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Institute of Control Systems (IRS), Karlsruhe Institute of Technology (KIT), Germany

adam.kastner@student.kit.edu, jairo.inga@kit.edu

Abstract— A ball-on-plate system is a widespread education-
oriented laboratory experiment for automation in mechatronics.
The setup combines elements of mechanical, electrical and
control engineering and is an adequate setup for learning
the combination of theory and practice. This paper presents
an example of a workshop result on automatic control in
mechatronics. The aim of the workshop is to develop and
compare model-based approaches for ball position control in a
given large-scale ball-on-plate system. The result includes the
derivation of a non-linear state space model of the system.
The equations are linearized in the center of the horizontal
plate as an operating point in order to apply cascade control,
linear-quadratic optimal control and PI optimal state feedback
control. The algorithms are implemented on a microcontroller
and tested in the experimental setup. The results show a
successful control development which achieves the control goal
with good performance in terms of command response.

I. INTRODUCTION

Technological advancements have led to a rising number
of mechatronic systems in today’s industry but also in
daily life. Given the importance of the necessary synergetic
work across the fields of mechanical engineering, electrical
engineering, automatic control and computer science, it is
reasonable that education in engineering should include
the development of multidisciplinary skills. In this context,
providing laboratory experiments including subsystems from
all of these domains plays a crucial role in order to prepare
students for practical challenges in engineering.

The ball-on-plate system is an example of a system
showing the integration of all of these domains in a clear
way. The system consists of a plate, the rotation axes of
which can be controlled in order to regulate the position
of a ball rolling on it. This system is considered a useful
experimental setup for education in mechatronics since it
combines mechanics (actuation mechanism), electronics (e.g.
sensor and actor setup), as well as computer science (image
processing for ball detection) and automation (control of the
ball position) in an illustrative way [1]. The development
of a real system contributes to learning about practical
challenges like the integration of all subsystems and the
adequate communication of all components.

We developed a ball-on-plate system to be used as an
experimental setup in a workshop focused on automation in
mechatronics. The automatic control of a real ball-on-plate
system entails several challenges, for example friction effects
and non-linearity and open-loop instability of the multiple-
input multiple-output system.

The ball-on-plate systems which can be found in literature
vary in size, mechanical principles for the plate tilting and the
used sensors for measuring plate angles and the ball position.
The systems presented in [2] and [3] include a linkage
system below the plate. The plate is a touchscreen which
determines the ball position. In [4], a different actuation
approach with 5 linkages positioned partly around the plate
was presented, using a webcam for ball tracking. There is
also a commercially available ball-on-plate system [5] which
is used in [6]. As for the proposed control strategies, most
approaches include a cascade structure [2], [3], [6], [7],
where the dynamics of the inner loop are assumed to be
fast enough due to the use of servomotors. Therefore, the
different applied control methods, e.g. LQ optimal control
[3], [7], PD with fuzzy supervisor [4] and sliding mode
control [4], [7] are designed only for the outer control loop.

Our ball-on-plate system with a 1m2 square plate is
considerably larger than all systems found in literature (see
e.g. the 400mm x 400mm plate in [5]), leading to a greater
moment of inertia. For this reason, the aforementioned
assumptions concerning the inner loop cannot be made and it
is necessary to determine motion equations and controllers
for the complete system, including the inner loop and the
actuators. A similar modeling approach was done in [8] in
order to apply LQ control, but was only tested in simulations.

Thus, the aim of the workshop consists in the design
and implementation of a model-based controller in order to
balance the ball at any desired position on the plate. Since
the mechanical properties of our large-scale ball-on-plate
system are different from the state of the art, a mathematical
model of the system based on given drawings and 3D-models
as well as the datasheets of all components is required.
The controller is then designed on this basis. Adequate
parameters have to be determined in order to assure adequate
control response and disturbance rejection. The next step
consists in the implementation of the control algorithm on a
microcontroller in order to apply it on the real system. In this
way, the performance of the developed control algorithms
shall be evaluated.

In this paper, we show a complete modeling and control
design process for a new large-scale ball-on-plate system
performed by one undergrad student.

The remainder of the paper is organized as follows.
Section II presents the main aspects of the given ball-on-plate
system. In Section III, a mathematical model of the system



PC MCU drive
controller

EC
motor

plate

rotary
encoder

camera

CAN CAN

QEP

USB
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Fig. 2. Ball-on-plate experimental setup

is derived. Section IV is devoted to the chosen controllers to
be implemented. The experimental results are presented in
Section V. Finally, we draw conclusions in Section VI.

II. SYSTEM DESCRIPTION

This section describes the architecture of the experimental
setup, the actuation mechanism used to change the plate
inclination and the sensing mechanisms used to measure the
plate inclination and ball position.

A. System Architecture
The system architecture is shown in Fig. 1. Its main

components are the following:
• the mechanical assembly with a square acrylic glass

plate of size 1m2 and a frame holding the components
• 2 electronically commutated (EC) geared motors (ebm-

papst ECI-63.40-K1-B00 with i = 26 planetary gear-
box)

• 2 motor drive controllers (miControl mcDSA-E40-HC)
• 2 rotary encoders (SICK DFS60A-BHPA65536)
• a camera (IDS UI-3160CP)
• a microcontroller (MCU, Texas Instruments TMS320

F28335)
• a personal computer (PC)

Communication between the microcontroller and the drive
controllers is performed via CAN bus using the CANopen
protocol. The rotary encoders are connected to the MCU
directly using the quadrature encoder pulse (QEP) interface.
The PC is connected to the ball-on-plate system using a
second CAN bus, where a custom protocol is used.

B. Actuation Mechanism
Due to the large size of the plate, a design goal of the

actuation mechanism was to have no components horizon-
tally beside the plate. Revolute joints with perpendicular

Fig. 3. Original and color threshold filtered camera image

axes in serial configuration, shown in Fig. 2, were placed
below the plate to achieve a small footprint. The first joint
connects the base frame to an intermediary frame, the second
joint connects the intermediary frame to the bracket holding
the plate. This mechanism requires a vertical offset between
the axes of rotation and the plate. The system acts as an
inverse pendulum because the center of mass (CoM) of the
plate and bracket assembly is above the axes of the joints.
Because the plate surface is above the joint axes, tilting the
plate in one direction will cause the ball to move up the
slope initially before it is accelerated downwards by gravity,
this nonminimum phase behavior must be considered when
designing a controller.

C. Sensing Mechanisms

Rotary encoders are used to measure the current joint
angles α1 and α2. The plate is in a horizontal position for
α1 = α2 = 0. Within the camera image the position of
the ball is determined using threshold based filtering in the
HSV color space, the result of this is shown in Fig. 3. The
marked corners of the plate are also detected, allowing the
coordinates of the ball p1 and p2 relative to the plate center
to be calculated using a homography. The machine vision
algorithm is executed on the PC.

III. MODELING

In this workshop run, a new mathematical model is deve-
loped to represent the experimental setup because no existing
model accounted for both the dynamics of the plate and an
offset between plate and joint axes. A nonlinear model is
created to simulate system behavior and it is then linearized
for controller design. The physical properties of the setup
that are used as model parameters are listed in Table I.

TABLE I
MODEL PARAMETERS

Parameter Symbol Value
radius of ball rB 0.02m
mass of ball mB 0.0027 kg
mass of plate mP 13.83 kg
moment of inertia of ball JB 7.2× 10−7 kgm2

moment of inertia of plate about axis 1 J1 1.545 kgm2

moment of inertia of plate about axis 2 J2 1.327 kgm2

height of ball CoM above axes hB 0.172m
height of plate CoM above axes hP 0.145m
effective motor constant kM 0.8508Nm/A
gravity g 9.81m/s2
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A. Modeling Procedure

For modeling the behavior of the ball-on-plate system, the
following assumptions are used:
• There is no sliding motion of the ball and it never loses

contact with the plate.
• Frictional forces Ff and torques Mf will later be assu-

med to be zero.
• The change in the moment of inertia of the plate

assembly around the first joint axis depending on the
rotation of the second joint is neglected.

• The dynamic behavior of the motor drive control loop
is neglected, and the joint motor torque is assumed to
be MM = kMI .

Equations of motion for the mechanical system are derived
using Lagrange’s equation

Q∗i =
d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
i ∈ {1, 2, 3, 4} (1)

L = Ekin − Epot (2)

where Ekin designates the kinetic and Epot the potential
energy of the system.

The four generalized coordinates are the joint angles α1 =
q1 and α2 = q2 and the coordinates of the ball p1 = q3
and p2 = q4 relative to the center of the plate. The external
generalized forces acting on the joints are the sum of friction
and motor torques: Q∗1 =Mf,1+MM,1, Q∗2 =Mf,2+MM,2.
No external force except for friction acts on the ball directly:
Q∗3 = Ff,1, Q∗4 = Ff,2.

To calculate the energy in the system, the coordinates in
a plate-based coordinate system {x̃, ỹ, z̃} of the centers of
mass of the ball

pB =
(
p1 p2 hB

)T
(3)

and the plate assembly

pP =
(
0 0 hP

)T
(4)

are transformed into a fixed coordinate system {x, y, z}. The
transform, shown in Fig. 4 for α1 = 0, is described by the
rotation:

R =

 cosα1 − sinα1 sinα2 cosα1 sinα2

0 cosα2 sinα2

− sinα1 − cosα1 sinα2 cosα1 cosα2

 (5)

Using this, the potential energy

Epot =
(
0 0 g

)
R (mBpB +mPpP) (6)

is calculated from the z-coordinate of the centers of mass in
the fixed coordinate system. The kinetic energy

Ekin =
J1
2
α̇2
1 +

J2
2
α̇2
2 +

mB

2

∣∣∣∣ ddt (RpB)

∣∣∣∣2
+
JB
2

((
α̇1 +

ṗ1
rB

)2

+

(
α̇2 +

ṗ2
rB

)2
) (7)

is the sum of the rotational energies of plate and ball and the
translational energy of the ball. The velocity is calculated as
the derivative of the position in the fixed coordinate system.

Using Lagrange’s equation yields the nonlinear equations
of motion given in Table II. To allow for the use of standard
tools and algorithms for control design, a linearization is
performed using a steady state with the ball in the center
of the horizontal plate as operating point. This leads to a
decoupling of the two axes of motion of the ball with similar
behavior and differing only in the values of constants.

B. Single Axis Linear State-Space Model
The linearized equations of motion describe two similar

systems for each axis j ∈ {1, 2} of motion of the ball, each
of which can be represented with a state-space model with
four states

x =
(
pj ṗj αj α̇j

)T
(12)

for ball position and velocity as well as plate angle and
angular velocity. The system input

u = Ij (13)

is the reference current for the motor driver controllers. The
standard state-space form

ẋ = Ax+Bu (14)

is used to describe the dynamic behavior of the system with
the matrices

A =


0 1 0 0
a21 0 a23 0
0 0 0 1
a41 0 a43 0

 and B =


0
b2
0
b4

 (15)

where:

a21 = −gmBrB (JB + hBmBrB) /c1

a23 = −grB (−JjmBrB + hBmBmPhPrB + c2) /c1

a41 = gmB

(
mBrB

2 + JB
)
/c1

a43 = g
(
mBmPhPrB

2 + c2
)
/c1

b2 = −kMrB (JB + hBmBrB)/c1

b4 = kM
(
mBrB

2 + JB
)
/c1

c1 = JjJB + JBhB
2mB + JjmBrB

2

+ JBmBrB
2 − 2JBhBmBrB

c2 = JBmPhP − JBmBrB + JBhBmB

The system output

y =
(
1 0 0 0

)︸ ︷︷ ︸
C

x = p (16)

is the ball position which is also the control variable.



TABLE II
NONLINEAR EQUATIONS OF MOTION

MM,1 = J1α̈1 + JBα̈1 + α̈1mBp
2
1 + α̈1mBp

2
2 +

JBp̈1

rB
+ α̈1hB

2mBcos (α2)
2 + 2α̇1mBp1ṗ1 + 2α̇1mBp2ṗ2 − α̈1mBp

2
2cos (α2)

2

− gmBp1 cos (α1) + hBmBp̈1 cos (α2) +mBp1p̈2 sin (α2)−mBp̈1p2 sin (α2)− gmPhP cos (α2) sin (α1)

+ α̇2
2hBmBp1 cos (α2)− ghBmB cos (α2) sin (α1)− α̈1hBmBp2 sin (2α2)− α̇1hBmBṗ2 sin (2α2)− 2α̇1mBp2ṗ2cos (α2)

2

− α̇2
2mBp1p2 sin (α2) + gmBp2 sin (α1) sin (α2) + 2α̇1α̇2hBmBp2 − α̇1α̇2hB

2mB sin (2α2) + α̇1α̇2mBp
2
2 sin (2α2)

+ α̈2hBmBp1 sin (α2) + α̈2mBp1p2 cos (α2) + 2α̇2mBp1ṗ2 cos (α2)− 4α̇1α̇2hBmBp2cos (α2)
2

(8)

MM,2 = J2α̈2 + JBα̈2 + α̈2mBp
2
2 + hBmBp̈2 +

JBp̈2

rB
+ α̈2hB

2mB + 2α̇2mBp2ṗ2 − α̇2
1hBmBp2 +

α̇2
1hB

2mB sin (2α2)

2

−
α̇2
1mBp

2
2 sin (2α2)

2
− gmPhP cos (α1) sin (α2)− ghBmB cos (α1) sin (α2)− gmBp2 cos (α1) cos (α2)

+ 2α̇2
1hBmBp2cos (α2)

2 + α̈1hBmBp1 sin (α2) + 2α̇1hBmBṗ1 sin (α2) + α̈1mBp1p2 cos (α2) + 2α̇1mBṗ1p2 cos (α2)

(9)

0 = α̇2
1mBp1 −mBp̈1 + gmB sin (α1)−

JBα̈1

rB
−
JBp̈1

rB2
− α̈1hBmB cos (α2) + α̈1mBp2 sin (α2) + 2α̇1mBṗ2 sin (α2)

+ 2α̇1α̇2hBmB sin (α2) + 2α̇1α̇2mBp2 cos (α2)

(10)

0 = α̇2
1mBp2 −mBp̈2 + α̇2

2mBp2 − α̈2hBmB −
JBα̈2

rB
−
JBp̈2

rB2
−
α̇2
1hBmB sin (2α2)

2
− α̇2

1mBp2cos (α2)
2 − α̈1mBp1 sin (α2)

− 2α̇1mBṗ1 sin (α2) + gmB cos (α1) sin (α2)

(11)

IV. CONTROL DESIGN

Multiple controllers are designed based on the linearized
model. The control goal of balancing the ball is defined
as bringing the ball to a standstill at an arbitrarily defined
position on the plate. Two separate controllers with similar
structure are used for the two axes of motion of the ball.
Continuous-time design procedures were used and the con-
troller is discretized later for implementation.

Three possible control structures are considered and will
be compared:
• Cascade control similar to [2] and [6], where the inner

loop controls the plate inclination and the outer loop
controls the ball position.

• State feedback similar to [8], where the control signal
is calculated from the system state x.

• PI state control, where state feedback is combined with
a PI controller.

A. Cascade Control

The cascade control structure shown in Fig. 5 uses an inner
loop to control the inclination of the plate α and an outer loop
to control the position of the ball p. Cascade control is often
used with a fast-acting inner loop whose dynamic behavior
is not considered when designing the outer loop controller.
In this large-scale experimental setup, the high moment of
inertia of the plate limits the angular acceleration and thus the
response speed of the inner loop, requiring outer controller
design to consider the dynamics of the inner loop.

PD Controller
w

PID Controller
αS

System
y

I

α

Fig. 5. Cascade Control structure.

The inner loop is designed based on the transfer function
between motor current and plate angle, neglecting all influ-
ence from the ball:

GP (s) =

kM

Jj

s2 − ghPmP

Jj

(17)

To control this unstable second-order system, a PID control-
ler is used. Integral action in the inner loop is used to achieve
stationary accuracy despite the gravitational force of the ball
acting as a static disturbance.

To avoid large system inputs when a sudden change in
command signal αS occurs, a controller with two degrees
of freedom for command and control signal is used and
derivative action is only applied to the control signal. The
back-calculation algorithm as described in [9] is used for
anti-windup.

The outer controller is designed based on the combined
transfer function

GO (s) = GI(s) ·
−rB(JB + hBmBrB)s

2 + gmBr
2
B

(mBr2B + JB) s2
(18)

of the inner loop and the transfer function between plate
inclination and ball position. To control the resulting system
with double integral behavior, a PD controller is used.
The outer controller is also designed as a two-degree-of-
freedom controller that does not apply derivative action to
the command signal.

Appropriate controller gains are determined using the
pidTuner tool of the software Matlab.

B. State Feedback

The state feedback control structure shown in Fig. 6 uses
the matrix KR to calculate the control signal from the system
state x and achieves stationary accuracy by multiplying the
command signal w with the prefactor kV.
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An optimal state feedback matrix KR is calculated as
a linear-quadratic regulator (LQR) that minimizes the cost
function

J =

∫ ∞
0

xTQx+Ru2dt (19)

where the states are penalized with the weighting matrix Q
and the control effort with the weight R.

To achieve the control goal, the position error must be
minimized, which is why the weighting matrix

Q = diag (Qp, 0, 0, 0) (20)

is chosen to penalize only the position of the ball, where
diag (. . . ) denotes a square diagonal matrix. The prefactor
applied to the command signal w must be set to

kV = −
(
C (A−BKR)

−1
B
)−1

(21)

to achieve stationary accuracy as described in [10].
Simulations are used to determine values for Qp and R

where the LQR controller achieves fast reaction to set-point
changes while avoiding motor current saturation.

C. PI State Control

The PI state controller structure shown in Fig. 7 consists
of a constant state feedback K∗R and a PI controller that
uses integral action to achieve stationary accuracy even when
static disturbances are present.

To calculate appropriate state feedback and controller
gains, an extended state space model with state vector

xI =
(
xT z

)T
(22)

is used. It introduces a new state z that represents the integral
of the control error e = w−y between set point w and system
output y:(

ẋ
ż

)
=

(
A 0
−C 0

)(
x
z

)
+

(
B
0

)
u+

(
0
1

)
w (23)

An LQR feedback matrix K is calculated to minimize the
cost function:

J =

∫ ∞
0

xT
I QIxI +RIu

2dt (24)

∫
kI

kP

System C

K∗R

w e z u x y

−−

Fig. 7. PI State Controller structure.

To achieve stationary accuracy, the integral z of the control
error must be penalized. Because achieving no change in the
integral of the control error requires the control error and all
other states to be zero, the weighting matrix

QI = diag (0, 0, 0, 0, Qz) (25)

is chosen to penalize only z.
The resulting state feedback matrix K for the extended

model can be split into the controller gains kI and kP and
the state feedback matrix K∗R:

K =

(
K∗R + kPC

kI

)
(26)

Simulations show that choosing kP > 0 results in large
overshoot, which is why kP = 0 was used in the final
controller. The values for the weights Qz and RI were chosen
based on simulations and tests of the system. Anti-windup is
added to the controller using the back-calculation algorithm.

In practice, stiction in the plate joints prevents small
changes in plate inclination. Because of this, it is not possible
to achieve zero control error between set-point and system
output. To prevent the integral action of the controller from
setting the system in motion again when the ball is already at
a standstill close to the set-point, a dead zone is added to the
integral action so that position errors smaller than ±20mm
are ignored. This prevents an oscillating motion around the
set-point.

V. EXPERIMENTAL RESULTS

The controllers are implemented on a microcontroller and
used to control the experimental setup. Tests are performed
for validation and to compare the different structures.

A. Implementation

The control algorithm is implemented on the MCU using
Simulink Coder, a part of the Matlab software package. A
time-discretization of the controllers developed in Section IV
is performed using a sampling time of TA = 0.04 s. For
approximating the integral and derivative action in the con-
troller, the forward Euler algorithm is used.

State feedback requires all states of the system to be
known. In the experimental setup, only the coordinates of
the ball p and the joint angles α can be measured directly.
The velocity of the ball ṗ and the angular velocity α̇ of the
plate are estimated using the difference quotient.

B. Experimental Validation

The implemented controllers were tested using the experi-
mental setup. All control structures stabilize the system and
they rebalance the ball after a disturbance is introduced by
manually tilting the plate or pushing the ball.

Reaction to a set-point change was tested and Fig. 8
shows the response of the experimental setup with all three
controller structures to a change in set-point from −0.15m
to +0.3m in one axis of motion. The ball is moved close
to the new target position and brought to a standstill by
all three controllers. A small stationary error remains due
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to stiction restricting small changes in plate inclination.
Stiction between ball and plate causes the ball to remain
in a stationary position when plate inclination is small, as
can be seen in the different final angle values in Fig. 8.

Both cascade control and state feedback have a similar
short rise time in ball position, with the PI state controller
being significantly slower. The settling time needed to bring
the ball to a standstill is shortest for state feedback. PI state
control causes a short-lived oscillation of the ball around the
target position, increasing settling time.

Small fluctuations in the motor current are caused by
measurement noise but do not affect control quality. Due to
an assymetrical distribution of mass of the plate assembly,
a small current is needed to maintain a horizontal plate
position and an offset was added to the state feedback for
compensation.

C. Comparison of Control Structures

The controller structures are compared based on their step
response shown in Fig. 8.

A short rise time in ball position is achieved using
proportional feed-through of the command signal in cascade
control and state feedback, a step in set-point immediately
leads to a step in motor current causing a quick change in
plate inclination. PI state control achieves set-point following
using only integral action, leading to a slower initial rise.
Depending on circumstances, it can be preferable to have
a motor current that changes smoothly and does not reach
high absolute values, reducing strain on the mechanical
components.

The PI state controller has the largest settling time, due
to its integral action and the delay in the system caused by

stiction creating an oscillation. A short settling time can be
achieved by using state feedback where the controller has no
internal dynamic behavior.

The outer loop of the cascade controller and state feedback
do not have integral action, thus losing stationary accuracy
when stiction acts as a static disturbance. PI state control
guarantees that the stationary control error is within the width
of the dead zone, making its performance more reliable than
that of the other structures.

VI. CONCLUSION

We presented in this paper the development of a model-
based controller for a large-scale ball-on-plate system as
an example result of a workshop concept on automation
in mechatronics. Student feedback included positive com-
ments on the experience of algorithm implementation which
allowed learning how to deal with practical challenges, e.g.
friction effects. Based on the developed mathematical model,
it was possible to design several controllers which achieve
the control goal and at the same time discuss their strengths
and weaknesses in a real application. This workshop run
was performed primarily by one student. In future, we plan
to build joint working groups of 3-4 undergrad students
which participate on the workshop while attending lectures
on practical aspects of control engineering.
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