
 o

f
co

n
tr

o
l

lo
g
ic

 i
n

a
u

to
m

a
ti

o
n

 s
y

st
em

s

•
N

ee
d
 f

o
r

a
n
o
v
el

 f
o
rm

al
 m

o
d
el

 t
o

ex
p
li

ci
tl

y
 d

es
cr

ib
e

th
e

se
m

an
ti

cs
 o

f

co
n
tr

o
l

lo
g
ic

 i
n
 a

u
to

m
at

io
n
 s

y
st

em
s.

K
n

o
w

le
d

g
e

R
ep

re
se

n
ta

ti
o

n

C
la

ss
if

ic
at

io
n

K
n

o
w

le
d

g
e-

b
as

ed
 M

et
h

o
d

s

Objective Foundations SOA Findings

E
x

is
ti

n
g

 F
o

rm
at

s
an

d
 M

o
d

el
s

K
B

S

F
u
n
d
am

en
ta

ls
 o

f
K

R

D
at

a,
 I

n
fo

rm
at

io
n
,

K
n
o
w

le
d
g
e

 A
u

to
m

at
ic

 C
o

n
tr

o
l

D
o

m
ai

n

In
-/

O
u
tp

u
t

S
em

an
ti

cs

…

C
o
n
tr

o
l

L
o
g
ic

C
lo

se
d

-l
o
o
p
/

O
p
en

-l
o
o
p

F
ra

m
es

O

n
to

lo
g
y

S
em

an
ti

c
N

et
w

o
rk

s
…

T
h
in

k
H

o
m

e
S

A
R

E
F

P
L

C
o

p
en

 X
M

L

…

•
O

n
to

lo
g
y

 a
p
p
ro

p
ri

at
e

fo
r

K
R

;

•
S

W
T

 a
p
p
ro

p
ri

at
e

to
 i

m
p
le

m
en

t
au

to
m

at
ed

K
B

S
;

•
S

W
T

 t
o
 a

d
d
re

ss
 h

et
er

o
g
en

ei
ty

.

Figure 2.9: Overview on the findings drawn from the State Of the Art (SOA) analysis. KR -
Knowledge Representation, KBS - Knowledge-Based System, SWT - Semantic
Web Technologies, ThinkHome - [RKIK11], SAREF - [DdHR15], PLCopen XML
- [PLC09]. Layout adapted from Wicaksono [Wic16].

49

2 Foundations and State of the Art

that SWT are based on open standards and the underlying technology allows the exchange of
domain knowledge on a web-scale.

Finding 2.4 SWT support the development of automated KBS.

SWT provide a number of characteristics and features, which provide a sound basis for their
use for the development of automated KBS. SWT are open and standardised through the W3C.
Several free commercial tools exist to host data expressed in the Resource Description Frame-
work (RDF) format. Next, RDFS reasoning for light weight ontologies is possible with a good
computational performance. More expressive knowledge modelling languages are available
like OWL or SWRL and again OWL-DL reasoners are available, which allow to automate
different task based on this knowledge, e.g. for abstract classification. The SPARQL query
language allows to retrieve data from a triple store hosting the RDF data and allows in addition
to specify complex and abstract graph patterns, e.g. to perform calculations. A number of
successful applications of SWT-based KBS are summarised in Section 2.2.4. The foundations
of SWT are summarised in Chapter A in the appendix of this thesis.

Finding 2.5 SPARQL allows to query knowledge-bases and assert new knowledge.

The SPARQL query language [PS17] is a versatile tool in the design and use of formal domain
models and the design of KBS. Apart from retrieval of knowledge, also, knowledge can be spe-
cified in SPARQL notation and can be inserted through SPARQL INSERT ([PS17], see Sec-
tion A.4) into the knowledge-base. It should be noted that knowledge encoded using SPARQL
queries can be inserted in the knowledge base to be considered in OWL-DL reasoning, e.g.
though the SPARQL Inferencing Notation (SPIN) [Knu11].

Finding 2.6 Ontology reuse should be stipulated whenever possible.

The proliferating development of novel ontologies has led to numerous ontologies, which sig-
nificantly overlap. In his definition of ontology Studer et al. [SBF98] emphasise the shared
term. Hence, ontologies need to be shared among experts and stakeholders need to agree on
this. The reuse of existing ontologies is an inherent part of ontology engineering methods (see
Section A.6) and should be stipulated thereof. An example for this is SAREF, which is an ETSI
standard now and is based on extensively reviewing existing ontologies in the domain of smart
appliances [ETS15].

Finding 2.7 Lack of a formal explicit model to represent knowledge of the automatic control
and control logic domains in automation systems and link this to knowledge on the physical
system under control.

50

2.5 Summary

The analysis in Section 2.4 shows that current modelling approaches lack the ability to ex-
plicitly and formally describe knowledge on control logic in automation systems and link
these descriptions to adjacent domains of interest. The importance of this knowledge is re-
cognised, e.g. for the BAS domain [DCVK16] and the related knowledge for BAS is sum-
marised [Che15, CTM16]. Similar approaches exist in the industrial automation domain (see
Section 2.4.4). Some approaches reported in literature allow to exchange information on
control logic through data formats [Sch07, CTM16, PLC09, LEHM11] but lack a formal
definition by means of a formal knowledge representation language. Isolated formal mod-
els exist to explicitly describe some kinds of control logic, such as UML state machines
[Dol04, KP15, HWD+13] but the integration with adjacent domains and the integration with
automation systems is not specified. The use of formal domain modelling to support control
logic engineering in automation systems as described by Hästbacka & Kuikka [HK13] points
in the direction of formally specifying the automatic control domain and its control logic. How-
ever, again the explicit modelling of control logic is not further detailed. Instead the approach
relies on representing the actual control logic rather by describing function blocks representing
’parametrizable functionality provided by devices or subsystems’ [HK13].
In essence, the gap identified is the absence of a model to explicitly and formally describe
knowledge on the automatic control and control logic domains in automation systems and in-
tegrate this formal descriptions with adjacent domains such as electrical and mechanical engin-
eering. In response to these shortcomings and with respect to the defined research objectives,
Chapter 3 presents requirements in this regard and Chapter 4 a formal domain model.

51

3 Requirements

To accomplish the research objectives as defined in Section 1.3 and to overcome the limita-
tions of existing approaches identified in Section 2.5, this Chapter provides requirements for
the development of automated, knowledge-based methods and associated semantic models to
support the engineering and operation of control logic in automation systems. An overview on
the defined requirements is given in Figure 3.1 and the respective requirements are detailed in
the subsequent sections. The requirements are grouped as general requirements, requirements
related to the objective of developing knowledge-based methods for the support of the engin-
eering and operation of control logic as well as to the objective for formally specifying the
domain of automatic control and control logic.

3.1 General requirements
In Section 1.2 high level problems and challenges apparent in the engineering and operation
of control logic in automation systems are defined. In response to these problems general
requirements are defined in this section.

Requirement 3.1.1 The intended solution needs to support the semantic integration of hetero-
geneous data formats and tools.

This general requirement is motivated by the strong need to integrate various formats and tools
[Dib13, BGL17, SH17] used during the course of engineering and operation of control logic in
automation systems. These numerous formats can be considered as one of the most impeding
obstacles in terms of the exchange for knowledge on control logic and in general automation
systems [DCVK16]. Hence, the intended solution needs to enable the semantic integration of
heterogeneous data formats and tools.

Requirement 3.1.2 The intended solution should be developed independent of specific manu-
facturers.

Manufacturers of automation systems often create their own ecosystems for the programming,
configuration and execution of control. This partly causes the heterogeneity observed in the
domain [DCVK16]. Often the vendors have their own programming environments, which are

53

3 Requirements

• Semantic integration of heterogeneous formats and tools

• Manufacturer independent

• Technology independent model specification

• Machine-interpretable implementation

General

• Use of ontology for knowledge

representation

• Use of the OWL for

implementation

• Use appropriate profile

Knowledge-based methods to support

and automate the engineering and

operation of control logic

• High-level abstraction of

automatic control domain

• Hierarchy and logical topology

• Relationship to adjacent physical

domains

• Semantics of inputs, outputs and

parameters

• Explicit formal models of control

logic

• Ontology reuse

• Modular and extensible

Semantic model of control logic in

automation systems

Figure 3.1: Overview of the defined general requirements, requirements related to the
development of automated, knowledge-based methods and the development of
semantic models to explicitly model domain knowledge on control logic. OWL -
[W3C12].

one reason why it is cumbersome for the end user to switch between systems or hardware
[Dib13]. However, for future automation systems it will be necessary to have open, stand-
ardised formats and interfaces to enable information exchange among stakeholders including
machines [KDKO14]. In essence, it is required to develop and share conceptualisations of a
domain openly and independently from manufacturers as defined in Requirement 3.1.2.

Requirement 3.1.3 The intended models should be specified using an implementation inde-
pendent modelling mechanism.

The intended model should have a respective level of generality to be specified independently
of the actual technology used for the implementation. As technology advances novel imple-
mentation tools and methods are available and novel programming and knowledge represent-
ation languages emerge. Moreover, the life-time of automation systems such as BAS easily
can exceed 30 years. In conclusion, the intended models should be specified using a modelling

54

3.2 Requirements for Knowledge Representation and Knowledge-based Methods

methodology, which is independent of its implementation to allow future reimplementation if
necessary.

Requirement 3.1.4 The intended models should be implemented using a machine-interpretable
modelling language.

It is important to use a machine-interpretable modelling language for the implementation. The
strong benefit by using a machine-interpretable language over a machine-readable language is
that, in the end, machines are able to understand the meaning of the specified artefacts in terms
of KR (see Section 2.2). Hence, the automation of knowledge-intensive tasks associated to the
engineering and operation of control logic in automation systems is enabled. Thus Require-
ment 3.1.4 is defined. This reflects Objective 1, which intends to leverage on the defined and
formalised semantic model for knowledge-based support.

3.2 Requirements for Knowledge
Representation and Knowledge-based
Methods

The requirements defined in this section arise from Objective 1 defined in this thesis.

Requirement 3.2.1 Ontology should be used for knowledge representation.

As outlined in Section 2.2.3 various approaches and formalisms exist for the representation
of knowledge in a knowledge-base. One of the findings summarised in Section 2.5 is that
ontology-based KR provides some benefits over other approaches. In particular, it provides
a formal syntax and semantics as well as a number of ontologies already exist, which can be
reused.

Requirement 3.2.2 The OWL should be used for implementation.

Various knowledge representation languages exist (see Section 2.2 and Chapter A). For im-
plementation OWL should be used as it provides a formal syntax [MPSP12] and semantics
[MPSCG12] supporting semantic search and reasoning. Moreover, the numerous publications
reviewed in Section 2.4 provide evidence that OWL and the associated SWT are suitable for the
integration of heterogeneous data and formats as well as the development of automated KBSs.
A benefit of using OWL is that the developed models can be easily linked to existing models
of adjacent domains to stipulate reuse.

Requirement 3.2.3 Use of an appropriate profile.

55

3 Requirements

A basic component of a KBS is a reasoner, which allows to infer new knowledge from the
explicitly defined one (Section 2.2.4 and Chapter A). Within OWL different off-the-shelf im-
plementations of reasoner exist. A trade-off exists between the complexity of the possible
axioms and expression used in an ontology and the computational effort for a reasoner to pro-
cess this knowledge. Profiles (see Section A.3.4) allow to restrict the modelling to certain
axioms. This allows to tailor highly specified reasoners, which leverage on the restricted set
of logical axioms and provide computationally efficient implementations. For the intended
knowledge-based method an appropriate profile should be chosen.

3.3 Requirements for the Domain Model
To formally specify knowledge of the automatic control and control logic domain a number of
requirements are defined in this section.

Requirement 3.3.1 The model needs to enable the high-level description of the automatic
control domain including the specification of concepts and relationships to describe control
actors, inputs, outputs, parameters and control logic.

The first requirement 3.3.1 relates to the Objective 2, which focusses on the specification of
domain knowledge of the automatic control domain. An overview on the domain with respect
to BAS and IAS is given in Section 2.1 and fundamental concepts are defined.

Requirement 3.3.2 The model should allow to specify domain-specific relationships, such as
hierarchy among control actors and logical topology.

The requirement 3.3.2 addresses specifically the hierarchical relationships between control act-
ors in automation systems. Structuring automation systems by a hierarchy is an established
means of abstraction on a vertical level (see also Section 2.1). Horizontally the logical topo-
logy structures and connects control actors, which are at the same hierarchical level.

Requirement 3.3.3 The model should allow to specify the relationship of control actors to ad-
jacent domains of interest, such as the physical systems under control and execution platforms.

This requirement reflects the fact that control logic is tightly integrated with the adjacent
domains of interest, such as physical system under control and computation platform (see
[SKK+12] and Section 2.1). For example, in BAS an input of a control logic can be related
to a certain type of equipment or a controller is related to a space (Room controller). Require-
ment 3.3.3 reflects this fact.

Requirement 3.3.4 The model should allow the specification of the semantics of inputs, out-
puts and parameters with respect to unit, medium, quantity and basic data type.

56

3.4 Summary

When a logical connection is established often mismatches occur between connected inputs and
outputs [DPK10, Dib13]. To enable knowledge-based analysis of these problems the semantics
of inputs and outputs as well as parameters need to be defined (Requirement 3.3.4). This is also
related to Objective 2.

Requirement 3.3.5 The model should explicitly formally specify control logic.

As highlighted in the summary of the analysis of the current state of the art (Section 2.5),
no explicit formal specification of control logic in automation systems and their relationship to
adjacent domains exists. However, the absence prevents the use and analysis of this information
and related knowledge. Hence, Requirement 3.3.5 demands the explicit formal specification of
control logic. In particular, this relates to the core of Objective 2.

Requirement 3.3.6 Existing ontologies should be reused whenever possible.

A fundamental step in knowledge engineering as described in Section A.6 is the reuse of exist-
ing ontologies. When demanding the exchange of domain knowledge via the web as required to
enable the envisioned novel architectures in automation technology [KDKO14, VH14b] open,
shared ontologies need to be available. As reviewed in Section 2.4 a number of ontologies do
exist and should be considered for reuse if applicable.

Requirement 3.3.7 The intended models should be designed in a modular extendible fashion
to stipulate and enable its future reuse and adoption.

Methods to support the engineering and operation of control logic in automation systems
are a vibrant research area and novel methods are continuously developed. Hence, Require-
ment 3.3.7 ensures that the extension of the model is possible with limited effort. Additionally,
as it can be seen from the review in Section 2.4.4 and 2.4.2, a number of models already exist
for adjacent domains. Hence, the novel models should be designed to enable easy integration
with these existing models.

3.4 Summary
From the initially defined objectives in Section 1.3 and to overcome the found limitations of
existing work as summarised in Section 2.5 requirements are defined, which need to be ful-
filled by possible methods and models. The requirements are related to general needs for a
solution arising from the problems related to the engineering and operation of control logic
and the development of knowledge-based methods to support and automate the engineering
and operation of control logic in automation systems. As a prerequisite for the development of
automated, knowledge-based methods to support and automate the engineering and operation
of control logic in automation systems a novel semantic model is presented in the next chapter,
which is designed with respect to the defined requirements.

57

4 Semantic Modelling of Control
Logic in Automation Systems

Within this chapter a novel, semantic model is defined, which allows the explicit, formal de-
scription of knowledge of the automatic control and control logic domains in automation sys-
tems. In addition, the model is designed to allow the linking of this knowledge to adjacent
domains relevant in the engineering and operation of automation systems, such as mechanical
and electrical domains. The novel model particularly aims at filling the gap identified in the
analysis of existing work as presented in Section 2.5. In addition, this contribution targets
Objective 2.
This chapter is organised as follows. First, the modelling methodology utilised for the develop-
ment of the semantic model is described in Section 4.1. In Section 4.2 the established layered
model architecture is presented, which allows to extend the sub-model of the automatic con-
trol domain with the sub-models of the control logic domain. Next, a semantic model for the
automatic control domain is presented in Section 4.3. Finally, semantic models for the expli-
cit modelling of different types of control logic are presented in Section 4.4. The developed
models allow the semantic modelling of generic control logic types and building blocks, such
as algebraic expressions in Section 4.4.1, schedules in Section 4.4.2, sequence control in Sec-
tion 4.4.3 and non-linear, discrete two-point control in Section 4.4.4. Moreover, semantic mod-
els for the explicit description of discrete formalisms of control logic are presented including
UML state machines [Obj15a] in Section 4.4.6 and state graphs from VDI 3814-6 [VDI08] in
Section 4.4.7. The presented models and ontologies represent a set of possible types of control
logic typically available in automation systems of different vendors (see Req. 3.1.2), but are
not meant to be exhaustive.

4.1 Modelling Methodology
Within this section the established modelling methodology for developing the semantic mod-
els and their formalisation is described. For the specification an Object-Oriented Modelling
(OOM) methodology is utilised as described in Section 4.1.1. To formalise the developed se-
mantic models in terms of knowledge representation, OWL is used and the respective mapping
between both is described in Section 4.1.2.

59

4 Semantic Modelling of Control Logic in Automation Systems

4.1.1 Object-Oriented Modelling Methodology
The OOM [DR15] is a well-accepted modelling methodology, which is applicable in multiple
disciplines. It has a proven track of records of being successfully applied to diverse applica-
tion areas from engineering, computer science, software engineering, systems engineering and
many more [DR15, RQd12]. The method is chosen for the modelling of the semantic model
presented in this chapter as it provides appropriate modelling mechanisms for the respective
tasks. The utilised mechanisms are summarised in the following paragraphs.
Central to OOM is the abstraction of an entity into a class. A class can be seen as a template
of a certain type of entities, with attributes and methods for these entities defined once in a
class. In OOM it is possible to specialise classes from other classes. This mechanism is termed
inheritance. A class specialised from a super-class inherits all attributes and methods of this
class. Attributes define the relationship of a class to a data type. The attribute types used in the
modelling are listed in Table 4.1. Instances of a class are entities, which can interact with each
other and differ for example by the actual values specified for the attributes of each instance.

Table 4.1: Attribute types and their description used for the definition of the semantic models.

Attribute Description Reference

string Set of finite-length sequences of
characters

[BM04]

non-neg-
ative
integer

Any positive integer number in-
cluding 0

[BM04]

double Institute of Electrical and Elec-
tronics Engineers (IEEE) double-
precision 64-bit floating point type

[BM04]

literal Literal in RDF [CWL14]

The OOM paradigm is supported by a number of modelling and programming languages. The
UML [Obj15a] is an international standardised modelling language, which fully supports OOM
and provides tools to support the modelling as well as diagrams for the visualisation of the
model. An introduction to the UML is given in Rupp et al. [RQd12]. Here the UML concepts
and class diagrams are used for the technology independent specification (Req. 3.1.3) of the
semantic model. Hence, users can implement the model in the target language of their choice.
Attributes are defined in a class, if a relationship of this class to a data type is expressed. The
attribute types used in the modelling are listed in Table 4.1.

60

4.1 Modelling Methodology

To model binary relationships among classes named directed associations are used. A ste-
reotype is used to indicate special classes. The stereotype MetaClass is used to distinguish
classes, which cannot be instantiated. However, in OOM it is possible to instantiate classes,
which inherit from a MetaClass.

4.1.2 Ontology-based Formalisation
For the formalisation of domain knowledge in terms of KR (see Section 2.2.3) different tech-
nologies exist. As a result of the analysis of the state of the art1 and, in particular, as it supports
inheritance, binary relationships, attributes and formal logics [Dib13], all needed to implement
the models developed following OOM, ontology is used for KR in this thesis.
In terms of acquiring knowledge structured ontology engineering methods are available, e.g.
Ontology 101 [NM01] or METHONTOLOGY [FLGPJ97] (see Section A.6). In the defini-
tion process of the semantic model the structured approach presented by Noy & McGuinness
[NM01] is followed whenever possible.
As described in Section 2.5 a conclusion drawn from the analysis of the state of the art is that the
OWL knowledge modelling language should be used for the implementation of the developed
models (see Req. 3.2.2). OWL offers several advantages in its application: OWL is an interna-
tionally standardised knowledge modelling language [W3C12]. It provides a well-defined syn-
tax [MPSP12] and formal semantics [MPSCG12]. In particular, the formal semantics enable
the use of reasoning on the specified knowledge and allow machines to interpret this knowledge
(see Req. 3.1.4). Numerous examples can be found in the literature, where ontologies imple-
mented in OWL are used for the development of KBSs, e.g. for automated interoperability
verification [Dib13], verification of the compliance to standards [PVDV+11] or verification of
plant engineering data [ALGM13] (see Section 2.3). Amongst others, these provide evidence
that OWL is an appropriate knowledge modelling language. Moreover, the underlying SWT
provide means for semantic integration of heterogeneous data formats and associated tools
[Sab16, COC+13] (see Req 3.1.1). The foundations of OWL are summarised in Section A.3 in
the appendix of this thesis.
In literature efforts are reported towards defining a mapping between OWL ontologies and the
UML [FGP+14, BBČ+10]. However, there is no standardised mapping available and each
effort has made its own assumptions. In particular, none of the approaches does support all
features of OWL or UML. Hence, an own mapping is established in this work to describe the
respective model unambiguously. The established mapping from the UML specification of
the semantic models to their formalisation in OWL is summarised in Table 4.2. The chosen
features of OWL aim at staying within the OWL RL profile [MCGH+12] to avoid OWL-
DL reasoning (see Section A.3.4). Mainly this is motivated as OWL-DL reasoning is within

1 See Finding 2.1

61

4 Semantic Modelling of Control Logic in Automation Systems

Table 4.2: The mapping of UML modelling concepts [Obj15a] to OWL [MPSP12] as
established in this thesis.

UML OWL

Classes and prop-
erties
Class owl:Class
MetaClass owl:Class, owl:unionOf, owl:-

disjointWith
Inheritance rdfs:subClassOf
Attribute owl:DataTypeProperty
Named directed
association

owl:ObjectProperty

Source of direc-
ted association

rdfs:domain

Target of directed
association

rdfs:range

Cardinalities at
target
0..1 owl:minQualifiedCardinality 0,

owl:maxQualifiedCardinality 1
0..∗ owl:minQualifiedCardinality 0
1 owl:qualifiedCardinality 1
1..∗ owl:allValuesFrom,

owl:someValuesFrom
∗ rdfs:range

62

4.2 Layered Model Architecture

complexity class NP-hard [MCGH+12], whereas OWL RL profile offers PTIME-completeness
[MCGH+12] with associated benefits in the computational effort needed for the execution of
reasoning algorithms. The expressibility of this profile is found to be sufficient in the course of
the implementation and validation of the models.
The defined classes are formalised in a straightforward manner as an owl:Class. OWL
does not provide a built-in language construct to express classes, which cannot be instanti-
ated. Hence, a UML Meta-Class is modelled as owl:Class and all subclasses are defined
as disjoint and the respective meta class is defined as a union of all subclasses. Inheritance
relationships between UML classes are expressed using the rdfs:subClassOf relationship
in OWL. Binary relationships between classes described as named directed associations are
modelled as object properties. When applicable the cardinality of this relationship is defined
and modelled as cardinality restriction on the respective property (see Table 4.2). Attributes
specified in a class are formalised as data type properties in OWL and the respective range is
specified depending on the attribute type. The graphical nomenclature for the illustration of
OWL ontologies is presented in Figure 4.1 and each presented ontology can be obtained from

owl:Class

owl:ObjectProperty rdfs:subClassOf owl:DatatypeProperty

rdf:type owl:NamedIndividual

Figure 4.1: Established nomenclature for the graphical representation of OWL [W3C12]
implementations in this thesis [SPS17].

its web repository by following the specified Unique Resource Identifier (URI) and is provided
open-source under a creative commons license.
Formal constructs, such as restrictions, are not depicted in illustrations of the semantic models
but mentioned in the text. All prefixes used in this thesis are summarised in Chapter D. The
statistics of the defined ontologies are given in Table 4.3, Section 4.5.

4.2 Layered Model Architecture
For the semantic modelling of the automatic control and control logic domains a layered model
architecture as depicted in Figure 4.2 is established. The architecture consists of two layers:
Layer 0 to define on an abstract level domain specific knowledge of the automatic control
domain and Layer 1 to define specific knowledge of the control logic domain. Note, the models
of the control logic domain extend (Req. 3.3.7) the automatic control domain model to allow
interoperation among different types of control logic. In addition, the layered architecture
allows to link the automatic control domain to adjacent domains (Req. 3.3.3) and, hence, a
link can be established across the domains of control logic, automatic control and adjacent

63

4 Semantic Modelling of Control Logic in Automation Systems

Automatic

Control

…
Control

Logic A

Layer 1:

Control Logic

Domain

Layer 0:

Automatic

Control Domain

Control

Logic B

Figure 4.2: Layered architecture, where the automatic control domain (Layer 0) can be
extended with domain descriptions of the control logic domain (Layer 1).

domains such as mechanical or electrical domains. An example for the use of this is presented
in Section 5.2.
In Section 4.3 a semantic model is introduced for the automatic control domain and, sub-
sequently, in Section 4.4 semantic models for the explicit modelling of a non-exhaustive set of
control logic types are presented.

4.3 Semantic Model of the Automatic
Control Domain

Within this section a semantic model of the automatic control domain is defined, which con-
stitutes Layer 0 in the layered model architecture (see Figure 4.2). The model is depicted in
Figure 4.3. The model can be linked to adjacent domains of interest and, hence, bridges the gap
between explicit models of control logic introduced later in this chapter and adjacent domains,
such as sensors, actuators, technical equipment, plants or spaces. As these links to adjacent
domains are use case specific an example for the successful linking is presented in Section 5.2.
The core part of the model is the description of the Sense-Process-Actuate pattern, a pattern
recognised in the automatic control domain [SSKD11]. In automation systems this pattern
typically requires some ControlActor2 to sense the current state of the controlled system
by accessing information via its Inputs. This information then is processed by some con-
trol logic3, here modelled as ApplicationLogic. Finally, after processing, outputs are
generated, which might be consumed by other ControlActors or be assigned to actuators
installed in the system under control. This directional notion of an input to the processing unit
by the control actor to an output is an important characteristic of automatic control in gen-
eral and can be used, e.g. to improve the performance of simulation algorithms [Mod17a].

2 See Definition 2.4.
3 See Definition 2.6.

64

4.3 Semantic Model of the Automatic Control Domain

Sense-Process-Actuate

+isConnectedTo

Context

«MetaClass»
ApplicationLogic

«Class»
Input

«Class»
Output

«Class»
ControlActor

«Class»
Parameter+hasInput

+hasOutput

+hasParameter

+supervises
+isSupervisedBy

«Class»
Quantity

«Class»
Medium

«Class»
SemanticType

«Class»
Unit

«MetaClass»
AnnotatedElement

+hasApplicationLogic

+logicOutput

+logicParameter+logicInput

+hasUnit

+hasSemanticType
+hasMedium

+hasQuantity

«Class»
DataType

+hasDataType

Control logic

«Class»
Schedule

«Class»
StateGraph

«Class»
StateMachine

«Class»
...

Model::Main

Figure 4.3: Class diagram of the semantic model of the automatic control domain.

Parameters used within the ApplicationLogic are time-invariant values influencing
the behaviour of a ControlActor. The description of the sense-process-actuate pattern and
the specification of fundamental concepts and relationships of a control actor are in response
to Req. 3.3.1.
The relationship of a ControlActor to its inputs, outputs, parameters and application logic
can be expressed via the hasInput, hasOutput, hasParameter and hasApplica-

tionLogic relationships, respectively. To express a relationship between components of
an application logic to inputs, outputs and parameters logicInput, logicOutput and
logicParameter can be utilised, respectively. The use of the relationships to link explicit
models of control logic to the interfaces of control actors is further detailed in the subsequent
sections, where explicit models of different types of control logic are introduced.
Finally, the hierarchy between different ControlActors can be expressed using the super-
vises and isSupervisedBy relationships to distinguish between supervisory4 and low-
level5 control logic. Note, supervises is defined as the inverse of isSupervisedOf.

4 See Definition 2.9.
5 See Definition 2.8.

65

4 Semantic Modelling of Control Logic in Automation Systems

Hierarchical relationships between different control actors can be observed in many cases of
automation systems, e.g. supervisory control algorithms in building management systems
or production scheduling systems in manufacturing. This is, in particular, in response to
Req. 3.3.2. The connection (logical topology) of outputs to inputs can be specified using the
isConnectedTo relationship.
The inputs, outputs and parameters of control actors can be further annotated, if applicable, by
their Medium using the hasMedium, Quantity using the hasQuantity and Unit using
the hasUnit relationships. To specify the basic data type of an AnnotatedElement via
hasDataType, a relationship to DataType can be established. Example types are integer,
boolean or floating point number and the in Section B.1 introduced Basic Datatype Ontology
(BDO) can be utilised for this purpose. To further distinguish an annotated element it might
be required to specify a SemanticType via the hasSemanticType relationship. For ex-
ample, a control actor can have an input, which is a double value of the indoor air temperature
measured in Kelvin. Here, for the given example the Medium is Air, the quantity is Temperat-
ure, the unit is Kelvin, the basic data type is a double, and its semantic type can be specified as
indoor to distinguish it from, for example, the outdoor air temperature. The SemanticType,
however, is domain specific. Specifying the semantics of the interfacing elements is in response
to Req. 3.3.4.
The model is designed such that it can be easily extended with explicit specifications of control
logic, e.g. with the ones presented in Section 4.4. This allows to easily exchange models of
control logic and maintain and extend the proposed explicit specifications by custom ones. This
is in response to Req. 3.3.7. In Figure 4.3 as an example the Schedule, StateGraph and
StateMachine models are depicted.
The presented model is implemented using OWL according to the defined mapping (see Sec-
tion 4.1.2). Classes and object properties are asserted as illustrated in Figure 4.4.
Beyond the described mapping methodology some additional restrictions are specified and
added to the ontology as described in the following paragraphs.
Universal restrictions are embodied in the definition of the ControlActor and Annotated-
Element classes. Each universal restriction ensures that if an individual of one of these classes
exists and it has a relationship via the restricted object property to another individual, then this
individual needs to be of the specified class. Moreover, individuals, which do not have a rela-
tionship via the restricted property at all, are part of this class [HKR+04]. If these individuals
should be excluded from the class a closure axiom is required as explained later in this sec-
tion. The listing in Code 4.1 specified in Turtle syntax [BBLPC14] the universal restriction
asserted in CTRLont for the AnnotatedElement class with respect to the hasDataType
property. Additional restrictions are omitted for brevity of the documentation.

66

4.3 Semantic Model of the Automatic Control Domain

:ControlActor :Input
:Output

:Parameter

:AnnotatedElement :Unit

:SemanticType
:Medium

:Quantity

:ApplicationLogic

sm:StateMachine

SG:StateGraph sch:Schedule

…

:hasApplicationLogic

:hasParameter

:hasOutput

:hasInput

:isSupervisedBy

:supervises

:hasSemanticType

:hasUnit

:hasMedium

:hasQuantity

Control logic

Sense-

Process-

Actuate

Context

:isConnectedTo

:logicOutput :logicInput

:logicParameter

PREFIX : <https://w3id.org/ibp/CTRLont#>

:DataType
:hasDataType

Figure 4.4: Concepts and relationships of Control Ontology (CTRLont) [SPS17, adapted].

Code 4.1: Universal restriction on property hasDataType in class AnnotatedElement
defined in CTRLont. The other restrictions of the class are omitted here for
brevity.

0 :AnnotatedElement rdf:type owl:Class ;
rdfs:subClassOf [

rdf:type owl:Restriction ;
owl:onProperty :hasDataType ;
owl:allValuesFrom :DataType

5] .

To express that an individual A of the class ControlActor must have a relationship to at
least one individual B via the hasApplicationLogic and hasOutput object properties,
existential restrictions are formulated in the ontology. In particular, when combined with a uni-
versal restriction it is additionally specified that the individual B and alike need to be members
of the ApplicationLogic or Output classes, respectively. Combining an existential and
universal restriction on a property is referred to as closure axiom [HKR+04]. Code 4.2 shows
the applied closure axiom for the class ControlActor on the hasApplicationLogic
property.

Code 4.2: Closure axiom for the class ControlActor on property
hasApplicationLogic defined in CTRLont.

67

4 Semantic Modelling of Control Logic in Automation Systems

0 :ControlActor rdf:type owl:Class ;
rdfs:subClassOf [

rdf:type owl:Restriction ;
owl:onProperty :hasApplicationLogic ;
owl:someValuesFrom :ApplicationLogic] ,

5 [
rdf:type owl:Restriction ;
owl:onProperty :hasApplicationLogic ;
owl:allValuesFrom :ApplicationLogic] .

For the hasInput and hasParameter object property no closure axiom is specified as it
might be the case that a control actor does not have an input or a parameter.
To evaluate the proposed CTRLont ontology a scenario is considered, where two control actors
R1 and R2 are modelled. Figure 4.5 presents the considered scenario as block diagram (above

R1 R2

Thcr

ctrl:ControlActor

:R2 :R1 :R1_Inp :R2_Outp

ctrl:isConnectedTo
ctrl:hasOutput

ctrl:hasInput

ctrl:Output ctrl:Input

:R1_InpTHcr

om:degreeCelsius
om:Temperature

BDO:double

hto:air

ifc:WATERHEATINGCOIL

ctrl:hasSemanticType

ctrl:hasDataType

ctrl:hasUnit
ctrl:hasQuantity

ctrl:hasMedium

ctrl:ControlActor

ctrl:hasInput

:R1_logic

ctrl:hasApplicationLogic

PREFIX : <https://w3id.org/ibp/CTRLontEval#>

Figure 4.5: Excerpt of instances describing two control actors R1 and R2 (upper part), their
logical topology and the annotation of Thcr, a heating coil return temperature of an
air handling unit (see Section 5.1).

dashed lined) and an excerpt of individuals representing the scenario (below dashed line).
The relationship of each control actor to its inputs and outputs can be modelled (ctrl:has-
Input, ctrl:hasOutput) and the connection of an input to an output (ctrl:isCon-
nectedTo). The control logic of each control actor can be further specified by detailing
on the individual (:R1 logic), which is related to the control actor via the ctrl:has-

ApplicationLogic object property.

68

4.4 Semantic Models of the Control Logic Domain

As an example the annotation of the input :R1 InpTHcr is presented. Its quantity and unit
are specified by relating it using the respective object properties to individuals from the Onto-
logy for units and Measures (OM) ontology [RWT11]. To specify the medium of the physical
measurement an individual defined in HTO [CKAK15] is reused. Finally, to distinguish it fur-
ther form other air temperatures measured in degree Celsius, its semantic type is specified by
relating it to an individual from the ifcOWL [PT16] ontology for the buildings domain (ifc:-
IFCWATERHEATINGCOIL).
To specify the basic data type of a ctrl:AnnotatedElement a relationship is established
to an individual of the BasicDatatypeOntology. This ontology is derived from the basic
data types as specified in Biron and Malhotra [BM04]. This is necessary as the data types
from the XML Schema Definition (XSD) specification [BM04] cannot be used in OWL object
property assertions, as these belong to a set of reserved vocabulary in OWL [MPSP12, Table 3].
To enable the assertion of the ctrl:hasDataType object property to a respective individual
the BasicDatatypeOntology is bootstrapped from the XSD specification [BM04] by
creating a owl:NamedIndividual and a owl:Class for each data type and by keeping
the defined hierarchy [BM04]. The generated concepts and individuals of the ontology are
listed in Section B.1.

4.4 Semantic Models of the Control Logic
Domain

Within this section models and ontologies are presented, which allow to describe explicitly and
formally different types of control logic. The chosen types are typically available in automation
systems of different vendors (see Req. 3.1.2), but are not meant to be exhaustive.
All semantic models are presented equally by first describing the object-oriented modelling
using the UML and then detailing its ontology-based formalisation using OWL. Each model is
studied in a simple use case for evaluation as stipulated by ontology-engineering methods (see
Section A.6). A detailed validation of the proposed model in use-cases is elaborated in two
studies documented in Chapter 5.

4.4.1 Algebraic Expressions
A basic component of control logic are mathematical expressions. For example, in continuous
control the transfer function [Abe10] of a component exactly defines its behaviour and provides
the input for further analysis, such as stability analysis [Abe10]. Another example are the
boolean conditions defined in state-based control logic, which describe if a transition from one
state to another should fire.

69

4 Semantic Modelling of Control Logic in Automation Systems

A model to describe mathematical expressions occurring in different types of control logic is
presented in Figure 4.6. The model is based on reviewing existing approaches reported in the

«Class»
LinkedList

«Class»
ListElement

«Class»
Expression

«Class»
ExpressionElement

«Class»
Symbol

«Class»
UnaryOperator

«Class»
BinaryOperator

«Class»
Operator

«Class»
Parameter

«Class»
Input

«Class»
Variable

«Class»
Literal«Class»

Operand

+value: literal
+name: string

+isComposedOf

+nextElement

+previousElement

+operator

+logicInput

+logicParameter

Model::Main

Figure 4.6: Class diagram of a model to describe mathematical expressions.

domain of simulation of chemical process systems [MMWY09] and the specification of math-
ematical knowledge on the web [WR12]. Precursors of the model developed simultaneously
are published in Schneider et al. [SPS17] and Terkaj et al. [TSP17].
An Expression is modelled as a LinkedList, which isComposedOf Expression-
Elements. As the order of expression elements in an expression matters, expression elements
are subclasses of ListElement, where the relationships previousElement and next-
Element allow to express the ordering. The order is defined to increase from left to write,
e.g. in the equation x < 1 the first element would be the variable x.
Additionally, an expression element can be differentiated into Operators and Operands.
Operators in an expression are mathematical symbols specifying what happens with the op-
erands associated to it. Operands, in difference, are variables or values, which can be, for
example, added or substracted. The Symbol of an operator can be specified using the relation-
ship operator to instances of the symbol class. A UnaryOperator specifies operators,
which are applied to a single Operand in contrast to a BinaryOperator, which can be
only be applied between two Operands. The operand can be further specified either as a
Literal or a Variable, where the literal connection between a parameter and the literal
can be expressed using logicParameter and for a variable using logicInput. Finally,

70

4.4 Semantic Models of the Control Logic Domain

an operand can be further specified as a Variable or a Literal to distinguish constant
values and variables, which might change.
The presented model is formalised as an ontology as presented in Figure 4.7. The ontology is

ll:LinkedList

PREFIX : <https://w3id.org/ibp/ExpressionOntology#>

ll:ListElement

mer:isComposedOf

:Expression :ExpressionElement

:Operator

:Operand :UnaryOperator

:BinaryOperator

math:Symbol

ll:nextElement

ll:previousElement

math:operator
math:value

ctrl:Input ctrl:Parameter

ctrl:logicInput ctrl:logicParameter

math:Variable

math:name

rdfs:Literal

math:Literal

Figure 4.7: Classes and relationships as defined in the ExpressionOntology [SWO19].

based on a combination of reused concepts (LinkedList, ListElement, Symbol,

Literal, Variable) and relationships (nextElement, previousElement, op-

erator, value, name) as well as own, newly introduced ones (Expression, Ex-

pressionElement, Operator, UnaryOperator, BinaryOperator, Oper-

and). In order to describe the mentioned required ordering of elements in an equation, the
linked list model available from the OntoCAPE family of ontologies [MMWY09] is reused.
The respective concepts are specialised to describe the expression domain by introducing the
subclasses :Expression and :ExpressionElement. The OpenMath ontology [WR12]
is reused to specify mathematical knowledge on the web, such as the symbols of unary and bin-
ary operators and the meaning of operands in equations. In addition to the conversion specified
in Section 4.1.2 no further formal statements are made.
For a simple evaluation the expression ’R1 Inp<= 0.0’, originating from a condition in a trans-
ition of a state graph, is represented using the described ontology. In Figure 4.8 the respective
triples are depicted.
The expression :exp is decomposed into three elements :ele0, :ele1, :ele2 and the
elements are related sequentially to each other via the ll:nextElement relationship. The
decomposition starts from the first element :ele0, which is modelled as an exp:Operand.
The next element of the expression :ele1 is a binary operator. The operator is specified using
the math:operator object property to the respective individual from OpenMath ontology
[WR12]. Finally, the last element :ele2 is modelled as a math:Literal and its value is
specified via the math:value data type property. Both :ele2 and ele0 are related to the
top level representation of the control actor via the respective ctrl:logicParameter and

71

4 Semantic Modelling of Control Logic in Automation Systems

exp:Operand

:exp

:ele2
:ele0 :ele1

exp:Expression

exp:Operator
ll:FirstElement

ll:nextElement

math:Variable

:R1_Inp
ll:nextElement

mer:isComposedOf

REL:leq

math:operator

math:Literal

exp:Operand

ctrl:logicInput
"0.0"^^xsd:double

math:value

:R1_par1

ctrl:logicParameter

PREFIX : <https://w3id.org/ibp/ExpressionOntologyEval#>

Figure 4.8: Excerpt of instances to describe the expression ’R1 Inp <= 0.0’.

ctrl:logicInput properties. For example, :ele0 is related via the ctrl:logicIn-
put property to the individual R1 Input. The :ele0 is additionally typed as a ll:First-
Element.

4.4.2 Schedules
A common piece of control logic frequently occurring in BAS is a schedule. For example,
a schedule limits the operation of technical equipment to times of the day, where an office
building is occupied potentially reducing the operating hours and, hence, reduce significantly
the associated costs and energy demand.
In Figure 4.9 a model to describe schedules is displayed. A Schedule is an Application-
Logic and its execution is repeated with some Periodicity. Dependent on the current
time, which is provided by an Input to the schedule, the current value of its Output is de-
termined. To describe the mathematical relation between the time and the output a polynomial
MathematicalFunction is modelled with a PolynomialConstant. The polynomial
constant can be specified by the attribute polyConstantDegree, which is restricted to be
a non-negative integer and a polyConstantLiteralValue, which is restricted to be a
double precision floating point number. The intervals where a certain polynomial function
is active can be specified using the classes Interval, StartPoint and EndPoint with
their respective Coordinates.
The described semantic model is formalised using the established mapping methodology. The
result is depicted in Figure 4.10. In addition, individuals to specify periodicity are defined, i.e.
Daily, Weekly, Monthly and Yearly.
The defined ontology is evaluated in a simple use case as illustrated in Figure 4.11. A daily
schedule restricts the operation time of some technical unit between 8am and 6pm. Three
intervals (sched Interval1 - sched Interval3) can be identified, where the output
has different values. From midnight until 8am its value is zero, from 8am until 6pm its value is

72

4.4 Semantic Models of the Control Logic Domain

«Class»
MathematicalFunction

«Class»
Schedule

«Class»
StartPoint

«Class»
Interval

«Class»
Point

1

+isConsecutiveInterval

1
+hasInterval

1

1..*

+hasStartPoint

1

1

+hasMathematicalFunction 1

1

«Class»
Coordinate

+hasLiteralValue: double

+hasXCoordinate1
1

+hasYCoordinate 1
1

«Class»
PolynomialConstant

+polyConstantDegree: NonNegativeInteger
+polyConstantLiteralValue: double

+hasPolynomialConstant1

1..*

«Class»
ApplicationLogic

«Class»
Periodicity

«Class»
Parameter

«Class»
Input

«Class»
Output

+logicInput

1..*1

+logicOutput

1..* 1

«Class»
EndPoint

+hasEndPoint

1

1

+logicParameter
+logicParameter

+hasPeriodicity
1

1

+logicParameter

Model::Main

Figure 4.9: Class diagram of a model to describe schedules.

one and from 6pm until midnight its zero. The respective schedule is depicted in Figure 4.11
(below dashed line) and an excerpt of instances formalising the schedule are depicted (above
dashed line). The interval of interest is the third one modelled using the start point of interval
three (:b1). The interval starts at 6pm and the x and y coordinates of the respective point
are specified. For brevity, the mathematical function describing the behaviour of the schedule
between the two points is not depicted here.

4.4.3 Sequence Control
Sequence control is a type of control logic often appearing when there are control actions
within an automation system, which possibly contradict each other. For example, in an AHU

73

4 Semantic Modelling of Control Logic in Automation Systems

:Schedule

ctrl:ApplicationLogic

:hasInterval

xsd:NonNegativeInteger

:PolynomialConstant

:MathematicalFunction
:Interval

:StartPoint :EndPoint

:Coordinate

xsd:double

:isConsecutiveInterval

:hasStartPoint :hasEndPoint

PREFIX : <https://w3id.org/ibp/ScheduleOntology#>

:hasXCoordinate :hasYCoordinate

:Point

:polyConstantDegree

:polyConstantLiteralValue

:hasPolynomialConstant

:hasMathematicalFunction

xsd:double

:hasLiteralValue

ctrl:Input ctrl:Output

ctrl:logicInput

ctrl:logicOutput

ctrl:Parameter

ctrl:logicParameter

:hasPeriodicity

:Periodicity

ctrl:logicParameter

ctrl:Parameter
ctrl:logicParameter

Figure 4.10: Class and relationships of the ScheduleOntology (adapted from [SPS17]).

8 18 time in h

Ysce in -
1

0

sch:Schedule

:R2_logic

:sched_Interval1 _:b1

sch:hasXCoordinate

sch:hasYCoordinate

sch:hasLiteralValue

_:b2

_:b3

"18.0"^^xsd:double

"0.0"^^xsd:double

sch:hasStartPoint

sch:hasLiteralValue

sch:StartPoint

sch:isConsecutiveInterval

sch:hasInterval

sch:Interval

ctrl:Input

:time

:YSce

ctrl:logicOutput

ctrl:logicInput

ctrl:Output

sch:Daily

:sched_Interval2 :sched_Interval3

sch:hasPeriodicity

sch:isConsecutiveInterval

PREFIX : <https://w3id.org/ibp/ScheduleOntologyEval#>

Figure 4.11: Excerpt of instances to represent a schedule.

74

4.4 Semantic Models of the Control Logic Domain

air entering the unit can be either heated or cooled by sequentially arranged heating and cooling
coils in the direction of air flow. Technically it can be the case that the respective coils are
heated and cooled at the same time, thus wasting primary energy without any gain for the
supplied air. In practical applications control logic, such as sequence control [ISO05], prevents
this by only allowing cooling to start when heating ended, or vice versa.
In Figure 4.12 a semantic model to describe a sequence control is presented. It is similar

«Class»
MathematicalFunction

«Class»
Sequence

«Class»
StartPoint

«Class»
Interval

«Class»
Point

1
+isConsecutiveInterval

1

+hasInterval

1
1..*

+hasStartPoint

1

1

+hasMathematicalFunction 1

1

«Class»
Coordinate

+hasLiteralValue: double

+hasXCoordinate1
1

+hasYCoordinate 1
1

«Class»
PolynomialConstant

+polyConstantDegree: NonNegativeInteger
+polyConstantLiteralValue: double

+hasPolynomialConstant1

1..*

«Class»
ApplicationLogic

«Class»
Parameter

«Class»
Input

«Class»
Output+logicInput

1..*
1

+logicOutput

1..*
1

«Class»
EndPoint

+hasEndPoint

1

1

+logicParameter
+logicParameter

Model::Main

Figure 4.12: Class diagram of a model to describe a sequence control.

to the model developed for a schedule presented in Section 4.4.2, in fact a schedule can be
modelled as a sequence controller, where the input is restricted to only the current time. In
a sequence controller a Sequence has some Intervals, which describe for each Input

how logically it should be converted into an Output. The order of the intervals can be spe-
cified by relating them using the isConsecutiveInterval relationship. To specify each
interval the Coordinates of its StartPoint and EndPoint need to be defined using the
respective relationships as depicted in Figure 4.12. The modelling of the actual calculation by
means of a polynomial function can be specified exactly as for a schedule using the classes
MathematicalFunction and PolynomialConstant using the respective binary rela-
tionships to relate them. Note, intervals need to be defined such that the mathematical function
is continuous on the respective interval. The linking to adjacent domains using classes from

75

4 Semantic Modelling of Control Logic in Automation Systems

the CTRLont are defined in the class diagram using the logicInput, logicOutput and
logicParameter relationships.
The SequenceControlOntology presented in Figure 4.13 is the result of the formalisa-

:Sequence

ctrl:ApplicationLogic

:hasInterval

xsd:NonNegativeInteger

:PolynomialConstant

:MathematicalFunction
:Interval

:StartPoint :EndPoint

:Coordinate

xsd:double

:isConsecutiveInterval

:hasStartPoint :hasEndPoint

PREFIX : <https://w3id.org/ibp/SequenceControlOntology#>

:hasXCoordinate :hasYCoordinate

:Point

:polyConstantDegree

:polyConstantLiteralValue

:hasPolynomialConstant

:hasMathematicalFunction

xsd:double

:hasLiteralValue

ctrl:Input ctrl:Output

ctrl:logicInput

ctrl:logicOutput

ctrl:Parameter

ctrl:logicParameter

ctrl:Parameter
ctrl:logicParameter

Figure 4.13: Concepts and relationships of the SequenceControlOntology.

tion of the described semantic model. Classes and relationships are defined as modelled. No
additional statements are defined in the ontology.
To illustrate the use of the ontology an excerpt of instances representing the sequence control of
an AHU is presented in Figure 4.14. Above the dashed line an example for a sequence control
is depicted as reported in ISO 16484-3 [ISO05]. The graph should be understood as follows:
Depending on the outdoor air temperature Toa the normalised control signal for the heating
coil valve Yhea and cooling coil valve Ycoo should be changed. If the outdoor air temperature is
below 10 degree Celsius Yhea should be 1, Ycoo should be zero; if the temperature is between
10 and 16 degree Celsius Yhea constantly decreases and Ycoo stays zero; if the temperature is
between 16 and 18 degree Celsius Yhea and Ycoo should be zero; if the temperature is between
18 and 24 degree Celsius Yhea should be zero and Ycoo should constantly increase and, finally,
if the temperature is above 24 degree Celsius Yhea should be zero and Ycoo should be 1.
To evaluate the ontology the presented sequence control is modelled and for convenience the
triples describing the interval (int2 in Figure 4.14) between 18 and 24 degree Celsius are
displayed. In addition, the relationship to inputs, outputs and parameters is depicted.

76

4.4 Semantic Models of the Control Logic Domain

seq:Sequence

Toa in °C Y
h
ea

/
Y

C
o
o

 in
 -

1

0

10 16 18 24

:seq1

:int2 :int3 _:b1

seq:hasXCoordinate

seq:hasLiteralValue

_:b2 "18.0"^^xsd:double

seq:hasStartPoint

seq:hasMathematicalFunction

_:b7

seq:polyConstantDegree seq:polyConstantLiteralValue

_:b8

"0"^^xsd:NonNegativeInteger "-3"^^xsd:double

seq:hasPolynomialConstant

seq:isConsecutiveInterval

seq:hasInterval

seq:Interval

:par1

:Toa :YCoo

ctrl:logicOutput

ctrl:logicInput

ctrl:logicParameter

PREFIX : <https://w3id.org/ibp/SequenceControlOntologyEval#>

Figure 4.14: Excerpt of instances (below dashed line) of interval 18 - 24 degree Celsius
(above dashed line).

4.4.4 Two-Point Discrete Control
Two point control of a process is a frequently applied type of control logic in feedback control.
Examples are the heating control of a room by a heater, where the heater can be only operating
or turned off. If the room temperature measured by some sensor is below its current set point
the heater is turned on, if above the heater is turned of. Also, in open-loop control it is used,
e.g. for a simple value conversion of a continuous value into another dependent on a threshold.
In particular, the discrete variant considered here has a boolean input and a continuous output
value.
Figure 4.15 presents a model to specify discrete two-point control logic. Each TwoPoint-

Discrete is related to an Input and Output and contains a LowerOutput and an
UpperOutput. The LowerOutput is the value associated to a Boolean false and the
UpperOutput is the output value if the input is True. The model is formalised using the
defined mapping methodology and the result is depicted in Figure 4.16.
The defined ontology is used to model a simple use case with two-point control as depicted in
Figure 4.17. The behaviour of this type of control logic is depicted in a two-dimensional graph
(left of dashed line in Figure 4.17). The input u is denoted on the x-axis and the output y on
the y-axis. In this example, for instance, if the value of the input u is false the output y is 2;
if the input u is true then the output y is 11. The use of this graphs aligns with the approach
of transfer functions [Abe10], where a model for generic transfer function with multiple inputs

77

4 Semantic Modelling of Control Logic in Automation Systems

«Class»
LowerOutput

+hasValue: double

«Class»
TwoPointDiscrete

«Class»
UpperOutput

+hasValue: double

«Class»
ApplicationLogic

«Class»
Parameter

«Class»
Input

«Class»
Output

+logicInput

1..*1

+logicOutput

1..* 1

+logicParameter+logicParameter

+contains
1

1 +contains
1

1

Model::Main

Figure 4.15: Class diagram of a model to describe discrete two point control.

:TwoPointDiscrete

ctrl:ApplicationLogic

xsd:double

PREFIX : <https://w3id.org/ibp/TwoPointDiscreteOntology#>

ctrl:Input ctrl:Output

ctrl:logicOutput

ctrl:Parameter

ctrl:logicParameter

ctrl:logicInput

:LowerOutput :UpperOutput

:hasValue

:contains :contains
ctrl:logicParameter

:hasValue

Figure 4.16: Concepts and relationships of the TwoPointDiscreteOntology [SWO19].

and single outputs is presented in Section 4.4.5. Another example of the use of this type of
control logic is presented in Section 5.2.

4.4.5 Transfer Function Element
In linear control theory a transfer function element is a control actor with some inputs and
outputs, where the relationship between these is mathematically defined by a transfer function
[Abe10]. Examples for transfer function elements are proportional, integral and derivative
elements, which in combination are frequently used in one of the most applied closed-loop
controllers: PID-control [Abe10, ÅH01]. The semantic model and ontology described in the
following allows to explicitly describe arbitrary transfer function elements through formally

78

4.4 Semantic Models of the Control Logic Domain

ctrl:logicInput

y

u

11

2

true

false

:tpd1

tpd:hasValue

_:b1

_:b2

"11.0"^^xsd:double

"2.0"^^xsd:double

tpd:hasValue

tpd:TwoPointDiscrete

tpd:contains

ctrl:Input

ctrl:Output

tpd:UpperOutput

tpd:LowerOutput
:y

:u

ctrl:logicOutput

ctrl:logicParameter
_:b3

ctrl:Parameter

PREFIX : <https://w3id.org/ibp/TwoPointDiscreteOntologyEval#>

Figure 4.17: Schema and instances of a two point discrete element.

representing their expression. This allows to describe a wide range and on a generic level
control actors with control logic originating from linear automatic control domain.
In Figure 4.18 a semantic model to describe these elements is presented. The central concept

«Class»
SISO

«MetaClass»
TransferFunctionElement

«Class»
Expression

«Class»
ApplicationLogic

«Class»
MISO

«Class»
Output

+logicOutput

1..*

1

+hasExpression
1

1

«Class»
Input

«Class»
ExpressionElement

+isComposedOf

+logicInput

Model::Main

Figure 4.18: Class diagram of a semantic model to describe transfer function elements.

is a TransferFunctionElement to represent this kind of control logic. The expres-
sion describing mathematically how inputs are converted to outputs can be specified as an
Expression following the model presented in Section 4.4.1 and related to by the hasExpression
relationship. Each element has only a single expression related to it. For simplification the
model restricts a transfer function element to either have a single input and a single output
(SISO) or multiple inputs and a single output (MISO). The single Output can be related to

79

4 Semantic Modelling of Control Logic in Automation Systems

the element via the logicOutput relationship. Inputs relate to the respective element in the
expression.
An ontology formalising the model is depicted in Figure 4.19. The mappings are applied as

:TransferFunctionElement

ctrl:ApplicationLogic

exp:Expression

PREFIX : <https://w3id.org/ibp/TransferFunctionElementOntology#>

:hasExpression
ctrl:Output

ctrl:logicOutput

:SISO :MISO exp:ExpressionElement

ctrl:Input

mer:isComposedOf

ctrl:logicInput

Figure 4.19: Concepts and relationships of the TransferFunctionElementOntology
[SWO19].

defined in the methodology section of this chapter.
The defined ontology is used to represent a commonly known transfer function element: The
proportional or P-Element. Its transfer function can be denoted as y = K · u, where y is the
output variable, K is a parameter specifying the proportional influence of the input u of the
element. In Figure 4.20 an excerpt of instances to represent an arbitrary P-Element are given.

:tfe1 :exp1 :y

:u

ctrl:logicOutput

ctrl:logicInput

ctrl:Output tfe:SISO

:ele0 :ele1 :ele2

tfe:hasExpression

mer:isComposedOf

math:Variable math:Literal

ARI:times

exp:Expression

math:operator

"K"^^xsd:string

math:value

exp:Operand exp:Operand

ll:nextElement ll:nextElement

ctrl:Input

PREFIX : <https://w3id.org/ibp/TransferFunctionElementOntEval#>

Figure 4.20: Excerpt of individuals to represent a P-element [Abe10] and its transfer function
y = K ·u.

The element classifies as a SISO and its expression can be described via the concepts and
relationships of the expression ontology (see Section 4.4.1).

80

4.4 Semantic Models of the Control Logic Domain

4.4.6 UML State Machines
State machines as defined in the UML [Obj15a] are a generic way to describe discrete beha-
viour of actors. By this ability the UML state machines are a popular way to specify discrete
behaviour of control logic. UML state machines are based on the finite state machine form-
alism and many precursors exist [Mea55, Har87, Lun09, LS17]. For the formal modelling of
UML state machines in this thesis an earlier work presented by Dolog [Dol04] is taken into
account. Significant improvements and changes have been applied to update the model to com-
ply to version 2.4 [Obj15a] of the UML standard. Additionally, the ability to explicitly model
expressions is added, which will be detailed later in this section. The class diagram illustrating
the modelling is given in Figure 4.21. The taxonomy including children of the PseudoState

«Class»
Transition

«Class»
Guard

«Class»
Event

«Class»
Condition

«Class»
State

«Class»
Action

«Class»
StateMachineElement

+guardCondition
1
1

+source 1..*1

+target 1..*1

+entry

0..1

0..*

+exit 0..*
+do 0..*

+transitionGuard

1 1

+transitionAction

+internal1 0..*

+contains «Class»
Behaviour

+transitionEvent

1 1..*

+actionBehaviour
«Class»

Expression

«Class»
Input

«Class»
Parameter

«Class»
Output

+conditionExpr
1 1

+logicInput
+logicParameter

+logicOutput

«Class»
Value

+hasLiteralValue: literal

+assignValue

Model::Main

Figure 4.21: Class diagram of a model to describe UML state machines [Obj15a].

class and and children of class State is separately displayed in Figure 4.22.
Central to state machines is the concatenation of States and Transitions to a network of
alternating states and transitions. A transition has one state as source and one other or the
same as a target. States in contrast might be connected to one or more transitions. In the
UML internal transitions can be specified, which have as the source and target the same
state. The Actions of a state can be related to it using the directed associations entry, do
and exit similar for the transitions using the transitionAction association. The actual
Behaviour of Action can be specified by any algorithm or even another state machine. The
Behaviour class acts as a place holder in this regard. Connections to Input, Parameter
and Output of CTRLont presented in Section 4.3 can be established using the specified
relationships. For simple behaviours, where only a value is assigned to some output if the

81

4 Semantic Modelling of Control Logic in Automation Systems

«Class»
StateMachine

«Class»
SimpleState

«Class»
Transition

«Class»
InitialState

«Class»
ApplicationLogic

«Class»
Guard

«Class»
Event

«Class»
Condition

«Class»
State

«Class»
Composite

«Class»
Action

«Class»
Region

«Class»
FinalState

«Class»
SynchState

«Metaclass»
PseudoState

«Class»
Branch

«Class»
History

«Class»
Join

«Class»
Junction

«Class»
Split

«Class»
StateMachineElement

«Class»
Deep

«Class»
Shallow

«Class»
EntryPoint

«Class»
ExitPoint

«Class»
Choice

«Class»
Terminate

«Class»
Fork

«Class»
Split

«Class»
Merge

«Class»
When

«Class»
After

«Class»
Completion

«Class»
Behaviour

Model::Main

Figure 4.22: Class diagram of the taxonomy of a model to describe state machines from the
UML.

state is active, the action can be related to its value via the assignValue relationship, which
ultimately defines the value by the attribute hasLiteralValue.
Transitions are triggered by an Event and can be inhibited by a Guard. The Condition of
this guard can be explicated by specifying the Expression associated to it via the condi-
tionExpr relationship. The expression holds a boolean condition, which can be explicitly
described using the expression model presented in Section 4.4.1. A transition its guard and its
condition can be related to each other via the transitionGuard and guardCondition
relationships. To describe that a StateMachineElement has other state machine elements
as parts the contains relationship can be used.
A state can be further specified in SimpleState, FinalState, SynchState, Compo-
site, Region and a number of PseudoStates. They share the common semantics of a
state but each have their specific meaning in the UML. The pseudo states InitialState,
Fork, Join, Junction, etc. refer to specific concepts in a UML state machine. Their
specific use can be found as described in the standard [Obj15a] or in Rupp et al. [RQd12].
Also, an event can be further specified into When, After and Completion, respectively.
The presented semantic model to explicitly model UML state machines is formalised using the
defined mapping methodology (see Section 4.1.2). The result is depicted in Figure 4.23.
The defined ontology is evaluated in a simple example to model a UML state machine. The
state machine is depicted in Figure 4.24a and an excerpt of the resulting triples are depicted
in Figure 4.24b. The described behaviour involves, after being initialised, the transition to a
simple state Init and then if the condition R1 Inp <= 0.0 evaluates to true the transition

82

4.4 Semantic Models of the Control Logic Domain

PREFIX : <https://w3id.org/ibp/StateMachineOntology#>

ctrl:ApplicationLogic

:StateMachineElement

:Action

:Transition

:Guard :Condition

:Event

:State

:contains

transitionEvent

:guardCondition

:source

:target :transitionAction

:entry

:do

:exit

:transitionGuard
:conditionExpr

exp:Expression

ctrl:Output

ctrl:logicOutput

:Behaviour

ctrl:Input

ctrl:logicInput

ctrl:Parameter

ctrl:logicParameter

rdfs:Literal

:internal

:Value

:hasLiteralValue

:StateMachine

:actionBehaviour

…

…

…

:assignValue

…

Figure 4.23: Concepts and relationships of the StateMachineOntology
[SPS17, SWO19]. Subclasses of the State and Event classes omitted.

state1

do/y := 2.0

Init

 [R1_Inp <= 0.0]

Model::StateMachine1::StatechartDiagram1

(a) UML state machine.

sm:assignValue

"2.0"^^xsd:double

:ini1 :t1 :state1 :fin1

sm:InitialState sm:FinalState sm:Transition sm:SimpleState

sm:source sm:source sm:target sm:target

:s1-Act

sm:do

:y

ctrl:logicOutput

:t2-Gua

:t2-GuaE

sm:transitionGuard

sm:guardCondition

sm:conditionExpr

:exp

sm:Guard

sm:Condition

sm:Action

ctrl:Output exp:Expression

:Init :t2 :t3

sm:source sm:target

:s1-AVal

sm:hasLiteralValue

PREFIX : <https://w3id.org/ibp/StateMachineOntologyEval#>

(b) Excerpt of instances.

Figure 4.24: Excerpt of instances of a UML statemachine [Obj15a] described using the
StateMachineOntology.

83

4 Semantic Modelling of Control Logic in Automation Systems

to state1. The condition of the transition can be explicitly described using the expression
ontology presented in Section 4.4.1 and the respective triples of the expression are additionally
visualised in Figure 4.8. state1 has one do action, which causes the output y to be set to the
value 2.0. Then a transition to the final state takes place, when the default :Completion
event triggers the transition (not depicted). The described ontology is able to describe the
concepts of the defined state machine. In particular, the description of the expression of the
boolean condition and the relationship to the inputs and outputs of the respective control actor
can be explicitly defined. An evaluation in two elaborate use cases is undertaken in Section 5.2.

4.4.7 State Graphs from VDI 3814-6
A special kind of state graphs is specified in the German national standard VDI 3814-6
[VDI08], which allows the specification of state-based control logic and it has been specifically
designed for its application in BAS. Compared to state machines it is less complex as it only
provides a limited amount of modelling options. For instance, it cannot be specified whether
an action is an entry or exit action and the behaviour of an action only involves the assignment
of a value to an output.
A semantic model to describe state graphs is presented in Figure 4.25. The design of the model

«Class»
StateGraph

«Class»
State

+hasNumbering: NonNegativeInteger
+hasDescription: string

«Class»
InitialState

«Class»
Condition

«Class»
Action

+assignValue: double
+stateAction

1 0..*

«Class»
Transition

+source

+target

1..* 1

1..* 1

«Class»
StateGraphElement +contains

11..*

«Class»
ApplicationLogic

«Class»
Return

+stateCondition

1 1..*

«Class»
SimpleState

+transitionCondition

1

0..*

«Class»
Output

«Class»
Expression

+conditionExpr

1

1

+logicOutput+logicOutput

Model::Main

Figure 4.25: Class diagram of a model to describe state graphs according to
VDI 3814-6 [VDI08].

considers modelling patterns of state machines from the UML presented in Section 4.4.6.

84

4.4 Semantic Models of the Control Logic Domain

In a state graph a Transition always has as one State as a source and one or the
same as its target. A Condition specified by an Expression determines, whether a
transition from one state to another is conducted. In state graphs conditions are associated
to a state, however, if several transitions are possible the condition additionally needs to be
related to its associated transition via the stateCondition and transitionCondi-

tion relationships, respectively. The Actions associated to a state via the stateAction
relationship assign a value to an output (assignValue), if the respective state is active. The
logicOutput relationship establishes a connection between the action and the respective
Output as well as the state to determine its activity.
The state graph itself contains other StateGraphElements, where no sub-state graphs
are eligible. Specialisations of a state are a SimpleState describing a simple state, an
InitialState describing the single, initial state of the state graph and a Return state,
which acts as a placeholder to forward from one state to another. Properties of a state are its
hasNumbering and hasDescription as illustrated.
The ontology formalising the presented model is illustrated in Figure 4.26. The ontology im-

:StateGraphElement

:conditionExpr

:StateGraph

ctrl:ApplicationLogic

:Transition

:Return

:InitialState

exp:Expression

:Condition

:Action

:State

xsd:nonNegativeInteger

xsd:string

:target

:source

:stateAction

:stateCondition

:contains

:hasNumbering

:hasDescription

xsd:double

:assignValue

ctrl:Output

ctrl:logicOutput

:transitionCondition

PREFIX : <https://w3id.org/ibp/StateGraphOntology#>

:SimpleState

Figure 4.26: Classes and relationships to formalise state graphs using the web ontology
language according to the standard VDI 3814-6 [VDI08] [SPS17].

plemented in OWL is created in compliance to the initially in this chapter defined mapping.
An additional value restriction is set towards classifying automatically an initial state of a state
graph by the data value associated to its numbering. The restriction is listed in Code 4.3.

Code 4.3: Value restriction on the data type property hasNumbering in turtle syntax
[BBLPC14] to automatically classify an initial state in a state graph as defined in
the StateGraphOntology.

0 :InitialState rdf:type owl:Class ;

85

4 Semantic Modelling of Control Logic in Automation Systems

owl:equivalentClass [rdf:type owl:Restriction ;
owl:onProperty :

hasNumbering ;
owl:hasValue 0

] .

For a simple evaluation instances are created, which explicitly describe the state graph presen-
ted in Figure 4.27 (left of dashed line). In a state graph one and only one state can be the

SG:assignValue

"2.0"^^xsd:double

:Init

:t1

:state1

:ret0

:t2

SG:InitialState

SG:Return

SG:Transition

SG:SimpleState

SG:source

SG:source

SG:target

SG:target

:s1-Act

SG:stateAction

:y

ctrl:logicOutput

:state1-A

SG:stateCondition

SG:conditionExpr

:exp
SG:Condition

SG:Action

ctrl:Output

exp:Expression

0

y := 2.0

R1_Inp <= 0.0

state1

1

Init

0

:t3

SG:source

SG:target

:Init

PREFIX : <https://w3id.org/ibp/StateGraphOntologyEval#>

Figure 4.27: A simple state graph (left of dashed line) represented by an excerpt of instances
(right of dashed line). The modelling of the expression is illustrated in Figure 4.8.

initial state. This state needs to be related to the value 0 via the hasNumbering data type
property. A transition from the initial state Init to the simple state state1 is conducted
if the initial state is active and the condition associated to state1, R1 Inp <= 0.0 evaluates
to true. When state1 is active the output y is set to a constant value of 2.0. The simple
evaluation shows that the concepts of the state graph can be described. Moreover, the boolean
condition indicating, whether a transition may fire if the respective previous state is active can
be explicitly defined and the respective inputs of the control actor can be related to it explicitly.
Additionally, the actions including the assignment of values to outputs can be described. A
more detailed evaluation of formally describing state graphs is conducted in Section 5.1, where
a use case related to the automation of an AHU using a state graph is studied.

86

4.5 Summary

4.5 Summary
The layered, semantic model presented in this chapter closes the gap of the absence of a se-
mantic model for the explicit, formal description of knowledge of the automatic control and
control logic domains in automation systems and the integration thereof with adjacent domains.
The layered model is designed with respect to the in Chapter 3 defined requirements.
Initially, the modelling methodology is presented in Section 4.1. All models are specified us-
ing the UML [Obj15a, RQd12] and implemented using OWL [W3C12], which are both man-
ufacturer independent (see Req. 3.1.2) open standards. Additionally, the implementations are
accessible freely on the web via their URIs from an open-source repository6 to stipulate reuse,
sharing and revision. Through the specification in UML the model can be implemented in the
technology of choice (see Req. 3.1.3). By using OWL (see Req. 3.2.2) for implementation,
Req. 3.1.4 is satisfied as it is a machine-interpretable language. It allows to implement an on-
tology as required by Req. 3.2.1. The underlying DL enable to choose an appropriate profile
for the deployment of knowledge-based methods as demanded by Req. 3.2.3.
A layered model architecture is established as described in Section 4.2, where on the upper
layer a high-level abstraction of the automatic control domain is separated from domain spe-
cific extensions for the explicit, formal description of control logic on the underlying layer.
The layered architecture allows to link the automatic control domain to adjacent domains
(Req. 3.3.3) and, hence, a link can be established across the domains of control logic, auto-
matic control and adjacent domains. An example for this is presented in Section 5.2.
The CTRLont and its implementation as an OWL ontology presented in Section 4.3 provide
the possibility for a formal and semantically precise definition of the automatic control domain
(see Req. 3.3.1). In particular, it is possible to specify the hierarchy among control actors and
their logical topologies (see Req. 3.3.2). The defined concepts for inputs and outputs can be
used to establish a relationship to adjacent physical domains (see Req. 3.3.3). As this is use case
specific no further details are provided. Instead, the reader is referred to Chapter 5, where the
domain descriptions of the automatic control and control logic domains are linked to adjacent
domains. Additionally, the semantics of inputs, outputs and parameters of control actors can be
specified (see Req. 3.3.4, see Section 4.3) and CTRLont is designed in a modular fashion to
enable extension (see Req. 3.3.7) and further addition of explicit formal descriptions of control
logic in automation systems (see Req. 3.3.5).
A non-exhaustive set of explicit formal descriptions of diverse types of control logic is presen-
ted in Section 4.4. The formal descriptions can be used simultaneously, where a one-to-one
mapping holds between each control actor and its control logic. This includes algebraic ex-
pressions in control logic (Section 4.4.1), schedules (Section 4.4.2), sequence control (Sec-
tion 4.4.3), discrete two-point control (Section 4.4.4) and generic transfer function elements

6 https://w3id.org/ibp, Last accessed: 22 October 2018

87

https://w3id.org/ibp

4 Semantic Modelling of Control Logic in Automation Systems

(Section 4.4.5). Additionally, explicit formal specifications of the following state-based control
logic types are presented: UML state machines (Section 4.4.6) and state graphs from VDI 3814-
6 (Section 4.4.7).
Table 4.3 provides an overview on the OWL implementations of the modules of the layered, se-
mantic model. Only the ExpressionOntology concepts and properties are found suitable
for reuse (see Req. 3.3.6).
The semantic models presented in this chapter are the basis for two knowledge-based methods,
which are presented in Chapter 5.

88

4.5 Summary

Ta
bl

e
4.

3:
St

at
is

tic
s

of
th

e
O

W
L

im
pl

em
en

ta
tio

ns
of

th
e

se
m

an
tic

m
od

el
s

pr
es

en
te

d
in

C
ha

pt
er

4
re

po
rt

ed
by

th
e

Pr
ot

ég
é

to
ol

[M
us

15
],

D
L

-
D

es
cr

ip
tio

n
L

og
ic

s.

Se
ct

io
n

O
nt

ol
og

y
L

og
ic

al
ax

io
m

s
C

la
ss

es
In

di
vi

du
al

sO
bj

ec
t

Pr
op

er
tie

s
D

at
a

ty
pe

pr
op

er
tie

s
O

nt
ol

og
y

R
eu

se
D

L
E

x-
pr

es
si

vi
ty

4.
3

C
T
R
L
o
n
t

44
13

1
15

0
N

o
A
L
CI

4.
4.

1
E
x
p
r
e
s
s
i
o
n
O
n
t
o
l
o
g
y

36
13

16
6

2
Y

es
A
L
CI

4.
4.

2
S
c
h
e
d
u
l
e
O
n
t
o
l
o
g
y

53
15

5
12

3
N

o
A
L
CO
Q
(D

)
4.

4.
3

S
e
q
u
e
n
c
e
C
o
n
t
r
o
l
-

O
n
t
o
l
o
g
y

44
14

1
11

3
N

o
A
L
EQ

(D
)

4.
4.

4
T
w
o
P
o
i
n
t
D
i
s
c
r
e
t
e
-

O
n
t
o
l
o
g
y

4
8

0
4

1
N

o
A
L
C(
D
)

4.
4.

5
T
r
a
n
s
f
e
r
F
u
n
c
t
i
o
n
E
l
e
-

m
e
n
t
O
n
t
o
l
o
g
y

6
10

0
4

1
N

o
A
L
(D

)

4.
4.

6
S
t
a
t
e
M
a
c
h
i
n
e
O
n
t
o
l
o
g
y

69
28

1
13

2
N

o
A
L
EQ

(D
)

4.
4.

7
S
t
a
t
e
G
r
a
p
h
O
n
t
o
l
o
g
y

46
13

1
9

3
N

o
A
L
CQ

(D
)

B
.1

B
a
s
i
c
D
a
t
a
t
y
p
e
-

O
n
t
o
l
o
g
y

93
47

47
0

0
N

o
A
L

89

5 Validation

Within this chapter two separate knowledge-based methods are presented, which support and
automate the engineering and operation of control logic in automation systems. Each method
is tested in a use case. A prerequisite for both methods is the formal, explicit representation of
knowledge of the automatic control and control logic domains in automation systems. This is
enabled by the semantic model presented in Chapter 4. Hence, by utilising the proposed model
in the use cases, its ability to fulfil the knowledge requirements of the respective knowledge-
based methods is validated.
In Section 5.1 the utilisation of the described models is studied in a use case originating from
building automation. The defined ontologies are used to formalise control logic from BAS. The
formal knowledge is then used to enable a method for the automated rule-based verification of
designed control logic [SPS17]. The method allows to check in monitoring data, whether the
control logic is implemented as originally specified in the design. The method is evaluated in a
simulation-based study related to the automation on an AHU.
The next use case presented in Section 5.2 studies the support and enhancement of the engin-
eering of control logic in industrial automation. A knowledge-based method is investigated
to allow automated, formal verification across control logic types and plant knowledge, incre-
mental verification of the control logic and bidirectional exchange of control logic knowledge
as designs and implementation evolve over the project life cycle [SWO19]. The developed
method is deployed in a scenario-based evaluation related to the automation of a batch process
available from literature [KSB01].
The findings from the validation in the two use cases are summarised in Section 5.3 with
reference to the in Chapter 3 defined requirements.

5.1 Automated Rule-Based Verification of
Designed Control Logic in Building
Automation Systems

5.1.1 Problem Description
The design process of an automation solution for BAS as defined in the standard ISO 16484-1
[ISO10] incorporates the planning, technical design, installation, commissioning and test op-

91

5 Validation

eration. In particular, in public construction projects the planning/technical design and the
installation/commissioning is executed from different project teams as this is stipulated by the
procurement process. This requires the documentation of the designed automation solutions,
such that it can be implemented at a later point in time. Often the team taking over does not
have the full information and knowledge to understand all design decisions and a loss of in-
formation and knowledge at every information hand over is recognised. This documentation
typically constitutes of spreadsheets, drawings and textual descriptions as mandated by the cur-
rent standardisation bodies [ISO11]. It is almost impossible for the designer of a certain control
logic to verify if the designed control logic has been implemented as originally specified. Ad-
ditionally, the actual source code implementing the control logic is usually concealed out of
intellectual property reasons by the manufacturers of BAS equipment.
A semi-automatic method to automatically detect mismatches between the actual designed con-
trol logic and its implementation is proposed in Plesser et al. [PFP+10] and Plesser [Ple13].
The method requires to manually mine the specification of the designed control logic from its
documentation by trained experts. Subsequently the expert defines verification rules depended
on the control design. For large installations the documentation can easily constitute of thou-
sands of pages with textual descriptions, tables and drawings. By using the defined rules the
method checks monitoring data, if the observed behaviour corresponds to the designed one.
The process to manually acquire and process the knowledge on the actual design of the control
logic from its documentation is cumbersome, time and cost-consuming. Within the next section
a method is presented, which provides means to automate the approach by Plesser [Ple13].

5.1.2 Methodology
In the following a methodology is proposed as illustrated in Figure 5.1, where the mentioned
approach by Plesser [Ple13] is automated by formalising the control logic design knowledge
from its documentation and store the knowledge in a knowledge-base. The stored knowledge
is utilised to automatically configure and deploy parametrised queries encoding knowledge to
verify specific control logic types.
Initially the as-designed control logic of a BAS installation is formally specified and stored in a
knowledge-base. Next, a query is executed, which retrieves necessary information to configure
previously encoded archetype rules. The rules are deployed to evaluate monitoring data and
return as a result points in time where the system detects a symptom of a fault [TVM+09]. The
detected faults are stored in the knowledge base for further post-processing and fault isolation
[KB05]. The execution of the method can be implemented, and hence, automated.

92

5.1 Automated Rule-Based Verification of Designed Control Logic in Building Automation
Systems

Input: Formal

specification

of as-designed

control logic

and datapoints

Start

Query to configure

archetype rules

Configure and

deploy archetype

rules

End

Output: Point

in time with

symptom

Queries

encoding

archetype

rules

Evaluate monitoring

data

Figure 5.1: Flowchart to describe the procedure to execute the automated rule-based
verification of designed control logic in building automation systems [SPS17].

5.1.3 Use Case and Implementation
The described knowledge-based method for automated rule-based verification is implemented
as a prototype using the Python programming language. In the following, the studied use case
related to an AHU is described. Then, two scenarios are presented, where the method is used
to detect two typical faults occurring frequently in the operation of control logic in BAS.
Description of the AHU
The technical equipment of the AHU (fans, heating coil, pump, temperature sensors, etc.),
the logical topology of the designed control logic for the AHU and the control logic itself are
depicted in a control diagram presented in Figure 5.2.
The AHU retrieves outdoor air and heats, if required, this air through a heating coil before
supplying it to the served building. The air returning from the building can be either recirculated
via a mixing box or disposed to the exhaust. As sensor inputs the outdoor air temperature Toa,
the heating coil return water temperature Thcr and the current time are used. As outputs the
normalised output signal of the mixing box damper YMix, the normalised output signal of
the supply and return fans YFan and the normalised circulation pump output signal YPump are
utilised.
A simple control logic is designed for the described AHU consisting out of two control actors
being a state graph (R1) and a schedule (R2). The state graph [VDI08] operates the AHU
according to the inputs of the heating coil water return temperature, the outdoor air temperature

93

5 Validation

Toa

Exhaust

Outdoor

M
Return

Supply

M
 Mixing

box

M

R1 time

YSce in -

time in h

1

0

8 18

R2
C

o
n

tr
o

l
L

o
g

ic

E
q

u
ip

m
en

t
T

o
p

o
lo

g
y

YFan

R2
YSce

2
YSce <= 0

1

StartUp
YPump= 1

YFan= 1

YMix= 0

YSce >= 1 & Toa < 1°C

0

Off
YPump= 0

YFan= 0

YMix= 0

Thcr > 30°C

2

On
YPump= 1

YFan= 1

YMix= 0.5

YSce >= 1

& Toa >= 1°C

0

T

M
M

T

Thcr

R1

YMix YPump

Heating

coil

YMix

Figure 5.2: Control diagram of the studied air handling unit according to ISO 16484 [ISO11].
YSce, YMix, YFan, YPump - Normalised output signal from schedule, mixing box
damper flap, fan and pump, respecitvely; Thcr - Heating coil return water
temperature, Toa - Outdoor air temperature [SPS17].

and the normalised output signal of the schedule. The schedule allows operation only between
8am and 6pm using the current time as an input and giving a normalised output signal YSce.
The state graph specifies the following behaviour. Initially the state Off is activated. If the
schedule signal is 1 and the outdoor air temperature is above 1 degree Celsius a transition from
state Off to state On is executed. The state graph turns back to state Off, if the schedule
signal turns back to zero. A different behaviour appears when the outdoor air temperature is
below 1 degree Celsius. To avoid the freezing and potential damage of the heating coil, first
the StartUp state is active. Within this state the mixing box damper is kept closed (YMix :=
0) such that only return air recirculates in the system while fans (YFan := 1) and pump (YPump

= 1) are operating. If the heating coil water return temperature rises above 30 degree Celsius
the state graph continues in normal operation mode (state On).
The described AHU is modelled using the Modelica modelling language [Mod17a] and mod-
els from the Buildings library [WZNP14]. The implementation uses the Modelica

94

5.1 Automated Rule-Based Verification of Designed Control Logic in Building Automation
Systems

Standard Library version 3.2.21 and Buildings library version 4.0.02. The state-
based control logic of the state graph is implemented using the Modelica.StateGraph
[OÅD05] library available from the Modelica standard library. Code snippets from the imple-
mentation as referenced in the text can be found in Section C.1.
Description of the Scenarios
Two scenarios are considered for the testing of the knowledge-based method:

1. Faulty operation of the state graph by artificially creating a fault in its operation. It is
assumed that for some maintenance task the pump was manually forced3 to operate.
However, the signal YPump was not unforced and thus the pump is operating constantly
after finishing the maintenance actions.

2. Faulty operation of the schedule by artificially creating a fault. It is assumed that the
time of the BAS installation did not change after the change from winter to summer
time, thus, the operation of the schedule is shifted by exactly one hour.

The presented control logic design as illustrated in Figure 5.2 is formally represented using the
ontologies defined in Chapter 4. In addition, the SEAS System ontology [LKGZ17] is reused
to describe the connection of inputs and outputs of control actors to sensors and actuators of the
BAS. An excerpt of triples formally representing the control logic design is given in Figure 5.3.
The triples are manually formalised, however, the knowledge can be extracted automatically
by implementing adapters to domain expert tools, such as TRIC4 or WEBPROJECT5.
Verification Knowledge of State Graphs
For BAS implementing a state graph according to VDI 3814-6 following knowledge can be
defined to verify if the implemented state-graph operates as-designed:

Definition 5.1 If a state is active, then its actions need to be executed [Ple13].

In Figure 5.4 the deployment to verify the correct behaviour of a state graph with the generic
procedure described in Figure 5.1 is illustrated. The design of the state graph is formalised
compliant to the StateGraphOntology presented in Section 4.4.7 and stored in a triple
store. The knowledge as defined in Definition 5.1 is implemented in a parametrisable SPARQL

1 https://github.com/modelica/Modelica/releases/, Last accessed: 22 Oc-
tober 2018

2 https://github.com/lbl-srg/modelica-buildings/releases, Last ac-
cessed: 22 October 2018

3 Forcing variable values in PLCs is a common practice, where a human operator can manually
set values in the implementation. The forced variables can remain at the forced value even
when returning into automated operation mode.

4 https://www.tric.de/, Last accessed: 22 October 2018
5 http://www.webproject-portal.de, Last accessed: 22 October 2018

95

https://github.com/modelica/Modelica/releases/
https://github.com/lbl-srg/modelica-buildings/releases
https://www.tric.de/
http://www.webproject-portal.de

5 Validation

SG:State :SG_StateOn

:SG_StateOff

:SG_Tran_OnOff

:R1_logic

:R2

:R2_Outp :r1.SG_StateOff.active :R1_Inp

SG:Action

:SG_OffActPump

SG:stateAction

:R2_Inp

:R1

:connR1OutpSOff

:R1_OutpSOff

:R1_OutpPump

ctrl:ControlActor

SG:source

SG:target
ctrl:logicOutput

seas:connectsSystemThrough

seas:connectsSystemThrough

SG:contains

ctrl:logicOutput

ctrl:hasApplicationLogic

ctrl:hasInput

ctrl:hasOutput
ctrl:isConnectedTo

ctrl:hasInput ctrl:hasOutput

"0"^^xsd:integer

ctrl:assignValue

PREFIX : <https://w3id.org/ibp/InstancesAutoVerification#>

Figure 5.3: Excerpt of instances as considered in this use case (see Figure 5.2). Adapted from
Schneider et al. [SPS17].

query. An additional SPARQL query retrieves the knowledge to configure instances for a spe-
cific state graph and these instances then can be deployed to check in monitoring data if the
state graph performs as specified in the design. Points in time where a mismatch is detected are
reported for further analysis.
The respective query encoding the archetype rule using SPARQL is given in Code C.1. The
query to retrieve the respective knowledge for configuring the archetype rule for arbitrary state
graphs stored in the triple store is given in Code C.2 and example results of this query for this
use case are denoted in Table C.1.
Verification Knowledge of Schedules
For schedules the following rule can be defined to verify their correct behaviour:

Definition 5.2 If an interval of a schedule is active then the output of the schedule should be
equal to the specified output of this interval.

Figure 5.5 illustrates the deployment of the method for the verification of a schedule. The
schedule design is formalised compliant to the ScheduleOntology and stored in a triple
store. This knowledge is retrieved by a query to configure and deploy a parametrised query.
The instantiated queries then are utilised to check monitoring data if the implemented schedule
behaves as designed. Points in time where a fault is detected are reported for further analysis.

96

5.1 Automated Rule-Based Verification of Designed Control Logic in Building Automation
Systems

2
YSce <= 0

1

StartUp
YPump= 1

YFan= 1

YMix= 0

YSce >= 1

& Toa < 1°C

0

Off

YFan= 0

YMix= 0

YPump= 0

Thcr > 30°C

2

On
YPump= 1

YFan= 1

YMix= 0.5

YSce >= 1

& Toa >= 1°C

0

Correct Behaviour

time in h

1

0

time in h

1

0

Faulty Behaviour

time in h

1

0

time in h

1

0

Triple Store

A
s-

d
es

ig
n

ed

?

A
s-

im
p

le
m

en
te

d

Produces Produces Formalise

Faulty points in time

Configure

Deploy

SPARQL

SPARQL

Y
P

u
m

p

Y
O

ff

Y
P

u
m

p

Y
O

ff

Figure 5.4: Visualisation of the procedure to detect faulty behaviour in state graphs. The
as-designed state graph is formalised and stored in a triple store. This knowledge
can then be used for the detection of faulty points in time. YPump - Normalised
output signal from pump, YOff - Normalised output signal of state off, SPARQL -
[PS17].

The knowledge as defined in Definition 5.2 to verify schedules can be formalised as a SPARQL
query. A parametrised query implementing this is given in Code C.3. The query to retrieve the
respective knowledge for configuring the archetype query listed in Code C.3 is presented in
Code C.4.
The configured queries for both rules are compiled into one resulting query by concatenating
them via UNION statements [PS17]. Code C.5 lists an example query, which is run against
the knowledge base hosting the monitoring data. All queries are inserted as sub-queries to
ensure efficient query execution by the SPARQL end point. In this example the readings of
the simulated monitoring data and the formal description of the control logic are hosted in one
triple store as the amount of data is small (˜100000 triples). For large scale deployment of the
method it is recommended to host the time series data in a relational data base and access it via
ontology-based access of relational data bases, e.g. R2RML [DSC12].

97

5 Validation

Correct Behaviour Faulty Behaviour
Triple Store

A
s-

d
es

ig
n

ed

?

A
s-

im
p

le
m

en
te

d

Produces Produces Formalise

Faulty points in time

Configure

Deploy

SPARQL

SPARQL

YSce in -

time in h

1

0

18 8

time in h

1

0 Y
S

ce

7 8 18 17

time in h

1

0 Y
S

ce

7 8 18 17

Figure 5.5: Visualisation of the procedure to detect faulty behaviour in schedules. The
as-designed schedule is formalised and stored in a triple store. This knowledge can
then be used for the detection of faulty points in time. YSce - Normalised output
signal from schedule, SPARQL - [PS17].

5.1.4 Results
The described simulation model of the AHU is simulated for 48 hours to generate the respective
observations for analysis by the implemented method.
In Figure 5.6 results from deploying the described method to the first scenario with the erro-
neous, continuous operation of the pump is presented. In the following the depicted results
starting from the top of the figure to the bottom of the inclined plot are presented. The activity
of state Off over the duration of the 48 hours is depicted in the top graph. Below for compar-
ison the correct outputs of the normalised control signals of the mixing box damper flap YMix,
the pump YPump, the fans YFan and the schedule YSce are presented. Next, the respective sig-
nals, which are the respective inputs for the analysis by the automated rule-based verification
method are given, where the pump signal YPump indicates the erroneous operation of the pump
by staying at a constant value during the full 48 hours. Finally, in the bottom graph the results
of evaluating the monitoring data with the implementation of the automated rule-based veri-
fication method are presented. Three different results are presented here: First, points in time

98

5.1 Automated Rule-Based Verification of Designed Control Logic in Building Automation
Systems

inactive
active

St
at

e
ac

tiv
ity

 (-
)

Off

0.0
0.5
1.0

No
rm

al
ise

d
co

nt
ro

l s
ig

na
l (

-)

YMix YFan/YSce YPump

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48
time in h

0.0
0.5
1.0

No
rm

al
ise

d
co

nt
ro

l s
ig

na
l (

-)

YMix YPump/YFan/YSce

true
true
true

Sy
m

pt
om

 d
et

ec
te

d
(-)

DeviationSchedule YPump ! = 0 OSS

Figure 5.6: Results from scenario with faulty state graph behaviour; Subplots numbered from
the top to bottom of the graph: (1) Activity of state Off ; (2) Correct normalised
control signals of the pump YPump, mixing box damper flap YMix, fans YFan and
schedule YSce; (3) Faulty normalised signals as analysed in the scenario; (4) Faulty
points in time for the schedule (DeviationSchedule), the state graph (YPump != 0)
and the Accumulated Weighted Operational Quality (OSS) (OSS).

are given where a deviation of the schedule is detected (DeviationSchedule); Second, results
indicating if there is a mismatch for the state actions detected (YPump != 0); and Finally, the
OSS [Ple13] determined from aggregating the previous results are reported.
Points in time detecting deviations of the schedule are found in some cases (e.g. at 8h). The
reason for this is that within the simulated data two values at one point in time occur when
discontinuities in the simulation force the solver to reinitialise the equation system. This occurs
at the switching times of the schedule and is detected by the rule. The mismatch of the state
actions with the constant operation of the pump is detected by the system. Note, fault detection
is one step in FDD [KB05]. Further evaluation to determine the root cause of this fault need to
be put into place. Automating this process is proposed in Dibowski et al. [DHR16a].
In Figure 5.7 results are presented for the simulation of the AHU according to the second
scenario where the schedule is operating not as specified from 8am to 18am but from 7am to
17am. In the top graph the correct output YSce,Corr and the faulty signal of the schedule as
simulated in the second scenario YSce,F are depicted. The lower graph in Figure 5.7 presents
the results from evaluating a deviation of the schedule (DeviationSchedule), the verification of
the correct execution of state off (YPump != 0) and the OSS. As expected, no faulty behaviour is

99

5 Validation

0.0

0.5

1.0

No
rm

al
ise

d
co

nt
ro

l s
ig

na
l (

-)

YSce, Corr YSce, F

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48
time in h

true

true

true

Sy
m

pt
om

 d
et

ec
te

d
(-)

DeviationSchedule YPump ! = 0 OSS

Figure 5.7: Results from the scenario with faulty schedule behaviour; Top graph: Correct
YSce,Corr and faulty YSce,F normalised control signal of schedule. Bottom graph:
Faulty points in time for deviation of schedule (DeviationSchedule), the
verification of the correct execution of state off (YPump != 0) and the OSS (OSS).

detected from verifying the designed state graph. The rules verifying the schedule behaviour
correctly identifies the points in time where the schedule is not operating as specified (Between
hours 7-8, 17-18, 31-32 and 41-42).

5.2 Knowledge-Enhanced Engineering of
Control Logic in Industrial Automation

This section presents a knowledge-based method for the support and enhancement of knowledge-
intensive tasks related to engineering of control logic in IAS. To specify domain knowledge
the ontologies presented in Chapter 4 are utilised. The addressed, specific problems related
to the engineering of control logic are presented in Section 5.2.1. Next, in Section 5.2.2 the
knowledge-based methodology and the developed KBS is detailed. Finally, in Section 5.2.3
the implementation of the KBS and in Section 5.2.4 results from deploying the methodology
in a scenario-based evaluation related to the engineering of the control logic of a batch plant
available from literature [KSB01] is presented.

100

5.2 Knowledge-Enhanced Engineering of Control Logic in Industrial Automation

5.2.1 Problem Definition
The engineering of control logic in automation systems is a challenging task and requires meth-
ods and tools from software, systems and automation engineering [KRS12]. The current state
of the art as well as open research questions are defined and summarised by the reviews presen-
ted by Vyatkin [Vya13] and Vogel-Heuser et al. [VHDF+14, VHFST15]. The method and tools
presented here are in response to some of the demands defined by the cited reviews.
Figure 5.8 illustrates three commonly identified problems in the engineering of control logic in

(2) Unidirectional, non-incremental

verification

(3) Heterogeneity of tools and formats

(1) Verification only single types of control logic and no plant data

Formats Formats

Model-based Engineering

Tools Tools Specification

Tools

Tools Tools Design

Tools

Tools Tools Verification

Tools

Tools Tools PLCs

Formats

Format

Code

Generation

Figure 5.8: Common identified problems in the engineering of control logic in automation
systems [Vya13, VHDF+14, VHFST15]. (1) Verification of single types of
control logic without plant data; (2) unidirectional code generation in model-based
engineering; (3) Heterogeneity of tools and formats.

automation systems, which are specifically addressed within this use case.
The first problem (1) relates to the missing abilities of existing automated verification mechan-
isms. Automated verification is demanded as a key method to ensure safe and reliable execution
of control logic in automation systems [Vya13, VHFST15]. A number of approaches exist for
the formal verification of control logic [SWO19], e.g. formal verification of UML models
[LMM99, HWD+13, GGA14, KP15], petri nets [Fre02, GWGW17] or programming of react-
ive systems for simulation and control [HLR92, Hal93]. The described automated verification
methods are an important achievement for both academia and industry, however, a common
downside is that the mentioned methods only work for one single type of control logic and
do not integrate information of plant data into the verification mechanisms as demanded by
Vyatkin [Vya13] and Vogel-Heuser et al. [VHFST15]. The ties and interdependencies of the
physical plants and its control logic are multi fold, hence, verification mechanisms need to
reflect this characteristic by taking both the control logic and the plant into account.

101

5 Validation

The second problem (2) addressed here relates to the unidirectional generation of code fre-
quently occurring in model-based engineering. This problem is observed in model-based engin-
eering of control logic, where in the final step source code is generated to be executed on a PLC,
e.g. [HVA16, JSSF17]. However, during the commissioning often changes in this source code
happen to fix errors and tune the designed control logic to fit the real plant [VHFST15]. The
commissioning staff often consists of experts for the respective plants and PLC programming
languages but not for the languages and tools used in model-based engineering [VHFST15].
For documentation purposes and for continuous verification it is required to establish a feed-
back from the implemented code back to the model in an iterative, incremental fashion. To
ensure seamless operation of the designed system and also to keep model-based documenta-
tion up to date, the bidirectional exchange of knowledge from the executed source code back to
the model is required. Additionally, the newly added knowledge needs to be verified as well.
Finally, the last problem (3) relates to the heterogeneity prevalent in the engineering tool
chains in terms of formats and tools. Stakeholders from various disciplines use multiple tools
and formats to specify, design and in the end commission and operate an automation sys-
tem [SH17]. Different machine-readable formats are available, which support this exchange
(see Section 2.4), however, the exchange using paper-based formats, PDF and spreadsheets is
still very common [SH17]. The negative effects of this heterogeneity needs to be eliminated
through semantic integration of tools and formats. Additionally, this aspect is of relevance to
enable the envisioned two-layered architectures of future automation systems (see Section 1.2,
[KDKO14, VHDB13]), where intelligent components of an automation system communicate
from machine to machine.
In essence, to overcome the mentioned problems a solution method should support:

1. ’Interoperability between heterogeneous formats and tools through semantic integra-
tion’ [SWO19];

2. ’Automated formal verification of the control logic design including different types
of control logic [VHFST15] and inclusion of plant information [Vya13, VHFST15]’
[SWO19];

3. ’Incremental verification at changes and updates [VHFST15]’ [SWO19];

4. ’Bidirectional flow of information from model to target format and vice versa [VHFST15]’
[SWO19].

5.2.2 Methodology
In response to the problems outlined in the previous section a knowledge-based methodology
is developed in this section. The methodology is realised through the design of a KBS (see
Section 2.2.4) illustrated in Figure 5.9.

102

5.2 Knowledge-Enhanced Engineering of Control Logic in Industrial Automation

Formats

Control Logic Engineering Tool Chain

Tools

Bidirectional

Adapter

Formats

E.g. Plant Engineering Tool Chain

Tools

In
st

an
ce

s
T

er
m

s
Knowledge-base

Domain Expert

Rules

Semantic

Integration

Cross-Domain Formal

Verification

Query and Inference Engine

Figure 5.9: Knowledge-based system as designed for this use case to enable automated
knowledge-based methods in response to the identified problems (see Figure 5.8).

The core component of the KBS is its knowledge-base. Here three types of knowledge can be
identified:

1. Assertional knowledge (Instances) constitutes of project or use case specific know-
ledge. This knowledge is derived from acquiring knowledge from the various data
formats provided by the tools used in engineering tool chains. In particular, Bidirec-
tional adapters are implemented to enable the acquisition of knowledge as well as the
feedback of improvements to the source formats and tools;

2. Terminological knowledge (Terms) of control logic in automation systems is represen-
ted through a domain model, which uses the ontologies developed in this thesis com-
bined with reused ontologies of adjacent domains and;

3. Procedural knowledge (Rules) constitutes of formalised knowledge acquired from do-
main experts. In particular, this is the case when rule-like statements are formalised,
e.g. to allow the cross-domain formal verification of control logic including different
types of control logic and plant knowledge.

In the described approach technologies from the semantic web are utilised for the implement-
ation as detailed in the following sections. Two main benefits can be identified in this regard:

103

5 Validation

SWT allow to integrate the heterogeneous formats (semantic integration) and tools apparent in
engineering tool chains of control logic in automation systems. A review summarising related
work in this regard is published by Ekaputra et al. [ESS+17]. Furthermore, assertional and
terminological domain knowledge from adjacent domains, such as mechanical and electrical
engineering of a plant, can be seamlessly integrated through the reuse of respective ontologies.
Most importantly the formal nature of SWT with their basis in DL (see Section A.1) allow for
the rigorous verification of control logic as desired. For reference, it may be noted that the
use of SWT for integrating heterogeneous data formats in engineering tool chains and for the
development of KBS related to the engineering of automation systems is described by different
authors [Run11, MB12, NSMŠ15, Mos16]. However, the novelty of the approach resides in the
use and integration of explicit formal specification of knowledge on control logic in automation
systems enabled by the novel model.
The approach presented here can be automated as the described modules and tools, such as
the query and inference engine, can be automatically invoked either on a periodic level or
through triggers, such as model update events. This also supports the demanded incremental
verification capabilities, the verification can be triggered after every update.

5.2.3 Implementation
Plant Description
The ’AST Batch plant’ [KSB01] is an experimental batch plant, which is set up to investigate
and study control problems in the process automation domain. Its design provides a good trade-
off between complexity of the plant to be interesting for research as well as simplicity to be
still easily to grasp by practitioners, scholars and students. The physical plant, its components,
the processes and its control is described in detail in Kowaleski et al. [KSB01]. Moreover,
an open-source simulation model of the process is available [PRPO06], which is implemented
using the Modelica modelling language [Mod17a].
The Pipes and Instrumentation Diagram (PI&D) showing the components of the process,
sensors and actuators is depicted in Figure 5.10.
The components are mounted to a wall, hence, fluids flow from the top (e.g. B1) to the bottom
(e.g. B7), if the respective valves are opened. The process realises the desalination of a water
sodium mixture (brine) through evaporation. Initially, the brine is stored in tank B1 and fresh
water in B2. By opening valve V8 a fixed amount of brine flows in to tank B3. Fresh water is
added from tank B2 by opening valve V9 until a certain concentration is reached. The resulting
mixture is buffered in tank B4 until it moves forward to tank B5 for evaporation. To evaporate
freshwater from the water sodium mixture, tank B5 is heated and the evaporated steam is
condensed in a cooled condenser and gathered in tank B6. Both the condensed steam and
the resulting high concentrated brine from tank B5 are cooled in tank B6 and B7, respectively.
After cooling the resulting fluids are pumped back to the initial tanks through pump P1 and

104

5.2 Knowledge-Enhanced Engineering of Control Logic in Industrial Automation

The Modelica Association Modelica 2006, September 4th – 5th

Pure water from tank B1 and concentrated sodium

chloride solution from tank B2 are mixed in a mixing

tank B3. After buffering in tank B4 the mixture

flows to the evaporator B5. Here the water sodium

chloride mixture is evaporated until the desired con-

centration is reached. The steam is condensed in the

condenser K1 and cooled afterwards in the cooling

tank B6. The concentrated solution is also led to a

cooling tank B7. The cooled fluids are pumped back

to the charging vessels by the pumps P1 and P2. Be-

tween the tanks several valves are present that are

regulated by a central control system.

3 Main Fluid Components

The plant is modeled with components of the Mode-

lica_Fluid library, such as pipe and pump models [4].

Several fluid flow components had to be extended or

newly developed and implemented, in order to model

and simulate this batch plant.

3.1 Generic tank model

A generic tank model was newly implemented that

describes a tank which is open to the environment at

fixed ambient pressure. Heat transfer to the environ-

ment and to the tank walls is neglected. The tank is

Figure 2: Flow sheet diagram of AST batch plant.

652

K. Poschlad, M.A.P. Remelhe, M. Otter

Figure 5.10: Pipes and instrumentation diagram of the studied batch plant [KSB01]. Reprinted
from European Journal of Control, Vol. 7, No. 4, Kowaleski, S., Stursberg, O.,
Bauer, N., An Experimental Batch Plant as a Test Case for the Verification of
Hybrid Systems, pp. 366-381, Copyright 2001, with permission from Elsevier
under license number 4354061510201.

105

5 Validation

P2. A detailed description including the available sensors, actuators and time constants of the
(sub-)processes is provided in Kowaleski et al. [KSB01].
The control logic of the process including some start up processes and the automated operation
mode are textually described and an implementation using the SFC formalism [IEC14a] is
provided [KSB01]. In this work, a UML state machine presented in Figure 5.11 is specified,

s1

do/bV8 := True

t1 : after(1)

s2

do/bV9 := True

t2 : [LIS301 >= 0.13]

s3

do/bV11 := True

t3 : after(500)

s4

s5

do/bV12 := True

t4 : [LIS301 <= 0.01]

t5 : [! bV12 && ! bV15 && ! bHEA501 && LIS501 < 0.01]

s6

do/bHEA501 := True

t6 : [LIS501 >= 0.211]

parallel

s12

do/bCOO601 := True

s7

t7 : after(300)

s13

do/bPUM1001 := True
do/bV5 := True
do/bV6 := True
do/bV20 := True
do/bV24 := True
do/bV25 := True

t12 : [TIS602 <= 298] t13 : [LIS601 <= 0.01]

t8 : [! bV15 && ! bV18 && ! bCOO701 && LIS701 < 0.01]

t9 : [LIS501 <= 0.01]

t10 : [TIS702 <= 298]

t11 : [LIS701 <= 0.01]

s8

do/bV15 := True
s10

do/bPUM901 := True
do/bV1 := True
do/bV3 := True
do/bV18 := True
do/bV22 := True
do/bV23 := True

s9

do/bCOO701 := True

 [time > 2500]

s11

s14

Model::StateMachine1::StatechartDiagram1

Figure 5.11: UML state machine [Obj15a] specifying the automated state-based control of the
AST batch plant [KSB01] (adapted from Poschlad et al. [PRPO06]) [SWO19].

which is derived from the automated operation mode of the plant model as defined in Poschlad
et al. [PRPO06].
Formal Domain Model
A prerequisite for the development of the envisioned knowledge-based methods is the avail-
ability of a formal model to describe domain knowledge. In Figure 5.12 a modular ontology
is presented, which serves this purpose. Core part of the modular ontology is the CTRLont
as presented in Section 4.3, which allows to describe high-level domain knowledge on control
logic as well as to link explicit specifications of control logic to specifications of the adjacent

106

5.2 Knowledge-Enhanced Engineering of Control Logic in Industrial Automation

SEAS-

System

SOSA

OM

CTRLont

…

TwoPointDis-

creteOntology

StateMachine

Ontology
OntoCAPE

BDO

Explicit modelling of

control logic

Sensors, actuators

and control actors Plant

Figure 5.12: Ontology modules to integrate explicit formal models of control logic with
adjacent domains, such as sensors, actuators and plants from chemical process
engineering [SWO19].

physical system ontologies. To explicitly represent control logic the ontologies presented in
Chapter 4 are used. To describe the tangible components of the automation system, such as
sensors and actuators, the SOSA [HKC+17] is reused. The connection between systems, e.g.
connection of datapoints in an automation system via a bus to a control actors is modelled
by using the SEAS System ontology [LKGZ17]. Fragments of the OntoCAPE family of on-
tologies [MMWY09] are used to describe the physical plant domain. For the modelling of
quantities and units of sensors, actuators, inputs, outputs and parameter the Ontology of units
of Measure (OM) [RWT11] is used. Basic data types are described using BDO, an ontology
bootstrapped from the XSD [BM04] specification.
The use of the modular ontology is illustrated in Figure 5.13 by presenting an excerpt of in-
stances to formally describe a temperature sensor of tank B5. The tank :B5 is annotated as
both a OC-equ:HeatedTank from OntoCAPE ontology as well as a sosa:Feature-
OfInterest. The temperature :B5-T of tank B5 is modelled as a sosa:Observable-
Property and related to the tank via the ssn:hasProperty object property. The actual
sensor :B5-T-Sensor sosa:observes this property. The connection of the sensor via an
automation system is modelled using the seas:connectsAt object property. Using object
properties and concepts provided by the SEAS System ontology the sensor can be connected
to a ctrl:Input of the individual :ctrl1-CA. Finally, the control logic of this ctrl:-
ControlActor can be specified using one of the described ontologies and is related to it via
the ctrl:hasApplicationLogic.

107

5 Validation

ctrl:hasApplicationLogic

OC-equ:HeatedTank

ssn:hasProperty

:B5

sosa:FeatureOfInterest

:B5-T-Sensor :B5-T

sosa:ObservableProperty

seas:connectsAt

sosa:Sensor

:B5-TI503-CP

:B5-TI503-Conn

seas:CommunicationConnection

seas:CommunicationConnectionPoint

sosa:observes

seas:connectsSystemAt

:CA-TI503-Input :ctrl1-CA :ctrl1

ctrl:Input

seas:connectsSystemAt

ctrl:ApplicationLogic ctrl:ControlActor

ctrl:hasInput

ctrl:logicInput

OC-mea:T-Sensor

PREFIX : <https://w3id.org/ibp/InstancesSensorExerpt#>

Figure 5.13: Excerpt of instances for describing temperature sensor TI503 in tank B5 of the
studied batch plant (see piping and instrumentation diagram in Figure 5.10)
[SWO19].

Control Logic Engineering Tool Chain
The knowledge-based support of control logic engineering is studied by deploying the de-
scribed method in a tool chain used for the engineering of the control logic for the described
batch plant. The utilised engineering tools as well as the tools and languages used for the im-
plementation of the described method and KBS (see Section 5.2.2) are depicted in Figure 5.14.

The chosen tools are aligned with the life cycle of control logic engineering (e.g. Julius et al.
[JSSF17]) spanning the specification of the desired behaviour, the simulation-based testing and
prototyping and, finally, the implementation and commissioning on a real PLC. The utilised
tools support diverse formats for the exchange of the control logic.
To specify the discrete behaviour of the plant the implementation neutral UML [Obj15a] is
utilised via the StarUML tool [MKL18]. The tool supports the export of the designed UML
state machine to the XMI format [Obj15b]. For hybrid simulation and prototyping of the ini-
tially designed control logic in combination with a plant model the simulation environment
Dymola [3ds17] is used, which supports the Modelica modelling language [Mod17a]. Benefi-
cial in this regard is the availability of a plant model provided by Poschlad et al. [PRPO06].
For hybrid simulation the discrete control logic is implemented using the StateGraph Mod-
elica library [OÅD05]. Finally, for the implementation of the actual control logic in one of
the programming languages from IEC 61131-3 [IEC14a] the PLCopen Editor tool [Ber18] is

108

5.2 Knowledge-Enhanced Engineering of Control Logic in Industrial Automation

Rules for Verification (SPARQL)

Beckhoff

TwinCAT

PLCopen

Editor
Dymola StarUML

Adapter

XMI PLCopen XML Modelica

Adapter Adapter

Instances (RDF)

Modular Ontology (OWL)

Knowledge-base (GraphDB)

Specification
Hybrid Simulation/

Prototyping

Implementation/

Commissioning

Figure 5.14: Overview on the tools, formats and services utilised in this use case [SWO19].
The utilised tools and formats are explained in the text.

used, which supports the PLCopen XML format [PLC09]. The resulting code is compiled and
executed using the TwinCAT 3.1 PLC [Bec18]. To formalise the knowledge contained in the
formats provided by the tools custom adapters are implemented using the Python programming
language. The implementation is based on the built-in ElementTree package for XML pars-
ing, the rdflib6 and jinja27 packages to generate RDF and the OMPython8 package for
handling Modelica source code. The developed code allows the batch processing of the bid-
irectional conversion between the formats and their formal representation in RDF [CWL14].
The KBS is implemented through hosting the modular ontology and the instances created by the
custom adapters in a triple store (GraphDB9). The chosen triple store supports both reasoning
as well as processing of queries implemented in SPARQL [PS17]. Rule-like expert knowledge
used for advanced verification is implemented as SPARQL queries and can be executed on
the query engine of the respective triple store. It may be noted that SPARQL is only one
possibility to implement the described rule-like expert knowledge. However, in the example

6 https://rdflib.readthedocs.io/, Last accessed: 22 October 2018
7 http://jinja.pocoo.org, Last accessed: 22 October 2018
8 https://www.openmodelica.org/doc/OpenModelicaUsersGuide/late
st/ompython.html, Last accessed: 22 October 2018

9 https://ontotext.com/products/graphdb/, Last accessed: 22 October 2018

109

https://rdflib.readthedocs.io/
http://jinja.pocoo.org
https://www.openmodelica.org/doc/OpenModelicaUsersGuide/latest/ompython.html
https://www.openmodelica.org/doc/OpenModelicaUsersGuide/latest/ompython.html
https://ontotext.com/products/graphdb/

5 Validation

implementations it has proven to be a versatile tool and, moreover, it is widely supported by
tools as a standard. The support of the control logic engineering process through automated
knowledge-based verification is detailed in the following section.

5.2.4 Scenario-Based Evaluation
The proposed method is evaluated by investigating a number of scenarios related to the en-
gineering of the control logic of the described batch plant. The expert knowledge for the
verification is implemented as SPARQL queries and working code examples are provided in
Section C.2, p. 168 and are referenced within the text.
Formal verification of single types of control logic
When specifying control logic using the UML automated verification is possible (see also
Grobelna et al. [GWGW17] and Khan & Porres [KP15]). From the UML standard [Obj15a]
the knowledge specified in Definition 5.3 can be used for verification of UML state machines.

Definition 5.3 An initial state has one and only one outgoing transition.

This knowledge can be implemented as a SPARQL query (Code C.6) and if executed by the
query engine of the KBS used to identify faulty designs of UML state machines. For instance,
Figure 5.15 presents a simple UML state machine using the StarUML tool, which is formally

sm:source sm:Transition

:t1 :t2

:initial

:State1 :State2

sm:target sm:target

sm:source

sm:SimpleState sm:SimpleState

sm:Transition

sm:InitialState

Invalid!

PREFIX : <https://w3id.org/ibp/InstancesTwoTranFromIni#>

Figure 5.15: Excerpt of instances of a faulty UML state machine design, where more then one
transition leaves the initial state.

represented by the depicted RDF statements. The mentioned SPARQL query allows to detect
the invalid two outgoing transitions from the initial state.
The UML standard provides additional expert knowledge, which can be used to verify a UML
state machine:

110

5.2 Knowledge-Enhanced Engineering of Control Logic in Industrial Automation

Definition 5.4 Outgoing transitions from a fork must not have a guard.

Figure 5.16 shows a faulty design from the UML editor and its formal representation using the

sm:source

sm:target

sm:Guard

:t1

:t3

:f1

:t3-gua :t2 :t2-gua

:State3

:State1

:State2

sm:transitionGuard

sm:target

sm:transitionGuard

sm:target

sm:Fork

sm:source

sm:source

Invalid!

PREFIX : <https://w3id.org/ibp/InstancesGuardFromFork#>

Figure 5.16: Excerpt of instances of a faulty UML state machine, where guards are associated
to transitions leaving a fork.

StateMachineOntology (see Section 4.4.6). Again, the knowledge to identify this invalid
design, where guards are associated to the two transitions leaving the fork can be implemented
as a SPARQL query, which is listed in Code C.7.
The formal verification is not restricted to control logic, such as UML state machines, but
can additionally be applied to other control logic types, such as transfer function elements.
For instance, in expressions of transfer function elements often a variable and a parameter are
compared. A common fault is that the parameter and variable represent a different quantity,
e.g. mass fraction and volume fraction.

Definition 5.5 If a parameter and a variable or a variable and a variable are compared in an
expression, then the quantities of both needs to match.

The importance of this knowledge in the described use case is illustrated in Figure 5.17 by
presenting an excerpt of instances, which formally represent a transfer function element.
It compares the value of the concentration measured in tank B3 QI302 with a parameter
Conc B3 high [KSB01]. Here, the quantity of the two elements in the expression do not
match and contradict the rule-like knowledge (Definition 5.5). A SPARQL query encoding this
knowledge is given in Code C.9.

111

5 Validation

:ele0 :ele2 :ele1

:QI302 :Par1 ctrl:logicParameter ctrl:logicInput

ctrl:hasQuantity ctrl:hasQuantity

om:MassFraction om:VolumeFraction

Mismatch!

ll:nextElement ll:nextElement

PREFIX : <https://w3id.org/ibp/InstancesQuantityMismatch#>

Figure 5.17: Excerpt of instances in a transfer function element, where a variable and a
parameter with different quantities are compared.

Formal verification of control logic across types
A common downside of existing formal verification methods is that typically only one type of
control logic can be verified. The method and approach presented here supports the verification
across control logic types by the terminological knowledge defined in the modular ontology as
well as specifying expert knowledge as demonstrated in the following scenario. A value with
a basic data type is assigned in an action of a state machine to an output of this state ma-
chine. This output is connected to zero or more inputs of downstream control actors. If an
input connected to the output of the action is compared to a parameter in an expression, then
the parameter basic data type needs to match the basic data type of the assignment in the state
machine. The scenario is depicted in Figure 5.18 including an excerpt of instances formally
representing the described scenario. Two control actors are considered here: (1) the control
actor ensuring the save operation of the pump fB PUM901 Safety and (2) the state machine
fB StateMachine, which is also presented in Figure 5.11. Within the specification of the
UML state machine in state s10 the value True is assigned to the output bPUM901 with a lit-
eral data type xsd:string. Downstream of the state machine a control actor fB PUM901 -

Safety receives this output as an input and compares it to a parameter. The basic data type
of this parameter (:fB PUM901 Safety-ExpEle-2-Par) is defined as BDO:boolean.
The knowledge to detect this defect can be implemented as a SPARQL query and is used to

112

5.2 Knowledge-Enhanced Engineering of Control Logic in Industrial Automation

:fB_StateMachine.bPUM901

"true"^^xsd:string

:s10-DoVal

:s10-DoBehav

ctrl:logicOutput

sm:hasLiteralValue
BDO:boolean "TRUE"

ctrl:logicParameter

:fB_PUM901_Safety-ExpEle-2

ctrl:hasDataType

sm:assignValue

exp:Operand

math:value

:fB_PUM901_Safety-ExpEle-2-Par

Mismatch!

PREFIX : <https://w3id.org/ibp/InstancesAcrossControl#>

fB_PUM901_Safety
fB_StateMachine

Figure 5.18: Verification across control logic types, where the basic data type of a value
assigned in action to an output is compared to a parameter in the control logic
specification of a down stream control actor.

check whether this occurs in the stored knowledge (see Code C.8). In the regarded scenario the
verification includes knowledge on UML state machines as well as transfer function elements,
thus verifies across control logic types.
Verification of control logic and plant data
The verification of control logic and plant data is of particular interest to scholars [Vya13,
VHFST15]. The strong ties between the control and the actual physical plant lead to tight
interdependencies. In the following scenario the benefit from verifying control logic and plant
data is demonstrated.
A real sensor10 is chosen to realise the measurement of the temperature in tank B6 of the batch
plant. From the data sheet of the sensor the measurement range is extracted and added to the
knowledge base. The respective triples are presented in Code C.10.
Now this knowledge can be used to verify the control logic design as illustrated in Figure 5.19.
Within the state machine the respective input TIS602 of the sensor is compared to a parameter
value of ”298”. When comparing this value to the maximum measurement range, i.e. ”120” it
is possible to detect this defect. The SPARQL query listed in Code C.11 specifies knowledge,
which allows to detect faulty designs, where a mismatch occurs between the upper bound of
the measurement range of a sensor and a parameter compared to it.

10 ABB, Model: SensyTemp TSP121 [ABB18]

113

5 Validation

ID Transmitter measuring range

X01 -30 … 60 °C

X02 0 … 40 °C

X03 0 … 100 °C

X04 0 … 120 °C

:ele0

"298"

:ele2 :ele1

ll:nextElement

math:value

:B6-T-Capa

_:b1 "120.0"

ssns:hasSystemProperty

:B6-T-Sensor

schema:maxValue

ll:nextElement

ssns:hasSystemCapability

Out of bounds!

PREFIX : <https://w3id.org/ibp/InstancesPlantData#>

Figure 5.19: Based on the formal domain description it is possible to verify whether a
parameter compared to a sensor measurement is within the bounds of its
measurement range.

Bidirectional flow of information and incremental verification
In the following a scenario is studied, which uses the abilities of the developed method and
approach for bidirectional flow of information and incremental verification. The setup of the
scenario in the designed KBS is depicted in Figure 5.20 for reference. For the considered batch
plant a control solution is designed and virtually tested through simulation in Dymola (1). The
design is extracted and stored in the knowledge base (2) and the verification mechanisms are
applied. Then the design is exported to the PLCopen XML format (3) and tested on a real
hardware PLC. The commissioning staff adds an additional piece of control logic to protect
pumps from running if valves are still closed. This feature is added by introducing two con-
trol actors, which compare the signals of pressure signals of sensors PIS901 and PIS1001
against a threshold (200000 Pa) and evaluate the boolean output of the state machine indicating
if a pump should run (bPUM901) (see Code C.12). The changed PLC project is exported again
(4) and verified (5) in the KBS (next increment). Finally, the new version is exported to the
Modelica format as listed in Code C.14 to allow simulation-based methods in the engineering,
e.g. virtual commissioning. For reference, the source code of the novel control actor is listed
in Code C.12, its RDF representation is listed in Code C.13 and the generated Modelica source
code after verification is given in Code C.14.
The scenario illustrates the ability of the designed KBS to support incremental verification.
It should be noted that the model-based transformation between different formats is reported
by other model-driven engineering approaches, e.g. Alvarez et al. [ASB+18] or Lüder et

114

5.3 Summary

Formal Verification

Dymola

(2)

(1)

(3) (4)

PLCopen XML

Adapter

Modelica

Adapter

(5)

(6)

Newly added feature

Knowledge-Base

Figure 5.20: ’Schema of the scenario to evaluate the support of bidirectional information
exchange and incremental verification. The designed control logic (1) is exported
to the knowledge-base, verified (2) and then exported to the target PLC (3). New
features can be added and are exported (4) to the knowledge base and (next
increment) verified (5) until again Modelica code (6) is generated’ [SWO19]

al. [LEHM11], however, in this approach the formal verification can be applied each time an
iteration happens and, thus, the integrity and the consistency of the generated code is ensured.

5.3 Summary
Within this chapter the model defined in Chapter 4 is validated in its ability to support novel
knowledge-based methods for the engineering and operation of control logic in automation
systems by serving their knowledge needs. The models are successfully utilised to support the
engineering and operation of control logic in two domains of automation: building automa-
tion and industrial automation. The presented use cases are part of two publications [SPS17,
SWO19].
In the use case presented in Section 5.1 the semantic model developed in this thesis is used
to explicitly and formally represent control logic in BAS. The models provide the basis for
a novel, knowledge-based method [SPS17]. This method uses the represented knowledge to
automatically configure and deploy archetype rules to verify from monitoring data if the control
logic in a BAS implementation is implemented as-designed. The verification of discrete control

115

5 Validation

logic formulated as state graph and of schedules is validated in a simulation-based scenario
related to the automation of an AHU.
In addition, the developed models are validated in a second use case from the industrial automa-
tion domain, which is reported in Section 5.2. The use case addresses some problems identified
in the automation domain including:

• the heterogeneity of formats and tools prevalent in engineering tool chains;

• the missing ability of current automated formal verification mechanisms to verify dif-
ferent types of control logic;

• the missing ability of current automated formal verification methods to verify control
logic and plant data simultaneously;

• the need for incremental verification of control logic designs over the life cycle and the
bidirectional flow of information from the final PLC code back to the model.

In response to the defined problems a KBS is designed, which supports the engineering of
control logic in automation systems through novel knowledge-based methods. The core
component of the KBS is a modular domain ontology, which uses the models developed in
Chapter 4. Knowledge on adjacent domains is described by reusing existing OWL ontologies.
In a scenario-based evaluation approach the developed system is used to enable the formal
verification of control logic across types and including plant data as well as investigating the
bidirectional exchange from and to the target formats while incrementally verifying the model.
The scenarios are motivated and tested for an automation solution designed to automate a batch
plant available from literature [KSB01].
In essence, the contributions made in this chapter to reach the defined objectives and fulfil the
defined requirements are detailed in the following. An overview is given in Figure 5.21.

• Req. 3.1.1 Semantic integration of heterogeneous formats and tools: In particular, the
use case presented in Section 5.2 shows the successful integration of heterogeneous
formats, such as PLC open XML [PLC09] and Modelica [Mod17a] source code. The
reported approach shows the integration of tools for the specification, hybrid simulation
and actual deployment of control logic on a PLC;

• Req. 3.1.2 Manufacturer independent: The presented solutions and methods are im-
plemented and used in absence of specific software ecosystems of manufacturers. For
instance, open standardised formats, such as XMI [Obj15b], Modelica [Mod17a] and
PLCopen XML [PLC09] are used for demonstration in the use cases. The prototypical
implementations (see Chapter 5) of applications developed in this thesis are carried
out using Python programming language and for implementing the semantic models
(Chapter 4) the open and free OWL knowledge modelling language [W3C12] is used;

116

5.3 Summary

4.2-

4.4

5.2 4.1

General Knowledge-based

Methods

Semantic model

4/5 5

4.1.1

4.1.1/

5.2.3

5 4.2/5.1/5.2.3

4.3/

4.4

5.2.3

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Figure 5.21: Overview on the alignment of requirements and contributions provided in this
thesis.

• Req. 3.1.3 Technology independent model specification: To ensure future reusability
of the developed models an object-oriented modelling paradigm is followed as docu-
mented in Section 4.1.1. Moreover, the models are specified using the UML [Obj15a]
and, hence, are specified independent from the actual implementation technology;

• Req. 3.1.4 Machine-interpretable implementation: The semantic models are imple-
mented using OWL. OWL is a formal knowledge representation language with a formal
syntax [MPSP12] and semantics [MPSCG12]. Based on OWL KBS can be imple-
mented, which allow machines to interpret represented domain knowledge. The suc-
cessful implementation of knowledge-based methods is described in Section 5.1 and
Section 5.2;

• Req. 3.2.1 Use of Ontology: The use of ontology for knowledge representation is found
to be appropriate through out the use cases and from the cited references (see Sec-
tion 2.5). In particular, with respect to the modelling method, ontology is used as
specified in Section 4.1 and Chapter 4;

• Req. 3.2.2 Use of OWL: The semantic models developed in this thesis are implemented
using OWL. Some benefits are arising from this. The ontologies seamlessly integ-
rate with adjacent domain models (Section 5.2.3 and Figure 5.12). An example of the
already successful reuse of CTRLont ontology by other researchers is presented in
Balaji et al. [BBF+18]. The respective ontologies are reused (see also Req. 3.3.3,
Req. 3.3.7 and Req. 3.3.6) as successfully demonstrated in Section 5.2;

117

5 Validation

• Req. 3.2.3 Use of appropriate profile: During the course of this investigation the
reasoning capabilities of off-the-shelf OWL reasoners are found to provide sufficient
means for reasoning during early stages of the ontology engineering phase [GHM+14,
SPG+07]. Later, a triple store, GraphDB11, is utilised, which supports both, high per-
formant OWL 2 RL [MCGH+12] reasoning as well as execution of SPARQL queries
and updates. The capabilities of this combination are found to be sufficient with respect
to the inference needs in the two use cases and the computational performance. The
reasoning tasks have been completed in less then a second;

• Req. 3.3.1 High-level abstraction of automatic control domain: The CTRLont as re-
ported in Section 4.3 aims at providing sufficient means for the high level abstraction
of the automatic control domain. The model constitutes the core of the domain models
utilised in the use cases as described in Section 5.1 and Figure 5.12;

• Req. 3.3.2 Hierarchy and logical topology: The Control Ontology model and ontology
(CTRLont, Section 4.3) allow to express hierarchy and logical topology for control
actors in automation systems;

• Req. 3.3.3 Relation to adjacent physical domains: The formal explicit models of con-
trol logic are integrated with adjacent domains of information through linking the
CTRLont with adjacent domain models (Section 4.3, Section 5.2.3 and Figure 5.12);

• Req. 3.3.4 Semantic of inputs, outputs and parameters: The CTRLont allows to annot-
ate inputs, outputs and parameters of control actors with their unit, quantity, medium,
basic data type and a semantic data type (Section 4.3, Figure 4.3;

• Req. 3.3.5 Explicit formal models of control logic: A major contribution of this thesis is
the formal and explicit modelling of control logic in automation systems. In particular,
in Section 4.4 semantic models and their ontology-based implementation for generic
control logic frequently appearing in automation systems and for discrete control logic,
which can be described using a state based formalism, are presented. The benefit of the
formal explicit modelling is highlighted in the use cases presented in Chapter 5;

• Req. 3.3.6 Ontology reuse: A number of ontologies have been successfully reused. In
particular, for relating the control logic specification and the automatic control domain
to adjacent mechanical and electrical domains (see Section 5.2.3 and Figure 5.12);

• Req. 3.3.7 Modular and extensible: The defined model is abstracted into two layers.
The Control Ontology (Section 4.3) describes the automatic control domain on an ab-
stract level. It may be extended separately with explicit formal specifications of control
logic, e.g. the ones presented in Section 4.4.

11 https://ontotext.com/products/graphdb/

118

https://ontotext.com/products/graphdb/

6 Conclusion and Outlook

6.1 Conclusion
In many technical processes automation systems are a key technology for the successful deploy-
ment of these processes. In particular, automation technology comes into play when processes
are repetitive, or dangerous to humans and often machines can perform these tasks with higher
precision, faster, more efficient and at lower cost [SSKD11]. The successful application of
automation technology is associated with solving some of the existing global challenges, such
as the sustainable supply of primary energy [VDI15]. Hence, an ultimate goal is to lower the
barriers for the engineering and operation of automation technologies to pursue further their
widespread adoption.
The actual control logic operating in an automation system significantly effects the overall per-
formance of the system. A number of problems related to the engineering and operation of
control logic in automation systems are identified in Chapter 1. These problems are related
to the increasing complexity arising from the size of the systems, their cyber and physical
nature and the paradigm change in automation through the introduction of advanced ICT. Ad-
ditionally, problems arise from the heterogeneity of tools and data formats utilised by various
stakeholders during the engineering and operation of control logic in automation systems. This
heterogeneity conceals the incorporated knowledge for further reuse and exploitation.
In response to these problems, objectives for this thesis are defined as stated in Section 1.3 and
are repeated here for reference:

• Objective 1: Development of knowledge-based methods to support and automate the
engineering and operation of control logic in automation systems.

• Objective 2: Development of a semantic model of control logic in automation systems.

Based on the needs arising from the defined research objectives, a brief description of the auto-
matic control and control logic domains in automation is provided as well as the foundations
of KR are presented in the first part of Chapter 2. Next, the current state of the art with respect
to knowledge-based methods for the engineering and operation of control logic in BAS and
IAS and existing data formats and ontologies for the description of the respective domains are
analysed in the second part of Chapter 2. The analysis reveals a gap in the current state of the
art: The absence of a model to explicitly and formally describe knowledge on the automatic

119

6 Conclusion and Outlook

control and control logic domains in automation systems and integrate this formal descriptions
with adjacent domains, such as electrical and mechanical engineering. This gap prohibits the
development of novel knowledge-based methods to support and automate the engineering and
operation of control logic.
To overcome the identified shortcomings in existing work and close the identified gap, Chapter 3
presents requirements in this regard. The requirements are differentiated into general require-
ments, requirements related to Objective 1 for the development of knowledge-based methods
and requirements related to Objective 2 for the definition of a domain model.
The remaining chapters, Chapter 4 and Chapter 5, incorporate the contributions of this thesis,
which are summarised in the following. The sequence of this presentation is oriented according
to the defined objectives, hence, the contributions made in Chapter 5 are presented first.
Objective 1 is reached in Chapter 5. Two novel knowledge-based methods are developed,
which support the engineering and operation of control logic in automation systems.
Section 5.1 presents a novel method, which enhances the operation of control logic in BAS. The
method allows the automated, rule-based verification of designed control logic with monitoring
data obtained from a building management system. The method is prototypically implemented
using the free python programming language and has been tested in a use case related to the
control of an AHU.
In Section 5.2 a novel knowledge-based method is developed to support the engineering of
control logic in IAS. The method allows to automate formal verification of the designed con-
trol logic for different types of control logic and plant data, incrementally verify changes and
updates to the control logic design and support the bidirectional flow of information from the
model to the target format and vice versa. The method is tested in a use case related to a real,
lab-scale plant from process automation.
With respect to Objective 1 this thesis makes the following scientific and technical contributions
by addressing identified problems as well as it produces the following outcomes for industry:

• Complexity from size: The sheer size of automation systems as highlighted in Sec-
tion 1.2.1 creates the need for automating associated processes during the engineering
and operation. So far, control logic is not the main focus area for such methods (see
Section 2.5). The methods presented in Chapter 5 allow to automate verification tasks
related to the engineering and operation of control logic in automation systems. The
method presented in Section 5.1 shows how formalising design knowledge of control
logic can be utilised to automatically instantiate rules to verify, whether the designed
control logic is implemented in a BAS. The correct implementation has significant im-
pact on the overall performance of a building, e.g. with respect to its energy demand;

• Complexity from CPS: Knowledge-based methods are identified to offer the possibility
to enhance the engineering of CPS, e.g. [NSMŠ15, Mos16]. A contribution of this
thesis is the inclusion of domain knowledge on control logic in this effort. An implic-

120

6.1 Conclusion

ation of this is, for instance, as described in Section 5.2, the possibility for concurrent
verification of control logic and plant data. Hence, the integration of cyber and physical
domains is successfully performed;

• Complexity from paradigm change through the introduction of ICT: The described
knowledge-based methods show how automated applications can further increase the
quality of control logic in automation systems by leveraging on knowledge stored in a
common semantic integration layer;

• Heterogeneity of tools, formats and stakeholders: This thesis contributes to success-
fully addressing the prevalent heterogeneity of tools, formats and stakeholders involved
in the engineering process of automation systems. The study conducted in Section 5.2
highlights the superior ability of the chosen ontology-based knowledge representation
approach and SWT for implementation by integrating heterogeneous formats and tools
used by different stakeholders in the engineering process, such as the XML-based XMI
format used for specification, Modelica source code used for hybrid simulation and the
PLCopen XML format used for the actual deployment of control logic on a PLC;

• Openness of tools and implementation: The described knowledge-based methods are
implemented using mostly open-source software (Python, Protégé [Mus15], etc.) and
are based on open standards (OWL, SPARQL, Modelica, PLCOpen XML, etc.). In
addition they are published and documented for reference and reuse by practitioners
from industry as well as scholars from academia [SPS17, SWO19].

Objective 2 is reached in Chapter 4 by presenting a novel, layered semantic model. The model
allows to formally describe knowledge acquired from the automatic control and control logic
domains and link this knowledge to adjacent domains, such as mechanical or electrical engin-
eering. An object-oriented modelling methodology is adopted and the models are specified
using the UML modelling language. This allows the technology independent specification and
is particularly interesting as, for instance, BAS operate for decades and implementation tech-
nologies most likely change. The model is implemented using OWL and forms the basis for the
mentioned, novel knowledge-based methods described in Chapter 5. In the layered model, ex-
tensions are defined to explicitly describe knowledge of the control logic domain. The presen-
ted explicit models of control logic reflect a non-exhaustive set of control logic types, which is
not restricted to a certain manufacturer of automation systems.
With respect to Objective 2 this thesis makes the following scientific and technical contributions
by addressing identified problems as well as it produces the following outcomes relevant for
industry:

• Fundamental deficit: This thesis contributes to science by solving the fundamental
deficit of the missing availability of an explicit formal specification of control logic
in automation systems and their linkage to adjacent domains. The Control Ontology

121

6 Conclusion and Outlook

defined in Section 4.3 allows to link explicit formal models of control logic to physical
domain description. For the adjacent domains respective domain models need to be
developed or can be reused as shown in Chapter 5. As indicated in the introduction of
this thesis, automation systems have a significant impact on global challenges, such as
energy, and, hence, the outcome of this thesis can help to pursue this path in future by
enabling the integration of formal knowledge on the control logic domain in methods
and applications related to further improve the quality of automation systems and the
performance of automated processes;

• Ontology-based KR and SWT for implementation: The presented model and its valida-
tion contributes to science by providing additional evidence for the superior capabilit-
ies of ontology-based KR using SWT for their implementation. A particular strength is
the possibility to integrate heterogeneous knowledge sources. Moreover, the underly-
ing DL support the automated analysis of the represented knowledge and deduce novel,
implicitly stated insights;

• Reusability and openness: To stipulate reuse and extension of this research a technical
contribution of this thesis is the openness established of the developed models and
documentation. All models are specified technology independent using the UML. All
implemented ontologies are available open-source from an online repository, which is
accessible through their respective persistent ontology URI. The measures are found
to be successful as, for instance, CTRLont is considered for reuse in the context of
formally modelling monitoring data in building management systems as presented by
Balaji et al. [BBF+18];

• Manufacturer independence: The developed formal models of control logic are chosen
to be manufacturer independent. Hence, practitioners from industry may reuse and
adapt to their own software eco-systems without the need to buy additional soft- or
hardware.

In addition to the highlighted contributions open questions for future research remain and are
discussed in the next section.

6.2 Outlook
This thesis aims at contributing towards filling the identified gaps. However, open questions
for future research can be defined.
Ontologies are by definition ’a formal, explicit specification of a shared conceptualization.’
[SBF98], where the term shared is an important part of the definition implying that a body of
experts agrees on a conceptualisation. Hence, the presented models in this thesis have to be
considered as a starting point towards formalising the domain of control logic. They need to be

122

6.2 Outlook

discussed in a broad community and revised until reaching an appropriate level of maturity. In
particular, the connection to national and international standardisation efforts needs to be made
[ETS15, PLC09, BWL+07, IEC08]. As the modelling effort is a starting point it should be
evaluated in future how existing ontologies can be extended or revised to support the explicit
description of control logic. Interesting are the efforts related to SAREF [DdHR15], which is
an open standard in the smart appliances domain [ETS15], or AutomationMLOWL [KGG18],
which is an open standard in the IAS domain.
A field for further research relates to the specification of engineering knowledge related to
mathematical calculations and generic mathematical knowledge. The in Section 4.4.1 de-
veloped ExpressionOntology provides the means to formally describe expressions. Bey-
ond this focussed view work exists towards formally describing generic mathematical know-
ledge on the web, such as proofs and theorems [WR12, Ope16, Lan13]. For instance, it would
be interesting to develop knowledge-based approaches to identify if the transition between two
intervals is continuous. Other examples include the automated calculation of unit conversions
[RWT11].
The field of control logic offers an enormous breadth of methods for the control of physical
systems (e.g. see [Hon97, Sal05, Abe10]). The approach presented in this thesis requires the
explicit modelling of each control logic type, where there certainly exists a trade-off between
the modelling effort required and the complexity of the respective control logic types. Potential
candidates to be added as explicit formal descriptions might be the Petri Net formalism [Fre02,
Lun09, LS17] or fuzzy control logic, where a good starting point is the work by De Maio et
al. [DMFF+12]. In addition, an interesting research item is to investigate if the conversion
between similar control logic types can be automated. An initial contribution in this regard is
described in Schneider et al. [SPT19].
A promising research path to follow emerges at the intersection of formal modelling approaches
of static knowledge and data driven approaches, such as machine learning for quantitative ana-
lysis. For example, it would be interesting to correlate performance characteristics of plants
with their control parametrisation to identify well-performing control logic. Interesting work
on the topic of learning knowledge is published by Wicaksono et al. [WJRO14] and Wicak-
sono [Wic16].
In terms of tackling open challenges in the engineering of control logic in automation sys-
tems detecting code clones [VHFST15] is an interesting research area. Again quantitative ap-
proaches might be interesting in this regard [TRPE17] and a connection to formal descriptions
to allow reasoning and semantic search could be a promising research area.
The validation performed in this thesis is restricted to simulation-based evaluation of plants
available from literature in absence of the access to a real plant and automation system. Future
research and evaluation activities should aim at obtaining data and applying the respective
models to real world use cases for further validation and verification.

123

Bibliography

[3ds17] 3ds. http://www.3ds.com, 2017. Dassault Systemes AB, Lund, Sweden, Last ac-
cessed: 22 October 2018.

[ABB18] ABB. Temperature sensors SensyTemp TSP111, TSP121, TSP131. http://bit.ly

/2Eln615, 2018. Last accessed: 22 October 2018.

[Abe10] D. Abel. Regelungstechnik. Verlagsgruppe Mainz GmbH, Aachen, Germany, 34th edition,
2010.

[AGE17] AGEB e.V. Auswertungstabellen zur Energiebilanz Deutschland, September 2017. Arbeits-
gemeinschaft Energiebilanzen (AGEB), Berlin, Germany.

[ÅH01] K. J. Åström and T. Hägglund. The future of PID control. Control Engineering Practice,
9(11):1163–1175, 2001.

[ALGM13] L. Abele, C. Legat, S. Grimm, and A. W. Müller. Ontology-based validation of plant mod-
els. In Proceedings of the 11th International Conference on Industrial Informatics (INDIN),
pages 236–241, Bochum, Germany, July 29-31 2013. IEEE.

[ASB+18] M. L. Alvarez, I. Sarachaga, A. Burgos, E. Estévez, and M. Marcos. A Methodological
Approach to Model-Driven Design and Development of Automation Systems. IEEE Trans-
actions on Automation Science and Engineering, 15(1):67–79, 2018.

[BBČ+10] J. Bārzdiņš, G. Bārzdiņš, K. Čerāns, R. Liepiņš, and A. Sprog̀is. OWLGrEd: a UML Style
Graphical Editor for OWL. In Proceedings of the 1st Workshop on Ontology Repositories
and Editors for the Semantic Web (ORES), pages 21–25, Hersonissos, Greece, May 31 2010.
CEUR-WS.org.

[BBF+16] B. Balaji, A. Bhattacharya, G. Fierro, J. Gao, J. Gluck, D. Hong, A. Johansen, J. Koh,
J. Ploennigs, Y. Agarwal, M. Berges, D. Culler, R. Gupta, M. B. Kjærgaard, M. Srivastava,
and K. Whitehouse. Brick: Towards a unified metadata schema for buildings. In Proceedings
of the 3rd ACM International Conference on Systems for Energy-Efficient Built Environments
(BuildSys), pages 41–50, Palo Alto, USA, November 16-17 2016.

[BBF+18] B. Balaji, A. Bhattacharya, G. Fierro, J. Gao, J. Gluck, D. Hong, A. Johansen, J. Koh,
J. Ploennigs, Y. Agarwal, M. Berges, D. Culler, R. K. Gupta, M. B. Kjærgaard, M. Srivast-
ava, and K. Whitehouse. Brick : Metadata schema for portable smart building applications.
Applied Energy, 226:1273–1292, 2018.

[BBLPC14] D. Beckett, T. Berners-Lee, E. Prud’hommeaux, and G. Carothers. RDF 1.1 Turtle Terse
RDF Triple Language. Permanent URI https://www.w3.org/TR/turtle/, 2014.
Recommendation, World Wide Web Consortium (W3C), Cambridge, USA.

[BC08] D. Bonino and F. Corno. DogOnt - Ontology Modeling for Intelligent Domotic Environ-
ments. In Proceedings of the 7th International Semantic Web Conference (ISWC), pages
790–803, Karlsruhe, Germany, October 26-30 2008.

125

http://www.3ds.com
http://bit.ly/2Eln615
http://bit.ly/2Eln615
http://dx.doi.org/10.1016/S0967-0661(01)00062-4
http://dx.doi.org/10.1109/INDIN.2013.6622888
http://dx.doi.org/10.1109/INDIN.2013.6622888
http://dx.doi.org/10.1109/TASE.2016.2574644
http://dx.doi.org/10.1109/TASE.2016.2574644
http://dx.doi.org/10.1145/2993422.2993577
http://dx.doi.org/10.1016/j.apenergy.2018.02.091
https://www.w3.org/TR/turtle/

Bibliography

[BCM+03] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors.
The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge
University Press, New York, USA, 2003.

[Bec18] Beckhoff Automation GmbH. TwinCAT 3.1. http://www.beckhoff.de, 2018. Verl,
Germany, Last accessed: 22 October 2018.

[Ber18] Beremiz. PLCopen Editor. http://www.beremiz.org, 2018. Last accessed: 22
October 2018.

[BG14] D. Brickley and R. V. Guha. RDF Schema 1.1. Permanent URL: https://www.w3.
org/TR/rdf-schema/, 2014. Recommendation, World Wide Web Consortium (W3C),
Cambridge, USA.

[BGL17] S. Biffl, D. Gerhard, and A. Lüder. Multi-Disciplinary Engineering for Cyber-Physical
Production Systems. Springer International Publishing, Cham, Switzerland, 2017.

[BGT17] B. Butzin, F. Golatowski, and D. Timmermann. A survey on information modeling and onto-
logies in building automation. In 43rd Annual Conference of the IEEE Industrial Electronics
Society (IECON), pages 8615–8621, Beijing, China, October 29 - November 1 2017.

[BHS07] I. Boersch, J. Heinsohn, and R. Socher. Wissensverarbeitung: Eine Einführung in die Künst-
liche Intelligenz für Informatiker und Ingenieure. Elsevier Spektrum Akademischer Verlag,
Heidelberg, Germany, 2nd edition, 2007.

[BKI03] C. Beierle and G. Kern-Isberner. Methoden wissensbasierter Systeme: Grundlagen, Al-
gorithmen, Anwendungen. Springer, Wiesbaden, Germany, 2003.

[BL04] R. Brachman and H. Levesque. Knowledge Representation and Reasoning. Elsevier, Ams-
terdam, The Netherlands, 2004.

[BLHL01] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American,
285(5):28–37, 2001.

[BM04] P. V. Biron and A. Malhotra. XML Schema Part 2: Datatypes Second Edition. Perman-
ent URL: https://www.w3.org/TR/xmlschema-2/#built-in-datatypes,
2004. Recommendation, World Wide Web Consortium (W3C), Cambridge, USA.

[BPSM+06] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, F. Yergeau, and J. Cowan. Extens-
ible Markup Language (XML) 1.1 (Second Edition). Permanent URL: https://www.
w3.org/TR/xml11/, 2006. Recommendation, World Wide Web Consortium (W3C),
Cambridge, USA.

[BRCR17] G. Benndorf, N. Rehault, M. Clairembault, and T. Rist. Describing HVAC controls in IFC -
method and application. Energy Procedia, 122:319–324, 2017.

[BS16a] S. Biffl and M. Sabou. Introduction. In S. Biffl and M. Sabou, editors, Semantic Web
Technologies for Intelligent Engineering Applications, pages 1–13. Springer International
Publishing, Cham, Switzerland, 2016.

[BS16b] S. Biffl and M. Sabou, editors. Semantic Web Technologies for Intelligent Engineering Ap-
plications. Springer International Publishing, Cham, Switzerland, 2016.

[BWL+07] R. Batres, M. West, D. Leal, D. Price, K. Masaki, Y. Shimada, T. Fuchino, and Y. Naka. An
upper ontology based on ISO 15926. Computers & Chemical Engineering, 31(5):519–534,
2007.

[Che15] Y. Chen. Building Control Knowledge Information Modeling & Control Self-Configuration.
PhD thesis, Pennsylvania State University, State College, USA, 2015.

126

http://www.beckhoff.de
http://www.beremiz.org
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/rdf-schema/
http://dx.doi.org/10.1109/IECON.2017.8217514
http://dx.doi.org/10.1109/IECON.2017.8217514
http://dx.doi.org/10.1007/978-3-8348-9517-2
http://dx.doi.org/10.1007/978-3-8348-9517-2
https://www.w3.org/TR/xmlschema-2/#built-in-datatypes
https://www.w3.org/TR/xml11/
https://www.w3.org/TR/xml11/
http://dx.doi.org/10.1016/j.egypro.2017.07.330
http://dx.doi.org/10.1016/j.egypro.2017.07.330
http://dx.doi.org/10.1007/978-3-319-41490-4_1
http://dx.doi.org/10.1007/978-3-319-41490-4
http://dx.doi.org/10.1007/978-3-319-41490-4
http://dx.doi.org/10.1016/j.compchemeng.2006.07.004
http://dx.doi.org/10.1016/j.compchemeng.2006.07.004

Bibliography

[CKAK15] V. Charpenay, S. Käbisch, D. Anicic, and H. Kosch. An ontology design pattern for IoT
device tagging systems. In Proceedings of the 5th International Conference on the Internet
of Things (IOT), pages 138–145, Seoul, South Korea, October 26-28 2015. IEEE.

[COC+13] E. Curry, J. O’Donnell, E. Corry, S. Hasan, M. Keane, and S. O’Riain. Linking building data
in the cloud: Integrating cross-domain building data using linked data. Advanced Engineer-
ing Informatics, 27(2):206–219, 2013.

[CTM16] Y. Chen, S. J. Treado, and J. I. Messner. Building HVAC control knowledge data schema –
towards a unified representation of control system knowledge. Automation in Construction,
72, Part 2:174–186, 2016.

[CWL14] R. Cyganiak, D. Wood, and M. Lanthaler. Resource Description Framework (RDF):
Concepts and Abstract Syntax. Permanent URL: http://www.w3.org/TR/rdf11-
concepts/, 2014. Recommendation, World Wide Web Consortium (W3C), Cambridge,
USA.

[DCTTDK11] K. Dentler, R. Cornet, A. Ten Teije, and N. De Keizer. Comparison of reasoners for large
ontologies in the OWL 2 EL profile. Semantic Web, 2(2):71–87, 2011.

[DCVK16] P. Domingues, P. Carreira, R. Vieira, and W. Kastner. Building automation systems: Con-
cepts and technology review. Computer Standards & Interfaces, 45:1–12, 2016.

[DdHR15] L. Daniele, F. den Hartog, and J. Roes. Created in Close Interaction with the Industry: The
Smart Appliances REFerence (SAREF) Ontology. In Proceedings of the 7th International
Workshop Formal Ontologies Meet Industries (FOMI), pages 100–112, Berlin, Germany,
August 5 2015. CEUR-WS.org.

[DFH11] J. Domingue, D. Fensel, and J. A. Hendler. Handbook of semantic web technologies.
Springer, Berlin, Germany, 2011.

[DHR16a] H. Dibowski, O. Holub, and J. Rojı́ček. Knowledge-based Fault Propagation in Building
Automation Systems. In Proceedings of the International Conference on Systems Informat-
ics, Modelling and Simulation (SIMS), pages 124–132, Riga, Latvia, June 1-3 2016. IEEE.

[DHR16b] H. Dibowski, O. Holub, and J. Rojı́ček. Ontology-based automatic setup of virtual sensors in
building automation systems. In Proceedings of the International Congress on Ultra Modern
Telecommunications and Control Systems and Workshops (ICUMT), pages 375–381, Lisbon,
Portugal, October 18-20 2016. IEEE.

[Dib13] H. Dibowski. Semantischer Gerätebeschreibungsansatz für einen automatisierten Entwurf
von Raumautomationssystemen. PhD thesis, TU Dresden, Dresden, Germany, 2013.

[DMFF+12] C. De Maio, G. Fenza, D. Furno, V. Loia, and S. Senatore. OWL-FC: an upper ontology for
semantic modeling of Fuzzy Control. Soft Computing, 16(7):1153–1164, 2012.

[Dol04] P. Dolog. Model-Driven Navigation Design for Semantic Web Applications with the UML-
Guide. In Proceedings of the 4th International Conference on Web Engineering (ICWE),
pages 75–86, Munich, Germany, July 28-30 2004.

[DPK10] H. Dibowski, J. Ploennigs, and K. Kabitzsch. Automated Design of Building Automation
Systems. IEEE Transactions on Industrial Electronics, 57(11):3606–3613, 2010.

[DR15] B. Dathan and S. Ramnath. Object-Oriented Analysis, Design and Implementation. Springer
International Publishing, Cham, Switzerland, 2015.

[DSC12] S. Das, S. Sundara, and R. Cyganiak. R2RML: RDB to RDF Mapping Language. Permanent
URL: https://www.w3.org/TR/r2rml/, 2012. Recommendation, World Wide Web
Consortium (W3C), Cambridge, USA.

127

http://dx.doi.org/10.1109/IOT.2015.7356558
http://dx.doi.org/10.1109/IOT.2015.7356558
http://dx.doi.org/10.1016/j.aei.2012.10.003
http://dx.doi.org/10.1016/j.aei.2012.10.003
http://dx.doi.org/10.1016/j.autcon.2016.08.036
http://dx.doi.org/10.1016/j.autcon.2016.08.036
http://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/TR/rdf11-concepts/
http://dx.doi.org/10.1016/j.csi.2015.11.005
http://dx.doi.org/10.1016/j.csi.2015.11.005
http://dx.doi.org/10.1007/978-3-319-21545-7_9
http://dx.doi.org/10.1007/978-3-319-21545-7_9
http://dx.doi.org/10.1007/978-3-540-92913-0
http://dx.doi.org/10.1109/SIMS.2016.22
http://dx.doi.org/10.1109/SIMS.2016.22
http://dx.doi.org/10.1109/ICUMT.2016.7765388
http://dx.doi.org/10.1109/ICUMT.2016.7765388
http://dx.doi.org/10.1007/s00500-011-0790-4
http://dx.doi.org/10.1007/s00500-011-0790-4
http://dx.doi.org/10.1109/TIE.2009.2032209
http://dx.doi.org/10.1109/TIE.2009.2032209
http://dx.doi.org/10.1007/978-3-319-24280-4
https://www.w3.org/TR/r2rml/

Bibliography

[DSS93] R. Davis, H. Shrobe, and P. Szolovits. What Is a Knowledge Representation? AI magazine,
14(1):1–17, 1993.

[Dub11] A. Dubey. Evaluating software engineering methods in the context of automation applica-
tions. In 9th International Conference on Industrial Informatics (INDIN), pages 585–590,
Caparica, Portugal, July 26-29 2011. IEEE.

[DuC15] B. DuCharme. Learning SPARQL: querying and updating with SPARQL 1.1. O’Reilly,
Sebastopol, USA, 2015.

[DVC11] E. Della Valle and S. Ceri. Querying the semantic web: SPARQL. In J. Domingue,
D. Fensel, and J. A. Hendler, editors, Handbook of Semantic Web Technologies, pages 299–
363. Springer, Berlin, Germany, 2011.

[DVHR16] H. Dibowski, J. Vass, O. Holub, and J. Rojı́ček. Automatic setup of fault detection al-
gorithms in building and home automation. In Proceedings of the International Conference
on Emerging Technologies and Factory Automation (ETFA), pages 1–6, Berlin, Germany,
September 6-9 2016. IEEE.

[DW14] P. De Wilde. The gap between predicted and measured energy performance of buildings: A
framework for investigation. Automation in Construction, 41:40–49, 2014.

[EA07] P. C. Evans and M. Annunziata. Industrial internet: Pushing the boundaries of minds and
machines. In General Electric Reports, 2007.

[EJL+03] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer, S. Sachs,
and Y. Xiong. Taming heterogeneity - the Ptolemy approach. Proceedings of the IEEE,
91(1):127–144, 2003.

[EN 17] EN 15232. Energy performance of buildings – Impact of Building Automation, Controls and
Building Management, 2017. European Committee for Standardization (CEN), Brussels,
Belgium.

[ESS+17] F. J. Ekaputra, M. Sabou, E. Serral, E. Kiesling, and S. Biffl. Ontology-based data integration
in multi-disciplinary engineering environments: A review. Open Journal of Information
Systems, 4(1):1–26, 2017.

[ETS15] ETSI TS 103 264. SmartM2M Smart; Appliances; Reference Ontology and oneM2M Map-
ping, 2015. V1.1.1, European Telecommunications Standards Institute, Sophia Antipolis,
France.

[ETS17a] ETSI TS 103 264. SmartM2M Smart; Appliances; Reference Ontology and oneM2M Map-
ping, 2017. V2.1.1, European Telecommunications Standards Institute, Sophia Antipolis,
France.

[ETS17b] ETSI TS 103 410-1. SmartM2M; Smart Appliances Extension to SAREF; Part 1: En-
ergy Domain, 2017. European Telecommunications Standards Institute, Sophia Antipolis,
France.

[ETSL11] C. Eastman, P. Teicholz, R. Sacks, and K. Liston. BIM handbook: A guide to building
information modeling for owners, managers, designers, engineers and contractors. John
Wiley & Sons, Hoboken, USA, 2nd edition, 2011.

[Eur08] European Commission. Energy Efficiency in Manufacturing – The Role of ICT. Office for
Official Publications of the European Communities, Luxembourg, Luxembourg, 2008.

[FD04] M. Fedai and R. Drath. CAEX - ein neutrales Datenaustauschformat für Anlagendaten.
Automatisierungs Technische Praxis, 46(2):52–56, 2004.

128

http://dx.doi.org/10.1609/aimag.v14i1.1029
http://dx.doi.org/10.1109/INDIN.2011.6034944
http://dx.doi.org/10.1109/INDIN.2011.6034944
http://dx.doi.org/10.1007/978-3-540-92913-0_9
http://dx.doi.org/10.1109/ETFA.2016.7733622
http://dx.doi.org/10.1109/ETFA.2016.7733622
http://dx.doi.org/10.1109/JPROC.2002.805829
http://dx.doi.org/10.2759/43414

Bibliography

[FGP+14] R. Falco, A. Gangemi, S. Peroni, D. Shotton, and F. Vitali. Modelling OWL Ontologies with
Graffoo. In Proceedings of European Semantic Web Conference (ESWC) Satellite Events,
pages 320–325, Anissaras, Greece, May 25-29 2014.

[FLGPJ97] M. Fernández-López, A. Gómez-Pérez, and N. Juristo. Methontology: from ontological art
towards ontological engineering. In Proceedings of the American Association for Artificial
Intelligence (AAAI) Spring Symposium Series, pages 33–40, Stanford, USA, March 24-26
1997.

[FR14] R. Fielding and J. Reschke. Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and
Routing. Permanent URL: https://www.rfc-editor.org/rfc/rfc7230.txt,
2014. Request for Comments, Internet Engineering Task Force (IETF), Fremont, USA.

[Fre02] G. Frey. Design and formal Analysis of Petri net based Logic Control Algorithms. PhD
thesis, TU Kaiserslautern, Kaiserslautern, Germany, 2002.

[FSUT17] K. F. Früh, D. Schaudel, L. Urbas, and T. Tauchnitz, editors. Handbuch der Prozessauto-
matisierung: Prozessleittechnik für verfahrenstechnische Anlagen. Vulkan-Verlag, Essen,
Germany, 6th edition, November 2017.

[FVC+17] M. Foehr, J. Vollmar, A. Calà, P. Leitão, S. Karnouskos, and A. W. Colombo. Engineering
of Next Generation Cyber-Physical Automation System Architectures. In S. Biffl, A. Lüder,
and D. Gerhard, editors, Multi-Disciplinary Engineering for Cyber-Physical Production Sys-
tems, pages 185–206. Springer International Publishing, Cham, Switzerland, 2017.

[GBMP13] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami. Internet of Things (IoT): A vis-
ion, architectural elements, and future directions. Future Generation Computer Systems,
29(7):1645–1660, 2013.

[GF95] M. Grüninger and M. S. Fox. Methodology for the design and evaluation of ontologies. In
Proceedings of the Workshop on Basic Ontological Issues in Knowledge Sharing (IJCAI),
pages 1–10, Montreal, Canada, July 1995. CEUR-WS.

[GGA14] I. Grobelna, M. Grobelny, and M. Adamski. Model Checking of UML Activity Diagrams in
Logic Controllers Design. In Proceedings of the 9th International Conference on Dependab-
ility and Complex Systems (DepCoS-RELCOMEX), pages 233–242, Brunów, Poland, June
30 - July 4 2014.

[GHM+14] B. Glimm, I. Horrocks, B. Motik, G. Stoilos, and Z. Wang. HermiT: An OWL 2 Reasoner.
Journal of Automated Reasoning, 53(3):245–269, 2014.

[GR15] H. Gimpel and M. Röglinger. Digital transformation: changes and chances-insights based
on an empirical study. Permanent link: http://publica.fraunhofer.de/dokume
nte/N-391990.html, 2015. Fraunhofer Institute for Applied Information Technology
FIT, Augsburg/ Bayreuth, Germany.

[Gru93] T. R. Gruber. A translation approach to portable ontology specifications. Knowledge acquis-
ition, 5(2):199–220, 1993.

[GS14] F. Gandon and G. Schreiber. RDF 1.1 XML Syntax. Permanent URL: https://www.w3.
org/TR/rdf-syntax-grammar/, 2014. Recommendation, World Wide Web Consor-
tium (W3C), Cambridge, USA.

[GWGW17] I. Grobelna, R. Wiśniewski, M. Grobelny, and M. Wiśniewska. Design and Verification of
Real-Life Processes With Application of Petri Nets. IEEE Transactions on Systems, Man,
and Cybernetics: Systems, 47(11):2856–2869, 2017.

129

http://dx.doi.org/10.1007/978-3-319-11955-7_42
http://dx.doi.org/10.1007/978-3-319-11955-7_42
https://www.rfc-editor.org/rfc/rfc7230.txt
http://dx.doi.org/10.1007/978-3-319-56345-9_8
http://dx.doi.org/10.1007/978-3-319-56345-9_8
http://dx.doi.org/10.1016/j.future.2013.01.010
http://dx.doi.org/10.1016/j.future.2013.01.010
http://dx.doi.org/10.1007/s10817-014-9305-1
http://publica.fraunhofer.de/dokumente/N-391990.html
http://publica.fraunhofer.de/dokumente/N-391990.html
http://dx.doi.org/10.1006/knac.1993.1008
https://www.w3.org/TR/rdf-syntax-grammar/
https://www.w3.org/TR/rdf-syntax-grammar/
http://dx.doi.org/10.1109/TSMC.2016.2531673
http://dx.doi.org/10.1109/TSMC.2016.2531673

Bibliography

[Hal93] N. Halbwachs. Lustre program verification: the tool Lesar, pages 139–147. Springer, Bo-
ston, USA, 1993.

[Har87] D. Harel. Statecharts: A visual formalism for complex systems. Science of computer pro-
gramming, 8(3):231–274, 1987.

[HE08] T. Horn and J. Ebert. Ein Referenzschema für die Sprachen der IEC 61131. Technical
Report 13, University of Koblenz-Landau, Koblenz, Germany, 2008.

[Hil03] E. F. Hill. Jess in action: Java rule-based systems. Manning Publications Co., Greenwich,
USA, 2003.

[HK12] D. Hästbacka and S. Kuikka. Semantics and reasoning for control application engineering
models. In Proceedings of the 17th International Conference on Artificial Intelligence and
Soft Computing (ICAISC), pages 647–655, Zakopane, Poland, June 3-7 2012.

[HK13] D. Hästbacka and S. Kuikka. Semantics enhanced engineering and model reasoning for
control application development. Multimedia Tools and Applications, 65(1):47–62, 2013.

[HKC+17] A. Haller, J. Krzystof, S. Cox, D. le Phuoc, K. Taylor, and M. Lefrançois. Semantic
Sensor Network Ontology. Permanent URL: https://www.w3.org/TR/vocab-
ssn/, 2017. Recommendation, World Wide Web Consortium (W3C), Cambridge, USA.

[HKR+04] M. Horridge, H. Knublauch, A. Rector, R. Stevens, and C. Wroe. A practical guide to
building OWL ontologies using the Protégé 4 and CO-ODE tools. Technical Report 1.3,
University of Manchester, Manchester, UK, 2004.

[HKR10] P. Hitzler, M. Krötzsch, and S. Rudolph. Foundations of Semantic Web technologies. CRC
Press, Boca Raton, USA, 2010.

[HLR92] N. Halbwachs, F. Lagnier, and C. Ratel. Programming and verifying real-time systems by
means of the synchronous data-flow language LUSTRE. IEEE Transactions on Software
Engineering, 18(9):785–793, 1992.

[HMS11] A. Harth, J. Maciej, and S. Staab. Semantic web architecture. In J. Domingue, D. Fensel,
and J. A. Hendler, editors, Handbook of Semantic Web Technologies, pages 43–75. Springer,
Berlin, Germany, 2011.

[Hon97] Honeywell. Honeywell Engineering Manual of Automatic Control for Commercial Build-
ings. Technical Report 97-72971, Honewell Inc., Minneapolis, USA, 1997.

[HPS11] I. Horroks and P. F. Patel-Schneider. KR and Reasoning on the Semantic Web: OWL. In
J. Domingue, D. Fensel, and J. A. Hendler, editors, Handbook of Semantic Web Technolo-
gies, pages 365–398. Springer, Berlin, Germany, 2011.

[HPSB+04] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean. SWRL: A
Semantic Web Rule Language Combining OWL and RuleML. Permanent URL: https:
//www.w3.org/Submission/SWRL/, 2004. Member Submission, World Wide Web
Consortium (W3C), Cambridge, USA.

[HTE15] M. Hydeman, S. T. Taylor, and B. Eubanks. Control sequences & controller programming.
ASHRAE Journal, 57:58–62, 2015.

[HVA16] R. Harrison, D. Vera, and B. Ahmad. Engineering Methods and Tools for Cyber–Physical
Automation Systems. Proceedings of the IEEE, 104(5):973–985, 2016.

[HWD+13] H. He, Z. Wang, Q. Dong, W. Zhang, and W. Zhu. Ontology-Based Semantic Verification for
UML Behavioural Models. International Journal of Software Engineering and Knowledge
Engineering, 23(2):117–145, 2013.

130

http://dx.doi.org/10.1007/978-1-4757-2231-4_9
http://dx.doi.org/10.1007/978-3-642-29347-4_75
http://dx.doi.org/10.1007/978-3-642-29347-4_75
http://dx.doi.org/10.1007/s11042-012-1134-9
http://dx.doi.org/10.1007/s11042-012-1134-9
https://www.w3.org/TR/vocab-ssn/
https://www.w3.org/TR/vocab-ssn/
http://dx.doi.org/10.1109/32.159839
http://dx.doi.org/10.1109/32.159839
http://dx.doi.org/10.1007/978-3-540-92913-0_2
http://dx.doi.org/10.1007/978-3-540-92913-0_9
https://www.w3.org/Submission/SWRL/
https://www.w3.org/Submission/SWRL/
http://dx.doi.org/10.1109/JPROC.2015.2510665
http://dx.doi.org/10.1109/JPROC.2015.2510665
http://dx.doi.org/10.1142/S0218194013500010
http://dx.doi.org/10.1142/S0218194013500010

Bibliography

[HZ16] D. Hästbacka and A. Zoitl. Towards semantic self-description of industrial devices and con-
trol system interfaces. In Proceedings of International Conference on Industrial Technology
(ICIT), pages 879–884, Taipei, Taiwan, March 14-17 2016. IEEE.

[IEC08] IEC 61512-3. Batch control - Part 3: General and site recipe models and representation,
2008. International Electrotechnical Commission, Geneva, Switzerland.

[IEC12] IEC 61499-1. Function blocks - Part 1: Architecture, 2012. International Electrotechnical
Commission, Geneva, Switzerland.

[IEC13a] IEC 60050-351. International electrotechnical vocabulary - Part 351: Control technology,
2013. International Electrotechnical Commission, Geneva, Switzerland.

[IEC13b] IEC 60050-351. International electrotechnical vocabulary - Part 441: Switchgear, control-
gear and fuses, 2013. International Electrotechnical Commission, Geneva, Switzerland.

[IEC13c] IEC 60848. GRAFCET specification language for sequential function charts, 2013. Inter-
national Electrotechnical Commission, Geneva, Switzerland.

[IEC13d] IEC 62264. Enterprise-control system integration, 2013. International Electrotechnical
Commission, Geneva, Switzerland.

[IEC14a] IEC 61131-3. Programmable controllers - Part 3: Programming languages, 2014. Interna-
tional Electrotechnical Commission, Geneva, Switzerland.

[IEC14b] IEC 62714-1. Engineering data exchange format for use in industrial automation systems en-
gineering - Automation Markup Language - Part 1: Architecture and general requirements,
2014. International Electrotechnical Commission, Geneva, Switzerland.

[IEC16] IEC 62424. Representation of process control engineering - Requests in P&I diagrams and
data exchange between P&ID tools and PCE-CAE tools, 2016. International Electrotech-
nical Commission, Geneva, Switzerland.

[ISO94] ISO/IEC 7498-1. Information technology – Open Systems Interconnection – Basic Refer-
ence Model: The Basic Model, 1994. International Standardisation Organisation/ Interna-
tional Electrotechnical Commission, Geneva, Switzerland.

[ISO03] ISO 15926-2. Industrial automation systems and integration – Integration of life-cycle data
for process plants including oil and gas production facilities – Part 2: Data model, 2003.
International Standardisation Organisation, Geneva, Switzerland.

[ISO04a] ISO 10303-11. Industrial automation systems and integration - Product data representation
and exchange - Part 11, 2004. International Standardisation Organisation, Geneva, Switzer-
land.

[ISO04b] ISO 16484-2. Building automation and control systems (BACS) - Part 2: Hardware, 2004.
International Standardization Organization, Geneva, Switzerland.

[ISO05] ISO 16484-3. Building automation and control systems (BACS) - Part 3: Functions, 2005.
International Standardization Organization, Geneva, Switzerland.

[ISO07] ISO/IEC 14543-3-1. Information Technology - Home Electronic System (HES) Architec-
ture - Part 3-1: Communication Layers - Application Layer for Network Based Control of
HES Class 1, 2007. International Standardization Organization/ International Eletrotech-
nical Commission, Geneva, Switzerland.

[ISO10] ISO 16484-1. Building automation and control systems (BACS) - Part 1: Project spe-
cification and implementation, 2010. International Standardization Organization, Geneva,
Switzerland.

131

http://dx.doi.org/10.1109/ICIT.2016.7474867
http://dx.doi.org/10.1109/ICIT.2016.7474867

Bibliography

[ISO11] ISO 16484. Building automation and control systems (BACS), 2011. International Stand-
ardization Organization, Geneva, Switzerland.

[ISO12] ISO/IEC 14908-1. Information technology - Control network protocol - Part 1: Protocol
stack, 2012. International Standardization Organization/ International Eletrotechnical Com-
mission, Geneva, Switzerland.

[ISO13] ISO 16739. Industry Foundation Classes (IFC) for data sharing in the construction and
facility management industries, 2013. International Standardisation Organisation, Geneva,
Switzerland.

[ISO16] ISO/IEC 9075. Information technology – Database languages – SQL, 2016. International
Standardization Organization/ International Electrotechnical Commission, Geneva, Switzer-
land.

[ISO17a] ISO 16484-5. Building automation and control systems (BACS) - Part 5: Data communica-
tion protocol, 2017. International Standardization Organization, Geneva, Switzerland.

[ISO17b] ISO/IEC 10646. Information technology – Universal Coded Character Set (UCS), 2017.
International Standardization Organization/ International Electrotechnical Commission,
Geneva, Switzerland.

[JSSF17] R. Julius, M. Schürenberg, F. Schumacher, and A. Fay. Transformation of GRAFCET to PLC
code including hierarchical structures. Control Engineering Practice, 64:173–194, 2017.

[KB05] S. Katipamula and M. R. Brambley. Review Article: Methods for Fault Detection, Dia-
gnostics, and Prognostics for Building Systems - A Review, Part I. HVAC&R Research,
11(1):3–25, 2005.

[KB13] M. Kifer and H. Boley. RIF Overview (Second Edition). Permanent URL: https://www.
w3.org/TR/rif-overview/, 2013. Recommendation, World Wide Web Consortium
(W3C), Cambridge, USA.

[KD11] A. Kiryakov and M. Damova. Storing the semantic web: Repositories. In J. Domingue,
D. Fensel, and J. A. Hendler, editors, Handbook of Semantic Web Technologies, pages 231–
298. Springer, Berlin, Germany, 2011.

[KDKO14] M. W. Krueger, R. Drath, H. Koziolek, and Z. M. Ouertani. A new era: ABB is working
with the leading industry initiatives to help usher in a new industrial revolution. ABB Review,
4:70–75, 2014.

[KGG18] O. Kovalenko and I. Grangel-Gonzalez. AutomationML Ontology. Permanent URL: http
s://w3id.org/i40/aml#, 2018. Last accessed: 22 October 2018.

[KK08] H. Knublauch and D. Kontokostas. Shapes Constraint Language (SHACL). Permanent
URL: https://www.w3.org/TR/shacl/, 2008. Recommendation, World Wide Web
Consortium (W3C), Cambridge, USA.

[KKGR16] K. Katsigarakis, G. Kontes, G. Giannakis, and D. Rovas. Sense-think-act framework for
intelligent building energy management. Computer-Aided Civil and Infrastructure Engin-
eering, 31(1):50–64, 2016.

[Kle14] M. Kleinemeier. Von der Automatisierungspyramide zu Unternehmenssteuerungsnet-
zwerken. In T. Bauernhansl, M. Ten Hompel, and B. Vogel-Heuser, editors, Industrie 4.0 in
Produktion, Automatisierung und Logistik: Anwendung, Technologien und Migration, pages
571–580. Springer Vieweg, Wiesbaden, Germany, 2014.

[KLW95] M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and frame-based
languages. Journal of the ACM, 42(4):741–843, 1995.

132

http://dx.doi.org/10.1016/j.conengprac.2017.03.012
http://dx.doi.org/10.1016/j.conengprac.2017.03.012
http://dx.doi.org/10.1080/10789669.2005.10391123
http://dx.doi.org/10.1080/10789669.2005.10391123
https://www.w3.org/TR/rif-overview/
https://www.w3.org/TR/rif-overview/
http://dx.doi.org/10.1007/978-3-540-92913-0_7
https://w3id.org/i40/aml#
https://w3id.org/i40/aml#
https://www.w3.org/TR/shacl/
http://dx.doi.org/10.1111/mice.12173
http://dx.doi.org/10.1111/mice.12173
http://dx.doi.org/10.1007/978-3-658-04682-8_29
http://dx.doi.org/10.1007/978-3-658-04682-8_29
http://dx.doi.org/10.1145/210332.210335
http://dx.doi.org/10.1145/210332.210335

Bibliography

[Knu11] H. Knublauch. SPIN - SPARQL Syntax. Permanent URL: https://www.w3.org/Su
bmission/spin-sparql/, 2011. Member Submission, World Wide Web Consortium
(W3C), Cambridge, USA.

[KP15] A. H. Khan and I. Porres. Consistency of UML class, object and statechart diagrams using
ontology reasoners. Journal of Visual Languages & Computing, 26:42–65, 2015.

[KRK12] M. J. Kofler, C. Reinisch, and W. Kastner. A semantic representation of energy-related
information in future smart homes. Energy and Buildings, 47:169–179, 2012.

[KRS12] S. Kowalewski, B. Rumpe, and A. Stollenwerk. Cyber-Physical Systems - eine Herausfor-
derung für die Automatisierungstechnik? In Proceedings of Automation, pages 113–116,
Baden-Baden, Germany, June 13-14 2012.

[KS15] J. Kaiser and P. Stenzel. eeEmbedded D4.2: Energy System Information Model - ESIM,
2015. eeEmbedded Consortium, Brussels, Belgium.

[KSB01] S. Kowalewski, O. Stursberg, and N. Bauer. An Experimental Batch Plant as a Test Case for
the Verification of Hybrid Systems. European Journal of Control, 7(4):366–381, 2001.

[KSH12] M. Krötzsch, F. Simancik, and I. Horrocks. A Description Logic Primer, 2012.
abs/1201.4089.

[KWH13] H. Kagermann, W. Wahlster, and J. Helbig. Recommendations for implementing the stra-
tegic initiative INDUSTRIE 4.0: Securing the future of German manufacturing industry;
final report of the Industrie 4.0 Working Group. Forschungsunion, acatech, Frankfurt/Main,
Germany, 2013.

[Lan13] C. Lange. Ontologies and languages for representing mathematical knowledge on the se-
mantic web. Semantic Web, 4(2):119–158, 2013.

[Lee08] E. A. Lee. Cyber Physical Systems: Design Challenges. In 11th International Symposium
on Object and Component-Oriented Real-Time Distributed Computing (ISORC), pages 363–
369, Orlando, USA, May 5-7 2008. IEEE.

[LEHM11] A. Lüder, E. Estévez, L. Hundt, and M. Marcos. Automatic transformation of logic models
within engineering of embedded mechatronical units. The International Journal of Advanced
Manufacturing Technology, 54(9):1077–1089, 2011.

[LKGZ17] M. Lefrançois, J. Kalaoja, T. Ghariani, and A. Zimmermann. D2.2: The SEAS Knowledge
Model, 2017. ITEA2 SEAS, Brussels, Belgium.

[LML+09] M.-K. Leung, T. Mandl, E. A. Lee, E. Latronico, C. Shelton, S. Tripakis, and B. Lickly.
Scalable semantic annotation using lattice-based ontologies. In Proceedings of the 12th
International Conference on Model Driven Engineering Languages and Systems, pages 393–
407, Denver, USA, October 4-9 2009.

[LMM99] D. Latella, I. Majzik, and M. Massink. Automatic Verification of a Behavioural Subset of
UML Statechart Diagrams Using the SPIN Model-checker. Formal Aspects of Computing,
11(6):637–664, 1999.

[LN00] E. A. Lee and S. Neuendorffer. MoML - A Modeling Markup Language in XML - Version
0.4. Technical Report 0.4, University of California, Berkeley, USA, 2000.

[LS17] E. A. Lee and S. A. Seshia. Introduction to Embedded Systems: A Cyber-Physical Systems
Approach. MIT Press, Cambridge, USA, 2nd edition, 2017.

[LSD17] A. Lüder, N. Schmidt, and R. Drath. Standardized Information Exchange Within Production
System Engineering. In S. Biffl, A. Lüder, and D. Gerhard, editors, Multi-Disciplinary
Engineering for Cyber-Physical Production Systems, pages 235–257. Springer International

133

https://www.w3.org/Submission/spin-sparql/
https://www.w3.org/Submission/spin-sparql/
http://dx.doi.org/10.1016/j.jvlc.2014.11.006
http://dx.doi.org/10.1016/j.jvlc.2014.11.006
http://dx.doi.org/10.1016/j.enbuild.2011.11.044
http://dx.doi.org/10.1016/j.enbuild.2011.11.044
http://dx.doi.org/10.3166/ejc.7.361-381
http://dx.doi.org/10.3166/ejc.7.361-381
http://dx.doi.org/10.1109/ISORC.2008.25
http://dx.doi.org/10.1007/s00170-010-3010-y
http://dx.doi.org/10.1007/s00170-010-3010-y
http://dx.doi.org/10.1007/s001659970003
http://dx.doi.org/10.1007/s001659970003
http://dx.doi.org/10.1007/978-3-319-56345-9_10
http://dx.doi.org/10.1007/978-3-319-56345-9_10

Bibliography

Publishing, Cham, Switzerland, 2017.

[LTV+16] L. Luyen, A. Tireau, A. Venkatesan, P. Neveu, and P. Larmande. Development of a know-
ledge system for big data: Case study to plant phenotyping data. In Proceedings of the 6th
International Conference on Web Intelligence, Mining and Semantics, pages 1–9, Nimes,
France, June 13-15 2016.

[Lun09] J. Lunze. Ereignisdiskrete Systeme: Modellierung und Analyse dynamischer Systeme mit
Automaten, Markovketten und Petrinetzen. Oldenbourg, Munich, Germany, 2009.

[MB12] T. Moser and S. Biffl. Semantic Integration of Software and Systems Engineering Envir-
onments. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and
Reviews), 42(1):38–50, 2012.

[MCGH+12] B. Motik, B. Cuenca Grau, I. Horrocks, Z. Wu, A. Fokoue, and C. Lutz. OWL 2 Web
Ontology Language Profiles (Second Edition). Permanent URL: http://www.w3.org/
TR/owl2-profiles/, 2012. Recommendation, World Wide Web Consortium (W3C),
Cambridge, USA.

[Mea55] G. H. Mealy. A method for synthesizing sequential circuits. Bell Labs Technical Journal,
34(5):1045–1079, 1955.

[MEP10] E. Muñoz, A. Espuña, and L. Puigjaner. Towards an ontological infrastructure for chemical
batch process management. Computers & Chemical Engineering, 34(5):668–682, 2010.

[MHH09] H. Merz, T. Hansemann, and C. Hübner. Building automation: communication systems
with EIB/KNX, LON und BACnet. Signals and communication technology. Springer, Berlin,
Germany, 2009.

[Min74] M. Minsky. A framework for representing knowledge. Technical Report AIM-306, A.I.
Laboratory, Massachusetts Institute of Technology, Cambridge, USA, 1974.

[MKL18] MKLab. StarUML. http://staruml.io, 2018. Last accessed: 22 October 2018.

[MMWY09] W. Marquardt, J. Morbach, A. Wiesner, and A. Yang. OntoCAPE: A re-usable ontology for
chemical process engineering. Springer, Berlin, Germany, 2009.

[Mod17a] Modelica Association. Modelica - A Unified Object-Oriented Language for Systems Mod-
eling, April 10 2017. Modelica Association, Linköping, Sweden.

[Mod17b] Modelica Association. Modelica Standard Library, 2017. URL: https://github.com
/modelica/Modelica, Last accessed: 22 October 2018.

[Mos16] T. Moser. The Engineering Knowledge Base Approach. In S. Biffl and M. Sabou, editors, Se-
mantic Web Technologies for Intelligent Engineering Applications, pages 85–103. Springer
International Publishing, Cham, Switzerland, 2016.

[MPSCG12] B. Motik, P. F. Patel-Schneider, and B. Cuenca Grau. OWL 2 Web Ontology Language Dir-
ect Semantics (Second Edition). Permanent URL: https://www.w3.org/TR/owl2-
direct-semantics/, 2012. Recommendation, World Wide Web Consortium (W3C),
Cambridge, USA.

[MPSP12] B. Motik, P. F. Patel-Schneider, and B. Parsia. OWL 2 Web Ontology Language Structural
Specification and Functional-Style Syntax (Second Edition). Permanent URL: https:
//www.w3.org/TR/owl2-syntax/, 2012. Recommendation, World Wide Web Con-
sortium (W3C), Cambridge, USA.

[Mus15] M. A. Musen. The protégé project: a look back and a look forward. AI matters, 1(4):4–12,
2015.

134

http://dx.doi.org/10.1145/2912845.2912869
http://dx.doi.org/10.1145/2912845.2912869
http://dx.doi.org/10.1109/TSMCC.2011.2136377
http://dx.doi.org/10.1109/TSMCC.2011.2136377
http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/owl2-profiles/
http://dx.doi.org/10.1016/j.compchemeng.2009.12.009
http://dx.doi.org/10.1016/j.compchemeng.2009.12.009
http://staruml.io
http://dx.doi.org/10.1007/978-3-642-04655-1
http://dx.doi.org/10.1007/978-3-642-04655-1
https://github.com/modelica/Modelica
https://github.com/modelica/Modelica
http://dx.doi.org/10.1007/978-3-319-41490-4_4
https://www.w3.org/TR/owl2-direct-semantics/
https://www.w3.org/TR/owl2-direct-semantics/
https://www.w3.org/TR/owl2-syntax/
https://www.w3.org/TR/owl2-syntax/
http://dx.doi.org/10.1145/2757001.2757003

Bibliography

[MvH04] D. L. McGuiness and F. van Hermelen. OWL Web Ontology Language. Permanent URL:
https://www.w3.org/TR/owl-features/, 2004. Recommendation, World Wide
Web Consortium (W3C), Cambridge, USA.

[NK98] I. Nonaka and N. Konno. The concept of “ba”: Building a foundation for knowledge cre-
ation. California management review, 40(3):40–54, 1998.

[NM01] N. F. Noy and D. L. McGuinness. Ontology Development 101: A Guide to Creating Your
First Ontology. Technical Report SMI-2001-0880, Stanford University, Stanford, USA,
2001.

[Nor98] K. North. Wissensorientierte Unternehmensführung: Wertschöpfung durch Wissen. Gabler,
Wiesbaden, Germany, 1998.

[NSMŠ15] P. Novák, E. Serral, R. Mordinyi, and R. Šindelář. Integrating heterogeneous engineering
knowledge and tools for efficient industrial simulation model support. Advanced Engineer-
ing Informatics, 29(3):575–590, 2015.

[OÅD05] M. Otter, K.-E. Årzén, and I. Dressler. StateGraph - a Modelica library for hierarchical state
machines. In Proceedings of the 4th international Modelica conference, pages 569–578,
Hamburg, Germany, March 7-8 2005.

[Obj15a] Object Management Group. OMG Unified Modeling Language (OMG UML), 2015. Need-
ham, USA.

[Obj15b] Object Management Group. XML Metadata Interchange (XMI) Specification, 2015. Need-
ham, USA.

[Ope16] OpenMath. OpenMath. http://www.openmath.org/, 2016. Last accessed: 22 Oc-
tober 2018.

[PA16] L. Petnga and M. Austin. An ontological framework for knowledge modeling and decision
support in cyber-physical systems. Advanced Engineering Informatics, 30(1):77–94, 2016.

[PFP+10] S. Plesser, M. N. Fisch, C. Pinkernell, T. Kurpick, and B. Rumpe. The Energy Navigator-A
Web based Platform for functional Quality Mangement in Buildings. In Proceedings of the
10th International Conference for Enhanced Building Operations (ICEBO), Kuwait City,
Kuwait, October 26-28 2010.

[PHDK12] J. Ploennigs, B. Hensel, H. Dibowski, and K. Kabitzsch. BASont - A Modular, Adaptive
Building Automation System Ontology. In Proceedings of the 38th Annual Conference on
IEEE Industrial Electronics Society (IECON), pages 4827–4833, Montreal, Canada, October
25-28 2012.

[PLC09] PLCopen. XML Formats for IEC 61131-3, 2009. Gorinchem, The Netherlands.

[Ple13] S. Plesser. Aktive Funktionsbeschreibungen zur Planung und Überwachung des Betriebs von
Gebäuden und Anlagen. PhD thesis, TU Braunschweig, Braunschweig, Germany, 2013.

[Pol09] M. Polanyi. The tacit dimension. University of Chicago press, Chicago, USA, 2009.

[PRPO06] K. Poschlad, M. A. Remelhe Pereira, and M. Otter. Modeling of an experimental Batch
Plant with Modelica. In Proceedings of the 5th International Modelica Conference, pages
651–660, Vienna, Austria, September 4-5 2006.

[PRR12] G. Probst, S. Raub, and K. Romhardt. Wissen managen: Wie Unternehmen ihre wertvollste
Ressource optimal nutzen. Springer Gabler, Wiesbaden, Germany, 2012.

[PS17] E. Prud’hommeaux and A. Seaborne. The SPARQL query language for RDF. Permanent
URL: https://www.w3.org/TR/rdf-sparql-query/, 2017. Recommendation,
World Wide Web Consortium (W3C), Cambridge, USA.

135

https://www.w3.org/TR/owl-features/
http://dx.doi.org/10.2307/41165942
http://dx.doi.org/10.2307/41165942
http://dx.doi.org/10.1016/j.aei.2015.05.001
http://dx.doi.org/10.1016/j.aei.2015.05.001
http://www.openmath.org/
http://dx.doi.org/10.1016/j.aei.2015.12.003
http://dx.doi.org/10.1016/j.aei.2015.12.003
http://dx.doi.org/10.1109/IECON.2012.6389583
http://dx.doi.org/10.1109/IECON.2012.6389583
https://www.w3.org/TR/rdf-sparql-query/

Bibliography

[PT16] P. Pauwels and W. Terkaj. EXPRESS to OWL for construction industry: Towards a recom-
mendable and usable ifcOWL ontology. Automation in Construction, 63:100–133, 2016.

[PVDV+11] P. Pauwels, D. Van Deursen, R. Verstraeten, J. De Roo, R. De Meyer, R. Van de Walle,
and J. Van Campenhout. A semantic rule checking environment for building performance
checking. Automation in Construction, 20(5):506–518, 2011.

[PVGC18] M. Poveda Villalón and R. Garcı́a Castro. SAREF extension for building devices. Permanent
URL: https://w3id.org/def/saref4bldg, 2018.

[PZL17] P. Pauwels, S. Zhang, and Y.-C. Lee. Semantic web technologies in AEC industry: A liter-
ature overview. Automation in Construction, 73:145–165, 2017.

[RCW13] K. Ridgeway, C. W. Clegg, and D. J. Williams. The factory of the future. The National
Metals Technology Centre, University of Sheffield AMRC, Sheffield, UK, October 2013.

[RFW09] S. Runde, A. Fay, and W. O. Wutzke. Knowledge-based requirement-engineering of building
automation systems by means of semantic web technologies. In Proceedings of the 7th
International Conference on Industrial Informatics (INDIN), pages 267–272, Cardiff, UK,
June 23-26 2009. IEEE.

[RGPK08] C. Reinisch, W. Granzer, F. Praus, and W. Kastner. Integration of heterogeneous building
automation systems using ontologies. In Proceedings of the 34th Annual Conference of IEEE
Industrial Electronics Society (IECON), pages 2736–2741, Orlando, Florida, November 10-
13 2008. IEEE.

[RK07] T. Ritala and S. Kuikka. Uml automation profile: Enhancing the efficiency of software
development in the automation industry. In Proceedings of the International Conference
on Industrial Informatics (INDIN), volume 2, pages 885–890, Vienna, Austria, June 23-27
2007. IEEE.

[RKIK11] C. Reinisch, M. J. Kofler, F. Iglesias, and W. Kastner. Thinkhome energy efficiency in future
smart homes. EURASIP Journal on Embedded Systems, 2011(104617):1–18, 2011.

[RKK10] C. Reinisch, M. J. Kofler, and W. Kastner. ThinkHome: A smart home as digital ecosystem.
In Proceedings of the 4th International Conference on Digital Ecosystems and Technologies
(DEST), pages 256–261, Dubai, UAE, April 13-16 2010. IEEE.

[RQd12] C. Rupp, S. Queins, and die SOPHISTen. UML 2 glasklar: Praxiswissen für die UML-
Modellierung. Hanser, Munich, Germany, 2012.

[Rud11] S. Rudolph. Foundations of description logics. In A. Polleres, C. d’Amato, M. Arenas,
S. Handschuh, P. Kroner, S. Ossowski, and P. Patel-Schneider, editors, Lecture Notes in
Computer Sciences, volume 6248, pages 76–136. Springer, Berlin, Germany, 2011.

[Run11] S. Runde. Wissensbasierte Engineeringunterstützung in der Automatisierungstechnik am
Beispiel der Gebäudeautomation, volume 434 of Fortschritt-Berichte VDI : Reihe 20, Rech-
nerunterstützte Verfahren. VDI-Verlag, Düsseldorf, Germany, 2011.

[RWT11] H. Rijgersberg, M. Wigham, and J. Top. How semantics can improve engineering processes:
A case of units of measure and quantities. Advanced Engineering Informatics, 25(2):276–
287, 2011.

[Sab16] M. Sabou. An Introduction to Semantic Web Technologies. In S. Biffl and M. Sabou, editors,
Semantic Web Technologies for Intelligent Engineering Applications, pages 53–84. Springer
International Publishing, Cham, Switzerland, 2016.

[Sal05] T. I. Salsbury. A SURVEY OF CONTROL TECHNOLOGIES IN THE BUILDING AUTO-
MATION INDUSTRY. IFAC Proceedings Volumes, 38(1):90–100, 2005.

136

http://dx.doi.org/10.1016/j.autcon.2015.12.003
http://dx.doi.org/10.1016/j.autcon.2015.12.003
http://dx.doi.org/10.1016/j.autcon.2010.11.017
http://dx.doi.org/10.1016/j.autcon.2010.11.017
https://w3id.org/def/saref4bldg
http://dx.doi.org/10.1016/j.autcon.2016.10.003
http://dx.doi.org/10.1016/j.autcon.2016.10.003
http://dx.doi.org/10.1109/INDIN.2009.5195815
http://dx.doi.org/10.1109/INDIN.2009.5195815
http://dx.doi.org/10.1109/IECON.2008.4758391
http://dx.doi.org/10.1109/IECON.2008.4758391
http://dx.doi.org/10.1109/INDIN.2007.4384890
http://dx.doi.org/10.1109/INDIN.2007.4384890
http://dx.doi.org/10.1155/2011/104617
http://dx.doi.org/10.1155/2011/104617
http://dx.doi.org/10.1109/DEST.2010.5610636
http://dx.doi.org/10.1007/978-3-642-23032-5_2
http://dx.doi.org/10.1016/j.aei.2010.07.008
http://dx.doi.org/10.1016/j.aei.2010.07.008
http://dx.doi.org/10.1007/978-3-319-41490-4_3
http://dx.doi.org/10.3182/20050703-6-CZ-1902.01397
http://dx.doi.org/10.3182/20050703-6-CZ-1902.01397

Bibliography

[SBF98] R. Studer, V. R. Benjamins, and D. Fensel. Knowledge engineering: principles and methods.
Data & knowledge engineering, 25(1-2):161–197, 1998.

[Sch07] J. Schein. An Information Model for Building Automation Systems. Automation in Con-
struction, 16(2):125–139, 2007.

[SE13] P. Shvaiko and J. Euzenat. Ontology matching: state of the art and future challenges. IEEE
Transactions on knowledge and data engineering, 25(1):158–176, 2013.

[SH17] A. Strahilov and H. Hämmerle. Engineering Workflow and Software Tool Chains of Auto-
mated Production Systems. In S. Biffl, A. Lüder, and D. Gerhard, editors, Multi-Disciplinary
Engineering for Cyber-Physical Production Systems, pages 207–234. Springer International
Publishing, Cham, Switzerland, 2017.

[SKK+12] J. Sztipanovits, X. Koutsoukos, G. Karsai, N. Kottenstette, P. Antsaklis, V. Gupta, B. Good-
wine, J. Baras, and S. Wang. Toward a science of cyber-physical system integration. Pro-
ceedings of the IEEE, 100(1):29–44, 2012.

[SKN16] M. Sabou, O. Kovalenko, and P. Novák. Semantic Modelling and Acquisition of Engineer-
ing Knowledge. In S. Biffl and M. Sabou, editors, Semantic Web Technologies for Intel-
ligent Engineering Applications, pages 105–136. Springer International Publishing, Cham,
Switzerland, 2016.

[Sno00] D. Snowden. The ASHEN Model: an enabler of action. Knowledge Management, 3(7):14–
17, 2000.

[Sno05] D. Snowden. The ASHEN Model: an enabler of action. http://old.cognitive-

edge.com/wp-content/uploads/2000/04/7-Organic-KM-1-of-3-

ASHEN.pdf, 2005. Last accessed: 22 October 2018.

[Sow14] J. F. Sowa. Principles of semantic networks: Explorations in the representation of know-
ledge. Morgan Kaufmann, Burlington, USA, 2014.

[SPG+07] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical OWL-Dl
reasoner. Web Semantics: science, services and agents on the World Wide Web, 5(2):51–53,
2007.

[SQM+07] S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. Averyt, M. Tignor, and H. Miller,
editors. Contribution of Working Group I to the Fourth Assessment Report of the Intergov-
ernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, 2007.

[SSKD11] T. Sauter, S. Soucek, W. Kastner, and D. Dietrich. The Evolution of Factory and Building
Automation. IEEE Industrial Electronics Magazine, 5(3):35–48, 2011.

[TA16] T. Tudorache and L. Alani. Semantic Web Solutions in the Automotive Industry. In S. Biffl
and M. Sabou, editors, Semantic Web Technologies for Intelligent Engineering Applications,
pages 297–326. Springer International Publishing, Cham, Switzerland, 2016.

[TAO98] C. Tasso, E. Arantes, and E. Oliveira. Development of knowledge-based systems for engin-
eering. Springer, Vienna, Austria, 1998.

[TBB+15] N. M. Tomašević, M. v. Batić, L. M. Blanes, M. M. Keane, and S. Vraneš. Ontology-
Based Facility Data Model for Energy Management. Advanced Engineering Informatics,
29(4):971–984, 2015.

[TRPE17] H. Thaller, R. Ramler, J. Pichler, and A. Egyed. Exploring code clones in programmable
logic controller software. In Proceedings of the 22nd International Conference on Emerging
Technologies and Factory Automation (ETFA), pages 1–8, Limassol, Cyprus, September 12-
15 2017. IEEE.

137

http://dx.doi.org/10.1016/j.autcon.2006.07.006
http://dx.doi.org/10.1109/TKDE.2011.253
http://dx.doi.org/10.1007/978-3-319-56345-9_9
http://dx.doi.org/10.1007/978-3-319-56345-9_9
http://dx.doi.org/10.1109/JPROC.2011.2161529
http://dx.doi.org/10.1007/978-3-319-41490-4_5
http://dx.doi.org/10.1007/978-3-319-41490-4_5
http://old.cognitive-edge.com/wp-content/uploads/2000/04/7-Organic-KM-1-of-3-ASHEN.pdf
http://old.cognitive-edge.com/wp-content/uploads/2000/04/7-Organic-KM-1-of-3-ASHEN.pdf
http://old.cognitive-edge.com/wp-content/uploads/2000/04/7-Organic-KM-1-of-3-ASHEN.pdf
http://dx.doi.org/10.1109/MIE.2011.942175
http://dx.doi.org/10.1109/MIE.2011.942175
http://dx.doi.org/10.1007/978-3-319-41490-4_12
http://dx.doi.org/10.1007/978-3-7091-2784-1
http://dx.doi.org/10.1007/978-3-7091-2784-1
http://dx.doi.org/10.1016/j.aei.2015.09.003
http://dx.doi.org/10.1016/j.aei.2015.09.003
http://dx.doi.org/10.1109/ETFA.2017.8247574
http://dx.doi.org/10.1109/ETFA.2017.8247574

Bibliography

[TS 18] TS 0012. oneM2M Base Ontology, 2018. oneM2M, http://onem2m.org, Last ac-
cessed: 22 October 2018.

[TSD11] E. Turban, R. Sharda, and D. Delen. Decision Support and Business Intelligence Systems.
Pearson Education, London, UK, 2011.

[TVM+09] J. Trojanová, J. Vass, K. Macek, J. Rojı́ček, and P. Stluka. Fault diagnosis of air handling
units. IFAC Proceedings Volumes, 42(8):366–371, 2009.

[USG16] USGBC. LEED v4 for building operations and maintenance. Technical Report 4, US Green
Building Council (USGBC), Washington D.C., USA, 2016.

[VDI07] VDI 3825. Automation and control of air-conditioning systems examples, 2007. Verein
Deutscher Ingenieure (VDI), Düsseldorf, Germany.

[VDI08] VDI 3814-6. Building automation and control systems (BACS) Graphical description of
logic control tasks, 2008. Verein Deutscher Ingenieure (VDI), Düsseldorf, Germany.

[VDI09a] VDI 3814. Building automation, 2009. Verein Deutscher Ingenieure (VDI), Düsseldorf,
Germany.

[VDI09b] VDI 5610-1. Wissensmanagement im Ingenieurwesen - Grundlagen, Konzepte, Vorgehen,
2009. Verein Deutscher Ingenieure (VDI), Düsseldorf, Germany.

[VDI11a] VDI 3813. Building automation and control systems - Room automation, 2011. Verein
Deutscher Ingenieure (VDI), Düsseldorf, Germany.

[VDI11b] VDI 3813-2. Building automation and control systems (BACS) Room control function (RA
functions), 2011. Verein Deutscher Ingenieure (VDI), Düsseldorf, Germany.

[VDI13] VDI 3814-1. Building automation and control systems (BACS) system basics, 2013. Verein
Deutscher Ingenieure (VDI), Düsseldorf, Germany.

[VDI15] VDI/VDE GMA. Automation 2020 – Bedeutung und Entwicklung der Automation bis zum
Jahr 2020 – Thesen und Handlungsfelder, January 2015. VDI/VDE-Gesellschaft Mess- und
Automatisierungstechnik (GMA), Düsseldorf, Germany.

[VH+14a] M. Vegetti, G. P. Henning, et al. ISA-88 Formalization. A Step Towards its Integration
with the ISA-95 Standard. In Proceedings of the 6th Workshop on Formal Ontologies meet
Industry (FOMI) and 8th International Conference on Formal Ontology in Information Sys-
tems (FOIS), pages 1–9, Rio de Janeiro, Brazil, September 22 2014. CEUR-WS.org.

[VH14b] B. Vogel-Heuser. Herausforderungen und Anforderungen aus Sicht der IT und der Automat-
isierungstechnik. In T. Bauernhansl, M. Ten Hompel, and B. Vogel-Heuser, editors, Industrie
4.0 in Produktion, Automatisierung und Logistik: Anwendung, Technologien und Migration,
pages 37–48. Springer Vieweg, Wiesbaden, Germany, 2014.

[VHDB13] B. Vogel-Heuser, C. Diedrich, and M. Broy. Anforderungen an CPS aus Sicht der Automat-
isierungstechnik. Automatisierungstechnik (at), 61(10):669–676, 2013.

[VHDF+14] B. Vogel-Heuser, C. Diedrich, A. Fay, S. Jeschke, S. Kowalewski, M. Wollschlaeger, and
P. Göhner. Challenges for software engineering in automation. Journal of Software Engin-
eering and Applications, 7(5):440–451, 2014.

[VHFST15] B. Vogel-Heuser, A. Fay, I. Schaefer, and M. Tichy. Evolution of software in automated
production systems: Challenges and research directions. Journal of Systems and Software,
110:54–84, 2015.

[VJS+98] S. Viswanathan, C. Johnsson, R. Srinivasan, V. Venkatasubramanian, and K. E. Årzén. Auto-
mating operating procedure synthesis for batch processes: Part i. knowledge representation
and planning framework. Computers & Chemical Engineering, 22(11):1673–1685, 1998.

138

http://onem2m.org
http://dx.doi.org/10.3182/20090630-4-ES-2003.00061
http://dx.doi.org/10.3182/20090630-4-ES-2003.00061
http://dx.doi.org/10.1007/978-3-658-04682-8_2
http://dx.doi.org/10.1007/978-3-658-04682-8_2
http://dx.doi.org/10.1524/auto.2013.0061
http://dx.doi.org/10.1524/auto.2013.0061
http://dx.doi.org/10.4236/jsea.2014.75041
http://dx.doi.org/10.1016/j.jss.2015.08.026
http://dx.doi.org/10.1016/j.jss.2015.08.026
http://dx.doi.org/10.1016/S0098-1354(98)00228-2
http://dx.doi.org/10.1016/S0098-1354(98)00228-2
http://dx.doi.org/10.1016/S0098-1354(98)00228-2

Bibliography

[VSH+16] R. Verborgh, M. V. Sande, O. Hartig, J. V. Herwegen, L. D. Vocht, B. D. Meester, G. Haesen-
donck, and P. Colpaert. Triple pattern fragments: A low-cost knowledge graph interface for
the web. Journal of Web Semantics, 37-38:184–206, 2016.

[Vya13] V. Vyatkin. Software Engineering in Industrial Automation: State-of-the-Art Review. IEEE
Transactions on Industrial Informatics, 9(3):1234–1249, 2013.

[W3C12] W3C OWL Working Group. OWL 2 Web Ontology Language. Permanent URL: https:
//www.w3.org/TR/owl2-overview/, 2012. Recommendation, World Wide Web
Consortium (W3C), Cambridge, USA.

[Wet18] M. Wetter. OpenBuildingControl - Performance Evaluation, Specification and Verification of
Building Control Sequences. http://obc.lbl.gov/, 2018. Last accessed: 22 October
2018.

[Wic16] H. Wicaksono. An Integrated Method for Information and Communication Technology (ICT)
Supported Energy Efficiency Evaluation and Optimization in Manufacturing: Knowledge-
based Approach and Energy Performance Indicators (EnPI) to Support Evaluation and Op-
timization of Energy Efficiency. PhD thesis, Karlsruhe Institute of Technology (KIT), Karls-
ruhe, Germany, 2016.

[WJRO14] H. Wicaksono, F. Jost, S. Rogalski, and J. Ovtcharova. Energy efficiency evaluation in
manufacturing through an ontology-represented knowledge base. Intelligent Systems in Ac-
counting, Finance and Management, 21(1):59–69, 2014.

[WMM11] A. Wiesner, J. Morbach, and W. Marquardt. Information integration in chemical process en-
gineering based on semantic technologies. Computers & Chemical Engineering, 35(4):692–
708, 2011.

[WR12] K. Wenzel and H. Reinhardt. Mathematical computations for linked data applications with
OpenMath. In Joint Proceedings of the 24th Workshop on OpenMath and the 7th Workshop
on Mathematical User Interfaces (MathUI), pages 38–48, Bremen, Germany, 2012.

[WZNP14] M. Wetter, W. Zuo, T. S. Nouidui, and X. Pang. Modelica Buildings Library. International
Journal of Building Performance Simulation, 7(4):253–270, 2014.

139

http://dx.doi.org/10.1016/j.websem.2016.03.003
http://dx.doi.org/10.1016/j.websem.2016.03.003
http://dx.doi.org/10.1109/TII.2013.2258165
https://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/owl2-overview/
http://obc.lbl.gov/
http://dx.doi.org/10.1002/isaf.1347
http://dx.doi.org/10.1002/isaf.1347
http://dx.doi.org/10.1016/j.compchemeng.2010.12.003
http://dx.doi.org/10.1016/j.compchemeng.2010.12.003
http://dx.doi.org/10.1080/19401493.2013.765506

Bibliography of the Author

[SBNM16] G. F. Schneider, A. Bougain, P. S. Noisten, and M. Mitterhofer. Information Requirement
Definition for BIM: A Life Cycle Perspective. In Proceedings of the 11th European Conference
on Product and Process Modelling (ECPPM), pages 225–233, Limassol, Cyprus, September 7-
9 2016.

[Sch17] G. F. Schneider. Towards Aligning Domain Ontologies with the Building Topology Ontology.
In Proceedings of the 5th Linked Data in Architecture and Construction Workshop (LDAC),
pages 1–8, Dijon, France, 2017.

[SPS17] G. F. Schneider, P. Pauwels, and S. Steiger. Ontology-based Modeling of Control Logic in
Building Automation Systems. IEEE Transactions on Industrial Informatics, 13(6):3350–3360,
2017.

[SPT19] G. F. Schneider, G. A. Peßler, and W. Terkaj. Knowledge-based Conversion of Finite State
Machines in Manufacturing. Procedia Manufacturing, 28:189–194, 2019.

[SWO19] G. F. Schneider, H. Wicaksono, and J. Ovtcharova. Virtual engineering of cyber-physical auto-
mation systems: The case of control logic. Advanced Engineering Informatics, 39:127–143,
2019.

[TSP17] W. Terkaj, G. F. Schneider, and P. Pauwels. Reusing Domain Ontologies in Linked Building
Data: the Case of Building Automation and Control. In Proceedings of the 8th International
Workshop on Formal Ontologies Meet Industry (FOMI), pages 1–12, Bolzano, Italy, September
21 2017. CEUR-WS.org.

141

http://dx.doi.org/10.13140/RG.2.2.21802.52169
http://dx.doi.org/10.1109/TII.2017.2743221
http://dx.doi.org/10.1109/TII.2017.2743221
http://dx.doi.org/10.1016/j.promfg.2018.12.031
http://dx.doi.org/10.1016/j.promfg.2018.12.031
http://dx.doi.org/10.1016/j.aei.2018.11.009
http://dx.doi.org/10.1016/j.aei.2018.11.009

A Foundations of the Semantic
Web

Ever since the internet was invented it was meant to be a medium to transport information from
person-to-person and, potentially, from machine-to-machine. The internet in its beginnings
constitutes a linked network of hypertext media, where information can be displayed for hu-
mans and other related information can be linked to it. However, since its beginnings finding
respective information from the huge number of websites has always been a challenging task.
The idea of the introduction of the semantic web [BLHL01] is to give data published on the
web a well-defined meaning, which machines can understand. Hence, potentially, utilising the
example from Sabou [Sab16], when using a search engine to search for the researcher Sabou
the web profile of Marta Sabou1 is displayed and information about her rather then information
on the small town Sabou2 in Burkina Faso is returned.
Within this chapter a brief overview and introduction to the building blocks of SWT [BLHL01]
is presented. The material presented in this chapter is condensed knowledge from text books
[HKR10, Rud11, DFH11, Sab16] where the interested reader is referred to for in depth treat-
ment of the material.
SWT are used for the implementation of the semantic model as described in detail in Chapter 4
as well as the knowledge-based methods presented in Chapter 5 of this thesis. The foundations
of knowledge representation are introduced in Section 2.2. If not indicated differently the code
examples presented here are given using turtle syntax [BBLPC14].
Similar to the Open Systems Interconnection (OSI) [ISO94] reference model, which structures
communication systems in distinct layers [HMS11], the semantic web stack is introduced in
SWT as illustrated in Figure A.1. The stack aims at providing a conceptual model and structure
of SWT. Its foundations are URIs to identify resources on the web and UNICODE [ISO17b]
for the encoding. The XML technology [BPSM+06] provides the next layer and a standardised
syntax. The subsequent layers, e.g. expressing taxonomies via RDFS [BG14], ontology mod-
elling using OWL [W3C12] or querying triples from a triple store, a data base for RDF, via
SPARQL [PS17], are introduced in the following sections. It might be noticed that in contrast
to the layers of the OSI model, which can operate separately from each other, the SWT layers

1 ORCID: 0000-0001-9301-8418
2 https://www.wikidata.org/wiki/Q3460692, Last accessed: 22 October 2018

143

https://orcid.org/0000-0001-9301-8418
https://www.wikidata.org/wiki/Q3460692

A Foundations of the Semantic Web

cannot always be clearly distinguished. For example, both in RDFS and in OWL the concept
of a class exists [HMS11].

Identifiers: URI Character set: UNICODE

Syntax: XML

Data interchange: RDF

Taxonomies: RDFS

Ontologies: OWL Rules: RIF/SWRL Querying:

SPARQL

Unifying Logic

User interface and applications
C

ry
p

to
g

ra
p

h
y

Proof

Trust

Figure A.1: The Semantic Web stack: A conceptual model and structure for technologies
associated to the semantic web (adapted from Harth et al. [HMS11]). Acronyms
are explained in the text.

A.1 Description Logics
DL are a kind of knowledge representation formalism, where DL are a fragment of FOL. FOL
are a formalism from the mathematical logic domain [Rud11]. Within DL it is possible to
express knowledge on a domain of interest and three entities exists in this regard: individuals,
roles and concepts [KSH12]. Individuals are unique entities of a respective domain, roles are
binary relationships among these individuals and concepts group individuals depended on their
characteristics [KSH12]. These entities have a direct counterpart in FOL, where individuals can
be identified as constants, roles as binary predicates and concepts as unary predicates [KSH12,
Rud11].
For instance, it is possible to define formal statements, also referred to as axioms, encoding
knowledge on individuals, concepts and more complex statements. The following DL state-
ments are denoted following a notation inspired by set theory, which can be mapped to equi-
valent FOL statements [Rud11].
For instance, assertional knowledge on individuals can be expressed, e.g. the statement

TemperatureSensor(rt001)

144

A.1 Description Logics

describes an individual rt001 as a member of the set TemperatureSensor. Also, rela-
tionships between individuals can be expressed, e.g. the statement

isLocatedIn(rt001 , room1)

describes that a binary relationship isLocatedIn exists between the individuals rt001 and
room1. Knowledge on concepts, e.g. subsumption can be expressed as exemplified in the
following statement for a TemperatureSensor to be a subset of the set of all Sensors:

TemperatureSensorv Sensor

Other statements can be expressed as part of a DL knowledge base, such as role inclusion
[KSH12]. For example, the statement

isLocatedInv feeds

specifies a ’subrole’ [KSH12] relationship between the role isLocatedIn and feeds. This
implies logically that each pair of individuals related to each other via the isLocatedIn
relationship, also is related to each other via the feeds relationship [KSH12, Rud11].
More complex axioms are possible but are omitted here. All statements together allow to model
a respective domain. Through the formal nature of DL a machine is able to draw inferences
from these statements (see Section 2.2 and Brachman & Levesque [BL04]). The definition of
DL are always motivated by generating fragments, which are decidable, in contrast to FOL,
which are in general undecideable [Rud11]. The reason for this are practical considerations as
the undecideable characteristic may lead to infinite execution time of reasoning algorithms in
applications of the technology.
In practical applications the logic AL can be gradually extended [PA16] to add the respective
expressibility needed, of course, by adding additional complexity for the respective reasoning
tasks. Table A.1 summarises the supported concepts of the DL ALC, which extends AL
by concrete concepts [PA16], where A is a concept name, C and D are concepts, R is a role
and o is an individual name [HPS11]. SROIQ(D) constitutes the formal basis of OWL
Full [MPSCG12] (see Section A.3). As OWL Full is in general undecidable a popular dialect
is OWL-DL which is decidable and its formal basis is SHOIN (D). The meaning of the
characters used for SHOIN (D) is as follows [HPS11, PA16]:

• S includes everything fromALC extended by role transitivity;

• H refers to role hierarchy;

• O refers to nominals, which allows using individuals in the terminological knowledge
of the knowledge base;

• I refers to inverse roles;

145

A Foundations of the Semantic Web

Table A.1: Syntax and semantics ofALC; adapted from Petnga & Austin [PA16] and
Horrocks et al. [HPS11].

Name Syntax Semantics

atomic concept A AI ⊆4I

atomic role R RI ⊆4I ×4I

top > 4I

bottom ⊥ /0
negation ¬C 4I \CI

conjunction CuD CI ∩DI

disjunction CtD CI ∪DI

existential
quantification

∃R.C
{

o |∃o′.〈o,o′〉 ∈ RI and o′ ∈CI}
value restriction ∀R.C

{
o |∀o′.〈o,o′〉 ∈ RI implieso′ ∈CI}

• N refers to unqualified number restrictions;

• (D) denotes data types.

A full treatment of the theory of DL is out of the scope of this thesis. Instead the inter-
ested reader is referred to the respective text books by Baader et al. [BCM+03] and Rudolph
[Rud11].

A.2 Resource Description Framework
(Schema) - RDF(S)

The RDF [CWL14] is the foundational data model adopted by all SWT. Within the RDF state-
ments in the form of triples are defined consisting of a subject, predicate and object. In general
a resource identified by a URI can be anything such as a web page, a relationship among re-
sources, a number or a physical thing such as buildings (see [CWL14]). Often Hyper Text
Transfer Protocol (HTTP) [FR14] URIs are used to reference a resource but URIs are not re-
stricted to this.
The basic possibilities for triple statements in RDF are depicted in Figure A.2. In the figure
resources are illustrated as ellipses, literals are depicted as squares and predicates are arrows.
All triple statements consist of the subject, predicate, object pattern. In a triple subject and an
object can be resources or the subject is a resource and the object is a literal. In both cases
the predicate is termed a property. Resources and properties can be identified by a URI. The
resulting structure is a Graph where properties are directed edges and resources and literals

146

A.2 Resource Description Framework (Schema) - RDF(S)

are the nodes. For serialising RDF triples into a file a number of formats exist, e.g. Turtle
[BBLPC14] or RDF/XML [GS14].

<URI>
<URI>

subject predicate object

<URI>
"<Value>" <URI>

<URI>

Figure A.2: Statements in RDF are triples in the form subject, predicate and object. Each is
identified by its URI. Resources (ellipses) can be related to other resources or to
literals (squares) by a property (arrows).

RDF is the foundational data model for the semantic web. In addition to link resources and
provide semantics to data, knowledge can be specified in a machine interpretable form. This
enables machines to consume formalised knowledge and reason upon it. To enable this, addi-
tional semantics are needed. The Resource Description Framework Schema (RDFS) [BG14]
is a knowledge representation language [Sab16], which constitutes the next layer in the Se-
mantic Web stack. In RDFS it is possible to declare a resource to be a rdfs:Class and to
build taxonomies of classes by establishing a hierarchy among two classes through defining
one class as a rdfs:subClassOf another. Similarly, this is possible for a rdf:Property
to by defined as a rdfs:subPropertyOf another property. Typing of resources can be
expressed via the rdf:type property between a resource and a class.
Literals (rdfs:Literal) in RDFS are unicode encoded strings. Optionally there can be lan-
guage tags for plain literals and data types for typed literals. Examples are "123.0"ˆˆxsd:double
for a double-precision floating point number, "Control Actor"@en for a string with a lan-
guage tag or "2018-11-11T11:11:00+00:00"ˆˆxsd:dateTimeStamp for a literal
encoding a date time stamp.
It is possible to define domain (rdfs:domain) and range (rdfs:range) restrictions to
imply class membership of an individual, when using a certain property. For instance, the
following sentence can be axiomised using range restrictions ’The range of property ctrl:-
hasInput is ctrl:ControlActor’. Having this axiom in a knowledge base allows to
classify respective individuals related to via the described property.
RDF and RDFS offer some additional features for example to describe lists (rdf:first,
rdf:rest). Further details on RDF and RDFS can be found in the respective literature
([CWL14, BG14, HKR10, Sab16, DFH11]).

147

A Foundations of the Semantic Web

A.3 Web Ontology Language - OWL
The OWL [W3C12] was introduced as the expressibility of existing languages such as RDFS is
limited. For instance, it is not possible in RDFS to define that something is not true [HKR10].
OWL has a standardised syntax [MPSP12] and a formal semantics [MPSCG12]. The second
version OWL 2 is the current recommended version and supersedes the former version OWL 1
[MvH04], which, however is still in use and remains a recommendation of the W3C. The his-
tory of the development of OWL is summarised in Domingue et al. [DFH11]. For convenience
OWL is used to refer to OWL 2 in this thesis.

A.3.1 Components of OWL
OWL is a knowledge representation language and can be used to formally specify a domain
of interest. The basic components of OWL ontologies are individuals, properties and concepts
[HKR+04]. As an example, Figure A.3 shows how to describe terminological (Tbox) and as-
sertional (Abox) knowledge using OWL. Note, the nomenclature used is defined in Figure 4.1,
p. 63.

T
b

o
x

A

b
o
x

sch:Schedule

:R2_logic

sch:hasPeriodicity

:YSce
ctrl:logicOutput

ctrl:logicInput

sch:daily

ctrl:ApplicationLogic

sch:hasPeriodicity

sch:Periodicity

ctrl:logicInput

ctrl:logicOutput

ctrl:Input

:time

ctrl:Output

Figure A.3: Figure illustrating the representation of the assertional knowledge (ABox)
through individuals, and terminological knowledge (TBox) in OWL. Graphical
nomenclature as defined in Figure 4.1, p. 63.

Individuals (owl:NamedIndividual) represent assertional knowledge on items in the do-
main of interest, e.g. the statement :Cologne rdf:type owl:NamedIndividual

could be an individual referring to the city of Cologne3. Properties are binary relationships

3 https://www.wikidata.org/wiki/Q365, Last accessed: 22 October 2018

148

https://www.wikidata.org/wiki/Q365

A.3 Web Ontology Language - OWL

between two resources or a resource and a literal. In OWL properties can be further specified,
i.e. owl:ObjectProperty refers to a property, which relates two resources and owl:-

DataTypeProperty refers to a property, which relates a resource and a literal. Further
specification of properties is detailed in the subsequent sections. Concepts in OWL are inter-
preted as sets and individuals can be classified by concepts [HKR+04]. The terms concepts
and class are used synonymically in this context.

A.3.2 A Closer Look on Properties in OWL
In OWL owl:ObjectProperty and owl:DataTypeProperty are distinguished as
mentioned above. In OWL it is possible to restrict the cardinality of properties, e.g. to re-
strict the minimum, maximum and exact number of relationships a resource may have via a
certain property [Sab16].
Additionally the characteristics of object properties can be further specified via object property
restrictions [MPSP12]:

• Functional: A property defined as owl:FunctionalProperty implies that only
one individual can relate via this property to another;

• Inverse Functional: A property defined as owl:InverseFunctionalProper-
ty implies that ’there can be at most one individual related to that individual via the
property’ [HKR+04];

• Transitive: A property defined as owl:TransitiveProperty implies that, if an
individual A relates via a property to an individual B and B via the same property to an
individual C, also A can be related to C via this property;

• Symmetric: A property defined as owl:SymmetricProperty implies that if an
individual A relates via a property p to individual B, then also B relates via p to A
holds;

• Asymmetric: A property defined as owl:AsymmetricProperty prohibits the
symmetry as defined for owl:SymmetricProperty;

• Reflexive: A property defined as owl:ReflexiveProperty implies that an indi-
vidual using the property also must relate to itself via this property;

• Irreflexive: A property defined as owl:IrreflexiveProperty implies that an
individual cannot relate to itself via this property. Moreover, individuals related by
such a property or considered to be different from each other [HKR+04].

Properties can be specified from another property via the rdfs:subPropertyOf relation-
ship. Also, an inverse of a property can be specified via owl:inverseOf.

149

A Foundations of the Semantic Web

A.3.3 Specific Features of OWL
Within OWL all axioms supported RDF and RDFS are possible. Additionally, OWL defines
additional expressive capabilities, which are outlined in the following paragraphs.
Some of these language axioms focus on defining abstract class descriptions via the definition
of restrictions on properties. A value restriction allows to define abstract classes, where in-
dividuals, which have a relationship to a certain individual, are classified as members of this
class. For example, in the following code listing a value restriction is defined where every
individual which is related via the hasRelevance property to the individual :Important
is a member of this abstract class. The class FireSafety is a subclass of this abstract class.

Code A.1: Example for the definition of the abstract class FireSafety via a value
restriction. In turtle syntax [BBLPC14].

0 :FireSafety rdf:type owl:Class ;
rdfs:subClassOf [

rdf:type owl:Restriction ;
owl:onProperty :hasRelevance ;
owl:hasValue :Important

5] .

Universal restrictions can be used to define abstract classes. A universal restriction allows to
restrict the relationship via a given property only to individuals of a specific class. An example
for a universal restriction is given in the following. If an individual A is in a relationship
with an other individual B via the hasApplicationLogic property, then individual B has
to be member of the class ApplicationLogic or not in a relationship to A using this
property at all. The latter is a common pitfall and has to be taken into account when designing
universal restrictions [HKR+04]. It can be noted that a restriction on the range of a property is
semantically equivalent to a universal restriction [HKR10].

Code A.2: Example for a universal restriction. In turtle syntax [BBLPC14].

0 :ControlActor rdf:type owl:Class ;
rdfs:subClassOf [

rdf:type owl:Restriction ;
owl:onProperty :hasApplicationLogic ;
owl:allValuesFrom :ApplicationLogic

5] .

Existential restrictions allow to specify that an individual of a class should be related via a
certain property to at least one individual of a specific class. An example describing this is
given in the following code listing, where individuals of the class :ControlActor should
be related to at least one individual of the class ApplicationLogic via the hasAppli-
cationLogic property.

150

A.3 Web Ontology Language - OWL

Code A.3: Example for an existential restriction. In turtle syntax [BBLPC14].

0 :ControlActor rdf:type owl:Class ;
rdfs:subClassOf [

rdf:type owl:Restriction ;
owl:onProperty :hasApplicationLogic ;
owl:someValuesFrom :ApplicationLogic

5] .

When in a class an existential restriction is defined and a universal restriction is added then this
duo of restrictions is termed Closure Axiom. An example is given in the following code listing.

Code A.4: Example for a closure axiom. In turtle syntax [BBLPC14].

0 :ControlActor rdf:type owl:Class ;
rdfs:subClassOf [

rdf:type owl:Restriction ;
owl:onProperty :hasApplicationLogic ;
owl:someValuesFrom :ApplicationLogic

5] ,
[rdf:type owl:Restriction ;

owl:onProperty :hasApplicationLogic ;
owl:allValuesFrom :ApplicationLogic

] .

Cardinality restrictions can be used when the actual number of relationships of an individual
via a certain property to other individuals should be restricted. If additionally the class of the
restricted individuals is limited these restrictions are termed Qualified Cardinality Restrictions.
In the following example the three possibilities to restrict the number of tyres of a car to be at
least four, exactly four and at most four are illustrated with qualified cardinality restrictions.

Code A.5: Example for defining qualified cardinality restrictions. In turtle syntax [BBLPC14].

0 :Car rdf:type owl:Class ;
rdfs:subClassOf [

rdf:type owl:Restriction ;
owl:onProperty :hasTyres ;
owl:minQualifiedCardinality "4" ;

5 owl:onClass :Tyre
] ,
[rdf:type owl:Restriction ;

owl:onProperty :hasTyres ;
owl:qualifiedCardinality "4" ;

10 owl:onClass :Tyre
] ,
[rdf:type owl:Restriction ;

owl:onProperty :hasTyres ;
owl:maxQualifiedCardinality "4" ;

15 owl:onClass :Tyre

151

A Foundations of the Semantic Web

] .

OWL provides a number of additional axioms, which are briefly summarised here [HPS11,
HKR10, W3C12, MPSP12]. Note, not all language axioms are supported in all OWL profiles
(see Section A.3.4).
For individuals beyond the assignments known from RDF it is possible to state that two indi-
viduals are different from each other (owl:differentFrom) or logically the same (owl:-
sameAs). It is possible to negate an assertion on an individual (owl:NegativePro-
pertyAssertion).
Additional to the expressions from RDF, RDFS and the already described restrictions it is
possible to describe equivalence of classes (owl:equivalentClass) and equivalence of
properties (owl:equivalentProperty), intersection (owl:intersectionOf), union
(owl:unionOf) and complement of classes (owl:complementOf). Properties can be
defined explicitly disjoint (owl:propertyDisjointWith). OWL provides means to ex-
press property chain axioms (owl:propertyChainAxiom), that is if an individual A is
related to B via some property p and B is related via an arbitrary number of properties s to
C then A related to C via an property m. Note, property chain axioms easily can lead to an
undecidable ontology. On data properties (owl:onDataType) restrictions can be defined,
e.g. to restrict the value range (xsd:minInclusive) or enumerations (owl:oneOf).
It might be the case that the language axioms of OWL are not sufficient to represent the re-
quired knowledge of a use case. Technologies exist which support more complex statements,
in particular for rules the SWRL [HPSB+04] is to be mentioned.

A.3.4 OWL Profiles
A number of OWL dialects and alternatives such as Datalog exist [KD11, PA16]. The main aim
of the different dialects is to manage the trade-off between expressibility and computational
complexity (see comparison in Figure A.4). In OWL three dialects [MCGH+12] have been
proposed and standardised to manage this trade-off, while still providing a standardised set of
supported semantics. It may be be noted, also visible from Figure A.4, many more dialects and
alternatives exist but not all are standardised.

• OWL 2 EL has been designed for representing knowledge with a large quantity of
assertional knowledge such as medical ontologies [HPS11]. The profile offers reas-
oning time, which increases polynomial with respect to the number of individuals
[MCGH+12] and specific reasoners are available with associated superior performance
in comparison to off-the-shelf OWL-DL reasoners;

• OWL 2 QL constitutes a profile with increased expressibility and complexity supporting
all most all features of the OWL 2 DL profile. It is designed for the efficient answering

152

A.4 SPARQL Protocol and RDF Query Language - SPARQL

of queries [HPS11]. The performance of dedicated reasoning algorithms for conjunct-
ive query answering is within LOGSPACE with respect to the number of assertions
[MCGH+12];

• OWL 2 RL is designed to accommodate most of the features of OWL 2 and offers sup-
port for rule like expressions and axioms. ’The ontology consistency, class expression
satisfiability, class expression subsumption, instance checking, and conjunctive query
answering problems can be solved in time that is polynomial with respect to the size of
the ontology.’ [MCGH+12].

Rules, LP DL

Complexity

RDFS

OWL DLP

OWL Lite-/ DHL

OWL Horst/ Tiny

OWL 2 RL

Datalog

OWL/WSML flight

OWL lite

OWL DL

SWRL

OWL full

Figure A.4: Comparison of the expressibility of OWL dialects and alternative languages; LP -
Linear Programming (adapted from Kiryakov and Damova [KD11]).

A.4 SPARQL Protocol and RDF Query
Language - SPARQL

SPARQL allows to query and manipulate RDF data [PS17]. SPARQL queries are send by some
client to a SPARQL endpoint storing the respective data set and the client receives in return the
result of that query. The query language is much inspired by existing query languages such as
SQL [ISO16], but is specifically adapted for the needs of SWT.
In Code A.6

153

A Foundations of the Semantic Web

Code A.6: Anatomy of a SPARQL query in SPARQL syntax [PS17].

0 PREFIX pre: <http://www.example.org/test#>
SELECT ?s
CONSTRUCT
INSERT
WHERE {

5 ?s rdf:type owl:Class .
}

a skeleton SPARQL query is listed, which highlights some features of SPARQL. It is custom,
but not mandatory, to capitalise SPARQL key words (e.g. INSERT, CONSTRUCT, WHERE).
However, it is suggested to be consistent with only upper case or lower case letters and one of
the conventions should be applied.
A query starts with the PREFIX section where for convenience namespaces can be prefixed
such that queries are better readable by humans. When the retrieval of instances is needed the
SELECT key word follows the prefixes and variables can be specified (e.g. ?s). All individuals
found, which comply to the within the WHERE clause specified graph pattern, are returned by
the hosting triple store. The CONSTRUCT and INSERT key words instead of SELECT allow
to specify a graph pattern, which is instantiated with the results of the executed query. The
newly generated graph can be inserted into the existing knowledge base through the INSERT
statement.
A comprehensive and thorough introduction into SPARQL, also including notions of query
efficiency, is given in Du Charme [DuC15]. The topic of federated queries from different triple
stores is treated in detail by Della Valle et al. [DVC11] and a discussion of triple stores as the
infrastructure to host the semantic web is given in Kiryakov and Damova [KD11]. It should be
noted that other possibilities to host RDF triples on the web are investigated [VSH+16].
It might be noted through its flexible and expressive features the SPARQL language is identified
and used to specify knowledge additionally to, e.g. OWL. In particular, its ability to add newly
generated triples in a sense of inferencing is important here. There exists attempts to integrate
knowledge expressed as SPARQL queries in knowledge-bases [KK08, Knu11].

A.5 Assumptions in the Semantic Web:
Unique Naming, Closed World, Open
World

Some assumptions hold when dealing with SWT, which differ from classical data base techno-
logies.
Unique Naming Assumption (UNA): In SWT such as OWL the unique naming assumption
does not hold. On a webscale an individual could have multiple URIs referencing to it. Two re-

154

A.6 Ontology Engineering Methods

sources with different identifiers could be considered as the same individual unless the opposite
is explicitly defined, .e.g through owl:differentFrom.
Open World Assumption (OWA): The open world assumption is related to the web scale of
SWT. If a fact is not known by the knowledge base it does not follow that the fact is false. The
reason for this is that the knowledge base might just does not have the respective information.
However, it is possible to close down the OWA by adding statements, which explicitly state
that a fact is false to the knowledge base. In engineering contexts the OWA of SWT might
cause problems and might not be applicable [BS16b].

A.6 Ontology Engineering Methods
The following definition for ontology is adopted from Studer et al. [SBF98], which builds on
an initial definition by Gruber [Gru93]:

Definition A.1 ’An ontology is a formal, explicit specification of a shared conceptualization.’
[SBF98].

Following this definition important characteristics of ontologies are, first, formality mean-
ing that ontologies ought to have a formal syntax and semantics to be machine-interpretable;
Second, explicit in the sense of that conclusion on the world can be drawn only if explicit con-
cepts of the world are available; Finally, a shared conceptualisation, which requires a number
of domain experts to reach a consensus, share and iteratively improve the found conceptual-
isation until some certain level of maturity is reached. By Definition A.1 ontologies qualify as
a knowledge base when being combined with individuals of concepts [NM01]. Several meth-
ods are proposed for ontology development [SKN16] here the two most relevant are briefly
summarised in the following two subsections.

A.6.1 Ontology Development 101
The ontology development 101 [NM01] provides guidance for domain experts to develop an
ontology. The method is explained by developing an OWL ontology but is not restricted to this
language. The authors emphasise, and it can be generalised to all modelling, that there does
not exist a single correct way to model a domain but there are always alternatives. Addition-
ally, iterations are a key component needed in ontology development as well as the developed
concepts and relationships should be close to the real world artefacts to be modelled.
The method embodies a step by step approach towards developing an ontology. The termino-
logy used in here is adapted to the current terms used for OWL ontologies: Concepts instead
of classes, properties instead of slots, role restrictions instead of facets, individuals instead of
instances [NM01]. The method proposes the following steps:

155

A Foundations of the Semantic Web

Step 1 is related to define the domain and scope of the intended ontology. It is quite helpful to
the knowledge engineer to wisely choose the boundaries of the respective domain of interest.
The definition of use cases is helpful to determine competency questions [GF95], which are
supposed to be answered by the knowledge base implementing the intended ontology.
In Step 2 the reuse of existing ontologies is stipulated. Besides reviewing literature related
to the respective domain(s), tools exist4 to help finding ontologies closely related to, or define
similar concepts of the intended domain. Ontology reuse is particularly interesting as high level
domain knowledge can be reused in different domains and is expressed using one ontology.
Knowledge-based services built on top hence can be applied across domains.
Step 3 basically is about generating a vocabulary of terms, which should be supported by the
intended ontology. It makes sense to describe propositional statements such as sentences about
the respective domain to extract concepts, relationships and individuals.
From the concepts compiled in Step 3 a concept hierarchy is defined in Step 4. The definition
of concepts and establishing a hierarchy among them should be defined carefully. Helpful
suggestions can be found in Noy & McGuinness [NM01].
In Step 5 using the remaining terms compiled in Step 3 relationships are defined among the
derived concepts. Often the terms for relationships constitute predicates in sentences.
Step 6 involves the definition of role restrictions on the defined properties encoding additional
domain knowledge. The possible definitions are dependent on the utilised modelling tech-
nology and for OWL they can include amongst others domain, range, value, existential, and
universal restrictions [HKR+04].
Finally, in Step 7 individuals of concepts in the concept hierarchy are defined. This may also
be the case when the developed ontology is used in an application. Individuals are considered
as assertional knowledge (see Section 2.2.4).
Again ontology development is an iterative process and it might be necessary to repeat singular
steps in between as well as all steps until the final result is achieved. Checking the defined
competency questions against the defined ontology provides a means for evaluation of the
resulting ontology.

A.6.2 METHONTOLOGY
METHONTOLOGY is an ontology engineering method proposed by Fernandéz et al. [FLGPJ97].
It constitutes a step by step approach guiding through the respective steps of designing an on-
tology from scratch and a set of tools for the specification and documentation.
The initial activity in (1) Specification is the preparation of the Ontology Requirement Spe-
cification Document (ORSD). The ORSD includes in natural language the domain and scope
of the intended ontology. The purpose should be clearly defined including potential use cases,

4 https://lov.okfn.org/, Last accessed: 22 October 2018

156

https://lov.okfn.org/

A.7 Tools for Developing SWT applications

and users and the level of formality of the document should be defined. The ORSD includes a
collection of terms deemed relevant for the modelling of the respective domains. Also, sources
of knowledge can be defined.
(2) Knowledge-Acquisition involves all activities of elicitating relevant knowledge from expert
interviews, text books, standards, brainstorming, etc.
In the (3) Conceptualisation step the actual definition of concepts, concept hierarchies, proper-
ties etc. takes place. The method provides here a helpful set of tools, which support the formal
definitions starting with a glossary of terms, concept classification trees and verb diagrams. A
set of tables allow the strict definition and documentation of the design.
(4) Integration involves all activities and their documentation in determining suitable ontolo-
gies to be reused. The integration document lists the terms, which will be reused from existing
ontologies.
In (5) Implementation the ontology is implemented using the respective tools for the chosen
technology.
Within the (6) Evaluation the designed and implemented ontology is evaluated against the
original ORSD document holding the information requirements of the intended ontology as
well as use cases for the evaluation.
The documents and tables generated throughout executing the method provide proper means
for the (7) Documentation of the design decisions. They need to be gathered and appropriately
stored for future iterations and to enable and stipulate the reuse of the designed ontology.

A.7 Tools for Developing SWT applications
A range of free and commercial tools exist for the rapid implementation of ontologies and
KBSs relying on SWT technologies. The most famous ontology engineering tool is the Protégé
ontology editor5 [Mus15] and another free editor is the NeOn Toolkit6, which is not developed
further any more as of writing. A commercial tool and suite for the engineering of ontologies
is the TopBraid Composer and associated tools by TopQuadrant7.
A number off-the-shelf performant OWL-DL reasoners exist. A main advantage of these is that
most of them directly integrate or are shipped with the Protégé ontology editor, e.g. HermiT
[GHM+14] and Pellet [SPG+07]. The performance for specific problems is compared in the
work of Dentler et al. [DCTTDK11]. For hosting large quantities of triple data specific data
bases exist which offer a variety of capabilities (see review in Luyen et al. [LTV+16]).

5 http://protege.stanford.edu, Last accessed: 22 October 2018
6 http://neon-toolkit.org/index.html, Last accessed: 22 October 2018
7 https://www.topquadrant.com/, Last accessed: 22 October 2018

157

http://protege.stanford.edu
http://neon-toolkit.org/index.html
https://www.topquadrant.com/

B Supplementary Ontology
Material

B.1 Specification of the Basic Datatype
Ontology

The following tables describe concepts and individuals defined in the BasicDatatypeOnt-
ology. The ontology is bootstrapped from the XSD specification [BM04]. For each basic
data type specified in the XSD specification a concept (Table B.1) and an individual is created
(Table B.2). The concept name is derived from capitalising the original XSD data type and the
individual name from converting all characters to lower case.

Table B.1: Concepts defined in the BasicDatatypeOntology.

Concept Super-Concept (rdfs-
:subClassOf)

Corresponding XSD data-
type (rdfs:seeAlso)

Anytype - anyType
Complextype Anytype complexType
Anysimpletype Anytype anySimpleType
Anyuri Anysimpletype anyURI
Base64binary Anysimpletype base64Binary
Boolean Anysimpletype boolean
Byte Short byte
Date Anysimpletype date
Datetime Anysimpletype dateTime
Decimal Anysimpletype decimal
Double Anysimpletype double
Duration Anysimpletype duration
Entities Entity ENTITIES
Entity Ncname ENTITY
Float Anysimpletype float

159

B Supplementary Ontology Material

Gday Anysimpletype gDay
Gmonth Anysimpletype gMonth
Gmonthday Anysimpletype gMonthDay
Gyear Anysimpletype gYear
Gyearmonth Anysimpletype gYearMonth
Hexbinary Anysimpletype hexBinary
Id Ncname ID
Idref Ncname IDREF
Idrefs Idref IDREFS
Int Long int
Integer Decimal integer
Language Token language
Long Integer long
Name Token Name
Ncname Name NCName
Negativeinteger Nonpositiveinteger negativeInteger
Nmtoken Token NMTOKEN
Nmtokens Nmtoken NMTOKENS
Nonnegativeinteger Integer nonNegativeInteger
Nonpositiveinteger Integer nonPositiveInteger
Normalizedstring String normalizedString
Notation Anysimpletype NOTATION
Positiveinteger Nonnegativeinteger positiveInteger
Qname Anysimpletype QName
Short Int short
String Anysimpletype string
Time Anysimpletype time
Token Normalizedstring token
Unsignedbyte Unsignedshort unsignedByte
Unsignedint Unsignedlong unsignedInt
Unsignedlong Nonnegativeinteger unsignedLong
Unsignedshort Unsignedint unsignedShort

Table B.2: Individuals defined in the BasicDatatypeOntology.

160

B.1 Specification of the Basic Datatype Ontology

Individual Concept (rdf:type) Corresponding XSD data-
type (rdfs:seeAlso)

anytype Anytype anyType
complextype Complextype complexType
anysimpletype Anysimpletype anySimpleType
anyuri Anyuri anyURI
base64binary Base64binary base64Binary
boolean Boolean boolean
byte Byte byte
date Date date
datetime Datetime dateTime
decimal Decimal decimal
double Double double
duration Duration duration
entities Entities ENTITIES
entity Entity ENTITY
float Float float
gday Gday gDay
gmonth Gmonth gMonth
gmonthday Gmonthday gMonthDay
gyear Gyear gYear
gyearmonth Gyearmonth gYearMonth
hexbinary Hexbinary hexBinary
id Id ID
idref Idref IDREF
idrefs Idrefs IDREFS
int Int int
integer Integer integer
language Language language
long Long long
name Name Name
ncname Ncname NCName
negativeinteger Negativeinteger negativeInteger
nmtoken Nmtoken NMTOKEN
nmtokens Nmtokens NMTOKENS
nonnegativeinteger Nonnegativeinteger nonNegativeInteger
nonpositiveinteger Nonpositiveinteger nonPositiveInteger
normalizedstring Normalizedstring normalizedString

161

B Supplementary Ontology Material

notation Notation NOTATION
positiveinteger Positiveinteger positiveInteger
qname Qname QName
short Short short
string String string
time Time time
token Token token
unsignedbyte Unsignedbyte unsignedByte
unsignedint Unsignedint unsignedInt
unsignedlong Unsignedlong unsignedLong
unsignedshort Unsignedshort unsignedShort

B.2 Additional Visualisation

162

B.2 Additional Visualisation

P
R

E
F

IX
 :

 <
h

tt
p

s:
//

w
3

id
.o

rg
/i

b
p
/S

ta
te

M
ac

h
in

eO
n

to
lo

g
y
#

>

ct
rl

:A
p

p
li

ca
ti

o
n
L

o
g
ic

:S
ta

te
M

ac
h
in

e

:S
ta

te
M

ac
h
in

eE
le

m
en

t

:A
ct

io
n

:T
ra

n
si

ti
o

n

:G
u
ar

d

:C
o

n
d

it
io

n

:E
v
en

t

:S
h
al

lo
w

:D
ee

p

:H
is

to
ry

:B
ra

n
ch

:R

eg
io

n

:J
o

in

:F
in

al
S

ta
te

:S
im

p
le

S
ta

te

:C
o

m
p

o
si

te

:P
se

u
d

o
S

ta
te

:S
y
n
ch

S
ta

te

:I
n
it

ia
lS

ta
te

:J
u
n
ct

io
n

:F
o

rk

:S
ta

te
 :c

o
n
ta

in
s

tr
an

si
ti

o
n
E

v
en

t

:g
u
ar

d
C

o
n
d

it
io

n

:s
o

u
rc

e

:t
ar

g
et

:t
ra

n
si

ti
o

n
A

ct
io

n

:e
n
tr

y

:d
o

:e
x
it

:t
ra

n
si

ti
o

n
G

u
ar

d

:c
o

n
d

it
io

n
E

x
p

r

ex
p

:E
x
p

re
ss

io
n

ct
rl

:O
u
tp

u
t

ct
rl

:l
o

g
ic

O
u
tp

u
t

:B
eh

av
io

u
r

ct
rl

:I
n
p

u
t

ct
rl

:l
o

g
ic

In
p

u
t

:a
ct

io
n
B

eh
av

io
u
r

ct
rl

:P
ar

am
et

er

ct
rl

:l
o

g
ic

P
ar

am
et

er

rd
fs

:L
it

er
al

:a
ss

ig
n
V

al
u
e

:A
ft

er

:W
h
en

:C
o

m
p

le
ti

o
n

:i
n
te

rn
al

:E
n
tr

y
P

o
in

t

:E
x
it

P
o

in
t

:T
er

m
in

at
e

:M
er

g
e

:S
p

li
t

:C
h
o

ic
e

:V
al

u
e

:h
as

L
it

er
al

V
al

u
e

Figure B.1: Full visualisation of the concepts and relationships of the
StateMachineOntology [SPS17, SWO19].

163

C Implementation

Within this chapter implementation specific code listings of the use cases presented in Chapter 5
are denoted.

C.1 Implementation of SPARQL Queries for
the Automated Rule-Based Verification
of State Graphs and Schedules

Here, SPARQL queries needed for the implementation of the knowledge-based method presen-
ted in Section 5.1 are denoted for reference. The archetype query listed in Code C.1 formalises
the rule-like knowledge to verify the correct behaviour of state graphs according to VDI 3814-6
as defined in Definition 5.1.

Code C.1: Parameterised SPARQL query to filter points in time with faulty state graph
behaviour [SPS17]. Placeholders enclosed by $$ are to be replaced for
configuration, for instance by the results presented in Table C.1 .

0 PREFIX [...]
SELECT ?pk ?timeValue
WHERE {
?pk a tb:PrimaryKey .
?pk tb:time ?timeValue .

5 ?pk tb:$vDPMeas$?yOutpValue .
?pk tb:$vDPState$?yStateValue .
FILTER(?yStateValue = "1.0" &&

?yOutpValue != "$vValue$") . }
ORDER BY ?timeValue

Here, a straightforward mapping mechanism is applied for the time series data. The time series
is organised in columns and each column name is used as a data type property to map to the
value of every entry, e.g. tb:time. An arbitrary prefix tb: is used.
The query listed in Code C.2 retrieves the required knowledge to configure the archetype query
listed in Code C.1. Example results are given in Table C.1 for state Off of the state graph
illustrated in Figure 5.2.

165

C Implementation

Code C.2: Query to retrieve necessary state graph description for the configuration of the
parametrised query listed in Code C.1 [SPS17].

0 PREFIX [...]
SELECT ?vState ?vDPState ?vDPMeas ?vValue
WHERE {

?vSG rdf:type SG:StateGraph ;
SG:contains vState .

5 ?vState rdf:type SG:State .
?vState SG:stateAction ?vAction .
?vAction rdf:type SG:Action .
?vAction SG:assignValue ?vValue .
?vAction ctrl:logicOutput ?vOutput .

10 ?vOutput rdf:type ctrl:Output .
?vOutput seas:connectsSystemThrough ?vConn .
?vDPMeas seas:connectsSystemThrough ?vConn .
?vDPMeas rdf:type seas:Communication ConnectionPoint .
?vState ctrl:logicOutput ?vOutputS .

15 ?vOutputS rdf:type ctrl:Output .
?vOutputS seas:connectsSystemThrough ?vConnS .
?vDPState seas:connectsSystemThrough ?vConnS .
?vDPState rdf:type seas:CommunicationConnectionPoint .

}

Table C.1: Example results retrieved from knowledge base for state Off by query listed in
Code C.2. See Section 5.1 and Figure 5.2.

vState vDPState vDPMeas vValue

:StateOff :r1.SG StateOff.active :r1.YMix ’0’
:StateOff :r1.SG StateOff.active :r1.YFan ’0’
:StateOff :r1.SG StateOff.active :r1.YPump ’0’

The archetype query listed in Code C.3 formalises the rule-like knowledge to verify the correct
behaviour of schedules as defined in Definition 5.2.

Code C.3: Parametrised SPARQL query to identify points in time with faulty schedule
behaviour.

0 PREFIX [...]
SELECT ?pk ?timeValue
WHERE {

?pk a tb:PrimaryKey .
?pk tb:$DPTime$?timeValue .

5 ?pk tb:$vDPMeas$?yOutpValue .
FILTER("$xValStart$" < ?timeValue && ?timeValue < "

$xValEnd$" && ?yOutpValue != "$valPoly$") .

166

C.1 Implementation of SPARQL Queries for the Automated Rule-Based Verification of State
Graphs and Schedules

}
ORDER BY ?timeValue

To retrieve the necessary knowledge for configuring the archetype query listed in Code C.3 the
query listed in Code C.4 can be used.

Code C.4: Query to retrieve necessary description of a schedule for the configuration of the
parametrised query listed in Code C.3.

0 PREFIX [...]
SELECT ?vSch ?vPer ?vDPTime ?vInt ?vDPMeas ?xValStart ?xValEnd

?vPolyDeg ?vPolyVal
WHERE{
?vSch rdf:type sch:Schedule .
?vSch ctrl:logicInput ?vIpt .

5 ?vIpt rdf:type ctrl:Input .
?vIpt seas:connectsSystemThrough ?vConnIpt .
?vDPTime seas:connectsSystemThrough ?vConnIpt .
?vDPTime rdf:type seas:CommunicationConnectionPoint .
?vIpt rdf:type ctrl:Input .

10 ?vSch ctrl:logicOutput ?vOtp .
?vOtp rdf:type ctrl:Output .
?vOtp seas:connectsSystemThrough ?vConnOtp .
?vDPMeas seas:connectsSystemThrough ?vConnOtp .
?vDPMeas rdf:type seas:CommunicationConnectionPoint .

15 ?vSch sch:hasPeriodicity ?vPer .
?vSch sch:hasInterval ?vInt .
Fetch start and end value of each interval
?vInt sch:hasStartPoint ?vSP .
?vSP sch:hasXCoordinate ?vXCooStart .

20 ?vXCooStart sch:hasLiteralValue ?xValStart .
?vInt sch:hasEndPoint ?vEP .
?vEP sch:hasXCoordinate ?vXCooEnd .
?vXCooEnd sch:hasLiteralValue ?xValEnd .
Fetch polynomial constants and degree

25 ?vInt sch:hasMathematicalFunction ?vMF .
?vMF sch:hasPolynomialConstant ?vPolyCon .
?vPolyCon sch:polyConstantLiteralValue ?vPolyVal .
?vPolyCon sch:polyConstantDegree ?vPolyDeg .

}

For convience the configured queries can be aggregated into one query, which is executed
against the knowledge stored in a triple store. For instance, Code C.5 lists a query where
configured instances of the queries in Code C.1 and Code C.3 are aggregated to be executed on
a triple store.

Code C.5: Aggregated query holding instances of configured queries to evaluate monitoring
data [SPS17].

0 PREFIX [...]

167

C Implementation

SELECT ?pk ?timeValue
WHERE {

{# Configured query 1}
UNION

5 {# Configured query 2}
UNION

{# ...}
}

C.2 Implementation of SPARQL queries for
the Knowledge-Enhanced Engineering
of Control Logic in Automation Systems

C.2.1 Implementation of SPARQL queries for the
Verification of Control Logic

Code C.6: SPARQL query checking if more then one transition leaves an initial state.

0 PREFIX [...]
INSERT {

[] br:initialStateCardinalityMismatch ?initialState .

}
5 WHERE {

{ SELECT ?initialState
WHERE {

?IniState rdf:type sm:InitialState .
?tran rdf:type sm:Transition .

10 ?tran sm:source ?initialState .
}
GROUP BY ?initialState
HAVING(COUNT(DISTINCT ?tran) != 1)

}
15 }

Code C.7: SPARQL query checking for faulty transitions outgoing from forks with guards.

0 PREFIX [...]
INSERT {

[] br:guardForkOutgoing ?tran .
}
WHERE {

5 ?fork a sm:Fork .
?tran a sm:Transition .
?tran sm:source ?fork .

168

C.2 Implementation of SPARQL queries for the Knowledge-Enhanced Engineering of
Control Logic in Automation Systems

?tran sm:transitionGuard ?gua .
}

C.2.2 Implementation of SPARQL queries for the
Simultaneous Verification of Different Control
Logic Types

Code C.8: SPARQL query which can be used to verify if the basic data type of a value
assigned to an output complies to the basic data type of a parameter compared to
this value in another control actor.

0 INSERT {
[] br:dataTypeMismatch ?par , ?ActVal .

}
WHERE {
?ActVal sm:hasLiteralValue ?LitVal .

5 ?ActBehav sm:assignValue ?ActVal .
?ActBehav ctrl:logicOutput ?outp .
?outp ctrl:isConnectedTo ?inp .
?var ctrl:logicInput ?Inp .
?var ll:nextElement/ll:nextElement ?ele .

10 ?ele ctrl:logicParameter ?par .
?par ctrl:hasDataType ?ParDataType .
?ParDataType rdfs:seeAlso ?derivedDataType .
BIND(DATATYPE(?LitVal) AS ?LitValDT)
FILTER(?LitValDT != ?derivedDataType)

15 }

Code C.9: SPARQL query checking if compared parameters and inputs used in expressions
match with regard to their quantity.

0 PREFIX [...]
INSERT {
[] br:quantityMismatch ?ele1mis ;

br:quantityMismatch ?ele2mis .
}

5 WHERE {
?a1 ctrl:hasQuantity ?q1 .
?a2 ctrl:hasQuantity ?q2 .

?ele1 ctrl:logicInput | ctrl:logicParameter ?a1 .
10 ?ele2 ctrl:logicInput | ctrl:logicParameter ?a2 .

?ele1 ll:nextElement ?ope .
?ope ll:nextElement ?ele2 .
?ope math:operator ?sym .

169

C Implementation

15 FILTER(strStarts(STR(?sym) , STR(REL:)))

BIND((IF(!sameTerm(?q1 , ?q2) , ?ele1 , "")) AS ?
ele1mis)

BIND((IF(!sameTerm(?q2 , ?q1) , ?ele2 , "")) AS ?
ele2mis)

}

C.2.3 Code examples for the Verification of Control
Logic Designs and Plant Data

Code C.10: Triples specifying the measurement range of temperature sensor ABB model
SensyTemp TSP121 [ABB18] using turtle syntax [BBLPC14].

0 @prefix [...] .
@prefix : <https://w3id.org/ibp/test#>

:B6-T-Sensor a owl:NamedIndividual , ssn:System , sosa:Sensor
, OC-mea:T-Sensor ;

rdfs:comment "Sensor in tank B6."@en ;
5 rdfs:seeAlso <http://bit.ly/2Eln615> ;

ssns:hasOperatingRange :B6-T-OpRa ;
ssns:hasSystemCapability :B6-T-Capa ;
sosa:observes :B6-T ;
seas:connectsAt :TIS602-CP .

10
:B6-T-OpRa rdf:type owl:NamedIndividual , ssns:OperatingRange

;
rdfs:comment "The conditions in which the B6 temperature

sensor is allowed to operate. Table 3.1 in technical
data sheet, option plastic."@en ;

ssns:inCondition [a ssns:Condition ,
schema:PropertyValue ;

15 schema:minValue -40.0 ;
schema:maxValue 120.0 ;
schema:unitCode om:degreeCelsius] .

:B6-T-Capa a owl:NamedIndividual , ssns:SystemCapability ;
20 rdfs:comment "The measurement range of ABB SensyTemp TSP121.

Tab 12.2 in technical data sheet option A6"@en ;
ssns:hasSystemProperty [a ssns:MeasurementRange ,

schema:PropertyValue ;
schema:minValue 0.0 ;
schema:maxValue 120.0 ;

25 schema:unitCode om:degreeCelsius] .

Connection
:B6-T rdf:type owl:NamedIndividual , sosa:ObservableProperty .

170

C.2 Implementation of SPARQL queries for the Knowledge-Enhanced Engineering of
Control Logic in Automation Systems

30 :TIS602-CP rdf:type owl:NamedIndividual , seas:
WireCommunicationConnectionPoint ;

dcterms:identifier "TIS602" ;
seas:connectsSystemsThrough :TIS602-Conn .

:TIS602-Conn rdf:type owl:NamedIndividual , seas:
WireCommunicationConnection .

35
Control actor description
:fB_StateMachine.TIS602 rdf:type owl:NamedIndividual , ctrl:

Input , seas:CommunicationConnectionPoint ;
ctrl:hasDataType BDO:float ;
seas:connectionPointOf :fB_StateMachine ;

40 dcterms:identifier "fB_StateMachine.TIS602" ;
seas:connectsSystemsThrough :TIS602-Conn .

Control logic with parameter
:test-Expr rdf:type exp:Expression , owl:NamedIndividual ;

45 mer:isComposedOf :ele0 , :ele1 , :ele2 .

:ele0 rdf:type ll:FirstElement .
:ele0 ll:nextElement :ele1 .
:ele1 ll:nextElement :ele2 .

50
:ele0 rdf:type owl:NamedIndividual , exp:ExpressionElement ,

exp:Operand , math:Variable ;
math:name "TIS602"ˆˆxsd:string ;
ctrl:logicInput :fB_StateMachine.TIS602 .

55 :ele1 rdf:type owl:NamedIndividual , exp:ExpressionElement ,
exp:Operator ;

math:operator REL:leq .

:ele2 rdf:type owl:NamedIndividual , exp:ExpressionElement ,
exp:Operand , math:Literal ;

math:value "298.0"ˆˆxsd:decimal ;
60 ctrl:logicParameter :ele2-Par .

Code C.11: SPARQL query identifying a mismatch between the upper bound of the
measurement range of a sensor and a parameter value which is compared to the
sensor output.

0 PREFIX [...]
INSERT {
?ele br:parameterValueLargerThanMeasurementRange ?sens .

}
WHERE {

5 ?sens a ssn:System .
?sens ssns:hasSystemCapability/ssns:hasSystemProperty ?MeaRa

.
?MeaRa a ssns:MeasurementRange .

171

C Implementation

?MeaRa schema:maxValue ?max .

10 ?sens seas:connectsAt/seas:connectsSystemsThrough ?conn .
?var ctrl:logicInput/seas:connectsSystemsThrough ?conn .
?var ll:nextElement ?Ope .
?Ope ll:nextElement ?ele .
?Ope math:operator ?sym .

15 FILTER(strStarts(STR(?sym) , STR(REL:)))
?ele math:value ?value .
FILTER(?max < ?value)

}

C.2.4 Code examples Demonstrating the
Bidirectional Exchange and Incremental
Verification

Code C.12: Source code of pump safety feature in ST syntax [IEC14a].

0 FUNCTION_BLOCK FB_PUM901_Safety
VAR_INPUT

PIS901 : LREAL := 0.0 ;
bPUM901 : BOOL := FALSE ;

END_VAR
5 VAR_OUTPUT

bPUM901_SAFE : BOOL := FALSE ;
END_VAR

bPUM901_SAFE := bPUM901 = TRUE AND NOT (PIS901 > 200000) ;
END_FUNCTION_BLOCK

Code C.13: Triples representing pump safety feature in turtle syntax [BBLPC14].

0
:FB_PUM901_Safety rdf:type owl:NamedIndividual , ctrl:

ControlActor ;
ctrl:hasApplicationLogic :FB_PUM901_Safety-ApplicationLogic

;
ctrl:hasInput :FB_PUM901_Safety-PIS901 ,

:FB_PUM901_Safety-bPUM901 ;
5 ctrl:hasOutput :FB_PUM901_Safety-bPUM901_SAFE ;

ctrl:hasParameter :FB_PUM901_Safety-ExpEle-2-Par ,
:FB_PUM901_Safety-ExpEle-7-Par .

:FB_PUM901_Safety-PIS901 rdf:type owl:NamedIndividual , ctrl:
Input ;

10 ctrl:hasUnit om:pascal ;
ctrl:hasQuantity om:Pressure ;
ctrl:hasDataType BDO:double .

172

C.2 Implementation of SPARQL queries for the Knowledge-Enhanced Engineering of
Control Logic in Automation Systems

:FB_PUM901_Safety-bPUM901 rdf:type owl:NamedIndividual , ctrl:
Input ;

15 ctrl:hasBasicType BDO:boolean .

:FB_PUM901_Safety-bPUM901_SAFE rdf:type owl:NamedIndividual ,
ctrl:Output ;

ctrl:hasBasicType BDO:boolean .

20 :FB_PUM901_Safety-ApplicationLogic rdf:type owl:
NamedIndividual , tfe:MISO ;

tfe:hasExpression :FB_PUM901_Safety-Expr .

:FB_PUM901_Safety-ExpEle-0 rdf:type owl:NamedIndividual , ll:
FirstElement , math:Variable , exp:ExpressionElement , exp
:Operand ;

ll:nextElement :FB_PUM901_Safety-ExpEle-1 ;
25 math:name "bPUM901"ˆˆxsd:string ;

ctrl:logicInput :FB_PUM901_Safety-bPUM901 .

:FB_PUM901_Safety-ExpEle-1 rdf:type owl:NamedIndividual , exp:
ExpressionElement , exp:Operator ;

ll:nextElement :FB_PUM901_Safety-ExpEle-2 ;
30 math:operator REL:eq .

:FB_PUM901_Safety-ExpEle-2 rdf:type owl:NamedIndividual , math
:Literal , exp:ExpressionElement , exp:Operand ;

ll:nextElement :FB_PUM901_Safety-ExpEle-3 ;
math:value "True" ;

35 ctrl:logicParameter :FB_PUM901_Safety-ExpEle-2-Par .

:FB_PUM901_Safety-ExpEle-2-Par rdf:type owl:NamedIndividual ,
ctrl:Parameter .

:FB_PUM901_Safety-ExpEle-3 rdf:type owl:NamedIndividual , exp:
ExpressionElement , exp:Operator ;

40 ll:nextElement :FB_PUM901_Safety-ExpEle-4 ;
math:operator LOG:and .

:FB_PUM901_Safety-ExpEle-4 rdf:type owl:NamedIndividual , exp:
ExpressionElement , exp:Operator ;

ll:nextElement :FB_PUM901_Safety-ExpEle-5 ;
45 math:operator LOG:not .

:FB_PUM901_Safety-ExpEle-5 rdf:type owl:NamedIndividual , math
:Variable , exp:ExpressionElement , exp:Operand ;

ll:nextElement :FB_PUM901_Safety-ExpEle-6 ;
math:name "PIS901"ˆˆxsd:string ;

50 ctrl:logicInput :FB_PUM901_Safety-PIS901 .

:FB_PUM901_Safety-ExpEle-6 rdf:type owl:NamedIndividual , exp:
ExpressionElement , exp:Operator ;

173

C Implementation

ll:nextElement :FB_PUM901_Safety-ExpEle-7 ;
math:operator REL:gt .

55
:FB_PUM901_Safety-ExpEle-7 rdf:type owl:NamedIndividual , math

:Literal , exp:ExpressionElement , exp:Operand ;
math:value "200000" ;
ctrl:logicParameter :FB_PUM901_Safety-ExpEle-7-Par .

60 :FB_PUM901_Safety-ExpEle-7-Par rdf:type owl:NamedIndividual ,
ctrl:Parameter ;

ctrl:hasUnit om:pascal ;
ctrl:hasQuantity om:Pressure ;
ctrl:hasBasicType BDO:double .

65
:FB_PUM901_Safety-Expr rdf:type owl:NamedIndividual , exp:

Expression ;
mereology:isComposedOf :FB_PUM901_Safety-ExpEle-0 ,
:FB_PUM901_Safety-ExpEle-1 ,
:FB_PUM901_Safety-ExpEle-2 ,

70 :FB_PUM901_Safety-ExpEle-3 ,
:FB_PUM901_Safety-ExpEle-4 ,
:FB_PUM901_Safety-ExpEle-5 ,
:FB_PUM901_Safety-ExpEle-6 ,
:FB_PUM901_Safety-ExpEle-7 .

Code C.14: Source code of pump safety feature in Modelica [Mod17b] syntax.

0 block FB_PUM901_Safety
Modelica.Blocks.Interfaces.RealInput PIS901 ;

Modelica.Blocks.Interfaces.BooleanInput bPUM901 ;
Modelica.Blocks.Interfaces.BooleanOutput bPUM901_SAFE ;

algorithm
5 bPUM901_SAFE := bPUM901 = TRUE AND NOT (PIS901 > 200000) ;
end FB_PUM901_Safety ;

174

D Namespaces

The namespaces utilised in texts and illustrations of this work are denoted in this Chapter.
Table D.1 presents prefixes used, which are recommendations of the W3C. Table D.2 presents
prefixes from reused ontologies. Table D.3 presents prefixes used, which are defined by the au-
thor for ontologies representing terminological knowledge and Table D.4 for assertional know-
ledge.

Table D.1: Prefixes and namespaces of W3C recommendations used in this work.

Prefix URI
rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#

rdfs http://www.w3.org/2000/01/rdf-schema#

xsd http://www.w3.org/2001/XMLSchema#

owl http://www.w3.org/2002/07/owl#

sosa http://www.w3.org/ns/sosa/

ssn http://www.w3.org/ns/ssn/

ssns http://www.w3.org/ns/ssn/systems/

Table D.2: Prefixes and namespaces of reused ontologies.

Prefix URI
om http://www.ontology-of-units-of-measure.org/reso

urce/om-2/

schema http://schema.org/

hto http://vcharpenay.github.io/hto/hto.xml#

seas https://w3id.org/seas/

ifc http://www.buildingsmart-tech.org/ifcOWL/IFC4_

ADD2#

175

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2001/XMLSchema#
http://www.w3.org/2002/07/owl#
http://www.w3.org/ns/sosa/
http://www.w3.org/ns/ssn/
http://www.w3.org/ns/ssn/systems/
http://www.ontology-of-units-of-measure.org/resource/om-2/
http://www.ontology-of-units-of-measure.org/resource/om-2/
http://schema.org/
http://vcharpenay.github.io/hto/hto.xml#
https://w3id.org/seas/
http://www.buildingsmart-tech.org/ifcOWL/IFC4_ADD2#
http://www.buildingsmart-tech.org/ifcOWL/IFC4_ADD2#

D Namespaces

math http://numerateweb.org/vocab/math#

REL http://www.openmath.org/cd/relation1#

ARI http://www.openmath.org/cd/arith1#

LOG http://www.openmath.org/cd/logic1#

mer file:/C:/OntoCAPE/meta_model/mereology/mereology.o

wl#

ll file:/C:/OntoCAPE/meta_model/data_structures/linke

d_list.owl#

OC-mea file:/C:/OntoCAPE/OntoCAPE/chemical_process_syste

m/CPS_realization/process_control_equipment/measur

ing_instrument.owl#

OC-equ file:/C:/OntoCAPE/chemical_process_system/CPS_real

ization/plant_equipment/apparatus.owl#

Table D.3: Prefixes and namespaces of ontologies describing terminological knowledge of a
domain (TBox) defined and used in this thesis.

Prefix URI
ctrl https://w3id.org/ibp/CTRLont#

sm https://w3id.org/ibp/StateMachineOntology#

SG https://w3id.org/ibp/StateGraphOntology#

sch https://w3id.org/ibp/ScheduleOntology#

seq https://w3id.org/ibp/SequenceControlOntology#

tpd https://w3id.org/ibp/TwoPointDiscreteOntology#

exp https://w3id.org/ibp/ExpressionOntology#

BDO https://w3id.org/ibp/BasicDatatypeOntology#

tfe https://w3id.org/ibp/TransferFunctionElementOntolo

gy#

tb https://w3id.org/ibp/example#

br https://w3id.org/ibp/BadRelationsOntology#

176

http://numerateweb.org/vocab/math#
http://www.openmath.org/cd/relation1#
http://www.openmath.org/cd/arith1#
http://www.openmath.org/cd/logic1#
file:/C:/OntoCAPE/meta_model/mereology/mereology.owl#
file:/C:/OntoCAPE/meta_model/mereology/mereology.owl#
file:/C:/OntoCAPE/meta_model/data_structures/linked_list.owl#
file:/C:/OntoCAPE/meta_model/data_structures/linked_list.owl#
file:/C:/OntoCAPE/OntoCAPE/chemical_process_system/CPS_realization/process_control_equipment/measuring_instrument.owl#
file:/C:/OntoCAPE/OntoCAPE/chemical_process_system/CPS_realization/process_control_equipment/measuring_instrument.owl#
file:/C:/OntoCAPE/OntoCAPE/chemical_process_system/CPS_realization/process_control_equipment/measuring_instrument.owl#
file:/C:/OntoCAPE/chemical_process_system/CPS_realization/plant_equipment/apparatus.owl#
file:/C:/OntoCAPE/chemical_process_system/CPS_realization/plant_equipment/apparatus.owl#
https://w3id.org/ibp/CTRLont#
https://w3id.org/ibp/StateMachineOntology#
https://w3id.org/ibp/StateGraphOntology#
https://w3id.org/ibp/ScheduleOntology#
https://w3id.org/ibp/SequenceControlOntology#
https://w3id.org/ibp/TwoPointDiscreteOntology#
https://w3id.org/ibp/ExpressionOntology#
https://w3id.org/ibp/BasicDatatypeOntology#
https://w3id.org/ibp/TransferFunctionElementOntology#
https://w3id.org/ibp/TransferFunctionElementOntology#
https://w3id.org/ibp/example#
https://w3id.org/ibp/BadRelationsOntology#

Table D.4: Namespaces of ontologies describing assertional knowledge of examples (ABox)
defined and used in this thesis.

Figure URI
Figure 4.5 https://w3id.org/ibp/CTRLontEval#

Figure 4.8 https://w3id.org/ibp/ExpressionOntologyEval#

Figure 4.11 https://w3id.org/ibp/ScheduleOntologyEval#

Figure 4.14 https://w3id.org/ibp/SequenceControlOntologyEval#

Figure 4.17 https://w3id.org/ibp/TwoPointDiscreteOntologyEval#

Figure 4.20 https://w3id.org/ibp/TransferFunctionElementOntEv

al#

Figure 4.24b https://w3id.org/ibp/StateMachineOntologyEval#

Figure 4.27 https://w3id.org/ibp/StateGraphOntologyEval#

Figure 5.3 https://w3id.org/ibp/InstancesAutoVerification#

Figure 5.13 https://w3id.org/ibp/InstancesSensorExerpt#

Figure 5.15 https://w3id.org/ibp/InstancesTwoTranFromIni#

Figure 5.16 https://w3id.org/ibp/InstancesGuardFromFork#

Figure 5.17 https://w3id.org/ibp/InstancesQuantityMismatch#

Figure 5.18 https://w3id.org/ibp/InstancesAcrossControl#

Figure 5.19 https://w3id.org/ibp/InstancesPlantData#

177

https://w3id.org/ibp/CTRLontEval#
https://w3id.org/ibp/ExpressionOntologyEval#
https://w3id.org/ibp/ScheduleOntologyEval#
https://w3id.org/ibp/SequenceControlOntologyEval#
https://w3id.org/ibp/TwoPointDiscreteOntologyEval#
https://w3id.org/ibp/TransferFunctionElementOntEval#
https://w3id.org/ibp/TransferFunctionElementOntEval#
https://w3id.org/ibp/StateMachineOntologyEval#
https://w3id.org/ibp/StateGraphOntologyEval#
https://w3id.org/ibp/InstancesAutoVerification#
https://w3id.org/ibp/InstancesSensorExerpt#
https://w3id.org/ibp/InstancesTwoTranFromIni#
https://w3id.org/ibp/InstancesGuardFromFork#
https://w3id.org/ibp/InstancesQuantityMismatch#
https://w3id.org/ibp/InstancesAcrossControl#
https://w3id.org/ibp/InstancesPlantData#

List of Figures

1.1 ’Variations of deuterium (δD) in antarctic ice, which is a proxy for local tem-
perature, and the atmospheric concentrations of the greenhouse gases carbon di-
oxide (CO2), methane (CH4), and nitrous oxide (N2O) in air trapped within the
ice cores and from recent atmospheric measurements. Data cover 650,000 years
and the shaded bands indicate current and previous interglacial warm periods’
[SQM+07]. Source: Figure TS.1 in Solomon et al.: Contribution of Working
Group I to the Fourth Assessment Report of the Intergovernmental Panel on Cli-
mate Change, Cambridge University Press. 2

1.2 Layered structure of cyber-physical systems (adapted from Sztipanovits et al.
[SKK+12]). 4

1.3 Paradigm change in automation domain [KDKO14] from hierarchical structures
(upper left, [ISO04b], adapted; lower left, [IEC13d], adapted) to a two layered
approach (right, e.g. Vogel-Heuser et al. [VHDB13]), where intelligent devices
communicate with each other and applications through a semantic integration
layer. ERP - Enterprise Resource Planning, MES - Manufacturing Execution
System, PLC - Programmable Logic Controller, I/O - Input/ Output. 5

1.4 Control diagrams [ISO04b] are a method to visualise control logic knowledge in
a very condensed manner. (Source: [VDI07], Wiedergegeben mit der Erlaubnis
des VDI e.V., engl.: Reproduced with permission of the German Association of
Engineers). 9

1.5 Example for programming a programmable logic controller in Beckhoff Twin-
CAT 3.1 [Bec18] using the Sequential Function Chart (SFC) formalism [IEC14a].
Interface variables can be defined and signals from sensors or actuators can be
connected to these (I/O). Reusable blocks of control logic are separated in Pro-
gram Organizational Units (POUs). 10

1.6 Overview of the organisation and structure of this thesis. BAS - Building Auto-
mation Systems, IAS - Industrial Automation Systems. 13

2.1 Structure and terms of a controller for closed-loop control (adapted from IEC 60050-
351 [IEC13a]). The final controlling element is defined to be part of the controlled
system. Abbreviated characters are summarised in Table 2.1 and are described in
the text. 17

179

List of Figures

2.2 Structure and terms of a controller for open-loop control (adapted from IEC 60050-
351 [IEC13a]). The final controlling element is defined to be part of the controlled
system. Abbreviated characters are summarised in Table 2.1 and are described in
the text. 18

2.3 The differentiation of Building Automation Systems (BAS) into three layers ac-
cording to the standard ISO 16484-2 [ISO04b]. Sensors and actuators (circles)
at the field layer are connected (lines) via a computer network to BAS devices
(rectangles), which also can be connected via the internet (cloud). 21

2.4 The structure of industrial automation systems into five hierarchically separated
layers [IEC13d]. ERP - Enterprise Resource Planning, MES - Manufacturing
Execution System, SCADA - Supervisory Control and Data Acquisition, PLC -
Programmable Logic Controller, I/O - Input/ Output. 23

2.5 Future architecture of factory automation systems (adapted from Foehr et al.
[FVC+17]). ERP - Enterprise Resource Planning, MES - Manufacturing Exe-
cution System, SCADA - Supervisory Control and Data Acquisition, PLC - Pro-
grammable Logic Controller, CNC - Computer Numerical Control. 23

2.6 Example illustrating the difference between data, information and knowledge.
Tabular data of a time series can be combined with contextual facts (e.g. unit is
Celsius) to information for interpretation. Knowledge expressed as a rule allows
to decide whether the freezing point of fresh water is reached or not (Stair like
structure adapted from North [Nor98]). 25

2.7 Schema of the ASHEN model [Sno00] to differentiate knowledge categories into
implicit and explicit knowledge (adapted from VDI 5610-1 [VDI09b]). 26

2.8 A generic architecture of a knowledge-based system (adapted, simplified from
Runde [Run11]). 28

2.9 Overview on the findings drawn from the SOA analysis. KR - Knowledge Rep-
resentation, KBS - Knowledge-Based System, SWT - Semantic Web Technolo-
gies, ThinkHome - [RKIK11], SAREF - [DdHR15], PLCopen XML - [PLC09].
Layout adapted from Wicaksono [Wic16]. 49

3.1 Overview of the defined general requirements, requirements related to the de-
velopment of automated, knowledge-based methods and the development of se-
mantic models to explicitly model domain knowledge on control logic. OWL -
[W3C12]. 54

4.1 Established nomenclature for the graphical representation of OWL [W3C12] im-
plementations in this thesis [SPS17]. 63

4.2 Layered architecture, where the automatic control domain (Layer 0) can be ex-
tended with domain descriptions of the control logic domain (Layer 1). 64

180

List of Figures

4.3 Class diagram of the semantic model of the automatic control domain. 65
4.4 Concepts and relationships of CTRLont [SPS17, adapted]. 67
4.5 Excerpt of instances describing two control actors R1 and R2 (upper part), their

logical topology and the annotation of Thcr, a heating coil return temperature of
an air handling unit (see Section 5.1). 68

4.6 Class diagram of a model to describe mathematical expressions. 70
4.7 Classes and relationships as defined in the ExpressionOntology [SWO19]. . 71
4.8 Excerpt of instances to describe the expression ’R1 Inp <= 0.0’. 72
4.9 Class diagram of a model to describe schedules. 73
4.10 Class and relationships of the ScheduleOntology (adapted from [SPS17]). . 74
4.11 Excerpt of instances to represent a schedule. 74
4.12 Class diagram of a model to describe a sequence control. 75
4.13 Concepts and relationships of the SequenceControlOntology. 76
4.14 Excerpt of instances (below dashed line) of interval 18 - 24 degree Celsius (above

dashed line). 77
4.15 Class diagram of a model to describe discrete two point control. 78
4.16 Concepts and relationships of the TwoPointDiscreteOntology [SWO19]. . 78
4.17 Schema and instances of a two point discrete element. 79
4.18 Class diagram of a semantic model to describe transfer function elements. 79
4.19 Concepts and relationships of the TransferFunctionElementOntology

[SWO19]. 80
4.20 Excerpt of individuals to represent a P-element [Abe10] and its transfer function

y = K ·u. 80
4.21 Class diagram of a model to describe UML state machines [Obj15a]. 81
4.22 Class diagram of the taxonomy of a model to describe state machines from the

UML. 82
4.23 Concepts and relationships of the StateMachineOntology [SPS17, SWO19].

Subclasses of the State and Event classes omitted. 83
4.24 Excerpt of instances of a UML statemachine [Obj15a] described using the State-

MachineOntology. 83
4.25 Class diagram of a model to describe state graphs according to VDI 3814-

6 [VDI08]. 84
4.26 Classes and relationships to formalise state graphs using the web ontology lan-

guage according to the standard VDI 3814-6 [VDI08] [SPS17]. 85
4.27 A simple state graph (left of dashed line) represented by an excerpt of instances

(right of dashed line). The modelling of the expression is illustrated in Figure 4.8. 86

5.1 Flowchart to describe the procedure to execute the automated rule-based verific-
ation of designed control logic in building automation systems [SPS17]. 93

181

List of Figures

5.2 Control diagram of the studied air handling unit according to ISO 16484 [ISO11].
YSce, YMix, YFan, YPump - Normalised output signal from schedule, mixing box
damper flap, fan and pump, respecitvely; Thcr - Heating coil return water temper-
ature, Toa - Outdoor air temperature [SPS17]. 94

5.3 Excerpt of instances as considered in this use case (see Figure 5.2). Adapted from
Schneider et al. [SPS17]. 96

5.4 Visualisation of the procedure to detect faulty behaviour in state graphs. The as-
designed state graph is formalised and stored in a triple store. This knowledge
can then be used for the detection of faulty points in time. YPump - Normalised
output signal from pump, YOff - Normalised output signal of state off, SPARQL
- [PS17]. 97

5.5 Visualisation of the procedure to detect faulty behaviour in schedules. The as-
designed schedule is formalised and stored in a triple store. This knowledge can
then be used for the detection of faulty points in time. YSce - Normalised output
signal from schedule, SPARQL - [PS17]. 98

5.6 Results from scenario with faulty state graph behaviour; Subplots numbered from
the top to bottom of the graph: (1) Activity of state Off ; (2) Correct normal-
ised control signals of the pump YPump, mixing box damper flap YMix, fans YFan

and schedule YSce; (3) Faulty normalised signals as analysed in the scenario; (4)
Faulty points in time for the schedule (DeviationSchedule), the state graph (YPump

!= 0) and the OSS (OSS). 99
5.7 Results from the scenario with faulty schedule behaviour; Top graph: Correct

YSce,Corr and faulty YSce,F normalised control signal of schedule. Bottom graph:
Faulty points in time for deviation of schedule (DeviationSchedule), the verifica-
tion of the correct execution of state off (YPump != 0) and the OSS (OSS). 100

5.8 Common identified problems in the engineering of control logic in automation
systems [Vya13, VHDF+14, VHFST15]. (1) Verification of single types of con-
trol logic without plant data; (2) unidirectional code generation in model-based
engineering; (3) Heterogeneity of tools and formats. 101

5.9 Knowledge-based system as designed for this use case to enable automated
knowledge-based methods in response to the identified problems (see Figure 5.8). 103

5.10 Pipes and instrumentation diagram of the studied batch plant [KSB01]. Reprinted
from European Journal of Control, Vol. 7, No. 4, Kowaleski, S., Stursberg, O.,
Bauer, N., An Experimental Batch Plant as a Test Case for the Verification of
Hybrid Systems, pp. 366-381, Copyright 2001, with permission from Elsevier
under license number 4354061510201. 105

5.11 UML state machine [Obj15a] specifying the automated state-based control of the
AST batch plant [KSB01] (adapted from Poschlad et al. [PRPO06]) [SWO19]. . . 106

182

List of Figures

5.12 Ontology modules to integrate explicit formal models of control logic with adja-
cent domains, such as sensors, actuators and plants from chemical process engin-
eering [SWO19]. 107

5.13 Excerpt of instances for describing temperature sensor TI503 in tank B5 of the
studied batch plant (see piping and instrumentation diagram in Figure 5.10)
[SWO19]. 108

5.14 Overview on the tools, formats and services utilised in this use case [SWO19].
The utilised tools and formats are explained in the text. 109

5.15 Excerpt of instances of a faulty UML state machine design, where more then one
transition leaves the initial state. 110

5.16 Excerpt of instances of a faulty UML state machine, where guards are associated
to transitions leaving a fork. 111

5.17 Excerpt of instances in a transfer function element, where a variable and a para-
meter with different quantities are compared. 112

5.18 Verification across control logic types, where the basic data type of a value as-
signed in action to an output is compared to a parameter in the control logic
specification of a down stream control actor. 113

5.19 Based on the formal domain description it is possible to verify whether a para-
meter compared to a sensor measurement is within the bounds of its measurement
range. 114

5.20 ’Schema of the scenario to evaluate the support of bidirectional information ex-
change and incremental verification. The designed control logic (1) is exported
to the knowledge-base, verified (2) and then exported to the target PLC (3). New
features can be added and are exported (4) to the knowledge base and (next in-
crement) verified (5) until again Modelica code (6) is generated’ [SWO19] 115

5.21 Overview on the alignment of requirements and contributions provided in this
thesis. 117

A.1 The Semantic Web stack: A conceptual model and structure for technologies
associated to the semantic web (adapted from Harth et al. [HMS11]). Acronyms
are explained in the text. 144

A.2 Statements in RDF are triples in the form subject, predicate and object. Each is
identified by its URI. Resources (ellipses) can be related to other resources or to
literals (squares) by a property (arrows). 147

A.3 Figure illustrating the representation of the assertional knowledge (ABox) through
individuals, and terminological knowledge (TBox) in OWL. Graphical nomen-
clature as defined in Figure 4.1, p. 63. 148

A.4 Comparison of the expressibility of OWL dialects and alternative languages; LP
- Linear Programming (adapted from Kiryakov and Damova [KD11]). 153

183

List of Figures

B.1 Full visualisation of the concepts and relationships of the StateMachine-

Ontology [SPS17, SWO19]. 163

184

List of Tables

2.1 Description of abbreviated characters used in Figure 2.1. 18
2.2 Results from the analysis of knowledge-based methods related to the engineering

and operation of control logic in automation systems. KR - Knowledge Rep-
resentation, KE - Knowledge Engineering, OWL - [W3C12], SWRL, SPARQL,
Pellet - [SPG+07], JESS - [Hil03], Hermit - [GHM+14], ifcOWL - [PT16], BAS
- Building Automation Systems, UML - Unified Modeling Language. 31

2.3 Criteria for the analysis of related work; Criterion fulfilled (+), criterion partly
fulfilled (◦), criterion not fulfilled (-). CSV - Comma Separated Value, OWL -
[W3C12]. Layout adapted from Dibowski [Dib13]. 35

2.4 Results from the analysis of data formats related to the modelling of building
automation systems. EXPRESS - [ISO04a], XML - [BPSM+06], OWL - [W3C12]. 35

2.5 Results (1/3) from the analysis of ontologies related to the modelling of building
automation systems. OWL - [W3C12]. 38

2.6 Results (2/3) from the analysis of ontologies related to the modelling of building
automation systems. OWL - [W3C12]. 39

2.7 Results (3/3) from the analysis of ontologies related to the modelling of building
automation systems. OWL - [W3C12]. 40

2.8 Results from the analysis of data formats related to the modelling of industrial
automation systems, XML - [BPSM+06], UML - [Obj15a]. 42

2.9 Results from the analysis of ontologies related to the modelling of manufacturing
automation systems. OWL - [W3C12]. 44

2.10 Results from the analysis of ontologies related to the modelling of process auto-
mation systems, XML - [BPSM+06], OWL - [W3C12]. 45

2.11 Results from the analysis of generic ontologies related to the modelling of auto-
mation systems. OWL - [W3C12]. 45

2.12 Results from the analysis of other formats and ontologies related to the formal
modelling of control logic. XML - [BPSM+06], OWL - [W3C12]. 47

4.1 Attribute types and their description used for the definition of the semantic models. 60
4.2 The mapping of UML modelling concepts [Obj15a] to OWL [MPSP12] as estab-

lished in this thesis. 62

185

List of Tables

4.3 Statistics of the OWL implementations of the semantic models presented in
Chapter 4 reported by the Protégé tool [Mus15], DL - Description Logics. 89

A.1 Syntax and semantics of ALC; adapted from Petnga & Austin [PA16] and Hor-
rocks et al. [HPS11]. 146

B.1 Concepts defined in the BasicDatatypeOntology. 159
B.2 Individuals defined in the BasicDatatypeOntology. 160

C.1 Example results retrieved from knowledge base for state Off by query listed in
Code C.2. See Section 5.1 and Figure 5.2. 166

D.1 Prefixes and namespaces of W3C recommendations used in this work. 175
D.2 Prefixes and namespaces of reused ontologies. 175
D.3 Prefixes and namespaces of ontologies describing terminological knowledge of a

domain (TBox) defined and used in this thesis. 176
D.4 Namespaces of ontologies describing assertional knowledge of examples (ABox)

defined and used in this thesis. 177

186

List of Code Listings

4.1 Universal restriction on property hasDataType in class AnnotatedEle-
ment defined in CTRLont. The other restrictions of the class are omitted here
for brevity. 66

4.2 Closure axiom for the class ControlActor on property hasApplication-
Logic defined in CTRLont. 67

4.3 Value restriction on the data type property hasNumbering in turtle syntax
[BBLPC14] to automatically classify an initial state in a state graph as defined
in the StateGraphOntology. 85

A.1 Example for the definition of the abstract class FireSafety via a value re-
striction. In turtle syntax [BBLPC14]. 150

A.2 Example for a universal restriction. In turtle syntax [BBLPC14]. 150
A.3 Example for an existential restriction. In turtle syntax [BBLPC14]. 151
A.4 Example for a closure axiom. In turtle syntax [BBLPC14]. 151
A.5 Example for defining qualified cardinality restrictions. In turtle syntax [BBLPC14].

. 151
A.6 Anatomy of a SPARQL query in SPARQL syntax [PS17]. 154

C.1 Parameterised SPARQL query to filter points in time with faulty state graph
behaviour [SPS17]. Placeholders enclosed by $$ are to be replaced for config-
uration, for instance by the results presented in Table C.1 165

C.2 Query to retrieve necessary state graph description for the configuration of the
parametrised query listed in Code C.1 [SPS17]. 165

C.3 Parametrised SPARQL query to identify points in time with faulty schedule
behaviour. 166

C.4 Query to retrieve necessary description of a schedule for the configuration of
the parametrised query listed in Code C.3. 167

C.5 Aggregated query holding instances of configured queries to evaluate monitor-
ing data [SPS17]. 167

C.6 SPARQL query checking if more then one transition leaves an initial state. . . 168

187

List of Code Listings

C.7 SPARQL query checking for faulty transitions outgoing from forks with guards.
. 168

C.8 SPARQL query which can be used to verify if the basic data type of a value
assigned to an output complies to the basic data type of a parameter compared
to this value in another control actor. 169

C.9 SPARQL query checking if compared parameters and inputs used in expres-
sions match with regard to their quantity. 169

C.10 Triples specifying the measurement range of temperature sensor ABB model
SensyTemp TSP121 [ABB18] using turtle syntax [BBLPC14]. 170

C.11 SPARQL query identifying a mismatch between the upper bound of the meas-
urement range of a sensor and a parameter value which is compared to the
sensor output. 171

C.12 Source code of pump safety feature in ST syntax [IEC14a]. 172
C.13 Triples representing pump safety feature in turtle syntax [BBLPC14]. 172
C.14 Source code of pump safety feature in Modelica [Mod17b] syntax. 174

188

List of Acronyms

Notation Description
δD Deuterium
CTRLont Control Ontology [SPS17]

AEC/FM Architecture, Engineering, Construction and Facility Management
AHU Air Handling Unit
AI Artificial Intelligence
AutomOnto Automation Ontology [NSMŠ15]

BACnet Building Automation and Control Networks, network protocol [ISO17a]
BAS Building Automation Systems
BCK Building Control Knowledge [CTM16]
BDO Basic Datatype Ontology, see Section B.1
BIM Building Information Modeling [ETSL11]

CAEX Computer Aided Engineering Exchange [FD04]
CASCADE CASCADE ICT for Energy Efficient Airports a research project funded by

the European Commission under grant agreement No. 284920
CCO Common Concepts Ontology (http://data.ifs.tuwien.ac.at/

engineering/cco, Last accessed: 15 June 2018)
CDL Controls Description Language [Wet18]
CH4 Methane
CNC Computer Numerical Control
CO2 Carbon dioxide
CPS Cyber-Physical Systems
CSV Comma Separated Value

DEG Datenmodell- und Austauschformat für das Engineering in der Gebäude-
automation, (eng.: Data model and exchange format for the engineering of
BAS) [Run11]

DL Description Logics

189

http://data.ifs.tuwien.ac.at/engineering/cco
http://data.ifs.tuwien.ac.at/engineering/cco

List of Acronyms

Notation Description
DogOnt Domotic Ontology [BC08]

EKB Engineering Knowledge Bus [MB12]
EnCN Energie Campus Nürnberg
ERP Enterprise Resource Planning
ESIM Energy System Information Model [KS15]
ETSI European Telecommunications Standards Institute

FDD Fault Detection and Diagnosis [KB05]
FOL First Order Predicate Logic, e.g. [DFH11]

GRAFCET GRAphe Fonctionnel de Commande Etapes/Transitions [IEC13c]

HTO Haystack Tagging Ontology [CKAK15]
HTTP Hyper Text Transfer Protocol
HVAC Heating Ventilation and Air Conditioning

I/O Input/ Output
IAS Industrial Automation Systems
IBP Fraunhofer Institute for Building Physics
ICT Information and Communication Technologies
IDE Integrated Development Environment
IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronics Engineers
IFC Industry Foundation Classes [ISO13]
IMI Institute for Information Management in Engineering
IML Intermediate Modeling Layer [LEHM11]
IoT Internet of Things
ISO International Standards Organization

KBS Knowledge-Based System
KE Knowledge Engineering
KIT Karlsruhe Institute of Technology
KNX KNX; Network protocol in building automation [ISO07]
KR Knowledge Representation

LON Local Operating Network; Network protocol in building automation
[ISO12]

190

List of Acronyms

Notation Description

MES Manufacturing Execution System
MoML Modeling Markup Language, [LN00]

N2O Nitrous oxide

OntoCAPE Ontology for Computer-Aided Process Engineering, [MMWY09]
OOM Object-Oriented Modelling, [DR15, RQd12]
OSI Open Systems Interconnection
OSS Accumulated Weighted Operational Quality, [Ple13]
OWL Web Ontology Language Version 2, [W3C12]

PEP Procedure Execution Ontology, [LKGZ17]
PI&D Pipes and Instrumentation Diagram
PID Proportional-Integral-Derivative, [Abe10]
PLC Programmable Logic Controller
POU Program Organizational Unit [IEC14a]

RDF Resource Description Framework [CWL14]
RDFS Resource Description Framework Schema [BG14]

SAREF Smart Appliances REFerence Ontology [ETS15]
SCADA Supervisory Control and Data Acquisition
SEAS Smart Energy Aware Systems [LKGZ17]
SFC Sequential Function Chart [IEC14a]
SOA State Of the Art
SOSA Semantic Sensor Network Ontology [HKC+17]
SPARQL SPARQL Protocol and RDF Query Language [PS17]
SPIN SPARQL Inferencing Notation [Knu11]
ST Structured Text [IEC14a]
SWRL Semantic Web Rule Language [HPSB+04]
SWT Semantic Web Technologies [BLHL01, DFH11]

UML Unified Modeling Language [Obj15a]
UML AP UML Automation Profile [HK13]
UNA Unique Naming Assumption
URI Unique Resource Identifier

191

List of Acronyms

Notation Description

VDI Verein Deutscher Ingenieure (Association of German Engineers)

W3C World Wide Web Consortium

XMI XML Metadata Interchange [Obj15b]
XML eXtensible Markup Language [BPSM+06]
XSD XML Schema Definition [BM04]

192

	Zusammenfassung
	Abstract
	Acknowledgements
	Table of Contents
	Table of Contents
	Introduction
	Background and Motivation
	Problems and Challenges of Building and Industrial Automation Systems
	Complexity of Automation Systems
	Heterogeneity in Automation Systems Engineering and Operation
	Summary and Gap Identification

	Objectives
	Contribution and Outline

	Foundations and State of the Art
	Automatic Control, Control Logic and Automation Systems
	Overview on the Automatic Control and Control Logic Domains
	Building Automation Systems
	Industrial Automation Systems

	Foundations of Knowledge Representation
	Data, Information and Knowledge
	Knowledge Classification
	Knowledge Representation
	Knowledge-Based System

	Knowledge-based Methods Related to the Engineering and Operation of Control Logic in Automation Systems
	Formats and Models for Automation Systems
	Data Formats for Building Automation Systems
	Ontology-based Modelling of Building Automation Systems
	Data Formats for Industrial Automation Systems
	Ontology-based Modelling of Industrial Automation Systems
	Domain Independent Ontologies for Automation Systems
	Other Formats and Models

	Summary

	Requirements
	General requirements
	Requirements for Knowledge Representation and Knowledge-based Methods
	Requirements for the Domain Model
	Summary

	Semantic Modelling of Control Logic in Automation Systems
	Modelling Methodology
	Object-Oriented Modelling Methodology
	Ontology-based Formalisation

	Layered Model Architecture
	Semantic Model of the Automatic Control Domain
	Semantic Models of the Control Logic Domain
	Algebraic Expressions
	Schedules
	Sequence Control
	Two-Point Discrete Control
	Transfer Function Element
	UML State Machines
	State Graphs from VDI 3814-6

	Summary

	Validation
	Automated Rule-Based Verification of Designed Control Logic in Building Automation Systems
	Problem Description
	Methodology
	Use Case and Implementation
	Results

	Knowledge-Enhanced Engineering of Control Logic in Industrial Automation
	Problem Definition
	Methodology
	Implementation
	Scenario-Based Evaluation

	Summary

	Conclusion and Outlook
	Conclusion
	Outlook

	Bibliography
	Bibliography of the Author
	Appendix
	Foundations of the Semantic Web
	Description Logics
	Resource Description Framework (Schema) - RDF(S)
	Web Ontology Language - OWL
	Components of OWL
	A Closer Look on Properties in OWL
	Specific Features of OWL
	OWL Profiles

	SPARQL Protocol and RDF Query Language - SPARQL
	Assumptions in the Semantic Web: Unique Naming, Closed World, Open World
	Ontology Engineering Methods
	Ontology Development 101
	METHONTOLOGY

	Tools for Developing SWT applications

	Supplementary Ontology Material
	Specification of the Basic Datatype Ontology
	Additional Visualisation

	Implementation
	Implementation of SPARQL Queries for the Automated Rule-Based Verification of State Graphs and Schedules
	Implementation of SPARQL queries for the Knowledge-Enhanced Engineering of Control Logic in Automation Systems
	Implementation of SPARQL queries for the Verification of Control Logic
	Implementation of SPARQL queries for the Simultaneous Verification of Different Control Logic Types
	Code examples for the Verification of Control Logic Designs and Plant Data
	Code examples Demonstrating the Bidirectional Exchange and Incremental Verification

	Namespaces
	List of Figures
	List of Tables
	List of Code Listings
	List of Acronyms

