
HAL Id: hal-01830911
https://hal.archives-ouvertes.fr/hal-01830911

Submitted on 5 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards automatic argumentation about voting rules
Michael Kirsten, Olivier Cailloux

To cite this version:
Michael Kirsten, Olivier Cailloux. Towards automatic argumentation about voting rules. 4ème con-
férence sur les Applications Pratiques de l’Intelligence Artificielle APIA2018, Jul 2018, Nancy, France.
<hal-01830911>

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197480883?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01830911
https://hal.archives-ouvertes.fr

Towards automatic argumentation about voting rules

Michael Kirsten1 Olivier Cailloux2

1 Dept. of Informatics, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
2 Université Paris-Dauphine, PSL Research University, CNRS, LAMSADE, 75016 Paris, France

kirsten@kit.edu, olivier.cailloux@dauphine.fr

Abstract
Voting rules aggregate the preferences of a group to make
decisions. As multiple reasonable voting rules exist, the ax-
iomatic approach has been proposed to exhibit both their
merits and paradoxical behaviors. It consists in charac-
terizing a voting rule by a set of understandable proper-
ties called axioms. It is however a difficult task to char-
acterize a voting rule by such axioms, and even when a
proof exists, it may be difficult to understand why a spe-
cific voting rule fails to satisfy a given axiom, especially
for untrained users. In this article, we present an automatic
method which determines whether a given rule satisfies a
set of axioms. When the rule does not satisfy an axiom, the
automatic prover generates comprehensible evidence of the
violation in the form of a counter-example. It can be used
by non-expert users to comprehend the violation and may
serve to argue in favor of other rules which satisfy the ax-
iom. Our method is based on the software analysis tech-
nique bounded model checking, which enables bounded
verification for properties of software programs. It trans-
lates the program together with user-annotations into a
reachability problem for those profiles and outcomes which
adhere to our specification. The method can be applied to
arbitrary voting rules; we demonstrate it on the case of the
Borda axiomatization and compare the Borda rule to both
the Black and the Copeland voting rules.

Keywords
Social choice theory, bounded model checking, argumen-
tation theory, automated reasoning.

1 Goal and motivation
Voting rules serve to select winning alternatives from a set
of a priori possible alternatives, given the preferences of
a set of voters. Many voting rules that appear reasonable
have been proposed in the literature, however each of them
shows paradoxical behavior for at least some voting situ-
ations [Arrow, 2012]. Axiomatic analysis permits to dis-
tinguish the merits of different voting rules: it consists in
determining axioms, properties of voting rules that seem a
priori desirable for a voting rule to have, and sets of axioms
which together characterize a voting rule. A set of axioms

characterizes a voting rule when there is a unique voting
rule that satisfies all axioms in the set.

Our first interest in this article is, given a voting rule, to de-
tect automatically which axioms it satisfies among a given
set of axioms. Although it is not possible to do this ef-
ficiently in full generality, modern SAT- and SMT-solvers
[Biere et al., 1999] enable solving this task efficiently when
limiting the number of voters and alternatives. Indeed, as
stated in the “small scope hypothesis” and also seen in re-
lated work on automated reasoning of voting rules, a high
proportion of violations can often already be found for
a comparatively small fraction of voters and alternatives
[Jackson, 2006, Brandt et al., 2017]. With this prerequi-
site, the technique called software bounded model check-
ing (SBMC) allows encoding the problem into a decidable
set of logical equations, which can then be solved by a
SAT- or SMT-solver. In this article we propose an auto-
matic method that determines whether a rule satisfies an
axiom within the specified bounds. We illustrate it by ap-
plying the approach to the case of Borda: we consider a set
of four axioms that characterize the Borda rule, and given
some rules different than the Borda rule, we find automati-
cally which axioms from that set each rule fails to satisfy.

It is especially interesting to obtain short and readable
proofs that a rule does not satisfy some axiom. This is
our second objective in this article: our automatic prover
outputs profiles, preferably small or satisfying some other
property representing “simplicity” for a human eye, that
exhibit a failure of a rule to satisfy an axiom. Such a short
proof is interesting even if it is already known in the lit-
erature that the rule does not satisfy the axiom, as short
proofs permit to help getting an intuitive understanding of
voting rules. Furthermore, it can be used to talk about vot-
ing rules with non-expert users. Our illustration in the case
of Borda permits to obtain a tool that “argues in favor” of
Borda [Cailloux and Endriss, 2016] (assuming the axioms
characterizing Borda of our choice are considered desirable
properties of any voting rule): given any rule that is not
the Borda rule, the prover finds a concrete profile which
illustrates that the rule fails to comply with some of those
axioms.

kirsten@kit.edu
olivier.cailloux@dauphine.fr

2 Concepts and notations
We consider an infinite set of voters N and a fixed finite
set of alternatives A . An election involves a subset of vot-
ers N ⊆ N that each express preferences over all alterna-
tives. Those preferences are elements of L (A), the linear
orders over the alternatives: connected, transitive, asym-
metric binary relations over A . Given a voter i ∈ N , we
write as ≻i ∈ L (A) the preference of voter i. Given a set
of voters N, a profile (≻i)i∈N = R is an association of each
voter to her preference. The set of all possible profiles is⋃

N⊆N L (A)N .
A voting rule f :

⋃
N⊆N L (A)N → P∗(A), where

P∗(A) represents the non-empty subsets of A , maps each
possible profile (≻i)i∈N ∈

⋃
N⊆N L (A)N to a non-empty

set of winning alternatives /0 ̸=W ⊆A (sets of winners are
used to account for tied winners).
An axiom is here simply defined as a property of a vot-
ing rule. One kind of axioms of interest (for their sim-
plicity) are so-called functional properties [Beckert et al.,
2016]. A functional property is one that can be represented
as a relation S ⊆

⋃
N⊆N L (A)N ×P∗(A): given any

R∈
⋃

N⊆N L (A)N , S(R)= {A | (R,A) ∈ S} contains all
the admissible sets of winners given that profile. When
S(R) = P∗(A), S expresses no constraint about that pro-
file. A voting rule f satisfies the functional property S iff f
picks sets of winners among the ones considered possible
by S, namely, iff f ⊆ S (where we view both f and S as rela-
tions). Whenever a rule f fails to satisfy a functional prop-
erty, it can be proved in a very short and understandable
way, by exhibiting a profile R on which f picks a wrong
set of winners, f (R) /∈ S(R).
The property DOM is an example of a functional property.

DOM This property forbids Pareto-dominated alternatives
to win. An alternative a ∈A is Pareto-dominated in a
profile (≻i)i∈N iff some alternative a′ ∈ A is unan-
imously preferred to a in (≻i)i∈N : ∀i ∈ N,a′ ≻i a.
The property mandates that the rule selects winning
alternatives among UR, denoting the alternatives that
are not Pareto-dominated in R: ∀R∈

⋃
N⊆N L (A)N ,

SDOM(R) = P∗(UR).

Another, more general, kind of axioms we are interested
in, are k-relational properties, with k ∈ N [Beckert et al.,
2016]. A k-relational property S ⊆ (

⋃
N⊆N L (A)N ×

P∗(A))k contains all the admissible ways of associat-
ing sets of winners to k profiles. A voting rule f sat-
isfies a k-relational property S iff f k ⊆ S, viewing again
f as a relation. For example, for k = 2, if S contains
(R1,W1,R2,W3) and (R1,W1,R2,W4), given a voting rule f
such that f (R1) = W1, S declares as admissible that f (R2)
be equal to W3 or W4.
The property REINF exemplifies a 3-relational property.

REINF Reinforcement requires that elections uniting dis-
joint groups of voters elect the candidates chosen by
both groups, if some such candidates exist: for each

(≻i)i∈N1 ,(≻i)i∈N2 with N1 ∩N2 = /0 and A ̸= /0, defin-
ing A as f ((≻i)i∈N1)∩ f ((≻i)i∈N2), reinforcement im-
poses that f ((≻i)i∈N1∪N2) = A.

3 Checking properties automatically
Let us start by describing the general technique of check-
ing for software properties, before we explain how we ap-
ply it to verify whether voting rules satisfy properties. In
a nutshell, we translate the proving task to a reachability
problem, which the SBMC tool encodes into an instance of
the SAT problem.

3.1 Checking software properties
We assume we are given an algorithm A under the form of
an imperative program (for example, written in the C lan-
guage), that uses some parameter values taken among a set
of possible values I. An entry i ∈ I is a list of values, one
value for each such parameter: it gives a value to every-
thing that a run of A depends on, such as its input variables,
or anything that is considered non-deterministic from the
point of view of A. For this reason, those parameters are
qualified as “non-deterministic”, to distinguish them from
normal parameters used in a programming language to pass
information around. (By contrast, some values can be “de-
rived”, thus, computed in A from the non-deterministic pa-
rameter values, or declared as constants in A, and both val-
ues of non-deterministic parameters or derived values can
then be used as normal parameters in the program.) We are
also given a software property to be checked about A, in the
form Cant ⇒Ccons, where ant and cons stand for antecedent
and consequence respectively. Both Cant and Ccons are sets
of boolean statements. A boolean statement is a statement
of A that evaluates to a boolean value, for example, a state-
ment checking that some computed intermediate value is
odd. An entry i is said to satisfy a set of boolean statements
iff all boolean statements in the set evaluate to true during
the execution of A using the non-deterministic parameter
values i, and is said to fail the set of boolean statements
otherwise. The property Cant ⇒ Ccons requires that for all
possible entries i∈ I, if i satisfies Cant, then i satisfies Ccons.
As an example, assume A computes, given i, two interme-
diate integer values v1 and v2, and then returns a third value
v3. The property to be checked could be: if v1 is negative,
then v2 is positive and v3 is odd. A solver that is asked to
check a software property Cant ⇒ Ccons thus exhaustively
searches for an entry i that satisfies Cant but fails Ccons. The
property is valid iff it is impossible to find such an entry.
SBMC is a fully-automatic static program analysis tech-
nique used to verify whether such a software property is
valid, given an algorithm and a property to be checked. It
covers all possible inputs within a specified bound. It is
static in the sense that programs are analyzed without ex-
ecuting them on concrete values. Instead, programs are
symbolically executed and exhaustively checked for errors
up to a certain bound, restricting the number of loop itera-
tions to limit runs through the program to a bounded length.

This is done by unrolling the control flow graph of the pro-
gram and translating it into a formula in a decidable logic
that is satisfiable if and only if a program run exists which
satisfies Cant and fails Ccons. The variables in the formula
are the non-deterministic parameters of A, and their possi-
ble values are taken from I.
This reduces the problem to a decidable satisfiability prob-
lem. Modern SAT or SMT-solving technology can then
be used to verify whether such a program run exists, in
which case an erroneous input has been found, and the run
is presented to the user. If the solver cannot find such a
program run, it may be either because the property is valid,
or because it is invalid only for some run which exceeds
the bound. In some cases, SBMC is able to infer statically
which bound is sufficient to bring a definitive conclusion.

3.2 Checking voting rule properties
In our case, we are given a voting rule f implemented as a
C function that returns winners given a profile, and a list of
axioms. When the axiom is a functional property S, in or-
der to check whether f satisfies S, we want to use SBMC to
search for an input profile R such that f (R) /∈ S(R). To do
this, we implement the requirements of S as a C function
with annotations that indicate to the SBMC tool a set of
boolean statements, constituting Cant, that evaluate to true
iff f (R) /∈ S(R). Other annotations serve to indicate non-
deterministic parameters, including the input profile, and
other non-deterministic parameters depending on what is
necessary for our implementation to check whether a pro-
file satisfies S. We use as Ccons a single boolean statement
that is always false. This makes the solver search for an
entry R (and possibly other parameter values) such that
f (R) /∈ S(R).
For example, when searching for a violation of Pareto-
dominance (DOM as defined in Section 2), it suffices to
implement a C function F containing boolean statements
that evaluate to true whenever some alternative a, a non-
deterministic parameter of F , is Pareto-dominated by an-
other alternative a′, another non-deterministic parameter of
F , but wins. This way, the solver will search for an entry
(R,a,a′) corresponding to an input profile that contains a
Pareto-dominated alternative that wins, thus, an input that
violates S, and will report such an input, if found.
This approach can be extended to cope for k-relational
properties, where k > 1. We do not detail this as this is
similar in spirit, only requiring to duplicate the input pa-
rameters so that the solver searches for multiple profiles as
entries, and writing the function checking for S so that it
cares about the relationship between multiple sets of pro-
files and winners.
In order to apply SBMC, we need to set bounds for the
number of loop iterations. We have implemented all tested
axioms and voting rules (and more) in such a way that the
number of loop iterations depend only on the number of
voters and alternatives. In the experiments, we set those as
constants. The SBMC tool can thus automatically infer the

right bounds in a syntactic pre-processing step. For more
complex cases where it would not be possible to syntacti-
cally infer the bounds, e.g., when while-loops are used or
the number of iterations involves some non-deterministic
parameter, the bound could be specified manually.
Regarding computation time, finding an input that violates
S, if such an input exists, scales much better than proving
that no such input exists, as we are allowed to stop as soon
as such an input is found. Moreover, our method gener-
ally scales better for smaller numbers of loop iterations,
simply based on the smaller formula for which a model
is searched. As we are generally looking for “small” pro-
files, this is most often the case. For very complex (i.e.,
having complex loop structures with a large number of it-
erations) voting rules and axioms, or for properties which
are not violated, it may happen that the solver takes more
computation time or resources than the user is willing to
invest. Our method is generally well-suited for finding
counter-examples to voting rule properties as most viola-
tions are exhibited for relatively small bounds. We sub-
stantiate these claims in the following section, where we
exemplarily use our method to argue in favor of the Borda
rule.
This approach can be generalized to search for profiles that
illustrate the satisfaction of simultaneous axioms, or pro-
files that satisfy some axioms and not some others, etc. We
have written a general program to search for such situations
that cover about fifteen classical axioms1.
For our experiments, we use CBMC 5.8 Clarke et al.
[2004], an implementation of the SBMC approach for the C
language, with the built-in solver based on the SAT-solver
MiniSat 2.2.0 Eén and Sörensson [2003]. All experiments
are performed on an Intel(R) Core(TM) i5-6500 CPU at
3.20 GHz with 4 cores and 16 GB of RAM.

3.3 A simple example
Listing 1 illustrates how we specify DOM, the “Pareto-
dominance” functional property. The function is anno-
tated with specifications in the form of assumptions (ex-
pressed by the function __CPROVER_assume), that repre-
sent the statements composing Cant, as well as operations
to model non-deterministic choice (indicated by the prefix
nondet_) that represent what we called non-deterministic
parameters in Section 3.1. These non-deterministic choice
operators can be used anywhere inside the analyzed pro-
gram and are also translated to the formula which is passed
to the solver. The solver then searches for instantiations of
these variables which lead to a violation of Ccons.
In the displayed function, the constants N and M denote the
numbers of voters and alternatives respectively. The voters
and alternatives are represented by integers from 0 to N−1
and from 0 to M−1. The function accepts as input a profile
prof, modeled as a two-dimensional array: prof[i][r]
is the alternative that voter i associates to rank r, where

1The runnable source code can be found at https://github.com/mi-ki/
voting-rule-argumentation.

https://github.com/mi-ki/voting-rule-argumentation
https://github.com/mi-ki/voting-rule-argumentation

1 void dominance(uint prof[N][M], uint win[M]) {
2 uint bad = nondet_uint(), good = nondet_uint();
3 __CPROVER_assume (0 ≤ bad < M);
4 __CPROVER_assume (0 ≤ good < M);
5 __CPROVER_assume (bad ̸= good);
6 uint prefergtob[N];
7 for (uint i = 0; i < N; i++) {
8 uint rankg = M, rankb = M;
9 for (uint r = 0; r < M; r++) {

10 if (prof[i][r] == good) rankg = r;
11 if (prof[i][r] == bad) rankb = r;
12 }
13 prefergtob[i] = (rankg < rankb) ? 1 : 0;
14 }
15 for (uint i = 0; i < N; i++)
16 __CPROVER_assume (prefergtob[i]);
17 __CPROVER_assume (win[bad]);
18 }

Listing 1: Pareto-dominance specification for CBMC.

0 is the best, and M− 1 the worst rank. The function also
accepts as input a set of winning alternatives, modeled as
an array win with one entry per alternative: win[a] equals
1 if the alternative a belongs to the set of winning alterna-
tives, 0 otherwise. The non-deterministic parameters are
prof (whose declaration is not shown here) and the two
alternatives bad and good (Line 2). Lines 6 to 14 initialize
the array prefergtob so that prefergtob[i] holds the
value 1 if voter i prefers good to bad, 0 otherwise.
The function thus indicates to the solver that it must
find two alternatives bad and good, thus integers in the
suitable range (Lines 3 and 4) and different from each
other (Line 5), such that everybody prefers good to bad

(Lines 15 and 16), and yet the alternative bad is a winner of
the election (Line 17). Any run which satisfies these spec-
ified statements is a valid counter-example which would
prove that the profile and winners given as input violate
Pareto-dominance.
We pursue the example with the setup given in List-
ing 2. Therein, we initialize a profile with symbolic non-
deterministic values (Line 7) and restrict their ranges such
that they are valid alternatives (Line 8). Furthermore, we
use a helper array used with one entry per alternative,
which is used to ensure that every ballot holds every alter-
native only once (Lines 5, 9 and 11). We assume a voting
rule is given as a function f (Line 14) which gets a pro-
file prof and the number of voters N as parameters, and
returns the set of winning alternatives as output. For the
experiments within this article, the implementations of f
will follow directly from their definitions.
After calling the test methods for the properties to be
checked (in this case only Pareto-dominance), we set a
boolean statement that is always false (Line 16) as con-
tent of Ccons (recognized by the solver by the keyword
assert), which indicate to the solver that any program run
that reaches this point is a counter-example of interest to us.

1 int main(int argc, char *argv[]) {
2 uint prof[N][M], uint win[M];
3 for (uint i = 0; i < N; i++) {
4 uint used[M];
5 for (uint a = 0; a < M; a++) used[a] = 0;
6 for (uint r = 0; r < M; r++) {
7 a = nondet_uint();
8 __CPROVER_assume (0 ≤ a < M);
9 __CPROVER_assume (!used[a]);

10 prof[i][r] = a;
11 used[a] = 1;
12 }
13 }
14 win = f(prof, N);
15 dominance(prof, win);
16 assert (0);
17 return 0;
18 }

Listing 2: Setup for CBMC.

4 Definitions for the experiments
We propose here to consider the axioms that characterize
the Borda voting rule (Def. 1), as defined in a variant of
Young’s axiomatization [Cailloux and Endriss, 2016]. We
also define a few axioms that are not satisfied by the Borda
rule, and finally define two supplementary rules. All these
concepts will be used in the experiments. (Readers knowl-
edgeable in social choice theory can skim this section.)

Definition 1 (Borda). The Borda rule, given a profile
(≻i)i∈N , associates to each alternative a and voter i the
score s(a, i) equal to the number of alternatives that a beats
in ≻i, and associates to each alternative a the score s′(a) =∑

i∈N s(a, i). The winners are the alternatives that have the
maximal score: fBorda((≻i)i∈N) = argmaxa∈A s′(a).

4.1 An axiomatization of the Borda rule

We first require a few definitions.
A profile (≻i)i∈N is elementary iff it has exactly two vot-
ers, and if the set of alternatives can be partitioned into dis-
joint subsets Atop,Abottom ⊆A with Atop∪Abottom =A and
Atop ̸= /0 such that both voters have all alternatives in Atop

preferred to all alternatives in Abottom, and the voters have
inverse preferences over Atop, and inverse preferences over
Abottom. Thus, denoting the voters by 1 and 2, and denot-
ing by ≻ |A the restriction of ≻ to A, ∀A ∈ {Atop,Abottom} :
≻1 |A = (≻2 |A)−1. Let T (R) denote the “top alternatives”
of an elementary profile, meaning, the set of alternatives
corresponding to Atop. (This is legal as it is unique.)

Example 1. The profile R shown below, composed of the
linear orders (a,b,c,d) and (b,a,d,c), is an elementary
profile corresponding to Atop = {a,b}, with A equal to

{a,b,c,d }.

R =

a b
b a
c d
d c

.

△

Given a linear order ≻ ∈ L (A), with A of size m, define
the cycle corresponding to ≻ as the set of m pairs consist-
ing of the pairs of alternatives (a,b) such that b immedi-
ately succeeds to a in ≻ (the rank of b is one more than
the rank of a), union the pair of alternatives (z,a) where z
and a are respectively the minimal and maximal elements
of ≻. For example, the cycle corresponding to the linear
order (a,b,c) is {(a,b),(b,c),(c,a)}. Observe that, given
any ≻∈L (A), the cycle corresponding to ≻ corresponds
to exactly m linear orders in L (A). For example, the
cycle {(a,b),(b,c),(c,a)} also correspond to (b,c,a) and
(c,a,b).
We say that a profile (≻i)i∈N is cyclic iff it has exactly m
voters and m different linear orders, and some cycle corre-
sponds to all its linear orders (equivalently, the linear orders
in (≻i)i∈N are all those that correspond to a given cycle).

Example 2. The profile R shown below is a cyclic profile
corresponding to the cycle {(a,b),(b,c),(c,d),(d,a)} with
A = {a,b,c,d }.

R =

a b c d
b c d a
c d a b
d a b c

.

△

Below is the axiomatization that we use for the Borda rule,
composed of the axioms ELEM, CYCL, CANC and REINF.
It is very similar but not identical to the axiomatization
given by Young [1974]. The proof that these four axioms
characterize the Borda rule is given in Cailloux and Endriss
[2016].

ELEM This axiom mandates that the rule, when given
any elementary profile, selects its top alternatives:
SELEM(R) = {T (R)} if R is an elementary profile and
SELEM(R) = P∗(A) otherwise.

CYCL This axiom requires the rule to select all alter-
natives as tied winners when given any cyclic pro-
file: SCYCL(R) = {A } if R is a cyclic profile and
SCYCL(R) = P∗(A) otherwise.

CANC The cancellation axiom constrains the set of win-
ners to be A when all pairs of alternatives (a,b) are
such that a is preferred to b for as many voters as b is
to a in (≻i)i∈N .

REINF As defined above.

4.2 Two axioms not satisfied by Borda
Borda notoriously fails (when |A | ≥ 3) to satisfy the fol-
lowing two functional properties COND and MAJ, as well
as the derived property WMAJ.
Given a profile R = (≻i)i∈N , we say that an alternative a
obtains a strict majority against a′, denoted by a MR a′, iff
more than half of the voters prefer a to a′ in (≻i)i∈N : a MR
a′ ⇔ |{ i | a ≻i a′ }| > |{ i | a′ ≻i a}|. An alternative is a
Condorcet winner iff it obtains a strict majority against all
other alternatives. Any Condorcet winner is unique.

COND This property mandates that if there is a Condorcet
winner, it becomes the sole winner.

MAJ This property requires that, whenever some alterna-
tive is placed first by more than half of the voters in
(≻i)i∈N , it becomes the sole winner.

The Condorcet property is stronger than the majority prop-
erty, i.e., SCOND ⊆ SMAJ. Based on MAJ we define a weaker
property, the weak majority property WMAJ, for which
SMAJ ⊆ SWMAJ.

WMAJ This property requires that, whenever some alter-
native is placed first by more than half of the voters in
(≻i)i∈N , it becomes a (not necessarily unique) winner.

4.3 Two Condorcet compatible voting rules
To end this section, we define two famous voting rules that
satisfy the Condorcet property.

Definition 2 (Black). The Black [1958, p. 66] rule selects
the Condorcet winner if there is one, otherwise, the Borda
winners.

Given a profile R = (≻i)i∈N , let MR(a) denote the set of
alternatives against which a obtains a strict majority, and
MR

−1(a) the set of alternatives that obtain a strict majority
against a.

Definition 3 (Copeland). The Copeland [1951] rule (actu-
ally a close variant of a rule proposed by Ramon Llull in
the 13th century [Colomer, 2013]), given a profile R, gives
to each alternative the score s(a) = |MR(a)|− |MR

−1(a)|,
and lets the alternatives with maximal score win.

5 Experiments
In this section we first experiment with the Borda rule it-
self. In Section 5.1, we look at whether the solver is able
to find out that the Borda rule satisfies Pareto-dominance,
depending on the bounds we set on the numbers of al-
ternatives and voters. We then check how long it takes
to find an example that illustrates Pareto-dominance (one
where some alternative is dominated and indeed not in-
cluded among the winners). In Section 5.2, we search for
counter-examples that illustrate that the Borda rule fails to
satisfy the properties defined in Section 4.2.

5 10 15 20 25 30
0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2

345

Voters

R
un

-t
im

e
[s

]

Run-times for 2, 3, 4 and 5 alternatives in seconds.

Figure 1: Run-times for the automatic verification of
Pareto-dominance for the Borda voting rule.

Second, we experiment with the Borda axiomatization.
We suppose we are given a rule f , different from Borda
(Def. 1), as a C function: in our experiments we consider
the Black rule and the Copeland rule. In this simple exper-
imental setup, we thus know that f fails to satisfy at least
one of the Borda axioms from Section 4.1. For each of
these rules, we illustrate that we can find out automatically
which axioms f fails to satisfy, and output a short proof of
this, easy for a human to inspect. We also analyze in which
situations we can prove that axioms are satisfied by f , for
those that f satisfies.

5.1 Borda and Pareto-dominance
In Figures 1 and 2, we illustrate the sizes of situations, i.e.,
numbers of voters (on the x-axis) and alternatives (each
having a different plot), that we are able to analyze. In
this example, as well as in the following experiments, we
only consider run-times below 30 minutes to be reason-
able, and stop computations which require more time than
30 minutes. Run-times are given in seconds (on the y-axis)
for up to 30 voters and 5 alternatives. Figure 1 shows the
run-times for the verification that Pareto-dominance (List-
ing 1) holds for the Borda rule (the line for 2 alternatives is
almost superposed to the x-axis). Experiments for 5 alter-
natives and more than 26 voters took more than 30 minutes
and are thus not plotted.
Figure 2 shows the run-times for finding an example sit-
uation that illustrates that Borda satisfies DOM. We used
the code from Listing 1 with the only difference that we
negated the statement in Line 17. The function now indi-
cates to the solver that it must find two different alternatives
bad and good, such that everybody prefers good to bad,
and the alternative bad is not a winner of the election.
In the first experiment, the solver proves that no profiles
satisfy the provided conditions. We can see that the verifi-

1 2 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

10

2

3

4

5

Voters

R
un

-t
im

e
[s

]

Run-times for 2, 3, 4 and 5 alternatives in seconds.

Figure 2: Run-times for finding an illustration of the dom-
inance property for the Borda rule.

cation is feasible for small sizes of profiles within 15 min-
utes. Expectedly, in situations where some profile exists
that satisfies the provided conditions, the run-times are sig-
nificantly smaller. They stay well below 10 seconds for this
example. Both experiments indicate that our method yields
reasonable run-times for at least up to five alternatives and
25 voters.

5.2 Counter-examples to Borda
We illustrate here our approach by finding counter-
examples which show that the Borda rule does not satisfy
the properties defined in Section 4.2 (those properties are
satisfied by both the Black and the Copeland voting rule,
however).
We start with the stronger Condorcet property COND. The
smallest example proving that Borda fails COND can be
found in less than one second for three voters and three
alternatives:

R =
c c b
b b a
a a c

.

For the profile R, the Borda rule elects the alternatives
{a,c} instead of the Condorcet winner c.
Whereas an isomorphic counter-example is found in less
than one second for the failure of MAJ, we find two small-
est examples (one regarding the number of alternatives, and
another one regarding the number of voters) proving the
failure of WMAJ.
For a minimal number of alternatives, we find the smallest
proof for three alternatives and five voters in less than one
second:

R =
a a a b b
b b b c c
c c c a a

.

2 3 4 5 6 7 8 9 10
0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2
3

4

5

Voters

R
un

-t
im

e
[s

]

Run-times for 2, 3, 4 and 5 alternatives in seconds.

Figure 3: Run-times for the verification of REINF for the
Copeland voting rule.

For the profile R, the Borda rule elects the alternative b
instead of the majority winner a.
When searching a proof with a minimal number of voters,
we find the smallest proof for four alternatives and three
voters in less than one second:

R =

d d c
c c a
a b b
b a d

.

For the profile R, the Borda rule elects the alternative c
instead of the majority winner d. All given examples can
be easily inspected manually.

5.3 Automatic comparison of Borda with
other voting rules

We here want to compare the Black rule and the Copeland
rule with the axiomatization of the Borda rule shown be-
fore. We first encode all four axioms in a way similar
to the dominance property shown in Listing 1. The ax-
ioms ELEM, CYCL and CANC are functional properties
and can thus be encoded in the very same manner. As
the axiom REINF is a 3-relational property, it needs further
statements relating the profiles. The three profiles are ini-
tialized with symbolic non-deterministic values as seen in
Listing 2. We consider the bound N as the number of voters
of the joined profile prof, and fix the sizes of the two sub-
profiles prof1 and prof2 using a non-deterministic value
s to define prof1’s size as s, and the size of prof2 as
N - s. We furthermore fix the profiles prof1 and prof2

with respect to prof using an array with non-deterministic
values to model a mapping between the joined profile and
its two sub-profiles.
Having encoded all four axioms as either functional or k-
relational properties in C functions, we can now compare

2 3 4 5 6 7 8 9 10
0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2
3

4

5

Voters

R
un

-t
im

e
[s

]

Run-times for 2, 3, 4 and 5 alternatives in seconds.

Figure 4: Run-times for the verification of REINF for the
Black voting rule.

Table 1: Run-times for the verification that Black and
Copeland rule each satisfy CANC.

m n verification time

≤ 3 ≤ 8 < 3 minutes
4 ≤ 5 and 7 < 2 minutes
4 6 and 8 > 30 minutes
5 ≤ 3 and 5 and 7 < 1 minute
5 4 and 6 and 8 > 30 minutes

the Black rule and the Copeland rule with this axiomatiza-
tion. We hereby rely on the “small scope hypothesis” and
focus on small profiles with up to five alternatives and eight
voters.
Our method successfully verifies that both the Black rule
and the Copeland rule satisfy the axiom ELEM in less than
17 seconds (for “small profiles” as defined above). As this
axiom must only be verified for two voters, only the num-
ber of alternatives must be bounded.
For the axiom CYCL, the verification for both voting rules
can be done within 10 minutes (also addressing only “small
profiles” as defined above). Here, the numbers of voters
are fully determined by the numbers of alternatives (CYCL
only addresses profiles with an equal number of alterna-
tives and voters).
When checking the axiom CANC, for both rules, verifica-
tion is achieved within a few minutes for the cases of eight
voters or less when the number of alternatives is bounded
to three; five voters or less when the number of alternatives
is bounded to four; and three voters or less when the num-
ber of alternatives is bounded to five. As run-times for both
rules are very similar, both are depicted in Table 1. Note
that CANC trivially holds for odd numbers of n, and accord-
ingly verification within the depicted range is achieved in
less than 30 seconds.

For the axiom REINF, the run-times can be seen in Fig-
ures 3 and 4 for the Copeland rule and the Black rule, re-
spectively. Round dots indicate that violating voting situ-
ations have been found for the respective numbers of vot-
ers and alternatives. Missing parts (for the case of 5 al-
ternatives) indicate a timeout as defined in Section 5.1.
Nonetheless, the time for finding counter-examples of up
to ten voters and five alternatives is significantly lower than
for verifying that none exists (see, e.g., the run-times for
four and five alternatives in Figure 4, comparing run-times
for four and five voters). The smallest counter-examples
can be found for both voting rules within less than one
minute. These simultaneously serve as proofs, which are
both short and easy for a human to inspect.
The smallest example (in number of alternatives) proving
that the Black voting rule fails REINF has been found in 48
seconds for three alternatives and five voters:

R1 =
a c
c a
b b

, R2 =
c b a
b a c
a c b

.

The elected alternatives for the profiles R1 and R2 are {a,c}
and {a,b,c} respectively. For the joined profile R1∪R2, the
Black voting rule elects the Condorcet winner a instead of
the set {a,c} mandated by REINF.
The smallest example, both in number of alternatives and
in number of voters, proving that the Copeland rule fails
REINF has been found in 32 seconds for three alternatives
and four voters:

R1 =
b a
a c
c b

, R2 =
a b
b a
c c

.

The elected alternatives for the profiles R1 and R2 are a
and {a,b} respectively. For the joined profile R1 ∪R2, the
Copeland rule elects the set {a,b} instead of only alterna-
tive a, which would be required by the REINF property.
Both examples can be easily inspected manually.

6 Literature review
The automatic method presented within this article builds
upon the techniques and concepts by Beckert et al. [2016].
It may be used to extend the argumentation framework by
Cailloux and Endriss [2016].
Similarly to our approach, Brandt et al. [2017] apply au-
tomated reasoning based on SAT-solvers. They prove ex-
isting social choice theorems to obtain minimal bounds for
the theorems to hold. More work on efficient applications
of automated reasoning in social choice theory exists by
Geist and Endriss [2011], who automatically detect many
impossibility theorems. In another logic-based automatic
approach, Xia [2013] incorporates axiomatic properties to
a machine learning framework.
Besides fully automatic approaches, other approaches ap-
ply interactive techniques using tactical theorem provers in

order to yield unbounded results. This branch was initi-
ated by Nipkow [2009], who provides a mechanized proof
for the famous Arrow’s possibility theorem. Beckert et al.
[2016] use optimized deductive program verification tech-
niques to verify a number of simple voting rules with re-
spect to classical axioms. Moreover, Dawson et al. [2015]
apply interactive theorem proving to formalize and ver-
ify complex voting rules according to legal text. Another
direction is pursued by Pattinson and Schürmann [2015],
who encode complex voting rules in rules of higher-order
logic, which serve as proof-carrying code for voting rules
and may thus produce certified election results. Verifica-
tion using tactical theorem provers may lead to very high
confidence levels, but requires time-consuming, huge and
difficult interactive proofs.

7 Conclusion and future work
In this article, we have presented and formally defined an
automatic approach to argue for and against voting rules
based on axiomatic social choice properties. The approach
is fully automatic and based on the software analysis tech-
nique bounded model checking. Our case study on the vot-
ing rules Borda, Copeland and Black shows that illustra-
tive proofs are obtained automatically in reasonable time
for small numbers of voters and alternatives. This might
appear surprising given the combinatorial structure of pref-
erence profiles and set-valued outcomes.
Based on the small-scope hypothesis, we argue that our ap-
proach can be used for arguing about voting rules, espe-
cially because it provides short and human-readable proofs
when it detects that a voting rule fails to satisfy some ax-
iom.
Ideas for future work include extensions to reasoning about
rules that are incompletely specified. For example, we
could automatically conceive an argument (in the form of
an example profile and a set of winners as illustrated in the
experiments) that would attack any rule that does not sat-
isfy a given axiom. In this way, it would be possible to
also argue against classes of rules, additionally to concrete
rules as illustrated in this work. The approach could also
be extended to automatically illustrate differences between
two sets of axiomatic properties without the need for any
explicit voting rule. A more ambitious extension would
consist in automatically deriving proofs that a winner is a
“right” winner by using several example profiles, as illus-
trated (using a non-automatic procedure) by Cailloux and
Endriss [2016].
A longer-term objective is to mix the ideas proposed in this
work and further optimization techniques [Beckert et al.,
2016] with elicitation procedures in order to obtain a sys-
tem that would permit to recommend a voting rule, possi-
bly based on work in elicitation of scoring rules [Cailloux
and Endriss, 2014] and on work that defines justified rec-
ommendations as those that resist counter-arguments [Cail-
loux and Meinard, 2017].

References
K. J. Arrow. Social choice and individual values. Yale

University Press, New Haven, 3rd edition, 2012.

B. Beckert, T. Bormer, M. Kirsten, T. Neuber, and
M. Ulbrich. Automated verification for func-
tional and relational properties of voting rules. In
Sixth International Workshop on Computational
Social Choice (COMSOC 2016), 2016. URL
https://www.irit.fr/COMSOC-2016/proceedings/
BeckertEtAlCOMSOC2016.pdf.

A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic
model checking without BDDs. In R. Cleaveland, edi-
tor, Proceedings of the 5th International Conference on
Tools and Algorithms for Construction and Analysis of
Systems (TACAS ’99), volume 1579 of Lecture Notes
in Computer Science, pages 193–207. Springer, 1999.
doi:10.1007/3-540-49059-0_14.

D. Black. The Theory of Committees and Elections,
volume 36. Cambridge University Press, 1958.
doi:10.1017/S0031819100058204.

F. Brandt, C. Geist, and D. Peters. Optimal
bounds for the no-show paradox via SAT solv-
ing. Mathematical Social Sciences, 90:18–27, 2017.
doi:10.1016/j.mathsocsci.2016.09.003.

O. Cailloux and U. Endriss. Eliciting a Suitable Vot-
ing Rule via Examples. In T. Schaub, G. Friedrich,
and B. O’Sullivan, editors, Proceedings of the 21st
European Conference on Artificial Intelligence (ECAI
2014), volume 263 of Frontiers in Artificial Intelligence
and Applications, pages 183–188. IOS Press, 2014.
doi:10.3233/978-1-61499-419-0-183.

O. Cailloux and U. Endriss. Arguing about voting
rules. In Proceedings of the 15th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS-2016). IFAAMAS, 2016. URL https://dl.acm.
org/citation.cfm?id=2936968.

O. Cailloux and Y. Meinard. A formal framework for delib-
erated judgment, 2017. URL https://arxiv.org/abs/1801.
05644.

E. Clarke, D. Kroening, and F. Lerda. A tool for checking
ANSI-C programs. In K. Jensen and A. Podelski, edi-
tors, Proceedings of the 10th International Conference
on Tools and Algorithms for the Construction and Anal-
ysis of Systems (TACAS 2004), volume 2988 of Lecture
Notes in Computer Science, pages 168–176. Springer,
2004.

J. M. Colomer. Ramon Llull: from ‘Ars electionis’ to so-
cial choice theory. Social Choice and Welfare, 40(2):
317–328, 2013. doi:10.1007/s00355-011-0598-2.

A. H. Copeland. A ‘reasonable’ social welfare function.
seminar on applications of mathematics to social sci-
ences. In University of Michigan Seminar on Applica-
tions of Mathematics to the Social Sciences, 1951.

J. E. Dawson, R. Goré, and T. Meumann. Machine-checked
reasoning about complex voting schemes using higher-
order logic. In R. Haenni, R. E. Koenig, and D. Wik-
ström, editors, Proceedings of the 5th International Con-
ference on E-Voting and Identity (VoteID 2015), volume
9269 of Lecture Notes in Computer Science, pages 142–
158. Springer, 2015. doi:10.1007/978-3-319-22270-
7_9.

N. Eén and N. Sörensson. An extensible SAT-solver. In
International Conference on Theory and Applications of
Satisfiability Testing (SAT 2003), Selected Revised Pa-
pers, pages 502–518, 2003.

C. Geist and U. Endriss. Automated search for impossibil-
ity theorems in social choice theory: Ranking sets of ob-
jects. Journal of Artificial Intelligence Research (JAIR),
40, 2011.

D. Jackson. Software Abstractions - Logic, Language, and
Analysis. MIT Press, 2006. URL http://mitpress.mit.
edu/catalog/item/default.asp?ttype=2&tid=10928.

T. Nipkow. Social choice theory in hol. Jour-
nal of Automated Reasoning, 43(3):289–304, 2009.
doi:10.1007/s10817-009-9147-4.

D. Pattinson and C. Schürmann. Vote counting as math-
ematical proof. In B. Pfahringer and J. Renz, edi-
tors, Proceedings of the 28th Australasian Joint Con-
ference on Advances in Artificial Intelligence (AI 2015),
volume 9457 of Lecture Notes in Computer Science,
pages 464–475. Springer, 2015. doi:10.1007/978-3-319-
26350-2_41.

L. Xia. Designing social choice mechanisms using ma-
chine learning. In M. L. Gini, O. Shehory, T. Ito,
and C. M. Jonker, editors, International conference
on Autonomous Agents and Multi-Agent Systems (AA-
MAS ’13), pages 471–474. IFAAMAS, 2013. URL
http://dl.acm.org/citation.cfm?id=2484995.

H. P. Young. An axiomatization of borda’s rule.
Journal of Economic Theory, 9(1):43 – 52, 1974.
doi:10.1016/0022-0531(74)90073-8.

https://www.irit.fr/COMSOC-2016/proceedings/BeckertEtAlCOMSOC2016.pdf
https://www.irit.fr/COMSOC-2016/proceedings/BeckertEtAlCOMSOC2016.pdf
http://doi.org/10.1007/3-540-49059-0_14
http://doi.org/10.1017/S0031819100058204
http://doi.org/10.1016/j.mathsocsci.2016.09.003
http://doi.org/10.3233/978-1-61499-419-0-183
https://dl.acm.org/citation.cfm?id=2936968
https://dl.acm.org/citation.cfm?id=2936968
https://arxiv.org/abs/1801.05644
https://arxiv.org/abs/1801.05644
http://doi.org/10.1007/s00355-011-0598-2
http://doi.org/10.1007/978-3-319-22270-7_9
http://doi.org/10.1007/978-3-319-22270-7_9
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=10928
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=10928
http://doi.org/10.1007/s10817-009-9147-4
http://doi.org/10.1007/978-3-319-26350-2_41
http://doi.org/10.1007/978-3-319-26350-2_41
http://dl.acm.org/citation.cfm?id=2484995
http://doi.org/10.1016/0022-0531(74)90073-8

	Goal and motivation
	Concepts and notations
	Checking properties automatically
	Checking software properties
	Checking voting rule properties
	A simple example

	Definitions for the experiments
	An axiomatization of the Borda rule
	Two axioms not satisfied by Borda
	Two Condorcet compatible voting rules

	Experiments
	Borda and Pareto-dominance
	Counter-examples to Borda
	Automatic comparison of Borda with other voting rules

	Literature review
	Conclusion and future work

