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Abstract. Mixed refrigerant cycles (MRCs) o�er a cost- and energy-e�cient cooling method
for the temperature range between 80 and 200 K. The performance of MRCs is substantially
in�uenced by entropy production in the main heat exchanger. Due to the wide-boiling refrigerant
mixtures applied in MRCs, a reliable design of the heat exchangers is challenging as two-phase
heat transfer and pressure drop in both �uid streams must be considered simultaneously.

This contribution presents a literature review on the boiling/condensation heat transfer
and pressure drop of zeotropic mixtures at low temperatures. Based on this survey, suitable
correlations for the design of MRC heat exchangers are identi�ed.

1. Introduction

MRCs consist of a Linde-Hampson refrigeration cycle operated with zeotropic refrigerant
mixtures, e.g. nitrogen-hydrocarbon mixtures. The use of such wide-boiling mixtures yields
increased process e�ciencies at relatively low operating pressures in comparison to pure
gases. For a detailed description of MRCs and their applications the reader is referred to
Venkatarathnam [1]. In recent years, the application of MRCs as a reliable and e�cient
refrigeration method for current-leads, high-temperature superconductors, etc. has been reviewed
by several researchers [2�4]. Especially the cooling of current-leads bene�ts from the capability
of absorbing heat loads continuously over a wide temperature range [5]. The overall process
e�ciency is governed by the mixture composition and the performance of the main heat
exchanger. A reliable design of this heat exchanger is challenging though, since boiling and
condensation of wide-boiling mixtures have to be considered.

In general, experimental data suitable for MRCs is scarce, since most studies focus on binary
mixtures and near ambient temperatures [6, 7]. Nonetheless, some studies on the overall heat
transfer and the pressure drop for MRC heat exchangers are available in literature [8�12].
Additionally, experimental data on the boiling and condensation characteristics of wide-boiling
mixtures at cryogenic temperatures have been published [13�19].

In this paper, we identify correlations suitable for the heat exchanger design process, based
on a literature survey on the boiling and condensation characteristics of zeotropic mixtures at
low temperatures. Novel correlations for boiling and condensation heat transfer coe�cients are
presented in section 2 and compared to experimental data from literature in section 3. Finally,
we summarise our �ndings in section 4.
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2. Derivation of new correlations

Numerous studies have shown that the in�uence of mass transfer on heat transfer of zeotropic
mixtures has to be accounted for, even for mixtures with a relatively low temperature glide [6,7].
This in�uence can either be considered by calculating the coupled heat and mass transfer [20]
or by applying so-called equilibrium models, e.g. the Granryd, Little or Silver-Bell-Ghaly (SBG)
methods [21�24]. Since this study focuses on correlations for use in the heat exchanger design
process, only the simpler equilibrium models are considered.

According to Little [22,25] the boiling heat transfer of zeotropic mixtures in the annular �ow
regime can be derived as

αtp =

(
1

αl,film
+

x2 c2
p,v

((1− x) cp,l + x cp,v)
(
∂h
∂T

)
p

1

αv

)−1

(1)

where α is the heat transfer coe�cient, x the quality, cp the speci�c heat capacity, h the speci�c
enthalpy, T the temperature and p the pressure. The heat transfer coe�cients are calculated
from the Dittus-Boelter equation [26] under consideration of the void fraction ε as recommended
by Little [22]:
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Here Re denotes the Reynolds number, Pr the Prandtl number, dh the hydraulic diameter and
λ the thermal conductivity.

In the original publication, Little proposed the use of the Chisholm [27] void fraction model.
As noted by Barraza et al. [15], this correlation performs well in the range of x = 0.1−0.8, while
its relatively poor performance at high qualities is associated with partial dry-out. We propose
the use of the Baroczy [28] void fraction model to achieve better performance at low qualities.
To improve the prediction at high quality, the pure �uid dry-out correlation proposed by Del Col
et al. [29] is implemented and modi�ed by the mixture boiling correction factor Fc as suggested
by Thome and Shakir [30]:

xd = 0.4695

(
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(5)

where xd is the dry-out quality, q̇ the heat �ux, ṁ the mass velocity, ∆hlv the heat of vaporisation,
ρ the density, σ the surface tension and pR the reduced pressure. Fc is usually applied to
consider the e�ect of mass di�usion on the nucleate boiling contribution of pure �uid �ow boiling
correlations and is de�ned as

Fc =
1

1 +
αid ∆Tglide

q̇

(
1− exp

( −q̇
β ρl ∆hlv

)) (6)

where ∆Tglide is the di�erence between dew and bubble point temperature of the refrigerant
mixture and the mass transfer coe�cient β is assumed to be 0.0003 m s−1 following the
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Table 1. Summary of the database on mixed refrigerant two-phase �ow (HC = hydrocarbon
mixtures, SR = synthetic refrigerant mixtures, N = number of data points).

Boiling Condensation Pressure drop
Reference Fluids N Reference Fluids N Reference Fluids N

Nellis [13] HC 7410 Maråk [17] HC 271 Maråk [17] HC 287
Chen [14] HC 247 Yu [18] HC 66 Barraza [16] HC&SR 9253
Barraza [15] HC&SR 9268 Zhuang [19] HC 200

Total 16925 Total 537 Total 9540

Table 2. Predictive capabilities for the presented database (AAD = average absolute deviation,
ARD = average relative deviation).

Boiling Condensation Pressure drop
Correlation AAD ARD Correlation AAD ARD Correlation AAD ARD

% % αpure from [32] % % ζl,v from [34] % %

Little [22] 25.8 -20.5 Shao [39] 30.1 23.6 Cicchitti [40] 27.6 22.0
Granryd [21] 23.6 -13.0 SBG [23,24] 27.6 21.9 MSH [41] 36.4 31.5
this study 16.8 -3.4 this study 21.1 0.8 Friedel [42] 33.5 2.8

recommendation by Thome [31]. The post-dry-out heat transfer is approximated with a sigmoid
function between αtp at x = xd and αv at x = 1:

αd = αtp − (αtp − αv)

(
1− exp

[
4π

(
1− x
1− xd

− 1

2

)])−1

(7)

Although the Little correlation was originally validated for boiling heat transfer, the
resemblance with the SBG equation suggests that it can also be used for condensation. We
propose the use of equation 1 with αl,film calculated with the condensation correlation from
Cavallini et al. [32].

Previous studies have shown that the two-phase pressure drop of refrigerant mixtures can be
estimated with pure �uid correlations [9,16,33]. The Friedel [34] correlation is used to calculate
the single phase pressure drop, as it avoids a discontinuity at the laminar-turbulent transition.

3. Comparison with literature

Table 1 lists all datasets on mixed refrigerant two-phase �ow utilized in this work. The original
data from Nellis et al. [13] and Barraza et al. [15,16] was supplied by the authors, all other data
points were taken from diagrams in the respective publications.

The properties of the hydrocarbon mixtures were calculated with the Peng-Robinson equation
of state [35] in Aspen Plus [36]. The authors have chosen to use Peng-Robinson for all
hydrocarbon mixtures in spite of the inferior accuracy in comparison to REFPROP [37], because
REFPROP encountered convergence issues with some hydrocarbon mixture compositions. The
�uid properties of the synthetic refrigerants were predicted as described by Kochenburger [38],
where the unavailable binary interaction parameters for R134a were assumed to be kij = 0.

Bearing in mind the simplicity of the presented correlation, the boiling heat transfer database
is predicted very well, particularly in the annular �ow regime (cf. �gure 1). Slightly over 80 %
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Figure 1. Comparison of experimental and
calculated Nusselt numbers.
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Figure 2. Comparison of modi�ed Litte
correlation with Run A from Nellis [13].
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Figure 3. Comparison of experimental and
calculated Nusselt numbers.
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Figure 4. Comparison of experimental
database with the Friedel [42] correlation.

of the data points are predicted within the ±25 % error band. The depicted �ow patterns were
identi�ed with the �ow pattern map presented by Ong et al. [43], where Fc [30] was applied to
the boiling number. The metrics presented in table 2 indicate that the new boiling correlation
predicts the database signi�cantly better than established correlations from literature. The
exemplary comparison between the original and the modi�ed Little correlation depicted in �gure 2
illustrates the signi�cant improvement particularly in the dryout region.

A comparison of the experimental data with the condensation heat transfer model is presented
in �gure 3. Here, the Kim et al. [44] �ow pattern map was applied. Again, the database is
predicted well with 70 % of the data points within ±25 %. It should be noted, though, that the
heat transfer is slightly under-predicted at high Nu and over-predicted at low Nu. Still the
prediction is considerably better than the widely-used SBG method, when both correlations are
combined with the Cavallini et al. [32] pure �uid correlation (cf. table 2).

The predictive performance of pure �uid two-phase pressure drop correlations is listed in
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table 2. While the absolute deviation is comparable for all correlations, the relative deviation
of the Friedel [42] correlation is signi�cantly lower. On average, the Cicchitti [40] and Müller-
Steinhagen & Heck (MSH) [41] correlations under-predict the pressure drop, which is problematic
in a heat exchanger design process. Therefore, the authors recommend the use of the Friedel [42]
correlation despite the slightly higher AAD. As illustrated in �gure 4, the experimental pressure
drop data is predicted reasonably well, with 85 % of the data points within a ±50 % error band.

4. Summary and conclusions

In this study, experimental heat transfer and pressure drop data of multi-component zeotropic
refrigerant mixtures from literature are compared with di�erent correlations. Modi�cations to
existing correlations for boiling and condensation heat transfer are suggested to improve the
prediction of the database. The modi�ed heat transfer correlations predict the boiling data with
an AAD of 16.8 % and the condensation data with an AAD of 21.1 %. The two-phase pressure
drop data is best predicted with the Friedel [42] correlation (AAD = 33.5 %). The proposed
correlations will be implemented in a numerical heat exchanger model introduced in [45] and the
predictions will be compared to experimental data of a tubes-in-tube heat exchanger in a MRC
test stand at KIT in a future publication.
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