
Building REST APIs for the Robot Operating
System – Mapping Concepts and Interaction

Felix Leif Keppmann, Maria Maleshkova, and Andreas Harth

Karlsruhe Institute of Technology (KIT), Germany
{felix.keppmann, maria.maleshkova, andreas.harth}@kit.edu

Abstract. The vision of the Web of Things (WoT) aims to leverage Web
standards in order to interconnect all types of embedded devices and real-
world objects, and thus to make them a part of the WWW. Therefore,
WoT aims to build a future Web of devices that is truly open, flexible, and
scalable. We aim to contribute towards achieving this goal by relying on
existing and well-known Web standards used in the programmable Web
(e.g., URI, and HTTP) and the semantic Web (e.g., RDF), in order to
enable the Web integration of Robot Operating System (ROS) devices.
In particular, we motivate the problem of integrating ROS devices in
Web environments, elaborate on the integration potential, and describe
specific application examples. We provide a mapping between ROS and
REST concepts and interaction primitives. In addition, we show how
REST is capable to enhance a mapping of the ROS architecture in terms
of complex resources and hypermedia. The contributions described in
this paper pave the way towards realising a WoT, where ROS devices
can be easily accessed and directly integrated by using standard Web
technologies, without additional custom implementation effort or having
to add intermediate communication layers.

1 Introduction

Current developments of the Web are characterised by the wider integration of
network-enabled devices, which serve as data providers or actuators, in the con-
text of client Web applications. However, even though real-life objects can finally
participate in Web scenarios, the use of individual and specific interaction mech-
anisms and data models lead to realising isolated islands of connected devices or
to custom, not reusable solutions. Devices are increasingly network-enabled but
rely on heterogeneous network communication mechanisms, use no standardised
interfaces and introduce new data models for each individual device. This results
in small groups of Web-enabled interconnected devices, which cannot be directly
extended and reused for different application domains or different scenarios but
are instead network and domain specific.

The bridging of these isolated groups of connected devices and the provi-
sioning of overall interoperability are required in order to enable a pervasive
Web of Things (WoT). The vision of the WoT is to leverage Web standards
in order to interconnect all types of embedded devices (e.g., sensors, mobile

Services and Applications over Linked APIs and Data – SALAD2015 10

Copyright held by the paper authors

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197480839?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


phones, etc.) and real-world objects, and thus to make them a part of the World
Wide Web (WWW). Therefore, WoT aims to build a future Web of devices
that is truly open, flexible, and scalable. We aim to contribute towards achiev-
ing this goal by relying on existing and well-known Web technologies used in
the programmable Web (e.g., Uniform Resource Identifier (URI), and Hypertext
Transfer Protocol (HTTP)) and the semantic Web (e.g., Resource Description
Framework (RDF)). In particular, we focus on the integration of the Robot
Operating System (ROS) [5] as a specialised architecture for robotic systems
and focus on exploring the synergies emerging from the combination of ROS
and Representational State Transfer (REST) [1]. We develop a solution based
on REST, proposed as an architectural style for integrating loosely coupled dis-
tributed systems. We map ROS, which is an established standard and framework
in the robotics area, to the concepts and interaction mechanisms of REST. As
a result, devices participating in robotic systems can be accessed in a uniform
way – directly over HTTP, using URIs, and adhering to the REST architectural
style. In summary, we make the following contributions:

– We provide a conceptual mapping between ROS and REST.
– We describe how to map the interaction mechanism between ROS and REST.
– We show how hypermedia may enhance a distributed ROS application.

The contributions described in this paper pave the way towards realising a
WoT, where ROS devices can be easily accessed, deployed and integrated directly
by using standard Web technologies, without additional custom implementation
effort or having to add intermediate communication layers.

The remainder of the paper is structured as follows: in Section 2 we further
motivate the problem, elaborate on the integration potential and describe specific
application examples. In Section 3 we provide an overview of the building blocks
of the ROS architecture. In Section 4, we first develop a generic view on resource-
oriented architectures and then create a mapping between the concepts and
interaction mechanisms of REST and ROS. We provide a short overview of
related work in Section 5 and conclude the paper in Section 6.

2 Motivation

The vision of a pervasive Web, e.g., promoted by the Internet of Things (IoT),
requires the integration of heterogeneous software and hardware. Whenever it
comes to making architectural decisions, there is a trade off between the general
applicability of the architecture and the development of specialised architectures
that may be more efficient for specific use cases. We advocate an approach that
supports the development of specialised solutions by enabling their subsequent
integration in a broader context.

We illustrate this challenge with the following example. In the field of robotics
the ROS architecture is a key player for the efficient integration of modularised
robotic systems. These robotic systems are increasingly used in a broader con-
text, for instance for developing flight and cockpit simulators, which are char-
acterised by the use of specialised hardware and software elements. While the

Services and Applications over Linked APIs and Data – SALAD2015 11

Copyright held by the paper authors



individual hardware and software components would require custom implemen-
tations and solutions, ROS enables an overall unified communication and han-
dling of the simulator systems. The result is an isolated group of interconnected
devices (flight and cockpit simulator components) that can communicate in a
unified way, since they conform to ROS. This specialised solution can be ex-
tended with REST-based communication in order to enable its Web integration,
thus facilitating its adaptability within the WoT. This example emphasises that
pervasive integration scenarios, as promoted by the IoT and WoT vision, can
benefit from specialised architectures (i.e., ROS) for specific use cases in com-
bination with web-scale architectures (i.e., adhering to the REST architectural
style), which are capable of overcoming the heterogeneity.

We take the example of a ROS flight and cockpit simulator as a specific
scenario used for illustrating the challenges faced while developing an approach
for the mapping between the used ROS architecture and a resource-oriented
architecture based on REST and Linked Data. In particular, the challenge of
integrating these two architectural approaches is two-fold. First, the integra-
tion has to be realised on a conceptual and interaction level. With REST, we
introduce a resource-oriented viewpoint on distributed applications. The basic
concepts associated with REST and the corresponding implications on the inter-
actions within the distributed application must be aligned with the particular
ROS architecture. Second, the integration has to be realised on the semantic
level, based on the meaning of the processed data, thus facilitating the unified
handling of heterogeneous data formats and data sources. By introducing RDF
as way for formally specifying data models and Linked Data for publishing and
interlinking data, we provide the foundation for the integration of data having
different formats and coming from different sources. In the following, we focus
on the first challenge – providing a mapping on the conceptual and interaction
level. This work serves as a starting point for the unified handling of ROS, by
adopting REST-based communication.

3 Robot Operating System

We provide an overview of important concepts, interaction mechanisms, data
models and formats of ROS. ROS provides a coherent way for identification and
message transmission in a distributed application. A distributed application is
composed of ROS nodes, which communicate via messages with other nodes by
using ROS topics and ROS services, or by utilising ROS parameters.

ROS introduces the following Concepts:
Name ROS names enable the identification of every component in a distributed

ROS system via a central hierarchical naming scheme. The naming is based
on a slash-separated identifier for each resource in the ROS application, e.g.,
/ns/node. Names start with an alpha character, including forward slash and
tilde, followed by alphanumeric characters, including forward slashes and
underscores. The global namespace is identified by a forward slash and sub-
sequent slashes separate different namespaces within an identifier. Resources

Services and Applications over Linked APIs and Data – SALAD2015 12

Copyright held by the paper authors



may access other resources in or above their own namespace but only create
resources in their own namespace.

Node ROS nodes are the basic building blocks of the architecture and perform
computation in a ROS application. A ROS system may consist of several
interconnected nodes each handling the computation of a relatively narrow
functionality, e.g., location tracking, or laser sensor operation. A node is
uniquely identified by a name and all nodes in an application communicate
via topics, services, or the parameter server. Each node has a node type,
encapsulates its functionality and provides a minimal Application Program-
ming Interface (API) which is exposed to the rest of the nodes. The type
of a node defines on file system level within the package the name of the
executable to be executed when the node is accessed.

Master The ROS master provides a centralised name system and registration
facility for nodes, as well as for their published topics and services in the
ROS system. It enables nodes to discover and locate other nodes, and tracks
all subscribers and publishers of topics and services. The communication of
messages between nodes over topics is, similar to services, delegated to the
nodes and not handled by the master. The functionality of the master is
accessible through an API based on Extensible Markup Language Remote
Procedure Call (XML-RPC).

ROS introduces the following Data elements:
Message ROS messages are simple data structures of typed fields, which are

exchanged in the communication between nodes in a ROS resource graph.
A message is typed by a message type, which defines the structure of the
contained data. ROS packages may define these message types in simple
text files based on a set of build-in field types. Included in each message
is the version of the message type, which is based on the Message-Digest
Algorithm 5 (MD5) hash of the underlying message type file. Only nodes
with the same version, i.e., MD5 hash, are allowed to communicate messages
of this particular message type.

Bag ROS bags are a collections of serialised messages for persistent storage and
later reuse, e.g., playback of messages. The original representation used by
the ROS transport layer is utilised by bags as data format, which leads to
efficient processing or replaying of messages.

Finally, ROS introduces the following Interaction primitives:
Topic ROS topics provide an anonymous publish-subscribe mechanism for the

interaction in a ROS system and enable unidirectional distribution of mes-
sages from a specific node to a number of interested nodes. A topic is identi-
fied by a name and is strongly typed for one kind of messages, i.e., the type
of a topic is the same as the type of the messages to be distributed by the
topic. Nodes receive messages of this message type only if they subscribed
beforehand to the topic.

Service ROS services provide a request-response mechanism for the interaction
in a ROS system. A service is identified by a name and has a message pair,

Services and Applications over Linked APIs and Data – SALAD2015 13

Copyright held by the paper authors



Topics
/aircraft/engine/speed > 0 - 1000

Services
/aircraft/start
/aircraft/stop
/aircraft/set_power < on | off
/aircraft/get_power > on | off
/aircraft/engine/set_speed < 0 - 1000
/aircraft/engine/set_direction < 0 - 360
/aircraft/engine/get_direction > 0 - 360

Listing 1. Aircraft Topics/Services in ROS

i.e., a request message and a response message. Similarly to topics, each
service is strongly typed, based on and versioned by a MD5 hash of the
service file, which includes, in contrast to topics, the types of both messages.
The interaction with a service is synchronous, i.e., a node sends a request
message to a service and waits for the response message.

Parameter The ROS server provides at runtime a shared dictionary for param-
eter storage in nodes in the resource graph. The server is not designed for high
performance use cases but for rather static and low volume data, e.g., con-
figurations. The identification of parameters follows the ROS name scheme.
Single or tree-based access to the shared parameter storage is granted trough
an API based on XML-RPC.

4 Mapping

In this section we provide a mapping between a distributed application architec-
ture based on the technologies proposed by REST and the ROS architectures.
We 1) map the concepts between both architectures; 2) map the interaction
mechanisms utilized in the communication; 3) indicate how the REST architec-
tural style enables modelling of structural information and hypermedia, which
is implicitly expressed in ROS.

In Listing 1 we show an abstract aircraft modelled in ROS as a topic and a
number of services, which will serve as an example in the following. Each line
represents a topic or service identified by a name with input or output values.
The start/stop as well as the set/get power services start and stop the engine.
Via the set speed service a new speed may be set and the get/set direction service
is responsible for the direction in terms of angular degree. The topic informs a
subscriber about the changed speed of the aircraft.

4.1 Concepts

The REST architectural style proposes the use of commonWeb technologies, e.g.,
URIs, and HTTP. In Table 1 we provide a mapping between these concepts and

Services and Applications over Linked APIs and Data – SALAD2015 14

Copyright held by the paper authors



Concept HTTP HTTP/RDF ROS
Node Host Host Node
Dist. App. Network of Hosts Network of Hosts Network of Nodes
Resource HTTP Resource HTTP Resource Service, Parameter,

Topic Subscriber
Representation XML, JSON, . . . Turtle, JSON-LD, . . . Message, XML
Data Model - RDF Message Format,

XML-RPC Schema
Identifier URI URI Name
Transport HTTP HTTP TCPROS,

UDPROS
Interaction HTTP Verbs HTTP Verbs Methods provided

by Topic, Service,
and Parameter

Table 1. Concept Mapping between HTTP, HTTP/RDF and ROS

concepts of the ROS architecture and we have also added RDF as data model.
For a HTTP-based architecture, we are able to identify the basic concepts, i.e.,
node, distributed application, and resource. Any component capable of provid-
ing resources via HTTP at a DNS name or an IP address may serve as node.
A network of several communicating nodes composes a distributed application,
which provides a higher-value functionality. HTTP resources expose their state,
and thereby a partial state of the node, to the network. We are obliged to use
specific concepts for identification and transport. In particular, HTTP provides
also the underlying protocol for the transport of messages and, as described in
Section 4.2, for the interaction between nodes. Based on HTTP, we use URIs
to uniquely identify resources. We are not obliged to adhere to a pre-described
data model and representation format, since neither HTTP nor the REST ar-
chitectural style include a particular model. Any data format is permitted for
serialising a representation of a state, although some specific data formats are
frequently used, e.g., JSON, or XML. For the differentiation of representation
formats we may use mime types.

In addition to the REST style, we asses the use of Linked Data techniques,
which we aim to use in future work to extend the mapping with a flexible seman-
tically powerful data model and respective data formats. As shown in Table 1,
we close the gap by introducing RDF for defining a common data model. Several
data formats exist for the serialisation of representations adhering to the RDF
model, e.g., Turtle, JSON-LD, RDF/XML, N-Triples, or N3.

Similarly to HTTP, we are able to identify the basic concepts in a ROS ar-
chitecture. A distributed application based on ROS is a network of ROS nodes,
which interact in order to provide a higher-value functionality. The state of a
ROS node is exposes by services, parameters, or indirectly by the subscriber of
a topic. Therefore, different types of resources exist in the ROS architecture. In
contrast to HTTP, ROS provides data models and formats for representation.
The message format provides a simple model for messages exchanged via topics
and services, serialised on transport level in a ROS-specific data format. Repre-

Services and Applications over Linked APIs and Data – SALAD2015 15

Copyright held by the paper authors



Architecture Resource Type CREATE READ UPDATE DELETE
HTTP HTTP Resource POST/PUT GET PUT/PATCH DELETE
ROS Service – get* set* –
ROS Topic Subscriber – – publish –
ROS Parameter setParam getParam setParam deleteParam

Table 2. Interaction Mapping between HTTP and ROS

sentations of parameters adhere to the XML-RPC schema and are serialised as
XML. The ROS architecture provides a global naming scheme for services, top-
ics, and parameters, i.e., ROS names are unique identifiers for resources. With
TCPROS and UDPROS the architecture provides two implementations of the
abstract ROS transport protocol for the transfer of messages between nodes.
Negotiation procedures transparently handle the optimal choice of the proto-
col implementation, based on preferences of the involved nodes, and enable the
extensions with further protocols.

With the concept of resources exposing parts of a system to a network and
unique identifiers to identify these resources we allow a mapping which is cate-
gorized as level one in Richardson’s maturity model [6] for REST services.

4.2 Interaction

Derived from the underlying HTTP proposed by the REST style, which enables
transport and interaction, we can use the full range of CRUD operations on re-
sources. The HTTP verbs POST, GET, PUT, and DELETE map to the CRUD
operations in the interaction with resources, as shown in Table 2. Two generic
types of resources – atomic resource and collection resource, react with a dif-
ferent behaviour on these methods. Atomic resources are created or updated by
executing PUT on a URI, read by GET and deleted by DELETE. A collection
resource creates a new resource in the collection after a POST request is executed
on the URI. The resource is read by executing GET, providing by convention a
list of contained resources, and is deleted by DELETE. In addition, the PATCH
verb was introduced to allow, in contrast to PUT, partial updating of resources.

We are able to identify different interaction mechanism in the ROS archi-
tecture, depending on the type of resource, i.e., specific interaction mechanisms
exist for topics, services, and parameters. Depending on the type of resource,
we partially map the mechanisms to the generic CRUD operations, shown in
Table 2. ROS topic subscribers provide, on a conceptional level, only one atomic
resource, which can be updated by a topic publisher as a single, and thus distinct,
CRUD operation. Creation and deletion of resources in a collection resource of
the subscriber is not supported, i.e., the subscriber provides only one resource
for updates by a publisher. The resource does not support a read by other sys-
tems, but a node may expose the state again as topic or service. ROS services
do not provide distinct CRUD operations. In particular, the creation and dele-
tion of services is not possible at runtime, i.e., a service is an atomic pre-defined
resource. Furthermore, a service defines a set of input and output ROS mes-
sages as RPC with custom processing between input and output message. While

Services and Applications over Linked APIs and Data – SALAD2015 16

Copyright held by the paper authors



/aircraft/power : on | off
/aircraft/engine/speed : 0 - 1000
/aircraft/engine/direction : 0 - 360

Listing 2. Aircraft CRUD Service in HTTP

the creation and deletion of a service resource is not possible, the read and up-
date operation may be mapped automatically by introducing getter and setter
services. ROS parameter is the only resource type of the ROS architecture sup-
porting all CRUD operations. The master node provides central access to all
parameters and interaction mechanism for these parameters. In fact, interaction
with parameters is handled by XML-RPC but in a resource-oriented manner. A
parameter may be created or updated by the “setParam” method, read by the
“getParam” method and deleted by the “deleteParam”.

In Listing 2 we show how the abstract aircraft modelled in ROS in Listing 1
is mapped to a HTTP CRUD service. For simplification, we do not use full
URIs in the listing but only the path part for identification. By introducing the
convention to prefix getter and setter services in names, we automatically map
power and direction to HTTP resources. The speed topic is combined with the
speed set services to a read-write resource. We may establish a manual custom
mapping of the start and stop service.

With the mapping of a constraint set of interaction mechanisms we allow a
mapping, which is categorized as level two in Richardson’s maturity model for
REST services. We point out that the ROS architecture does not provide means
for creation and deletion of topics and services at runtime. Only a parameter
is mapped completely as a CRUD resources to HTTP. A topic is be mapped
to a read-only HTTP resource, which only allows GET. Services allow an auto-
matic mapping to a read-write HTTP resource by introducing getter and setter
services.

4.3 Complex Resources & Hypermedia

In the HTTP architecture proposed by REST the granularity of resources is a
decision at design time, since there are no restrictions in terms of representation
formats. In contrast, the ROS architecture only permits representations com-
posed of basic data types, which leads to relatively fine-grained resources. As
a consequence, a resource, which is modelled in REST as one HTTP resource,
may be split over several fine-grained topics or services in ROS, i.e., names may
contain structural information about resources. In addition, the REST archi-
tectural style proposes as a tenet the use of hypermedia to drive the state of
an applications, i.e., links connect resources and explicitly relate states of the
application.

In Listing 3 we show how the CRUD service of the abstract aircraft in Listing
2 is extended to overcome these shortcomings. For simplification, we do not
use full URIs in the listing but only the path part for identification. First, we

Services and Applications over Linked APIs and Data – SALAD2015 17

Copyright held by the paper authors



/aircraft
linkrel : start -> /aircraft
linkrel : stop -> /aircraft
linkrel : engine -> /aircraft/engine
power : on | off

/aircraft/engine
linkrel : aircraft -> /aircraft
speed : 0 - 1000
direction : 0 - 360

Listing 3. Aircraft Hypermedia Service in HTTP

aggregate fine-grained ROS resources as higher-level HTTP resources, i.e., as the
resources aircraft and aircraft engine. Structural information, which was encoded
in ROS names, is now obsolete. Second, we expose the application state, which
is implicitly present in our ROS example, explicit by utilizing hypermedia, i.e.,
by relating the resources with typed links.

Links, which drive the application state are noted as linkrel in the listing.
The link start appears in the representation of an aircraft as long as the aircraft
is not started. The link engine appears as long as the aircraft is started. The link
stop appears as long as the aircraft is started and the speed of the engine is zero.
An engine resource exists as long as the aircraft is started and its representation
contains a link back to the aircraft. A client, capable to interpret the link types,
is able to use the aircraft system in a correct way by accessing a single URI as
starting point, in this case the aircraft.

The ROS architecture does not provide means for creating complex resources
and interlinking these resources. By aggregating fine-granular ROS resources
to higher-level HTTP resources and by adding hypermedia, we enhance the
mapping and expose a ROS system as proposed by the REST architectural
style, i.e., the service now adhere to level three of Richardson’s maturity model.
However, the mapping of the application semantics is currently a manual design
decision. To what extent we can (semi-)automate the mapping of semantics is
part of future work.

5 Related Work

In the context of IoT, [2,3] propose the use of established Web technologies,
i.e., the integration of smart things following the REST architectural style. The
main target of IoT is the connection and combination of various network-enabled
devices and virtual artefacts – smart things – to distributed applications. This
integration is primarily based on network connectivity between the objects but
may lead to incompatible digital islands, i.e., distributed applications in IoT that
are closed environments. By opening these digital islands via common web tech-
nologies, i.e., REST, the authors introduce the WoT vision. The WoT approach
supports our viewpoint on distributed applications consisting of a network of

Services and Applications over Linked APIs and Data – SALAD2015 18

Copyright held by the paper authors



relatively independent nodes and the data flow between these nodes, enabled by
push or pull interaction.

The underlying design goals of ROS are described in [5]. They elaborate
on the thin peer-to-peer messaging layer of ROS with an own language-neutral
Interface Definition Language (IDL), the message types, and code generators for
all supported programming languages. With a number of specific use cases, the
authors show the intended purpose of ROS and relate it to other robotic systems.
A cross-domain use case of ROS in the surgical robotics research is described
in [4]. This example shows in more detail how ROS, as specialised architecture,
efficiently solves suitable use cases, while in the broader context more generalised
architectures may serve better to solve the integration of heterogeneous systems.

6 Conclusion

Recent developments on the Web are characterised by the growing use of sensors
and embedded devices, which have an increasing importance in the contest of
building high-value user applications but also more complex distributed solu-
tions. This trend raises new issues around the question of how can devices and
’things’ be seamlessly integrated and become an integral part of the Web. To
this end, in the paper we focus on robot systems and elaborate on the challenges
related to integrating ROS devices in Web environments. We provide a solution
in the form of a mapping between ROS and REST concepts and interaction
primitives. Furthermore, we show how REST is capable to enhance a mapping
of the ROS architecture in terms of complex resources and hypermedia. The con-
tributions described in this paper pave the way towards realising a WoT, where
ROS devices can be easily accessed and directly integrated by using standard
Web technologies, without additional custom implementation effort or having to
add intermediate communication layers.

References
1. Fielding, R.T.: Architectural Styles and the Design of Network-based Software Ar-

chitectures. Ph.D. thesis, University of California, Irvine, USA (2000)
2. Guinard, D., Trifa, V., Mattern, F., Wilde, E.: From the Internet of Things to the

Web of Things: Resource-oriented Architecture and Best Practices. In: Architecting
the Internet of Things. Springer Berlin Heidelberg (2011)

3. Guinard, D., Trifa, V., Wilde, E.: A Resource Oriented Architecture for the Web of
Things. In: Proceedings of the Internet of Things Conference (2010)

4. Hannaford, B., Rosen, J., Friedman, D.W., King, H., Roan, P., Cheng, L., Gloz-
man, D., Ma, J., Kosari, S.N., White, L.: Raven-II: An Open Platform for Surgical
Robotics Research. IEEE Transactions on Biomedical Engineering 60(4), 954–959
(Apr 2013)

5. Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E.,
Wheeler, R., Ng, A.: ROS: an open-source Robot Operating System. In: Proceedings
of the ICRA Workshop on Open Source Software. vol. 3, p. 5 (2009)

6. Webber, J., Parastatidis, S., Robinson, I.: REST in Practice: Hypermedia and Sys-
tems Architecture. O’Reilly (2010)

Services and Applications over Linked APIs and Data – SALAD2015 19

Copyright held by the paper authors


	Building REST APIs for the Robot Operating System – Mapping Concepts and Interaction
	Introduction
	Motivation
	Robot Operating System
	Mapping
	Concepts
	Interaction
	Complex Resources & Hypermedia

	Related Work
	Conclusion




