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Abstract

Industry takes a great interest in verification techniques to improve the reliability of process
designs. Providing reliable design in application domains like spectrum auctions is crucial.
Spectrum auction revenue is considered as one of the principal sources for governmental income.
Hence, analyzing the auction design before applying it can ensure absence of undesirable results
of an auction. Those results might even be bad, if they occur with a probability of just higher
than zero. Current verification approaches are mainly devoted to verify control flows only,
although data values play a significant role in real life applications. Thus, these approaches are
not sufficient to support data-centered workflows as spectrum auctions. We address this issue
by providing a new data-centered verification approach to analyze Simultaneous Multi-Round
(SMR) auction design in BPMN format. We show how to enhance a BPMN model by including
important information, namely data values used in the workflow, which the standard BPMN 2.0
does not support. An example of a data value in a SMR auction is the ”auctioneer’s revenue”.
To enable the verification of data-centered properties, we have developed a transformation of
a data-value enhanced BPMN model to Petri Nets respecting the semantics of certain data
value usages. For that, we support dynamic and correlated data values. By employing a model
checker and defining data-centered properties in CTL formula, we verify SMR auction models
to find undesirable executions for auctioneers. For example, we can precisely detect the worst
values of three important measures in auctions: efficiency, revenue, and bidder’s profit. With
it, we can not only find the undesirable outcomes, but also provide a counter-example to help
an auctioneer to improve the auction design.

1 Introduction

Industry takes a great interest in verification techniques to improve the reliability of process designs.
Providing reliable design in application domains, like spectrum auctions, is crucial. Spectrum
auction revenue is considered as one of the principal sources for governmental income. In Germany
and the UK, for instance, it earned 50.8 and 37.5 billion euro in 2000, respectively[15]. Despite of
all the experimental analysis, auctions with embarrassing outputs happened in different domains.
In the Netherlands UMTS Auction in 2000, for example, the low revenue caused a fiasco in public
policy[30]. A decade-long loss of 30 MHz in the U.S. mobile market happened because of a policy
to increase bid prices. As a result, the flaws in policies cost around 70 billion dollar[17]. In
a Switzerland auction in 2011 one bidder paid 485 million Swiss Francs, and another one paid
360 million Swiss Francs for nearly the same package[7]. In another example mentioned in [1],
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about fifty percent of products remained undersold at the end of the auction. Discovering auction
flaws in laboratories is difficult, because it needs to check all possible executions. For example, an
experimental design in [12] requires the evaluation of more than 13 million possible paths by human
subjects. This is completely beyond the capacity of any laboratory. Therefore, the catastrophic
results could be the consequence of possible courses of auction which are hidden in experimental
evaluations in laboratories.

To this end, many verification methods have been developed to find undesirable system be-
haviours in a precise and unambiguous manner, see [20] for an overview. However, most of these
methods only check workflows without the data aspect, particularly without regarding data values.
Data values represent all the possible values of a data object in a process model. In some process
models data values play a significant role for behavioural analysis. It enables verification of proper-
ties which are dependent on data values. For example, to verify the lowest auctioneer’s revenue in
spectrum auctions, we need data values such as ”bidder’s budget”, ”price of products”, and etc in
the process model. However, current verification approaches do not sufficiently support processes
containing specification of data values (see Section 7).

To overcome this issue, we propose a new approach to represent and verify properties dependent
on data values with the use case of SMR auctions. To take advantage of current verification
methods, first we model the complex auction design with a high-level process modeling language,
namely BPMN 2.0 [23]. Then, we enhance the BPMN model in order to represent the usage of
data values, and specify its manipulation during the process flow. To do this, we annotate BPMN
elements which are dependent on data values by using our Specification Expressions (SE). Then, we
apply a new algorithm to map this enhanced BPMN model to a mathematical modeling language,
namely Petri Nets [28], that allows using a comprehensive set of analysis tools [28]. This mapping
consists of two steps. First, we transform the control flow of the BPMN model to Petri Nets using
the existing approach of [14]. Second, we enhance the Petri Net to include data values and their
usage as specified in the BPMN model. Our approach is analogous to [27]. However, they only
address the optional and alternative usage of entire data objects by tasks and not data values. To
our best knowledge, involving data values is new for transforming BPMN process models to Petri
Nets. Based on the resulting Petri Nets that include the semantics of the usage of data values in
the process flow, we define data-aware properties of the process model as CTL formulas [9]. By
employing a model checker, we are then able to find, for instance, undesirable outcomes and show
the executions yielding these results to an auctioneer.

In this paper we focus on the application domain of Simultaneous Multi-Round (SMR) Auctions
as a standard format of spectrum licenses auctions for more than two decades since 1994 [21]. We
make the following contributions:

• Specification of the usage of data values of data objects in BPMN models,

• Verification of workflows with data values,

• Supporting dynamic and correlated data values in workflow verification,

• Modeling a SMR auction design in BPMN 2.0 including the extensive usage of data values,

• Specification of data-dependent properties in a temporal logic like CTL,

• Transformation of high-level workflows into Petri Nets including the semantics of usage and
manipulation of data values,
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• Implementation of a practical tool to detect high-risk executions in SMR auctions.

Our evaluation shows that our approach can check properties of SMR auctions which are de-
pendent on data values. For example, we can find the worst values of three important measures [8]
of auction designs: auctioneer’s revenue as the sum of final prices for each product, bidder’s profit
as the sum of left budgets of bidders who won a product, and giving the products to bidders with
the highest values, known as auction’s efficiency . We can also precisely answer questions such as:
What is the lowest final price for a particular product. With it, we can not only prove the presence
of flows in spectrum auctions, but also their absence. Additionally, in case of undesirable outcome
detection, we can provide a counterexample which helps auctioneers to adjust the auction

2 Preliminaries

In this section we introduce preliminaries of this paper. In Subsection 2.1 we describe the basics of
BPMN 2.0. In 2.2 we represent the formal description of Petri Nets. The syntax of CTL formulae
is described in Subsection 2.3. Subsection ?? presents Simultaneous Multi-Round auction and
some related rules.

2.1 BPMN 2.0

The standard Business Process Model and Notation (BPMN) gives the execution semantics and
graphical elements to model business processes. It provides a common language so that users can
easily read and understand the flow of activities. The elements of BPMN belongs to the following
categories:
Activities. They represent the tasks to be performed within a business process. A single activity is
a task and a composition of activities is a sub process.
Events. A process can catch or trigger events while it is running. There are different events based
on specific conditions. For example, the start message event triggers on receive of a message.
Gateways. They are used to split or merge the sequence of flows. Exclusive gateway activates only
one of the outgoing sequence flows and parallel gateway activates all outgoing branches simultane-
ously.
Swimlanes. They separate different organization units in a process model. Pools represent the
whole unit process and lanes show its hierarchical sub divisions.
Data Objects. The most important element to show the data in the BPMN model is data object,
which represents the flow of information through the process. A data object can be read or written
by an activity defining data need and data result, respectively. The collection of data needs and
data results for a specific activity describe its input set and output set, respectively. A data object
as an external input of the whole process is called data input, and the data created by the process
is called the data output.
Artifacts. They help to understand the semantics of processes easier by adding the complementary
information. A text annotation associates with elements to provide additional information. A group
describes the set of elements which are logically related.
Figure 1 represents an overview on the BPMN 2.0 elements. BPMN 2.0 is the last published version
of this standard. We will use BPMN instead of BPMN 2.0 in the following, if it is unambiguous.
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Task Sub-Process
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Data object Data Input Data Output Data Souce

Start Message Timer Error Compensation

Signal MultipleEscalation Conditional End

ExclusiveParallel Event-based Inclusive Complex

Activities

Artifacts

Data Objects

Gateways

Events

Pools and
Swimlanes

Figure 1: Overview of BPMN

2.2 Petri Nets

A Petri Net [28] is a triple (S, T,W ), where

• S is a finite set of places

• T is a finite set of transitions. S ∩ T = ∅

• W ⊆ (S × T ) ∪ (T × S) is a set of arcs; there is no direct direction from a node to another
one with the same type.

A marking of a Petri Net is a mapping: M : P → N , which assigns a non-negative number of
tokens to each place. M0 is the initial marking. Each transition contains immediately preceding
places called input places: •t = {s ∈ S|W (s, t) > 0} and its just succeeding places called output
places: t• = {s ∈ S|W (t, s) > 0}. A transition t fires when all its input places have enough number
of tokens and it leads to a new state M ′. In M ′, transition t consumes tokens from each of its input
places and produce tokens in each of its output places. The set of all reachable states from the
initial state M0 is the state space. It is possible to check if a Petri Net verifies a given requirement
φ, by the full exploration of its state space. This method is known as model checking [10]. To
specify requirements, some powerful formal languages such as CTL [9] are provided.

2.3 Computation Tree Logic

Computation Tree Logic (CTL) is a temporal logic to represent system properties which has efficient
model-checking algorithms. CTL distinguishes two kinds of formulae, state formulae and path
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formulae. CTL state formulae are formed according to the following syntax:

Φ ::= true | α | Φ1 ∧ Φ2 | ¬Φ1 | Eϕ | Aϕ (1)

where α is an atomic formula. It is a state of a Petri Net in our application field. Greek capital
letters represent CTL state formulae, and lowercase Greek letters represent CTL path formulae.
The path formula is generated by the following grammar:

ϕ ::= Xϕ1 | ϕ1 ∪ ϕ2 | Fϕ1 | Gϕ1 (2)

A path operator (A and E) should always occur with a state operator ( X, G, F, and U), or vice
versa. Aϕ: ϕ has to hold on all the paths. Eϕ: at least one path exist where ϕ holds. Xϕ: ϕ has
to hold at the next state. Gϕ: ϕ has to hold on the whole subsequent path. Fϕ: ϕ has to hold
somewhere on the subsequent path. ϕ1 ∪ ϕ2: ϕ1 has to hold at least until ϕ2 holds.

2.4 SMR Spectrum Auction Design

Simultaneous Multi-Round (SMR) auction has been the standard format to assign the spectrum
licenses to bidders for more than two decades since 1994 [21]. It consists of several rounds to award
the spectrum to bidders with the highest values. At the beginning of a SMR auction, the auctioneer
specifies a reserve price for each license, which indicates its lowest possible bid. In this auction
format, there are several successive rounds which make the opportunity for participants to bid on
individual licenses simultaneously. At the end of each round, the auctioneer recognizes the highest
bid price for each license, and informs bidders about the winning bids on this round. The highest
bid price for each license will be its reserve price in the following round. Figure 2 represents the
overview of SMR auction process modeled in BPMN. In this auction type there are several activity
rules which can impact auction performance [18].
Capacity rule: Before the start of auction, a bidder gets a capacity point, which determines the
maximum number of licenses which they can win. This rule limits bidders to win lots of products
and it avoids monopoly.
Withdrawal rule: Each bidder can withdraw their provisionally winning bids as often as the defined
withdraw points allows. After a withdrawal, the price of the corresponding license will be the same
as the second highest winning price achieved with no winner.
Eligibility rule: Before the auction starts, each bidder has a particular eligibility point based on
their deposit. It determines how many bids a bidder can have in each round. The bidder’s eligibility
point decrease if their number of bids are lower than their current eligibility point. A bidder can
not bid any more, if their eligibility point is zero.
The auction ends when there is no new bid for any license. Then the bidder with the highest bid
price for a product, will be its winner.

3 Modeling SMR Auction in BPMN 2.0

To verify data-dependent properties in SMR auction, we make the contribution to model it in
BPMN. To do this, we have the following assumptions which are specified in the BPMN mode:
(1) Each bidder has a certain budget for each individual license, (2) bidders are in demand for a
license unless they can not afford it, and (3) winner of a license do not bid for the same license in
the next round. The data objects and attributes specify the flow of data in this model precisely.
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Figure 2: BPMN model for SMR auction
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The auction process consists of three phases. First we check whether or not bidders can bid in
Check availability of bidders phase, by two different conditional gateways. One checks if the bidder
can afford a certain license, and the second one checks if the bidder is not the current winner of
the affordable license. The auction continues to the next phase if these is at least one qualified
bidder. All qualified bidders will specify their bid prices in the next phase, bidding process. As
we have to consider all possible combinations of bid prices in this phase, all the valid bid prices
have the equal chance to be selected, even if they have a very low chance in real auctions. To do
this, the bidding task assigns a random valid bid price to each qualified bidder. With it, we take
into account all possible situations in our model to prepare verification of the properties. All the
requested licenses will be marked by record requested products task so that they are considered in the
winner determination phase. In the third phase, the winner determination task declares the new
reserve prices and the winners. Based on these results, we update the bidder’s capacity points in
two tasks: increase previous winner’s capacity and decrease winner’s capacity. These three phases
iteratively continue until no more qualified bidders exist. Figure 2 represents the overview of SMR
auction process modeled in BPMN.

4 Our Verification Approach

To verify data-value-dependent properties, we precisely specify the information of interest in our
application, see Subsection 4.1. In Subsection 4.2, we formalize the process execution semantics
based on involved data values in BPMN by using a transformation algorithm. In Subsection 4.3 we
explain how to define properties which we are able to verify by our approach. In Subsection 4.4,
we discuss supported features and limitations of our framework.

4.1 BPMN 2.0 Enhancement with Required Data Values

In many applications, data values play a significant role in process executions. For example, in
Figure 2, the gateway with the condition bidder’s capacity points > 0 checks a capacity rule
in a SMR auction. Here, the gateway condition is dependent on the data value (bidder’s capacity
points) which also can be changed during the process. In particular, data values as the preconditions
and effects of process elements change the process execution. However, in the standard BPMN 2.0
there is no specification element to represent this important information. To address it, we provide
a Specification Expression (SE) to enrich, i.e., annotate BPMN elements which get involved with
data values. In particular, we enhance data objects, XOR gateways, and tasks
new4as the basic BPMN elements which can be dependent on data values.

To do this, we use annotations to consider (1) involved data values and (2) their manipulation
by the BPMN element. Table 1 lists the SE features which are important to represent data values in
data-centered workflows and sufficient to manipulate data values in our use case. Other functions,
e.g., other aggregation functions like minimum, are also possible, but we do not need it in our use
case. In the following, we explain the SE features in more details:

EL: Declaration. It represents all the possible data values of a data object involved in a process.
It consists of two parameters. The second parameter identifies the attributes of a data object, their
types, and domains. As types, we support integer, boolean, and enumerations of integer type. The
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Expression Label - EL Format Associated with

1 Declaration [x ][attribute : type : values]+ data objects

2 Selection [attribute : selection filter ] data objects

3 Constant Condition
[data object : attribute : selection filter ]
comparison operator [constant value]

XOR gateways

4 Dynamic Condition
[data object : attribute : selection filter ]
comparison operator [data object : attribute :
selection filter ]

XOR gateways

5 Increase++ [increase] tasks
6 Decrease−− [decrease] tasks

7 Reset [reset] tasks

8 Random Selection [random selection] tasks

9 Find Maximum [find maximum] tasks

Table 1: Specification Expression for BPMN elements engaged with data values

first parameter, [x], indicates the first x attributes building the key. The key is a single attribute
(x = 1), or a composition of several attributes (x > 1).

Example 1. Figure 3(a) represents an example of this expression for the data object product. The
first attribute, ID is considered to be the key attribute. It also has a price attribute of type integer
in a range of [5-20].

EL: Selection. It indicates the preconditions and effects of a BPMN element on data values.
Particularly, it specifies a selection of data values corresponding to a data object’s attribute by a
selection filter. Selection filter consists of two values separated by dots: key attribute value and
attribute value. The value is an existing defined value in EL 1, or x which means don’t care.

Example 2. Figure 3(b) represents a selection of values of the data object product. As we have
the selection filter 1.x for the attribute price, it selects all the prices which belong to a product with
ID = 1.

EL: Constant Condition. It specifies XOR gateways to take deterministic decisions, if their
condition is dependent on data values. It consists of two parameters: The first is a set of data
values deduced by a data object, its attribute, and a selection filter on it. The second parameter is
a constant value and a comparison operator ∈ {<,>,=, ! =, >=, <=}.

Example 3. Figure 3(c) shows an example to amend a gateway with a precise condition: Is the
capacity points of bidder with ID = 1 higher than zero?

EL: Dynamic Condition. It is similar to SP 3 but both parameters are data values.

Example 4. Figure 3(d) gives an example of a gateway enhanced by SP 4. It takes a decision on
the following condition: Is the price of product with ID = 1 higher than the price of product with
ID = 2.

EL: Increase++. It indicates the tasks increase the value of their data needs by 1. Here, we
specify the set of data values to be increased with SP1. The manipulated data values define the
data result of the respective task.
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Example 5. In Figure 3(e), the price of product with ID = 1 will be increased by 1.

EL: Decrease−−. It is same as SP 5 but to decrease data values by 1.

Example 6. Figure 3(f) illustrates the usage of EL 6 to decrease the price of product with ID = 1.
The last two specifications allow to model the so-called capacity rule in a SMR auction.

EL: Clear. It specifies that the related task clears the current value of its data need.

Example 7. In our use case, we want to clear the value of the attribute price before assigning a
new value. Figure 3(g) represents this situation with clearing the price of product with ID = 1.

SP: Random Selection. It defines a general function for tasks to select a random value out of the
associated set of data values. Especially, we developed this function to model bidding behaviour in
our use case. Our goal is to include all the possible SMR executions in our model. Thus, a task
representing bidding can select any bid which has a selection probability just higher than zero in
reality.

Example 8. Figure 3(h) indicates an example of this specification. It randomly select a bid price
for a product with ID = 1, based on the budget of bidder and the current price of product.

SP: Find Maximum. It can be associated with a task to find the maximum value of the set
of its associated data values. All the data values should be integer. We extend this specification
particularly for our use case to find the winner and new prices based on the highest bids.

Example 9. Figure 3(i) is an example to find the maximum bid price of a product with ID = 1.
Based on this, it defines the winner and the price of a product with ID = 1

4.2 BPMN2PetriNet Transformation

In order to provide a systematic investigation of scenarios through the whole process, many ap-
proaches transform BPMN to Petri Nets. For example, [14] transforms the BPMN control flow to a
Petri Net. The approach of [27] additionally allows transforming optional or mandatory data objects
used in the BPMN model. [19] gives a survey on transformations from business processes to Petri
Nets. However, these approaches are not sufficient to transform processes containing specifications
of data values like auction processes into Petri Nets for verification.

So, we provide a new approach to transform BPMN models to Petri Nets considering the usage
of data values. To do this, we transform the BPMN elements which are independent of data values,
with the rules defined in [14]. The approach of [14] indicates the state-of-art for transforming BPMN
flow objects into Petri Nets. [27] extends it to handle the usage of entire data objects by tasks as
specified in BPMN 2.0, but not data values. Next, we develop new mapping rules to transform
BPMN elements with their data values used into a Petri Net representation. As an alternative, one
could transform the model into YAWL [29] to consider data values. It would help to support more
features like the interruption of the entire net when an event occurs, but the verification of YAWL
nets is computationally more expensive compared to Petri Nets [14]. It is an important issue as con-
sidering data values leads to even more complex nets which consume more time. To transform the
BPMN model into Petri Net, we follow two steps: (1) Mapping data values involved in a process
to new places of the Petri Net (2) unfolding particular subnets for all the data-value-dependent
elements. These elements are already enhanced by the annotation element in the BPMN model.
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(a) SP1 - Declaration

products [1] [ID:int:1-3][price:int:5-20] products [price:1.x]

[product:price:1.x > product:price:2.x

N
o

Yes

[bidder:capacity:1.x > 0]

N
o

Yes

(b) SP2 - Selection

(c) SP3 - Constant Condition (d) SP4 - Dynamic Condition

products [price : 1.x]

Task1 [increase]

(e) SP5 - Increase++

decrease

products [price : 1.x]

Task1

(f) SP6 - Decrease--

products [price : 1.x]

Task1 clear

(g) SP7 - Clear

Random Selection

product

[price : 1.x]

Task1

bidder

[budget:1.x]

bid

[price:1.x]

(h) SP8 - Random Selection

Find Maximum

bid [price : 1.x]

Task1

product

[winner:1.x]

product

[price:1.x]

(i) SP9 - Find Maximum

Figure 3: Examples of the BPMN enhancement with specifications introduced in Table 1
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The complexity of our transformation algorithm is linear to the number of enhanced elements in
BPMN: O(n), where n is the number of annotations in our model. In the following, we explain the
transformation steps in detail.

Mapping. A process model contains the information of the domain of a data object, i.e., its
allowed values, in an annotation EL Selection, see Subsection 4.1. The transformation represents
each data value (d value) by two places in the Petri Net: p.¬d value and p.d value, for which the
sum of its tokens always is 1 (m(p.¬d value+m(p.d value) = 1).

Example 10. Figure 4 shows an example of mapping data values to corresponding places. There,
all p.¬d value places are marked which means that there is no winner of products in this process
state.

products

[1] [ID:int:1-2][winner:int:1-2] p.product_1_winner_1 p.¬product_1_winner_1

p.product_1_winner_2 p.¬product_1_winner_2

p.product_2_winner_1 p.¬product_2_winner_1

p.product_2_winner_2 p.¬product_2_winner_2

(a) Declaration of Data values by SL1 (b) Data Values mapped into Places

Figure 4: Mapping the Data Values to Petri Net Places

Unfolding. To transform the BPMN elements that involve usage of data values, we extend
an already mapped control flow Petri Net by adding new subnets. We create these subnets by
following specific transformation rules. We define these rules for each SE in Section 4.1. As the
subnets are independent, we can apply the unfolding rules in any order. These rules use the new
places created in the mapping phase. In the following, we explain the unfolding rules for Selection,
Dynamic Condition and Increase ++.

Unfolding Rule: Selection. In the already mapped control flow, we transform a task into a
transition with one input and one output place. For each data value declared in SP1, we link its
corresponding p.d value to the transition t1, with a bi-directional arc. It ensures that the data
value keeps the same value when firing the task. Figure 5 shows the transformation of data values
that are data needs of Task1.

Unfolding Rule: Constant Condition. In current approaches like [14], the condition of a gateway
is not modeled in the Petri Net, although it has an effect on the execution semantics. To address this
issue, for each data value declared in SP1, we create a transition (t1 ) and connect it to its p.d value
place with a bidirectional arc. Only one of these transitions can fire at a moment, depending on the
current value. We separate the true- and false-paths with the transitions t.gw1.y1 and t.gw1.y2.
Depending on the current value, meeting the condition or not, transitions t.gw1.y1 or t.gw1.y2 fire
respectively (Figure 6).
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(a) Selection of data values by EL1

Task1

products winner:1.x

(b) Unfolding rules for EL1

p.products_1_winner_1

p.products_1_winner_2

Figure 5: Reading Data Values by a Task

p.bidder_1_capacity_0

p.bidder_1_capacity_1

p.bidder_1_capacity_3

t.gw1.y1

t.gw1.y2

p.gw1.F

p.gw1.T

p.gw1.y2

t.bidder_1_capacity_3

t.bidder_1_capacity_1

t.bidder_1_capacity_0

p.gw1.y1
........

Figure 6: Transformation: Condition Type 1

Unfolding Rule: Dynamic Condition. In this condition both parameters are data values. There-
fore, we add their correspondig p.d value places to the subnet. For modeling the condition itself,
we create a transition for each combination of p.d value places as represented in Figure 7. Each of
the transitions fires if both of their incoming places are marked, i.e., they carry the current value.
We take the same steps as for Constant Condition to complete the subnet.

Unfolding Rule: Increase++. To unfold activities increasing data-values, we create a separated
transition for each certain data-value defined for the data needs of the task. Each of these transitions
has a corresponding p.d value place as incoming place, and p.¬d value as outgoing place. At the
same time, we add the p.d value place with value + 1 as an outgoing place, and p.¬d value place
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t.product_1_price_20
product_2_price_20

t.product_1_price_3
product_2_price_1

t.product_1_price_2
product_2_price_1

t.gw1.y1

t.gw1.y2

p.gw1.T

p.gw1.F p.gw1.y2

p.gw1.y1

........

p.product_2_price_1

p.product_1_price_2

p.product_2_price_1

p.product_1_price_3

p.products.1.price.20.1

p.products.1.price.20.1

Figure 7: Transformation: Condition Type 2

with (value + 1) as an incoming place. We connect this subnet to the subnet which results from
the transformation of a task as shown in Figure 8.

t.gw1.products.1.
price.1

p.product_1_price_1

p.product_1_price_3

p.product_1_price_2

........

p.¬product_1_price_1

p.¬product_1_price_2

p.¬product_1_price_3

p.product_1_price_19 p.¬product_1_price_19

p.product_1_price_20 p.¬product_1_price_20

t.gw1.y1

p.gw1.y1

t.gw1.products.1.
price.2

t.gw1.products.1.
price.20

Figure 8: Transformation: Increase Task

Unfolding Rule: Decrease–. The transformation of tasks that decrease a data value is similar to
the unfolding rules of SP5 - Increase++ but with reversed values, see Figure 9.
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t.gw1.products.1.
price.20

p.product_1_price_20

p.product_1_price_18

p.product_1_price_19

........

p.¬product_1_price_20

p.¬product_1_price_19

p.¬product_1_price_18

p.product_1_price_2 p.¬product_1_price_2

p.product_1_price_1 p.¬product_1_price_1

t.gw1.y1

p.gw1.y1

t.gw1.products.1.
price.19

t.gw1.products.1.
price.2

Figure 9: Transformation: Decrease Task

Unfolding Rule: Clear. For each data value which is defined as SL, we create two transitions:
transition t1, which has the place p.d value as its incoming place, and transition t2 which has
the p.¬d value place as its incoming place. Only one of these transition can fire, as only one of
these incoming places could be marked. The outgoing place of both transitions is p.¬d value place,
which means the corresponding attribute does not have any value. We add the subnet to the normal
transformation of task as shown in Figure 10.

Unfolding Rule: Random Selection. For each data value specified by SL1 we create a transition.
Each transition has p.¬d value as incoming place and p.d value as outgoing place. It means these
transitions will compete to use a token and select a data-value as non-deterministic choice. In this
model, there are outgoing arcs as many as the number of data-values given, which discerns from
the normal transformation of an OR-split gateway.

Unfolding Rule: Find Maximum. To find the maximum bid price possible in an auction, it is
for example possible that two bidders have the same bid price for one product. So, to find the
maximum value, we have the assumption that the data-values must not be unique. To create the
subnet, first we create an inner subnet for each single value which has been defined by SP1, see
Figure 4.2. In the inner subnet, we assign a transition to each data-value separately. The p.d value
place is connected to the transition by the bidirectional arc. All p.¬d value places, which refer to
the same value, will be connected to a transition (t.t1.findMax.bidprice.x.1 ) with a bidirectional
arc. In case that none of the data-values carries the respective value, this transition fires, i.e., it
leads to the execution of the next inner subnet. More detailed, the inner subnets are hierarchically
connected to each other, starting from the maximum value. For the sake of convenience in our use
case, we write the highest bid price and the winner directly to the corresponding places as shown
in Figure 4.2.
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p.product_1_price_1

p.¬product_1_price_1

........

p.product_1_price_20

p.¬product_1_price_20

p.¬product_1_price_1

p.¬product_1_price_1

p.¬product_1_price_20

p.¬product_1_price_20

........

t.product_1_
price_1_1

t.product_1_
price_1_0

t.product_1_
price_20_1

t.product_1_
price_20_0

Figure 10: Transformation: Clear Task
........

t.bidPrice_1_1_1

p.¬bidPrice_1_1_1 p.bidPrice_1_1_1

p.¬bidPrice_1_1_2 p.bidPrice_1_1_2

t.bidPrice_1_1_2

p.¬bidPrice_1_1_20 p.bidPrice_1_1_20

t.bidPrice_1_1_20

Figure 11: Tasks with Specific Function: Bid Submission

4.3 Definition of Properties

In the following, we explain the data-dependent properties specified in Computation Tree Logic
(CTL) [9] that we will verify on our model. In our approach, the atomic formulas in CTL are
states of the Petri Net that contain places representing data values used in the process model.
Each data value defined in the first step with SP1 is represented by two places in the Petri Net:
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........

p.bidPrice_1_1_20

p.product_1_winner_1

p.¬product_1_winner_1

p.bidPrice_n_1_20

p.¬bidPrice_1_1_20

p.¬bidPrice_2_1_20

p.¬bidPrice_n_1_20

........

t.bidPrice_20_F

........

t.bidPrice_20_T

p.product_1_winner_n

p.¬product_1_winner_n

p.product_1_price_20

p.¬product_1_price_20

t.bidPrice_1_T

p.product_1_price_1

p.¬product_1_price_1

Figure 12: Tasks with Specific Function: Winner Determination

p.¬d value and p.d value. These places enable verification of properties which are dependent on
the data values. The following examples show how to formulate such properties in CTL:

Example 1: The product with ID = 2 always belongs to the bidder with the highest budget
(bidder with ID = 2).

EF (¬p.product.2.winner.2 ∧ p.end)

Example 2: All the Bidders can win at least one product.

EFAG((p.product.1.winner.1 ∨ p.product.2.winner.1 ∨ p.product.3.winner.1)
∧(p.product.1.winner.2 ∨ p.product.2.winner.2 ∨ p.product.3.winner.2))

Example 3: Bidders with capacity points = 0 can bid for any product.

EF ((p.bidder.1.capacity.0 ∧ (p.bid.bidder.1.product.1 ∨ p.bid.bidder.1.product.2∨
p.bid.bidder.1.product.3)) ∨ (p.bidder.2.capacity.0 ∧ (p.bid.bidder.2.product.1∨
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p.bid.bidder.2.product.2 ∨ p.bid.bidder.2.product.3)))

Example 4: Is it possible to sell the product with ID = 1 for the price of 2.

EF (p.product.1.price.2 ∧ e.end)

By verifying the property of the last example, we will find the lowest auctioneer’s revenue(Rlowest).
To do this, first we find the lowest final price of products, starting with the reserve prices as shown
in Example 4. For this, Place e.end is the result of the transformation of an end event in the BPMN
model; i.e., it triggers the end of the process. In case the property is not satisfied, we run iteratively
the model checker to verify a property with an increased price until the system finds a state that
fulfills the property.

In the next step, we find the lowest combination of prices (Rlowest) in a similar way, starting
from the lowest final price of products. Assume that the lowest price for the product with ID=1,
2, and 3 is 4, 6, and 7 respectively. Then, we have to very the following formula in the first step:

EF (p.product.1.price.4 ∧ p.product.2.price.6 ∧ p.product.3.price.7 ∧ e.end)

In case that the model can not satisfy this formula, we will take other combinations with
increased prices of products. For this, we have not to look at all prices in combinations, but only on
those which are in the interval between a maximum and a minimum possible price. The maximum
price is known by the maximum budget of bidders for a certain product, and the minimum is a
result of a verification step. With adequate search strategies combinations to be verified can be
further restricted. This is put to future work. By verifying the combination of prices, we can find
the possible lowest auctioneer’s revenue.

Besides it, we can also find the minimum bidder’s profit(Plowest) associated with Rlowest. To
this end, we check if the bidders with the lowest budget can be the winners. Assume bidders with
ID = 1, 2, and 1 have the lowest budgets for products with ID =1,2 and 3, respectively. The first
formula to check then is:

EF ((p.product.1.price.4 ∧ p.product.2.price.6 ∧ p.product.3.price.7) ∧ (p.product.1.winner.1 ∧
p.product.2.winner.2 ∧ p.product.3.winner.1) ∧ e.end)

If the model checker can not find a state, i.e., any execution path to fulfill this property, we
change the winner of products receiving a new formula. Then, we verify the new formula. This is
done until the formula is satisfied. To find the lowest bidder’s profit in each step, we first set the
winner to the one with the lowest budget.

With another measure, we are able to find the lowest market efficiency (Elowest) while the
auctioneer’s revenue has its lowest possible value. These measures have been used in auction
literature [8] to compare different auction formats. As definition of efficiency we use a measure
described in [8]. This definition estimates how Surplus with the worst allocation changes compared
to it with a random allocation:

Elowest =
Slowest − Srandom

Soptimal − Srandom
× 100 percent

Here, the optimal allocation can be computed by giving the products to bidders with the highest
budget and Slowest = Rlowest + Plowest.
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4.4 Discussion

Features Supported. We developed a new method to verify data-dependent properties in a SMR
auction. In this, we not only support data states which is the state of the data contained in a data
object, but also every single data value of it. For this, we support a data-value representation with
the types integer, boolean, and enumeration. Manipulation of data values is also possible by several
functions such as increase, clear, etc. It allows to verify processes that require rules specified with
respect to data values as are spectrum auctions. Further, we have chosen Petri Nets as the target
of our transformation, for which efficient static analysis techniques are available. Beside this, we
have formalized our properties in the temporal logic CTL, so that we can verify a range of different
expressions. Additionally, by employing a model checker, we are able to generate counter-examples
that explain unexpected results automatically. It helps model designers to identify the cause of a
problem and fix it.

Limitations. Considering every possible state with data-values can result in a huge state space.
This problem is well-known as state-space explosion [11]. It can hinder the verification and lead
to unacceptable runtimes. Besides, manipulation functions provided in this paper would not be
sufficient to cover all processes in different domains, for which we require to provide more general
functions like the aggregation ones.

Future Work. To address the above issues, we are planning to design a new approach to
reduce the size of state space. This optimization method can apply as a pre-processing step before
verification of data-centered workflows. In future work, we also aim to support more general
functions for data-value manipulations to cover a wider range of data-centered workflows.

5 Implementation

We have implemented a framework to verify data-dependent properties in a SMR auction. Fig-
ure 13 visualizes the steps accomplished by our implementation. The framework allows to select an
enhanced BPMN model as an input for transforming data-centered BPMN models into Petri Nets.
As a use case, we have modeled SMR auctions in BPMN and enhanced it with the Specification Ex-
pressions concerning used data values as explained in Section 4.1. After loading the BPMN model
into our framework, a transformation of control flow into Petri Nets takes place by applying rules
of [14]. We extend the already generated Petri Nets to include representation and manipulation of
data values as introduced in Section 4.2. In the next step, the generated Petri Nets are verified
automatically against the data-dependent properties expressed as CTL formulas. To do this, we
run a CTL model checker in our framework, namely LoLA [26], once or several times for verifying
the properties as described in Section 4.3. Since LoLA is quite easy to run in shell scripts, it is
quite well manageable for repeated application.
LoLA explores automatically the state space to check a property. For each verified property, our
tool provides the execution trace to the user. As the transitions of the trace have meaningful labels
according to their function in the BPMN model, it is easy to understand the counter-example and
track the execution run.
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Figure 13: Overview of Our Approach on Verification of Data-Aware Process Models

6 Evaluation

To evaluate our framework we study a SMR auction model including eligibility rule and capacity
rule with two bidders, see Section 2.4 for details. In the first part of our evaluation, we the lowest
auctioneer’s revenue, bidder’s profit and efficiency of auction (for details see Section 4.3) as the
essential measures in auction literature [8]. In the second part of our evaluation, we analyze the
runtime for transforming enhanced BPMN models to Petri Nets and compare it with the original
BPMN models. We also study the runtime for verifying data-dependent properties in a SMR
auction.

To do our evaluation, we have considered two different settings of a SMR auction: (1) two bidders
compete to win two different products, labeling Process 1, and (2) two bidders are in demand for
three products, labeling Process 2. In both processes, we have assigned a random budget to each
bidder for a certain product in a range of [2− 10], similar to [8]. Table 2 shows these values for all
bidders and products. We also have defined a reserve price of 1 for all products. With it, all bidders
can afford all the products at the beginning of auctions.

Bidder ID Product ID = 1 Product ID = 2 Product ID = 3
1 8 9 6
2 5 5 6

Table 2: The reserve price and budget of bidders for different products

For the sake of convenience to model a SMR auction with BPMN, we only have modeled the
parts of SMR auction which are related to verifying the properties relevant in our setting. This
means that we did not care about parts of a SMR auction which do not have an effect on the

19



verification of our properties, e.g., bidder’s registration to the auction. Table 3 gives an overview
on the enhanced Process Models 1 and 2. As we only allow annotating the basic BPMN elements and
not, e. g., iterative sub-processes, we have to repeat parts of the SMR auction model to represent the
increasing of the number of bidders and products. This leads to a slightly higher number of BPMN
elements of the model by a constant factor for each iteration. That we handle only three bidders
and three products is not a fundamental restriction. For example, for adding a new bidder the
number of tasks and gateways of the BPMN model increases by 15 and 27, respectively. Figure 14
shows a part of the enhanced BPMN model for winner determination and capacity rule.

Process Tasks Gateways Annotation Data Object Data Association Data Value
1 50 55 145 9 94 80
2 69 81 206 9 124 119

Table 3: Number of enriched BPMN elements for Processes 1 and 2

We have used these enhanced BPMN models as the input of our tool for transformation into
Petri Nets. The generated Petri Nets contain new places resulting of the new representation and
manipulation of data values, which allow to verify data value dependent properties. By this, we are
able to detect the lowest auctioneer’s revenue.

To do this, first we have detected the lowest possible final price of each individual product by
doing iterative verification, starting with their reserve prices as follow:

EF (p.product.1.price.1 ∧ p.product.2.price.1 ∧ p.product.3.price.1 ∧ e.end)

To detect the lowest possible final price for all products, we perform the verification for combi-
nations of prices as follows:

EF (p.product.1.price.5 ∧ p.product.2.price.4 ∧ p.product.3.price.6 ∧ e.end)

To handle all combinations of prices in order to detect the lowest possible revenue requires
at most to verify 336 respectively 56 properties for Process 1 and 2. However, if we restrict the
set of combinations to those prices which are bounded by a minimum and maximum value (see
Section 4.3), we only have to verify 50 respectively 20 properties for Process 1 and 2. Table 4 and
5 represent the results of the verification runs detecting the values of auction measures of Processes 1
and 2, respectively. In Process 1, the auctioneer will have the lowest revenue by assigning product 1
and 2 to bidder 1 for the price of 5. Having the lowest auctioneer’s revenue, the efficiency of the
auction and bidder’s profit are 100% and 7, respectively. In Process 2, Product 1 has been sold to
Bidder 2 for the price of 5, although both bidders would have more budget to buy a product. With
it, the auctioneer’s revenue is 15 which leads to an efficiency of 82.60% in this setting.

Product ID Winner ID Final Price Revenue Profit Efficiency
1 1 5

10 7 100%
2 1 5

Table 4: Verification of properties with 2 bidders and 2 products

Having these results, an auction expert becomes aware of the bad consequences of an auction
setting, before performing the auction itself. They can assess the effects of certain modifications
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Figure 14: BPMN enhancement of Process 1 for winner determination and capacity rule regarding
product 1

of the auction parameters on the final auction result. Such modifications are, e.g., changes of
the reserve prices or capacity points of bidders. This can be done simply by changing some data

21



Product ID Winner ID Final Price Revenue Profit Efficiency
1 1 5

15 4 82.60%2 2 4
3 1 6

Table 5: Verification of properties with 2 bidders and 3 products

values in the BPMN model of the SMR auction, which is quite user-friendly even for non-experts
in modeling.

To evaluate the runtime of the entire verification process, we have studied separately the runtime
for verification of properties and the transformation of enhanced BPMN into Petri Nets. To this end,
we have verified 50 respectively 20 properties for Process 1 and 2. Verification of a single property
took less than 4 minutes in the worst case, by a common computer. Table 6 gives an overview of
17 different properties which we have verified with our tool with the results and runtime. We have
transformed the entire Processes 1 and 2 into Petri Nets each in less than 1 second. The model
checking time relates to the size of the Petri Net which depends also on the usages of data values in
the process, i.e., resulting from unfolding of subnets during the transformation step. This may lead
to state space explosion for realistic scenarios. To meet this challenge, we plan to work on reducing
the size of the Petri Net in order to optimize the model checking, in future work. To do this, we
want to apply a relevance-based reduction of the process, see also our previous for optimization of
data-flow verifications [22].

Property Result Time
EF (p.product.1.price.8 ∧ p.product.2.price.8 ∧ p.product.3.price.6 ∧ e.end) YES 2:18
EF (p.product.1.price.8 ∧ p.product.2.price.8 ∧ p.product.3.price.5 ∧ e.end) YES 2:49
EF (p.product.1.price.8 ∧ p.product.2.price.8 ∧ p.product.3.price.4 ∧ e.end) YES 3:34
EF (p.product.1.price.8 ∧ p.product.2.price.8 ∧ p.product.3.price.3 ∧ e.end) NO 2:48
EF (p.product.1.price.8 ∧ p.product.2.price.7 ∧ p.product.3.price.7 ∧ e.end) NO 2:52
EF (p.product.1.price.8 ∧ p.product.2.price.7 ∧ p.product.3.price.6 ∧ e.end) YES 2:29
EF (p.product.1.price.8 ∧ p.product.2.price.7 ∧ p.product.3.price.5 ∧ e.end) YES 3:36
EF (p.product.1.price.8 ∧ p.product.2.price.7 ∧ p.product.3.price.4 ∧ e.end) YES 3:38
EF (p.product.1.price.8 ∧ p.product.2.price.7 ∧ p.product.3.price.3 ∧ e.end) NO 2:56
EF (p.product.1.price.8 ∧ p.product.2.price.6 ∧ p.product.3.price.7 ∧ e.end) NO 2:26
EF (p.product.1.price.8 ∧ p.product.2.price.6 ∧ p.product.3.price.6 ∧ e.end) YES 2:22
EF (p.product.1.price.8 ∧ p.product.2.price.6 ∧ p.product.3.price.5 ∧ e.end) YES 3:00
EF (p.product.1.price.8 ∧ p.product.2.price.6 ∧ p.product.3.price.4 ∧ e.end) YES 3:38
EF (p.product.1.price.8 ∧ p.product.2.price.6 ∧ p.product.3.price.3 ∧ e.end) NO 3:38
EF (p.product.1.price.8 ∧ p.product.2.price.5 ∧ p.product.3.price.7 ∧ e.end) NO 3:01
EF (p.product.1.price.8 ∧ p.product.2.price.5 ∧ p.product.3.price.6 ∧ e.end) YES 2:29
EF (p.product.1.price.8 ∧ p.product.2.price.5 ∧ p.product.3.price.4 ∧ e.end) NO 0:42

Table 6: Verification times of properties

Our evaluation shows that our framework can transform a BPMN model of the SMR auction with
more than 400 elements into Petri Nets in less than 1 second. It enables to verify data-dependent
properties in a data-aware process model by employing a model checker.

22



Process Enhancement Places Transitions Transformation Time
1 yes 669 694 0.3 sec
1 no 181 182 0.1 sec
2 yes 998 1031 0.4 sec
2 no 260 254 0.1 sec

Table 7: Overview of Petri Nets generated for Processes 1 and 2

7 Related Works

There is a growing stream of research to address workflow verification considering the data per-
spective, see [2] for an overview. [4] is one of the first Petri Net based approaches to detect and
resolve modeling errors which occur in presence of data. They transformed BPMN 1.2 to Petri
Nets by mapping options for data objects. Authors in this approach only considered the states of
data objects, and not their values. Furthermore, they only deal with equality of states for map-
ping data-dependent gateways. Another approach to detect data anomalies based on Petri Nets
is represented in [27]. They unfolded the execution semantics of BPMN process models regarding
data and formalized data-flow errors in a set of anti-patterns. In this, authors only considered
the data-flow errors and do not provide a method for verification of data-dependent properties. [5]
formalized data-aware compliance rules by Linear Temporal Logic with Past Operators (PLTL) and
employed a model checker to verify properties. In case of detecting an error, they apply Temporal
Logic Querying (TLQ) to explain violation. However, they only support data states in their process
models and data-aware compliance rules, although data values play a significant rule for compliance
checking. So, it is not sufficient to use this approach for verification of properties based on data
values. Another approach to deal with conditions on numeric data is represented in [16]. They
verify temporal properties of a business process by employing bounded model checking in answer
set programming. The article addresses the verification of properties with data values, however the
challenge of data value manipulation still remains.
[6], [3], and [25] introduce a method based on Logic Programming. In [25] authors propose a frame-
work based on Constraint Logic Programming (CLP) for representing and reasoning on process
models by modeling them as a state transition system. They model representation and manipula-
tion of data values based on arithmetic constraints. However, in case they detect an error in the
process model, they can not provide a counterexample to fix it. Additionally, they do not have
any restriction on their workflow and data which makes the verification undecidable in general. [6]
extends the result of [3] by introducing three new predicates (final, hasSuccessor, and findPath)
based on the next predicate to detect more flows on data-aware business process models. They
translate each business process element (task, event, gateway) into a logic predicate and control the
transitions between them by sequence flows. Although they represent data values in the process
model, they do not allow to use them in their predefined queries. Another drawback is that they
can not provide counterexamples which are based on intermediate states.
Further approaches exist using so-called artifact systems for verification of business processes. In
[24], authors propose a restricted class of artifact systems and LTL-FO properties to make the
satisfaction decidable. In that paper, artifacts carry values of an attribute which can be updated
by external services. These services work with an underlying database. However, the results show
their approach fails in presence of data dependency (integrity constraints on the database). They
do not support arithmetic operations which play a significant rule in some real life applications such
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as spectrum auctions. [13] alleviate these problems by extending the artifact model. However, they
impose syntactic restrictions on process models and properties which limit its applicability.

8 Conclusions

In this paper, we have developed a new method to verify data-dependent properties in a SMR
auction. This approach takes representation and manipulation of data values into account. To do
this, we have provided Specification Expressions to enhance a BPMN model with annotations of
used data values. To take the advantages of an existing model checker, we have transformed the
enhanced BPMN model into Petri Nets by applying new mapping and unfolding rules. Then, we
have verified data-dependent properties of an SMR auction expressed as CTL formulas to detect
high-risk executions. Our implementation shows that our tool can verify data-dependent properties
to calculate the worst possible values for important measures of a SMR auction.
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