

 Karlsruhe Reports in Informatics 2019,6
Edited by Karlsruhe Institute of Technology,
Faculty of Informatics

 ISSN 2190-4782

On Mutual Authorizations:
Semantics, Integration Issues, and

Performance

Gabriela Suntaxi, Aboubakr Achraf El Ghazi,
Klemens Böhm

 2019

KIT – University of the State of Baden-Wuerttemberg and National

Research Center of the Helmholtz Association

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197480685?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Please note:
This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/4.0/de.

On Mutual Authorizations:
Semantics, Integration Issues, and Performance

Gabriela Suntaxi

Karlsruhe Institute of Technology

Karlsruhe, Germany

Aboubakr Achraf El Ghazi

Karlsruhe Institute of Technology

Karlsruhe, Germany

Klemens Böhm

Karlsruhe Institute of Technology

Karlsruhe, Germany

ABSTRACT
Studies in fields like psychology and sociology have revealed that

reciprocity is a powerful determinant of human behavior. None

of the existing access control models however captures this reci-

procity phenomenon. In this paper, we introduce a new kind of

grant, which we call mutual, to express authorizations that actu-

ally do this, i.e., users grant access to their resources only to users

who allow them access to theirs. We define the syntax and seman-

tics of mutual authorizations and show how this new grant can

be included in the Role-Based Access Control model, i.e., extend

RBAC with it. We use location-based services as an example to

deploy mutual authorizations, and we propose two approaches to

integrate them into these services. Next, we prove the soundness

and analyze the complexity of both approaches. We also study how

the ratio of mutual to allow and to deny authorizations affects the

number of persons whose position a given person may read. These

ratios may help in predicting whether users are willing to use mu-

tual authorizations instead of deny or allow. Experiments confirm

our complexity analysis and shed light on the performance of our

approaches.

CCS CONCEPTS
• Security and privacy→ Access control; Authorization.

KEYWORDS
access control models, reciprocity, mutual authorizations

1 INTRODUCTION
1.1 Motivation
Protecting information from unauthorized access is important to

guarantee data confidentiality. Access policies state who may ac-

cess which resource. Such policies are often implemented using

authorizations of a specific access control model. Various models

have been proposed; a prominent, mature one is Role-based Access

Control (RBAC) [20].

Traditional access policies are designed to fulfill the needs of

an organization or the individual needs of the users of a system.

When, however, users decide who may access their resources, social

factors and human behavior are significant. An important trend

in psychology, economics, and sociology is reciprocity. Studies

[6, 7, 24] have revealed that, although humans are self-interested,

they often deviate from this attitude reciprocally. Reciprocity means

that, in response to friendly actions, people are more cooperative.

Reciprocity comes into play with access control when persons grant

access to their resources to users that allow them the same. Think

of a bike sharing system: It is more natural for a user to allow usage

of his bike to others who allow him using theirs.

Example 1.1. Considering a bike sharing system, think of two

users Anne and Bob who own bikes bikeA and bikeB, respectively.
Anne wants to let Bob locate and use bikeA only if Bob allows her

to locate and use bikeB. With conventional access control models,

Anne can check whether Bob has allowed her this and then set her

access privileges for him accordingly.

Example 1.2. Think of a population consisting of Anne, who

again owns bikeA, and 10, 000 other individuals, each one owning

another bike. Anne now wants to allow any other individual I to
locate and use bikeA iff I allows her to locate and use his/her bike.

With conventional models, Anne would have to repeat the proce-

dure from Example 1.1 10, 000 times. This also requires privileges

to be public, which is unrealistic because they are sensitive infor-

mation. Next, Anne would have to watch out for changes in the

access policies of others continuously, e.g., Anne would have to

revoke the access to any I as soon as I revokes her access to his

bike. With the reciprocity feature envisioned in turn, all that Anne

has to do is to specify one authorization.

Existing access control models do not explicitly support reci-

procity. Although there exist various models [16, 20, 25], they all

consider only two kinds of grants, allow and deny. But for reci-
procity, a new kind of grant is needed. We call it mutual and autho-
rizations that make use of it mutual authorizations.

Depending on the domain, access control models can protect

different resources. Think of location-based services (LBS). Here,

protecting the physical position of the users is crucial. They can be

used to infer other personal information such as political affiliations,

state of health or personal preferences [1]. Users often are unwilling

to share their position with all users in the system. But it is natural

to share it with users willing to share theirs.

Example 1.3. Continuing Example 1.2, one would expect Anne

to allow using bikeA to her father unconditionally. However, this

does not hold for all other individuals. Anne is more likely to allow

others using her bike if she gets something in return. In the first

case, allow authorizations are sufficient. In the second case however,

mutual authorizations are needed.

Such reciprocal sharing also makes sense with health informa-

tion or web-browsing histories (i.e., "I let you see my health record

if I can see yours."), to give further examples.

This paper defines the syntax and semantics of mutual autho-

rizations. One can then add these new authorizations to any ex-

isting access control model. Because of the importance of RBAC,

we select this model to study and illustrate how this addition can

look like conceptually. We use LBSs as a running example to de-

ploy mutual authorizations. Specifically, we consider two types of

location-dependent queries, k-nearest neighbor queries, and range

queries.

1.2 Challenges
Defining the syntax and semantics of mutual authorizations is

subject to several challenges. First, the entire semantic of autho-

rization has to be redefined to incorporate a new grant to support

reciprocity; however, especially for mutual authorizations, the se-

mantic is not trivial. While implementations of mutuality exist, we

are not aware of any integration in an access-control context.

Example 1.4. Consider a social network (SN). To befriend Bob,

Anne has to send him a friend request. If Bob accepts, they are

now friends. Such requests represent some concepts of mutuality.

However, controlling access to resources is only done by means

of allow and deny. For instance, Anne can only allow or deny her

friends to see her photos.

For a general extension, one needs a general model that sub-

sumes the existing ones. Since such a general model does not exist,

we propose one. A second challenge is the complexity of the com-

putations required to give access to a resource. In models with only

allow and deny, to determine who can access the resources of a user

u, it is enough to know all authorizations that u has specified. With

mutual authorizations however, this is not the case. Namely, one

also must know all authorizations assigned to u.
Regardless of the grants, the third challenge is the integration of

services (LBS in our example) with access policies. This includes

that (1) existing implementations are kept, and (2) solutions are

efficient. The result of a given service in the presence of authoriza-

tions is not obvious a priori. Namely, it is necessary to verify the

authorizations and to determine whether a given user should get

access to the resources required for the service. This integration is

needed because in order to guarantee data confidentiality.

Example 1.5. Think of a LBS provider (LBSP). A user has issued

a location-dependent query that the LBSP now executes, knowing

the position of the user. How can the LBSP take in authorizations to

answer location-dependent queries? The result of that query is the

set of persons who fulfill the query constraint, and whose positions

the querying user may see. Alternative designs of this integration

are conceivable. In particular, one may (1) execute the query first

and then filter the result based on the authorizations, or (2) first

compute the set of positions that the querying user may see, called

view of the user, and then execute the query on this view. Deciding

which alternative is better is not trivial.

One must also guarantee the soundness of such an integration,

i.e., correctness and completeness. Intuitively, the integration is

complete if all persons who satisfy the query constraints and whose

information the querying user may see are part of the result. The

integration is correct if the users in the result satisfy the query

constraints, and the querying user is allowed to see their informa-

tion. We formalize these properties in Section 2.6. Since there is

more than one way to integrate mutual authorizations into a given

service, the processing of a given query is unclear as well.

Lastly, it is not clear how the ratio of mutual to allow and deny
authorizations affect the size of the views of the users. This ratio is

important to predict whether users may be willing to use mutual

authorizations instead of deny or allow.

Example 1.6. Consider three users, Anne, Bob, and Carol who

have assigned deny authorizations to each other, i.e., the size of the

view of each user is zero. Now suppose that (1) Anne replaces her

deny authorization assigned to Bob with a mutual one, and (2) so

does Carol with Anne. Although the share of mutual authorizations

has increased, the size of the view of each user is still zero.

Example 1.7. Suppose that, given percentages of allow and deny
authorizations of the entire population, the probability Ps that a
user s , chosen at random, can see the positions of 10 percent of

the population is 0.4. Assume further that, if 10 percent of deny
authorizations are replaced by mutual, Ps increases to 0.8. Then it

is likely that users start considering using mutual authorizations
instead of deny because only 10 percent of deny authorizations

need to be replaced by mutual ones to double Ps . However, the
opposite might happen if 90 percent were needed.

Though we expect the number of persons whose information

one may read to increase if deny authorizations are replaced by

mutual etc., the extent is unclear. It is challenging to compute it,

based on the share of mutual to deny and allow authorizations.

1.3 Contributions
We start by introducing a conceptual structure of authorizations,

which we use to describe existing access control models. We then

present a new kind of grant, called mutual. It allows to model re-

ciprocal behavior. We define the syntax and semantics of mutual
authorizations and show how to include them into RBAC concep-

tually, i.e., extend RBAC with it. As a use case for the deployment,

we use LBSs, i.e., the two types of queries mentioned earlier. Their

semantics is well-defined, in contrast to, say, similarity queries for

health records. In a general setting, where resources have a different

degree of sensitivity, deciding whether an exchange of information

is fair may be difficult.

Example 1.8. Anne may not find it fair to open her health record

if she has a stigmatizing disease in exchange for looking at the

record of Bob who is in perfect health.

Covering the specifics of such other use cases is beyond the scope

of this current article. However, Section 7 does feature a checklist

of steps that one would have to carry out to this end.

To integratemutual authorizations into LBSs, we propose two ap-
proaches, called filtering-querying and querying-filtering. We prove

that both approaches are correct and complete. We also conduct

complexity analyses of them, to determine under which conditions

each approach performs better. The analysis shows that there is

no clear winner because the outcome depends on the query con-

straints, the size of the data set and the view size of the querying

user. But if one knows these parameters, our model can say which

approach is better. Next, we analyze how the difference in the ratio

of mutual to deny and allow authorizations affects the the view

size of a user. Finally, we conduct experiments to validate our com-

plexity analysis and to evaluate the performance of our approaches.

Next to other insights, our complexity analysis is a good estimation

of the behavior of our algorithms.

2 OUR AUTHORIZATION MODEL
Access control models have been studied widely, and several models

have been proposed [16, 20]. Each model has its own syntax and

semantics. The authorizations supported by these models allow

assessing their expressiveness [2]. The following is a conceptual

structure of authorizations which subsumes existing work.

2.1 A Conceptual Structure of Authorizations
We first introduce the elements of our structure.

• Person. Persons are individuals, together with attributes,

e.g., name, role. AttrPerson is the set of these attributes. At-

tributes are not atomic, especially, their value is a non-empty

set of atomic values. From the point of view of an authoriza-

tion, we see two types of persons: users and subjects.

• User. A user u is a person who assigns an authorization.U
denotes the set of all users.

• Subject. A subject s is a person who receives an autho-

rization. A single authorization can have multiple subjects.

So-called person constraints specify the subjects of an au-

thorization. A person constraint ConsPerson has the syntax:
ConsPerson = ConsPerson ∧ConsPerson |Attp = value |Attp ≥
value |Attp ≤ value, where Attp refers to an attribute in

AttrPerson, and value refers to an atomic value. SinceAttp is

not atomic, for a given person s , the expressionAttp (=|≥|≤
) value resolves to ∃x ∈ s .Attp,x (=|≥|≤) value , where
s .Attp denotes the set of atomic values of the attributeAttp
for s . S is the set of all subjects. Given a person constraint

ConsPerson, the induced set of subjects contains all persons

s ∈ S that fulfill ConsPerson. For instance, the set of subjects
induced by aдe < 20 ∧ income < 20k contains all persons

s ∈ S whose age is smaller than 20 and their income is less

than 20k.

• Resource. A resource res is a physical or informational unit,

together with attributes, e.g., type, owned by a user u for

which u controls access. AttrResource stands for the attributes
of the resources. Attributes are not atomic, especially, their

value is a non-empty set of atomic values. So-called resource

constraints specify the resources of an authorization. A re-

source constraint ConsResource has the syntax: ConsResource =
ConsResource∧ConsResource | Attr = value | Attr≥value |
Attr≤value, whereAttr is an attribute in AttrResource, and
and value refers to an atomic value. SinceAttr is not atomic,

for a given resource res , the expression Attr (=|≥|≤) value
resolves to ∃x ∈ res .Attr ,x (=|≥|≤) value , where res .Attr
denotes the set of atomic values of the attribute Attr for

res . — In general, resources have to be classified by sensi-

tivity levels. However, if not stated differently, this article

assumes the same sensitivity level of all resources. Next, to

ease presentation, we assume that all resources are of the

same type. Dealing with resources of a different type, e.g.,

entire browsing history vs. history of today in that other

example, is future work. On the other side, one can formu-

late sophisticated policies, which, say, discern between my

position during the workday and during evenings, within

our conceptual structure, using resource attributes.

• Operation. An operation op is an action that one can invoke

on a resource, e.g., read or write. Op denotes the set of all

operations.

• Grant. A grant дr is a right to execute an operation. Gr
denotes the set of all grants.

• Time. A time t is an interval of time [ti , tf] during which

an authorization is valid, where ti and tf are the initial and

final time, respectively. If an authorization is valid from the

time it is entered in the system until the time it is deleted

from the system, we write [0,∞].
Definition 2.1 (Authorization). Let a user u ∈ U , a person con-

straint ConsPerson, a resource constraint ConsResource, an operation

op ∈ Op, a grant дr ∈ Gr and a time t be given. An authorization
A is a 6-element tuple ⟨ u,ConsPerson ,ConsResource,op,дr , [ti , tf] ⟩.
The authorizationA indicates that user u assigns the grant дr to the
subjects specified by ConsPerson to invoke the operation op on the

resources specified by ConsResource. A is valid during the interval

of time [ti , tf]. — We call the set of all authorizations A . Given an

authorization A, we say that user (A) assigns A to subjects(A), and
subjects(A) receive authorization A from user (A).

We assume that resources always have an attribute owner, i.e.,
owner ∈ ResAtt, and only the owners can write authorizations to

control access to their resources. However, for brevity, (1) we omit

the attribute owner from the set of resource attributes, and (2) given

an authorization A assigned by a user u, we do not explicitly write

the resource constraint owner=u, but we assume it to be present.

Example 2.2 illustrates how to express an authorization, Defini-

tion 2.1.

Example 2.2. Let us consider a user Ana who wants to allow
read access to her file File1 to all persons with the role of Cashier.
Let us call this authorization AAna . AAna can be expressed us-

ing our conceptual structure as follows: AAna = ⟨ Ana, role =
Cashier,name = File1, read,allow, [0,∞] ⟩, where role is a person
attribute in PersonAtt , name is a resource attribute inAttrResource ,
read is an operation in Op, allow is a grant in Gr , and [0,∞] indi-
cates that AAna is valid from the time it is entered in the system

until it is deleted from the system.

We now introduce further notation: subjects(A), res(A),op(A) and
grant(A) denote, respectively, the subjects induced by ConsPerson of

A, the resources induced by ConsResource of A, the operation op of

A, and the grant дr of A.

2.2 Existing access control models
We now use our conceptual structure of authorization, Defini-

tion 2.1, to describe existing access control models. The Role-Based

Access Control Model, RBAC, is one of the most prominent models

in the area [5, 9]. In RBAC, roles and authorizations regulate access

to resources [20]. Each role is mapped to a set of authorizations

and each subject in the system is assigned to a set of roles. Another

popular access control model is discretionary access control. In

this model the owner of a resource decides who can access the

resource [17]. RBAC can be configured to support discretionary ac-

cess control authorizations, [17]. In RBACwith discretionary access

control, using our conceptual structure of authorization, the set of

person attributes is AttrPerson = {role,name}. Depending on the

organizations needs, it is possible to consider different resource

attributes, AttrResource , and set of operations, Op. For instance,
AttrResource = {type}, where type specifies the type of resource,
e.g., printer or file, and Op = {read,write}. The set of grants in
RBAC is Gr = {allow,deny}. RBAC does not specify an interval

of time during which an authorization is valid, so the valid inter-

val of time of an authorization is [0,∞]. Example 2.2 illustrates an

authorization in RBAC. A Task Role-Based Access Control Model,

TRBAC, was proposed in [16]. The authors consider a task as a

fundamental unit of a business activity and they emphasize that

tasks and roles are different concepts. Although a role contains

a set of tasks, a role can have mutually exclusive tasks which re-

quire access to different resources. In TRBAC, each role contains

a set of tasks. Roles are assigned to subjects. Subjects can be as-

signed any task that belongs to one of their roles. Authorizations

are modeled based on the tasks and roles of the subjects. With our

conceptual structure of authorization, the set of person attributes

in TRBAC is AttrPerson = {role, task}. Similar to RBAC, depend-

ing on the organizations needs, it is possible to consider different

resource attributes, AttrResource , and set of operations, Op. The
set of grants isGr = {allow,deny} and the valid interval of time of

an authorization is [0,∞]. Example 2.3 illustrates an authorization

in TRBAC.

Example 2.3. Consider the authorization from Example 2.2. As-

sume that the role of Cashier has two tasks: approve customer order
and review customer order statistics, denoted by t1 and t2, respec-
tively. Anne wants to allow write access to file File1 to the per-

sons responsible for t1 and allow read access to those responsible

for t2. These authorizations can be expressed using our concep-

tual structure as follows: AAna1 = ⟨Ana, role=Cashier ∧ task=t1,
name=File1, write, allow, [0,∞]⟩ and AAna2 = ⟨Ana, role= Cashier
∧ task = t2, name = File1, read, allow, [0,∞] ⟩, where role and

task are person attributes in AttrPerson .

An Attribute-Based Access Control Model, ABAC, was intro-

duced in [29]. ABAC considers that subjects and resources have

a set of attributes which specify their characteristics. The autho-

rizations in ABAC are defined based on these attributes and not

only on the roles and tasks that persons perform in an organization

like RBAC or TRBAC. Then the subjects and resources involve in

an authorization are defined exactly like in our definition, Defini-

tion 2.1. However, ABAC does not formalize the operations and

grants that can be supported by an authorization. The authors as-

sume that an authorization is created with the purpose of allow

access. Furthermore, an authorization in ABAC does not take into

account the user who has assigned the authorization. This is be-

cause the authors have considered a single administrator entity

who is on charge of assigning authorizations. Then in ABAC, us-

ing our conceptual structure of authorization, the set of users is a
singleton set, U = {Administrator}. The sets of person attributes

and resource attributes depend on the organization needs. For in-

stance, AttrPerson = {name,aдe} and AttrResource = {type}. The
sets of operations and grants are Op = {access} and Gr = {allow},
respectively. The interval of time during which an authorization is

valid is [0,∞]. Example 2.4 illustrates an authorization in ABAC.

Example 2.4. Let us consider a system administrator who wants

to allow access to the movie called ABC to everyone older than
16 years of age. We call this authorization Aadmin . Aadmin is ex-

pressed using our conceptual structure as: Aadmin = ⟨ Adminis-
trator, aдe ≥ 16,name = ABC , access,allow, [0,∞] ⟩, where age is
a person attribute in AttrPerson , name is a resource attribute in

AttrResource , access is an operation in Op, allow is a grant in Gr ,
and [0,∞] is the valid time period of the authorization.

A Relation-Based Access Control Model, RelBAC, was presented

in [8]. RelBAC was designed to cover the access control needs

in social networks. In RelBAC, authorizations are modeled based

on the relationships between users, e.g., friend or colleague. It is,

in RelBAC, users are classified in groups, e.g., group of friends

or colleagues, and the allow or deny authorizations are assigned

to these groups. With respect to our conceptual structure of au-

thorization, the set of person attributes in RelBAC is AttrPerson =
{relationship}, the set of resource attributes isAttrResource = {type},
the set of operations is Op = {read, taд,publish, share, comment}
and the set of grants is Gr = {allow,deny}. Example 2.5 illustrates

an authorization in RelBAC.

Example 2.5. Let us consider a user Anne who wants to allow
read access to her photos to all her friends. This authorization, can

be expressed using our conceptual structure as follows: AAna =

⟨ Ana, relationship=Ana’s friend, type = photos, read, allow, [0,∞] ⟩,
where relationship is a person attribute in AttrPerson , type is a re-
source attribute inAttrResource , read is an operation inOp, allow is

a grant inGr , and [0,∞] is the valid time period of the authorization.

A Fine-Grained Access Control Model for relational databases,

FGAC, was proposed in [22]. The authorizations in FGAC allow

specifying whether subjects can access to attributes of a table in

a relational database or not. Authorizations are assigned to sub-

jects based on their names or roles. In FGAC, using our conceptual

structure of authorization, the sets of person attributes, resource

attributes, operations and grants are AttrPerson = {name, role},
AttrResource = {Table’s attributes}, Op = {read,write,delete}
and Gr = {allow,deny}, respectively. The interval of time during

which an authorization is valid is [0,∞]. A Tuple based access con-

trol model, TBAC, was proposed in [25]. TBAC regulates the access

to tuples in relational databases. In TBAC, the access to a tuple is

granted to subjects based on their attributes, which is similar to the

person attributes AttrPerson defined in our conceptual structure

of authorization. The set of resource attributes is AttrResource =
{Table’s tuples}, the set of operations isOp = {read,write,delete},
the set of grants is Gr = {allow,deny}, and the interval of time is

[0,∞].
For the sake of simplicity, in the remaining of this paper, we omit

from the notation of an authorization, the element time.

In the next section, Section 2.3, we introduce a new type of

authorization, called mutual authorization.

2.3 Mutual Authorization –
Syntax and Semantics

Existing access control models are based on the grantsGr = {deny,
allow}. An allow authorization A uses allow and states that user (A)
authorizes subjects(A) to invoke op(A) on res(A). A deny authoriza-

tion uses deny and states that user (A) forbids subjects(A) to invoke
op(A) on res(A).

We extend Gr with a new kind of grant, which we call mutual.
Mutual grants capture the reciprocity phenomenon by means of

mutual authorizations. Here, given an authorization A, the decision
whether a person s is allowed to invoke op(A) on res(A) does not

only depend on the authorization that s has received but also on the

ones that s has assigned. Given two authorizations A and B, we use
res(A) = res(B) to indicate that the resources in both authorizations
are of the same type.

Definition 2.6 (Mutual authorization). Given an authorization

A, A is mutual if дrant(A) = mutual. A mutual authorization A
states that user (A) allows invoking op(A) on res(A) to the subjects

in subjects(A) who have issued an authorization B to user (A) to
invoke op(B) on res(B) where the following expression evaluates to

true: (res(B) = res(A))∧ (дrant(B) = allow∨дrant(B) = mutual)∧
(op(B) = op(A)).

This new authorization can be added to any model in line with

our conceptual structure. We use the RBAC model to study/show-

case how this addition can be done.

We assume that authorizations remain stable for some time.

This rules out that users relax their authorizations for a moment,

merely to spy out all others, i.e., changing a deny authorization to

a mutual one and right after accessing the resource returning to

deny. This aspect also affects existing access control model such

as the Relation-based access control model. Doing away with it is

future work.

For simplicity and to ease the presentation, in the remaining

of this paper, we will consider RBAC and a setting with positions

as the only resources type. Therefore, we restrict the elements of

an authorization, as follows: (1) The set of attribute for persons is

AttrPerson = {role,name}. Given a subject s , r (s) is the set of roles
of s . The set of subjects that receive a given authorization A is

subjects(A) = {s ∈ S | name=s ∨ (∃r : role=r ∧ r ∈ r (s))}. (2) The
resources are the positions of the users. We assume that each user

u ∈ U has one physical position, pu . (3) The set of operations is
Op = {read}. (4) The set of grants is Gr = {allow,mutual ,deny}.

2.4 Conflict Resolution
Definition 2.7 (Authorization conflict). Given a set of authoriza-

tions AC ⊆ A , a subject s ∈ S and a user u ∈ U , an authorization
conflict exists with respect to u and s if s has received more than

one authorization on the same resource with different grants as-

signed by u. An authorization conflict exists with respect to u and

s if ∃A,B ∈ AC : (user (A) = user (B) = u) ∧ (s ∈ subjects(A) ∩
subjects(B)) ∧ (res(A) = res(B)) ∧ (дrant(A) , дrant(B)).

Example 2.8. Consider a person s with roles r (s) = {r1, r2} and
the authorizations A = ⟨u, role = r1,pu , read,mutual⟩ and B =
⟨u, role = r2,pu , read,deny⟩. AuthorizationsA and B are in conflict

with respect to u and s . Namely,A assigns amutual grant to s while
B assigns a deny grant to s for reading the same resource pu .

To solve authorization conflicts, i.e., decide which authorization

prevails over the others when in conflict, several conflict resolution

strategies have been proposed [11], such as recency-overrides where
authorizations specified later take precedence over earlier ones.

We in turn resort to a deny-mutual precedence strategy, where

authorizations are assigned precedence based on their grants.

Definition 2.9 (Deny-mutual precedence strategy). A deny-mutual
precedence strategy is a prioritization of the grants in Gr which

states that a deny authorization precedes amutual one and amutual
one precedes an allow one. We write deny ≫mutual ≫ allow .

We select the precedence deny ≫ mutual ≫ allow because as-

signing a higher precedence to deny eliminates the risk of possible

leakage [11]. Next, we interpret an operation not granted explicitly

as denied. — Intuitively, the process which solves conflicts is as

follows. Given a set of authorizations B and a subject s , we take
all authorizations A ∈ B where s ∈ subjects(A) and group them by

the user who has assigned them. We call the function that does

this grouping authorization-grouping function. Each group contains

authorizations where the user who has assigned them is the same,

and there are no two or more sets containing authorizations as-

signed by the same user. Then, for each group of authorizations,

we select the authorization with the highest precedence based on

deny ≫ mutual ≫ allow . Given two authorizations A and B, we
write A ≫ B to denote that дrant(A) ≫ дrant(B). We now formal-

ize the notion of conflict resolution.

Definition 2.10 (Authorization-Grouping Function). An —autho-
rization-grouping function group : P(A) × S → P(P(A)) takes
as input a set of authorizations B ⊆ A and a subject s ∈ S and

outputs a set C of sets of authorizations such that:

(1)

⋃
D∈C D = {A ∈ B | s ∈ subjects(A)}.

(2) ∀D1,D2 ∈ C : D1 , D2 ⇒ D1 ∩D2 = ∅.
(3) ∀D ∈ C,∀A,B ∈ D : user (A) = user (B) ∧ s ∈ subjects(A) ∩

subjects(B).
(4) ∀D1,D2 ∈ C,∀A ∈ D1,∀B ∈ D2 : D1 , D2 ⇒ user(A) ,

user(B).
Example 2.11. Consider the authorizationsA, B and the subject s

from Example 2.8 and the authorizationsB = {A,B,C,D,E}, where
C= ⟨v, name=s,pv , read, allow⟩,D= ⟨ u, name=v,pu , read,mutual ⟩
and E= ⟨v, role = r1, pv , read, mutual ⟩. The output of the autho-
rization-grouping functionдroup(B, s) is the setC={{A, B}, {C,E}},
where C contains all authorizations with subject s , and each set in

C has authorizations assigned by the same user.

A user-grant tuple is a tuple ⟨tuser , tдrant ⟩ where tuser is a user
inU and tдrant is a grant inGr . Our resolve-conflicts function does

not consider the resources involved in the authorizations in conflict

because we restrict our study to a specific resource, the physical

positions of users.

Definition 2.12 (Resolve-Conflicts Function). A resolve-conflicts
function resC : P(A) × S → P(U ×Gr) is a function that takes

as input a set of authorizations B ⊆ A and a subject s ∈ S and

outputs a set C of user-grant tuples. For each set of authorizations

B1 ⊆ B with respect to subject s that are in conflict, C contains a

user-grant tuple ⟨tuser , tдrant ⟩, where tuser is the user who has

assigned the authorizations in B1, and tдrant is the grant with the

highest precedence in B1 that tuser has given to s . Given a tuple

t ∈ resC(B, s), we use tuser and tдrant to refer to the first and

second element of t , respectively. Formally,

resC(B, s) =


{⟨user(C), grant(C)⟩ |
C ∈ B,∀A ∈ B : C ≫ A}

if ∀A,B ∈ B : user(A)
= user(B) ∧ s ∈ sub-
jects(A) ∩ subjects(B)⋃

B1∈group(B,s) resC(B1, s) otherwise

Example 2.13. Consider the authorizationsA, B from Example 2.8.

To resolve conflicts, we invoke the function resC({A,B}, s). Since

user (A) = user (B) ∧ s ∈ subjects(A) ∩ subjects(B) and deny ≫
mutual, the resolve-conflicts function outputs the set resC({A,B}, s)
= {⟨u,deny⟩}.

2.5 Authorized Access Request
The semantics of all authorization can be reduced to questions of

the form: “Can s read the position of u?”. We call this an access
request. To answer it in the context of mutual authorizations, one

must consider the authorizations that u has assigned to s and the

ones that u has received from s .

Definition 2.14 (Access request). An access request Req = ⟨s,
read,pu ⟩ is a tuple consisting of a person s , the operation read
and a position of a person u, pu . An access request indicates that s
requests to read the physical position of u.

An access request ⟨s, read,pu ⟩ is authorized if, after resolving

conflicts with respect to s , there exists (1) a tuple with the grant

allow or (2) a tuple with the grant mutual, and after resolving

conflicts with respect to u there is a tuple either with the grant

allow or mutual. The following definition formalizes this notion.

Definition 2.15 (Authorized access request). Given the set of au-

thorizations A , an access request ⟨s,read,pu ⟩ is authorized if one

of the following conditions is met:

(1) ∃t ∈ resC(A, s) : tuser = u ∧ tgrant = allow
(2) ∃t ∈ resC(A, s),∃e ∈ resC(A,u) : tuser = u ∧ tgrant =

mutual ∧ euser = s ∧ (egrant = allow ∨ egrant = mutual).

So far we have introduced our conceptual structure of authoriza-

tions and we have described existing access control models using

this structure. We have also discussed how authorization conflicts

are solved and the syntax and semantics of mutual authorizations.

In addition, it is important to define the soundness principle that an

algorithm in the context of LBSs and mutual authorizations should
fulfill. In the next section, Section 2.6, we define this principle.

2.6 Soundness Criteria
An algorithm is sound if it is both correct and complete [23]. We now

introduce two constraints, location and authorization constraints,

which will be used to define the soundness and completeness of an

algorithm in the context of LBSs and mutual authorizations.

Definition 2.16 (Location constraint). A location constraint,
LCons, is a predicate on physical positions.

Let dist(px ,ps) denote the distance between the physical posi-

tions of users x and s .

Example 2.17. Consider a distance d and the physical positions

of two persons u and s , pu and ps , respectively, dist(pu ,ps) ≤ d is

a location constraint.

Definition 2.18 (Authorization constraint). Given two persons, u
and s , an authorization constraint ACons is a predicate on a set

of authorizationsM that involve persons u and s .

Example 2.19. Let a set of authorizationsM and two persons u
and s be given. The access request ⟨s, read,pu ⟩ is an authorization

constraint. If ⟨s, read,pu ⟩ is authorized, the predicate evaluates to
true; otherwise it evaluates to false.

Definition 2.20 (Query). Given a set of persons P , a query Q(C)
is a set of location and authorization constraints C . Its output is the
elements of P that fulfill C . AnsP (Q(C)) is the output of Q(C).

A user algorithm is an algorithm which outputs a set of users

who fulfill a set of constraints given as algorithm input.

Definition 2.21 (User algorithm). A user algorithm Π : P(U) ×
P(Cons) → P(U) is an algorithm that has as input a set of users

U1 ∈ P(U) and a set of constraints C and outputs a set of usersU2.

In the context of LBSs and mutual authorizations, a user algo-

rithm Π computes a location and an authorization constraint on

the physical positions of a given set of persons P . Based on these

two constraints, we define the correctness and completeness of Π.

Definition 2.22 (Correctness in the context of LBSs and mutual
authorizations). Let a user algorithm Π, a set U1 ∈ P(U) and
a set of constraints C = {LCons,ACons} be given. Π is correct
with respect to U1 and C if for all u ∈ Π(U1, {LCons,ACons}),
u ∈ AnsU1

(Q(LCons)) ∧ u ∈ AnsAnsU
1
(Q (LCons))(Q(ACons)).

In other words, correctness is given if for all usersu in the output

of Π, (1) u is a person in U 1 that fulfills LCons and (2) u is a person

in AnsU1
(Q(LCons)) that fulfills ACons .

Definition 2.23 (Completeness in the context of LBSs and mutual
authorizations). Let a user algorithm Π, a setU1 ∈ P(U) and con-

straints C = {LCons,ACons} be given. Π is complete with respect

to U1 and C if for all persons u with u ∈ AnsU1
(Q(LCons)) ∧ u ∈

AnsAnsU
1
(Q(LCons))(Q(ACons)), u ∈ Π(U1, {LCons,ACons}).

To illustrate completeness, think of a user algorithm Π that al-

ways outputs an empty set. Then Π fulfills the correctness principle.

However, Π is not useful.

Definition 2.24 (Soundness in the context of LBSs and mutual autho-
rizations). Let a user algorithm Π, a set U1 ∈ P(U) and constraints

C = {LCons,ACons} be given. Π is sound with respect to U1 and

C if (1) Π is correct with respect toU1 and C and (2) Π is complete

with respect toU1 and C .

3 INTEGRATING LBS
WITH MUTUAL AUTHORIZATIONS

Before proceeding to describe our set of primitives and algorithms

for integration LBSs with mutual authorizations, we present our
algorithm for resolving conflicts.

3.1 Resolve Conflicts Algorithm
Authorization conflicts can be solved at design time, i.e., during the

insertion of authorizations in a system, or at query time, i.e., when

an access to a resource is required. Solving authorization conflicts

at design time could require to modify the structure of an organiza-

tion, see Example 3.1. For this reason, we consider authorization

conflicts have to be solved at query time. In the next, we present

our algorithm to solve authorization conflicts, see Algorithm 1. We

use the left arrow “←" to indicate that the value on the right hand

side is assigned to the term on the left hand side.

Example 3.1. Let us consider Example 2.8. Assume now that

the authorization A has been inserted first in the system and now

user u wants to insert authorization B. Based on the deny-mutual
precedence strategy, authorization B has precedence over A. Then,
during the insertion process, with respect to subject s , authorization
B should be inserted andA should be deleted. However, this change

will affect all users who have either role1 or role2. In this case it

may be necessary to modify the organizational structure of the

business in such a way that this authorization update will not affect

to other users.

Given a set of authorizations B ⊆ A a set of usersU and a set of

subjects S, the resolveConflicts algorithm, Algorithm 1, resolves the

existing authorization conflicts in the set of authorizations B with

respect to each subject s ∈ S and the users in the setU. Algorithm 1

starts by initializing an empty map autMap which will store pairs of
keys and values. The key of the map is a pair consisting of a user and

a subject, and the value of the map corresponds to the grant of an

authorization. For each authorization A in B, the algorithm verifies

if (1) user (A) is inside the set of users U and (2) the intersection

between subjects(A) and S is not an empty set. If the previous is

true, for each s ∈ subjects(A) ∩ S, the algorithm checks if there is

an entry in the map autMap with key (user (A), s). If there is such
an entry and the grant stored in this entry has lower precedence

than the grant of the authorization A, the algorithm updates the

value of the entry to дrant(A). Otherwise, the algorithm adds the

entry with key (user (A), s) and value дrant(A) to the map autMap.

Algorithm 1: resolveConflicts
Input :Authorization Set B, user Set U, subject Set S

Output :Map autMap
1 Initialize: autMap⟨(user , subject),дrant⟩ ← empty map;
2 foreach authorization A in B do
3 if user (A) ∈ U ∧ subjects(A) ∩ S , ∅ then
4 foreach s ∈ subjects(A) ∩ S do
5 if autMap.containsKey((user (A), s)) then
6 if autMap.дet((user (A), s)) ≪ дrant(A) then
7 autMap.put((user (A), s),дrant(A));
8 else
9 autMap.put((user (A), s),дrant(A));

10 return autMap;

In the next, given as input to Algorithm 1 the sets B, U, S, we

prove that Algorithm 1 solve all authorization conflicts in the set B

with respect to each subject s ∈ S and the set of users U.

Lemma 3.2. Given an authorization set B ⊆ A , a set of users U,
a set of subjects S and the subset of authorizations N = {A ∈ B |
user (A) ∈ U, subjects(A)∩S , ∅}, for each s ∈ S and for each tuple〈
tuser , tдrant

〉
∈ resC(N , s) exists an entry e = ((tuser , s), tдrant)

in resolveConflicts(B,U,S).

Proof. First, we will show that each entry in the map autMap,
output by Algorithm 1, corresponds to one authorization in the

set N = {A ∈ B | user (A) ∈ U, subjects(A) ∩ S , ∅}. In Line

2, Algorithm 1 considers all authorizations A ∈ B, and in Line 3

the if condition evaluates if A satisfies the constraint user (A) ∈
U, subjects(A) ⊆ S. Entries are added in the map, Lines 7 and

9, using only authorizations that fulfill the if condition. Second,

we will show that for each entry e = ((u, s),дrant) in autMap,
where u ∈ U and s ∈ S, the grant authMap.дet(u, s) is the one

with the highest precedence with respect to u and s in the set B.

For each pair of elements (u, s), Algorithm 1 verifies if there is an

entry with key (u, s) in autMap, Line 5. If such an entry exists,

the grant of the entry is updated only if the grant of the entry

has lower precedence than the grant of the authorization that is

being evaluated, дrant(A), Lines 6-7. If there is not such an entry,

Algorithm 1 creates a new entry in the mapwith key (u, s) and value
дrant(A), Line 9. Once Algorithm 1 has evaluated all authorizations

in B, autMap will contain, for each pair of elements u, s , the grant
with the highest precedence in the set B with respect to u and

s . Then each entry e = ((u, s),дrant) corresponds to a tuple in〈
tuser = u, tдrant = дrant

〉
in resC(N , s). □

3.2 Primitives and Algorithms
for Mutual Authorizations

Depending on the services offered by a system, one may need dif-

ferent primitives. A primitive is a basic unit that performs a specific

functionality, and that can be combined with other primitives. In

the case of LBSs, to answer queries, we need to knowwhich persons

a given person has allowed reading his physical position. The two

primitives Primitive-Request and Primitive-View are sufficient to

this end, as we will show in Section 3.4.

• Primitive-Request: Given two persons u and s , may s read the
physical position of u?
• Primitive-View: Given a person s , whose physical positions
is s allowed to read? We call this set Views , the view of s .

In the following, we present our algorithms, Pr-Request algo-
rithm and Pr-View algorithm to implement the primitives Primitive-
Request and Primitive-View, respectively. Since authorization con-

flicts can exist, both algorithms make use of the resolveConflicts
algorithm, Algorithm 1.

Given two personsu and s , the Pr-Request algorithm, Algorithm 2,

determines if person s can can read the physical position of personu.
The Pr-Request algorithm, Algorithm 2, starts by initializing, among

others, the set Setr eq which contains the person who request the

access and the set Setpp which contains the person whose physical

position is requested, Line 1. Next, the algorithm invokes the re-
solveConflicts algorithm on the sets A , Setpp and Setr eq . The output
of the resolveConflicts algorithm is stored in the map ReceiveAuts .
Since Setpp and Setr eq have one element each, ReceiveAuts con-
tains only one entry e with key (u, s) and the value corresponds to

the grant of the authorization with the highest precedence that u
has assigned to s . If e.getValue() = allow , the algorithm returns true .
If e.getValue() =mutual , the algorithm invokes the resolveConflicts
algorithm on the sets A , Setr eq and Setpp . The output of the re-
solveConflicts algorithm is stored in the map ReceiveAutu , Line
7. ReceiveAutu contains only one entry t with key (s,u) and the

value corresponds to the grant of the authorization with the high-

est precedence that s has assigned to u. If t.getValue() = allow or

t.getValue() =mutual , the algorithm returns true , which indicates

that s is allowed to read the physical position of u, pu . Otherwise s
is not allowed.

Given a person s , the Pr-View algorithm, Algorithm 3, outputs the

view of s . Algorithm 3 starts by initializing, among others, the setsU

and S. The algorithm assigns the set of all usersU to the setU and

the person s , given as input, to the set S. During the initialization,

the algorithm also invokes the resolveConflicts algorithm on the

sets A , U and S, and stores the output in the map ReceiveAuts .
For each entry e in ReceiveAuts , if e.getValue() = allow , the user

that is part of the key of the entry e is stored in the set Views ,

Lines 3-4. Given an entry e ∈ ReceiveAuts , we use the notation
e .дetKey.User () to refer to the user that is part of the key of entry

e . If e.getValue() = mutual , e .дetKey.User () is added to the set

MutualRA, Lines 5-6. If the set MutualRA is not an empty set, then

the algorithm invokes the resolveConflicts algorithm on the sets A ,

S and MutualRA, and stores the output in the map AuthMaps . For
each useru ∈ MutualRA, the algorithm verifies ifAuthMaps has an
entry with key (s,u) with value equal to allow or mutual. If there
is such an entry, the algorithm adds u to the set Views .

Algorithm 2: Pr-Request
Input :Authorization Set A , Access request ⟨s, read,pu ⟩
Output :Boolean resp

1 Initialize: Setpp ← {u}, Setr eq ← {s},
ReceiveAuts ⟨(user , subject),дrant⟩ ← empty map,
ReceiveAutu ⟨(user , subject),дrant⟩ ← empty map;

2 ReceiveAuts ← resolveConflicts(A, Setpp , Setr eq);
3 foreach entry e in ReceiveAuts do
4 if e.getValue() = allow then
5 return true;

6 if e.getValue() =mutual then
7 ReceiveAutu ← resolveConflicts(A, Setr eq , Setpp);
8 foreach entry t in ReceiveAutu do
9 if t.getValue() = allow ∨ t.getValue() =mutual

then
10 return true;

11 return false ;

In the next, we prove that given the authorization set A and a

person s , the output of the Pr-View algorithm, Algorithm 3, contains

all persons that s is allowed to read their physical positions and

not more. We only present the proof of Algorithm 3. The proof of

Algorithm 2 can be done in similar way as the proof as the proof of

Algorithm 3.

Lemma 3.3. Given an authorization set A and a person s ,
(1) For all persons u ∈ Pr-View(A, s), Algorithm 3, s is authorized

to read the physical position ofu with respect to Definition 2.15.
(2) If u < Pr-View(A, s), then s is not authorized to read the phys-

ical position of u with respect to Definition 2.15.

Proof. We will prove that for each user u ∈ Pr-View(A, s),
⟨s, read,pu ⟩ is authorized, Definition 2.15, if either condition (1) or

(2) is met:

(1) ∃t ∈ resC(A, s) : tuser = u ∧ tдrant = allow .

(2) ∃t ∈ resC(A, s),∃l ∈ resC(A,u) : tuser = u ∧ tдrant =
mutual ∧ luser = s ∧ (lдrant = allow ∨ lдrant =mutual)

Wehave proven in Lemma 3.2 that for each tuple ⟨ tuser, tgrant ⟩ ∈
resC(A, s) exists an entry e = ((tuser , s), tдrant) in the output

resolveConflicts(A, {U }, {s}). Then in conditions (1) and (2), it is

Algorithm 3: Pr-View
Input :Authorization Set A , person s
Output :Set Views

1 Initialize: U← U , S ← {s} , Views ← ∅,
ReceiveAuts ⟨(user , subject),дrant⟩ ←
resolveConflicts(A,U,S),
AAs ⟨(user , subject),дrant⟩ ← empty map, MutualRA← ∅;

2 foreach entry e in ReceiveAuts do
3 if e .дetValue() = allow then
4 add e.getKey.User() to Views ;

5 if e .дetValue() =mutual then
6 add e.getKey.User() to MutualRA;
7 if MutualRA.size() , 0 then
8 AuthMaps ← resolveConflicts(A,S,MutualRA);
9 foreach u in MutualRA do

10 if AuthMaps .дet((s,u)) =
mutual ∨AuthMaps .дet((s,u)) = allow then

11 add u to Views ;

12 return Views ;

possible to replace a tuple t =
〈
tuser , tдrant

〉
∈ resC(A, s) with an

entry e = ((tuser , s), tдrant) ∈ resolveConflicts(A, {U }, {s}). First,
a person u is added to Pr-View(A, s), if tuser = u ∧ tдrant = allow ,

Lines 4-5. It is condition (1) was evaluated. Second, if tдrant =
mutual , then u is added to the set MutualRA, Lines 6-7. Then for

each u ∈ MutualRA, u is added to Pr-View(A, s) if exists an entry f
in resolveConflicts(A, {s},MutualRA) such that f = ((s,u),allow)
or f = ((s,u),mutual), Lines 12-13. It is condition (2) was evalu-

ated. □

3.3 System Architecture
We consider a system architecture which contains a location-based

service provider LBSP. The LBSP has : (1) a user database DBU ,

which stores the position of each user u, pu , and (2) an authoriza-

tion database DBA, which stores the authorizations A . See Figure 1.

We assume a database management system featuring R-tree index-

ing for spatial query processing on DBU and B-tree indexing for

authorizations queries on DBA. In our prototype, we have imple-

mented the LBS ourselves in Java, as well as access control, in the

form of the primitives described in Section 3.2. Note that our focus

is on the conceptual level; studying design alternatives regarding

the architecture is future work.

Fig. 1: System Architecture

The LBSP supports location-dependent queries. There are differ-

ent types of such queries [12], and we focus on two of them here:

k-nearest neighbor queries and range queries.

Definition 3.4 (Location-dependent query). Given a set of per-

sons P , a location-dependent query Q(LCons) is one that takes
a location constraint LCons and outputs the persons that fulfill it.

Definition 3.5 (k-Nearest Neighbor query). Given an integer k
and a person s , a k-nearest neighbor (kNN) query knn(k, s) is a
location-dependent query where the location constraint knnk,s (pu)
is: ∀M ⊆ U ,

(∀x ∈ M,dis(px ,ps) < dis(pu ,ps)
)
⇒ |M | ≤ k , where

U is the set of all users. In words, if the previous predicate evaluates

to true for a physical position pu , then the corresponding person u
is in the result of the knn(k, s) query; otherwise not.

Definition 3.6 (Range query). Given a distance d and a person s ,
a range query ranдe(d, s) is a location-dependent query with the

constraint ranдed,ps (px): dist(px ,ps) ≤ d .

Definition 3.5 is a higher order logic. However, to facilitate proofs

that our proposed approaches are sound, Section 3.4.3, we will use

a recursive definition, Definition 3.7.

Definition 3.7 (k-Nearest Neighbor query recursive definition). A
k-nearest neighbor query knn is a location- dependent query,

where the location constraint consists of two elements (k, s), where
k is an integer number and s is the persons who issues the query.
The result Ans(knn) of such a query is the set of users u ∈ U
such that |Ans(knn)| = k ∧ ∀u ∈ Ans(knn),∀v ∈ U \ Ans(knn) :
dist(ps ,pu) ≤ dist(ps ,pv).

Definition 3.8 (Bounded result-size query). Given a location-de-

pendent query Q(LCons), Q is a bounded result-size query if

the location constraint (LCons) contains an explicit restriction on

the number of elements of Ans(Q). Otherwise, Q is a unbounded

result-size query.

kNN and range queries are examples of bounded result-size and

unbounded result-size queries, respectively. IfQ is a bounded result-

size query, after executing Q and filtering Ans(Q) for users whose
position s is authorized to see, the filtered query result may not

fulfill the original constraint LCons any more.

Definition 3.9 (Authorizations received). Given the set of autho-

rizations A , the authorizations that s has received are all autho-

rizations A ∈ A such that s ∈ subjects(A).

Example 3.10. Consider a kNN query with constraint knn =
(2, s). Suppose that (1) the neighbors of s are u,v andw , and their

distances to s are 1, 2 and 3 km, respectively, and (2) s has received
two authorizations A,B where user (A) = v , дrant(A) = allow ,

user (B) = w and дrant(B) = allow . The LBSP evaluates the kNN

query and outputs Ans(kNN) = {u,v}. After filtering Ans(kNN)
based on the authorizations s has received, the result contains only
{v}. This does not meet the constraint knn = (2, s). The parameter

should have been set to k = 3, to obtain {u,w} after the filtering.

Example 3.11. Continuing with Example 3.10, suppose that s
wants to find all persons within 2 km, i.e., ranдe(2km, s). The LBSP
outputs Ans(ranдe) = {u,v}. After filtering Ans(ranдe) with re-

spect to the authorizations that s has received, the filtered result

is {v}, similar to Example 3.10. This result fulfills the constraint

ranдe(2km, s).

3.4 Integrating LBSs
with Mutual Authorizations

To integrate mutual authorizations in the system architecture, we

see two design alternatives, called Querying-Filtering (QF) and
Filtering-Querying (FQ). QF has the advantage that it can leverage

existing LBS implementations. However, it has some limitations

that could affect the performance, like the need to restart querying,

as we will discuss. FQ does not have this need to restart.

3.4.1 Querying-Filtering Approach (QF). Given a location-depen-

dent query Q(LCons), the QF approach works as follows: (1) The

LBSP executes the location-dependent queryQ on the user database

DBU and returnsAns(Q). (2) It filtersAns(Q) for the persons whose
position s may read. For the filtering, there are two options:

(a) Verify for each person u ∈ Ans(Q) if ⟨s, read,pu ⟩ is autho-
rized, i.e., execute Primitive-Request. If so, then u is added to

the final answer.

(b) Compute Primitive-View, Views , Algorithm 3. The final an-

swer is the intersection of Views and Ans(Q).
With Option (a), for each person in Ans(Q), it is necessary to

read all authorizations in A to solve authorization conflicts. With

(b), although it is still needed to solve authorization conflicts, the

elements of A will be read at most two times. The first time, the

algorithm obtains the authorizations assigned to the querying per-

son. At the second time, it verifies for the mutual authorizations
whether the access request is authorized. In the following, we will

focus on QF only in combination with (b).

Algorithms 4 and 5 show the details for implementing QF for

kNN and range queries, resp. Our algorithms assume that the LBSP

uses index structures to answer location-dependent queries, like

B-tree or R-tree. We call the services used by LBSP to compute kNN

and range queries, computeKNN(knn) and computeRange(ranдe),
respectively, where knn and ranдe are the location constraints of

the queries. In what follows, we describe both algorithms. Algo-

rithm 4 receives as input the set of authorizations A , the parameters

of the kNN query k and a person s . The variables Views , tempall
and tempvisible store the view of person s , the set of all persons

that satisfy the kNN query, and the intersection of the sets tempall
and Views , respectively. Since kNN queries are bounded result-size

queries, we need to evaluate if the final result satisfies the parame-

ter k of the query. To do so, Algorithm 4 uses a while loop which

encapsulates the entire process of querying and filtering. In Line

4, the algorithm invokes a function estimateK(k,kold, s) which es-

timates an integer value, kall ≥ k such that after computing the

kall-nearest neighbors of s and filtering the result based on Views ,

the filtered result fulfills the constraint (k, s). Next, using the func-

tion computeKNN(kall , s), the algorithm computes the kall -nearest
neighbors of s ordered by distance in ascending order and stores the
result in tempall. Then, for all u ∈ tempall, if u ∈ Views , u is added

to tempvisible, while keeping the order by distance. If tempvisible
contains at least k elements, the algorithm outputs the first k . Oth-
erwise, it assigns the current value of kall to the parameter kold, and
the process of querying and filtering starts again. In each iteration,

the function estimateK computes a new integer value kall > kold.
Algorithm 5 receives as input the set of authorizations A , a

distance parameter dist and a person s . Similar to Algorithm 4,

the algorithm starts by invoking Algorithm 3 to compute the view

of s with respect to the set of authorizations A . The output of

Algorithm 3 is stored in the setViews . Then the algorithm computes

the function computeRange with the distance dist and the person

s . The result of this functions is stored in the set tempall . Finally,
Algorithm 5 filters the result by intersecting tempall and Views ,

and outputs the final result set Ans .

Algorithm 4: Querying-Filtering kNN
Input :Authorization Set A , int k , person s
Output :Set Ans

1 Initialize: Views ← ∅, Ans ← ∅, tempall ← [],
tempvisible ← [], notEnouдh ← true , kall ← 0, kold ← 0;

2 Views ← Pr-View(A, s);
3 while notEnouдh do
4 kall ← estimateK(k,kold , s);
5 tempall ← computeKNN(kall , s);
6 tempvisible ← f ilter (tempall ,Views);
7 if tempvisible .size() ≥ k then
8 Ans ← select topK(k, tempvisible);
9 notEnouдh ← f alse;

10 else
11 kold ← kall ;

12 return Ans;

Algorithm 5: Querying-Filtering Range
Input :Authorization Set A , double dist , person s
Output :Set Ans

1 Initialize: Views ← ∅, Ans ← ∅, tempall ← ∅;
2 Views ← Pr-View(A, s);
3 tempall ← computeRange(dist , s);
4 Ans ← tempall ∩Views ;

5 return Ans;

3.4.2 Filtering-Querying Approach (FQ). Given a location-depen-

dent query Q(LCons), the FQ approach works as follows: (1) The

LBSP invokes the Pr-View algorithm to determine the personswhose

positions s is allowed to see, i.e., Primitive-View. (2) The LBSP exe-

cutesQ over these persons and outputs a final result. Contrary to QF,

since the evaluation of the location-dependent queries must take

place on the filtered result, the LBSP cannot use the pre-computed

materializations, i.e., computeKNN(knn) and computeRanдe(ranдe).
Then the LBSP needs new primitives to execute the supported

queries. We have identified two primitives: (1) computeD(ps ,pu),
which compute the distance between the physical positions of two

given persons s and u, and (2) sort by distance sortByD(M), where
M is a list of tuples each of which consists of a person u and a

distance d . To implement the first primitive, we use the well-known

Haversine distance [19], and for the second one, we use the merge

sort algorithm. See Algorithm 6 and Algorithm 7 for kNN and range

queries, respectively.

Algorithm 6 receives as input the authorization set A , the pa-

rameter of the kNN query k and a person s . To compute the view of

s , the algorithm invokes Algorithm 3 on the set of authorizations

A and the person s . The output of Algorithm 3 is stored in the set

Views . For each person u ∈ Views , the algorithm computes the

distance between u and s and adds the tuple ⟨u,d⟩ to the set Dist ,
Lines 4-5. Next, Algorithm 6 sorts by distance the set Dist and for

each tuple ⟨u,d⟩ it stores u in the listVieworder .Vieworder stores

all users u ∈ Views ordered by distance in ascending order. Finally,

the algorithm selects the first k elements of the listVieworder , Line

8.

Algorithm 7 receives as input the set of authorizations A , a

distance parameter dist and a person s . The steps 2-6 are the same

as the ones of Algorithm 6. Then Algorithm 7 analyzes each tuple

t ∈ Dist and verifies if the distance stored in t , tdistance , is smaller

or equal than the distance dist . If the previous is true, the person
stored in tuple t , tpers , is added to the final answer, Lines 7-10.

Algorithm 6: Filtering-Querying kNN

Input :Authorization Set A , int k , person s
Output :Set Ans

1 Initialize: Views ← ∅, Dist ← ∅, Vieworder ← [], Ans ← ∅;
2 Views ← Pr-View(A, s);
3 foreach person u in Views do
4 double d ← computeD(ps ,pu);
5 add tuple ⟨u,d⟩ to Dist
6 Vieworder ← sortByD(Dist);
7 Ans ← select topK(k,Vieworder);
8 return Ans

Algorithm 7: Filtering-Querying Range

Input :Authorization Set A , double dist , person s
Output :Set Ans

1 Initialize: Views ← ∅, Dist ← ∅, neiдhbors , Ans ← ∅;
2 Views ← Pr-View(A, s);
3 foreach person u in Views do
4 double d ← computeD(ps ,pu);
5 add tuple ⟨u,d⟩ to Dist
6 foreach tuple t in Dis do
7 if tdistance ≤ dist then
8 Ans ← tpers ;

9 return Ans

Advantages and Disadvantages of QF and FQ: With QF, the LBSP

can make use of the available index structures in the user database.

However, in the case of bounded result-size queries, the LBSP may

need to restart the query if the filtered result does not satisfy the

initial constraints, cf. Example 3.10. With FQ, bounded result-size

queries do not require restarts, Example 3.11. However, the evalua-

tion of location-dependent queries must take place on the filtered

result. The LBSP cannot use the indexes structures of the user data-

base to execute queries efficiently. Finally, with both approaches,

the costs of updates, i.e., positions of persons and authorizations

updates, only depend on the scalability and costs of updating the in-

dex structures used. The analysis of the impact of updates is beyond

the scope of this paper. It also can be found elsewhere [15].

3.4.3 QF and FQ Are Sound. In this paper, we assume that the

algorithms used to evaluate a given location-dependent query are

correct and complete with respect to the location constraint LCons .
This means that the integration of these algorithms into the context

of mutual authorizations is correct and complete. The proofs that

our integration of the algorithms to answer range queries into the

context ofmutual authorizations, Algorithms 5 and 7, are sound can

be done in the same manner following the proofs of Lemmas 3.12

and 3.13. Therefore, we only present the proofs for the algorithms

that support kNN queries.

Lemma 3.12. Let a set of authorizations A and a location constraint
(k, s) of a kNN query be given, where k is an integer, and s is the query
issuer. Algorithm 4, QF for kNN queries, is sound.

Proof. An algorithm is sound Definition 2.24, if it is correct and

complete. Let Ans be the result output by Algorithm 4. We first

prove that Algorithm 4 is correct with respect to Definition 2.22.

We assume that the service used by Algorithm 4 to compute a given

kNN query, computeKNN(kall, s), where kall ≥ k , Line 5, is correct
with respect to the location constraint (kall , s). If a person u is in

Ans , u is in tempvisible, Line 8. If u is in tempvisible, then u is tempall
and u is in Views , Line 6. Views is the output of Pr-View(A, s),
so s is authorized to read the physical position of u, Lemma 3.3.

Then, u ∈ rst(AConsA,s ,U), where AConsA,s is an authorization

constraint. Since u is in tempall , u is in computeKNN (kall , s). Since
computeKNN(kall , s) is correct, then u satisfies the location con-

straint (kall , s)with respect toU . Furthermore, the size of tempvisible
is greater or equal than k , and topK selects the k first elements from

tempvisible. Then u ∈ rst((k, s), rst(AConsA,s ,U)). Consequently,
Algorithm 4 is correct. Now we prove that Algorithm 4 is com-

plete with respect to Definition 2.23. Consider a person u with

u ∈ rst(AConsA,s ,U) ∧ u ∈ rst((k, s), rst(AConsA,s ,U)). Be-
cause u satisfies the authorization constraint with respect to U ,

u is in Views . Since Views = rst(AConsA,s , U), Definition 2.18, u
is in rest((k, s),Views) and rest((k, s),Views) ⊆ rest((kall , s),U),
then u is in rest((kall, s),U). We know that computeKNN(kall , s) is
complete. Then u is in tempall and u is in tempvisible . Because
u ∈ rst ((k, s),Views), then u is in topK and u is Ans . Hence, Algo-
rithm 4 is complete; consequently, it is sound.

□

Lemma 3.13. Let a set of authorizations A and a location constraint
(k, s) of a kNN query be given, where k is an integer, and s is the query
issuer. Algorithm 6, FQ for kNN queries, is sound.

Proof. An algorithm is sound, Definition 2.24, if it is correct

and complete. Let Ans be the result output by Algorithm 6. We first

prove that Algorithm 6 is correct with respect to Definition 2.22. If

a person u is inAns , u is in the listVieworder , Line 8. Then there is

a 2-element tuple ⟨u,d⟩ in Dist , which means u is in Views . Views
is the output of Pr-View(A, s). So s is authorized to read the posi-

tion of u, Lemma 3.3. Then u ∈ rst(AConsA,s ,U), where AConsA,s
is an authorization constraint. Algorithm 6 uses the primitives

computeD, sortByD and topK to compute the k-nearest neighbors

of a given person s . We assume that the combination of these prim-

itives to compute a given kNN query is correct with respect to

the location constraint (k, s). Since these primitives compute the

result using as input the set Views , Line 3, u ∈ rst((k, s),Views),
and Views = rst(AConsA,s ,U). Then Algorithm 6 is correct. We

now prove that Algorithm 6 is complete with respect to Defini-

tion 2.23. Consider a person u with u ∈ rst(AConsA,s ,U) ∧ u ∈
rst((k, s), rst(AConsA,s ,U)). Because u satisfies the authorization

constraint with respect to U , u ∈ Views . Since u ∈ Views , there

is a 2-element tuple ⟨u,d⟩ in Dist . Then u is in Vieworder , Line

7. Because u satisfies the location constraint (k, s) with respect to

the set Views , u is in topK(k,Vieworder). Then u is in Ans . Hence,
Algorithm 6 is complete. Therefore, Algorithm 4 is sound. □

4 TIME COMPLEXITY ANALYSIS
A complexity analysis is helpful (1) to predict the behavior of FQ

and QF, and (2) to facilitate meaningful comparisons. An average

complexity analysis depends on the internal behavior of the data-

base, which is (1) specific to the product, and (2) is not openly

available. Furthermore, if there are changes in the system settings,

the average analysis is void. So our complexity analysis targets at

the worst case, which offers stronger guarantees.

4.1 Time Complexity Analysis of QF and FQ
To fulfill a given location constraint (k, s) of a kNN query, Algo-

rithm 4 uses an estimation function estimateK, which estimates a

value kall ≥ k for a given k , such that after computing the kall -
nearest neighbors of s and filtering the result based on Views , the

filtered result satisfies the original constraint (k, s). Let kr eal be
the value of kall Algorithm 4 uses to compute the final output, i.e.,

kr eal is equal to the value kall of the last run of Algorithm 4. Let

further be δ = kr eal − k .
For the analysis of Algorithm 4, we assume that estimateK com-

putes the value kr eal in the first run, i.e., no restarts are needed.

We discuss this assumption later in Section 4.2.

Lemma 4.1. Let the number of persons n, a kNN query knn=(k,s),
the view size of the query issuer, s , |Views |, and a set of authorizations
A , be given. The time complexity of QF with no restarts is

TC = O(n + (k + δ) · |Views |) +O(A) (1)

Proof. The following steps are required to compute a given

kNN query with the querying-filtering approach, with no restarts:

Step1 computes the viewViews of the query issuer s . We useO(A)
to denote the complexity of this step.

Step2 searches the (k + δ)-nearest neighbors in the user databa-

se. The complexity of a kNN query using R-tree indexes is

O(n) [14]. We validated through initial experiments that this

complexity applies to the praxis.

Step3 filters the result by checking for each person returned in

Step
2
if the person is in the view Views . The complexity of

this step is O((k + δ) · |Views |).
Consequently, the time complexity of executing a kNN query

with the querying-filtering approach isTC = O(n+(k+δ)· |Views |)+
O(A). □

Lemma 4.2. Let the number of personsn, a kNN query knn = (k, s),
the size of the view of the query issuer s , |Views |, and the set of
authorizations A be given. The time complexity of FQ is

TC = O
(
|Views | · log(n) + |Views | + |Views | · log(|Views |)

+ k
)
+O(A) (2)

Proof. The following steps are required to compute a given

kNN query with the filtering-querying approach:

Step1 computes the view,Views of the query issuer s . We useO(A)
to denote the complexity of this step.

Step2 looks up in the user database to obtain the physical position

of each person in the view Views . This has a complexity of

O(|Views | · log(n)).
Step3 computes the distance between the querying user and each

of the persons in the view Views . The complexity of this

step is O(|Views |).
Step4 orders the persons in the view Views by distance to the

querying user s in ascending order. The order is done using

the merge sort algorithm. The complexity of this step is

O(|Views | · log(|Views |)).
Step5 selects the k first persons. This has a complexity of O(k).
Consequently, the time complexity of executing a kNN query with

the filtering-querying approach isTC=O(|Views | ·log(n)+ |Views |+
|Views | · log(|Views |) + k) +O(A). □

We note that, since ∀x > 0,n > 0 : x > x · loд(n), Equation (2)

can be further simplified toTC = O
(
|Views | +k

)
+O(A). However,

to allow a more accurate comparison of both approaches in the

next section, Section 4.2, we do not simplify it.

4.2 Comparison of the QF and FQ Approaches
To decide which approach is better to answer a given query, one

needs to compare the complexity of both approaches, QF and FQ,

and find their intersection points:

O(n + (k + δ) · |Views |) +O(A) = O
(
|Views | · log(n)

+ |Views | + |Views | · log(|Views |) + k) +O(A
)

(3)

Solving (3) for |Views | yields (4). For given values of n, k and δ ,
(4) is the size of the view so that the time complexity in the worst

case is equal. We refer to this size of the view as Viewequal .W in

(4) is the Lambert-W function [4].

Viewequal (n,k,δ) =
n · ln(2) − k · ln(2)

W(21−k−δ · n · (n − k) · ln(2))
(4)

We now analyze Eq. (4) with the best case scenario for QF, which

is the one where the nearest neighbors of s are the persons whose
positions s is allowed to read, i.e., δ=0. Equation (4) depends on

the parameters: n,k and δ . To further simplify it, similarly to other

approaches [10, 28], we set the parameters k of the kNN query to 20,

and δ=0. Then Viewequal only depends on the number of persons n.

Viewequal (n, 20, 0) =
n · ln(2) − k · ln(2)

W(2−19 · n · (n − 20) · ln(2))
(5)

Figure 2 plots the QF and FQ approaches, for k = 20 and δ = 0.

The x-axis is the number of persons n, the y-axis the size of the view
|Views | of the query issuer s and the z-axis the time complexityTC .
Figure 2 shows the intersection points of both approaches. Given

an intersection point and its corresponding number of persons

n, Equation (5) yields the size of its view. We conclude that, for

a given n, if |Views | < Viewequal , the time complexity of FQ is

smaller than that of QF, and vice versa. In Table 1, using Equation (5),

we list the intersection points of QF and FQ, for different numbers

of persons n. For instance, if n = 2000, Viewequal ≈ 1014.31. Then,

for n = 2000, if the size of the view of the query issuer is smaller

than approximately 1014.31, FQ performs better than QF.

Fig. 2: Complexity of the QF and FQ Approaches
– knn Query (k = 20,δ = 0)

Table 1: Values of n andm for which theTC of QF and FQ are
the same (k = 20,δ = 0)

n Viewequal ≈
2000 1014.3096

4000 1231.4594

10000 1920.9585

20000 2935.2272

40000 4709.5727

100000 9267.9800

317080 23032.341

3000000 152046.4307

So far, the plot in Figure 2 and the values in Table 1 correspond

to the best case scenario for QF, i.e., δ = 0. We now explain why a

focus on this case is sufficient.

Let us consider real scenarios such as online social networks like

Orkut and LiveJournal. The number of connections that a person s
has in these networks is the number of persons that have declared

to have a relationship with s , e.g., friend, colleague. This translates
to our authorization model as the size of the view of s . In [13], the

authors found that considering about 3 million nodes, the average

number of connections of a person in Orkut and LiveJournal is

223.99 and 520.04, respectively. In DBLP with 317080 nodes, the

average number of connections is 64.98 [13]. This suggests that the

size of the view of a given person increases monotonically with

the number of persons. Analogously, Table 1 reveals that Viewequal

grows monotonically with the number of persons n. We can also

observe that, ifn=2000,Viewequal is already greater than the average

number of connections for 3 million persons in real scenarios. For n
equal to 3 million, Viewequal=152046. This indicates that the size of

the view of a given person in real scenarios is smaller than Viewequal
for a given n. This implies that FQ performs better than QF even in

the best case scenario of QF. So we do not dwell into the behavior

of QF with restarts.

The analysis of the approaches for range queries can be done in

the same way. Range queries are unbounded result-size queries. QF

for range queries does not need any restart. In the analysis of QF

for kNN queries, we did not consider restarts because we assumed

estimateK to compute kr eal in the first run. Therefore, the skeleton

structure of the complexity analysis is the same for both type of

queries. For these reasons, we omit this part.

5 THE SIZE OF THE VIEW OF A PERSON
In this section, we study the impact of mutual authorizations on
the number of persons whose position a given person s is allowed
to read, i.e., Views . This is important not only from the point of

view of the LBSP but also from the user perspective. A user may

want to know how the use of mutual authorizations compared to

the use of deny or allow in the population affects the number of

persons whose position he is allowed to read.

To study the impact of mutual authorizations on the view of

a person, we derive the probability P(|Views |=N) that a person s
chosen at random can see the physical position of a specific num-

ber of persons N , given the share of mutual to deny and allow
authorizations in the entire population. To do so, we look at the au-

thorizations after solving all authorization conflicts. This allows us

to represent the authorizations and persons as a so-called authoriza-

tion graphG . Since every person of a pair assigns an authorization

to the other one, at least implicitly, G is a complete digraph.

Definition 5.1 (Authorization Graph). Given a set of authoriza-

tions A , an authorization graphG = (V ,E) is a complete digraph

with labeled directed edges, as follows: The vertices represent the

persons. A directed edge with label grant betweenu andv indicates

that there exists a user-grant tuple ⟨u,дrant⟩ ∈ resC(A,v), where
дrant ∈ Gr .

The number of incoming edges of any node is |Ein | = |V | − 1.
To compute P(|Views | = N), where N ≤ |Ein |, we need a con-

crete distribution of allow, deny and mutual authorizations. The
arguments behind our analysis hold for any distribution. For the

sake of simplicity, we now assume a uniform distribution of allow,
deny andmutual authorizations, where the numbers of these autho-

rizations are parameters of the distribution, i.e., the probability that

a random chosen authorization has an allow grant is given by the

number of allow authorizations over the total number of authoriza-

tions, for mutual and deny accordingly. To not restrict ourselves to

a specific scenario, we assume that the only information available

is: (i1) the number of nodes in the authorization graph G, |V |, (i2)
the number of deny edges inG , |d |, (i3) the number ofmutual edges
in G, |m |, and (i4) the number of allow edges in G, |a |, such that

|E | = |a | + |m | + |d |.
Example 5.2 illustrates how one can compute the probability that

the size of the view of a random person s is one, i.e., P(|Views | = 1).

Example 5.2. Think of a node s with two incoming and two

outgoing edges. s has a view of size 1 if s has either C1, C2, C3 or

C4, where:

(C1) One allow and one deny incoming edge.

(C2) One allow incoming edge, one mutual incoming edge and

one deny outgoing edge pointing to the node the mutual
incoming edge originates from.

(C3) One mutual incoming edge, one deny incoming edge, and

one mutual or allow outgoing edge pointing to the node the

mutual incoming edge originates from.

(C4) Two mutual incoming edges, one mutual or allow outgoing

edge, and one deny outgoing edge such that the outgoing

edges point to the nodes themutual incoming edges originate

from.

Then, to compute P(|Views | = 1), it suffices to sumup the individual

probabilities of all the above cases.

Example 5.2 shows that the distinction between allow andmutual
outgoing edges is not relevant in cases C2, C3 and C4. Then, to

simplify the computation of P(|Views | = N) in these cases, we

treat allow and mutual outgoing edges as belonging to one group.

Lemma 5.3 proves the correctness of this simplification.

Lemma 5.3. Let (1) a value r ∈ N, (2) a multisetX = X1∪X2∪X3,
and (3) a multiset Y = Y1 ∪ X3, where X1, X2 and X3, and Y1 and
X3 are pairwise disjoint multisets, their corresponding underlying set
is a unit set, and |Y1 | = |X1 ∪ |X2 |, be given. Let Ar be the event of
choosing r elements from the multisetX such that the chosen elements
belong either to the submultiset X1 or to X2, and let Br be the event of
choosing r elements from the multiset Y such that the chosen elements
belong to the submultiset Y1. Then

P(Ar) = P(Br) =
(|Y1 |
r

)(|Y |
r

) (6)

Proof. By induction on r . We first prove that Equation (6) is true

for r = 1. Then we assume that Equation (6) holds for r and prove

that it also holds for r + 1. Let us start by proving that Equation (6)

is true for r = 1.

Let a be the chosen element. The probability of choosing 1 ele-

ment, from a multiset of |X | elements such that the chosen element

belongs either to the multisets X1 or X2 is P(a ∈ X1)+P(a ∈ X2).
There are

(|X |
1

)
possible ways to choose 1 element from a multiset

of |X | elements. So:

P(A1) = P(B1)
P(a ∈ X1) + P(a ∈ X2) = P(a ∈ Y1)(|X1 |

1

)(|X |
1

) + (|X2 |
1

)(|X |
1

) = (|Y1 |
1

)(|Y |
1

)(|X1 |
1

)(|X |
1

) + (|X2 |
1

)(|X |
1

) = (|X1 |+ |X2 |
1

)(|X |
1

)
|X1 |!
(|X1 |−1)!

��
��|X |!

(|X |−1)!

+

|X2 |!
(|X2 |−1)!

��
��|X |!

(|X |−1)!

=

(|X1 |+ |X2 |)!
(|X1 |+ |X2 |−1)!

��
��|X |!

(|X |−1)!
|X1 | ·����(|X1 | − 1)!
����(|X1 | − 1)!

+
|X2 | ·����(|X2 | − 1)!
����(|X2 | − 1)!

=
(|X1 | + |X2 |) ·((((((((|X1 | + |X2 | − 1)!

((((((((|X1 | + |X2 | − 1)!
|X1 | + |X2 | = |X1 | + |X2 |

Then the claim is valid for r = 1. We still need to prove that

Equation (6) is true for r + 1 assuming it is true for r .
LetC be the event of choosing 1 element that belongs either to the

submultiset X1 or X2 given event Ar . The probability of choosing

r + 1 elements from |X | elements such that the chosen elements

belong either to the submultiset X1 or X2 is equal to the probability

that events Ar and C occur, P(Ar ∩C) = P(Ar) · P(C |Ar).Because
of the hypothesis, we have:

P(Ar) =
(|Y1 |
1

)(|Y |
r

)

Let us discuss now the probability P(C |Ar). In event Ar , r ele-
ments have been selected already from the total number of elements

|X |. The remaining number of elements is |X | − r . Let x1 and x2
be the number of elements selected from the submultisets X1 and

X2, respectively, where r = x1 + x2. The probability that event C
happens given eventAr is P(C |Ar) = P(b ∈ X1 |Ar)+P(b ∈ X2 |Ar),
where b is the chosen element. Given event Ar , the number of

possible ways of choosing one element from the total remaining el-

ements |X | − r is
(|X |−r

1

)
. The number of possible ways of choosing

one element from the |X1 | − x1 remaining elements of the submul-

tiset X1, is

(|X1 |−x1
1

)
. The number of possible ways of choosing one

element from the |X2 | − x2 remaining elements of the submultiset

X2 is

(|X2 |−x2
1

)
. So:

P(Ar+1) = P(Br+1)
P(Ar) · P(C |Ar) = P(Br+1)(|Y1 |

1

)(|Y |
r

) · ((|X1 |−x1
1

)(|X |−r
1

) + (|X2 |−x2
1

)(|X |−r
1

))
=

(|Y1 |
r+1

)(|Y |
r+1

)(|X1 |+ |X2 |
r

)(|X |
r

) ·
((|X1 |−x1

1

)(|X |−r
1

) + (|X2 |−x2
1

)(|X |−r
1

))
=

(|X1 |+ |X2 |
r+1

)(|X |
r+1

)
(|X1 |+ |X2 |)!

(|X1 |+ |X2 |−r)!·�r !
|X |!

(|X |−r)!·�r !

· ©­«
(|X1 |−x1)!
(|X1 |−x1−1)!
(|X |−r)!
(|X |−r−1)!

+

(|X2 |−x2)!
(|X2 |−x2−1)!
(|X |−r)!
(|X |−r−1)!

ª®¬ =
(|X1 |+ |X2 |

r+1
)(|X |

r+1
)

(|X1 |+ |X2 |)!
(|X1 |+ |X2 |−r)!

|X |!
(|X |−r)!·

·
(
(|X1 | − x1)
(|X | − r) +

(|X2 | − x2)
(|X | − r)

)
=

(|X1 |+ |X2 |
r+1

)(|X |
r+1

)
(|X1 |+ |X2 |)!

((((((|X1 |+ |X2 |−r)·(|X1 |+ |X2 |−r−1)!
|X |!

���(|X |−r)·(|X |−r−1)!

·((((((((|X1 | + |X2 | − r)
����(|X | − r) =

(|X1 |+ |X2 |
r+1

)(|X |
r+1

)
(|X1 |+ |X2 |)!

(|X1 |+ |X2 |−r−1)!
|X |!
(|X |−r)!

· (r + 1)!(r + 1)! =
(|X1 |+ |X2 |

r+1
)(|X |

r+1
)

(|X1 |+ |X2 |)!
(|X1 |+ |X2 |−(r+1))!·(r+1)!

|X |!
(|X |−(r+1))!·(r+1)!

=

(|X1 |+ |X2 |
r+1

)(|X |
r+1

)(|X1 |+ |X2 |
r+1

)(|X |
r+1

) =

(|X1 |+ |X2 |
r+1

)(|X |
r+1

)
□

We now compute the total number of possible graphs (possible

outcomes) |G| that can be built with |a | allow, |m | mutual and |d |
deny edges. |G| is required to compute P(|Views | = N).

Lemma 5.4. Given (1) an authorization graph G = (V ,E), (2) |d |
deny edges, (3) |m | mutual edges and (4) |a | allow edges, the number
of graphs |G| that one can build is:

|G| =
(
|E |
|a |

)
·
(
|E | − |a |
|m |

)
(7)

Proof. Consider an authorization graph G with |V | nodes and
|E | edges. Now we want to assign labels to the |E | edges in G.

There are

(|E |
|a |

)
possible ways to assign |a | allow labels to the total

number of edges |E |. Next, there are

(|E |− |a |
|m |

)
possible ways to

assign |m | mutual labels to the remaining edges, |E | − |a |. Finally,
there are

(|E |− |a |− |m |
Td

)
possible ways to assign |d | deny labels to

the remaining edges |E | − |a | − |m |. Consequently, |G| =
(|E |
|a |

)
·(|E |− |a |

|m |
)
·
(|E |− |a |− |m |

|d |
)
. Using the facts that |E | = |a | + |m | + |d |,

and ∀n ∈ N, (nn) = 1, we have |G| =
(|E |
|a |

)
·
(|E |− |a |
|m |

)
. □

To compute P(|Views | = N), we now generalize Example 5.2. To

do so, we establish some notions.

Definition 5.5 (Corresponding outgoing edge). Given an incoming

edge of node s coming from u, the corresponding outgoing edge
is the edge of s pointing to u.

Definition 5.6 (Corresponding incoming edge). Given an outgoing

edge of node s pointing to u, the corresponding incoming edge
is the edge of s coming from u.

Notation: Given a node s , (1) Ina is the number of allow incom-

ing edges of s , (2) Inm its number ofmutual incoming edges, (3) Ind
its number of deny incoming edges, (4) Inm1 its number of mutual
incoming edges with a corresponding allow or mutual outgoing
edge, (5) Inm2 its number of mutual incoming edges with a cor-

responding deny outgoing edge, (6) Outam its number of allow or

mutual outgoing edges with a correspondingmutual incoming edge,

(7) Outd its number of deny outgoing edges with a corresponding

mutual incoming edge.

Lemma 5.7. Let |Ein |, Ina , Inm , Ind , Inm1, Inm2, Outam be given.
(1) The number of incoming edges is: |Ein | = Ina + Inm + Ind .
(2) The number of mutual incoming edges is: Inm = Inm1+Inm2.
(3) The number of mutual or allow outgoing edges with corre-

sponding mutual incoming edges is Outam = Inm1.
(4) The number of deny outgoing edges with corresponding mu-

tual incoming edges is Outd = Inm2.

Proof. First, by Definition 5.1, an authorization graph has only

allow, mutual or deny edges. Then, |Ein | = Ina + Inm + Ind .
Second, since Inm1 and Inm2 are mutual incoming edges with

corresponding allow or mutual and deny outgoing edges, it fol-

lows that Inm = Inm1 + Inm2. Third, Outam are allow or mutual
outgoing edges with corresponding mutual incoming edge. Then,

Outam = Inm1. Fifth, Outd are deny outgoing edges with corre-

sponding mutual incoming edges. Then, Outd = Inm2. □

Example 5.8. Consider case C3 of Example 5.2. Using the above

notation,C3 is represented as: Ina = 0, Inm1 = 1, Inm2 = 0 Ind = 1,

Outam = 1, Outd = 0, and Inm = Inm1 + Inm2.

Definition 5.9 (Events). Let a node s , an integer N ≤ |Ein |, Ina ,
Inm , Ind , Inm1, Inm2, Outam , and Outd , such that N = Ina + Inm1,

be given.

• sIna is the event of s having Ina edges.

• sInm is the event of s having Inm edges.

• sInd is the event of s having Ind edges.

• sOutam is the event of s having Outam edges.

• sOutd is the event of s having Outd edges.

Events sIna , sInm , sInd , sOutam and sOutd are what we call dependent
events.

We now compute the individual probabilities of each case in

Example 5.2 in the general case. The general case is the probability

P(sE) that a node s chosen at random has Ina , Inm , Ind , Outam and

Outd edges. Lemma 5.10 computes P(sE), i.e., the joint probability
that the dependent events sIna , sInm , sInd , sOutam , sOutd happen.

Lemma 5.10. Let (1) an authorization graph G = (V ,E) with |d |
deny edges, |m | mutual edges, |a | allow edges, (2) an integer N ≤
|Ein |, and the values (3) Ina , Inm , Ind , Outam , and Outd such that
N = Ina + Inm1 be given. The probability P(sE) that a random node
s has Ina , Inm , Ind , Outam and Outd edges is:

P(sE) =

(|Ein |
N−Inm1

)
·

(|E |−N+Inm
|a |−N+Inm1

)(|E |
|a |

) ·

(|Ein |−N+Inm1

Inm1+Inm2

)
·
(|E |−N−Inm2

|m |−Inm1−Inm2

)(|E |−N+Inm1

|m |
) ·

(|E |− |Ein |
|d |− |Ein |+N+Inm2

)(|E |−N−Inm2

|d |
) ·

(Inm1+Inm2

Inm1

)
·
(|E |− |Ein |−Inm1

|a |+ |m |−N−Inm1−Inm2

)(|E |− |Ein |
|a |+ |m |−N−Inm2

) ·

(|E |− |Ein |−Inm1−Inm2

|d |− |Ein |+N
)(|E |− |Ein |−Inm1

|d |− |Ein |+Inm2+N
) (8)

Proof. The joint probability of sIna , sInm , sInd , sOutam , and

sOutd is P(sE) = P(sIna)·P(sInm |sIna)·P(sInd |sIna∩sInm)·P(sOutam |
sIna ∩ sInm ∩ sInd) ·P(sOutd |sIna ∩ sInm ∩ sInd ∩ sOutam). We divide

the proof in five parts. In the first part we compute the probability of

event sIna . In the second part we compute the probability of event

sInm given event sIna . In the third part we compute the probability

of event sInd given events sIna and sInm . In the fourth part we

compute the probability of event sOutam given events sIna , sInm and

sInd . In the fifth part we compute the probability of event sOutd given

events sIna , sInm , sInd , and sOutam . Let us start by computing the

probability of event sIna . Fist, from the total number of incoming

edges |Ein |, we fix Ina allow edges. We can choose Ina allow edges

from the |Ein | incoming edges in

(|Ein |
Ina

)
possible ways. Second, the

number of possible ways for assigning the remaining allow labels

|a |−Ina to the total remaining edges |E |−Ina is

(E−Ina
|a |−Ina

)
. After this

step, Ta allow edges have been assigned. Third, we assign the |m |
mutual labels. There are

(|E |− |a |
|m |

)
possible ways to assign |m |mutual

labels to the remaining edges |E |−|a |. Finally, there are
(|E |− |a |− |m |

|d |
)

possible ways to assign |d | deny labels to the remaining edges |E | −
|a |− |d |. Using the facts that |E | = |a |+ |m |+ |d |, and ∀n ∈ N, (nn) = 1,(|E |− |a |− |m |

|d |
)
= 1. To this point, we have finished the analysis of the

probability that event sIna happens. Then the probability of event

sIna is given by the number of different graphs where sIna happens

divided by the total number of possible graphs, Equation (7). So:

P(sIna) =

(|Ein |
Ina

)
·

(|E |−Ina
|a |−Ina

)
·
����(|E |− |a |
|m |

)
·������: 1(|E |− |a |− |m |

|d |
)(|E |

|a |
)
·
�
���(|E |− |a |
|m |

)
Because of Lemma 5.7 and using the fact that N = Ina + Inm1:

P(sIna) =

(|Ein |
N−Inm1

)
·

(|E |−N+Inm1

|a |−N+Inm1

)(|E |
|a |

) (9)

Let us move now to the computation of the probability that event

sInm happens given event sIna . First, we have already assign Ina
allow incoming edges. Then from the total number of remaining

incoming edges |Ein |−Ina , we fix Inm mutual edges.We can choose

Inm mutual edges from the remaining incoming edges |Ein |−Ina in(|Ein |−Ina
Inm

)
possible ways. Second, the number of possible ways for

assigning the remaining mutual labels |m | − Inm to the remaining,

not yet assigned edges E−Ina−Inm is

(|E |−Ina−Inm
|m |−Inm

)
. After this step,

Tm mutual edges and Ina allow edges have been assigned. Third, we

assign the remaining |a | − Ina allow labels. There are

(|E |−Ina−|m |
|a |−Ina

)
possible ways to assign |a | − Ina allow labels to the remaining, not

yet assigned edges |E | − Ina − |m |. Fourth, there are
(|E |− |a |− |m |

|d |
)

possible ways to assign |d | deny labels to the remaining edges

|E | − |a | − |m |. Finally, the total number of possible graphs that can

be built with |E |−Ina edges is
(|E |−Ina
|m |

)
·
(|E |−Ina−|m |

Ta−Ina
)
·
(|E |− |a |− |m |

|d |
)
.

Using the facts that |E | = |a | + |m | + |d |, and ∀n ∈ N, (nn) = 1, the

probability that event sInm happens given event sIna is:

P(sInm |sIna) =

(|Ein |−Ina
Inm

)
·
(|E |−Ina−Inm
|m |−Inm

)
·������(|E |−Ina−|m |

|a |−Ina
)
·�����(|E |− |a |− |m |

|d |
)(|E |−Ina

|m |
)
·������(|E |−Ina−|m |

Ta−Ina
)
·�����(|E |− |a |− |m |

|d |
)

Because of Lemma 5.7 and using the fact that N = Ina + Inm1:

P(sInm |sIna) =

(|Ein |−N+Inm1

Inm1+Inm2

)
·
(|E |−N−Inm2

|m |−Inm1−Inm2

)(|E |−N+Inm1

|m |
) (10)

Let us move now to the computation of the probability that event

sInd happens given events sIna and sInm . First, we have already

assign Ina + Inm allow and mutual incoming edges. Then from

the total number of remaining incoming edges |Ein | − Ina − Inm ,

we fix Ind deny edges. We can choose Ind deny edges from the

remaining incoming edges |Ein | − Ina − Inm in

(|Ein |−Ina−Inm
Ind

)
possible ways. Using the fact that |Ein | = Ina + Inm + Ind and

∀n ∈ N, (nn) = 1,

(|Ein |−Ina−Inm
Ind

)
= 1. Second, the number of

possible ways for assigning the remaining deny labels |d | − Ind
to the remaining, not yet assigned edges E − Ina − Inm − Ind is(|E |−Ina−Inm−Ind

|d |−Ind
)
. After this step, Td deny edges and Ina + Inm

allow and mutual edges have been assigned. Third, we assign the

|a | − Ina allow labels. There are

(|E |−Ina−Inm−|d |
|a |−Ina

)
possible ways to

assign |a |−Ina allow labels to the remaining, not yet assigned edges

|E | − Ina − Inm − |d |. Fourth, there are
(|E |− |a |− |d |
|m |−Inm

)
possible ways

to assign the remaining mutual labels |m | − Inm to the remaining,

not yet assigned edges |E | − |a | − |d | − Inm . Finally, the total number

of possible graphs that can be built with |E | − Ina − Inm edges

is

(|E |−Ina−Inm
|d |

)
·
(|E |−Ina−Inm−|d |

Ta−Ina
)
·
(|E |−Inm−|a |− |d |

|m |−Inm
)
. Using the

fact that |E | = |a | + |m | + |d |, and ∀n ∈ N, (nn) = 1, the probability

that event sInd happens given events sIna and sInm is:

P(sInd |sIna ∩ sInm) =

�������: 1(|Ein |−Ina−Inm
Ind

)
·
(|E |− |Ein |
|d |−Ind

)
·
�������(|E |−Ina−Inm−|d |

|a |−Ina
)
·
�������(|E |−Inm−|d |− |a |

|m |−Inm
)(|E |−Ina−Inm

|d |
)
|) ·

�������(|E |−Ina−Inm−|d |
|a |−Ina

)
·
�������(|E |−Inm−|a |− |d |

|m |−Inm
)

Because of Lemma 5.7 and using the fact that N = Ina + Inm1:

P(sInd |sIna ∩ sInm) =

(|E |− |Ein |
|d |− |Ein |+N+Inm2

)(|E |−N−Inm2

|d |
) (11)

Let us move now to the computation of the probability that event

sOutam happens given events sIna , sInm and sInd . First, we have
already assigned |Ein | incoming edges and we still have |E | − |Ein |
edges, which are not yet assigned. Since, the Outam outgoing edges

can have either allow or mutual labels and because of Lemma 5.3,

we can consider the allow and mutual labels as one group for this

part of the proof. From the total number of outgoing edges Eout ,
we fix Outam edges labeled either with allow ormutual. The Outam
outgoing edges should be assigned exactly to the nodes that have an

outgoing edge labeled withmutual pointing to the randomly chosen

node. Then the Outam outgoing edges cannot be any outgoing edge

from the |Eout | edges; they have to be exactly the Inm edges that are

pointing to the nodes that have a mutual outgoing edge pointing
to the randomly chosen node. Therefore, we can choose Outam
edges from Inm outgoing edges in

(Inm
Outam

)
possible ways. Second,

the number of possible ways for assigning the remaining allow and

mutual labels |a | + |m | − Ina − Inm − Outam to the remaining, not

yet assigned edges |E | − |Ein | −Outam is

(|E |− |Ein |−Outam
|a |+ |m |−Ina−Inm−Outam

)
.

Third, there are

(|E |− |a |− |m |−Ind
|d |

)
possible ways to assign |d | − Ind

deny labels to the remaining edges |E | − |a | − |m |. Finally, the
total number of possible graphs that can be built with |E | − |Ein |
edges is

(|E |− |Ein |
|a |+ |m |−Ina−Inm

)
·
(|E |− |a |− |m |−Ind

|d |−Ind
)
. Using the facts that

|E | = |a | + |m | + |d |, and ∀n ∈ N, (nn) = 1, the probability that event

sOutam happens given events sIna , sInm and sInd is:

P(sOutam |sIna ∩ sInm ∩ sInd) =

����*
1(Inm

Outam

)
·
(|E |− |Ein |−Outam
|a |+ |m |−Ina−Inm−Outam

)
·
�������(|E |− |a |− |m |−Ind

|d |−Ind
)(|E |− |Ein |

|a |+ |m |−Ina−Inm
)
·
�������(|E |− |a |− |m |−Ind

|d |−Ind
)

Because of Lemma 5.7 and using the fact that N = Ina + Inm1:

P(sOutam | sIna ∩ sInm ∩ sInd) =(Inm1+Inm2

Inm1

)
·
(|E |− |Ein |−Inm1

|a |+ |m |−N−Inm1−Inm2

)(|E |− |Ein |
|a |+ |m |−N−Inm2

) (12)

Let us move now to the computation of the probability that

event sOutd happens given events sIna , sInm , sInd and sOutam . First,

we have already assigned |Ein | − Outam edges and we still have

|E |− |Ein |−Outam edges, which are not yet assigned. From the total

number of outgoing edges Eout , we fix Outd deny edges. The Outd
outgoing edges should be assigned exactly to the nodes that have

an outgoing edge labeled with mutual pointing to the randomly

chosen node. Then theOutd outgoing edges cannot be any outgoing

edge from the |Eout | edges; they have to be exactly the Inm edges

that are pointing to the nodes that have a mutual outgoing edge

pointing to the randomly chosen node. Since from the Inm edges,

we have already fixed Outam edges, we can choose Outd edges

from Inm − Outam outgoing edges in

(Inm−Outam
Outd

)
possible ways.

Using the fact that Outd = Inm2, Inm2 = Inm − Outam and ∀n ∈
N,

(n
n
)
= 1,

(Inm−Outam
Outd

)
= 1. Second, the number of possible ways

for assigning the remaining deny labels |d | − Ind − Outd to the

remaining, not yet assigned edges |E | − |Ein | − Outam − Outd is(|E |− |Ein |−Outam−Outd
|d |−Ind−Outd

)
. Third, there are

(|E |−Ina−Inm−Outam−|d |
|a |+ |m |−Ina−Inm−Outam

)
possible ways to assign |a |+ |m | − Ina − Inm −Outam the remaining

allow and mutual labels to the remaining edges |E | − Ina − Inm −
Outam − |d |. Finally, the total number of possible graphs that can be

built with |E | − |Ein | − Outam edges is

(|E |−Ina−Inm−Ind−Outam
|d |−Ind

)
·(|E |−Ina−Inm−Outam−|d |

|a |+ |m |−Ina−Inm−Outam
)
. Using the facts that |E | = |a | + |m | + |d |,

and ∀n ∈ N, (nn) = 1, the probability that event sOutd happens given

events sIna , sInm , sInd and sOutam is:

P(sOutd |sIna ∩ sInm ∩ sInd ∩ sOutam) =

������: 1(Inm−Outam
Outd

)
·
(|E |− |Ein |−Outam−Outd

|d |−Ind−Outd
)

·
(((((((((((|E |−Ina−Inm−Outam−|d |
|a |+ |m |−Ina−Inm−Outam

)(|E |−Ina−Inm−Ind−Outam
|d |−Ind

)
·
(((((((((((|E |−Ina−Inm−Outam−|d |
|a |+ |m |−Ina−Inm−Outam

)

Because of Lemma 5.7 and using the fact that N = Ina + Inm1:

P(sOutd |sIna ∩ sInm ∩ sInd ∩ sOutam) =(|E |− |Ein |−Inm1−Inm2

|d |− |Ein |+N
)(|E |− |Ein |−Inm1

|d |− |Ein |+Inm2+N
) (13)

Finally, using Equations (9) to (13), the probability that a ran-

domly chosen node has (1) Ina allow incoming edges, (2) Inm mu-
tual incoming edges, (3) Ind deny incoming edges, (4) Outam out-

going edges labeled either with allow or mutual, and (5) Outd deny
outgoing edges such that each of the Outam +Outd outgoing edges

are pointing to one of the nodes that have a mutual edge pointing
to the node s , where Ina + Inm + Ind = |Ein | and Outam = Inm1,

Outd = Inm2, and Inm = Inm1 + Inm2, is:

P(sE) =

(|Ein |
N−Inm1

)
·

(|E |−N+Inm
|a |−N+Inm1

)(|E |
|a |

) ·

(|Ein |−N+Inm1

Inm1+Inm2

)
·
(|E |−N−Inm2

|m |−Inm1−Inm2

)(|E |−N+Inm1

|m |
) ·

(|E |− |Ein |
|d |− |Ein |+N+Inm2

)(|E |−N−Inm2

|d |
) ·

(Inm1+Inm2

Inm1

)
·
(|E |− |Ein |−Inm1

|a |+ |m |−N−Inm1−Inm2

)(|E |− |Ein |
|a |+ |m |−N−Inm2

) ·

(|E |− |Ein |−Inm1−Inm2

|d |− |Ein |+N
)(|E |− |Ein |−Inm1

|d |− |Ein |+Inm2+N
)
□

Given an integer N ≤ |Ein |, Theorem 5.11 yields the probability

P(|Views | = N). To obtain it, we sum up all the individual cases of

Example 5.2 in the general scenario.

Theorem 5.11. Let (1) an authorization graph G = (V ,E), (2) an
integer N ≤ |Ein |, (3) |d | deny edges, (4) |m | mutual edges and (5) |a |
allow edges be given. The probability P(|Views | = N) that a node s
chosen at random has a view of size N is:

P(|Views |=N) =
min{N , |m | }∑
Inm1=0

min{ |Ein |−N , |m | }∑
Inm2=0

P(sE) (14)

Proof. Given a node s , there are different cases in which the size
of the view of s , |Views |, can be equal to exactly N . One case is that

node s has N incoming edges edges labeled with allow and Ein −N
incoming edges labeled with deny. Another case is that node s has
N incoming edges labeled with allow, Inm2 incoming edges labeled

withmutual, |Ein |−N −Inm2 incoming edges labeled with deny and
Inm2 outgoing edges labeled with deny pointing to the nodes that

assigned the Inm2 mutual incoming edges, where Inm2 ≤ |Ein | −N .

Another case is that node s has N − 1 incoming edges labeled with

allow, one labeled with mutual coming from a node u, Ein − N
incoming edges labeled with deny, and for that mutual incoming

edge, there is an allow or mutual outgoing edge from s to u. Every
time that we decrease one allow incoming edge, we need to increase

(1) onemutual incoming edges and (2) one allow ormutual outgoing
edge, and the remaining incoming edges |Ein | − N have to labeled

with deny. Then, to compute the probability, P(|Views | = N), we
need to sum up the probabilities of all different cases. We start from

the probability of having N incoming edges labeled with allow
and Ein − N incoming edges labeled with deny i.e., there are no

incoming edges labeled with mutual.Then maintaining the N allow
incoming edges, (1) we increase by one the mutual incoming edges

such that for each mutual incoming edge coming from a node u
there is one deny outgoing edge from node s to node u, and (2)

we set the remaining incoming edges N − Inm2 to be deny. We

repeat this process until we reach to N − Ina mutual incoming

edges and N − Ina deny outgoing edges, while maintaining N allow
incoming edges. Next, from the N incoming edges, we increase

by one the number of mutual incoming edges such that for each

mutual incoming edge coming from a node u there is an allow or

mutual outgoing edges. We finish with the probability of having

|Ein | incoming edges labeled with mutual such that there are Inm1

outgoing edges labeled with allow or mutual and Inm2 outgoing

edges labeled with deny, where Inm1 = N , Inm2 = |Ein | − Inm1

and Inm = |Em1| + Inm2.

Then using Lemma 5.10, we obtain:

P(|Views | = N) =
min {N , |m | }∑

Inm1=0

min{ |Ein |−N , |m | }∑
Inm2=0

P(sE)

□

Using Theorem 5.11 one can compute the probability that a node

s chosen at random has a view size equal to a given N ≤ |Ein |
depending on the share of mutual to deny and allow authorizations

of the population. This will allow us to study in Section 6.1 how the

changes in the authorizations, i.e., replacements of allow or deny
authorizations with mutual ones, affect the size of the view of s .

6 EXPERIMENTS
This section presents an experimental analysis of the impact of

mutual authorizations on the size of the view of a person, and an

experimental validation of the complexity analysis of QF and FQ.

6.1 Experimental Analysis – Size of the Views
This subsection features two sets of experiments, namedMutual/De-
ny andMutual/Allow. The goal of them is to analyze how the ratios

of mutual to deny and of mutual to allow authorizations, respecti-

vely, affect the probability that a random person can read the posi-

tion of a given number of persons N ≤ |Ein |, i.e., P(|Views | = N).

6.1.1 Experiment Setup. We create 100 authorization graphs, 50

graphs for each set of experiments. All graphs have |V | = 100 nodes

and |E | = 9900 edges. We construct the graphs of both experiments

by starting with a graph that has 50 percent allow edges, 50 percent

deny edges and 0 percent mutual edges. All the graphs fulfill a

uniform distribution regarding the number of allow, mutual and
deny edge.

For the Mutual/Deny experiments, we then modify the percent-

age of mutual and deny labeled edges by increasing the former

one in steps of 1 while decreasing the later at the same rate. The

percentage of allow-edges remains unchanged. For each setting, we

compute P(|Views | = N), the probability that a random person can

read the position of exactly N persons. We consider three values

for N , namely N = 60, N = 80, N = |Ein |.
For Mutual/Deny experiments, instead of decreasing the share

of deny-edges, we decrease the one of allow-edges.

6.1.2 Results. Figure 3(a) for the Mutual/Deny experiments and

Figure 4(a) for the Mutual/Allow experiments show the probability

that a node s chosen at random can read the position of N persons,

P(|Views | = N), contingent on the percentage of mutual and deny
authorizations. Figure 3(b) and Figure 4(b) are semi-log plots cor-

responding to Figure 3(a) and Figure 4(a), respectively, which give

more emphasis to smaller probabilities.

Discussion: Depending on the size of the view, the impact of

changing deny to mutual is different. We can observe in Figure 3(b)

that, for larger views, the impact of replacing deny authorizations

with mutual ones is higher as well. For instance, if 5 percent of

deny authorizations are replaced by mutual ones, the probability
P(|Views | = |Ein |), increases by a factor of 1000. For probability

P(|Views | = 60) in turn increase is by a factor of 1.3. However, if

one is interested in a high probability of having a view of a specific

size, say a 80% chance, the results depend on the target size of the

view. If the target size of the view is smaller, it is needed to replace a

smaller percentage of deny authorizations by mutual ones in order

to reach this probability. For instance, the probability P(|Views | =
60), given 50 percent of allow and 50 percent of deny authorizations,

is ≈ 0.021. If only 20 percent of deny authorizations are replaced

by mutual ones, this probability increases to 0.8. Consider now the

probability P(|Views | = |Ein |. Then, if we want this probability

to increase to 0.8, it is necessary to replace 49.5 percent of deny
authorizations by mutual ones, i.e., almost all deny authorizations

should be replaced. As the percentage of mutual-edges increases
and the percentage of allow-edges decreases in the same proportion,

we can observe in Figure 4(b) that, for larger views, the impact

of replacing deny authorizations with allow ones is higher. For

instance, if 5 percent of deny authorizations are replaced by mutual
ones, the probability P(|Views | = |Ein |) decreases by a factor of

100, whereas the probability P(|Views | = 60) decreases by a factor

of 3.6. Then the decrease of these probabilities depends on the size

of the view that one is interested in.

Fig. 3: P(|Views | = N) - Mutual/Deny experiments

Fig. 4: P(|Views | = N) - Mutual/Allow experiments

6.2 Experimental Validation of the Complexity
Analysis of QF and FQ

Our complexity analysis of QF and FQ in Section 4 already allows

us to compare both approaches. However, since that analysis covers

the worst case, experimental results are needed (1) as validation and

(2) to determine how far the worst case deviates from the concrete

behavior of individual queries. To implement the QF approach,

we use the R-tree index structure from Oracle, and the remaining

implementation was done in Java.

6.2.1 Experiment Setup. In Section 4, we have found, based on the

complexity analysis, that the parameters that affect the performance

of FQ and QF are (1) the number of personsn, (2) the size of the view
|Views | of a given person s , (3) the parameter k of the kNN query

and (4) the value δ = kr eal −k . Similarly to the complexity analysis,

for simplicity, we set δ to 0 and k to 20. We set the remaining

parameters, n and |Views |, as follows:
Number of persons n: We create a dataset with 317080 persons.

This number is the size of the DBLP dataset. To assign a position to

each person, we choose a random physical position from the Tokyo

dataset [27], which contains 573703 real check-ins, i.e., positions.

Size of the view of a person s , |Views |, and query sample:We chose

1500 persons at random from the 317080 persons and assigned the

authorizations so that we have 15 classes of different sized views

(from 50 to 40000). For each class, we have 100 persons with the

respective view size, i.e., 1500 queries in 15 different classes in total.

6.2.2 Experiment Results. Figure 5 shows a comparison of the

query-processing times for kNN queries with QF and FQ. We have

grouped the persons of our query sample by the size of their

view and have plotted the query-processing time. We exclude the

database-connection time and network-communication time from

the run time reported. The dotted line is the average size of the

view in DBLP with 317080 nodes, i.e., 64.98, [13]. The dashed line

in Figure 5(c) is the size of the view for which the performance of

both approaches is equal, i.e., Viewequal ≈ 23032, 3.

Discussion. For real scenarios, i.e., the size of the view is equal to

64.98, FQ performs better than QF for all queries. These results are

in line with our complexity analysis, and one may interpret them as

an indication that our analysis also holds for the average case. Next,

these findings remain correct for a size of the view of up to 800,

which is higher than the highest average size of the view in real

scenarios, i.e., 520 (Section 4). However, as Figure 5(b) shows, with

a view size between 1000 up to 20000, the processing times of most

of the queries with QF are lower than that of the ones with FQ, in

contrast to our complexity analysis. This can be expected since our

analysis has focused on the worst case. In Figure 5(c), we observe

that the processing times of most of the queries with QF, or all the

queries in the case of the last two groups, i.e., 35000 and 40000, are

lower than that of the ones with FQ. These results indicate that for

a size of the view greater than the value Viewequal (dashed line)

our complexity analysis holds even for the average case.

7 MUTUAL AUTHORIZATIONS
FOR OTHER RESOURCES

In this paper, we have restricted our model to one type of resource,

physical positions. We now describe the steps necessary to facilitate

mutual authorizations for other domains, e.g., health records.

(1) One must define a scale for the sensitivity of different re-

sources, so that exchanges can be fair.

(2) One must specify the degree of sensitivity of each resource

and/or an entity responsible for assigning such a degree to

each resource., e.g., its owner or a global authority. This may

be intricate, cf. Example 1.8. Next, it must be the case that

participants agree with these specifications. For instance, if

I find my health record much more precious than yours and

vice versa, our approach does not cover this.

(3) One has to define (1) the services that the system will sup-

port and (2) the integration of access control with these

services. For instance, think of the information need that I

want to see the 10 health records most similar to mine. In

this case, it is needed a notion of distance, together with an

implementation.

(4) It remains just to adjust Definition 2.6 of mutual authoriza-

tion. One has to specify that resources with the same degree

of sensitivity can be exchanged.

8 RELATEDWORK
Several access control models have been proposed, like RBAC [20],

Task RBAC [16] and Attribute-based Access Control [29]. The dif-

ference to ours is that they only consider the grants deny and allow.
These two grants are not enough to capture mutual authorizations.

Besides access control models, encryption techniques have also

been studied to achieve data confidentiality [3, 26]. The main idea is

to encrypt the resources and to enforce access control with the de-

cryption keys assigned to the users. The approach in [26] encrypts

the data with different keys, depending on the authorizations to be

enforced. After encryption, the decryption keys are given to users

based on their access privileges. In [3], the data is encrypted to-

gether with an access structure, which represents a set of attributes

together with values which users must have in order to access the

data. The decryption key given to the users is generated based

on their attribute values. Users can decrypt a ciphertext c if their
decryption key matches the attribute values of the access structure

associated with c . This work does not consider mutual access to

resources. This is because the decryption keys are generated and

distributed without considering reciprocity.

There is other work that focuses on formalizing and verifying

the authorization constraints in RBAC and its extensions. These

proposals use Colored Petri-Nets [21] or the Unified Modeling Lan-

guage UML [18]. They focus on (1) introducing formal techniques

to verify the design and consistency of authorizations on RBAC

models, i.e., model checking, and on (2) providing a graphical rep-

resentation of the authorizations, as visualizations. This work is

confined to allow and deny authorizations as well. This is because

it is based on access control models existing at that time. Next, our

authorization graph can be seen as a graphical representation of

authorizations in our model.

Fig. 5: Comparison of the QF and FQ approaches for kNN queries

9 CONCLUSIONS
Reciprocity is a powerful determinant of human behavior. However,

none of the existing access control models explicitly supports it. In

this paper, we have proposed a new type of authorization, called

mutual. It allows users to grant access to their resources to users
that allow them the same. We have extended RBAC to incorporate

mutual authorizations and have formally defined their syntax and

semantics. Since the result of a given service in the presence of

mutual authorizations is not obvious, we have studied this as well.

To do so, we have selected LBSs as a use case for the deployment

of mutual authorizations, and we have proposed two approaches.

A complexity analysis tells us when each approach is better. We

have validated the results of our analysis experimentally. Further,

we have studied how the difference in the ratio of mutual to deny
and allow authorizations affects the size of the view of a given user.

In the future, it will be interesting to study how to apply encryp-

tion techniques to achieve data secrecy and confidentiality, and

generate and distribute the encryption-decryption keys in a recip-

rocal manner. Another direction is to explore how to incorporate

mutual authorizations into existing model-checking techniques like

[18, 21]. Yet another direction is to extend mutual authorizations by

considering different resources with more than one controller, i.e.,

users who can regulate access to the resource, and with different

levels of sensitivity.

ACKNOWLEDGMENTS
The first author thanks “Escuela Politécnica Nacional, Ecuador -

Departamento de Informática y Ciencias de la Computación" for its

support. This work was partially funded by the German Research

Foundation (DFG) as part of the research Datenschutzkonforme

Verwaltung relationaler Datenbestände.

REFERENCES
[1] Vijayalakshmi Atluri, Heechang Shin, and Jaideep Vaidya. 2008. Efficient security

policy enforcement for the mobile environment. Journal of Computer Security 16,

4 (2008).

[2] Elisa Bertino, Barbara Catania, Elena Ferrari, and Paolo Perlasca. 2003. A logical

framework for reasoning about access control models. ACM TISSEC 6, 1 (2003).

[3] John Bethencourt, Amit Sahai, and Brent Waters. 2007. Ciphertext-policy

attribute-based encryption. In IEEE Security and Privacy, 2007.
[4] Robert M Corless, Gaston HGonnet, David EGHare, David J Jeffrey, and Donald E

Knuth. 1996. On the LambertW function. Advances in Computational mathematics

5, 1 (1996).

[5] MAC Dekker, Jason Crampton, and Sandro Etalle. 2008. RBAC administration in

distributed systems. In Proceedings of the 13th ACM symposium on Access control
models and technologies. ACM.

[6] Armin Falk and Urs Fischbacher. 2006. A theory of reciprocity. Games and
economic behavior 54, 2 (2006).

[7] Ernst Fehr, Urs Fischbacher, and Simon Gächter. 2002. Strong reciprocity, human

cooperation, and the enforcement of social norms. Human Nature 13, 1 (2002).
[8] Fausto Giunchiglia, Rui Zhang, and Bruno Crispo. 2008. Relbac: Relation based ac-

cess control. In Semantics, Knowledge and Grid, 2008. SKG’08. Fourth International
Conference on. IEEE.

[9] Koji Hasebe, Mitsuhiro Mabuchi, and Akira Matsushita. 2010. Capability-based

delegation model in RBAC. In Proceedings of the 15th ACM symposium on Access
control models and technologies. ACM.

[10] Alexander Hinneburg, Charu Aggarwal, and Daniel A Keim. 2000. What is the

nearest neighbor in high dimensional spaces?. In Proceeding of the 26th VLDB.
[11] Hongxin Hu and Gail-Joon Ahn. 2011. Multiparty authorization framework for

data sharing in online social networks. In IFIP DBSec. Springer.
[12] Sergio Ilarri, Eduardo Mena, and Arantza Illarramendi. 2010. Location-dependent

query processing: Where we are and where we are heading. ACM Computing
Surveys (CSUR) 42, 3 (2010).

[13] Silvio Lattanzi and Yaron Singer. 2015. The power of random neighbors in social

networks. In Proceedings of the 8th ACM WSDM Conference.
[14] Rajendra Prasad Mahapatra and Partha Sarathi Chakraborty. 2015. Comparative

analysis of nearest neighbor query processing techniques. Procedia Computer
Science 57 (2015).

[15] Dinesh P Mehta and Sartaj Sahni. 2018. Handbook of data structures and applica-
tions (2nd edition ed.). Chapman and Hall/CRC.

[16] Sejong Oh and Seog Park. 2003. Task–role-based access control model. Informa-
tion systems 28, 6 (2003).

[17] Sylvia Osborn, Ravi Sandhu, and Qamar Munawer. 2000. Configuring role-based

access control to enforce mandatory and discretionary access control policies.

ACM Transactions on Information and System Security (TISSEC) 3, 2 (2000).
[18] Indrakshi Ray, Na Li, Robert France, and Dae-Kyoo Kim. 2004. Using UML to

visualize role-based access control constraints. In Proceedings of the ninth ACM
symposium on Access control models and technologies. ACM.

[19] C Carl Robusto. 1957. The cosine-haversine formula. The American Mathematical
Monthly 64, 1 (1957).

[20] Ravi S Sandhu, Edward J Coynek, Hal L Feinsteink, and Charles E Youmank. 1996.

Role-based access control models. IEEE computer 29, 2 (1996).
[21] Basit Shafiq, Ammar Masood, James Joshi, and Arif Ghafoor. 2005. A role-based

access control policy verification framework for real-time systems. In Object-
Oriented Real-Time Dependable Systems, 2005. WORDS 2005. IEEE.

[22] Jie Shi and Hong Zhu. 2010. A fine-grained access control model for relational

databases. Journal of Zhejiang University-Science C 11, 8 (2010).

[23] Jie Shi, Hong Zhu, Ge Fu, and Tao Jiang. 2009. On the soundness property

for sql queries of fine-grained access control in dbmss. In 2009 Eigth IEEE/ACIS
International Conference on Computer and Information Science. IEEE.

[24] Luca Stanca, Luigino Bruni, and Luca Corazzini. 2009. Testing theories of reci-

procity: Do motivations matter? Journal of economic behavior & organization 71,

2 (2009).

[25] Romuald Thion, François Lesueur, and Meriam Talbi. 2015. Tuple-based access

control: a provenance-based information flow control for relational data. In

Proceedings of the 30th Annual ACM Symposium on Applied Computing. ACM.

[26] Sabrina Vimercati, Sara Foresti, Sushil Jajodia, Stefano Paraboschi, and Pierangela

Samarati. 2010. Encryption policies for regulating access to outsourced data.

ACM Transactions on Database Systems (TODS) 35, 2 (2010).
[27] Dingqi Yang, Daqing Zhang, Vincent W Zheng, and Zhiyong Yu. 2015. Modeling

user activity preference by leveraging user spatial temporal characteristics in

LBSNs. IEEE Transactions on Systems, Man, and Cybernetics: Systems 45, 1 (2015).
[28] Xun Yi, Russell Paulet, Elisa Bertino, and Vijay Varadharajan. 2014. Practical k

nearest neighbor queries with location privacy. In 2014 IEEE 30th ICDE. IEEE.
[29] Eric Yuan and Jin Tong. 2005. Attributed based access control (ABAC) for web

services. In Web Services, 2005. ICWS 2005. IEEE.

	2019,6_Titelbl.pdf
	On Mutual_Authorizations.pdf
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Challenges
	1.3 Contributions

	2 Our authorization model
	2.1 A Conceptual Structure of Authorizations
	2.2 Existing access control models
	2.3 Mutual Authorization – Syntax and Semantics
	2.4 Conflict Resolution
	2.5 Authorized Access Request
	2.6 Soundness Criteria

	3 Integrating LBS with mutual authorizations
	3.1 Resolve Conflicts Algorithm
	3.2 Primitives and Algorithms for Mutual Authorizations
	3.3 System Architecture
	3.4 Integrating LBSs with Mutual Authorizations

	4 Time Complexity Analysis
	4.1 Time Complexity Analysis of QF and FQ
	4.2 Comparison of the QF and FQ Approaches

	5 The Size of the View of a Person
	6 Experiments
	6.1 Experimental Analysis – Size of the Views
	6.2 Experimental Validation of the Complexity Analysis of QF and FQ

	7 Mutual Authorizationsfor Other Resources
	8 Related Work
	9 Conclusions
	Acknowledgments
	References

