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A B S T R A C T

Crystal Plasticity (CP) modeling is a powerful and well established computational materials science tool to
investigate mechanical structure–property relations in crystalline materials. It has been successfully applied to
study diverse micromechanical phenomena ranging from strain hardening in single crystals to texture evolution
in polycrystalline aggregates. However, when considering the increasingly complex microstructural composition
of modern alloys and their exposure to—often harsh—environmental conditions, the focus in materials modeling
has shifted towards incorporating more constitutive and internal variable details of the process history and
environmental factors into these structure–property relations. Technologically important fields of application of
enhanced CP models include phase transformations, hydrogen embrittlement, irradiation damage, fracture, and
recrystallization. A number of niche tools, containing multi-physics extensions of the CP method, have been
developed to address such topics. Such implementations, while being very useful from a scientific standpoint,
are, however, designed for specific applications and substantial efforts are required to extend them into flexible
multi-purpose tools for a general end-user community. With the Düsseldorf Advanced Material Simulation Kit
(DAMASK) we, therefore, undertake the effort to provide an open, flexible, and easy to use implementation to
the scientific community that is highly modular and allows the use and straightforward implementation of
different types of constitutive laws and numerical solvers. The internal modular structure of DAMASK follows
directly from the hierarchy inherent to the employed continuum description. The highest level handles the
partitioning of the prescribed field values on a material point between its underlying microstructural con-
stituents and the subsequent homogenization of the constitutive response of each constituent. The response of
each microstructural constituent is determined, at the intermediate level, from the time integration of the un-
derlying constitutive laws for elasticity, plasticity, damage, phase transformation, and heat generation among
other coupled multi-physical processes of interest. Various constitutive laws based on evolving internal state
variables can be implemented to provide this response at the lowest level. DAMASK already contains various CP-
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based models to describe metal plasticity as well as constitutive models to incorporate additional effects such as
heat production and transfer, damage evolution, and athermal transformations. Furthermore, the implementa-
tion of additional constitutive laws and homogenization schemes, as well as the integration of a wide class of
suitable boundary and initial value problem solvers, is inherently considered in its modular design.

1. Introduction

Predicting, understanding, and controlling the mechanical behavior
is critical when designing structural materials and using them during
service. In modern alloy systems—where multiple deformation me-
chanisms, phases, and defects are introduced—the engineering of me-
chanical properties such as strength and ductility can quickly turn into
a combinatorial challenge, rendering traditional, experimental-based
alloy development workflows inappropriate. It is thus becoming in-
creasingly important to complement the resource consuming step of
material processing and testing with modeling and simulation to ad-
dress this challenge [1–3]. In particular, continuum modeling ap-
proaches are a natural choice for this task since they are capable of
predicting the mechanical behavior in dependence of alloy composi-
tion, microstructure, crystallographic texture and phase fractions at
relevant engineering time and length scales [4]. Also, validation and
calibration of continuum simulation results can be readily achieved by
direct comparison to corresponding experimental data [5–15].

In the case of crystalline matter, the Crystal Plasticity (CP) method
(see [4,16] and references therein), which is based on the behavior of a
single crystal, has been successfully applied in predicting the mechan-
ical response of polycrystals up to the industrially relevant component
scale. CP models account for the tensorial nature of inelastic deforma-
tion modes such as dislocation glide, displacive transformation, or
mechanical twinning in individual grains.

A constitutive description of the defect evolution and the associated
interaction laws describing strain hardening are assigned to individual
deformation systems either in the form of phenomenological or physics-
based viscoplastic laws. These microscopically derived deformation
mechanisms are then composed into an inelastic velocity gradient,
which is embedded in a finite-strain continuum framework to enable
the calculation of local shape changes and lattice rotations of a single
crystal. Furthermore, by accounting for intergranular interactions, ef-
fective properties of polycrystalline aggregates can be derived.

Physics-based constitutive models reflect the kinetics of the various
types of lattice defect populations in a mechanism-oriented fashion
including phenomena such as thermally activated slip, build-up of
geometrically necessary dislocations, the role of the stacking fault en-
ergy and the non-linear interaction among dislocations, grain bound-
aries, twins, and displacive transformations. A critical issue here is the
extent to which microstructural detail needs to be incorporated in the
parameterization of a constitutive law. In the classical works of
Mecking and Kocks [17] it was observed that strain hardening prop-
erties of polycrystalline single phase materials can be expressed—in a
rather coarse approximation—in terms of a global dislocation density
alone. However, predicting more complex phenomena such as transi-
tions in the strain hardening behavior, caused either by dislocation
structure evolution or the activation of other deformation carriers such
as mechanical twins at higher loads, can require a much richer de-
scription of the microstructure. An example where the interplay of
compositional changes with various interacting deformation mechan-
isms has been studied in detail is the dependence of dislocation (cross-)
slip, mechanical twinning, and the formation of - and -martensite on
the Stacking Fault Energy (SFE) in face-centered cubic (fcc) Iron (Fe)-
Manganese (Mn) [18,19]. Such development of chemical composition-
sensitive constitutive models is of high relevance since practically all
engineering materials are multicomponent systems. It becomes even
more important when considering also chemical reactions between a
mechanically loaded material and its environment such as encountered

in the fields of stress corrosion cracking or hydrogen embrittlement
[20,21].

Another important aspect of constitutive modeling lies in the con-
sideration of grain softening phenomena, such as dislocation and cell
recovery, primary static recrystallization, discontinuous or continuous
subgrain coarsening, grain growth, dynamic recrystallization, post-dy-
namic recrystallization, or metadynamic recrystallization to name but a
few essential effects that can reduce the critical shear stress and alter
the crystallographic texture [22,23].

To complete the description of a constitutive model, the required
constitutive parameters for the relevant physical quantities of a given
material can be identified either from experiments [24] or from simu-
lations at smaller length and time scales [25,26].

The behavior of a single crystal, described by a constitutive model,
forms the basis for modeling the co-deformation of multiple con-
stituents in a polycrystalline aggregate. The interaction between dif-
ferent grains can be modeled either in full-field simulations, where each
grain is spatially resolved by a large number of material points, or in a
homogenized way, where one material point aggregates the behavior of
multiple grains. Full-field simulations provide spatial distribution of
field values, including their extrema, in real or synthetic micro-
structures. While real microstructures are especially attractive to
benchmark the constitutive description against experimental results,
synthetic microstructures and their systematic permutations are of
special importance for microstructure optimization. Moreover, if the
probed Volume Element (VE) is large enough, it can serve as a
Representative Volume Element (RVE) to derive effective quantities
[1,27,28]. For large-scale forming simulations, determination of the
local material response by such full-field simulations is often compu-
tationally prohibitive and requires subsequent model order reduction
[29–31]. Alternatively, when applying CP to macroscopic loading si-
tuations, e.g. in the field of sheet forming operations, homogenization
schemes based on coarse-graining from the single crystal up to the
macroscopic scale can be used.

In a continuum setting, the constitutive stress response to the ap-
plied loading is required to be in mechanical equilibrium. Hence, to
predict the overall mechanical response of the region of interest, the
governing boundary value problem for mechanical equilibrium needs to
be solved. A large number of numerical methods that utilize different
discretizations of the geometry are available for this purpose. However,
in the field of CP, only the Finite Element Method (FEM) and spectral
methods based on Fast FOURIER Transforms (FFTs) are commonly used.
While FEM approaches offer the flexibility for simulating problems that
are characterized by complex boundary conditions on arbitrarily
shaped geometries, spectral methods are more efficient for dealing with
VEs subjected to periodic boundary conditions. Hence, the former types
of solvers are typically employed for component-scale simulations and
the latter—working on a regular grid of material points—can be used
for micromechanical investigations, often in direct conjunction with
microscopic imaging techniques such as Electron Backscatter
Diffraction (EBSD) [32–34] or Differential-Aperture X-ray Microscopy
(DAXM) [35–37].

The features outlined above reflect the status of conventional CP
models that are routinely used for polycrystal micromechanics, forming
simulations, crystallographic texture predictions, and computational
homogenization. Present efforts in developing constitutive models aim
at further enhancing the predictive capabilities beyond classical CP to
treat effects associated with heat transfer, chemical composition
changes, phase transformation, and the evolution of microstructure and
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damage under given service conditions including harsh environmental
exposure. A strongly coupled approach is required to consistently treat
the interactions among the constitutive (sub-) models describing these
individual effects. Constitutive models for temperature evolution need
to account for heat generation and transport. In a thermo-mechanically
coupled setting, the heat generation resulting from plastic deformation
in turn eases thermally activated dislocation motion and causes lattice
expansion. Therefore, to enable full coupling, the underlying con-
stitutive laws for elastic and plastic deformation should be rendered
temperature dependent. The chemical composition in multicomponent
alloy systems determines to a large extent the deformation mechanics.
As an example, in the Fe-Mn steels mentioned above, the specific
Carbon (C)- and Mn-content influences phase stability and activation of
deformation twins and -martensite via the SFE. A chemo-mechanically
coupled simulation taking local solubility and diffusion into account is
hence desirable for the design of such alloy systems. The nucleation and
propagation of microcracks, driven by stress and strain, redistributes
these fields drastically, thus affecting subsequent micromechanical
deformation pathways [38–41]. Finally, hydrogen embrittlement phe-
nomena in concert with their associated effects such as hydrogen en-
hanced local plasticity (HELP), hydrogen stabilized vacancy and na-
nopore formation, or hydrogen-related interfacial decohesion and stress
corrosion cracking are prominent examples where the interplay of all
above mentioned effects is essential for arriving at a microstructure
based understanding of material failure.

At the continuum level, additional solvers for the individual field
problems are required. While various approaches are available, the
strong multi-field coupling poses severe numerical challenges [42,43].
Therefore, tackling and solving the challenges associated with the in-
clusion of enhanced and strongly coupled constitutive models and related
numerical solvers can serve as a great vehicle for profound progress in
the field of Integrated Computational Materials Engineering (ICME)
projects [2,3]. In the context of ICME, simulations are performed to ef-
ficiently identify relevant micromechanical mechanisms, enabling more
rapid discovery and maturation of novel alloys, microstructures, forming
methods, and thermo-chemo-mechanical processing routes.

The wide range of topics that can be tackled by such a modeling and
simulation package capable of tackling complex ICME tasks requires to
design it in a highly modular and flexible way to enable straightforward
integration of additional metallurgical, chemistry related, or physics
effects for expert users and developers. At the same time, as modeling
becomes increasingly important for experimentalists to analyze and
understand their observations or even design corresponding experi-
mental set-ups, a suitable package should be designed in a user-friendly
way for lowering the barrier to entry for non-expert users.

The present article reflects these different aspects regarding the
current developmental status of the Düsseldorf Advanced Material
Simulation Kit (DAMASK) in providing a comprehensive, flexible,
modular, and easy-to-use multi-physics software tool for conducting
advanced microstructure–property simulations to the scientific com-
munity as an open source freeware package. Other than previous
overviews of the field of continuum modeling [4,16,44–47], this con-
tribution places the focus on those kinematic and constitutive features
available in DAMASK together with numerical and technical details of
their implementation, which are complemented by illustrative appli-
cation examples. It should, however, be mentioned that the DAMASK
package is steadily extended and improved—hopefully also by con-
tributors attracted by this work—so that this paper can only reflect the
status at the time of writing. Yet, this article has been written and
compiled in a way that the principal setup and the modularity of the
DAMASK package are outlined so as to enable current and future users
to understand its basic structure, apply it, and further help modifying
and enhancing it.

This article is organized as follows: In Section 2 the overall concept
and design of DAMASK is presented. Section 3 introduces the types of
conservation laws that can be treated using DAMASK and the available

corresponding solvers and their interfaces. In Sections 4 and 5 the upper
and intermediate hierarchical levels of the DAMASK MATERIAL POINT
MODEL, namely the PARTITIONING and HOMOGENIZATION and the CONSTITUENT

LEVEL, are discussed in detail. Section 6 presents all the models im-
plemented at the CONSTITUTIVE LEVEL, forming the lowest rank of DA-
MASK. Application examples for these models are presented in Section
7 including case studies demonstrating the extensibility of DAMASK
starting from Section 7.15. In Section 8 possible work flows including
setup, running, and evaluation of DAMASK simulations are presented
before Section 9 gives an outlook on current and future developments.
In the Appendix, the scheme of notation and other technical informa-
tion is compiled.

2. Concept

DAMASK has been designed to reproduce the multi-scale hierarchy
and multi-physics structure inherent in the underlying material physics
that is associated with thermo-mechanical loading of complex mate-
rials. Therefore, template functions are defined linking numerical sol-
vers, homogenization schemes, and constitutive laws. For extended
flexibility, multiple constitutive laws and homogenization schemes can
be combined in the same model together with a specific set of solvers
for the associated boundary and/or initial value problems. In this way a
choice can be made between model accuracy and numerical effort to
best address the problem at hand.

2.1. Background

The development of DAMASK started in 2006 with the establish-
ment of a new research group named Computational Mechanics of
Polycrystals (CMCn) at the MAX-PLANCK-Institut für Eisenforschung
(MPIE). The aim of this joint research group between the MAX-PLANCK-
Gesellschaft and the FRAUNHOFER-Gesellschaft was the development of
enhanced material models and simulation technologies from the single
crystal up to the component scale [48]. In the course of the CMCn

project, it turned out that the Crystal Plasticity (CP) codes existing in
the public domain at that time were not flexible enough for this pur-
pose. Therefore, a new CP implementation was initiated, aiming at a
strict modularization to allow for flexible incorporation of material
models on all length scales. Within the CMCn project, two different
homogenization schemes and various constitutive models for plasticity
have been incorporated into the new code. The capability to choose
from a set of different available constitutive models within a single si-
mulation is a unique feature of the developed simulation framework.
Together with R.A. Lebensohn from the Los Alamos National Lab
(LANL), Humboldt awardee at MPIE in 2010, a spectral method based
mechanical boundary value problem solver was added to complement
the existing user material interfaces to commercial Finite Element
Method (FEM) solvers. In addition to the core routines, numerous uti-
lities for pre- and post-processing have been added to the package now
referred to as DAMASK.

In September 2011, a website (https://damask.mpie.de) was laun-
ched to release the code to the public domain as free software according
to GPL 3. The idea of a flexible open source CP implementation was
very well received by the scientific community. Presently, more1 than
50 groups across the world use DAMASK, including universities such as
University of California Los Angeles (UCLA), research facilities such as
LANL, and multinational companies such as Tata Steel. These groups
contribute to the further code development as well, e.g. by adding
features such as new or modified constitutive models.

In 2015, multi-physics extensions were incorporated into DAMASK
to consistently treat coupled problems, such as thermo-mechanics,
chemo-mechanics, and damage-mechanics. Since early 2016, the code

1 The exact number of users is unknown since downloads are not tracked.
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is hosted in a public repository using GitLab (see Appendix A for de-
tails) to enable and assist collaborative development among the
growing user community.

2.2. Hierarchical structure

DAMASK is designed to reproduce the multi-scale structure inherent
to the underlying material physics of materials deformation, bridging
the anisotropy introduced at the atomic scale to the global field

description. A schematic representation of its hierarchical structure is
shown in Fig. 1(a).

The global evolution of the field quantities is described by their
respective conservation laws for static or dynamic equilibrium.
Conservation of the field quantities (e.g. temperature, displacement) is
build on the description of the corresponding fluxes (e.g. heat flux,
stress) and sources (e.g. heat source, body forces) provided by con-
stitutive descriptions. The conservation laws and associated numerical
solution methods are outlined in Section 3.

Fig. 1. Concept of DAMASK. Each material point, which is part of a discretized body on which conservation laws are solved, is made up of multiple constituents that
comprise of various constitutive laws.
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A MATERIAL POINT MODEL is a structured multi-scale description of the
fluxes and sources required by the conservation laws. It has the fol-
lowing three-level hierarchy: The partitioning of the prescribed field
values on a material point among its underlying microstructural con-
stituents and the subsequent homogenization of the constitutive re-
sponse of each constituent are handled at the highest level by a
PARTITIONING and HOMOGENIZATION scheme as outlined in Section 4. Section
5 details how, at the intermediate CONSTITUENT LEVEL, the response of
each microstructural constituent is determined from the time integra-
tion of the underlying constitutive laws for fluxes and sources. At the
CONSTITUTIVE LEVEL (Section 6), constitutive laws based on evolving in-
ternal state variables are implemented in DAMASK to provide this re-
sponse at this lowest level.

2.3. Modularization

In order to facilitate a flexible and extensible implementation, the
code is organized in a modular structure. The MATERIAL POINT MODEL is
build from abstract modules for PARTITIONING and HOMOGENIZATION and the
CONSTITUTIVE LEVEL presented in the previous section. The purpose behind
the introduction of these abstract modules is to facilitate branching into
the different specific sub-modules available in DAMASK as sketched in
Fig. 1(b). Each of these sub-modules needs to provide a standard set of
functions with defined interfaces. For example, each mechanical
homogenization sub-module has to partition the average deformation
gradient to the individual constituents and homogenize their stress
response. The abstract module on the CONSTITUENT LEVEL (Fig. 1(a)) then
derives additional field quantities from the primary fields and their
gradients. For example, in the case of a “plain” elasto-plastic response,
plastic and elastic deformation gradients are computed from the total
deformation gradient. The elastic deformation gradient is used by an
elasticity constitutive sub-module to calculate the stress. Finally, each
constitutive sub-module for plasticity has to provide the plastic velocity
gradient as a function of this stress, based on the current material state
and possibly additional derived fields. Such an encapsulation of the
MATERIAL POINT MODEL provides the flexibility to interface it with dif-
ferent types of solvers for the conservation laws, such as FEM solvers or
spectral solvers.

3. Conservation laws

The mechanical, thermal, structural, and chemical behavior of
materials is of primary interest in microstructure physics. It is described
by the concurrent evolution of multiple field quantities and is uniquely
determined by a coupled system of governing Partial Differential
Equations (PDEs) together with initial and/or boundary conditions. The
solution of this system describes the conservation of physical quantities
such as linear momentum, mass, or energy. Mathematically, these
conservation laws can be categorized as elliptic (e.g. static mechanical
equilibrium), hyperbolic (e.g. dynamic mechanical equilibrium), or
parabolic (e.g. heat conduction, phase field) PDEs. Currently im-
plemented in DAMASK are conservation laws for mechanical equili-
brium, heat conduction, and phase field damage. However, the modular
structure of the code allows to readily add additional conservation laws
of the same mathematical categories, e.g. electrical conduction for the
case of elliptic PDEs.

3.1. Formulation

The large-strain formulation employed in DAMASK is based on the
assumption of a continuum body that occupies the region 0 in the
reference configuration and t in the current configuration. The loca-
tion of the material points in the reference state is given by x 0 and
in a deformed configuration by y t. A deformation map

x x y( ): 0 t maps points x in the reference configuration to
points y in the current configuration.

A line segment xd in an infinitesimal neighborhood of a material
point x is pushed forward by:

+ = + +y y y y
x

x xd ·d (d ).2
(1)

Neglecting terms of higher order, yd can be expressed as:

=

=

y y
x

x

x

d ·d

Grad ·d
F x( ) (2)

where F x( ) is the deformation gradient. F x( ) maps the infinitesimal line
segment xd in the reference configuration to yd in the current config-
uration.

3.1.1. Mechanical equilibrium
Mechanical equilibrium conserves linear momentum during a con-

tinuous deformation process2 and describes a state where zero net
forces are acting on a material volume. Mathematically, this is de-
scribed by the divergence of stress being balanced by the inertia forces
everywhere in . The finite deformation stress measure used in DA-
MASK, i.e. the first PIOLA–KIRCHHOFF stress (P) or CAUCHY stress (σ), de-
pends on the configuration (for conversion between the configurations
see Appendix C) in which the conservation law is solved, i.e. the PDE
can assume different forms that are equivalent in an infinitesimal de-
formation formulation [49]:

=P yDiv ¨ in ,0 0 (3a)

= ydiv ¨ in ,t t (3b)

where ρ is the mass density. These hyperbolic equations reduce to elliptic
ones for static equilibrium, i.e. when =y 0¨ . The boundary conditions are
prescribed as traction and/or displacement on the boundaries of and
need to be accompanied by initial conditions for dynamic situations.

3.1.2. Heat conduction
Thermal equilibrium describes a state where zero net heat flux oc-

curs within a material volume. This is described by the divergence of
the heat flux being balanced by the heat generated, e.g. due to plastic
deformation, everywhere in . The parabolic PDE associated with non
steady-state heat conduction in the reference configuration takes the
form:

=µ T f fDiv in ,T T T 0 (4)

where =µ CT 0 p is a viscosity-like term with heat capacity Cp. The
temperature is denoted by T, fT is the heat generation rate, and fT the
heat flux. The boundary conditions are prescribed as a heat flux and/or
temperature on the boundaries of and need to be accompanied by
initial conditions for the temperature.

3.1.3. Phase field damage
The prediction of crack initiation and propagation is an inherently

non-local process. The Phase Field Method for Fracture (PFMF)
[38,42,50] has emerged as a powerful and versatile tool to formulate
this process in terms of an ALLEN–CAHN [51] parabolic PDE.

A non-conserved scalar damage field φ is introduced, which in-
dicates a phase transition between undamaged, i.e. = 1, and fully
damaged, i.e. = 0, regions.3 The damage process conserves the total
energy in the sense of GRIFFITH [52]. The resulting PDE associated with
the evolution of φ takes the general form:

2 Continuous deformation implies kinematic compatibility of the resulting
deformation gradient field F, i.e. =F 0Curl .

3 To avoid numerical difficulties associated with a fully damaged material
description, in practice the damage field is restricted to a small but finite value,
i.e. .
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=µ f fDiv in ,0 (5)

where µ is the damage viscosity, f the driving force, and f the flux.
The boundary conditions are typically prescribed as zero flux on the
boundaries of and need to be accompanied by initial conditions for
the damage field.

3.2. Numerical solvers

PDEs (3) to (5) can be solved analytically only for a few simple
cases. In general, a numerical approach such as the Finite Element
Method (FEM), Finite Volume Method (FVM), or Finite Difference
Method (FDM) is required to find an approximate solution. The FEM is
most popular in micromechanics owing to its high flexibility in con-
sidering complex topologies and multiple types of non-homogeneous
boundary conditions. In cases where less flexibility is acceptable, Fast
FOURIER Transform (FFT) based spectral methods have emerged as a
powerful alternative [53–59]. Currently implemented in DAMASK are
interfaces to the commercial FEM solvers MSC.MARC and ABAQUS (stan-
dard and explicit) for thermo-mechanical or damage-mechanical pro-
blems as well as in-house developed spectral solvers for general multi-
physics problems.

In order to arrive at an equilibrium solution, the solver of the PDE
needs to be informed about the flux and source response to a given field
at every material (discretization) point. More precisely, for each time
increment t the PDE solver requests a stress and body force, heat flux
and heat generation, and/or flux and driving force for damage that
results from a change in the deformation gradient, temperature, and/or
damage field from t0 to = +t t t0 . For some solution algorithms the
solver also requires the tangents of the respective quantity, e.g. implicit
mechanical FEM solvers require the tangent stiffness.

3.2.1. Finite element method
The FEM was introduced in 1943 by Courant [60] and its break-

through came through the publication of “The Finite Element Method
in Structural and Continuum Mechanics” in 1967 by Zienkiewicz [61].
These and the succeeding volumes are considered the most important
monographs in the field to date.

The FEM approximates the weak form of the PDE by discretizing the
body into finite elements within which a set of compact shape functions
is defined. This compactness enables the assembly of many small local
element tangent matrices into one large but sparse global matrix. The
global solution is then obtained by inverting this global matrix by direct
or iterative numerical methods. The material problems handled using
DAMASK are typically non-linear in character and thus need to be
solved iteratively.

In the following, only DAMASK-specific implementation details are
presented as a large amount of general FEM literature is available
[62,63].

3.2.1.1. Interfaces to finite element method software. DAMASK has been
coupled to the commercial FEM packages MSC.MARC and ABAQUS (explicit
and implicit) via their respective user subroutine interfaces.

The user material subroutines for hyperelastic material behavior
(Hypela2 for MSC.MARC and (V)Umat for ABAQUS) are employed to ob-
tain the mechanical response, which requires DAMASK to provide the
stress for a given deformation gradient in an updated LAGRANGian set-
ting. Hence, any distinction between elastic and inelastic deformation is
handled internally by DAMASK and hidden from the FEM package.
MSC.MARC and ABAQUS require the material response to be provided in
terms of the CAUCHY stress4 which can be computed as = F PF(det ) 1 T

from the more general quantities P and F used in DAMASK (see

Appendix C). Furthermore, for any implicit solver, a corresponding
transformation step (push forward) detailed by Tjahjanto [64] is also
required for the stress tangent P Fd /d . The properties of the DAMASK
MATERIAL POINT MODEL are determined by the PARTITIONING and HOMO-

GENIZATION scheme and the set of underlying laws at the CONSTITUTIVE

LEVEL. These are locally selected through two numerical IDs, i.e. State
Variables 2 and 3 in MSC.MARC and Constants 1 and 2 of the user
material in ABAQUS.

For thermo-mechanical simulations, the source term fT in Eq. (4)
provided by DAMASK is passed to the user heat flux subroutines Flux
(for MSC.MARC) or Dflux (for ABAQUS). The same procedure is followed
for damage-mechanical simulations, where all thermal quantities in Eq.
(4) are interpreted as their damage counterparts in Eq. (5) to solve for
the evolution of instead of T.

The interaction between the MATERIAL POINT MODEL of DAMASK and
the FEM solvers via these interfaces occurs independently for each in-
tegration point.5 For non-local constitutive models, which rely on
neighborhood information, a special solution scheme, originally de-
veloped by Ma et al. [65], is implemented into DAMASK. This scheme
discriminates even and odd iterations of the global FEM solution pro-
cess. Odd iterations are used for gathering consistent field information
to enable the evaluation of constitutive equations that require in-
formation about the state of neighboring points. This is done in parallel
for all material points in the even iterations. While this approach is
imperative to evaluate non-local constitutive models, DAMASK by de-
fault uses it for the local constitutive models as well to enable DAMASK-
internal thread parallelization. It is important to note that this scheme
conflicts with some parallelization options of the commercial FEM
solvers.

The material point results requested are returned in the form of so
called user defined variables (called User Defined Var in MSC.MARC

and Sdv in ABAQUS), which in both cases can be given descriptive names
with the help of a DAMASK script.

3.2.2. Spectral method
The spectral method using FFT was introduced to material me-

chanics by Moulinec and Suquet [53]. It has since been extended to a
wide range of constitutive descriptions [54,57,66–68], reformulated to
finite deformation [57,59,69,70], and numerically improved
[58,71–76]. A systematic comparison to FEM approaches is given in
[59,70,77].

The spectral solver variants included in DAMASK are based on the
methods outlined in [57,76] for mechanical equilibrium (Eq. (3)), and
on the approach introduced in [43] for heat conduction (Eq. (4)) and
phase field damage (Eq. (5)). The field equations are solved using fully
implicit time stepping. Strong coupling between multiple fields is
achieved in a self-consistent manner through a staggered iterative
procedure.

3.2.2.1. Mechanical equilibrium. Following the ideas of Eshelby [78],
the deformation map x( ) introduced in Section 3.1 is expressed as a
sum of a homogeneous deformation gradient F, and a superimposed
deformation fluctuation field w ,

= +x Fx w x( ) ( ), (6)

for which periodicity conditions hold, i.e. = +w w on corresponding
surfaces and + on .

Eq. (6) allows writing the deformation gradient F as the sum of a
spatially homogeneous part, F, and a locally fluctuating part, F:

= +F F F. (7)

4 The CAUCHY stress is returned as a 6-vector with components ordered dif-
ferently between MSC.MARC and ABAQUS.

5 MSC.MARC and ABAQUS implicit require the stress response for exactly one
integration point while ABAQUS explicit handles several integration points at a
time.
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The stress response is formally expressed through a strain energy den-
sity functional :

= …TP x
F

x F( ) ( , , , , ). (8)

In the following, a spectral method is derived from the direct var-
iational formulation, while numerically more robust solution schemes
based on a mixed variational formulation are presented in [72,76]. In
this so-called “basic” scheme, the equilibrated deformation field is ob-
tained by minimizing over all deformation fields that fulfill Eq. (6)
for an externally imposed average deformation. Static equilibrium ex-
pressed in real and FOURIER6 space follows as:

F= =iP x P k k 0min Div ( ) [ ( ) ] ,1
(9)

which is equivalent to finding the root of the residual body force field

=ik P k k 0[ ( )] ( ) . (10)

The differential Eq. (10) in FOURIER space is numerically difficult to
solve because of its high condition number. Introducing, in the spirit of
Eshelby [78] and Mura [79], a linear reference material of stiffness
allows reformulation of Eq. (10) into an equivalent problem

= =P x F x( ) ( ) Grad with better numerical properties, i.e. a lower
condition number. Equilibrium in this reference material is fulfilled if,
for a given deformation map , the residual body force field vanishes:

= =i ik k k k A k k 0[ ( )] [ ( ) ] ( ) ( ) . (11)

The acoustic tensor A k( ) is a shorthand notation for
i iA k a k a k k k( ) ( ) [ ( ) ] for any given vector field a k( ). It cor-

responds to an operator on a deformation map producing the body
forces resulting in the reference material. The inverse A 1 therefore
gives the deformation map that would result from a known body force
field in the reference material; this deformation map vanishes if the
body force field vanishes, i.e. in static equilibrium and for a positive-
definite . This formulation thus allows defining an operator that re-
sults in the deformation map causing the same body force field in the
reference material as a given deformation map in the original material,
which corresponds to a preconditioning operation of 1 on the non-
linear operator . is straightforward to invert since it is local in k,
with = A k( )1 1. The preconditioned system thus reads ( k 0):

= =ik A k P k k 0[ ( )] ( ) ( ) .1 1 (12)

The deformation gradient field corresponding to this deformation map
is obtained from the gradient in real space of Eq. (12) as

= =i i ik k A k P k k k 0[ ( )] [ ( ) ( ) ] ,1 1 (13)

which is equivalent to Eq. (12) except for a constant residual field, i.e. at
=k 0 where the prescribed average deformation gradient is known to

hold. Expressed in terms of the deformation gradient field, Eq. (13)
reads

=F k k P k 0[ ( )] ( ) ( ) ,mech (14)

where the Gamma operator k( ) is defined as a shorthand notation to
i ik T k A k T k k k( ) ( ) [ ( ) ( ) ]1 for a tensor field T k( ).

3.2.2.2. Heat conduction and phase field damage. The spectral method
presented above for mechanical problems can be reformulated to solve
the heat conduction and the phase field damage PDEs. Since Eqs. (4)
and (5) have a similar form, the formulation is outlined here for the
heat conduction PDE, but can be analogously applied to the phase field
PDE.

A backward EULER time discretization is used to express the time-
dependent Eq. (4) in the following semi-discrete form:

=µ T t T t
t

fx x x f x( , ) ( , ) ( ) Div ( )T T T
0

(15)

The flux, fT , is additively split into a linear homogeneous term and a
fluctuating field:

= T tf x K x x( ) Grad ( , ) ( )T T (16)

where K is the homogenous reference tensor of the linear term.
Similarly, the viscosity-like term, µT , is split into spatially averaged and
fluctuating parts, i.e.

= +µ µ µ .T T T (17)

With Eqs. (16) and (17), Eq. (15) can be expressed in FOURIER space as

+ =µ t T tk Kk k k( · ) ( , ) ( )T T (18)

where the temperature polarisation field, x( )T , which implicitly de-
pends on T tx( , ), is given by

= + +t f µ T t µ T tx x x x x( ) ( ( ) Div ( )) ( , ) ( , )T T T T T0 (19)

The solution of the heat conduction PDE can therefore be expressed as
the root of the following residual function

=T t T tk k G k k[ ( , )] ( , ) ( ) ( ) 0T T (20)

where +µ tG k k Kk( ) ·T
1 .

The same procedure is followed for solving phase field damage pro-
blems, where all thermal quantities in Eq. (4) are interpreted as their
damage counterparts in Eq. (5) to solve for the evolution of φ instead ofT .

3.2.2.3. Implementation details. In the following, details concerning the
implementation of the methods outlined above are concisely presented.

Fast FOURIER Transform: Eqs. (14) and (20) are solved on a hexahe-
dral domain 0 with side lengths dx , dy, dz, which is discretized into a
regular grid of × × =N N N Nx y z points. The solution field is approxi-
mated in the discrete FOURIER space associated with this real space grid
using the FFT. Specifically, the Fastest FOURIER Transform in the West
(FFTW), a free FFT implementation that has shown excellent perfor-
mance [80] is employed. To save memory and computation time, the
complex conjugate symmetry resulting from the real space field data is
exploited.

Calculation of Gradients: While the deformation, temperature, and
damage fields are necessarily continuous, their spatial gradients are
allowed to be discontinuous, e.g. across phase boundaries. A numerical
artifact associated with FOURIER representations of such discontinuous
gradient fields is the formation of spurious oscillations which is referred
to as GIBBS phenomenon. This can deteriorate the performance of the
solution schemes as well as the quality of the solution [81]. Various
techniques exist to reduce these effects, such as a low-pass filtering to
effectively dampen high-frequency modes associated with the spurious
oscillations [82]. Finite difference approximations of the gradient
fields, which can be—as outlined by Kaßbohm et al. [55], Willot [58],
and Vidyasagar et al. [83]—easily obtained in FOURIER space, are em-
ployed to reduce such spurious oscillations.

The gradient Grad g of a field g x( ) is expressed in FOURIER space as
g k k( ) . Working with continuous derivatives results in the
straightforward relation = ik k. The forward–backward finite differ-
ence variant introduced by Willot [58] reads then as:

=

+ +

+ +

+ +

e e e

e e e

e e e

k

( 1)( 1)( 1)

( 1)( 1)( 1)

( 1)( 1)( 1)

N
d

i i i

N
d

i i i

N
d

i i i

k k k

k k k

k k k

4

4

4

x
x
y
y

z
z

1 2 3

1 2 3

1 2 3
(21)

A more detailed discussion on alternative finite difference schemes
applicable for this purpose has been conducted by Schneider et al. [84].

6 Quantities in real space and FOURIER space are distinguished by notationQ x( )
and Q k( ), respectively, with x the position in real space, k the frequency vector
in FOURIER space, and the imaginary unit i. F [·]1 denotes the inverse FOURIER
transform.
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Reference Tensors: The choice of the reference stiffness has a strong
influence on stability and convergence rate as shown by Michel et al.
[72]. In absence of an analytic expression for the large-strain for-
mulation [72], the reference stiffness for the mechanical problem is
selected as

= +P
F

x P
F

x1
2

argmax d
d

( ) argmin d
d

( ) .
F F (22)

Similarly, the choices for the reference thermal conductivity and
damage gradient tensors are formulated as

= +
T T

K f x f x1
2

argmax d
d Grad

( ) argmin d
d Grad

( ) ,T T

(23)

= +D
f

x
f

x1
2

argmax
d

d Grad
( ) argmin

d
d Grad

( ) .
(24)

Note that, unlike in the isotropic case, such convenient choice of the
reference tensors does not guarantee convergence. The rate of con-
vergence depends on the property contrast present in the material, as
discussed by Shanthraj et al. [76] for the case of mechanical equili-
brium.

Boundary and Initial Conditions: The applied boundary conditions
on are volume averages, i.e. for the mechanical boundary value
problem F is set to the applied load FBC. To this end, the desired
change of FBC is conveniently expressed in rate form, i.e. = tF FBC BC
for a given time increment of length t . In order to allow the (com-
ponent-wise) prescription of stress boundary conditions PBC, an
iterative adjustment of FBC needs to be done until the stress boundary
conditions are fulfilled. The solution for the deformation gradient
field, i.e. the actual spectral method procedure, is performed in par-
allel to these iterations. Within t , the volume element is then sub-
jected to a set of complementary (component-wise mutually exclusive)
boundary conditions in terms of deformation rate FBC and stress PBC,
where stress boundary conditions must preclude rigid body rotations.
In the following, FBC and stress PBC are mutually exclusive and set to
zero when undefined. These mixed boundary conditions are translated
into pure deformation boundary conditions at iteration +n 1 by set-
ting

= ++t t tF F F F
P

P P{ ( )} ( ) ({ } ).n
n

nBC 1 BC 0 BC BC
(25)

The last term in Eq. (25) corrects for deviations from the prescribed
stress boundary conditions. The average compliance F P/ is estimated
from the local responses P F/ [57]. In DAMASK, the use of two co-
ordinate systems enables the definition of boundary conditions that are
rotated with respect to the discretization of [85]. In contrast to the
mechanical equilibrium, the PDEs describing heat conduction and
phase field damage require specification of their respective initial field
values T x( , 0) and x( , 0).

Numerical solution: The resulting system of discretized equations is
solved by non-linear solution methods. Originally, a fix-point scheme
[86] was employed while recent approaches use more advanced solving
techniques [74,87].

In DAMASK, iterative solution methods, such as the non-linear
RICHARDSON method [88], the non-linear GMRES method [89], and the
inexact NEWTON-GMRES method [90] implemented in the Portable,
Extensible Toolkit for Scientific Computation (PETSc) [91] are used.
The use of PETSc allows to use advanced algorithms that exploit the
characteristics of the problem at hand as discussed in [42] for the case
of PFMF. In all these algorithms, an existing solution F x{ ( )}n for the
mechanical equilibrium problem, T x{ ( )}n for the heat conduction pro-
blem, or x{ ( )}n for the phase field damage problem at iteration n is
iteratively improved until the prescribed convergence criteria are sa-
tisfied.

Algorithm: For a given time interval, =t t t0, the solution for in-
dividual fields can be found iteratively as described above. The multi-
physics coupling approach followed in this work involves solving the
coupled system Eqs. (14) and (20) within a staggered iterative loop until
a consistent solution, within specified tolerances, is achieved for the time
interval. The procedure is detailed in Algorithm 1. The advantage of such
a staggered approach is that the solution scheme of each field can be
selected independently and additional fields are easily implemented.

Algorithm 1. Self-consistent staggered iterative procedure for multi-
physics coupling in the time increment t t[ , ]0 .

Convergence Criteria: To ensure that the resulting mechanical stress
field is in equilibrium, the Root Mean Square (RMS) value of the di-
vergence of the stress field, evaluated in FOURIER space, is reduced below
a prescribed tolerance. The corresponding equilibrium criterion reads:

P P xmax( , ) RMS( Div ( ) ),eq,abs eq,rel max 2 (26)

where eq,rel and eq,abs are the relative and absolute stress divergence
tolerance limits, respectively.

The fulfillment of the stress boundary conditions is checked by

P Pmax( , ) ,BC,abs BC,rel max BC max (27)

where =P P PBC BC is defined only for components where stress
boundary conditions are given. BC,rel and BC,abs are the corresponding
relative and absolute boundary condition tolerances, respectively.

The residual norm of Eq. (20) is evaluated as a convergence test for
the heat conduction and phase field damage PDEs.

4. Partitioning and homogenization

For component-scale simulations, e.g. deep drawing of automotive
structure parts, the volume represented by each material point is typi-
cally not composed of a single constituent but instead of an aggregate of
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constituents with different phases and/or crystallographic orientations.
For example, sheet materials typically have a non-random

Crystallographic Orientation Distribution Function (CODF) [92,93],
also referred to as crystallographic texture, and hence show anisotropic
behavior [94,95]. The CODF can be experimentally measured and ap-
proximated by a population of individual crystal orientations [96].
However, the number of orientations needed for a sufficiently close
approximation of the crystallographic texture is usually much larger
than the number of orientations that can be computationally handled at
a single material point. Therefore, DAMASK contains the HYBRIDIA al-
gorithm to optimally approximate a crystallographic texture with a
given number of individual orientations [97] and distribute those onto
the material points.

Given an aggregate of constituents, the task at this highest hier-
archical level is twofold: firstly to partition the prescribed field values
between the microstructural constituents and subsequently to homo-
genize their constitutive response. In the field of mechanics, a vast body
of literature exits on this topic ranging from simple schemes [98–101],
which are computationally efficient yet limited in accuracy, to complex
ones [102–107] with higher computational demands and accuracy.
When detailed resolution of local fields is required, two-scale ap-
proaches [56,108–111] can be employed as accurate but computa-
tionally expensive homogenization schemes. To address this trade-off,
DAMASK contains fast iso-field schemes for all field quantities and the
more involved Relaxed Grain Cluster (RGC) scheme [105] for me-
chanical homogenization.

4.1. Mechanical fields

In the framework of DAMASK, mechanical homogenization requires
to compute the average stress response P over Ng constituents com-
prising a material point for a given average deformation gradient F.7 F
is partitioned onto the constituents = …g N1, , g such that the volume-
averaged deformation gradient is consistent:

=
=

F F ,
g

N
g g

1

( ) ( )
g

(28)

where g( ) represents the volume fraction contributed by constituent g
to the material point in its reference (or undeformed) configuration.

The homogenized stress at the material point is calculated as the
volumetric average of the resulting stresses P g( ) of all constituents

=
=

P P .
g

N
g g

1

( ) ( )
g

(29)

The specific homogenization schemes presented in the following es-
sentially differ in the procedure for partitioning F (Eq. (28)).

4.1.1. Direct scheme for single constituents
For full-field simulations, where each material point represents a

single constituent, i.e. =N 1g , a homogenization scheme is not required.
Nevertheless, the modular structure of DAMASK formally requires a
homogenization to be specified for every material point. Therefore, in
order to avoid any overhead, this scheme passes =F F(1) directly on to
the lower level and returns the computed stress directly as =P P(1).

4.1.2. Isostrain
The isostrain assumption states that all constituents comprising a

material point are subjected to the same deformation. It is often re-
ferred to as “full constraint (FC) Taylor” assumption since Taylor [100]
first applied it to predict the deformation behavior of polycrystals.

Within the finite strain framework employed in DAMASK, it is

expressed by equating the deformation gradient of each constituent g
with the average deformation gradient F of the material point

= = …g NF F, 1, , .g( )
g (30)

In general, a different stress P g( ) will result in each constituent g due
to, for instance, different orientation or constitutive behavior
(strength). The isostrain scheme, therefore, generally violates stress
equilibrium between the constituent grains.

The isostrain homogenization can also be used to model visco-
elastic material behavior by combining a linear elastic with a visco-
plastic constituent. The stress homogenization (Eq. (29)) can be
changed to

=
=

P P
g

N
g

1

( )
g

(31)

in order to reflect this case.

4.1.3. Relaxed grain cluster
The RGC homogenization scheme [4,105,112] is an extension of

other grain cluster approaches such as the Grain Interaction (GIA)
[104,113] and the (A)LAMEL [102,103,114,115] models. Contrary to
mean-field approaches, such as the isostrain assumption mentioned
before, direct neighborhood interactions between the constituents, i.e.
“grains”, comprising a material point are taken into account by these
cluster models, albeit in a simplified, homogeneous fashion. These in-
teractions are defined to approximate strain compatibility and stress
equilibrium between the constituents. The implementation of the RGC
scheme in DAMASK is briefly outlined here following Tjahjanto et al.
[105].

4.1.3.1. Kinematics of deformation relaxation. A cluster of
= × ×N p q rg hexahedral constituents is considered at each material

point. The neighborhood of each constituent is determined by a
periodic repetition of the cluster. Fig. 2 shows a × ×4 5 3 cluster as
an example.

Interactions between neighboring constituents are described using
“relaxation vectors” that represent the rigid-body translation of their
interface relative to the average deformation of the cluster (see Fig. 3).
The average deformation gradient of each cluster member is, therefore,
augmented by the translation modes on the six interfaces (indexed by
) such that

= +
=

( )
r

F F a n1 ,g
g

g g( )

1

6

( )
( ) ( )

(32)

where a g( ) and n g( ) are, respectively, the relaxation vector and unit
normal of the interface of constituent g, and r g( ) is the constituent
dimension along the interface normal n g( ). Since each interface is
shared by two constituents (i) relaxation vectors at the interface of two
adjacent constituents are set identical and (ii) relaxation vectors that
correspond to the “exterior” surface of the cluster fulfill a periodic
boundary condition.

4.1.3.2. Interface incompatibility and penalty. In the above presented
formalism of the constituent cluster deformation, the kinematic
constraint on the relaxation vectors at shared interfaces ensures
compatibility for isolated relaxation modes. Nevertheless,
incompatible deformations can result from the superposition of these
modes. To quantify the resulting incompatibility across interface of
constituent g, the concept of BILBY’s planar dislocation tensor8
[117–120] is adopted to define a “mismatch tensor” M g( ) as (see also
e.g. [121])

7 Note that here T denotes the average of a tensor T over one material point,
while in Section 3.2.2 it denotes the average over the whole domain .

8 Corresponding to the Nye [117] dislocation tensor in the limit of zero
thickness.
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= ×( )M n F ,g g g( ) ( ) ( )T T (33)

where F g( )T corresponds to the jump, i.e. difference, in the
deformation gradient between constituent g and its neighbor across
an interface . By correlating the incompatibility with a density of
accommodating “geometrically necessary” dislocations, a surface
energy function is proposed that penalizes the incompatibility at
interface of constituent g:

= b µ
c

c M
2

sinh( ),g
g g

g( )
( ) ( )

( )
(34)

where µ g( ) denotes the isotropic equivalent shear modulus of a possibly
anisotropic constituent g [122], b g( ) the magnitude of the BURGERS vector
of the dislocations and M g( ) the magnitude of the mismatch. Two
dimensionless scalars are introduced in Eq. (34): sets the effective
weight of the penalty function, and c controls the over-proportionality
of the penalty function with respect to the mismatch magnitude, such
that Eq. (34) shows a linear behavior if c 0. Setting = 0 renders the
model “penalty-free”, i.e. incompatibility between neighboring
constituents is tolerated, whereas results in a very strong
penalty function which imposes a “fully compatible” deformation
mode. The overall mismatch penalty density (per unit reference
volume) is computed as the volumetric average of the penalties at
all interfaces of all constituents, i.e.

=
= = r

.
g

N
g

g

g
1

( )

1

6 ( )

( )

g

(35)

4.1.3.3. Energy minimization. The deformation energy (or mechanical
work) density of constituent g per unit reference volume at time t,
denoted by g( ), is given by

= P F( )· ( ) d ,g t g g( )
0

( ) ( )
(36)

where = tF F /g g( ) ( ) is the rate of the deformation gradient. The overall
work density of the cluster, , can be obtained as the volumetric
average of the work density of all constituents as

=
=

.
g

N
g g

1

( ) ( )
g

(37)

In the RGC model, all relaxation vectors a g( ) are determined such that
the total energy density (including the mismatch penalty) of the cluster
is minimum for a given F, i.e. = +a a aargmin{ ( ) ( )}g g g( ) ( ) ( ) .
Assuming convexity of the total energy density + , the solution
of the energy minimization problem is equivalent to the stationary
point, + =a 0( )/ g( ) , for each interface of constituent g.
Evaluating the above derivatives, the solution of the energy
minimization leads to the following balance of traction (or
equilibrium condition) at each interface of constituent g:

+ + =P R n P R n 0( ) ( ) ,g g g g g g( ) ( ) ( ) ( ) ( ) (38)

where g denotes the constituent opposite to g across the interface . In
the above equilibrium condition, R g( ) represents a tensor analogous to
the first PIOLA–KIRCHHOFF stress tensor obtained as the derivative of the
total mismatch penalty with respect to the constituent deformation
gradient, i.e. =R F/g g( ) ( ). A more detailed discussion on the “penalty
stress” tensor R g( ) can be found in [105].

4.2. Thermal fields

The average temperature field T acting on a material point is par-
titioned onto the Ng constituents = …g N1, , g such that

=
=

T T .
g

N
g g

1

( ) ( )
g

(39)

An iso-field homogenization assumption is used, whereby the
equality of the temperature field T g( ) of each constituent g with the
average temperature field T is enforced:

= = …T T g N, 1, , .g( )
g (40)

Typically, a different flux f T
g( ) and driving force fT

g( ) results in each
constituent g, which can, for instance, be due to anisotropy or different
constitutive behavior. The flux and driving force at the material point
are calculated as the average of all constituents:

=
=

f fT
g

N
g

T
g

1

( ) ( )
g

(41a)

=
=

f f .T
g

N
g

T
g

1

( ) ( )
g

(41b)

4.3. Damage fields

Similar to the partitioning of T given in Eq. (39), the average da-
mage field acting on a material point is partitioned onto the
Ng constituents = …g N1, , g such that

=
=

.
g

N
g g

1

( ) ( )
g

(42)

As for the temperature (Eq. (40)), the iso-field homogenization as-
sumption is used, whereby the equality of the damage field g( ) of each
constituent g with the average damage field is enforced:

Fig. 2. Example of a × ×4 5 3 cluster considered by the Relaxed Grain Cluster
(RGC) scheme. The different gray shades indicate different crystallographic
orientations and/or phases of the constituents (“grains”). Figure adopted from
[16] with permission from John Wiley and Sons.

Fig. 3. Illustration of the relaxation vectors of constituent (“grain”) g. Figure
adopted from [105,112,116] with permission from Springer Nature.
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= = …g N, 1, , .g( )
g (43)

In general, different fluxes f g( ) and driving forces f g( ) will result in
the different constituents. The flux and driving force at the material
point are calculated as the average of all constituents:

=
=

f f
g

N
g g

1

( ) ( )
g

(44a)

=
=

f f .
g

N
g g

1

( ) ( )
g

(44b)

5. Single constituent kinematics

The intermediate CONSTITUENT LEVEL connects the PARTITIONING and
HOMOGENIZATION and the CONSTITUTIVE LEVEL defined according to the
hierarchical structure of DAMASK (Section 2.2). An abstract procedure
is established at this level to encapsulate all model-specific aspects in
the constitutive descriptions (Section 6).

The purpose of this level is therefore twofold: (i) to consistently
decompose the partitioned deformation gradient based on multiple
deformation sources and (ii) to integrate the internal state of the un-
derlying constitutive laws for fluxes and sources over time. As outcome,
the stress and its tangent with respect to the deformation gradient are
provided to the PARTITIONING and HOMOGENIZATION level.

5.1. Multiplicative decomposition

The decomposition of the partitioned deformation gradient F is re-
quired to determine the stress response P.9 The physical motivation for
this partitioning is a clear distinction between different deformation
modes: Elastic deformation, resulting from stretching of atomic bonds,
plastic deformation, resulting from, for instance, dislocation motion,
and lastly eigenstrains, arising in connection with, for instance, da-
mage, phase transformations, or changes in temperature fields.

In the finite strain framework of DAMASK, the multiplicative de-
composition of the deformation gradient F reads as

=F F F F ,e i p (45)

where Fp is a lattice-preserving, inelastic deformation gradient that
maps to the plastic configuration, Fi is a lattice-distorting, inelastic
deformation gradient, e.g. thermal expansion or crack opening [123],
mapping further to the eigenstrain configuration, and Fe is an elastic
deformation gradient that maps from the inelastic to the deformed
configuration. This decomposition is schematically shown in Fig. 4.

The specific order in Eq. (45) allows to conveniently account for
anisotropy, i.e. dependence on crystallographic orientation, of the
constitutive laws in the isoclinic plastic configuration. To avoid un-
necessary rotations of tensorial quantities naturally defined in the lat-
tice coordinate frame, Fp is initialized with the initial crystal orientation
O0, i.e. = = = =t tF F O( 0) ( 0)p e

T
0 such that the plastic configuration of

each crystal corresponds to a common cube orientation [65]. The cur-
rent crystallographic orientation O can then always be calculated from
Fe through a polar decomposition =F O Ue

T , where U is the right stretch
tensor.

5.2. Time integration

The constitutive laws for inelastic deformation, i.e. the flow rules,
are formulated in rate form.10 This requires time integration of

kinematic quantities from t0 to = +t t t0 . In addition, for flow rules
depending on an internal material state, this time integration has to be
performed consistently with the evolving state.

5.2.1. Inelastic flow relations
The evolution of the inelastic deformation gradients Fp and Fi is

given in terms of their respective velocity gradients Lp and Li by the
following flow rules

=F L F ,p p p (46a)

=F L F .i i i (46b)

The inelastic velocity gradients are additively composed from in-
dividual contributions (indexed by n) and are driven by their work
conjugate stress measures, i.e. the MANDEL stresses Mp and Mi:

= …fL M( , ),
n

np p
(47a)

= …fL M( , ).
n

ni i
(47b)

The MANDEL stresses Mp and Mi are calculated from the second
PIOLA–KIRCHHOFF stress S (see Appendix C), which is determined by an
elastic constitutive law (Section 6.1) that expresses S as a function of its
work conjugate, the GREEN–LAGRANGE strain E in the plastic configuration:

= …fS E E F F F I F( , ), with 1
2

( ) .i
T

e
T

e i (48)

Integrating Eq. (46) over the given time interval t results in

= + =t t tF F L F L F( ) ( ) ( ) ( ) d exp ( ) d ( ) and
t

t

t

t
p p 0 p p p p 0

0 0

(49a)

= + =t t tF F L F L F( ) ( ) ( ) ( ) d exp ( ) d ( )
t

t

t

t
i i 0 i i i i 0

0 0 (49b)

and allows to solve Eq. (45) for given F.

5.2.1.1. Numerical solution strategy. The resulting closed set of Eqs.
(45), (46), (47), and (49) needs to be solved numerically. The exact
time integral of the velocity gradients (Eq. (49)) is approximated in an
implicit manner at a fixed material state as

=
t t

t
t t

F F
L F

( ) ( )
( ) ( ) andp p 0

p p (50a)

=t t
t

t tF F L F( ) ( ) ( ) ( ),i i 0
i i (50b)

which results in the inelastic deformation gradients at the end of the
time increment being

Fig. 4. Illustration of the intermediate configurations resulting from the multi-
plicative decomposition of the deformation gradient. Selecting the crystal orienta-
tion as initial value of = =tF O( 0)p 0 guarantees that the lattice coordinate system
in the plastic configuration always coincides with the lab coordinate system [65].

9 The partitioned quantities F g( ) and P g( ) are, for brevity, referred to as F and P
in what follows.

10 In this setting, rate-independent models are expressed as the kinetic limit of
the corresponding rate-dependent model.
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=t t t tF I L F( ) ( ( )) ( ) andp p
1

p 0 (51a)

=t t t tF I L F( ) ( ( )) ( ),i i
1

i 0 (51b)

from which Fe can be calculated using Eq. (45). The linearization
procedure yields a system of nonlinear algebraic equations with three
unknowns Fe, Fi, and Fp. Its solution provides a stress state for a
consistent decomposition (Eq. (45)) that fulfills the constitutive laws,
which are encapsulated as generic functions (Eqs. (47) and (48)) and
provided by the CONSTITUTIVE LEVEL (Section 6).

The solution scheme is implemented using a two-level pre-
dictor–corrector scheme for Lp and Li (see Fig. 5), based on minimizing
the residuals

=R L L L L M L L( , ) ( ( , )) andp p i p p p p i (52a)

=R L L L L M L L( , ) ( ( , )),i p i i i i p i (52b)

where Lp and Li denote the predicted values of Lp and Li. The coupled
system of Eqs. (52a) and (52b) is solved using a modified NEW-

TON–RAPHSON scheme with variable step length α within a staggered
iterative loop until a consistent solution is achieved. The solution al-
gorithm is outlined in Algorithm 2. The NEWTON–RAPHSON scheme is re-
garded converged when the residual drops below a given tolerance

= L Lmax( , , ) andp a r p 2 r p 2 (53a)

= L Lmax( , , )i a r i 2 r i 2 (53b)

that depends on specified values of absolute and relative errors ( a and r).

Algorithm 2. Self-consistent integration of kinematic quantities at a
fixed internal material state.

5.2.2. Internal material state
Above the CONSTITUENT LEVEL, the internal material state is treated

as an abstract container that encapsulates all model-specific aspects of
its evolution (Section 6). The state evolves simultaneously with the
kinematic quantities at a rate

= g S( , ). (54)

In some cases, it might be necessary in the constitutive description to
express a change in the state in terms of an instantaneous jump rather
than by a rate of change. For this case, an additional rate-independent
constitutive equation is defined:

= g S( , ). (55)

The time integration of the inelastic flow relations (Fig. 5) is stag-
gered with respect to the integration of (Fig. 6). Different schemes
can be used to accomplish the state integration. The following schemes
are implemented and a comparison of their performance within DA-
MASK has been compiled by Kords [124].

5.2.2.1. Fixed-point iteration. This implicit EULER scheme, used by, for
instance, Kalidindi et al. [125], iteratively evaluates the state and the
stress until a consistent solution is found. The residual (change between
iterations) of the fixed point scheme is used as the convergence
criterion, however, a converged solution is not guaranteed. To
improve convergence and stability, the iterative state correction is
adaptively controlled in DAMASK. This time integration scheme will
always be first-order accurate for the typical case of a viscous state
evolution. A schematic of the integration procedure is given in Fig. 7(a).

5.2.2.2. Explicit EULER integrator. This simple integration scheme
consists of a single explicit time step without any control of stability:

= + +t t t t t( ) ( ) ( ) ( ).0 0 0 (56)

The stress is calculated after the state update, so that it is consistent with
the state. A schematic of the integration procedure is given in Fig. 7(b).

5.2.2.3. Adaptive EULER integrator. The explicit EULER integrator is
enhanced by using a second evaluation of the state integration to
estimate the error:

= t t t
2

( ( ) ( )).0 (57)

This error estimate is used to reduce the time step in case a predefined
tolerance is not achieved. Since a cutback of the time step would have

Fig. 5. Self-consistent integration of kinematic quantities at a fixed internal
material state.
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no influence on an instantaneous jump in the state, it is natural to not
include the state jump in the error estimate. As for the explicit EULER
integrator, the stress is calculated after the state evolution. A schematic
of the integration procedure is given in Fig. 7(c).

5.2.2.4. Fourth-order explicit RUNGE–KUTTA integrator. The EULER
integration schemes described above are first-order accurate, i.e. they
produce a temporal error of the order of t . Higher-order integration
schemes reduce this error. The fourth-order RUNGE–KUTTA integrator is
such a scheme with an error of the order of t4. In this scheme, the
material state at the end of the increment is calculated on the basis of a
weighted average of four different rates:

1. g1
RK at the beginning of the increment based on the state t( )0 ,

2. g2
RK in the middle of the increment based on the state

+t tg( )0
1
2 1

RK ,
3. g3

RK in the middle of the increment based on the state
+t tg( )0

1
2 2

RK , and
4. g4

RK at the end of the increment based on the state +t tg( )0 3
RK .

For state evaluations at the intermediate time step +t t/20 , the
stress is calculated coincidentally using only half the deformation in-
crement. Therefore, a total of four state and stress evaluations are re-
quired. This additional computational cost often pays off in nonlinear
problems, since it allows much larger time increments than first-order
methods for a given temporal tolerance. A schematic of the integration
procedure is given in Fig. 7(d) and the BUTCHER tableau in Table 1(a).

5.2.2.5. Fifth-order adaptive RUNGE–KUTTA integrator. This fifth-order
adaptive RUNGE–KUTTA integrator [126] combines the high-order
solution of the fourth-order explicit RUNGE–KUTTA integrator with the
possibility of the adaptive EULER integrator to control the error by an
additional evaluation of stress and state. The BUTCHER tableau (see
Table 1(b)) is constructed in such a way that the additional evaluation
can also be used for the final solution, thus increasing its order to five. A
schematic of the integration procedure is given in Fig. 7(e).

5.3. Stress tangent

Depending on the numerical method, the solution of the mechanical
equilibrium Eq. (3) might require the tangent of stress with respect to
the deformation gradient. For constitutive laws where no closed form
solution of this tangent is available, it is typically determined by a
numerical perturbation technique [64,125,127]. This is, however,
computationally expensive as the constituent response (see Section 5.2)
has to be evaluated for each perturbation direction.

In DAMASK, the stress tangent is analytically derived. The first
PIOLA–KIRCHHOFF stress P is related to the second PIOLA–KIRCHHOFF stress S
through

= =P F F S F F F S F .e i p
T

p
1

p
T (58)

Therefore, the sought tangent is given as

= +

+ +

P
F

I F SF F SF
F
F

FF F S
F

FF S I
F
F

d
d

[ ( )]: [ ( )]:
d
d

[( ) ]: d
d

[( ) ]:
d

d
.

p
1

p
T

p
T p

1

p
1

p
T

p
1 p

T

(59)

Using the chain-rule, S Fd /d can be expressed as

= +S
F

S
F

F
F

S
F

F
F

d
d

: d
d

: d
d

,
e

e

i

i

(60)

where the sensitivities S F/ e and S F/ i are given by the elastic con-
stitutive law (see Appendix D for details). The total derivative of Eq.
(45) yields

= + +F
F

I F F F F
F
F

FF I F
F

d
d

[ ( )] [ ]:
d
d

[( ) ]: d
d

e
p

1
i

1
i

1 p
1

p
1 i

1

(61)

and the differential

=F
F

F F F
F

d
d

[ ]: d
d

i
i i

i
1

(62)

can be expressed based on the differential of its inverse. Taking total
derivatives of Eqs. (51a) and (51b) provides the differentials of the
inverse components Fp

1 and Fi
1 as

=

= +

t

t

F
F

F I
L
S

S
F

F I
L
S

L
F

F
S

S
F

d
d

[ ]:
d
d

: d
d

[ ]: : d
d

: d
d

p
1
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1 p p
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(63a)

and

=

= +

t

t

F
F

F I L
S

S
F

F I L
S

L
F

F
S

S
F

d
d

[ ]: d
d

: d
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d

: d
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.
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i0
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i
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(63b)

The sensitivities L S/p and L S/i are provided by the constitutive
laws (see Appendix D for details). F Sd /di , required in Eqs. (63a) and
(63b), is obtained by taking the total derivative of Eq. (51b):

= = +tF
S

F F F
S

F F F L
S

L
F

F
S

d
d

[ ]: d
d

[ ]: : d
d

,i
i i

i
1

i i0
1

i
i i

i

i

(64)

resulting in the implicit equation

=t tF F F L
F

F
S

F F F L
S

[ ]: : d
d

[ ]: ,i i0
1

i
i

i

i
i i0

1
i

i

(65)

which can be solved for F Sd /di . This allows the evaluation of Eqs. (61)
and (62), which is substituted back into Eq. (60), to obtain:

+ +

=

t t

t
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F

FF F
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S
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FF F I L
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e
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(66)

which is solved for S Fd /d and used together with Eq. (63a) to evaluate
Eq. (59).

6. Constitutive laws

The CONSTITUTIVE LEVEL forms the foundation of the hierarchical
DAMASK structure. It is comprised of constitutive laws describing the

Fig. 6. Self-consistent staggered time integration of inelastic flow rules and the
internal material state. Figure adopted from [124].
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mechanical, thermal, and damage response of each constituent. Each
constitutive law is internally parametrized by a set of state variables.
The choice of state variables reflects the degree of sophistication of the
constitutive law, ranging from empirical descriptions, which are com-
putationally efficient yet limited in accuracy, to physics-based de-
scriptions with higher computational demands and accuracy. While

empirical descriptions rely solely on data fitting, physics-based para-
meters can in many cases be determined by lower scale simulations or
direct experimental observations.

The objective of the CONSTITUTIVE LEVEL is therefore twofold: (i) to
provide the fluxes, sources, and inelastic velocity gradients associated
with the mechanical, thermal, and damage behavior, and (ii) to provide

Fig. 7. Integration schemes for the internal material state . Figure adopted from [124].
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laws for the evolution of the respective internal state variables.
DAMASK provides modules for elastic, plastic, thermal, and damage

behavior described in the following.

6.1. Elasticity

The purpose of an elastic law is to provide the second
PIOLA–KIRCHHOFF stress associated with the elastic GREEN–LAGRANGE strain
E (Eq. (48)).

6.1.1. Generalized HOOKE’s law
The generalized HOOKE’s law

=S E: (67)

relates the GREEN–LAGRANGE strain E to the second PIOLA–KIRCHHOFF stress
by an elastic stiffness , inheriting the symmetry of the underlying
crystal lattice.11

6.2. Plasticity

The purpose of the plasticity law is to provide the plastic velocity
gradient Lp as a function of the applied MANDEL stress Mp (Eq. (47a)).
This, typically non-linear, relation depends on a set of evolving internal
state variables. Therefore, a set of evolution equations for these state
variables must be additionally provided (Eqs. (54) and (55)).

Plasticity, in crystalline materials, occurs on well-defined deforma-
tion systems12 specific to the crystallographic lattice. The plastic velo-
city gradient Lp is thus calculated as the sum over the individual shear
contributions on those systems :

=L s n( ) ,
P

p s s

Schmid (68)

with ss and ns being unit vectors along the shear direction and shear

plane normal. DAMASK contains definitions of slip system families for
face-centered cubic (fcc), body-centered cubic (bcc), hexagonal (hex)
and body-centered tetragonal (bct) lattice types as specified in
Table 21.

The driving force for is typically given by SCHMID’s law
[131–135]

= M P· .p Schmid (69)

A deviation from SCHMID’s law that is exhibited by some bcc mate-
rials [25,26,136–139] can be represented by augmenting the driving
force by non-SCHMID contributions

= +M P P·( ).p Schmid non-Schmid (70)

The specific plasticity models implemented in DAMASK are de-
scribed in the following.

6.2.1. Isotropic plasticity
The isotropic plasticity model combines an isochoric response due

to the deviatoric stress =M M Mtr /3p
dev

p p (in the lattice configura-
tion) with a dilatational response that arises from the hydrostatic
pressure (mean stress =M I Mtr /3i

sph
i in the intermediate configura-

tion). This formulation of plasticity deliberately ignores any orientation
dependent behavior, i.e. does not explicitly account for slip or twin
systems. The internal state parameterization and kinetics of this model
are inspired by the phenomenological crystal plasticity model that was
introduced by Peirce et al. [140] and postulates an internal deformation
resistance, termed ξ, and a power-law relation between driving force
and deformation rate.

The strain rate connected to isochoric deformation is driven by J2,
i.e. the second invariant of Mp

dev:

= =
J

M M
M3 3

2
,

n n

p 0
2

0
p
dev

F

(71)

where 0 denotes a reference strain rate, n the stress exponent, and M
the orientation (TAYLOR) factor. The associated plastic velocity gradient
Lp, acting in the lattice configuration, is then formulated as

=
M

L
M

M
.p

p p
dev

p
dev

F (72)

To allow for dilatational responses (for instance in a void region of
the geometry), a similar constitutive law is formulated for the dilata-
tional rate i and the dilatational velocity gradient Li,plastic in the in-
termediate configuration as

=

=

M

M M

L
M

M

M M
M

3
2

.
n

i,plastic
i i

sph

i
sph

F

0 i
sph

F i
sph

i
sph

F (73)

Analogous to the phenomenological Crystal Plasticity (CP) hard-
ening model of Hutchinson [141] and the Phenomenological Crystal
Plasticity presented later on, the scalar resistance ξ to plastic flow
evolves asymptotically from its initial value 0 towards a final value

= + c
c

(arsinh( / ) )
( / )

c c

n
1

1/ 1/

4 0
1/

2 3

(74)

that can be made dependent on the rate of shear through adjustment
constants c1–c4. The kinetics of resistance evolution

= +h h( ln ) 1 sgn 1
a

0 ln
(75)

are controlled by the initial hardening h0, strain rate sensitivity para-
meter hln, and exponent a and are proportional to the shear rate that is
determined either by the full or deviatoric component of Mp, depending

Table 1
BUTCHER tableaus for higher-order RUNGE–KUTTA integration schemes. The nota-
tion is given in the upper right corner.

(a) Fourth-order RUNGE–KUTTA integration scheme.

(b) Fifth-order RUNGE–KUTTA CASH–KARP integration scheme.

11 For non-crystalline materials, isotropic and orthotropic symmetries are
defined.

12 This assumption is typically justified for dislocation slip [128] and, when
spatially resolved twin formation is not of interest, for mechanical twinning
[129,130].

F. Roters et al. Computational Materials Science 158 (2019) 420–478

434



on whether the dilatational aspects of this constitutive law are con-
sidered, respectively:

=
M

M3
2

.
n

0
p F

(76)

6.2.2. Phenomenological crystal plasticity
This widely used and simple model was first described by

Hutchinson [141] for fcc crystals and extended for twinning by Kali-
dindi [129]. It is implemented in modified form in DAMASK for all
available crystal structures. The plastic component of the internal state
is parametrized in terms of resistances on = ++N N Ns tw s tw slip and
twin systems.

The resistances on the = … N1, , s slip systems evolve from their
initial value 0 asymptotically to a system-dependent saturation value
and depend on shear on slip and twin systems (see Appendix E) ac-
cording to the relationship

= + +

× +
= =

h c f h

h h

(1 ( ) )(1 )

| | 1 sgn 1 ,

c

N a N

0
s-s

1 tw
tot

int

1 1

2

s tw

(77)

where ftw
tot is the total twin volume fraction, h are the components of the

slip–slip [142,143] and slip–twin interaction matrices respectively, h0
s-s,

hint, c1, and c2 are model-specific fitting parameters, and is bounding
the resistance evolution.

The resistances on the = … N1, , tw twin systems evolve in a similar
way:

= +
= = =

h h h f h| | | | ( ) ,
N c N

c
N

0
tw-s

1 1
0
tw-tw

tw
tot

1

s 3 s
4

tw

(78)

where h0
tw s, h0

tw-tw, c3, and c4 are model-specific fitting parameters.
Given a set of current slip resistances, shear on each slip system

evolves at a rate of

= f(1 ) sgn( ).
n

tw
tot

0 (79)

Again, slip due to mechanical twinning is handled in a slightly
different way that accounts for the unidirectional character of twin
formation:

= f(1 ) ( ),
n

tw
tot

0 (80)

where is the HEAVISIDE or unit step function.
The total twin volume fraction is given by

=
=

f max / , 1.0 ,
N

f

tw
tot

1
char

tw

tw (81)

where char is the characteristic shear due to mechanical twinning, the
value of which depends on the twin system.

6.2.3. Dislocation density based crystal plasticity
This dislocation density-based model follows the approach pre-

sented by Ma and Roters [144]—itself an extension of the Three In-
ternal Variable Model (3IVM) by Roters et al. [145]—and the sub-
sequent Finite Element Method (FEM) implementations [65,146] for
dislocation glide. This physics-based approach increases complexity
due to the larger state and the associated evolution equations but has
the advantage that the values, or at least their order of magnitude, are
known for most parameters. Deformation twinning is incorporated
following the analytical Twinning Induced Plasticity (TWIP) model
suggested by Steinmetz et al. [18]. To account for the Transformation

Induced Plasticity (TRIP) behavior of fcc metals, the martensitic
transformation is included, such that the current constitutive model has
the capability to simulate the evolution of dislocation densities, twin
volume fractions, and -martensite volume fractions [19]. Furthermore,
Jia et al. [147,148] enriched the model by shear-banding deformation
modes (see Section 7.7).

The TWIP/TRIP constitutive model is built on internal micro-
structure variables and their respective kinetics. This means that the
constitutive equations are parametrized in terms of the dislocation
density , the dipole dislocation density di, the twin volume fraction
ftw, and the -martensite volume fraction ftr on = … N1, , tr transfor-
mation systems.

Following the approach of Kalidindi [129], the contribution of
mechanical twinning and phase transformation are taken into account
as additional terms in the plastic velocity gradient:

= +

+

= =

=

f fL s n s n

s n

(1 )

.

N N

N

p tw
tot

tr
tot

1
s s

1
tw tw

1
tr tr

s tw

tr

(82)

The OROWAN equation [149] gives the shear rate on a slip system as:

= b v Q
k T

exp 1 | | sgn( )
p q

s 0
s

B

eff

sol

s s

(83)

where bs is the length of the BURGERS vector for slip, v0 is a reference
velocity, Qs is the activation energy for slip, kB is the BOLTZMANN con-
stant, T is the temperature, eff is the effective resolved shear stress, and

sol is the solid solution strength. The fitting parameters < p0 1s and
q1 2s control the glide resistance profile [150].
The effective shear stress eff is computed as

=
>| | for | |

0 for | |eff
pass pass

pass (84)

and the passing stress pass is given by

= +
=

Gb h ( )
N

pass s
1

di

1/2
s

(85)

with the shear modulus G. The components of the slip–slip interaction
matrices h for the three most relevant crystal structures have been
successfully determined using Dislocation Dynamics (DDD) simulations
[151–154].

Following the work of Blum and Eisenlohr [155], the evolution of
dislocation densities is related to dislocation multiplication, dislocation
annihilation, and dipole formation. The evolution of the dislocation
densities are given by the following equations:

=
b

d
b

| | 2 | |
s s s (86a)

= d d
b

d
b

v
d d

2( ) | | 2 | | 4 .di
s s

di di
cl

(86b)

The terms in Eq. (86a) correspond to generation of (unipolar) dis-
location density due to multiplication and its reduction due to dipole
formation. The terms in Eq. (86b) correspond to the formation of dis-
location dipoles (less spontaneous annihilation of unipolar disloca-
tions), the spontaneous annihilation of dipoles with (unipolar) dis-
locations, and the annihilation of dipoles due to dislocation climb.

The dislocation climb velocity is given by

=
+

v GD V
k T d d

Q
k T(1 )

1 exp ,cl
0 cl

B

cl

B (87)

where D0 is the pre-factor of the self-diffusion coefficient, Vcl is the
activation volume for climb, and Qcl is the activation energy for climb.
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The glide plane distance d below which two dislocations form a
stable dipole and the distance d below which two dislocations annihi-
late are, respectively, calculated as

=d Gb3
16 | |

s
(88a)

and

=d D b ,a s (88b)

where Da is a fitting parameter.
In the Kocks–Mecking model [17], dislocation density is the primary

state variable for describing the hardening behavior. Strain hardening is
described here in terms of a dislocation Mean Free Path (MFP) ap-
proach, where the mean free path is denoted by . The MFP for slip has
confining contributions due to the pileup of dislocations in front of
grain boundaries, dislocation–dislocation interaction, the formation of
twins, and the formation of -martensite and is composed as

= + + +
D

1 1 1 1 1 ,
s s tw tr (89)

with
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=
=

h
f

t f
1

(1 )
,

N

tw 1

tw

tw tw
tot

tw

(90b)
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(90c)

where D is the average grain size, is is a fitting parameter, ttw is the
average twin thickness, and ttr is the average -martensite thickness. p
are projections for the forest dislocation density as introduced in [144].
The use of such physics-based formulations and the possibility to derive
the associated parameters from models at a lower scale are a distinct
advantage over the Phenomenological Crystal Plasticity model.

The MFP for twinning and the MFP for transformation are com-
puted, respectively, as

= +
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1 1 1 1
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(91a)

and

= +
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tr tr 1
tr

tr tr
tot

tr

(91b)

where itw and itr are fitting parameters.
The nucleation rates for twins and -martensite are given as

=N N P P,0 ncs (92)

where N0 is the number density of potential twin or -martensite nuclei
per unit time, which is assumed to be the same for twinning or
-martensite because the dislocation reactions are assumed to be
equally likely to form twin nuclei or -martensite nuclei.

The probability that cross-slip does not occur, which would allow a
sufficient number of dislocations to pile up and form the stress con-
centration necessary to form a twin or -martensite nucleus, is for-
mulated as

=P V
k T

1 exp ( ) ,ncs
cs

B
r

(93)

where Vcs is the cross-slip activation volume.
The stress required to bring two partials within a critical distance xc

to form the twin nucleus without help from an external applied shear

stress amounts to

=
+

+Gb
x x

Gb
x2 ( )

cos( /3)
2

.r
s

0 c

s

0 (94)

The equilibrium separation of SHOCKLEY partials in fcc metals is calcu-
lated as [156]

= +x G b
8

2
1

,0
sf

s
2

(95)

where sf is the stacking fault energy and is POISSON’s ratio.
The probability P in Eq. (92) that a nucleus bows out to form a twin

or -martensite is

=P exp ,
p

tw
tw tw

(96a)

=P exp ,
p

tr
tr tr

(96b)

where ptw and ptr are fitting parameters.
The critical stresses for twin and -martensite growth have been

derived as [19]
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where btw and btr are the magnitudes of the BURGERS vector for, re-
spectively, twinning and transformation, Ltw and Ltr are the widths of
the respective nuclei, / is the interface energy between γ- and ε-
phase, and G is the change in GIBBS free energy per unit volume
from the fcc to the hexagonal close-packed (hcp) phase.

The evolution of the twin and -martensite volume fractions follow a
rate

=f f f VN(1 ) .tw
tot

tr
tot (98)

Assuming new twins and new -martensite laths are thin discs, their
volumes are computed as

=V t
4

.2
(99)

The shearing rates on the β twin system and the χ transformation
system are then computed as

= f .char (100)

6.2.4. Atomistically-informed crystal plasticity for Tungsten
This dislocation density-based model implements a velocity law for

the movement of dislocations in bcc Tungsten (W) that is parametrized
based on knowledge obtained from atomistic simulations [26]. While
the presented model is specific to W, the approach is general and can be
applied to a wide range of materials [25,157]. The hardening model is
equivalent to the one of the Dislocation Density Based Crystal Plasticity
presented above.

At low to medium homologous temperatures, the shear rate in W
and other bcc metals is determined by the thermally-activated motion
of 1

2
〈111〉 screw dislocations [158,159], which proceed via the nu-

cleation of kink pairs and their subsequent lateral relaxation. As kink
relaxation is a significantly faster process than nucleation of kink
pairs, it is assumed that no new kink pairs will be nucleated while
lateral kink motion is underway. Such assumption leads to the fol-
lowing expression for the time t required for a kink pair to nucleate
and relax laterally:
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where tn is the mean time to nucleate a kink pair and tk is the time
needed for a kink to sweep half the segment length . J is the kink pair
nucleation rate, w is the kink-pair separation, and vki is the kink ve-
locity. The kink pair nucleation rate

=J T w
b

H
k T

( , ) ( ) expa

s

kp

B (102)

follows an ARRHENIUS formulation [160] with attempt frequency a and
activation enthalpy of a kink pair

=H H 1 | | p q

kp kp,0
eff

Peierls

s s

(103)

that depends on Hkp,0 and the resolved shear stress.
The kink velocity is assumed as

=v b
B

,ki
s

(104)

with constant friction coefficient B.
The shear rate is calculated from the OROWAN equation [149] as

= b h
t

,s (105)

where h is the distance between two consecutive PEIERLS valleys.
Since SCHMID’s law is known to break down for bcc crystal structures

due to the topological complexity of the atomic arrangements in the
dislocation core [137,161], non-SCHMID components of the stress tensor
are included in the driving force according to Gröger et al. [162,163]
and Gröger and Vitek [157]. More precisely, the parameters of
Pnon-Schmid to calculate τ in Eq. (70) have been obtained using the mo-
lecular dynamics code LAMMPS [164]. This allows to reproduce the
experimentally observed temperature-dependent yield behavior of W
single crystals [165].

6.2.5. Crystal plasticity including dislocation flux
More recent approaches of CP, mainly dealing with plasticity at

small scales, are non-local models, i.e. the material response does not
only depend on the state of the material point under consideration, but
also on the state of the adjacent points.13 In contrast to most existing
non-local models [65,121,166–168], the model presented here
[124,169] does not rely on strain or shear gradients to derive excess
dislocations, , but explicitly treats the dislocation fluxes, where excess
dislocations emerge from any uncompensated flux balance. The is
required to calculate the KRöNER–NYE tensor [117,170] as

= =l b n scurl( ), (106)

where l is the dislocation line direction.
Classical dislocation density-based constitutive models (Sections

6.2.3 and 6.2.4) neglect the dislocation transport and describe the
change of dislocation densities per slip system α by evolution
equations of the following form:

=
t

,
r

r (107)

where r describes different processes that either increase or decrease
the dislocation density, e.g. dislocation multiplication, annihilation, and
cross slip (see Eqs. (86) and (145) or Eqs. (75) and (77)). In contrast, the
dislocation flux model is based on the following modified equation:

+ =
t

vdiv ( ) .
r

r
f (108)

The term v fdiv( ) div( ), with f being the dislocation flux, incorporates
the time evolution of (Eq. (106)). This addition renders Eq. (108) into
a system of Partial Differential Equations (PDEs) that requires addi-
tional numerical efforts to solve when compared to the usual Ordinary
Differential Equations (ODEs) (Eq. (107)). This model is, therefore,
computationally very expensive. In DAMASK, the transport equation is
solved using a Finite Volume Method (FVM) discretization.

As the terms on the right hand side of Eq. (108) are very similar to
those described in Section 6.2.3, here the parametrization of the dis-
location structure and the derivation of the dislocation flux term is
given only. A full description of the model can be found in [124,169].

6.2.5.1. Dislocation parametrization. In contrast to the Dislocation
Density Based Crystal Plasticity model, a somewhat more
sophisticated distinction between the different dislocation types on a
specific slip system is made in the dislocation flux model via:

• dislocation character c: edge (subscript “ed”) or screw (subscript
“sc”)
• dislocation polarity: monopolar density of positive or negative sign
(subscript + or −), or unsigned dipolar density (subscript± ).

Monopolar Dislocation Density: A positive or negative sign reflects the
monopolar nature of a single dislocation’s stress field. Fig. 8 illustrates
the convention adopted for the sign of edge and screw dislocations on a
slip plane. The signed character of these dislocations entails a direc-
tionality of their motion under a given resolved shear stress. According
to Fig. 8, for a positive shear increment, i.e. increase in the slipped area
by loop expansion, these directions of motion m follow as:

= ++m s,ed (109a)

=m s,ed (109b)

= + ×+m n s,sc (109c)

= ×m n s.sc (109d)

Accordingly, the plastic shear rate

= = v b
p

p
p

p p s
(110)

is composed from four parts reflecting the four types
+ +p {ed , ed-, sc , sc-} of monopolar dislocation populations. In addi-

tion to the monopolar density, which is considered here as a mobile
entity, a blocked density of all types is also considered. The blocked
density is directional, since blocking, e.g. by a grain boundary, always
applies to one direction of motion only. Furthermore, the direction of
motion can change when the direction of the resolved shear stress
changes, in which case the blocked density is re-mobilized. Blocked
density does not contribute to the transport relations but only con-
tributes to the slip resistance (Eq. (85)).

Dipole Dislocation Density: The presence of stable dipoles enables
dislocation annihilation. Stable dipoles contain two monopolar dis-
locations of the same character but opposite sign, hence two dipole
densities, ±ed and ±sc , are tracked and sum up to the overall dipole
density

= +± ± ±.ed sc (111)

These dipole densities are quantitatively equivalent to the dislocation
density of both signs, thus dislocations changing between monopolar
and dipolar state do not alter the total of both densities.

A dipole is stable against dissociation under the resolved shear stress
τ if the mutual elastic interaction between the two constituents is strong
enough, i.e. if the distance between the glide planes of the two dis-
locations does not exceed

13When considering non-local models, only the use of a single constituent per
material point is physically meaningful. Therefore, the use of such models in
DAMASK is restricted to full-field simulations (Section 4.1.1).
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Total and Excess Dislocation Densities: The polar nature of dislocation
densities allows to discriminate between the accumulated (total) mea-
sures according to

= +ed sc (113a)

= + ++ ±ed ed ed ed (113b)

= + ++ ±sc sc sc sc (113c)

and the signed excess densities of edge and screw character
= +ed ed ed (113d)

= + .sc sc sc (113e)

Forest dislocation density: Following Ma and Roters [144], the den-
sity on any particular system can be projected with respect to system
into a corresponding forest density. By summation of the contribution

of each slip system , the overall forest density on system results as

= × +
=

n n s n s( | ·( )| | · |).
N

f
1

ed sc

s

(114)

The MFP can be derived from the forest dislocation density as

= i .s
s

f (115)

6.2.5.2. Dislocation flux. The Finite Volume Method (FVM) used in
DAMASK to solve the dislocation transport PDEs (Eq. (108)) is briefly
outlined in the following sections. A more detailed description can be
found in [124].

Finite Volume Discretization: Finite volume cells are defined around
each material point. In the case of an FEM simulation this would cor-
respond to a cell around an integration point of an arbitrarily shaped
finite element.14 The cell volume is denoted by V. Each cell has N
nearest neighbors. In the reference configuration 0, a shared interface
with area A n

0 is situated between neighboring cell volumes and is
characterized by its outward pointing unit normal an

0 (see Fig. 9).
Each cell undergoes a deformation that is defined by the deforma-

tion gradient associated with its material point. Therefore, the relevant
unit normals an and interface areas An are defined in the deformed
configuration. As these measures are always shared between two
neighboring material points (see Fig. 9), their values in the deformed
configuration result, to a first-order approximation, from averaging the
two deformation gradients F and Fn of the central and the neighboring
material points, respectively. The average deformation gradient is used
to define a common deformed configuration. Both, an

0 and A n
0 , are

pushed forward to this common deformed configuration and pulled
back to the individual plastic configuration.

Finite Volume Upwind Scheme: The PDE describing dislocation
transport (Eq. 108) is integrated over the finite volume cells. By means
of the STOKES theorem, the volume integral of the flux divergence,

= =V A Af f a f adiv d · d · ,
V V

n

n n n

(116)

is replaced by summing the fluxes15 that pass through the volume
surfaces An with outward unit normal an (see Fig. 10). The mean dis-
location flux f n at the interface n takes either the value f from the
central point or f n from a neighboring point n such that it fulfills the
following upwind scheme:

=
>

<f
f f a
f f a f a

if · 0
if · 0 and · 0.

0 otherwise
n

n
n n n n

(117)

At free surfaces, f n is set to zero.
While this scheme is only first-order accurate and can produce

significant numerical diffusion, it is unconditionally bounded, highly
stable, and ensures that dislocation density portions are transferred
only in the directions of the actual dislocation motion.

Grain and phase boundaries are treated as interfaces with reduced
transmissivity for dislocations. Therefore, a transmissivity factor
0 1 is introduced into Eq. (116) so that only a fraction of the
fluxes enters the neighboring cells

=V Af f adiv d · ,
V

n

n n n n

(118)

where the transmissivity is set to one in the case of material point
neighbors that share the same orientation and phase. Any remainder
of the dislocation flux that is not transmitted to the neighboring cell,
i.e. the equivalent of the flux multiplied by (1 ), gets stored in front
of the grain boundary and is converted into blocked dislocation den-
sity.

The discretization of the spatial domain into cells entails an upper
bound for the propagation speed of dislocations. Within a time step t ,

Fig. 8. Schematic dislocation loop (dark shade) on its slip plane with normal n
and slip direction s. Arrows along the loop periphery indicate positive line
direction giving rise to the convention for signed dislocation characters as
shown. The small (dashed line) interior cube illustrates the crystal unit cell
orientation. A displacement step by b occurs when passing from below to above
the shaded slip plane, i.e. along its normal n. Figure adopted from [124,169]
with permission from Elsevier.

Fig. 9. Exemplary orthogonal cell with basis triad r r r, ,1 2 3 in reference con-
figuration 0. Interfaces between neighboring material points are characterized
by their outward pointing normals an

0 and have an area of A n
0 . Figure adopted

from [124].

14 In general, the volume center of such a cell does not have to coincide with
the corresponding integration point.

15 The dislocation type p and the slip system are dropped for brevity in
notation.
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on average all dislocations that exceed a velocity v will have crossed
the entire cell volume.

=v V
t

.
3

(119)

To ensure that no dislocation can move further than the next neigh-
boring cell, the dislocation velocity will be limited to v . An adaptive
sub-cycling scheme is used to fulfill Eq. (119) by choosing an appro-
priate time step. The scheme, in principle, allows each material point to
have its own time step. Nonetheless, if a material point does not con-
verge and undergoes a cutback, then all neighbors will be cut back as
well, so that non-converged material points are always surrounded by a
layer of already converged material points, all subjected to the same
time integration step [124].

6.3. Temperature

The thermal constitutive description is comprised of models for heat
transport and generation. In addition, an eigenstrain contribution to Fi
resulting from thermal expansion can also be considered.

6.3.1. Heat flux
The heat flux fT is the transport of thermal energy required to

equlibrate temperature differences. In solids, the dominant mechanism
for this transport is through conduction. Hence, in DAMASK, heat
conduction models are used to describe fT in Eq. (4).

6.3.1.1. FOURIER’s law. The heat flux in this model is based on FOURIER’s
law of thermal conduction. An ansiotropic thermal conduction tensor K
relates the temperature gradient to the heat flux

= Tf K Grad .T (120)

6.3.2. Heat generation
The purpose of the heat generation model is to specify the source

term fT in Eq. (4). The heat generation rate can be composed of multiple
sources.

6.3.2.1. Plastic dissipation. Heat generation due to plastic deformation
is given by

=f S L· ,T p (121)

where is the TAYLOR–QUINNEY factor [171,172], i.e. the fraction of
plastic work that is dissipated as heat.

6.3.2.2. External heat source. In addition, a user-defined external heat
source can be prescribed in tabulated form

=f t c( )T nn (122)

and the actual value at time t is linearly interpolated in time between
constants cn.

6.3.3. Thermal expansion
The purpose of the thermal expansion model is to specify the

thermal contribution to the eigenstrain in Eq. (47b).

6.3.3.1. Linear thermal expansion. In the linear model for thermal
expansion, the expansion rate is given by

= TL A,i,thermal (123)

where A is an anisotropic thermal expansion coefficient tensor.

6.4. Damage

The damage constitutive description is comprised of models for the
gradient term in gradient damage models and the driving force for the
damage process.

6.4.1. Phase field damage
In phase field models for damage, the flux f in Eq. (5), derives from

the gradient contribution to the interface energy of an evolving crack
surface.

6.4.1.1. GRIFFITH’s criterion. In the phase field formulation of GRIFFITH’s
criterion, there is a continuous release of the stored mechanical energy
density from an undamaged state, i.e. = 1, to a fully damaged state,
i.e. = 0. The damage process also results in the creation of an internal
surface area, i.e. the interface between an undamaged and fully
damaged region, and an associated surface tension . In the phase
field method, the atomically sharp interface is approximated by a much
wider diffuse interface, resulting in the following form of the surface
energy that is created upon crack opening:

= +l
l

1
2

|Grad | (1 ),c
c

surface
2

(124)

where lc is the length scale of the diffused interface.
The resulting flux follows from the minimization of the surface

energy density

= = lf
Grad

Grad .c
surface

(125)

6.4.2. Damage driving force
The model for the damage driving force specifies the source term f in

Eq. (5). The driving force for damage can be composed of multiple
sources.

6.4.2.1. Brittle damage. In the brittle damage model, the damage process
is assumed to be driven by the release of stored elastic energy at a
material point. The following form of the elastic energy density is used:

= S E1
2

· ,elastic
2

(126)

where there is a continuous release of the stored elastic energy density
elastic from an undamaged state, i.e. = 1, to a fully damaged state, i.e.
= 0.
The damage driving force follows from the minimization of the total

free energy density

= + =f
l

S E· .
c

elastic surface

(127)

Fig. 10. Deformed material point with exemplary slip plane (inclined) in
intermediate configuration. Interface normals correspond to those of Fig. 9.
Vectors on slip plane periphery indicate directions of dislocation motion for the
indicated type and a positive shear increment (loop expansion). Positive screw
dislocations, traveling along +msc , leave the material point volume (and enter
the neighboring volume, if existent) through the dotted interfaces on the right,
front, and bottom. Figure adopted from [124].
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The coupling of the damage evolution with the stored elastic energy
results in the following modified HOOKE’s law (Eq. (67))

= =S
E

E: .elastic 2
(128)

6.4.2.2. Ductile damage. In the ductile damage model implementation,
the damage process is assumed to be driven by the plastic energy
dissipation at a material point. The following form of the plastic energy
dissipation is used:

= tM L1
2

· d .plastic
2

p p (129)

The resulting damage driving force follows from the minimization
of the total free energy density

= + =f
l

tM L· d .
c

plastic surface
p p

(130)

The coupling of the damage evolution with the dissipated plastic
energy results in the following modification to the plasticity laws

= fL
M

.p
p

2 (131)

7. Application examples

The following application examples aim at illustrating the versati-
lity of the DAMASK framework and the models incorporated therein.
All presented simulations have been performed on standard work-
stations with 1 to 16 cores. More application examples not presented
here can be found in [26,37,41,165,173–213].

In the following, the examples are sorted according to the con-
sidered length scale: From the single grain level all the way up to the
component scale. Eventually, starting with Section 7.15, results are
given that were obtained with models currently not included in the
standard DAMASK distribution. These applications show how the pre-
sented framework can be readily extended to include practically arbi-
trary custom-designed modeling elements for tackling specific scientific
and engineering questions. Depending on their general applicability,
such extensions provided by external users will also be gradually in-
corporated into the standard distribution in the future. The constitutive
model for the plastic response of Tungsten (W) presented in Section
6.2.4 is one such example of a constitutive model provided by the
community.

7.1. “Virtual Single Crystal” experiments for identification of crystal
plasticity constitutive parameters

The identification of model parameters is a key prerequisite in any
kind of simulation. In mechanics, this is often achieved by fitting the
parameters of the constitutive model in such way that the result of a
macroscopic mechanical test, e.g. a tensile test, is reproduced.
Depending on the complexity of the model and the number of test re-
sults available it is, however, often difficult to find a unique parameter
set. This is especially true for Crystal Plasticity (CP) models as the
constitutive equations are defined for individual deformation modes,
e.g. slip or twinning systems (Appendix E), while the experimental data
usually is obtained from macroscopic tests [214]. While it is in principle
possible to perform experiments on single crystals oriented in a way to
activate a single deformation system only, such tests are very complex
and time-consuming in practice and are therefore rarely used to identify
model parameters [142,143,215].

A methodology to fit parameters to “virtual single crystal” experi-
ments has been introduced by Zambaldi and Raabe [216] and Zambaldi
et al. [24]. In this approach, nanoindentations are performed on in-
dividual grains using a spherical indenter. The obtained pile-up pattern

around the indents strongly depends on the activated deformation
systems and, hence, the crystal orientation. It was the idea of Zambaldi
and Raabe [216] to use the information provided by this pattern, i.e. the
height profile around the indent, together with the force–displacement
curve to determine the parameter set of a CP constitutive model. While
the method was originally used for hexagonal γ-Titanium Aluminum
(TiAl) and the phenomenological model introduced in Section 6.2.2
[24], it can in principle be used for any crystal lattice structure and any
constitutive model. Using a (large) number of indents on differently
oriented single crystals enables the (unique) identification of the
parameters for the different deformation systems involved, using e.g. a
NELDER–MEAD [217] optimization algorithm [24,197]. Fig. 11 shows the
comparison of measured and simulated height profiles for four different
indents in α-Titanium (Ti).

The methodology is especially useful for the extraction of individual
mechanical properties in dual- or multi-phase materials. It has for ex-
ample been applied to obtain the ferrite properties for the simulations
shown in Section 7.11 [218].

For facilitating corresponding indentation simulations, the open
source software Slip Transfer Analysis Toolbox (STABiX) and corre-
sponding GUIs have been developed by Mercier et al. [182] which can
be used in combination with DAMASK.

7.2. Advanced generation techniques for synthetic dual phase steel
microstructures

In order to predict the performance of existing and novel materials
and microstructures in, e.g. forming processes, accurate microstructure
models are needed to exploit the predictive capabilities of CP models. In
cases where the use of real microstructures (Section 7.11) is prohibitive,
synthetic microstructures reproducing the topological features of
modern complex single- and multi-phase materials are a viable alter-
native [219,220].

Constructing virtual microstructures by employing VORONOI tessela-
tion to construct Representative Volume Elements (RVEs) has been
established as a powerful tool for the evaluation of field quantities
[221]. Setting up such models in a continuum micromechanical fra-
mework allowed to study the response of ferritic–austenitic duplex
stainless steels in thermo-mechanical loading scenarios [222] or the
deformation behavior of ferritic–martensitic Dual Phase (DP) steels
[223,224]. Besides the determination of microstructure-dependent
stress and strain partitioning in such virtual steel microstructures, it is

Fig. 11. Experimental (top row) and simulated (middle row) topographies of
indentations in α-Titanium. The bottom row shows the difference between these
surface profiles which was used to calculate the topography contribution to the
objective function. Both left columns show results used to identify Crystal
Plasticity (CP) parameters while the two right columns show results used to
verify these parameters. Note that the gray scale ranges of the surface upheaval
are consistent only per column. Figure adopted from [24] with permission from
Cambridge University Press.
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also possible to identify phase-transformation induced effects resulting
from the volume expansion occurring during production of these steels
when part of the austenite transforms into martensite. Thereby ei-
genstresses are generated which could be made responsible for the
experimentally observed tension–compression asymmetry at plastic
strains below 1% and the very high initial work-hardening of such steels
[225,226]. Furthermore, the investigation of material instability cri-
teria and their application to predict localization-limit and forming-
limit curves for DP steels turned out to be valuable for the identification
of those DP steel microstructures being especially suited for deep
drawing operations [227].

Using this approach in DAMASK allows to develop engineering alloy
grades with specific types of microstructuress with tailored mechanical
properties covering a broad range of specific combinations of functions
on formability, strength, and energy absorption. This toolset enables to
systematically vary microstructure topology parameters of complex
alloys, understand their influence on the mechanical properties, and
derive guidelines for tailored materials. An advanced microstructure
design tool based on multilevel VORONOI tessellation, which is able to
generate complex grain morphologies incorporating spatial and size
distributions of various microstructural features, developed by TATA

Steel for this purpose is presented in this section. These microstructures
can be directly transferred to input data for the spectral solver in-
troduced in Section 3.2.2. This makes exhaustive CP-based parameter
studies on realistic microstructures in 2D or 3D for various steel grade
families (see [228] for many examples) feasible within time scales ac-
ceptable for multiple industrial applications.

The basic principle of the multilevel approach, in more detail ex-
plained by Yadegari et al. [229], is the combination of a fine tessella-
tion with a standard VORONOI algorithm followed by a grouping proce-
dure to construct complex-shaped grains. The second-level tessellation
is performed using a slightly modified VORONOI algorithm: a second-level
grain is formed by all first-level grains whose seed point is closest to a
second-level seed point, see Fig. 12. To illustrate the difference between
both approaches, two 3D examples have been created that share the
same volume fraction of a second phase (15.6%) as well as the same
number of matrix phase grains (1000). The following differences be-
tween a standard VORONOI tessellation and the more advanced possibi-
lities of the multilevel VORONOI approach can be observed in Fig. 13: (i)
The standard VORONOI algorithm (Fig. 13(a)) creates convex shaped
cells, while more complex-shaped cells can be generated with the
multilevel approach (Fig. 13(b)). (ii) Different grain sizes of the second
phase can be realized with the multilevel algorithm. In the example
given, the average diameter of the second phase is 20% of that of the
matrix phase while the standard VORONOI tessellation assigns the same
average diameter to both phases. (iii) Instead of randomly distributing
the second phase grains, the multilevel approach enables the localiza-
tion within banded regions.

Fig. 14 shows an example of simulations on a periodic DP steel
microstructure with 20% martensite embedded in a ferritic matrix. The
center image shows the undeformed microstructure, where black grains
represent martensite and the colors represent different crystal orienta-
tions within the ferrite grains. The volume element has been deformed
in plane strain, simple shear, and uniaxial and biaxial tension with a
total deformation of 12% for each load case. Fig. 14 reveals that the
different deformation modes also have an effect on the heterogeneity of
the strain distribution. The heterogeneity is dominated by the amount
and spatial distribution of the martensite. Less dominant, but still of
influence is the morphology of the ferrite grains and their misorienta-
tions relative to the neighboring grains. The average response of the
RVE can be used to perform virtual testing on a macroscale.

As outlined in Section 7.13, yield surfaces (Fig. 40) can also be
calibrated from such virtual experiments. Using synthetic micro-
structures, the influence of a wide array of topological and crystal-
lographic microstructural parameters such as, e.g. the size and spatial
distributions of second phase particles in multi-phase steel grades, grain
morphology, crystallographic orientation, and misorientation distribu-
tions on the mechanical performance can hence be systematically in-
vestigated with the aim to identify microstructures that best match a
targeted loading and/or forming scenario. Therefore, new insights and

Fig. 12. Schematics of the multilevel VORONOI tessellation: Cells from the first-
level (black lines) are grouped according to a second tessellation (gray lines) to
form complex-shaped “grains” (indicated by colors). (For interpretation of the
references to color in this figure, the reader is referred to the web version of this
article.)

Fig. 13. 3D Dual Phase (DP) microstructures consisting of 1000 grains. Both
microstructures have a second phase volume fraction of 15.6% (indicated in
black color). Colors represent crystallographic orientations.

Fig. 14. Equivalent strain distributions after different deformation modes in a
Dual Phase (DP) steel microstructure. In the central image, which shows the
undeformed volume element, colors indicate the crystallographic orientation of
the ferritic grains except for the black regions which indicate martensitic grains.
(For interpretation of the references to color in this figure, the reader is referred
to the web version of this article.)
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the partial substitution of time-consuming laboratory experiments are
enabled by this microstructure and texture oriented tools in conjunction
with DAMASK.

7.3. Free surfaces in spectral solver simulations

The periodicity inherent to FOURIER spectral solvers can be overcome
by introducing buffer layers with high stiffness contrast to the sample
material [11]. Maiti and Eisenlohr [230] studied how different material
models can be used to consider free surfaces. To this end, they com-
pared measured to simulated local deformation behavior of a thin oli-
gocrystalline Aluminum (Al) tension sample. In the experimental in-
vestigation by Zhao et al. [7], serving as a reference, the grain structure
on the sample front and back face were acquired by Electron Back-
scatter Diffraction (EBSD) before and after straining to about 0.1. The
local in-plane deformation field was acquired using Digital Image
Correlation (DIC) at strain increments of 5×10−4. Since most of the
about 20 grains in the thin gauge section are almost columnar, the
modeled geometry was based on a through-thickness extrusion of the
grain structure on the front face. Contrary to the Finite Element Method
(FEM) simulations conducted by Zhao et al. [7], three different
boundary conditions are considered here, namely “fully periodic”
(periodic copies of the hexahedral dogbone gauge section), “semi-per-
iodic” (periodic along thickness direction, i.e. infinite thickness), and
“free surface” conditions. The geometries are discretized by a regular
grid of ×273 112 points and either 10 (fully periodic and quasi-peri-
odic) or 20 points (free surface) across the thickness. A buffer layer of
either the dilatational (Eq. (73)) or an isotropic soft-elastic material (see
Table 2) encases the dogbone geometry for the semi-periodic and free
surface boundary conditions to arrive at a periodic hexahedral cell re-
quired by the spectral solver (see left column in Fig. 15). Uniaxial
tension up to a strain of 0.1 along the y-direction, discretized into 1000
individual time increments, is enforced by setting the average de-
formation gradient rate and complementary first PIOLA–KIRCHHOFF stress
to

= =F P
10 s

0 0
0 1 0
0 0

and
Pa

0

0
.3 1

(132)

Fig. 15 shows the local in-plane VON MISES strain and lattice or-
ientation (as Inverse Pole Figure, IPF) of the three simulated boundary
conditions using a dilatational buffer layer, the experiment, and the free
surface boundary condition using a soft-elastic layer (top to bottom). In
the boundary condition sequence using a dilatational layer (first to
third row), the in-plane VON MISES strain is most homogeneous for the
fully periodic case, a simulation result which differs significantly from
the measured strain distribution. For the semi-periodic and free surface

boundary conditions, the strain localizes in grains with kinematically
softer crystallographic orientation (i.e. higher SCHMID factor) enabled by
the non-compactness of the simulated geometry. The regions of strain
localization differ significantly between the semi-periodic and free
surface case. Only the simulations conducted by using free surface
boundary conditions with either the dilatational or soft-elastic layer are

Table 2
Constitutive parameters of aluminum employed for the oligocrystal simulation
using the models presented in Sections 6.2.1 and 6.2.2.

Property Value Unit

Plate Void

Elastic Dilatational

C11 100 0.1 10 GPa
C12 60 0 0 GPa
C44 30 0.05 5 GPa

0 1.0×10−3 1.0× 10−3 s−1

0 30 0.3 MPa
60 0.6 MPa

h0 80 1 MPa
n 20.0 20.0
a 2.0 2.0

Fig. 15. Model setup and results of the aluminum oligocrytsal simulation
compared to experimetal results by Zhao et al. [7]. Gray (green) semi-trans-
parent volume in the simulated domain column uses the proposed dilatational
(isotropically elastic) material model; regions of constant color reflect in-
dividual grains. IPF (last column) coloring of lab direction z is mapped on the
undeformed configuration, except for the measured result (fourth row). Figure
adopted from [230] with permission from Elsevier. (For interpretation of the
references to color in this figure, the reader is referred to the web version of this
article.)
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able of capturing the most relevant strain localization features (third
and last row) observed in the DIC measurement. Despite this agree-
ment, only with the dilatational layer does the simulation properly
capture the experimentally observed crystal lattice re-orientations (last
column). The extent and location of strain heterogeneity is not only
influenced by microtexture as reported, for instance, by Raabe et al.
[231], but it is also essential to reflect the correct boundary conditions
in a simulation when matching experimental and simulated data one-
to-one.

7.4. Wedge indentation

The dislocation density-based constitutive model including dis-
location flux (Section 6.2.5) is especially suited for small scale simu-
lations in which the assumption of a local dislocation density evolution
cannot be justified. As a suitable reference example for benchmarking
simulation results obtained with this model and studying the influence
of the dislocation flux, experiments published by Kysar et al. [232] have
been used. In this experimental study, pure single-crystalline face-
centered cubic (fcc) Nickel (Ni) was indented by a 90° wedge indenter
to an indentation depth of about 200 μm. The indent was placed into a
(001) oriented surface; the indenter ridge was aligned parallel to the
[110] lattice direction (see Fig. 16). Kysar et al. [232] pointed out that
these specific loading conditions lead to a plane-strain deformation
state. After indentation, the sample was cut in half normal to the [110]
direction and the exposed surface was analyzed by EBSD.

The experiment had then been modeled in an FEM simulation
(MSC.MARC) with a planar mesh of 1092 hexahedral elements with
quadratic interpolation functions and reduced integration capacity,
Fig. 16. Except for the indented surface, all nodes on outer surfaces of
the model were constrained to in-plane motion, i.e. displacement
normal to the respective surface was prohibited. In particular, dis-
placement in direction of the wedge indent was constrained to be zero
on the front and back surfaces in Fig. 16 in order to mimic plane-strain
conditions. Due to the plane-strain conditions, one element in thickness
direction suffices and was chosen here. The lateral extent of the FEM
mesh does not cover the complete sample domain (which was ap-
proximately 1×1×1 cm3), but had been chosen sufficiently large for
the boundaries to not influence the predictions. The wedge indenter
was modeled by two rigid surfaces that form an angle of 90° and a flat
tip surface of 5 μm width (see blow-up in Fig. 16). Contact conditions
between the indenter and material surface were modeled using the
COULOMB friction law with a friction coefficient of 0.3. A list of all ma-
terial parameters used is given in Table 3.

Kysar et al. [232] measured the lattice rotations around the indent
by EBSD. Fig. 17 juxtaposes maps of the experimentally obtained lattice
rotation in the y–z plane (Fig. 17(b)) and the simulated rotation maps
using the model with (Fig. 17(a)) and without (Fig. 17(c)) the flux
terms. All maps reveal the same features, although, in general, the si-
mulation slightly overestimates the rotations compared to the experi-
ment. Regions of high rotation can be found on both flanks of the indent
and directly below the tip of the indent. A boundary running vertically
down from the indenter tip divides the sample into two halves with
symmetric rotation patterns but inverted sign. However, the simulation
without flux (Fig. 17(c)) results in orientation features not visible in the
experiments. The out-of-plane rotations were negligibly small in both,
experiment and simulation.

From the experimentally obtained lattice rotations Kysar et al. [232]
derived lower bounds for the L1 norm of the Geometrically Necessary
Dislocation (GND) density, i.e. for the sum of the absolute values of
edge and screw GNDs over all slip systems. This lower bound is
equivalent to the actual value in case of only one or two effective slip
systems being active. The experimentally obtained map of the GND
density is shown in the center of Fig. 18 and the corresponding simu-
lated excess dislocation density on the left (with flux) and the right
(without flux). The experimental and simulated dislocation densities

match very well both qualitatively and quantitatively. Nevertheless, the
simulation without flux again results in features not found in the ex-
periment. In particular, the highest densities of GNDs are seen around
the evolving boundary beneath the indenter. Neglecting dislocation flux
results in a clear maximum right beneath the indenter which is not seen
in the experiment. To both sides of this boundary, GNDs of about ten
times lower density extend into the material and form bands that draw
an angle of about± 45° with the deformation-induced boundary. The
same feature with similar angles occurs in the simulations, yet not as
finely patterned due to the limited mesh resolution and the disregard of
the discreteness of dislocation sources.

As shown here and in [124,169], incorporating the dislocation
fluxes into the constitutive model is the essential prerequisite to match
the prediction of the experimental benchmark exhibiting large gra-
dients. With the constitutive model presented in Section 6.2.5 it is
therefore possible to predict the crystal rotations correctly as well as the
quantitatively correct densities of geometrically necessary dislocations
in the wedge indentation on a Ni single crystal.

7.5. Single crystalline pillar compression

Another example demonstrating the coupling of a CP constitutive
law and commercial FEM software (see Section 3.2.1) is the simulation
of pillar compression. Specifically, the phenomenological constitutive
law described in Section 6.2.2 is used together with MSC.MARC to reveal
the influence of complex boundary conditions on the in situ single
crystalline micro-pillar compression tests. The pillar-shaped compres-
sion samples for the simulations are modeled as perfect cylinders placed
on a large substrate (see the inset in the bottom of Fig. 20 and at the top
of Fig. 21). The pillar and the substrate share the same crystallographic
orientation and mechanical properties. The sample geometry is typical
for samples cut in a Focused Ion Beam (FIB) device (see the top of
Fig. 21).

Here two effects had been investigated: (i) the effect of friction
between the compression tool and the sample surface on Cu pillars
[233]; (ii) the effect of the misalignment of the compression tool on Ni
pillars [234]. The model parameters used for Copper (Cu) and Ni are
listed in Table 4.

7.5.1. Copper pillar: effect of friction
Fig. 19 shows the stress distribution mapped on the deformed pillar

and the corresponding crystallographic orientation distributions (initial
normal orientation [1112]) for a friction coefficient between the

Fig. 16. Finite element mesh used for the simulation of wedge indentation. The
indenter is modeled by two flat surfaces that have an inclination angle of 90°
and a flat tip of 5 μm width. Figure adopted from [124,169] with permission
from Elsevier.
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compression tool and the sample surface ranging from 0.0 (left) to 0.1
(right) at an engineering strain ( eng) of 0.1 (top) and 0.4 (bottom). The
sample deformed with zero friction (left column) shows a very strong
trend to undergo deformation-induced crystallographic reorientation.
The other two specimens which were deformed under non-zero friction
conditions undergo less pronounced orientation changes. Moreover, the
overall spread in the deformation-induced orientation distribution is in
both cases with non-zero friction much smaller than in the case with
zero friction. The shape changes of the pillars also reveal clear differ-
ences among the three samples as shown in Fig. 19: The sample which
was deformed under zero-friction conditions undergoes very strong
buckling while the two specimens that are deformed with non-zero
friction conditions reveal a more stable evolution of the shape, i.e. less
buckling.

The influence of friction is also revealed in the stress–strain curves
(Fig. 20). For the case of vanishing friction the stress-strain curve shows
features of plastic flow instability. This observation matches the shape
change presented in the top of Fig. 19. To further investigate the sta-
bility of the deformation, the corresponding flow curve had been ana-
lyzed in terms of the CONSIDÉRE criterion (inset in Fig. 20). The point of
intersection between the hardening curve and the stress–strain curve
occurs at an engineering strain of 0.185. The unstable stress–strain
curve for zero friction reflects the shape instability of the zero-friction
specimen. The two stress–strain curves for non-zero friction conditions
(friction coefficients 0.05 and 0.10) are much more stable and do not
exhibit geometrical softening. Further details on the influence of fric-
tion and buckling effects can be found in the original publication [234].

7.5.2. Nickel pillar: effect of misalignment
Fig. 21 shows (i) the in situ Ni pillar compression sample used in the

experiment and the FEM mesh for the simulation, and (ii) the average
shear rate of the 12 slip systems in fcc crystals as a function of the
engineering strain. In the simulation, the compression tool is set to be
2.0° off the ideal punch direction, and the contact between the com-
pression tool and the sample surface is assumed to be frictionless.

The red line in Fig. 21 shows the shear rate evolution of the geo-
metrically predicted (111)[101] slip plane, which is expected to be
dominant in an ideal uniaxial compression experiment (with a SCHMID

factor of 0.47). When using a tool inclination of 2.0°, however, the si-
mulation predicts at the beginning of loading the activity of two slip
systems that are geometrically unexpected, i.e. the (111)[101] system
with a SCHMID factor of 0.35 and the (111)[011] system with a SCHMID

factor of 0.18. Only at a strain above 0.3% kinematically expected slip
system becomes prevalent. This simulation result matches the experi-
mental observation of plasticity on an unexpected observed slip plane,
although the transition to the kinematically expected system occurs at a
smaller strain in the simulation [234].

7.6. Single crystalline cellular materials

This example is provided to demonstrate the capability of the mixed
variational formulation implemented in the spectral based method (see
Section 3.2.2) to approach problems with high phase contrast. Parti-
cularly, in this example—presented in full length by Ma et al.
[236,237]—the single crystalline stochastic honeycombs consist of two
phases, Gold (Au) and voids, the latter with a stiffness close to zero.

For a systematic investigation of the effects of texture and topolo-
gical details, four honeycomb structures were generated from 200
randomly arranged seed points using a periodic VORONOI tessellation on
a ×512 512 grid (see Fig. 22). The relative densities are approximately
0.6 that of bulk Au. From a statistical view, these four honeycomb
structures have the same distributions of the cell wall length and their
inclinations (see Fig. 3 in [237]). Eight different initial crystallographic
orientations (see Table 6) were assigned to all four structures and
loaded under in-plane compression. The phenomenological constitutive
description in DAMASK introduced above (Section 6.2.2) was used with
constitutive parameters for Au listed in Table 5.

A comparison of the average stress components normalized by the
average stress in loading direction ( 33) at an early loading stage
( = 0.00133 ) reveals that the elastic anisotropy of the bulk single
crystal is inherited by the honeycombs. A large scatter of /13 33 is ob-
served in comparison to the other normalized stress components, which
indicates that it is more sensitive to the local geometric details of the
statistically equivalent honeycomb structures.

Fig. 23 shows the cumulative probability of the stress components of
the honeycombs upon in-plane compression at = 0.1%33 . The

Table 3
Constitutive parameters of single-crystalline Nickel employed for the simulation
of the wedge indent using the model presented in Section 6.2.2.

Property Value Unit

C11 246.5 GPa
C12 147.3 GPa
C44 124.7 GPa

b 0.248 nm
ded 2.6 nm

dsc 12 nm
k1 0.1
k2 45
k3 0.01

0 2.88×1012 m−2

QS 1.12 eV
cat 5.0× 10−7

S 8.3 MPa
a 50 GHz
B 0.248 m s−1MPa−1

Fig. 17. In-plane lattice rotation as experimentally obtained by Kysar et al. [232] in comparison to the simulation results. Figure adopted from [124,169] with
permission from Elsevier.
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cumulative probabilities of 11 and 13 reveal a normal distribution with
a mean value of zero. This means that the dominant deformation mode
is bending. Two main observations were made: (i) The in-plane stress
(x–z plane) components, 11, 33, and 13, were nearly independent of the
crystallographic orientation. (ii) The out-of-plane stress (x–y plane and
y–z plane) components, 22, 23, and 12, were dependent on the initial
orientation.

Fig. 24 shows IPFs of the honeycombs at = 0.0333 . Most of the
crystallographic reorientation follows a rigid rotation about the y-axis,
which indicates that mostly bending of the cell walls was responsible
for the crystallographic reorientation. In addition to the brief summary
given here, Ma et al. [236,237] studied specific deformation details that
were observed to be associated with the underlying texture compo-
nents.

7.7. Shear banding

Shear bands are commonly observed across many material classes
and loading conditions as non-crystallographic band-like deformation
regions of concentrated plastic flow that frequently occur in bulk ma-
terials subjected to large plastic deformation [238,239]. In cases where

Fig. 18. Geometrically Necessary Dislocation (GND) density GND on a logarithmic scale as experimentally obtained by Kysar et al. [232] in comparison to the
simulation results. Figure adopted from [124,169] with permission from Elsevier.

Fig. 19. Crystal Plasticity (CP) simulation of Copper pillar compression: Pillar
geometry and corresponding crystallographic orientation distribution at an
engineering strain of 0.1 (top) and 0.4 (bottom) with different friction coef-
ficients (from left column to right, 0.00, 0.05, and 0.10). Color code:
equivalent VON MISES stress from blue (low values) to yellow (high values).
Figure adopted from [233] with permission from Elsevier. (For interpretation
of the references to color in this figure, the reader is referred to the web
version of this article.)

Fig. 20. Results of the Copper pillar compression simulation: Engineering
stress-strain curves (bottom) for the three cases with different friction coeffi-
cients ( : stress, d /d : hardening). Figure adopted from [233] with permission
from Elsevier.

Fig. 21. Nickel pillar compression: Initial pillar geometry from experiment and
simulation (top). Average shear rates on the dominant slip systems as a function
of the engineering strain (bottom); SF: SCHMID factor. Figure adopted from [234]
with permission from Elsevier.
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homogeneous and compatible dislocation glide or twinning deforma-
tion is hampered, shear banding sets on as a local mechanism of con-
centrated plastic deformation. Formation of shear bands is promoted if
homogeneous dislocation slip is hampered and the local strain hard-
ening capacity of the material is exhausted.

Shear banding has been simulated by introducing a non-crystal-
lographic mesoscopic deformation mechanism into the dislocation

density-based constitutive model presented in Section 6.2.3. Inspired by
the work of Kalidindi [130], the plastic velocity gradient Lp has addi-
tional contributions from 6 additional “virtual” shear band systems,
where the number of these additional degrees of freedom is identified in
DAMASK by NSB, which leads to an extension of Eq. (82):

= …+
=

L n s .
N

p
1

SB

(133)

Ignoring their respective volume fractions in the additional term as-
sumes that twinned and transformed volumes can be deformed by shear
bands in a manner that is compatible to the surrounding matrix.

The kinematic and constitutive details of the shear banding con-
tribution follow the model originally developed by Anand and Su [240].
In their approach, the specific non-crystallographic shear banding sys-
tems are defined relative to the three principal directions of the second
PIOLA–KIRCHHOFF stress S. The spectral decomposition of S reads:
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where Si are the principal stresses and ei are the orthonormal principal
directions of S. In agreement with the model of Anand and Su [240], the
plastic flow due to shear banding is considered on six potential systems
in the planes constructed by these three principal stress directions. In
each (e e–i j)-plane, the two potential shear band systems are defined by:
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with s c i jsin( /4); cos( /4); , (1, 2, 3) and i j. The shear
rate on system is then formulated in analogy to that for dislocation
slip systems in Eq. (84):
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where QSB is the activation energy and SB is the constant threshold
stress for shear banding.

In the following, two examples of simulating shear banding-related
behavior are presented. The first example shows simulations of the
rolling texture evolution in low Stacking Fault Energy (SFE) fcc poly-
crystals [147]. The second example is the simulation of co-deformation
and shear localization in a plane strain compressed Copper Silver
(Cu–Ag) hetero-phase bicrystal [148]. In both simulation series the
usual =N 12s {111}〈110〉 dislocation slip systems and =N 12tw
{111}〈112〉 twin systems for fcc materials (see Tables 21(a) and
22(a)) are used together with the =N 6SB shear band systems in-
troduced above. The model presented here is able to capture the shear
banding-related phenomena including not only the micromechanical
behavior but also the associated local lattice rotation in hetero-phase
composites. More details have been presented in the original references
by Jia et al. [241,242].

7.7.1. Texture evolution in α-brass polycrystals during cold rolling
Shear banding is known to have pronounced influence on texture

evolution [243]. Here the crystallographic texture evolution in α-brass
polycrystals during cold rolling is investigated. The mesh that was used
for the simulation with MSC.MARC in conjunction with DAMASK consists
of 250 eight-noded, isoparametric, three-dimensional brick elements
with eight integration points. Four different orientations were assigned
to each integration point such that 8000 crystallographic orientations
represented the random initial texture of the as-received material. At
each integration point, the 4 constituents were homogenized using the
TAYLOR isostrain homogenization approach (Section 4.1.2). The rolling
process was approximated by imposing a global plane strain compres-
sion state with a strain rate of 1×10−3 s−1 in conjunction with peri-
odic boundary conditions. Fig. 25 shows the obtained orientation

Table 4
Constitutive parameters of single-crystalline Copper and Nickel employed for
the simulation of the pillar compression using the model presented in Section
6.2.2.

Property Value Unit

Cu Ni

C11 168.0 251.0 GPa
C12 121.0 150.0 GPa
C44 75.4 124.0 GPa

0 1.0× 10−3 1.0× 10−3 s−1

0 16.0 26.1 MPa
148.0 240.0 MPa

h0 180.0 365.0× 103 MPa
a 2.25 1.0
n 83.3 83.3

Fig. 22. The four instances of the periodic honeycomb structures, called
H1–H4. Figure adopted from [236,237] with permission from Elsevier.

Table 5
Constitutive parameters of single-crystalline Gold employed for the simulation
of cellular materials using the model presented in Section 6.2.2.

Property Value Unit

C11 191.0 GPa
C12 162.0 GPa
C44 42.2 GPa

0 1.0× 10−3 s−1

0 26.25 MPa
53.0 MPa

h0 75.0 MPa
a 1.0
n 83.3
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densities along the - and -fibers in comparison to corresponding
texture measurements on Cu-30wt.%Zn published by Hirsch and Lücke
[238]. The simulated textures were obtained from three sets of simu-
lations using different combinations of deformation mechanisms: (i)
dislocation slip only, denoted as “Slip” model; (ii) dislocation slip and

mechanical twinning, referred to as “Slip+Twin” model; (iii) dis-
location slip, twinning and shear banding, denoted as
“Slip+Twin+ SB” model, where two different values for SB were
used. At 20% thickness reduction, the {011}〈100〉 (Goss), {011}
〈211〉 (Brass), and {112}〈111〉 (Copper, Cu) texture components
were reproduced by all three models. However, after 40% reduction,
differences among the model predictions were observed. This is for
example revealed on the τ-fiber in terms of the Cu texture component,
see Fig. 25(b): A significant increase of the Cu- and {123}〈634〉 (S-)
components was predicted by the Slip and Slip+ Twin models. At
higher strains, in both simulations an additional increase of the {111}
〈211〉 texture component (Brass-R) was identified. This prediction
matched the earlier reported experimental observations [243]. More-
over, the Cu-component had further developed and a very pronounced
Cu-type texture component had appeared at 80% and 90% reductions.
Less increase of the Cu-component was predicted by the Slip+ Twin
model. Yet, it was found that both simulations (Slip and Slip+Twin)
deviated from the experimental results which always exhibited a
stronger Brass-component compared to the Cu-component at large
thickness reductions. The experimental textures at reduction levels
above 80% are apparently not of Cu-type as would be expected from
homogeneous dislocation shear deformation, suggesting that shear
band formation is responsible for the observed texture evolution in low
SFE fcc materials. Using the Slip+Twin+ SB model in conjunction
with a critical stress to initiate shear banding of = 0.3 GPaSB , stronger
Brass-type textures were predicted compared to the simulations without
shear banding, as revealed by the α-fiber at 60% reduction. Moreover,
the Cu- and the Brass-R-components were less pronounced when com-
pared to the predictions obtained by the Slip and the Slip+ Twin
models. When using a critical stress of = 0.18 GPaSB for shear banding,
the Brass-component was continuously strengthened with increasing
deformation up to a strain of 90%. The Goss-component did not show a
significant increase as predicted by the Slip+ Twin+ SB model when
using = 0.3 GPaSB as critical stress. Furthermore comparison of the
two shear band simulations with different threshold stresses showed
that an easier activation of shear banding ( = 0.18 GPaSB ) leads to a
more pronounced suppression of the development of the Cu- and S-
components.

Table 6
Investigated crystallographic orientations. See Raabe et al. [235] for naming
convention.

Name EULER angles/°

1 2

Brass 35 45 0
Copper 90 35 45
Cube 0 0 0
Goss 0 45 0
Rotated cube 45 0 0
S 60 32 65
RZ 32 85 85
Less symmetric 0 13 71

Fig. 23. Cumulative probability of the stress components at = 0.00133 for all
investigated crystallographic orientations (indicated by color). Each cumulative
probability of ij contains the complete set of ij values from all four honeycomb
structures. Figure adopted from [237] with permission from Elsevier.

Fig. 24. Inverse Pole Figures (IPFs) of variant H1 of the honeycomb structures at = 0.0333 . Top row shows contour plots and bottom shows discrete plots. The circle
denotes the original orientation. Figure adopted from [237] with permission from Elsevier.
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7.7.2. Co-deformation and shear localization in a plane strain-compressed
Copper-Silver bicrystal

For the study of shear banding in Cu-Ag composites with hetero-
phase interfaces using DAMASK, suitable crystallographic orientations
for both phases had to be selected. Preliminary simulations had re-
vealed [241] that Cu-oriented crystals show the largest tendency to
initiate shear banding. Therefore, simulations of a bicrystal consisting
of (112)[111] orientented Cu and Silver (Ag) were performed. To
mimic an initial eutectic composition of Cu-68.3 vol.%-Ag [244], a
thickness ratio between Cu and Ag crystals of 6:13 was adopted to
approximate the starting microstructure. The modeled region was a
portion of bulk material with length L0 and thickness = ×H L20 0 in
undeformed state, Fig. 26. While the right edge was free to move in the
Elongation Direction (ED) direction, the left and bottom edges were
constrained from moving in the ED and Normal Direction (ND) direc-
tions, respectively. Multi-point constraints were applied to maintain the
right edge straight during deformation and a compression displacement
constraint was imposed to the top edge with a strain rate of
1× 10−3 s−1.

As shown in Fig. 27, at 20% deformation a strong strain localization
with a width below five elements is predicted in the Ag phase. In the Cu
phase, the deformation was localized in the region adjacent to the strain
localization zone that had formed in the Ag phase. It was further ob-
served that the initiation of the shear band systems in both phases did
not necessarily correspond to the occurrence of localized strain. It was
found that the shear band zones in the upper Cu crystal were triggered
by stress concentration at the phase boundaries introduced by shear
banding appearing in the adjacent Ag crystal below. Shear bands

appeared to cross the phase boundaries, apparently extending into the
adjacent Ag phase. The phase boundaries were generally straight al-
though some inclination with respect to ED at small angles was ob-
served. In the interior of the crystals, different directions of strain lo-
calization developed. Also, the stress in the Cu phase was larger than
that in the Ag phase. In the respective phases, the area with larger stress
coincided with the material points where shear banding had initiated.
When the thickness reduction reached 40%, significant curvature of the
phase boundaries was observed in regions where zones of strong strain
localization had penetrated through the hetero-phase boundaries.
Strain localization was pronounced in both phases, with a maximum
contrast of approximately 3.5. In the upper Cu crystal and in both Ag
crystals two families of shear bands were activated.

These different simulation results clearly revealed that shear bands
are triggered by stress concentrations resulting from incompatibility of
deformation modes at the phase boundaries. The observed very large
local strains, significant bending of the hetero-phase interface regions,
and sharp strain localization that propagates across the interfaces agree
well with experimental observations made on co-deformed composites
[244].

7.8. Grain-scale micromechanics of Magnesium

With its very low mass density of only 1.74 g cm−3, Magnesium
(Mg) is the lightest structural engineering metal. Mg and its alloys are,
thus, attractive for applications in lightweight automotive, train, and
aerospace design. Yet, manufacturing parts of wrought Mg is challen-
ging due its low formability at ambient temperatures. The low

Fig. 25. Texture evolution of cold rolled α-brass at different thickness reduction levels in fiber representation. Figure adopted from [147] with permission from
Elsevier.
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formability is due to the strong crystallographic basal texture developed
during rolling and to the lack of a sufficient number of easily activated
deformation systems, which is characteristic of many alloys with hex-
agonal lattice structure [247–250].

Besides non-basal dislocation slip, twinning can accommodate
strain along the crystal c-axis, providing additional degrees of freedom
for matching the VON MISES criterion of compatible plastic deformation
[251]. The deformation modes which are primarily active at room
temperature in Mg and its alloys are basal slip and {1012} tension
twinning. Both are easy to activate and have Critical Resolved Shear
Stress (CRSS) values of only a few MPa [252]. The prevalence of basal

dislocation slip produces a fiber texture where the basal planes are
closely aligned with the primary material flow direction, hence ex-
hausting the contribution of the basal slip system to further deforma-
tion [10].

It was observed that the compatible deformation condition ac-
cording to VON MISES [251] does not have to be fulfilled in each grain
individually but that also local collective cluster type deformation
modes among a group of adjacent grains can provide a sufficient
number of shear degrees of freedom [10]. For understanding these
crystal cluster co-deformation modes in Mg polycrystals, the micro-
structure and texture evolution of Mg during in situ compression tests
was studied. For the experimental analysis combined in situ EBSD and
Electron Channeling Contrast Imaging (ECCI) observations on deformed
sample surfaces to determine active slip and twinning systems via or-
ientation mapping and slip trace analysis were applied. The corre-
sponding CP simulations were conducted using the Phenomenological
Crystal Plasticity model (parameters are given in Table 7) together with
the spectral solver (Section 3.2.2). The experimental and numerical
observed collective grain deformation modes were compared and dis-
cussed based on a detailed analysis of the underlying grain-to-grain
strain transfer mechanisms and kinematics.

The experiments revealed strain localization and the formation of
early stage shear bands in Mg during compressive deformation below
5% engineering strain, Fig. 28(a). Percolative strain patterns in grain
clusters with prevalent basal slip as a precursor for shear band forma-
tion were observed. The strong basal texture and the associated grain
clusters being characterized by similar basal orientations in the re-
crystallized pure Mg were identified as an important factor responsible
for strain localization.

The CP simulations revealed a percolation of concentrated basal slip
activity across grain boundaries as the main mechanism for shear band
initiation, Fig. 28(b). Slip trace analysis, SCHMID factor calculation and
deformation transfer analysis at the grain boundaries were performed
for the activated twins. The activation of tension twins which could not
be predicted from the applied macroscopic compression load was fre-
quently observed. This observation, sometimes termed “non-SCHMID”
behavior, is a direct consequence of the locally inhomogeneous stress
state and should not be confused with the activation of slip systems
observed in body-centered cubic (bcc) crystal structures violating
SCHMID’s law (Section 6.2). Tension twins were activated specifically in
regions with high local stresses, for instance inside shear bands.
Twinning thus appeared frequently as a local mechanism of

Fig. 26. Schematic of the hetero-phase bicrystal model consisting of triangular
elements. To simulate plane strain compression, a prescribed displacement
corresponding to the thickness reduction is applied to the top edge. The left and
bottom edges are constrained from moving in the Elongation Direction (ED) and
Normal Direction (ND) directions, respectively. The right edge is free to move
in the Elongation Direction (ED) direction. Figure adopted from [241] with
permission from Elsevier.

Fig. 27. Simulation results of equivalent logarithmic strain, sum of shear rates on the shear band systems and equivalent CAUCHY stress for the Copper-Silver bicrystal
at 20% (top) and 40% (bottom) thickness reductions. Figure adopted from [241] with permission from Elsevier.
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accommodating local strain rather than a response to macroscopic
strain.

The usage of CP simulations enabled to complement the experi-
mental investigation with the local stress tensor. Analysis of the
LUSTER–MORRIS alignment parameter and the (global) SCHMID factors for
the activated tension twins revealed that twinning follows SCHMID’s law
in orientations favorable for twinning, while in orientations where
twinning was not favored by the macroscopic stress state twinning
acted indeed more as a process of accommodating local strain mis-
match, thereby maintaining strain compatibility at grain boundaries
[10].

7.9. Temperature dependent activation of twinning induced plasticity and
transformation induced plasticity in high-Manganese steel

This example demonstrates the capability of the constitutive model
introduced in Section 6.2.3 to capture the Transformation Induced
Plasticity (TRIP) and the Twinning Induced Plasticity (TWIP) effects at

different temperatures. Validation of the model was conducted using
experimental data for a TRIP/TWIP Fe-22Mn-0.6C steel [19].

Tensile tests were carried out on the material within a temperature
range of 123–773 K and at a quasi-static initial strain rate of 0.001 s−1.
High energy synchrotron X-ray Diffraction (XRD) was used to study the
evolution of the -martensite fraction and EBSD analysis was employed
to determine the twin volume fraction. The twin volume fraction of the
material was determined from EBSD measurements prior to fracture of
each sample while the -martensite volume fraction was measured in
pre-strained tensile samples at macroscopic strains of 0.05, 0.10, 0.20,
0.30, 0.40 and also after fracture of the specimen.

RVE simulations were conducted using the spectral solver in-
troduced in Section 3.2.2. A grid of dimensions × ×16 16 16 comprising
100 grains generated using a standard VORONOI tessellation approach
serves as an RVE on which periodic boundary conditions hold. Me-
chanical loading on the RVE was imposed by uniaxial tension with the
same strain rate of 0.001 s−1 as in the experiments. The material was
assumed to have a random texture and thus the crystallographic or-
ientations of the grains were randomly assigned.

The constitutive parameters for the TRIP/TWIP model were de-
termined by fitting the macroscopic stress-strain and the strain hard-
ening curves obtained from the uniaxial tension experiments. The
constitutive parameters used in the simulations are shown in Table 8.
The fcc single crystal elastic constants for the austenite phase in Iron
(Fe)-22Manganese (Mn)-0.6Carbon (C) steel were estimated from ab
initio calculations by Music et al. [254] for Fe-Mn alloys, while the
hexagonal close-packed (hcp) single crystal elastic constants for the ε-
martensite phase were calculated from the fcc elastic constants using
the procedure proposed by Martin [255,256], the values used are spe-
cified in Table 9. The SFE for the material used in this study is calcu-
lated using the thermodynamic approach by Dumay et al. [253] and the
calculated values of the SFE at each temperature are shown in Table 10.
Since the yield strength of the material varies as a function of tem-
perature, the solid solution strength, sol, was also varied to achieve this
difference in the simulated stress–strain curves. The values of sol used
for each temperature are also shown in Table 10.

The comparison between the experimental and simulated stress-
strain curves is shown in Fig. 29(a), the comparison between the ex-
perimental and simulated hardening curves in Fig. 29(b), and the
comparison of the measured and simulated twin volume fractions in
Fig. 29(c). There is qualitative agreement between the measured and
computed twin volume fractions, where twinning decreases with de-
creasing temperature. Although the computed twin volume fraction at
123 K is not zero as in the experiment, the computed twin volume
fraction is very small. However, the model tends to overpredict the twin

Table 7
Plastic constitutive parameters for Magnesium employed for the simulation
of a measured microstructure using the model presented in Section 6.2.2.
Based on values from Tromans [245] and Agnew et al. [246].

Property Value Unit

C11 59.3 GPa
C33 61.5 GPa
C44 16.4 GPa
C12 25.7 GPa
C13 21.4 GPa
c a/ 1.6235

0,basal 10.0 MPa

,basal 40.0 MPa

0,prism 55.0 MPa

,prism 135.0 MPa

a0,pyr 60.0 MPa

a,pyr 150.0 MPa

+c a0,pyr 60.0 MPa

+c a,pyr 150.0 MPa

h0
s s 500.0 MPa

h0
s tw 0.0 MPa

0,T1 40.0 MPa

h0
tw tw 50.0 MPa

h0
tw s 150.0 MPa

Fig. 28. Comparison of microstructural results at 5% compressive strain obtained from simulation and experiment. Compression direction is vertical. Figure adopted
from [10,191] with permission from Elsevier.
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volume fractions at 373 K and 423 K while it slightly underpredicts the
twin volume fractions at 233 K and 293 K. Although the twin volume
fractions were not measured for the high temperature curves at 673 K
and 773 K, the model predicts that twinning does not occur at those
temperatures, which is the expected behavior [18,257]. For the
-martensite volume fractions which are shown in Fig. 29(d), the
measured and computed volume fractions decrease with increasing
temperature. The martensitic transformation is more active at lower
temperatures because of the lower SFE and more difficult cross-slip.
Martensitic phase transformation decreases at higher temperatures as
the SFE and GIBBS free energy increase.

The model is able to predict, based on the temperature, which in
turn changes the SFE of the material, the activation of martensitic phase
transformation at low temperatures, the predominance of twinning at
intermediate temperatures, and plastic deformation solely by slip at
high temperatures. It is observed that in Fe-22Mn-0.6C, the γ→ ε
transformation occurs at low temperatures and increases as the tem-
perature decreases. Twinning occurs starting at room temperature and
increases as the temperature increases. Therefore, determination of the
temperature dependent SFE as well as of the GIBBS free energy is im-
portant to accurately predict the onset of twinning and ε-martensitic
phase transformation. Implementation of a first-principles based model
for solid solution strengthening [258] can further improve the pre-
dictive capabilities of the model.

7.10. Damage in martensitic steel

Lath martensite, the non-equilibrium high-strength phase found in
carbon steels after rapid cooling from the austenitic phase-region, ty-
pically has a complex hierarchical microstructure [259–261]. There-
fore, investigations on plasticity in martensite require on the one side a
high spatial resolution to capture the behavior of the smallest building
blocks—the name-giving laths—and on the other side a large field of
view to include further hierarchical components, i.e. subblocks, blocks
and packets, up to full prior austenite grains [39]. Here, a coupled
damage–CP study is presented which is based on the EBSD character-
ization of a martensitic microstructure.

A model alloy with composition Fe-0.13C-5.1Ni (in wt.%) produced
by ARCELORMITTAL RESEARCH was austenitized at 900°C for 5min and sub-
sequently water quenched to obtain a fully martensitic microstructure.
Further details of the experimental investigations are presented in [262].
Using the TSL OIM EBSD analysis software, a single crystallographic
orientation has been assigned to individual “grains”, i.e. (sub-)blocks.
The IPF of the resulting microstructure is shown in Fig. 30. Since the
tetragonal distortion of the lattice is small for martensite in low carbon
steels, a bcc structure is assumed. The employed material parameters for
the Phenomenological Crystal Plasticity model are given in Table 11.
Isotropic damage is modeled following Diehl et al. [41], i.e. assuming
GRIFFITH’s Criterion using the Brittle Damage driving force. The para-
meters for the damage model are given in Table 12. A uniaxial tensile
load at a strain rate of 1×10−3 s−1 was applied with an initial time step
of 1.0 s. To temporally resolve crack propagation the time step had been
reduced to 0.0002 s after damage initiation.

The resulting stress distribution evolution from damage initiation
until the development of a percolating crack network is shown in
Fig. 31. A significant stress redistribution can be observed when com-
paring Fig. 31(a) and (c). The dominant crack initiates in the region
where severe plastic deformation was experimentally observed by
Morsdorf et al. [262]. While the stress normal to this crack path is re-
laxed, characteristic stress concentrations can be seen at the crack tips
(Fig. 31(b) and (c)). Moreover, damage initiates also at several other
sites, but further development into cracks is inhibited by the sur-
rounding microstructure. The remaining material between the two
largest cracks shows an especially high stress, as can be seen in
Fig. 31(b) and (c).

This example clearly demonstrates how enhancing CP modeling by
continuum damage approaches provides new insights into the me-
chanics of complex materials as the stress distribution changes pro-
foundly upon damage initiation. However, it should be mentioned that
including damage imposes additional challenges: First, computation
times increase significantly, which is mainly due to the necessity of
using smaller time steps and the additional iterations required to arrive
at a self-consistent solution (Fig. 6). Second, the identification of sui-
table damage models and their associated parameters introduces ad-
ditional efforts. Finally, also the CP model needs to be parametrized to
give appropriate results in the quasi-static loading regime as well as at
high strain rates during catastrophic failure.

Table 8
Constitutive parameters for the plastic behavior of Fe-22Mn-0.6C steel em-
ployed for the simulation of temperature dependent tensile behavior using the
model presented in Section 6.2.3.

Property Value Unit

ptw 5.0
ptr 8.0
ps 1.15
qs 1.0
D 5.0 μm
Vcs 1 bs

3

Vcl 1.5 bs
3

v0 1×10−4 m s−1

Da 2.0
D0 4×10−5 m2 s−1

is 30.0
itw 10.0
itr 3.0
ttw 0.05 μm
ttr 0.1 μm
Ltw 0.192 μm
Ltr 0.128 μm
Qs 3.5× 10−19 J
Qcl 3.0× 10−19 J
bs 256 pm
btw 120 pm
btr 147 pm

Table 9
Single crystal elastic constants for face-centered cubic (fcc) austenite and hex-
agonal close-packed (hcp) -martensite used in the simulations.

Component Value / GPa

Austenite -martensite

C11 175.0 242.3
C12 115.0 117.7
C13 45.0
C33 315.0
C44 135.0 40.5

Table 10
Temperature-dependent input parameters for the model presented in Section
6.2.3. The solid solution strength sol is determined from fitting the experi-
mental stress-strain curves shown in Fig. 29. The Stacking Fault Energy (SFE) sf
and the GIBBS free energy G are calculated using the approach by Dumay
et al. [253], assuming values for the interface energy / as shown in the table.

T/K sol/MPa sf/mJm−2 G /Jmol−1 / /mJm−2

123 250 14.33 −266.25 15
233 160 19.45 −9.42 10
293 130 25.37 91.30 10
373 130 39.03 323.32 10
423 100 48.60 486.02 10
673 60 98.32 1330.78 10
773 35 118.41 1672.13 10
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7.11. Dual phase steel micromechanics

Dual Phase (DP) steels achieve their excellent mechanical properties
through the combination of two phases: Hard martensitic inclusions in
a softer ferritic matrix enable simultaneous improvement of strength

and ductility, making DP steels a viable option in automotive en-
gineering [263]. Despite the successful application of DP steels and a
large number of detailed studies on modeling their mechanical beha-
vior, a complete understanding of the local stress and strain

Fig. 29. Comparison between experimental (indicated by crosses and dots) and simulated (indicated by lines) results using the TRIP/TWIP model for Fe-22Mn-0.6C
steel. Figure adopted from [19] with permission from Elsevier.

Fig. 30. Martensitic microstructure formed out of approximately 15 former
austenitic grains after assigning a single orientation to each (sub-)block. Color
indicates crystallographic orientation in Inverse Pole Figure (IPF) notation
parallel to the out-of-plane direction. (For interpretation of the references to
color in this figure, the reader is referred to the web version of this article.)

Table 11
Plastic constitutive parameters for body-centered cubic (bcc) martensite em-
ployed for the coupled Crystal Plasticity-Phase Field Method for Fracture (CP-
PFMF) simulation of a measured martensitic steel microstructure using the
model presented in Section 6.2.2.

Property Value Unit

C11 417.4 GPa
C12 242.4 GPa
C44 211.1 GPa

0 1.0× 10−3 s−1

0,{110} 406 MPa

,{110} 873 MPa

0,{112} 457 MPa

,{112} 971 MPa

h0 563 GPa

h 1.0

n 20.0
a 2.25
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partitioning, which is responsible for the mechanical properties, has
still not been achieved.

Here, two examples of simulating experimentally characterized DP
steel microstructures with DAMASK are presented. The first example
aims at a strong coupling between experiment and simulation adapted
from Tasan et al. [12,218] and is limited to 2D models. Since reducing
micromechanical simulations to 2D slices of the real 3D microstructure
may lead to errors [37,189,191,264,265], in a second example a 3D DP
steel microstructure obtained by serial sectioning and subsequent EBSD
measurements has been modeled by Diehl et al. [34].

The phenomenological constitutive formulation described in
Section 6.2.2 has been used to model, ferrite and martensite phases
(model parameters are given in Table 13). Retained austenite regions
with fcc crystal structure, which are often found in DP steels [263],
have been treated as martensite since it is known from experimental
observations that the austenite transforms to martensite at early de-
formation states in the considered material.

7.11.1. 2D Simulations of dual phase steel: coupling experiments and
simulations

For the coupled 2D experimental-simulation study, a tensile strain
at the same rate as in the accompanying experiment (6× 10−4 s−1) has
been applied to the microstructural patch (Fig. 32(a)) for 170 s, i.e. until
a final average strain of approximately = 0.08 was reached. The out-
of-plane direction of the 2D model is set to be stress-free to reflect the
experimental situation of a free surface. As a characteristic feature of
the employed spectral solution method, the microstructure is periodi-
cally repeated in all three directions, i.e. the prescribed Boundary
Conditions (BCs) are volume averages.

Comparing the overall strain distributions obtained from the ex-
periments by a DIC approach [266] given in Fig. 32(b) to those

obtained from the simulations (Fig. 33(a)) reveals that many features
are in good agreement, especially: (i) A strong strain partitioning is
observed among ferrite and martensite (compare e.g. rightmost images

Table 12
Damage constitutive parameters for body-centered cubic (bcc) martensite
employed for the coupled Crystal Plasticity-Phase Field Method for Fracture
(CP-PFMF) simulation of a measured martensitic steel microstructure using
the model presented in Sections 6.4.1.1 and 6.4.2.1.

Property Value Unit

G 5.0 Jm−2

lc 0.1 μm

µ 1.0 Pa s

Fig. 31. Simulated equivalent stress in the martensitic microstructure where cracks are colored in red. The loading direction is horizontal. The insets (green solid
lines) show a magnification of the region around the cracks (green dashed lines) in which individual cracks are indicated by green arrows. (For interpretation of the
references to color in this figure, the reader is referred to the web version of this article.)

Table 13
Constitutive parameters of ferrite and body-centered cubic (bcc) martensite
employed for the simulation of real Dual Phase (DP) microstructures using the
model presented in Section 6.2.2.

Property Value Unit

Ferrite Martensite

C11 233.3 417.4 GPa
C12 235.5 242.4 GPa
C44 128.0 211.1 GPa

0 1.0×10−3 1.0× 10−3 s−1

0,{110} 95 406 MPa

,{110} 222 873 MPa

0,{112} 96 457 MPa

,{112} 412 971 MPa

h0 1 563 GPa

h 1.0 1.0

n 20.0 20.0
a 2.25 2.25

Fig. 32. Results of the in situ deformation experiments in the undeformed state
(left) and at an average strain in horizontal loading direction of = 0.05 (center)
and = 0.08 (right). Figure adopted from [12,191] with permission from Elsevier.
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in Fig. 32(b) and Fig. 33(a)). (ii) There is also good qualitative agree-
ment in the level of scatter observed in the ferritic regions. A large
scatter ( = 0.02–0.35vM for a nominal strain of = 0.010vM , i.e. = 0.08)
corresponds to the highly heterogeneous nature of strain distribution in
ferrite, which is clearly seen in Fig. 32(b) and Fig. 33(a). (iii) The strain
in many ferritic regions is localized in bands oriented at 45–50° w.r.t.
the loading direction.

Given this correlation of the strain distribution between simulation
and experiment, VON MISES stress maps obtained from simulations
(Fig. 33(b)) are considered to be representative for the stress parti-
tioning in the microstructure during the in situ experiments. It can be
observed that long and thin martensite connections aligned with the
loading direction experience the highest local stresses while smaller and
globular shaped martensite areas show rather small stress concentra-
tions. The stress partitioning is spatially relatively constant over time:
This means that the local stress peaks that had been built up at the
beginning of loading remained essentially stationary during further
deformation. Significant stress heterogeneities are observed in mar-
tensitic regions, e.g. in the large martensite grains in the upper right
region, which can be attributed to the complex hierarchical micro-
structure of martensite (see Section 7.10 for details).

The overall success in capturing the qualitatively similar strain
distribution trends in simulations and experiments (see Fig. 32(b) and
Fig. 33(a)) underlines the fidelity of the simulations also for cases of
complex engineering microstructures. However, differences are ob-
served in some cases, for example regarding the position of the highly
strained bands. More specifically, the simulations reveal strain bands in
the ferritic grains mainly in regions with higher martensite content and
low strain gradients elsewhere, while the experimental results show
high strain gradients also in ferritic regions remote from martensite.

The main limitation for the experiments is that Scanning Electron
Microscopy (SEM) is a surface analysis technique and cannot (at least in
a non-destructive manner) be used to reveal 3D microstructural in-
formation. Due to this lack of subsurface information, the micro-
structure in the DP simulation model is assumed to be columnar, while
in reality there may be martensite layers below the surface ferrite
grains, or vice versa (see also [189]). However, as shown by Tasan et al.
[218], a post mortem serial sectioning methodology allows to asses the
role of the underlying microstructure and can partially explain the
deviations resulting from the 2D approach.

7.11.2. 3D simulations of dual phase steel: simulating a measured
microstructure

The integrated experimental–numerical methodology presented
above is able to capture many of the quantitative aspects such as strain
and stress partitioning in a realistic way. However, the simplifications
associated with a 2D microstructure approximation prevent a better
match between experimental and simulated results. Therefore, here
results of extending this approach to 3D are shown. As the micro-
structure was in this case obtained through a serial sectioning ap-
proach, a comparison to experimental strain maps is not possible.

The applied serial sectioning approach consists of multiple cycles of
mechanical polishing and EBSD imaging [33,267]. To this end, first a
sample with two parallel sides of high surface quality was prepared by
mechanical grinding and polishing. For each measurement cycle, the
sample was polished with a Silicon (Si) Oxide Particle Suspension (OPS)
which resulted in an approximately constant removal rate of 0.13 μm
per step. In total, 22 slices, each sized 70 μm×20 μm (Transverse Di-
rection (TD)×Rolling Direction (RD)) at an in-plane EBSD step size of
0.2 μm had been acquired and combined to a 3D model using the CUBE

software [268]. To avoid artifacts at the boundaries, the model (see
Fig. 34) has been mirrored at each side.

The local strain in loading direction for the final increment is shown
in Fig. 35. A strong strain partitioning is observed, where the martensite
exhibits the smallest strain while narrow ferrite regions in between
martensite portions are significantly strained far above the average

deformation. In agreement with the findings from the 2D simulations,
the spatial stress and strain distribution remains constant during
loading, i.e. “hot” and “cold” spots do not change (not shown here). In
contrast with the 2D simulations, the localization bands are much less
pronounced and a more homogeneous pattern is observed [34].

The 3D example illustrates that—except for increased computation
times—the limitation to 2D in CP modeling, when using real micro-
structures, is mainly caused by experimental constraints. While the
selected 3D EBSD approach enables acquisition at high spatial resolu-
tion, its destructive nature prohibits the direct comparison to experi-
ments. Synchrotron measurements [269], in contrast, require even
higher experimental efforts especially when high spatial resolution in-
cluding in-grain orientation scatter is of importance.

7.12. Texture evolution during plate rolling

Crystallographic textures are formed by plastic deformation, re-
crystallization and phase transformation. Since crystallographic tex-
tures have substantial effects on the mechanical properties and their
anisotropy, their reliable prediction is of high relevance for adjusting
complex engineering process chains such as for instance sheet and plate
production. CP simulations have been successfully used to investigate
the evolution of the deformation textures under various types of pro-
cessing conditions [272–274]. However, there are so far only few sys-
tematic simulation studies on texture analysis during hot rolling pro-
cesses. In this section, the temperature dependent dislocation-based
model, presented in Section 6.2.3, was therefore exemplarily used for
simulating a steel plate hot rolling process. Special attention was placed
in that context on studying specifically the influence of controlled
rolling on the crystallographic texture evolution through the sheet
thickness. Studying hot rolling textures is of special importance as the
textures and microstructures that are formed during this process are
substantially altered when the material is exposed to the subsequent
down-stream processing steps. Hence, the hot band textures are as a
rule often not directly accessible to measurements. Also, it is challen-
ging to evaluate texture evolution in steel plate production quantita-
tively by experiments due to limitations in achieving realistic heating
and rolling conditions in laboratory settings.

The macroscopic deformation resistance, viz. the flow stress, during
hot rolling can be approximated by the empirical equation of Misaka
and Yoshimoto [275]:

= +

× +
C C

C C
T

exp(0.126 1.75 0.9545 )

exp 2851 2968 1120 .

2

2
0.21 0.13

(137)

Here, C is a fitting parameter and reflects the amount of alloying ele-
ments. The material parameters (Table 14) for the fcc slip systems were
determined by fitting Eq. (137), Fig. 36. Except for some deviation at

Fig. 33. Results obtained from the Crystal Plasticity (CP) simulations at an
average strain of = 0.03 (left), = 0.05 (center) and = 0.08 (right). Figure
adopted from [12,191] with permission from Elsevier.
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small strains the agreement between the CP simulation and Eq. (137) is
satisfactory.

The plate rolling process was simulated with the commercial FEM
code ABAQUS explicit 6.14 using DAMASK as a user material subroutine
(Vumat). Reverse rolling was modeled using rigid work rolls with a
diameter of 1220mm. The work piece was discretized by three-di-
mensional isoparametric elements with reduced integration (C3D8RT);
10 elements in the Normal Direction (ND), 5 elements in the TD and 12
elements in the RD. Generalized plane strain boundary conditions were
applied along TD. ND surfaces were kept straight by multi-point con-
straints. The thickness of the plate was reduced from 40mm to 20mm
by three-pass rolling according to Table 15 with a rolling speed of
3.3 m s−1 and a plate entry velocity of 3m s−1. The friction coefficient
was set to 0.4. Adaptive meshing was used to improve the distortion of
the elements at large plastic deformation, i.e. mesh smoothing methods,
volume smoothing, and LAPLACian smoothing were applied in each in-
crement. The initial temperatures for the coupled thermo-mechanical
analysis were set to 1173 K and 373 K for work piece and work rolls,
respectively. Air cooling and heat transfer from the material to the work
rolls were considered. Also, dissipative deformation and frictional
heating were considered in the work piece elements. To mimic a
random starting texture, five constituents with random orientations
were assigned to each element, resulting in a total number of 3000
orientations.

Fig. 37 shows the total accumulated slip and the temperature during
each rolling pass. Almost no accumulated slip is seen at the center of the
work piece and, despite a random initial texture, a strong plastic strain
partitioning is observed. In the last rolling pass, friction caused large
plastic deformation at the plate surfaces.

The Orientation Distribution Function (ODF) was calculated from
the crystallographic orientations after each rolling pass. For studying
the texture gradients along the ND through the sheet thickness, the
surface and center texture were evaluated separately. The deformation
texture after the final rolling pass was converted into its corresponding
transformation texture by using the KURDJUMOV–SACHS (KS) relationship
without imposing any specific variant selection.

Fig. 38 shows the deformation texture evolution obtained from the
CP simulation in terms of = °452 ODF sections for the surface layer
and at the center layer of the rolled sheet. In the surface region of the
sheet, the textures predicted are the rotated cube ({001}〈110〉)16 and
γ-fiber (〈111〉 ND) components, since the surface texture is affected
by friction and the rolling pass direction, which together can promote

shear textures. For the mid thickness textures (i.e. at the center layer)
high intensities of {211}〈111〉 and {110}〈112〉 are predicted. The
quarter thickness textures are predicted to be intermediate between
surface and mid thickness (not shown here).

Next, the corresponding transformation textures resulting from the
simulations and an experimental reference texture were compared to
each other. Tomida et al. [271] have studied the transformation tex-
tures resulting from a typical hot rolling process. The center texture
after transformation obtained from the simulation indeed corresponds
roughly to this experimentally obtained reference texture. However, the
surface texture after transformation obtained from the DAMASK simu-
lation includes some other orientations that differ from those observed
in the experimental reference texture. It is conjectured that the differ-
ences between the predicted and the experimentally obtained surface
textures depend on the influence of friction conditions and on the
variant selection during transformation.

The influence of various rolling conditions on deformation texture
evolution was evaluated in the non-recrystallized region of the rolled
sheets. In this study, the friction coefficient and the rolling pass direc-
tion were changed. The friction coefficient was decreased from the
reference condition (0.40–0.10) and the rolling pass direction was
changed from reverse rolling (alternating forward–backward rolling) to
tandem rolling (sequential unidirectional rolling). The other conditions
assumed for the analysis remained the same (Table 15).

Fig. 39 shows the influence of these rolling conditions on deformation
texture evolution in terms of ODF sections for = °452 . The mid-thick-
ness texture was not affected by the rolling conditions, since any of these
modifications in the boundary conditions produced similar simulated
deformation textures with high intensities of {211}〈111〉 and {110}
〈112〉. However, the predicted surface textures were affected by the
rolling conditions. In cases where the friction coefficient between the
work roll and the sheet was decreased in the simulations, the surface
texture became similar to the center layer texture, i.e. the deformation
state was approaching a global plane strain state everywhere in the sheet.
When tandem rolling was assumed as boundary condition, i.e. when ac-
cumulative unidirectional rolling was applied, the surface texture was
predicted to show a higher intensity of the gamma fiber (〈111〉 ND) in
comparison to the textures obtained after reverse rolling. These trends
reveal that the surface textures can depend substantially on the near-
surface shear profiles associated with the imposed friction and rolling pass
conditions. These results qualify DAMASK as a helpful modeling toolbox
for investigating and tuning industrial rolling processes owing to its
capability of predicting texture, microstructure, and mechanical response
in complex through-process scenarios.

7.13. The VIRTUAL LABORATORY

While CP simulations include many of the details of the underlying
deformation mechanisms, in many cases they are still computationally

Fig. 34. 3D model obtained from serial sectioning Electron Backscatter
Diffraction (EBSD) used for the Dual Phase (DP) steel simulations. The di-
mensions are 70.0 μm×20.0 μm×2.9 μm. Color indicates Inverse Pole Figure
(IPF) along the horizontal loading direction.

Fig. 35. Strain in loading direction mapped onto the microstructure in de-
formed configuration. Gray color indicates the average strain of = 0.12.

Table 14
Constitutive parameters of austenite employed for the simulation of plate
rolling using the model presented in Section 6.2.2.

Property Value Unit

C11 124.8 GPa
C12 53.5 GPa
C44 35.7 GPa

D 50.0 μm
S 20.0 MPa

b 256 pm
0 1.0 mm−3

v0 1.0 m s−1

Qs 3.12 eV
p 10.0
q 0.30

16 {001} parallel to ND and 〈110〉 parallel to RD.
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much too expensive for direct inclusion into large-scale forming simu-
lations. Therefore, simulations at the component scale are typically
conducted using the concept of yield surfaces to model the transition
from elastic to elasto-plastic deformation. The yield surface is usually
described as a convex analytical function in the six-dimensional stress
space. The best-known and probably to date most-used yield surface
descriptions are the VON MISES yield surface [251] for isotropic behavior
and the HILL48 yield surface [284] for anisotropic behavior. The para-
meters of these functionals are usually calibrated based on a number of
experimental tests (see Fig. 40). However, with increasingly advanced
yield surface formulations, the number and complexity of the necessary
experimental tests for calibration are also increased and so are the as-
sociated costs. This is where the VIRTUAL LABORATORY [1], also termed
numerical homogenization, comes in. Instead of conducting multiple

Fig. 36. Flow curves for two selected temperatures. Comparison of the pre-
diction by Eq. (138) to the behavior of the employed Crystal Plasticity (CP)
model (see Section 6.2.3 and Table 14). Figure adopted from [270].

Table 15
Rolling pass schedule for hot rolling of austenitic plate steel at 1173 K.

Pass Thickness / mm Reduction / %

Initial Final

1 40 30 25
2 30 24 20
3 24 20 20

Fig. 37. Results from the hot rolling simulation, quantities mapped onto the
work piece in the mill from first (top) to third pass (bottom). Arrows indicate
Rolling Direction (RD). Figure adopted from [270].

Fig. 38. Texture evolution at the surface and at the center of the simulated
rolled sheet in terms of Orientation Distribution Function (ODF) sections at

= °452 . Figure adopted from [270,271] with permission from the Iron and
Steel Institute of Japan.
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time-consuming and expensive experiments, only a small number of
very basic mechanical tests to calibrate a CP constitutive law have to be
performed. Then, in lieu of doing all calibrations experimentally, a
number of additional virtual tests are done on the basis of RVEs using
e.g. the efficient spectral solver (Section 3.2.2). This approach has the
additional advantage that many tests, which experimentally can hardly
be done at all, are easy to perform in a simulation.

In this example, several yield surface descriptions have been cali-
brated for the description of the anisotropy of cold rolled Al alloy 3104.
First, the parameters of the phenomenological constitutive law (Section
6.2.2) were calibrated to a simple tensile test, see Fig. 41 and Table 16.
Then a large number of tests were simulated for the yield surface ca-
libration. As the cold rolled material shows some additional anisotropy
due to the elongated grain shape, different RVEs were used for each
loading direction as shown in three examples in Fig. 42. A LE-
VENBERG–MARQUARDT optimization was used to determine the parameters
of different yield surface descriptions. Details of the different yield
surface descriptions and the fitted parameters can be found in Zhang
et al. [27]. Fig. 43 shows the resulting yield surfaces together with the
simulated and some experimental points. It was found that the CP si-
mulations can indeed be very efficiently used to calibrate complex
analytical yield surfaces that are commonly used in industrial manu-
facturing.

These results show that the use of DAMASK-based numerical
homogenization schemes in conjunction with the spectral solver and
high resolution RVEs can serve as a powerful VIRTUAL LABORATORY for
meeting simulation challenges in advanced manufacturing involving
complex forming operations. The fitted yield surfaces can be directly

used in forming simulations on the component scale, by that bridging
scales from the motion of dislocations to the resulting anisotropic be-
havior of sheet metal [1].

7.14. Deep drawing of dual phase steel

In this example the Relaxed Grain Cluster (RGC) homogenization
scheme (Section 4.1.3) was used for the multi-scale simulation of a deep
drawing process (see Fig. 44(a) for the simulation setup). In order to
highlight the predictive capability of the RGC scheme under demanding
micromechanical conditions, a multi-phase material with strong prop-
erty contrast between its constituent phases, namely a DP steel, has
been considered. A × ×2 2 2 cluster, of which two constituents (or
“grains”) represent martensite, was used at each integration point. For
the ferrite phase a set of orientations with size equal to the number of
MATERIAL POINTs times six, closely representing the measured crystal-
lographic texture, was drawn using the HYBRIDIA algorithm (Section 4,
[97]). These orientations were then randomly assigned to the respective
cluster constituents. For the martensite a random orientation distribu-
tion was assumed. The local constitutive response of the individual
phases was described by the phenomenological CP model (Section
6.2.2); the constitutive parameters are given in Table 17. DAMASK was
used as a Hypela2 subroutine in MSC.MARC.

Fig. 45(a) and (b) shows the distribution of the major (or the most
dominant) principal strain component on the cup exterior and interior
surfaces, respectively. In general, the upper part of the cup wall had
undergone compressive strain, particularly in the circumferential di-
rection. The middle part of the cup wall was dominated by tensile strain
in the radial direction. The strain level in the lower part and base of the
cup was relatively low. The results moreover revealed that there was no
prominent “earing”, i.e. undesired texture-dependent variation in cup
height. This was to be expected, since in this case the initial crystal-
lographic texture was close to random and therefore does not induce
any anisotropic behavior.

The results of the deep drawing simulations using the RGC scheme
are compared in Fig. 46 to results obtained by simulations using the
simpler TAYLOR homogenization scheme (Section 4.1.2) as well as to
experimental investigations. It can be seen that the RGC scheme pro-
vides in general a better prediction than the uniform strain TAYLOR

model for the measures considered: wall thickness (Fig. 46(a,b)), earing
profile (Fig. 46(c)), and punch force (Fig. 46(d)). The evolution of the
force applied to the moving punch is depicted as a function of the po-
sition of the punch in Fig. 46(d). Comparison to the benchmark ex-
perimental data reveals that both, the uniform strain TAYLOR model and

Fig. 39. Influence of rolling conditions on the final rolling texture shown in
terms of Orientation Distribution Function (ODF) sections at = °452 . Figure
adopted from [270].

Fig. 40. The VEGTER yield surface [276–278] derived from virtual test data. The
corresponding associated individual simulated or experimentally conducted
deformation tests are schematically depicted on the right hand side. Figure
adopted from [1] with permission from Elsevier.
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the RGC scheme lead to an overprediction of the experimental punch
force magnitude (32 kN), with the RGC model being in better agree-
ment (39 kN) than the uniform strain TAYLOR model (48 kN).

As a result of the improved strain partitioning (kinematics), the RGC
scheme allows for accurate plastic flow in local grain deformation
compared to the TAYLOR scheme, leading to a more realistic prediction of
the final cup geometry (both height and thickness). The comparison to
the experimental results shows that the presented model is able to
adequately bridge the gap between the governing deformation me-
chanism at the microscale and the overall behavior of the sample at the
macroscopic, i.e. engineering, scale. A more detailed description of this
application example can be found in Tjahjanto et al. [285].

7.15. Continuum dislocation dynamics

This example shows how a novel CDD theory [286,287] can be used
to study the evolution of the dislocation density in torsion of a micro-
shaft when implemented into DAMASK. The presented CDD CP model is
based on three internal state variables per slip system, namely the total
dislocation density , the dislocation density vector , and the dis-
location curvature density q. As presented in Ebrahimi et al. [288], the
evolution equations on a slip system are formulated as:

= +v vqdiv( ) , (138)

= nvcurl( ), (139)

= + +q v q vdiv 1
2| |

[( | |) ( | |) ]·grad ,2

(140)

for a given velocity v. Here, denotes the dislocation density vector
tilted clockwise by 90° within the glide plane, = ×n . It is worth
mentioning that on each slip system the KRöNER–NYE tensor is

Fig. 41. Experimentally obtained and fitted stress-strain curves of cold-rolled
AA3104. The experimental result is taken from the work of Wu et al. [279].
Figure adopted from [27] with permission from Elsevier.

Table 16
Constitutive parameters of single-crystalline aluminum employed for the virtual
tests using the model presented in Section 6.2.2.

Property Value Unit

C11 206 GPa
C12 118 GPa
C44 54 GPa

0 1.0× 10−3 s−1

0 88 MPa
118 MPa

h0 2.483 GPa
a 2
n 50

Fig. 42. Representative Volume Elements (RVEs) of size= × ×160 80 40 with 500 randomly distributed grains used for uniaxial tensile tests along different loading
directions characterized by angle , x is the loading direction, z is the (sheet) normal direction. Figure adopted from [27] with permission from Elsevier.

Fig. 43. Yield surfaces ( = 012 ) of the cold-rolled AA3104 aluminum alloy
predicted by the identified yield functions. ¯ denotes the uniaxial tensile yield
stress along the Rolling Direction (RD) obtained from the virtual tests. Open
circles denote the yield stress points obtained from the VIRTUAL LABORATORY si-
mulations, open squares denote experimental data from Wu et al. [279]. Yld91,
Yld2000-2D (for the plane stress state), and Yld2004-18p are the yield functions
proposed by Barlat et al. [280–282], Yld2004-27p is the one proposed by Aretz
et al. [283]. Figure adopted from [27] with permission from Elsevier.
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decomposable into a tensor product of the dislocation density vector
and the BURGERS vector b as = b.

In Eqs. (138)–(140), the velocity v is computed using the thermo-
dynamically consistent form introduced by Hochrainer [289]. It is de-
fined as =v Bsgn( ) | | /net net f , where B is a dislocation drag coef-
ficient, is the resolved shear stress on the slip system, f is a TAYLOR-
type flow stress, and < >· denotes the MACAULAY brackets. The net shear
stress is defined as = +net g lt b, which contains the meso-
scopic shear stress contributions ,g lt , and b, ensures thermodynamic
consistency, and depends on (gradients of) the density variables [289].

The implementation of the flux-based formulation of CDD, Eqs.
(138)–(140), is based on the non-local constitutive model (Section
6.2.5). For this simulation example DAMASK has been used as a user
material subroutine (Umat) for the commercial ABAQUS FEM solver.

A first fully-coupled three-dimensional CDD simulation of bending
of a micro-beam with only one activated slip system has been presented
by Ebrahimi and Hochrainer [290]. This contribution presents a si-
mulation of torsion of a cylindrical micro-shaft in a multi-slip situation.
The geometry and the applied boundary conditions are schematically
depicted in Fig. 47. The micro-shaft has been clamped from one side
and surface traction inducing a pure torsion moment is applied on the
shaft’s opposite free surface. The shaft was modeled as an fcc single
crystal with the torsion axis aligned along the [001] direction. Isotropic
elastic constants =E 70 GPa and = 0.34 and a BURGERS vector length

=b 0.255 nm had been used.
As initial condition, a total dislocation density of = 20 µm0

2 of
only Statistically Stored Dislocations (SSDs) was prescribed. The initial
dislocation density vector 0 and the initial curvature density q0 were
set to zero. An outflow boundary condition for the density variables was

Fig. 44. Setup of the deep drawing simulations. RD: Rolling Direction, ND: Normal Direction, TD: Transverse Direction. Figure adopted from [285] with permission
from IOP Publishing.

Table 17
Constitutive parameters of ferrite and body-centered cubic (bcc) martensite
employed for the simulation of deep drawing using the models presented in
Sections 4.1.3 and 6.2.2.

Property Value Unit

Ferrite Martensite

C11 233 417 GPa
C12 135 242 GPa
C44 118 211 GPa

0 1.0× 10−3 1.0× 10−3 s−1

0 102 702 MPa
235 1510 MPa

h0 0.61 563 GPa

h 1.0 1.0

n 20 20
a 1.0 2.0

Initial grain dimensions × × = × ×r r r 4 4 2 µm1 2 3
3.

Length of BURGERS vector =b 0.25 nm.

Fig. 45. Distribution of major strain resulting from the deep drawing process.
Figure adopted from [285] with permission from IOP Publishing.

Fig. 46. Results of the deep drawing simulations using the Relaxed Grain
Cluster (RGC) and the TAYLOR scheme in comparison to experimental in-
vestigations. RD: Rolling Direction, TD: Transverse Direction. Figure adopted
from [285] with permission from IOP Publishing.
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defined such that the last layer of integration point volumes close to the
free surfaces was only serving as a buffer that does not belong to the
sample. No initial dislocation densities were assigned to these volumes
and they remain empty during the simulation.

The predicted dislocation densities have then been qualitatively
compared with results from Discrete Dislocation Dynamics (DDD) si-
mulations taken from the literature [291,292]. Fig. 48 shows the total
dislocation densities on different slip systems on a section perpendi-
cular to the shaft torsion axis. Dislocations left the shaft at the free
surfaces and they accumulated around the shaft torsion axis. This is in
contrast with predictions from conventional CP simulations [291] but
similar to dislocation pile-ups observed in DDD simulations of torsion of
shafts with rectangular cross sections, see, e.g. Fig. 7(a) in Jones et al.
[291] and Fig. 6(e) in Senger et al. [292].

7.16. Dislocation patterning during cyclic loading

This example shows how the non-local dislocation density-based
model introduced in Section 6.2.5 has been modified to reproduce
dislocation structures forming during cyclic deformation of fcc metals
[295] at the sub-micrometer length scale. Under the single slip condi-
tions studied here, dislocation substructures consist of high dislocation
density regions, called veins, and low dislocation density regions, re-
ferred to as dislocation channels. The veins contain mostly edge dis-
locations, while screw dislocations in the channels accommodate the
plastic deformation (Fig. 49). The motion of screw dislocations creates
new edge dislocation segments at the vein–channel interface [296].
This specific behavior can be reproduced by dislocation-based models if
the curvature of dislocation segments at the vein–channel interface is
higher than in the channels.

The modified dislocation rate equations that have been used for this
application example are based on eight state variables for every slip
system, compared with four state variables used in the original dislocation
flux model (Section 6.2.5). Four state variables (edge±and screw± in
Fig. 50) represent dislocation segments with zero curvature, oriented
parallel and perpendicular to the BURGERS vector direction, while the other
four densities shown in Fig. 50 represent dislocation segments with an
orientation that is intermediate between edge and screw dislocations. An
average segment curvature k̄ is assigned to these four densities.

Only the motion of the four curved dislocation density populations
contributes to the generation of straight edge and screw density com-
ponents. For instance, the dislocation multiplication law for +s , ac-
cording to Grilli et al. [297], is given by:

= ++ + + + + + +v k v k| | ¯ | | ¯ .s e s e s e s e s,mult , , , , (141)

The annihilation rate of edge and screw dislocations is the same as in
Eq. (86a).

The new generation law has been validated on a small volume with
a dislocation density representing two interacting dislocation segments,
as shown in Fig. 51: One straight edge dislocation had been kept im-
mobile. A second dislocation segment had an edge part, forming a

dislocation dipole with the first dislocation, and a screw part. At the
intersection between the edge and the screw segment a curved density

+ +e s, was present. The screw dislocation moved when a resolved shear
stress was applied. According to the newly introduced generation law,
the edge dislocation density increased in the elements which contain
the immobile edge segment and, after the transit of the density + +e s, , it
had doubled in value. This result indicates that two edge dislocations
are present in those elements in agreement with the behavior found in
equivalent discrete systems.

A continuum rate equation for double cross-slip was then used to
model the density evolution of curved dislocation segments [297]. In
this simple model the dislocation loops emitted on primary slip planes
after a double cross-slip event were considered [298]. The rate at which
new curved dislocation density is created was introduced as:

=
+

+ +
+

wk
V

k T
( )

¯ exp ,e s
s s

, ,cs
a III cs

B (142)

where III is the stage three stress and w is the average width of a cross-
slipping screw dislocation segment [299].

Simulations of cyclic shear deformation of a Cu single crystal or-
iented for single slip were then carried out on the rectangular geometry
shown in Fig. 52 using an element size of 200 nm. A strain amplitude

= 0.1% was applied along the BURGERS vector direction. After 25 de-
formation cycles, the edge dislocation density started to self-organize
and a distinct pattern became visible, see Fig. 52(a). The dislocation
density walls were mainly oriented perpendicular to the BURGERS vector
direction and the characteristic spacing between two neighboring walls
was of the order of 1 μm.

The strain amplitude was increased to = 0.2% after cycle 30. The
dislocations in the larger veins did not rearrange and the vein size in-
creased, as shown in Fig. 52(b). Therefore, the channels become
shorter, satisfying the similitude principle [300]. This leads to an in-
crease of the volume fraction of veins for higher strain amplitudes
[301]. A more detailed description of the model and other simulation
results can be found in [297]. An extension of the model suitable to
describe multiple slip situations and to predict labyrinth dislocation
structures has been presented by Grilli et al. [302].

7.17. Glissile junction formation

In this example, the addition of a new multiplication mechanism
based on glissile junction formation to the dislocation density-based CP
model (Section 6.2.3) is presented. Dislocation junctions are usually

Fig. 47. Finite element mesh and boundary conditions of the simulated shaft
with radius 2 μm and length 20 μm.

Fig. 48. Accumulation of total dislocation density on a section perpendicular to
the shaft’s torsion axis and on four different slip systems.
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only considered in the context of strain hardening (e.g. [153,304,305]).
Recent investigations of the glissile junction formation in fcc crystals
[306,307] using DDD simulations [308–310] show, however, that it
substantially alters both, the dislocation density evolution and the
plastic strain contributions of the active glide systems. A glissile junc-
tion is formed when two non-coplanar glide dislocations react such that
the vectorial sum of their BURGERS vectors is also a BURGERS vector co-
planar with one of the reactant glide planes. Crystallographically, 48
out of the 144 possible combinations of glide systems form glissile
junctions in fcc crystals, which makes it the most frequent reaction. In
glide system notation the reaction reads + =n b n b n b( , ) ( , ) ( , )1 1 2 2 2 3 ,

where the indices 1 and 2 denote the primary systems and 3 the re-
spective glissile system of BURGERS vector b and plane normal n.

In order to include the glissile mechanism, determined at the level
of discrete dislocation dynamics, rate equations for the dislocation
density evolution of the concerned systems have been proposed by
Stricker and Weygand [307] following the approach of Ma and Roters
[144] and Ma et al. [65]. In the model, the collision frequency of
glide system α moving with the average velocity v through a forest
system having an average dislocation spacing of L , which is pro-
portional to the dislocation density through the relationship

=L 1/ is calculated as:

= v
L

.
(143)

The crystallography of the fcc crystal dictates a symmetry for the
formation rate of glissile junctions on the third system. The dislocation
density increase due to this mechanism is, hence, given by

= +C | | | | ,
(144)

where the indices and are the respective primary glide systems,
which produce a dislocation density contribution on system , de-
notes the plastic shear rates and the prefactor C is assumed to be con-
stant (for details refer to [307]). This prefactor can be estimated from
DDD simulations. The formation of dislocation density from the glissile
junctions is completed by subtracting the newly formed from both
primary systems forming the reaction:

=
=

,
.

,eff

,eff (145)

The determination of the prefactor C is not straightforward as both,
normal dislocation multiplication and reactions, lead to a change in
dislocation density. Furthermore, the reaction is occurring as a discrete
change in the microstructure in the DDD simulations, but the initial
segment length, right after the formation, is too small for being relevant
at the continuum level. This means that the glissile dislocation first has
to extend before it is able to contribute to plastic slip. Therefore, a
lower bound for the prefactor C has been estimated by measuring the
dislocation density increase on glide systems with a SCHMID factor of
zero for a tensile test along a 〈100〉 direction.

The increase in dislocation density on these systems occurs only
through deposition of a dislocation density contribution by formation of
glissile junctions and not as a result of the motion of dislocations due to
an applied stress. Fig. 53 shows the result of this measurement on each
zero SCHMID factor glide system from a series of 300 DDD simulations as

Fig. 49. Representation of veins and the gliding motion of screw dislocations
inside the channels. Figure adopted from [293] with permission from Elsevier.

Fig. 50. Parametrization of the dislocation loop used to define state variables.

Fig. 51. Simulation of two interacting dislocation segments using the disloca-
tion density based model for cyclic fatigue. Figure adopted from [294].

Fig. 52. Edge dislocation density after (a) N=25 cycles at a strain amplitude
= 0.1% and (b) after 12 more cycles at a strain amplitude = 0.2%. Figure

adopted from [294].

Fig. 53. Prefactor C as a function of smallest outer sample dimension d and
square root of the dislocation density ϱ. Measured from the deposition of dis-
location density on zero SCHMID factor systems in Discrete Dislocation Dynamics
(DDD) simulations. Figure adopted from [303] with permission from KIT Sci-
entific Publishing. Licensed under CC BY-SA 4.0.
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a function of the product between the smallest sample dimension d and
the square root of the total dislocation density after deformation.

The value d 14 represents samples with a volume of 24 μm3 and
a dislocation density of ×5 10 m13 2. Since the mean values of C are
on the order of 10 m4 1 and converging to this value for larger d , this
value has been adopted as a lower bound. The mean values of C are on
the order of 10 m8 1 and the lowest value is of the order of 10 m4 1. Since
the lowest value is an outlier, a lower bound of =C 10 m5 1 is assumed.
The implementation of the glissile junction formation includes a reaction
matrix, similar to the ones used for strain hardening (Eq. (77)). For the
considered case of fcc crystals, one of the twelve target glide systems can
be populated due to the glissile junctions from two pairs of primary glide
systems. Table 18 lists all possible combinations for glide systems to form
a glissile junction on the target glide system in an fcc crystal. The rate per
glide system is determined by Eqs. (144) and (145).

To show the multiplication as well as the deposition of dislocation
density by the reaction, a very restricted initial density distribution has
been chosen and the prefactor of Eq. (144) is set to = ×C 5 10 m6 1. In
a strain rate controlled tensile test along the [100]-axis, all zero SCHMID

factor glide systems (B2, C1, A2, and D1 in SCHMID–BOAS notation) are
populated as well as one system with a non-zero SCHMID factor (glide
systems B4: =m 0.408). Fig. 54 shows the difference in the stress-strain
responses of both the original (Section 6.2.3) and the enhanced model.
The macroscopic stress response is only slightly changed and quite si-
milar to results obtained from DDD simulations.

However, when a microstructural measure is used, such as the dis-
location density evolution of individual glide systems, as depicted in
Fig. 55, a significant difference in the predictions becomes apparent:
While the original model behaves classically in the sense that the dis-
location density on zero SCHMID factor glide systems (B2, C1, A2, and
D1) does not change during loading, the enhanced model (dashed lines)
shows that an additional dislocation density portion is generated on the
other non-zero systems by the new multiplication mechanism as well as
deposited on the zero systems. During the deformation glide systems
are populated by the glissile junction mechanism, leading to an overall
positive effective rate for multiplication.

This proof of concept conducted on a [100] tensile test with an
inhomogeneous initial dislocation density distribution showed that the
glissile junction is able to populate glide systems which are initially not
populated and deposit also a dislocation density contribution on zero
SCHMID factor systems. While this mechanism might not be important for
all loading conditions, it helps the microstructure to plastically ac-
commodate settings in which large gradients prevail.

7.18. Thermo-mechanics of microelectronic devices

In this example, thermo-mechanically coupled CP simulations have
been used to gain insights on the role that the microstructure of the
metallic components plays on the reliability of microelectronic devices.
Growing demands on the lifetime in power electronic devices require an
understanding of typical failure mechanisms such as the occurrence of
short circuits and the evolution of surface roughening. These devices
operate under complex thermo-mechanical loadings caused by the
current flow within the conducting metallic components and the mis-
match in thermal expansion of the involved materials. The left hand
side image in Fig. 56 shows a cross section of an experimental test
structure presented by Smorodin et al. [311] illustrating its layered
structure. Aluminum (Al) conductor paths (colored in gray) are em-
bedded in a Si-oxide insulator (Interlayer Dielectric (ILD)), which is
covered by a metallic layer of Al (metallization plate). Power pulses are
applied to the polysilicon heater in order to subject the device to a
thermal loading comparable to that imposed during operation but
without having a current flow within the conductor paths. The heating
plate is not modeled but the power pulses are directly applied as a heat
source within the conductor paths in the simulation. The corresponding
temperature field and its evolution are depicted in Fig. 58 and they
agree well with the experimental observations published by Smorodin
et al. [311] and Kanert [314]. These authors report also that cyclic
thermal loading results in a continuous accumulation of plastic de-
formation in the metallic components causing crack initiation within
the ILD. As visualized in Fig. 57, the crack is subsequently filled with Al

Table 18
Reaction table for glissile junction formation in DAMASK for all slip system of
the face-centered cubic (fcc) slip family given in Table 21(a) using the
SCHMID–BOAS notation.

Target system Primary systems

B2 +B4 C5 +B5 D4
B4 +B2 C5 +B5 A2
B5 +B2 D4 +B4 A2

C1 +B5 C3 +C5 A3
C3 +B5 C1 +C5 D1
C5 +C1 A3 +C3 D1

A2 +C3 A6 +A3 D6
A3 +B2 A6 +A2 D6
A6 +B2 A3 +C3 A2

D1 +B4 D6 +A6 D4
D4 +C1 D6 +A6 D1
D6 +B4 D1 +C1 D4

Fig. 54. Simulated stress-strain response obtained for the original dislocation
based constitutive model and for the advanced model considering glissile
junction formation. Figure adopted from [303] with permission from KIT Sci-
entific Publishing. Licensed under CC BY-SA 4.0.

Fig. 55. Dislocation density evolution of individual glide systems as a function
of strain for the tensile tests shown in Fig. 54. Dashed lines represent the en-
hanced model including dislocation multiplication by glissile junction forma-
tion. New glide systems are populated and contribute to the plastic deformation
as opposed to the original model, where only glide system B4 shows an increase
in dislocation density and contributes to plastic deformation. For legend nota-
tion see Table 18. Figure adopted from [303] with permission from KIT Sci-
entific Publishing. Licensed under CC BY-SA 4.0.
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and induces a short circuit resulting in a loss of functionality of the
device.

In this study, the influence of the microstructure of the metallic
components on the probability of crack initiation is revealed. All parts
consisting of Al are assigned a microstructure made up of polyhedral
grains derived from VORONOI tessellations, see Fig. 59. Their mechanical
behavior is described by the phenomenological CP model presented in
Section 6.2.2. An excerpt of the material properties is summarized in
Table 19. The material model was enhanced by incorporating eigen-
strains due to thermal expansion, temperature dependent material
properties, and taking into account grain size effects by means of the
HALL–PETCH relation. A more detailed description can be found in
[312,313,315]. The Si substrate and the ILD are assumed to behave
purely elastic and are temperature dependent. The probability of crack
initiation is qualitatively investigated by monitoring the maximum
principal stress between two neighboring conductor paths, as this
measure indicates the occurrence of brittle failure. Fig. 60 illustrates the
averaged stress distribution within the ILD after 50 load cycles along
the output paths depicted in Fig. 56. To investigate its influence on
crack initiation, the texture of the conductor paths is varied. A 〈111〉-
and a 〈001〉-fiber texture (〈111〉 respectively 〈001〉∣∣ z-direction) as
well as a configuration without any texture labeled as “random” have
been considered, whereby the 〈111〉-texture is predominant in a real
device. The 〈111〉-texture of the metallization plate is kept unchanged
for all three simulations.

The load on the ILD was observed to be especially high for all the
crystallographic textures considered (Fig. 60) in the region of the
highest temperature amplitude ( x0 50 µm) which is the domain
where cracks are likely to occur. The crystallographic texture affects the
stress level after cooling as well as after heating, however, the impact
becomes more apparent after cooling (Fig. 60(b)). The diagrams in
Fig. 61 show how the VON MISES stress and the stress in x-direction along
the central line of the conductor paths differ depending on their texture.
The stress within the conductor paths is supposed to be the dominating
factor for a continuous material flow from the region at low tempera-
ture to the domain at high temperature. After heating as well as after
cooling, this is highest in the case of a 〈111〉-texture. However, after 50
load cycles no considerable difference in plastic deformation based on
the texture is observed.

In this example, the stress load on the ILD was examined, which is
directly linked with the probability of brittle failure. Using the same
approach, Meier et al. [312] investigated the effect of grain refinement
of the conductor path grains on crack initiation and in [315] the in-
fluence of grain size and grain orientation of the metallization plate on
surface roughening is analyzed.

7.19. Mechanics of biological structural materials

Modeling the micromechanical behavior of biological structural
materials such as bone, shells, or arthropod exoskeletons is challenging

Fig. 56. Cross section image on the left side and the derived simulation model
on the right side with its dimensions in μm. The (red) dots mark the position
where the stress is probed for Fig. 60 (Interlayer Dielectric, ILD) and Fig. 61
(conductor path). Figure adopted from [311,312] with permission from IEEE.

Fig. 57. Cross section images showing points of failure. Figure adopted from
[311,312] with permission from IEEE.

Fig. 58. The right hand side diagram shows the temperature history within the
conductor paths. After an initial homogeneous cooling from 498 K to 398 K, 50
inhomogeneous thermal load cycles are applied reaching a maximum tem-
perature of 653 K. The left image illustrates the temperature distribution after
heating. Figure adopted from [312,313].

Fig. 59. Meshed simulation model whereby only the aluminum components
(metallization plate and conductor paths) with their characteristic micro-
structure are shown. The colors indicate different grains. (For interpretation of
the references to color in this figure, the reader is referred to the web version of
this article.)

Table 19
Constitutive parameters of aluminum valid for a grain diameter of 0.8 μm and a
temperature of 293 K employed for the simulation of cyclic thermal loading of
microelectronic devices using the model presented in Section 6.2.2.

Property Value Unit

C11 114.3 GPa
C12 64.3 GPa
C44 30.75 GPa

0 1.0× 10−3 s−1

0 88 MPa
132 MPa

h0 1 GPa

h 1.0

a 20.0
n 1.75
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because they are hierarchically structured organic-inorganic nano-
composites. Thus, the mechanical response of the bulk material is a
result of both the mechanical behavior of the individual constituents
and their structural arrangement on different length scales within the

composite [318,319]. Therefore, computational determination of the
material properties as a function of composition, constituents, and
structural arrangement requires multi-scale modeling that considers all
length scales [320]. Here, a multi-scale modeling approach is presented
for predicting the elastic properties of the mineralized cuticle forming
the exoskeletons of two species of crustaceans, namely the lobster Ho-
marus americanus and the crab Cancer pagurus. The organic matrix of the
composite consists of polysaccharide chitin and various proteins orga-
nized into fibrils. These are arranged in horizontal layers forming a
twisted plywood structure that incorporates numerous vertical pore
canals [321,322]. Both, the rotation angles of the plywood as well as
size and shape of the pore canals, are species-specific [323,324]. In the
lobster, the inorganic constituents are nanoparticles of Amorphous
Calcium Carbonate (ACC), while the crab incorporates larger calcite
particles [318,323–328]. Following the experimentally determined
structural characteristics and composition of the cuticle of both species
[324,329–331], the model consists of different RVEs corresponding to
the main building blocks (Fig. 62) [316,317,332].

The properties of -chitin (I and II in Fig. 62) and the calcite mineral
phase (IIIb in Fig. 62) were obtained from ab initio calculations using
Molecular Dynamics (MD), Tight Binding (TB), and Density Functional
Theory (DFT) [333–337]. At the mesoscale (IV in Fig. 62), successive
homogenization modeling is applied [316,332,338–340]. The local
stress and strain fields for different loadings on the exact cuticle geo-
metry (Figs. 62 and 63) are investigated using the spectral method
(Section 3.2.2) [317].

At the mesoscale, the computed elastic properties were compared to
data obtained from nanoindentation experiments (Fig. 62) [324,341] for
the mineralized chitin-protein planes. The YOUNG’s modulus along the chitin
fibrils is about 60% larger than perpendicular to the fibrils, rendering the
planes mechanically anisotropic. Nevertheless, due to their twisted ply-
wood arrangement, the in-plane stiffness of the bulk material appears

Fig. 60. Distribution of the maximum principal stress within the Interlayer
Dielectric (ILD) after 50 load cycles averaged along the positions depicted in
Fig. 56.

Fig. 61. Distribution of the stress in x-direction and the VON MISES stress within
the conductor paths after 50 load cycles averaged along the positions depicted
in Fig. 56.

Fig. 62. Multi-scale hierarchical modeling of crustacean cuticle showing the Representative Volume Elements (RVEs) used at different length scales. The properties of
α-chitin (I and II) and the calcite mineral phase (IIIb) were obtained from ab initio calculations using Molecular Dynamics (MD), Tight Binding (TB) and Density
Functional Theory (DFT). Their elastic constants are introduced into a continuum-scale model of the chitin nanofibrils (IIIa), which are represented as rods, and a
protein/mineral matrix (IIIb), where the properties of the proteins are estimated from literature data. The properties of the mineralized chitin-protein fiber layer
tissue (IV) are obtained by homogenization. The RVE of the bulk cuticle is composed of single fiber planes (V and VI) where the properties are derived from
nanoindentation (inset). Every plane has a directional vector assigned and features pore canal voids arranged in a regular hexagonal array, thus representing an
accurate reconstruction of the structure of the endocuticle layer (VII). Figure adopted from [316] with permission from John Wiley and Sons.
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isotropic at the macroscopic scale and is greatly enhanced by the presence
of chitin fibrils. As these experiments can only be performed correctly on
dry cuticle surfaces, the properties of dry material are assessed.

The endocuticle of both crustacean species is represented by RVEs of
periodic unit cells discretized by means of a regular three-dimensional grid.
Each RVE has two phases, cuticular material and pore canals. The pore
canals are modeled as a compressible medium with negligible stiffness.
Structurally, the endocuticles of lobster (Fig. 63(a)) and crab (Fig. 63(b))
differ in their stacking height and the size and distribution of pore canals
[323,324]. The stack of the chitin-protein fiber layers completes a 180°
rotation over a distance of 30 μm in the lobster and 15 μm in the crab. In
both species, the ellipsoidal cross sections of the pore canals are about 2 μm
wide (Fig. 63(a)). However, in the crab the open lumina of the pore canals
have an oval shape and are only about 1 μm wide because the narrow
edges of each pore canal are reinforced with mineralized chitin-protein
fibers oriented in normal direction with respect to the bulk endocuticle. In
the RVE, this is accounted for by introducing a third phase at the pore canal
edges with the same properties as the rest of the cuticular material, but
oriented vertically (Fig. 63(b)). The two RVEs encompass a fiber plane
rotation of 180° from top to bottom. The one for lobster is discretized by
approximately 4.9 million material points and the one for crab by ap-
proximately 2.8 million. The twisted plywood is discretized in 100 planes
for lobster and 50 planes for crab to obtain a resolution that is high enough
to observe even small changes in the local stress and strain fields. However,
the shape and distribution of pore canals is idealized to maintain periodi-
city of the RVEs.

Experimentally, the dry endocuticles of both species exhibit linear
elastic behavior. The mean in-plane YOUNG’s modulus for lobster claws is in
the range of 5.8–7GPa [329] and about 11.9GPa for crab carapace. The
cuticle fails abruptly at a strain of approximately 0.7% and 0.3% in the
lobster and the more heavily mineralized crab, respectively. Therefore,
tensile strains along the x-axis of 0.7% for the lobster endocuticle
(Fig. 64(a)) and of 0.3% for the crab endocuticle (Fig. 64(b)–(d)) are ap-
plied to the RVEs to obtain the local stress–strain state just before failure.
To study the influence of the pore canal reinforcements on the local stress
fields in the case of crab, three different RVEs are used: one corresponding
to the actual microstructure including the reinforcements (Fig. 64(b)), one
without the reinforcement phase with pore canals modeled corresponding
to the actual hollow tubes within the cuticle (Fig. 64(c)), and a hypothetical
case without reinforcement phase leaving the entire space taken up by pore
canals empty (Fig. 64). The resulting VON MISES stress fields are shown in
Fig. 64(b)–(d).

The regions where stress concentrations occur represent the most likely
sites where damage is initiated before failure. In all four cases, the high-
lighted voxels in Fig. 64 represent stress concentrations with values far
higher than the experimentally determined stresses at failure. In both,
lobster and crab endocuticle, high stresses are confined to small, localized
regions. In case of the lobster, the highest stress concentrations are ob-
served in regions where the long axes of the ellipsoidal pore canals are
oriented at about 45° with respect to the loading direction. In these regions
of the RVE, the solid material separating the pore canals is thinnest (see
highlighted planes in Fig. 64(a)) and the chitin fibers are subject to shear
stress. In the crab endocuticle, a similar behavior is found only in the hy-
pothetical case where the pore canal reinforcement phase is omitted ex-
posing the entire volume of the ellipsoidal pore canals (Fig. 64(d)). Con-
sidering only the actual pore canal volume with its oval cross section and
further assuming that they are surrounded by mineralized twisted plywood
(Fig. 64(c)), the regions with high stress concentrations become larger and
relocate to the pore canal margins at the sides oriented perpendicular to the
tensile direction, where the chitin fiber orientation is parallel to the tensile
direction. The affected regions decrease in volume with increasing rotation
angle and vanish shortly before the fiber orientation becomes perpendi-
cular to the tensile direction. This result implies that wider pore canals
affect the stability of the material more than smaller ones, where the or-
ientation of the mineralized chitin fibers becomes the dominant factor. This
is also observed in the RVE of the natural cuticle where the pore canal

edges are reinforced with vertically oriented mineralized fibers (Fig. 64(b)).
However, the reinforcement phase greatly reduces the region of high stress
concentrations, indicating that one of its purposes is to prevent damage
initiation caused by tensile stresses.

A thorough understanding of the structure–property relations in
biological hard tissues is crucial for possible biomimetic applications.
Modeling the structure and properties on each level of structural hier-
archy provides the flexibility to account for inherent local structural
and compositional variations of biological materials, especially on the
macroscopic scale. By replacing the properties of cuticle constituents
with those of synthetic materials, the model can be used for the
knowledge-based design of new materials such as biomimetic fiber-
based laminate composites with tailored porosity by virtual proto-
typing. Once validated, such a model can be used to identify optimal
designs for specific purposes. Beyond the specific structure–property
results discussed in this section the example shows also that DAMASK is
well suited to solve complex micromechanical problems of biological
matter and generally in composite materials that contain both soft
polymeric and hard ingredients.

8. Workflow and usage philosophy

DAMASK is designed with the aim to enable conducting systematic
parametric simulation studies. Using a Command Line Interface (CLI) al-
lows for easy parameterization, for instance based on problem-specific shell
scripts. Up-to-date manuals are available at https://damask.mpie.de.

8.1. Boundary value problem solver

The in-house spectral [and experimental Finite Element Method (FEM)]
solvers use a CLI. For ABAQUS and MSC.MARC, interface functions exist that
allow to use these solvers in connection with DAMASK via a CLI. These
solvers have their specific input files to specify geometry (e.g. the micro-
structure) and load. DAMASK is controlled by three configuration files,
material.config, numerics.config, and debug.config placed in the
current working directory. While the configuration for the material beha-
vior needs to be defined in material.config, fine tuning of the numerical
parameters via numerics.config and requesting additional debug output
with debug.config are optional.

8.2. Pre- and postprocessing

A number of pre- and postprocessing tools is available within
DAMASK. The design strategy follows the concept of “one tool per task”
to create a flexible and modular tool system that derives its strength

Fig. 63. Representative Volume Elements (RVEs) and corresponding scanning
electron micrographs in cross-sectional and transverse orientations of the en-
docuticle.
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from the numerous possible pipelines, combinations, and workflows
that can be constructed out of the individual building blocks.

8.2.1. Preprocessing
The preprocessing tools enable the semi-automated generation of

geometry descriptions including material parametrization and load
definition. While the geometry creation of the commercial FEM solvers
is partly left to the respective tools provided by the vendors (i.e.
MSC.MENTAT for MSC.MARC and CAE for ABAQUS), some additional tools do
exist for writing and modifying the input files. Various in-house tools
are available for the spectral solver to create and modify the geometry
definition file. In addition, the functionality of various external tools,
such as the multilevel VORONOI tool described in Section 7.2, DREAM.3D
[219], NEPER [342], etc., can be used for this purpose. In the following,
three exemplary routes are presented.

8.2.1.1. Importing synthetic microstructures from DREAM.3D. DREAM.3D
[219] is a flexible software for the evaluation and modification of
measured and synthetically created microstructures. In a previous study
[34], DREAM.3D was used to create different grain-resolved microstructures
based on the statistical description of microstructures of a steel exhibiting
Twinning Induced Plasticity (TWIP) behavior. These microstructures were
then used to investigate the effect of cold-rolling on the mechanical
response of the material. More specifically, DAMASK contains a script to
create the spectral solver geometry (microstructure description) and the
crystallographic orientation information of the material.config file
from a DREAM.3D file. The material specific part of material.config,
i.e. the specification of the constitutive parameters of the model presented
in Section 6.2.3 as well as the definition of the load case, had to be
conducted manually with the help of a standard text editor.

8.2.1.2. Selecting a set of discrete orientations from an orientation
distribution function. For multi-scale simulations (Sections 7.12 and
7.14) or VIRTUAL LABORATORY approaches (Section 7.13), computational

restrictions often require to select a relatively small number of discrete
orientations from an Orientation Distribution Function (ODF). To
accurately represent the macro-texture, the HYBRIDIA algorithm [97]
has been implemented in DAMASK (Section 4). Based on a binned
representation of the ODF, each constituent of a MATERIAL POINT in the
model is assigned a single orientation (“Texture-Component CPFEM”).
Alternatively, for the creation of synthetic microstructures, the set of
discrete orientations can be used to initialize all material points
belonging to one grain with a homogeneous orientation that can
include some random scatter. In this case, the grain geometry needs
to be provided from, for instance, VORONOI tessellation approaches as
presented in Section 7.2 [342–344].

8.2.1.3. Direct use of electron backscatter diffraction data. As
demonstrated in Sections 7.8, 7.10, and 7.11, the spectral solvers are
often used to perform simulations based on experimentally
characterized microstructures. In this case, the acquired voxelized
microstructure representation is easily converted into a geometric
description readable by DAMASK. In a similar way, the pointwise
orientation data can be used to populate material.config, giving
each point its individual orientation as obtained from Electron
Backscatter Diffraction (EBSD). As this, particularly for larger
measurements, results in very large material.config files, grain
segmentation can be performed beforehand to assign average
orientation data (with the option of including random scatter
following a GAUSSian distribution) to the undeformed grains. While
such grain segmentation is a standard feature of EBSD analysis software
(e.g. DREAM.3D [219] or MTEX [345,346]), DAMASK also provides a
script with basic functionality for this purpose.

8.2.2. Postprocessing
The postprocessing tools are designed to calculate additional

quantities that are derived from simulation results. Moreover, they
allow to convert and adapt the output for use with external tools to

Fig. 64. 3D VON MISES stress field maps obtained from spectral method calculations applying in-plane uniaxial tension at strains that are close to experimental fracture
values obtained for endocuticle of the lobster (a), and the crab (b–d). Representative Volume Elements (RVEs) (a) and (b) represent geometries as found in nature,
while (c) and (d) represent hypothetical cases where structural parameters of the pore canals were altered by removing the pore canal reinforcement phase and
modifying the pore canal volumes. Figure adopted from [317] with permission from the Institute of Chemical Engineering-BAS.
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enable in-depth analysis and visualization. In the following, three
general visualization strategies sketched in Fig. 65 and their associated
DAMASK workflows are presented.

8.2.2.1. Line plots. Line plots (Fig. 65(a)) are the simplest and probably
most used representation of data. In the field of continuum simulation,
average quantities, e.g. stress–strain curves, are shown in most cases.
DAMASK, therefore, contains routines to compute the average of the
complete model or subsets, i.e. individual phases or grains. Moreover,
scripts are included to calculate derived quantities such as stress
measures in different configurations (Table 20), various strain
measures, and the VON MISES equivalent or norm of tensorial
quantities. The provided PYTHON interface enables the straightforward
use of sophisticated tools such as MATPLOTLIB [347], but the output as
plain ASCII file is suitable for many other plotting tools as well.

8.2.2.2. Mapped field quantities. Visualization of field quantities, as
shown in Fig. 65(b), is a popular representation of spatially resolved data
on surfaces or—with limitations—in volumes. Spatially resolved DAMASK
results can be stored as vtk files that can be visualized by a number of
commercial or freely available tools, e.g. PARAVIEW [348]. Besides the
general tools for the calculation of additional quantities (Section 8.2.2),
special routines for spatially resolved visualization of scalars, vectors, and
tensors are available. This includes scripts for Inverse Pole Figures (IPFs)
color mapping with given crystal symmetry, the calculation of the nodal
displacements in finite-strain spectral solver simulations [57], and the
construction of perceptually uniform colormaps [349].

8.2.2.3. Statistical evaluation. Especially for Representative Volume
Element (RVE) simulations, statistical evaluations aiming, for
instance, at identifying “fingerprints” of microstructural features are
of increasing importance. Common ways to represent such evaluations
are “heat maps” [34,189,350] or “mechanism maps” [351]. DAMASK
provides a number of scripts to calculate and extract such data, which
can then be visualized with external tools such as SEABORN.

For more complex dependencies, which can only be partly visua-
lized, machine-learning approaches can be used to detect underlying
patterns and presently gain traction in various fields of materials sci-
ence and engineering [352]. The DAMASK output is accessible to such
approaches, but the large data sets impose challenges similar to the
ones known from analyzing highly resolved microstructure maps ob-
tained from experimental investigations [353].

9. Summary and outlook

DAMASK has been used to investigate mechanical structure–-
property relations in crystalline materials and has been successfully
applied to study diverse phenomena in structures ranging from single
crystals to components and even in biological tissue (Section 7).

In its current state, it is on the one hand a ready-to-use multi-physics

simulation toolbox with a focus on Crystal Plasticity (CP) modeling. To
lower the barrier for more experimentally-oriented scientists to use
DAMASK as a robust tool for advanced structure–property predictions, we
have coupled the actual MATERIAL POINT MODEL to different numerical solvers
and provide a large number of tools for pre- and post-processing. On the
other hand, DAMASK is a rapidly growing, flexible, and extensible frame-
work with a modular structure that enables an easy integration of additional
(sub)-models (Sections 7.15–7.17). We invite and train interested members
of the scientific community to use DAMASK as an open-source platform for
the development of novel multi-physics models [192,194,210,354,355] and
encourage its further dissemination. We especially appreciate the con-
tribution of extensions that are of broader interest for the materials science
community, such as model developments addressing the often encountered
trade-off between computational efficiency and model accuracy.

DAMASK is a research code under active development. We currently
work on the interoperability with evaluation and visualization tools
such as DREAM.3D [195,219], MTEX [345], or PARAVIEW/vtk [348]. To
improve the platform independence and performance, the DAMASK
data format is intended to change to Hdf5 [356,357]. Our current focus
in model development is on exploiting the multi-physics capabilities of
DAMASK and extending their use beyond full-field simulations. This
includes the development of coupled constitutive models and homo-
genization schemes for chemo-thermo-mechanical problems. Such a
fully coupled approach is key for studying complex phenomena such as
hydrogen embrittlement or dynamic recrystallization, where physical
processes, such as dislocation glide, phase transformation, grain
boundary migration, or damage, are strongly influenced by local fluc-
tuations in chemical composition and temperature.

With DAMASK we are aiming at building a community of users and
developers to foster the open exchange of material models and appli-
cation examples. If you are interested in contributing towards this goal,
please let us know about your DAMASK-related work.
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Appendix A. Obtain, use, contribute, and get support

The latest release version of DAMASK together with installation and usage instructions can be found on the DAMASK home page at https://
damask.mpie.de. The bleeding edge of development, which is suitable for experienced users of DAMASK, can be downloaded at https://magit1.mpie.
de/damask/damask.git using GIT. Within this repository, the branch “release” contains the current release version, the branch “development” is the
latest development version, and the branch “master” corresponds to the most recent development version that successfully passed the automated
testing suite. To get support regarding installation, usage, or how to contribute to the development, please write an email to damask@mpie.de.

Appendix B. Scheme of notation

As a general scheme of notation, scalar quantities are written as lower case letter (e.g. a, b), vectors are written as boldface lowercase letters (e.g.
a, b), second-order tensors as boldface capital letters (e.g. A, B), and fourth-order tensors as blackboard-bold capital letters (e.g. , ). For vectors
and tensors, Cartesian components are denoted as, respectively, a A,i ij, and Aijkl. All inner products are indicated by a single dot between the tensorial
quantities of the same order, e.g. =t a b· ( =t a bi i with implicit summation over repeated indices unless specified otherwise) for vectors and =t A B·
( =t A Bij ij) for second-order tensors. The tensor (or dyadic) product between two vectors is denoted as =T a b ( =T a bij i j). The action of a second-
order tensor upon a vector is denoted as =t Ab (in components =t A bi ij j) and that of a fourth-order tensor upon a second order tensor is designated
as =T B: ( =T A Bij ijkl kl). The composition of two second-order tensors is denoted as =T AB ( =T A Bij ik kj). The tensor product A B of two
second-order tensors A and B is defined by A B C ACB( ) ( =T A B( )ijkl ij kl such that =T C A C Bijkl kl im mn nj). The transpose tensor product
A B of two second-order tensors A and B is defined by A B C AC B( ) T ( =T A B( )ijkl ij kl such that =T C A C Bijkl kl im nm nj). The dyadic product
of two second-order tensors is denoted as = A B ( =T A Bijkl ij kl). =A AA|| || Tr( )F

T designates the FROBENIUS norm of (real-valued) matrix A. The
gradients = at Grad ( ) and = at grad ( ) of a scalar field a are defined by =t a x/i i and =t a y/i i, respectively. The divergences =t ADiv ( ) and

=t Adiv ( ) of a tensor field A are defined by =t A x/i ij j and =t A y/i ij j, respectively. The curls =T ACurl ( ) and =T Acurl ( ) of a tensor field A
are defined by =T A x/ij kli jl k and =T A y/ij kli jl k, respectively, where is the permutation symbol.

Appendix C. Configurations

The formulas shown in Table 20 can be used for conversion of the three stress measures used in this work: the first PIOLA–KIRCHHOFF stress P, the
second PIOLA–KIRCHHOFF stress S, and the CAUCHY stress σ.

To obtain the work conjugacy relations, the total stress power

=
= + +
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is split into elastic, eigenstrain, and plastic contributions. The relation between E and =L F Fe e e
1 is obtained by taking the time derivative of Eq. (48).

Under the assumption of small elastic strains, i.e. F F Ie
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e , and isochoric plastic deformation, i.e. =Fdet 1p , this relation can be simplified to
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Using Eq. (147), the elastic stress power term can be expressed in the plastic configuration to establish the work conjugacy between S and E

Table 20
Conversion between different stress measures. Note that the definition of the second PIOLA–KIRCHHOFF stress S differs from the definition
used in standard nonlinear continuum mechanics [49].
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Work conjugacy between Mi and Li can be established by considering the eigenstrain stress power term and using Eq. (48)
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Similarly, considering the plastic stress power, work conjugacy between Mp and Lp can be established
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The MANDEL stresses in the plastic and in the eigenstrain configuration are then given as

=M F F S andp i
T

i (151a)

=M F F SFdet .i i
1

i i
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Appendix D. Partial derivative of the constitutive relations

For the time integration of the stress (Section 5.2) and the evaluation of the consistent stress tangent (Section 5.3), derivatives of the constitutive
functions are required.

The second PIOLA–KIRCHHOFF stress S is expressed as a function of its work conjugate GREEN–LAGRANGE strain E in the plastic configuration. Therefore
its derivates are given by:
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where
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Similarly, the derivatives of the plastic velocity gradient Lp are expressed through its work conjugate plastic MANDEL stress Mp:
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where
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Lp describes the plastic velocity gradient resulting from combined dislocation glide on all slip systems:17

= = =L M L L s n( , ) .p p p p
(156)

Hence, the partial derivative of Lp with respect to the plastic MANDEL stress is defined by the sum of the derivatives of the plastic velocity gradient of
the respective slip systems:

= =L M L L( , ), , , .M M Mp p p pp p p
(157)

The individual derivatives can be obtained as follows:

17 A similar procedure is applicable for twin systems.
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The eigenstrain velocity gradient Li is expressed in terms of its pull-back to the plastic configuration, =L F L F Fdeti;p i
1

i i
T

i
1, which is work conjugate

with S. Its derivates are, therefore, given by:
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Appendix E. Deformation systems

DAMASK has definitions of slip systems for cubic materials such as face-centered cubic (fcc) and body-centered cubic (bcc), and for hexagonal
(hex) and body-centered tetragonal (bct) crystal structures for which the c a/ -ratio is adjustable. Table 21 lists all included slip families. Twin system
families are implemented for fcc, bcc, and hex (where the exact geometry depends on c a/ -ratio) crystal symmetries as specified in Table 22.

Table 21
Slip system families of the different lattice types as MILLER or (for hexagonal lattices) MILLER–BRAVAIS

indices.

Direction Plane normal Label

(a) Face-centered cubic (fcc) crystal structure
〈011〉 {111}

(b) Body-centered cubic (bcc) crystal structure
〈111〉 {011}
〈111〉 {211}

(c) Hexagonal (hex) crystal structure
〈2110〉 {0001} Basal
〈2110〉 {0110} 1st Prismatic
〈0110〉 {2110} 2nd Prismatic
〈2110〉 {0111} Pyramidal 〈a〉
〈2113〉 {1101} Pyramidal 〈c+ a〉
〈2113〉 {2 112} Pyramidal 〈c+ a〉

(d) Body-centered tetragonal (bct) crystal structure
〈001〉 {100}
〈001〉 {110}
〈010〉 {100}
〈110〉 {110}
〈110〉 {110}
〈011〉 {100}
〈010〉 {001}
〈110〉 {001}
〈011〉 {011}
〈111〉 {011}
〈100〉 {011}
〈011〉 {211}
〈111〉 {211}
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