

Level and contour measurements on liquid metal surfaces

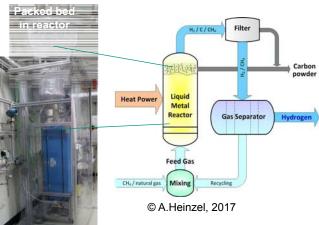
<u>LI</u>quid <u>M</u>etal <u>C</u>ompetence center <u>KA</u>rlsruhe (LIMCKA) compiled by Robert Stieglitz

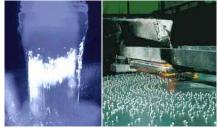
INSTITUTE for NEUTRONPHYSICS and REACTOR TECHNOLOGY (INR)

KIT –Die Forschungsuniversität in der Helmholtz-Gemeinschaft

www.kit.ed

Content


- Background, Importance & Application
- Liquid metal specifities
- Problem formulation, measurement requirements
- Level metering classical devices
 - Intrusive methods
 - Non-intrusive methods
- Range sensing by waves electromagnetic wave spectrum
- Techniques
 - Time of Flight ToF,
 - Interferometry ,
 - Triangulation- comparative overview
- Practical example (DLP –Double Layer Projection –Technique)
- Summary



Background, Importance & Application

- Level metering
 - loop operation (state control variable)
 - Loop filling/draining
 - Indication of power level (volumetric fluid expansion)
 - Potential leaks or altered bypass-flows (e.g. HEX failure, guide vane deformation)
 - nuclear safety
 - Loss-of Coolant Accident (LOCA)
 - Pool sloshing –e.g. by earthquake,internal component defects (break)
 - process control (bubble column reactors, float glass process, casting)

Alumina preparation for casting

Institute for Neutron physics and Reactor technology

Background, Importance & Application

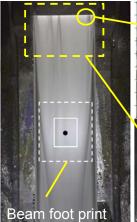
Surface contour acquisition

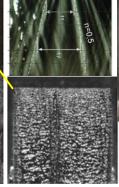
- functional performance
 - neutron production targets MEGAPIE, IFMIF, MYRRHA, SNS,
 - Ion-fragmentation-target (Super -FRS)
 - fabrication and manipulation technologies (Casting, automotive industry)

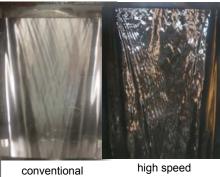
Myrrah-type target

IFMIF target (Li-flow)

Super-FRS target (Na-flow)







(side view) high speed camera 2000fps © KALLA, 2012

Pb⁴⁵Bi⁵⁵ (top view)

photograph

camera 2000fps

© Kanemura, 2015

© Horike, 2013

Liquid metals properties

GENERAL FEATURES

- opaque (τ=0)
- reflecting (specular $\rho \rightarrow 1$)
- high temperatures,
- corrosive
- •large surface tension σ
- •high electric conductivity σ_{el}

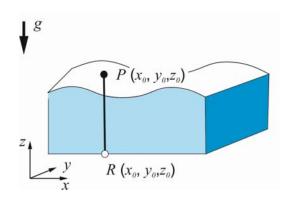
	Unit	Water (@25°C)	Lithium (300°C)	Pb ⁴⁵ Bi ⁵⁵ (300°C)
melting point @ 0.1MPa	[°C]	0	180.5	125
boiling point @ 0.1MPa	[°C]	100	1317	1670
vapour pressure	Pa	3158	3.7·10 ⁻⁵	2·10 ⁻⁵
ρ density	[kg/m³]	1000	505	10325
ν kinematic viscosity	[m ² /s]·10 ⁻⁷	9.1	9	1.75
σ_{el} electric conductivity	[A/(Vm)]·10 ⁵	2·10-4	33.5	8.43
α thermal expansion	[/] ·10 ⁻³	6	43.6	6.7
σ surface tension	[N/m]·10 ⁻³	52	421	410
a sound speed	m/s	1498	4500	1700

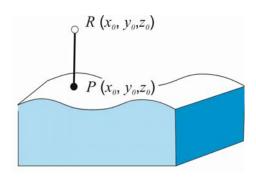
a = sound speed air a = 343 m/s

c = light speed $c = 2.997 \cdot 10^8 \text{m/s}$

 τ = optic transmission coefficient [/]

ρ = optic reflection coefficient [/]


Institute for Neutron physics and Reactor technology



Problem formulation – measurement requirements

difference between level and surface contour?

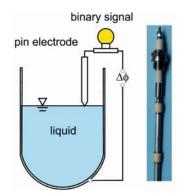
- level (h) =absolute value of distance vector
- $h = |\overrightarrow{RP}|$
- countour (vector-set) $S = \sum_{i=1}^{n} h(\overrightarrow{RP})$ being steady & differentiable
- choice of reference point R decides on technique to acquire P!!
- most relevant in application is the resolution in z-direction

Problem formulation – measurement requirements

Sensing aspects requirements

quantity & range	operational devices	functional devices
robustness, maintenance	life-time equipment	regular exchange
sensing distance	device dependent	device dependent
intervention measuring ambience	not excluded	not desired
auto-calibration	mandatory	indispensible
 accuracy temporal resolution spatial resolution repeatability [% meas. range] stability [% ob meas. value] 	50ms –10s x· mm- x·cm ~5% 0.3%-1%	ms 100nm-1mm < 1% <1%
signal to noise ratio (SNR)	>>10	>1
Price, access.	not relevant	selection aspect

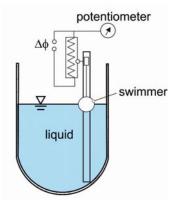
Sensing options –challenges


- electric contact (geometry)
- force (gravity, buoyancy)
- pressure waves (ultrasound)
- electromagnetic waves (high frequency –HF, optic)
- surface tension, intrusive
- spatial integration, intrusive
- ⇒ spatial integration, transmission
- ambiguity, encoding, acquisition

Institute for Neutron physics and Reactor technology

Level metering -classical devices

- electrical contact
 - safety equipment (expansion tank, pool arrangements)


functionality

electric contact on touch

accuracy

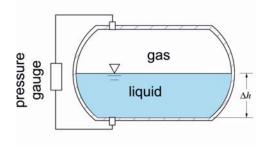
- given by geometry of built in (temperature dependent, surface tension)
 acquisition
- binary signal, SNR→ ∞

- mechanical force
 - safety & operational equipment (expansion tank, pools)

functionality

- Buoyancy =Gravity $F_{\textit{Buoyancy}} = \rho_f \cdot V_O \cdot g = F_{\textit{g,Swimmer}}$ accuracy
- integration over swimmer dimensions (temperature dependent, surface tension)

acquisition


 continuous signal, temporal resolution inertia dependent

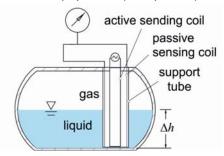
Institute for Neutron physics and Reactor technology

Level metering -classical devices

- differential pressure
 - operational equipment

functionality

- hydrostatic pressure $\Delta p = \rho \cdot g \cdot \Delta h$ accuracy
- resolution of pressure gauge (temperature dependent, integration of column heights)


acquisition

 continuous signal, transducer depende time resolution

g=gravity constant m/s²

inductive*

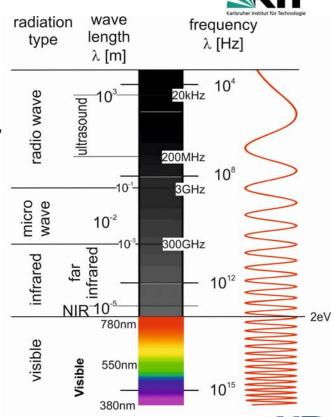
operational equipment (sump tank)

functionality

- breakdown of induced voltage in sensing coil at liquid level
- limitation of frequency by skin depth $\delta = \frac{1}{\sqrt{\pi f \mu \sigma}}$
- integration over diameter of tube (temperature dependent), accuracy ~3-5%
 acquisition
- indirect signal, temporal resolution related to transmission frequency
- typical *f*=50-400Hz,

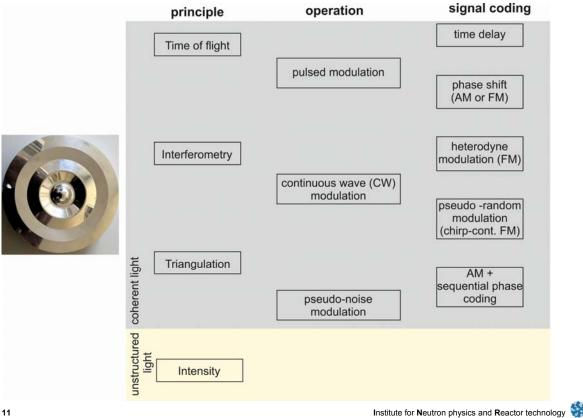
*GEC Energy systems (1981), LE8 3LH, United Kingdom; Khalilov, Measurement Techniques, Vol. 50, No. 8, 2007

Range sensing by waves – general


- wave utilization allow benefitting from wave characteristics
 - Time-of-Flight (ToF)
 - wave modulation (amplitude, frequency, interferometry)
 - stereo vision techniques (phased arrays, antenna fields, multiple cameras, ...)

applying various physics princples

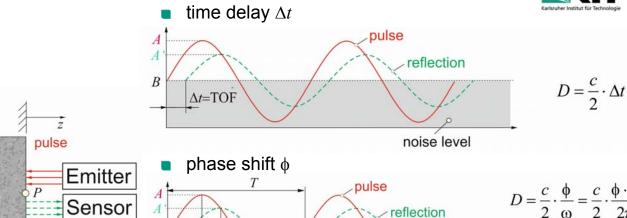
- time measurement Δt
- cross-correlation techniques
- en-/decoding techniques

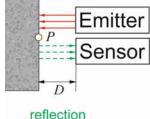

but, with all drawbacks of waves

- speckle noise(from interference)
- multiple reflections (uniquenessambiguity)
- jitter (transit time, phase)
- crosstalk (ambient sources)

Electro-magnetic range sensing options

Time of Flight (ToF) -principle


B


 x_{i}

x,

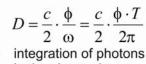
X;

D = distance to be measured

c = wave propagation speed

B = noise level

A = amplitude emitter


A' = amplitude sensor

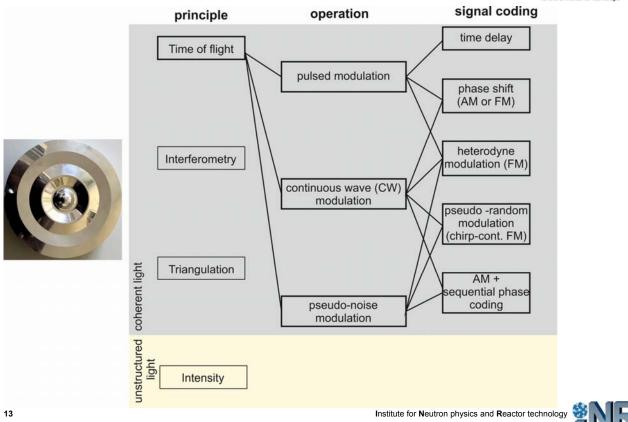
 Δt = time delay

φ = phase shift

T = time period

in time interval x.

$$\phi = a \tan \left[\frac{x_3 - x_1}{x_4 - x_2} \right]$$


distance measurement error due noise after summed n periods

$$\Delta D = \frac{c}{2} \cdot \frac{T \cdot \sqrt{B}}{4 \cdot A! \cdot \sqrt{2 \cdot A}}$$

noise level

ToF - Methods

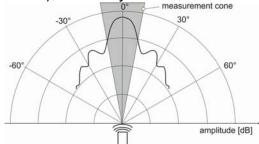
Time of Flight (ToF) -features

Important impact parameters

propagation speed c: c_{air} =350m/s , $c_{EM-waves}$ =3.108m/s

Quality aspects

- accuracies of time measurement, sensor acceptance
- opening angle of transmitted beam (especially ultrasonic range sensors)
- interaction with target (surface properties(absorption), specular/multiple reflections)
- variation of propagation speed (sound=f (temperature))
- speed target (shape)

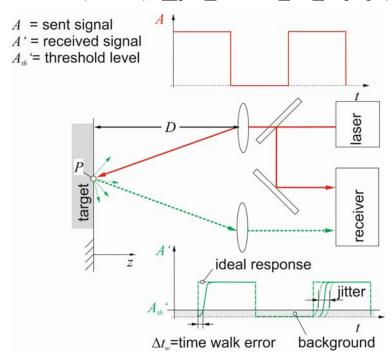

Ultra-Sound range sensors

- piezoelectric emitter/sensor
- ranges (cm→m).

https://www.electrodragon.com/product/ultrasonic-proximity-sensor/ 20th march 2019, 1.15€/pcs 14

- piezoelectric emitter/sensor, opening angle 15°
- ranges (air cm→m), accuracy ~1mm, 40-180kHz

Applications


- distance measurement also for transparent media
- collision detection (remote handling)
 Institute for Neutron physics and Reactor technology

Time of Flight (ToF) -light

- same principle drawbacks as ultrasound, but larger propagation speed \tilde{c}
- **LiDAR** (LADAR) = \underline{Li} ght \underline{D} etection \underline{A} nd \underline{R} anging (time delay principle Δt)

error sources for sent signal

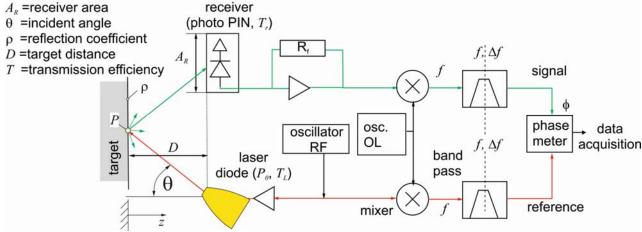
- shot noise (signal),
- jitter
- nonlinearity receiver sensor

error sources received signal *:

- shot noise (background)
- timing walk (due to amplitude, shape variations)
- jitter (leading edge acquisition)
- nonlinearity receiver sensor
- sensor drift.

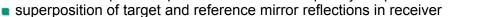
system errors

- speckle phase noise (induced by target roughness/surface)
- system setup vibrations

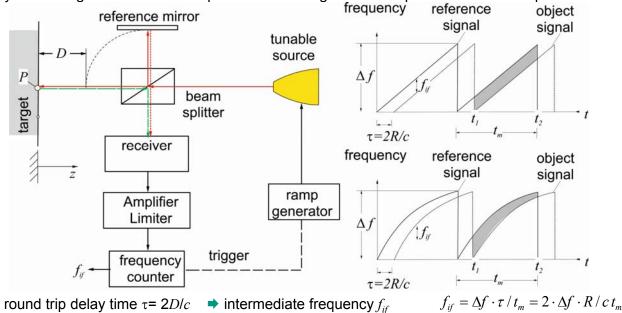

Institute for Neutron physics and Reactor technology *Baumann et al., Speckle phase noise in coherent laser ranging: fundamental precision limitations, Opt. Lett. 39, 2014

Time of Flight (ToF) -light

- LiDAR (LADAR) =Light Detection And Ranging (phase shift φ)
 - modulation of optical power with constant frequency $f(c=\lambda \cdot f)$, typ. operation freq. MHz range).
 - after target reflection photodiode collects a part of the laser beam.
 - unambiguous distance Λ measurement given by $\Lambda = (c / f)$
 - two mixers outputs are filtered by a passband circuit tuned on f (bandwidth Δf)


 $P_r = T_r \cdot T_L \cdot \frac{\rho}{\pi} \cdot P_0 \cdot \cos\theta \frac{A_R}{D^2}$ received signal power P_r

- only "Lambert reflection" part can be used (if ρ >0.8-0.9 no signal is obtained)
- problematic for laser (beam size ≈ target shape amplitude), good for HF waves (beam spot>>target contour fluctuations')

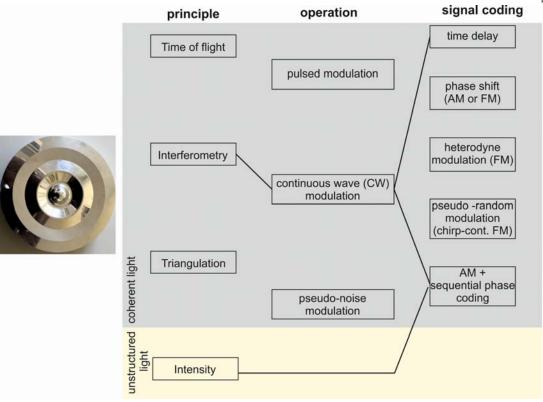


Time of Flight (ToF) –radar (light or HF)

FMCW technique with periodic and linear frequency chirp

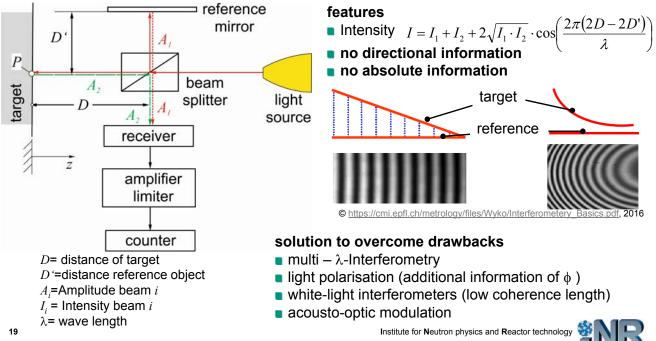
- lacktriangle main ac component of mixed signals occurs at frequency difference f_{if}
- lacktriangle Intermediate frequency f_{if} of reflected signal is measured by frequency counter
- due to mixing of both signal amplitudes f_{ij} ~ amplitudes (of both target + reference)
- dynamic range of FMCW technique is twice as large as that of pulsed radar technique

• round trip delay time τ = 2D/cFMCM=frequency modulated continuous wave


= ramp period (0.1-1ms) = propagation speed ligth

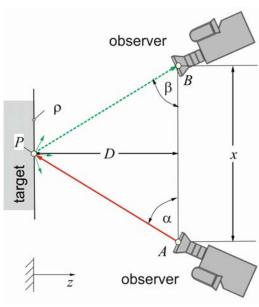
Institute for Neutron physics and Reactor technology

Interferometry-various approaches



Interferometry -principle

- Interference based technology (constructive for $\lambda/2$, destructive for $\lambda/4$) functionality
- intensity peak each time the object position changes by $\lambda/2$
- counting number of minimum-maximum transitions in interference pattern
- over time, when the object moves, the distance of movement can be incrementally
- determined at an accuracy of O(λ)


Triangulation -various approaches signal coding operation principle time delay Time of flight pulsed modulation phase shift (AM or FM) heterodyne Interferometry modulation (FM) continuous wave (CW) modulation pseudo -random modulation (chirp-cont. FM) unstructured coherent light Triangulation AM+ sequential phase pseudo-noise coding modulation Intensity

Triangulation – passive

pure geometric approach (stereovision, photogrammetry, theodolite) principle

- observation of target point from two different sites A and B of known distance x
- lacktriangle measurement of viewing angles α and β with respect to the base AB

target distance D

geometric relation

$$D = \frac{x}{\frac{1}{\tan \alpha} + \frac{1}{\tan \beta}}$$

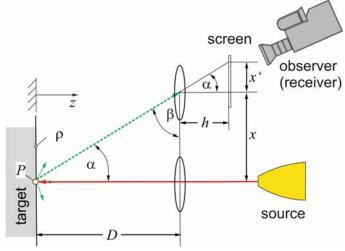
requirements

- each point to measure must be identified from both observers A and B unambiguously,
- require a scene with high contrast
- application of reconstruction techniques (in both observer image typical object features are found and compared. From position of each feature's centroid in both separate images, angles α and β are obtained)

challenges

- shadowing effects (solution more cameras- multivision) systems- but leading to increased computational effort)
- auto-calibration (required for both cameras to account for motion of camera) must be precise
- high precision pixel resolution (to determine centroid)

21


Institute for Neutron physics and Reactor technology

Triangulation – active principle

- projection of point (or line) to target and observation on screen by detector
- triangulation based on similarity object triangle and image triangle (defined by optical axis of image screen, focal length h and recorded position of point projection x')

challenges-limitations

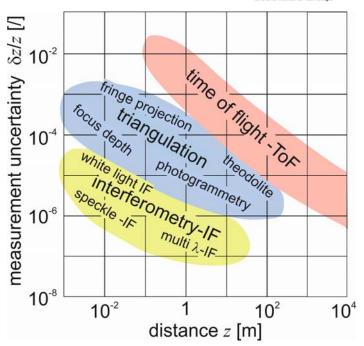
- shadowing effects (δz mean large xcausing more shadows !!)
- auto-calibration (cameras to account for camera & target motion)
- high precision pixel resolution

target distance D

- geometric relation $D = h \cdot \frac{x}{x'}$
- $\delta z = \frac{1}{h} \cdot \frac{D^2}{x} \cdot \delta x'$ accuracy δz :
- high resolution δz requires
 - small D.
 - large triangulation base x and
 - high screen resolution δx

improvement options

- line projection ⇒ scanning
- 3D projection ⇒ full world image relatives of triangulation techniques
- structured light imagining
 - phase shifted projected
 - gray code approach
 - phase shifted Moire
 - coded patterns
 - random texture
 - colour coded light



Accuracies –US/HF/optics for nuclear applications

summary in theory

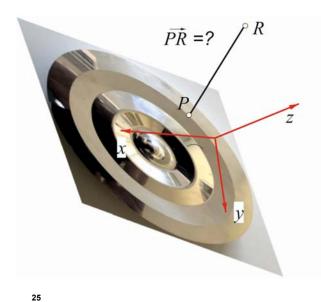
- US limited to milimeter range resolution requiring dense media (no vacuum)
- **HF/light ToF robust** with sub-milimeter resolution for absolute distance $|\overrightarrow{RP}|$
 - requiring Lambert type reflection (easy in HF due to beam expansion, challenging for light)
 - robust with autocalibration
 - many reliable coding options
 - spatial resolution x,y-plane ???
- triangulation higher resolution than ToF absolute and in x,y-plane but considerable effort for
 - re-construction techniques
 - auto-calibratrion
 - shadowing
- interferometry with highest precision but
 - ambiguity challenge for large Dshort target distances
 - fragile against rapid target motion
 - ²³ auto-calibration ????

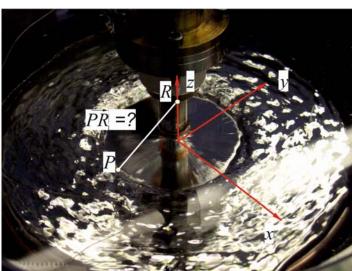
R. Schwarte, 1999, Principles of 3-D Imaging Techniques", in *Handbook Computer Vision and Applications*, Academic Press.

Institute for Neutron physics and Reactor technology

Overview -Techniques

principles	Ultra-Sound	High Frequency	Optic
media transport	air/liquid	any	any
transport velocity	sound speed	light speed	light speed
emitter	piezo	UHF/VHF	laser/coherent light source
modulation freq. ampl.	x no	X X	X X
CW operation	no	yes	yes
beam expansion	10°-30°	5°-15°	0.15°
receiver type	piezo	antenna	photodiode CCD/CMOS
transmission 90° turns	wave guide no	hollow cavity (quasi-optic)	fibre mirror
amplifier	conv. electric	conv. electric	dynodes
radiation hardness	medium	proven	???


application requires adequate functioning for all elements
 (source-transmission-acquisition-signal processing @ given boundary conditions)

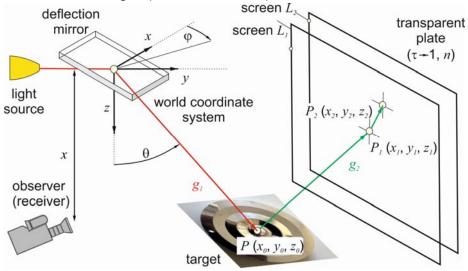


Practical example - Double Layer Projection (DLP)

- challenge:
 - specular surface in sizeable distance from observer $(D\sim O(m))$
- in nuclear environment
- typical motion velocities of O(u=m/s)
- accuracy in vertical direction δz <<1mm, lateral accuracy δx , δy <1mm
- temporal resolution *f* >50Hz

Institute for Neutron physics and Reactor technology

Double Layer Projection (DLP)-functional principle



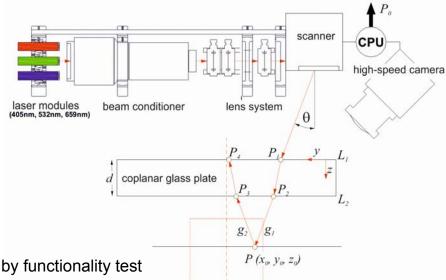
fundamental idea

- project a focussed laser beam on the specular surface ⇒ generation of straight g₁
- record points P₁ and P₂ via a observer camera ⇒ calculate g₂
- compute position of P through intersection of $g_1 \cap g_2$

drawbacks

- high sensitivity due to changes of source and receiver (x)
- determination of absolute distance to target (auto-calibration)
- sensitivity to incident beam angle θ

Double Layer Projection (DLP)-technical solution

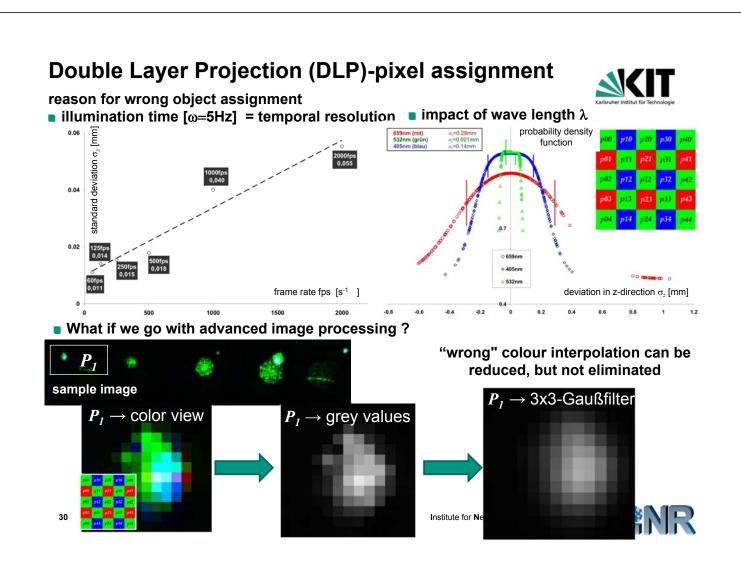


solution

- (x-problem) record both incoming beam $(g_1 \text{ by } P_1, P_2)$ and reflected beam $(g_2 \text{ by } P_3, P_4)$
- (auto-calibration) use different wave length laser since refractory index $n = f(\lambda)$
- (incident beam angle θ) scanner allows for line (area) tracing but limits θ

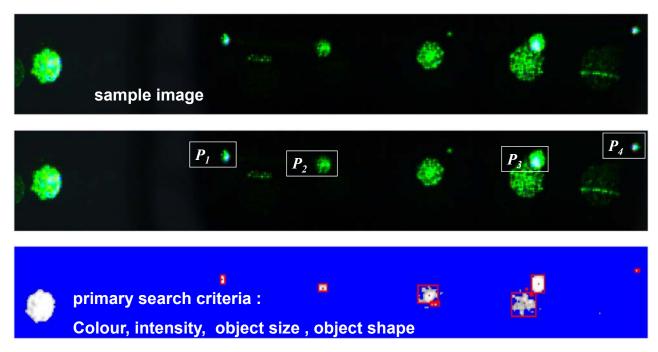

sensitive parameters

- primary parameters
 - incident beam angle [θ]
 - glass thickness [d]
 - target distance [z]
 - camera focus length [f]
 - target motion speed
 - target shape-curvature
- secondary parameters
 - illumination time
 - wave length [λ]
 - camera calibration
- verification & validation by functionality test



Institute for Neutron physics and Reactor technology

27


Double Layer Projection (DLP)-technical solution ■ target motion speed [ω=5Hz] = temporal $\Delta z(t) = z(t) - z\theta$ [mm] A=Amplitude \Box r=10mm, A=1.41mm σ_z =0.13mm result o r=30mm, A=4.24mm $\sigma_z=0.13$ mm barely dependent of ω dependence on absolute velocity t [s] 0.55 incorrect object glass plate assignment target shape-curvature curvatures of order of beam diameter cannot be resolved Institute for Neutron physics and Reactor technology

Double Layer Projection (DLP)- image processing

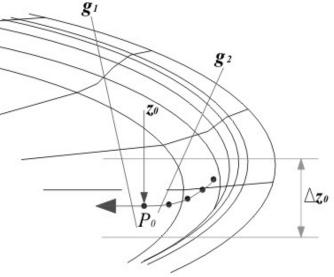
■ how to find P1 to P4 in an image?

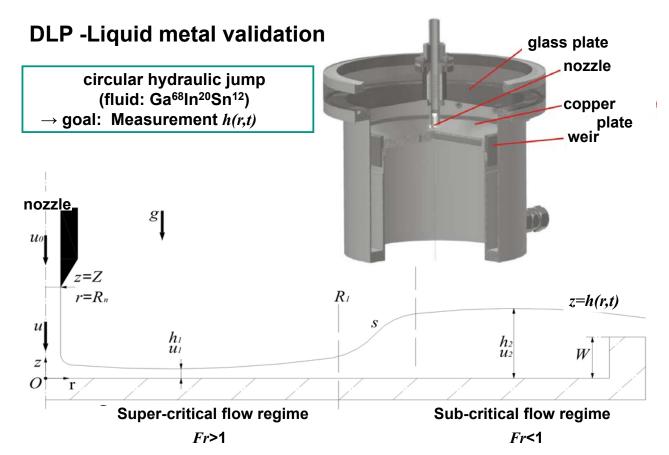
more than 4 objects are detected in the image.

31 | Martin Hillenbrand | IKET | 30.05.200

Institute for Neutron physics and Reactor technology

Double Layer Projection (DLP)- image processing


implementation of secondary selection criteria



secondary criteria

- straight distance $(g_1 \text{ by } P_1, P_2)$ and reflected beam $(g_2 \text{ by } P_3, P_4)$
- \blacksquare distance to screen z_0
- monotoneous surface shape

Hillenbrand et al., Detection of liquid-metal, free-surface flow using the DLP measurement technique, Exp. Fluids, 2012, 52(1),179ff

Institute for Neutron physics and Reactor technology

DLP -Liquid metal validation

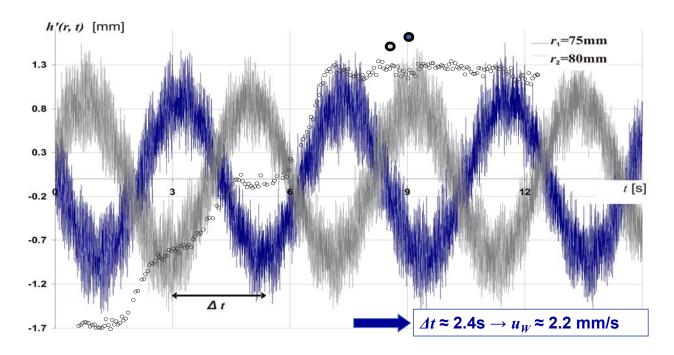
DLP -Liquid metal validation

35

Institute for Neutron physics and Reactor technology

DLP -Liquid metal validation

■ shape-resolution—line measurement



DLP -Liquid metal validation

spectral behavior

37

SUMMARY

LEVEL METERING

- traditional analogue techniques are robust, reliable and self-calibrating means (unfortunately intrusive)
- non-intrusive techniques require liquid metal specific adaptions (especially for optic devices) of industrially available products → qualification

SURFACE ACQUISITION (DLP - lessons learnt)

- no general technique recommendable (choice dependent on application boundary conditions- e.g. distance from target)
- way to establish a qualified technique requires exploitation of vast parameter range ⇒ qualification
- although quality of technical equipment, AD conversion computational processing capabilities increased
 - verification and validation is indispensable
 - requires lots of preparations and
 - exhibits many (unexpected) surprises
- adaption of a technique and qualification for liquid metal surfaces is quite challenging even if proof of principle has been shown