
Vol.:(0123456789)1 3

Computing and Software for Big Science (2019) 3:2
https://doi.org/10.1007/s41781-018-0013-0

ORIGINAL ARTICLE

Towards A Next Generation of CORSIKA: A Framework
for the Simulation of Particle Cascades in Astroparticle Physics

Ralph Engel1,2 · Dieter Heck1 · Tim Huege1,3 · Tanguy Pierog1 · Maximilian Reininghaus1 · Felix Riehn4 ·
Ralf Ulrich1 · Michael Unger1 · Darko Veberič1

Received: 27 August 2018 / Accepted: 15 October 2018
© Springer Nature Switzerland AG 2018

Abstract
A large scientific community depends on the precise modeling of complex processes in particle cascades in various types
of matter. These models are used most prevalently in cosmic ray physics, astrophysical-neutrino physics, and gamma ray
astronomy. In this white paper, we summarize the necessary steps to ensure the evolution and future availability of optimal
simulation tools. The purpose of this document is not to act as a strict blueprint for next-generation software, but to provide
guidance for the vital aspects of its design. The topics considered here are driven by physics and scientific applications.
Furthermore, the main consequences of implementation decisions on performance are outlined. We highlight the computa-
tional performance as an important aspect guiding the design, since future scientific applications will heavily depend on an
efficient use of computational resources.

Keywords Air shower simulations · Astroparticle physics · Particle cascade · Monte Carlo framework · Cosmic rays ·
CORSIKA

Introduction, History, and Context

Simulations of air showers are an essential instrument for suc-
cessful analysis of cosmic ray data. The air shower simulation
program CORSIKA [1] is the leading tool for the research
in this field. It has found use in many applications, from cal-
culating inclusive particle fluxes to simulating ultra-high
energy extensive air showers, and has been in the last decades
employed by most of the experiments (see [2] and references
therein). It has supported and helped shape the research dur-
ing the last 25 years with great success. Originally designed

as a FORTRAN 77 program and as a part of the detector
simulation for the KASCADE experiment (the name itself
comes from “COsmic Ray SImulations for KAscade”), it was
soon adapted by other collaborations to their uses. The first
were the MACRO [3] and HEGRA [4] experiments in 1993.
As a consequence, over the time, it has evolved enormously
and is nowadays used by essentially all cosmic ray, gamma
ray, and neutrino astronomy experiments. Furthermore, it
helped to create a universal common reference for the world-
wide interpretation and comparison of cosmic ray air shower
data. Before CORSIKA, it was very difficult for many types
of experiments to assess the physics content of their data,
and almost impossible to qualify the compatibility with dif-
ferent measurements. In general, the simulation of extensive
air showers was recognized as one of the fundamental prereq-
uisites for successful research in astroparticle physics [5]. In
the past, some other tools have also been developed for these
purposes, of which the most well known are MOCCA [6],
AIRES [7] (with the extension TIERRAS [8] for simulations
of showers below ground), and SENECA [9].

Over all the years, CORSIKA evolved into a large and
hard to maintain example of highly complex software,
mostly due to the language features and restrictions inherent
to FORTRAN 77. While the performance is still excellent

 * Ralf Ulrich
 ralf.ulrich@kit.edu

 Ralph Engel
 ralph.engel@kit.edu

1 Institut für Kernphysik, Karlsruher Institut für Technologie
(KIT), Karlsruhe, Germany

2 Institut für Experimentelle Teilchenphysik, Karlsruher
Institut für Technologie (KIT), Karlsruhe, Germany

3 Vrije Universiteit Brussel (VUB), Brussels, Belgium
4 Laboratório de Instrumentaço e Física Experimental de

Partículas (LIP), Lisboa, Portugal

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197480613?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orcid.org/0000-0002-2535-402X
http://crossmark.crossref.org/dialog/?doi=10.1007/s41781-018-0013-0&domain=pdf

 Computing and Software for Big Science (2019) 3:2

1 3

 2 Page 2 of 12

and the mainstream use cases are frequently tested as well as
verified, it is increasingly difficult to keep the development
up-to-date with requests and requirements. It is becoming
obvious that the limited features of the FORTRAN language
and the evident complexity of the new developments are get-
ting into a conflict. Furthermore, in the future, the expertise
needed to maintain such a large FORTRAN codebase will be
more-and-more difficult to provide. Therefore, it is impor-
tant to make CORSIKA competitive for the challenges that
we are facing in the future, requiring us to make a major step
in terms of used software technology. This will ensure that
CORSIKA will evolve further and become the most com-
prehensive and useful tool for simulating extensive particle
cascades in all the required environments.

Purpose and Aim

The purpose of CORSIKA is to perform a “particle transport
with stochastic and continuous processes”. A next-genera-
tion CORSIKA (ngC) will implement this core task in the
most direct, flexible, and efficient way. In this document, we
will refer to this project as ngC, but just as a simplification
and to clearly distinguish it from the existing CORSIKA
program. The ngC will provide a framework where users
can implement plugins and extensions for an unspecified
number of scientific problems to come. CORSIKA will take
a step from being an air shower simulation program only, to
becoming the most versatile framework for particle-cascade
simulations available.

The ngC must support particle tracking, cascade equa-
tions (CE), thinning, various particle interaction models,
output options, (massively) parallel computations includ-
ing GPU support, various possibilities for user routines to
interact with the simulation process, and full exposure of
particles, while they are tracked/simulated. In particular, the
excellent performance of thinning is critical for simulations
at the highest energies [10–12]. With ngC, it will be possible
to study thinning very precisely with the techniques known
as multi-thinning [13], in combination with a deep analysis
of the cascade history. It is important to improve the thin-
ning performance and technology with respect to the solu-
tions available so far. Furthermore, production of Cherenkov
photons, radio signals, and similar non-cascade extensions
should be fully supported. As usual, the cascades could be
simulated in the atmosphere, but options for other media or
a combination of them will be added.

We expect that millions, if not billions, of CPU hours
of high-performance computing will be spent in the future
on air shower simulations for experiments like CTA [14],
H.E.S.S. [15], IceCube [16], LOFAR [17], MAGIC [18], the
Pierre Auger Observatory [19], the Telescope Array [20],
and other next-generation experiments. It is up to ngC to

make sure that this is done as efficiently and accurately as
possible, while maximizing the resulting physics output. In
this respect, ngC plays an important role in spending valu-
able and sparse resources, while it is, at the same time, a
fundamental cornerstone supporting the physics output of
many large experiments.

Main Design Considerations

Some of the goals to achieve with ngC are extensibility,
flexibility, modularity, scalability, and efficiency. The main
outline of the steps of a typical particle transport code with
processes is illustrated in Fig. 1. The central loop involves
a stack used for temporary storage of particles, a geomet-
ric transport code, and a list of processes that can lead to
secondary-particle production or absorption. It is one aim of
the ngC projects to reflect the structural simplicity of Fig. 1
to a very large degree.

Overcoming Limitations of Current CORSIKA

The current CORSIKA implementation has a number of
limitations, originating mostly from optimization to specific
use cases as well as the adaption to more-and-more novel use
cases which were previously unconsidered in the design of
CORSIKA. These limitations, most of which we intend to
remedy in ngC, and our anticipated improvements include
the following items:

1. The interaction medium is air with its density being ana-
lytically modeled by five piecewise-exponential layers.
ngC should support arbitrary media (air, liquid and fro-
zen water, lunar regolith, rock salt, etc.) and also transi-
tions between them. In addition to density, the medium
should provide refractive index, humidity, temperature,
and possibly other information. Medium properties
might also need to be fed back to the cascade simula-
tion, e.g., by influencing various energy cutoffs.

2. In CORSIKA, processes taking the cascade simulation
as input, e.g., radio or Cherenkov light calculations, can-
not feed back information to the cascade simulation. In
ngC, any process should be able to give a useful feed-
back, e.g., by requiring a change of simulation step size.

3. In ngC, an interface should be provided for easy addition
of new interaction models which treat particles or energy
ranges not covered by any other interaction model.

4. CORSIKA does not allow for particle oscillations (e.g.,
neutrinos, K0

L
∕K0

S
). A discussion whether or not oscilla-

tions should be incorporated in ngC should be started.
5. Support for inspecting and storing the history of ground-

reaching particles (with the EHISTORY option [21]) is
very limited due to rigid memory layout.

Computing and Software for Big Science (2019) 3:2

1 3

Page 3 of 12 2

6. No upward-going Cherenkov photons can be handled.
7. It is not envisaged that a started shower simulation is

canceled for any reason, for example when it could be
flagged during the simulation process as being not rel-
evant for a specific physics study.

8. Nuclei are supported only up to Z = 60 and A = 99.
9. No standardized visualization and validation tools for

detailed inspections are provided.

Related Projects and Previous Work

ngC will heavily depend on expertise gained with the origi-
nal CORSIKA program. In addition, experience gained in
other projects will be taken into account:

– MCeq [22] is a recent tool dedicated to the numerical
solution of the CE. It already offers GPU support and
very high computational efficiency. CONEX [23] is a CE
air shower simulation program that has been integrated in
CORSIKA and provides enormous increase in computa-
tion speed.

– Dynstack [24] is a recent extension of CORSIKA. Its
basic functionality should be adopted for the stack of
ngC.

– COAST [25] has been developed for CORSIKA with the
aim of offering scientists a plugin-like extensibility. The
fundamental functionality of COAST will be available in
ngC.

– Offline [26], the offline analysis framework of the Pierre
Auger Observatory offers a versatile interface to and
implementation of concepts related to geometry and
coordinate systems.

– Other programs also combine tracking and physics pro-
cesses, but with an emphasis on different aspects than
what is needed in air shower simulations; examples are
CRPropa [27] and geant4 [28], although the latter is
sometimes used for air showers simulations, too [29, 30].

Output

Physics processes of any type can produce various pieces of
output information. These can be particle lists, profiles, his-
tograms, text, etc. Therefore, when this output is written to a

Fig. 1 Scheme of particle trans-
port code with processes

Energy losses,
ionization,
Cherenkov,
Radio,
...

Interactions,
kill particles
decay
...

List of
processes

Configuration

provides
provides

Transport
Medium

«write»

Primary
particle(s)

Ordered access

Stack

create particles

provides

provides

Output

discrete process

«step-length»

Transport

 Computing and Software for Big Science (2019) 3:2

1 3

 2 Page 4 of 12

disk, it has to be stored in a similarly structured file format,
since we require that all the relevant output ends up in one
single file only. However, output can also be written to other
places than disk, for example directly as input for subsequent
workflow steps, network sockets, or other programs—but
this is subject to requirements from the user community. The
user should be able to decide what kind of output is optimal
for his specific case.

The old binary output format “DATxxxxxx” file can still
remain as a legacy option with the known limitations. The
new standard output, however, will have an internal direc-
tory structure. Different processes will produce their output
in specific places in this structure. The content of the output
file will change with the choice of the processes and their
configurations.

HDF5 [31] is an obvious choice to be considered, while
still having the potential disadvantage of being an external
dependence. ROOT [32] could be another possible option.
In any case, we will provide a flexible output interface that
physics modules can rely upon in an implementation-agnos-
tic way.

Computational Efficiency

Computational efficiency is not optional for ngC. The effi-
cient use of expensive large-scale resources is a crucial
requirement, and must be planned and considered from the
early on. The priority is given to performance over run-time
flexibility. The most fundamental settings of the simulation
must be defined at compile time in a static way: the type of
stack, including particle-level data content, physics models,
environmental models, etc. Of course, all models can have
additional parameters that can be defined and modified at
run time.

In general, the use of run-time dynamic design patterns
like virtual classes or dynamic libraries should be minimized
(i.e., avoidance of virtual methods in hot code paths). Static
design patterns are preferred.

Data copy operations must be minimized, or performed
as late as possible. The use of “lazy” functionality, which
is executed only delayed and when the result is actually
needed, should be promoted.

Compiler and CPU optimization should be fully consid-
ered for ngC. Production versions of the code should claim
full benefits from all the available optimizations. The execu-
tion of particular code on GPUs or other hardware accelera-
tors (or maybe even more custom hardware) must be trans-
parently possible.

Parallel and multi-core computations are standard, and
are built into the core of ngC.

Tools and Infrastructure

The main development infrastructure for ngC will be pro-
vided by our group at KIT. This is mostly the organization,
discussion platform, scientific coordination, steering, and
maintenance of the core functionality. The most useful and
widespread tool for collaborative development available
today is the version control system which is git. Git allows
having a very dynamic and large base of contributors, and, at
the same time, a well-controlled access to the main codebase
via pull requests (PRs). The code review, discussion, testing,
and validation of PRs will be an important task of the project
steering. Code will be peer-reviewed, with an emphasis on
clearness and readability, and inline documentation (doxy-
gen). Furthermore, automatic unit testing and validation will
be performed. Unit tests must yield a very high coverage
of the ngC code. Unit tests are executed automatically by
a jenkins (or equivalent) service to perform low-level code
and PR validation. Additional automatic validation and high-
level tests must accompany the regular testing, and cover all
the important functionality and, in particular, all physics.

Automatic testing will provide a well-defined list of sup-
ported environments, combined with a control over a speci-
fied set of different selections of simulation options.

We use the gitlab server https ://gitla b.ikp.kit.edu for the
hosting. This gitlab server also provides an issue tracking
functionality that is linked to defined milestones. A wiki
page service is also provided. Connect to this server to see
the status of the ngC project, download releases, or even get
directly involved in discussions or the development.

Main Challenges

While there are many challenges to overcome, a list of topics
that require particularly dedicated attention is given in the
following. These topics are more-or-less directly linked to
the underlying/internal physics of the cascade process and
require very intelligent and likely highly complex solution.

1. efficient integration of electron-gamma cascades (previ-
ously EGS4);

2. random-number generation in an inherently multi-core
and parallel environment while ensuring the full repro-
ducibility of simulations;

3. investigating the limits of equivalence between CE-solv-
ing and detailed Monte Carlo transport methods (dE/dX,
Cherenkov, lateral structure, radio production, etc.);

4. GPU optimization;
5. scalability in supercomputing environments.

https://gitlab.ikp.kit.edu

Computing and Software for Big Science (2019) 3:2

1 3

Page 5 of 12 2

Details

Taking the aforementioned considerations and requirements
into account, a more detailed scheme of the simulation work-
flow becomes necessary, as outlined in Fig. 2. Some of the
aspects of this diagram still need to be optimized or deter-
mined precisely. Nevertheless, with the basic design as given
here, the modular functionality and building blocks can be
developed in parallel. Rudimentary definitions of interfaces
needed for these purposes are given below.

Note that the code fragments given as examples here are,
first of all, not in any specific language and do not follow
any specific syntax. This is a pure pseudo-code used to illus-
trate the basic functionality and employed patterns, and only
vaguely resembles C++.

Conventions and Coding

A programming language offering high level of design flex-
ibility and, at the same time, excellent compiler and opti-
mization support is required. It is an advantage to chose
a language that also has non-science relevance and thus
assures long-term support, development, and expertise. For
this purpose, we decided to use C++. At the beginning, ngC
will be based on the C++17 standard, a choice that will most
probably evolve in the future.

General guidelines for contributing of the code will be
well defined and must be strictly enforced [33]. These guide-
lines will be distributed via the documentation section on the
gitlab server mentioned above and/or the wiki pages. The
guidelines can be discussed, agreed upon, and also improved
in discussions between the developers and the project steer-
ing. One of the most important things in such a project is
communication—and the code will be the prime means of
communication between the team members [34], since, let

Parallel Stacks

Parallel Stacks Stack

Config
Modular and structured,

Depending on user modules/plugins/...

Processes

Energy losses,
ionization,
Cherenkov,
Radio,
...

Interactions,
kill particles
decay
...

Transport

Output Streams

List of
continuous
processes

List of
stochastic
processes

GPU input

modify particle

provides

provides

provides

Transport
Medium

write

Migration
matrix

(container)

provides

dX step

Migration,
coupled CE

Primary
particle(s)

Ordered access

Stack

Cascade
Equations

Classify,
Thinning

create particles

provides

provides

User defined
data sinks

standard output
container

data pipeline,
socketswrite

discrete process

update

get-step-length

Tracking
modify tables

create particles

write

MPIClassify,
Thinning

Fig. 2 Main building blocks and workflow steps of ngC which already highlight the fundamental functionality and flexibility

 Computing and Software for Big Science (2019) 3:2

1 3

 2 Page 6 of 12

us not forget, most of the time people will spend on this
project which will be dedicated to reading other people’s
code [35]. A more exhaustive list of core guidelines for C++
can be found in Ref. [36]. Those items are also relevant in
this respect:

– code must be accompanied with inline comments. Note
that a well-chosen naming of identifiers and functions
can greatly reduce the burden of documenting the code.
A well-written code is self-explanatory to a large extent.
In addition, for systematic documentation, doxygen com-
mands must be used where possible.

– One aspect of choices of the style should be to minimize
the probability of programming errors. For example,
pointers should be used only where absolutely neces-
sary, and that should never be exposed to the user.

– We will favor static over dynamic polymorphism. On a
low level of the code, this will lead to the abundant use
of templates. However, high-level users and physicists
should not be exposed to templates, unless absolutely
required.

– Test-driven development is encouraged. Therefore, from
early on, a useful setup of unit tests should be supported
by the build system. The unit testing will be an essential
part of ngC. A high coverage of code by tests will be a
prime criterion for acceptance.

Dependencies

The use of external code and libraries must be minimized
to the absolute minimum to stay conflict-free and opera-
tional over a very extended period of time. Individual excep-
tions might be possible, but must be well motivated and
discussed before getting included into the mainline code.
For each functionality, we should evaluate whether a basic
reimplementation is more feasible than inclusion of an exter-
nal dependency. In any case, whenever possible, appropriate
wrappers in ngC should hide the implementation details of
external packages to keep replacement or re-implementation
option open without a need for breaking the interface. Likely
packages and options for external libraries are (excluding
packages that will be distributed together with ngC):

– C++17 compiler.
– CMake build system.
– git [for development].
– doxygen [for development].
– presumably ����� for ���� and ��� , histograms, file

system access, command-line options, light-weight con-
figuration parsers (property tree), random numbers, etc.

– HDF5 and/or ROOT for data storage [at least one of both
required].

– PyBind11 [37] for bindings to Python.

– HepMC [38] as generic interface, also for exotics
[optional].

– To generate random numbers, we will use standardized
interfaces and established methods. For testing purposes,
the possibility to exchange the random-number engine
should be relatively easy. No homegrown generators and
only well established, checked, and vetted methods for
generating random numbers should be used, likely pro-
vided by ����� , as well.

Light-weight packages like small header-only libraries can
be distributed together with ngC. Likely candidates are:

– Eigen3 [39] for linear algebra.
– catch2 [40] for unit tests.
– PhysUnits [41] for units (see below).

Configuration

The framework has to support extensive run-time (from con-
figuration files or on command line) as well as compile-time
configuration. The latter involves conditional compilation,
static polymorphism, and switching between policies in
policy-driven classes.

The run-time configuration will support structured yaml
or xml as input, either in a single file, or multiple files
located in a directory. Modules of ngC can retrieve the
required configuration via a global object in a structured
way. Command-line options are parsed and provided via the
same mechanism. By default, the complete configuration
will be saved into the output file, and will thus, if needed,
allow identical reproduction of a simulation at a later time.
Physics modules can access configuration via a section name
and a parameter name; for example

where ��������������� is the name of the configuration
section, and ������ the parameter. The data can be obtained
from files, or provided via the command line, for example
via −−������������������������ = ����_��.

For more intricate situations where a simple configuration
file might not be sufficient, or when a dynamic change of
parameters during run time is needed, the simulation process
can be more conveniently steered by means of a script. The
library PyBind11 allows us to provide bindings to Python
with minimal efforts.

Units

ngC will utilize the header-only library PhysUnits for han-
dling quantities having physical dimensions (i.e., “units”).
First, it allows us to conveniently attach units to the numerical
literals in the code (e.g., ���� �������������� = ��_���;),

������������� = ������.���(�����������������∕��������);

Computing and Software for Big Science (2019) 3:2

1 3

Page 7 of 12 2

thereby avoiding other, hard to enforce explicit conventions
and improving readability, especially in a collaborative
environment.

Second, as the dimensions of quantities are encoded in
their respective types, a dimensional analysis is imposed
upon computations involving dimensionful quantities dur-
ing the compilation. This way, an otherwise silent error of
mismatched units is converted to a compile-time error, as in
the following example:

During compilation, the conversion of quantities to com-
mon base units (which the developer does not need to know
and is internally chosen to minimize numerical errors) is
performed.

Because of this functionality, this approach is more
restrictive than more simplistic implementations like, e.g.,
provided in geant4/CLHEP [28, 42], where units are pro-
vided only as a set of self-consistent multiplication con-
stants. We believe, nevertheless, that the use of “strongly-
typed units” will make development less error-prone.

At the same time, no run-time overhead is introduced
when compiler optimizations are enabled since, after all,
such a dimensionful quantity in memory is just the usual
floating-point number.

Geometry, Coordinate Systems,
and Transformations

A key ingredient to the usability of ngC is the ability to
conveniently work with geometrical objects such as points,
vectors, trajectories, etc., possibly defined in different
coordinate systems. We will provide a geometry frame-
work (with unit support fully integrated), to a large extent
inspired by Offline, in which geometrical objects are defined
always with a reference to a specific coordinate system.
In our case, the relevant coordinate systems mainly com-
prise the environmental reference frame and the shower
frame, but additional systems can be defined as needed.
When dealing with multiple objects at the same time, e.g.,
������.��������(�����) , is it automatically taken care of
transforming the affected objects into a common reference
frame. Therefore, when one can formulate his computations
in a way that does not involve any specific coordinate sys-
tem, the handling of potentially necessary transformations
stays completely transparent.

As possible transformations that define coordinate sys-
tems with respect to each other, we restrict ourselves to the

������_� �������� = ��.�_��;

����_� ���� = ��._��;

�����_� ����� = �������� + ����; ∕∕ �
���	�� ���
�!

���������_� ���� = � ∕ ��������; ∕∕ �
���	�� ���
�!

elements of the special Euclidean group SE(3) (see ref. [43]),
i.e., rotations and translations. Although one might favor
Poincaré transformations as they include Lorentz boosts,
which are certainly required for interfacing external interac-
tion models, this would require to add a time-like coordinate
to all geometric objects. This adds a significant complex-
ity to the code in our setup that is otherwise completely
static. For example, the concept of a point fixed in space in
the lab frame would require to be upgraded to a world line.
We currently do not envisage to support modeling of rela-
tivistic moving objects in our environment—except for the
particles, of course—as this would significantly complicate
and slow down our particle tracking algorithms. Due to the
special properties of rotations and translations, it is not com-
putationally expensive to perform inverse transformations,
because expensive matrix inversions can be avoided.

Regarding the aforementioned Lorentz boosts, special
attention must be paid to ensure numerically accurate results
in all relevant regimes, comprising the range from non-rel-
ativistic (𝛽 ≪ 1, 𝛾 ≃ 1) to ultra-relativistic (𝛽 ≃ 1, 𝛾 ≫ 1)
boosts.

Particle Representation

The typical minimal set of information to describe a parti-
cle is: type, mass, energy-momentum, and space–time posi-
tion. In certain use cases this can be extended, for example,
with (multiple) weights, history information (unique ID,
generation, grandparents, and interaction ID), or further
information.

Interaction models typically do not care about the
space–time part, since once the model is invoked according
to the total cross section, the impact parameter is determined
internally by the model in a small Monte Carlo procedure
(and not from the microscopic positions of air nuclei in the
atmosphere). Nevertheless, the propagation and the continu-
ous losses will eventually need the space–time parts of the
particle information.

Particle properties like mass and lifetime are extracted
from the ������������.��� file provided by PYTHIA 8
[44], together with their PDG code [45]. To allow for effi-
cient lookup of these properties, the ngC-internal particle
code is chosen to be different than the PDG code. Since the
PDG codes only very sparsely cover a large integer range,
they are not very useful as indices in a lookup table. ngC,
therefore, uses a contiguous range of integers which is auto-
matically generated from the union of all particles known by
the user-enabled interaction models. Rather than using these
integers directly in the ngC code, however, ���� declara-
tions will be provided for convenience and improved code
readability. In contrast to their corresponding numerical val-
ues, the ���� identifiers (e.g., ���� ∶∶ ����������) are

 Computing and Software for Big Science (2019) 3:2

1 3

 2 Page 8 of 12

guaranteed to be stable after recompilation with different
interaction modules, as well as in future ngC releases.

For this purpose, the needed code is generated by a pro-
vided script before the actual compilation of ngC. This script
will depend on the aforementioned file from PYTHIA. The
output is C++ code that will allow to write expressions like
these:

The internal numeric particle-ID is just an index; the rep-
resentation of particles in ngC code and ����� is obtained
from the particle names in the ��� file. When specific inter-
action models internally use different schemes for particle
identification, extra code is provided in the interface part to
those models, where the conversion between the external
and internal codes is performed.

For binary output purposes, however, ngC-internal
codes are converted to the well-known, standardized PDG
codes to ensure seamless interoperability with other soft-
ware packages used within the HEP community. In any
text output, e.g., log files, the output is by default con-
verted to a human-readable identifiers. For example,
���� << ���������������� << ����; might, depend-
ing on the value of ���������������� , print out “ �− ” or
“ �+ ” unless a numerical output (in ngC or PDG scheme) is
explicitly requested.

Framework

The ngC consists of an inner core and associated modules
that can also be entirely external. Thus, there can be—and
generally is—a distinction between code in the “core” of
ngC and “outside” of this, defining a “frontier” where con-
ventions, units, and all kinds of reference frames have to be
adapted and converted in a consistent way. Most obviously
is the case for all the existing hadronic event-generators and
input/output facilities. Nevertheless, this can occur also in
other components, and the frontier can thus occur at dif-
ferent places. The code needed for the conversions in the
frontier must be provided together with the ngC framework.
Special care must be taken in cases where different models,
for example, use different constants for the mass of particles,
which can lead to numerically unreasonable results like neg-
ative kinetic energies or invalid transformations. The details

∕∕ ������� − ���� ��������� ����������� ∶

���� ��������� ��������� = ����������� ∶∶ �������(
��� ∶∶ ��������);

���� ��������� ����� = ����������� ∶∶ ���	�������(
��� ∶∶ ������);

...

∕∕ ��� − ���� ��������� ����������� ∶

���� ������������ = �����.���������������().�������();

���� ������ = ����������� ∶∶ ���
�����(������������);

of such effects must be investigated and a comprehensive
solution has to be found at a later time.

Particle Processing and Stacks

A core concept of ngC is that particles are stored on a dedi-
cated stack. This is needed, since, in cascade processes, an

enormous number of particles can be accumulated, requiring
careful handling of such data. The stack can automatically
swap to disk when memory is exhausted. The access and
handling of particles on the stack has an important impact
on the performance of the simulation process. In typical
applications, it is optimal in terms of memory footprint to
process the lowest energy particles first, but there can be
situations where completely different strategy becomes rel-
evant. The stack should be flexible enough to allow various
user-specific interventions, while the simulation is writing
to and reading from it.

In ngC, there is no need to have a dedicated persistent
object describing an individual particle. Particles are always
represented by a reference/proxy to the data on the stack. On
a fundamental level, such stacks can be an FORTRAN com-
mon block, dynamically-allocated C++ data, a swap file, or
any other source/storage of particle data.

Main Loop, Simulation Steps, and Processes

A central part of ngC is the loop over all particles on the
stack. These particles are transported and processed in inter-
actions with the medium, and as part of this, also CE tables
can be filled. All these processes can produce new particles
or modify the existing particles on the stack. Furthermore,
the processes can produce various output data of the simu-
lation process. CE migration matrices are either computed
at program start or read from pre-calculated files. When
the stack is empty (or any other trigger), the CE are solved
numerically, which can, once more, also fill the particle
stack. Thus, a double-loop is required here to process the
full particle cascade:

Computing and Software for Big Science (2019) 3:2

1 3

Page 9 of 12 2

The transport procedure needs to handle geometric propa-
gation of neutral and charged particles, and thus, magnetic
and electric deflections are important. The transport step
length is used to distinguish two types of processes:

– Continuous processes occur on a scale much below the
transport step length, e.g., ionization, and thus, an effec-
tive treatment can be used.

– Discrete processes typically lead to the disappearance of
a particle and to production of new particles (typically
in, but not limited to, collisions or decays).

The optimal size of the simulation step is determined from
the list of all processes considered. The discrete process
with the highest cross-section limits the maximum step
size. However, also a continuous process can limit the step

size, for example by the requirement that ionization energy-
loss, the multiple-scattering angle, or the number of emitted
Cherenkov photons cannot exceed specific limits. Further-
more, even particle transport is just a specific type of process
which propagates particles. Since the propagation can lead a
particle from one medium (e.g., the atmosphere) into another
(e.g., ice), the particle transport can also have a limiting
effect on the maximum step length allowed. An individual
step cannot cross from one medium to another, but, for cor-
rect treatment, must terminate at the boundary between the
two media. Furthermore, the particle transport in magnetic
fields leads to deflections, where step size has to be adjusted
according to the curvature of the deflection.

Thus, the geometric particle transport must be the first
process to be executed. The information about the particle
trajectory is important input for the calculation of subse-
quent continuous processes. Finally, the type and probability
of one single discrete process is last to be determined for
each simulated transport step. The simulated discrete pro-
cess is randomly selected, typically according to its cross
section or lifetime. The structure of the code to execute in
one simulation step is thus:

while (!stack.Empty()) {
while (!stack.Empty()) {

auto particle = stack.GetNextParticle();
Step(particle);

}
cascadeEquations.Solve();

}

Step(Particle& particle)
{

auto stepLength = MinimalStepLength(tracking, continuousProcesses,
stochasticProcesses);

auto trajectory = tracking.Propagate(particle, stepLength);
for (auto& cp : continuousProcesses) {

cp.Propagate(particle, trajectory, stepLength);
}
// randomly select ONE or NONE stachastic process
if (discreteProcess dp = SelectStochasticProcess(stepLength)) {

dp.Interact(particle);
}

}

 Computing and Software for Big Science (2019) 3:2

1 3

 2 Page 10 of 12

The numerical solution of the CE is performed as being
functionally fully equivalent to a normal propagation. While
some of the processes can easily be formulated using migra-
tion matrices, our aim is, though, to scientifically evaluate and
exploit the concept as extensively as possible, covering the pro-
duction of Cherenkov photons, radio emission, etc. The data
for the CE are stored in a table (which, in general, will cover
multiple dimensions) representing histograms, for example,
of the number of particles of specific type versus energy. The
migration of particles to different bins in energy and to different
particle types is described by pre-computed migration matri-
ces. The matrices implicitly already encode the information
on the geometric length of simulation steps. In some aspects,
the CE approach corresponds to the approximation where the
discrete processes are handled like continuous processes. This
is reflected in the structure of the corresponding code: The
limits of the application of CE to specific processes are not
known precisely at this moment, and certainly, there are various
challenges facing us ahead. Particularly difficult processes are
those which depend significantly on geometry, like Cherenkov
or radio emission. It is up to the detailed studies to evaluate
their performance and adapt the methods to potential (limited)
use cases. This will be subject of research as part of the project.

Radio

Radio emission calculations, which, in the original COR-
SIKA, are provided by the CoREAS extension [46], rely
on the position and timing information of charged particles
to calculate the electromagnetic radiation associated with
a particle shower. With its increased flexibility, ngC will
enable radio emission calculations for a much larger range
of problems. In particular, simulation of the radiation associ-
ated with showers penetrating from air into a dense medium
or vice versa will become possible due to the more generic
configuration of the interaction media. Feedback of the radio
calculation to the cascade simulation (e.g., modifying simu-
lation step sizes or possibly thinning levels) might increase
performance and/or simulation accuracy. GPU parallelization
has the potential to greatly reduce computation times, which
are currently the main bottleneck for simulations of signals

in dense antenna arrays. Simulations in media with a siz-
able refractive-index gradient will require certain ray-tracing
functionalities, possibly even finite-difference time-domain
calculations. The modular approach of ngC will allow the
implementation of different radio emission calculation for-
malisms and enable systematic studies of their differences.

Environment

Traditionally, the medium of transport for CORSIKA was
the Earth’s atmosphere. It is one of the purposes of ngC to
allow for much more flexible combination of environments.
This includes water, ice, mountains, the moon, planets, stars,
space, etc. In this case, also the interface between different
media becomes a matter of significance for the simulation.
Showers can start in one medium and subsequently traverse
into different media. The environment will be a dedicated
object to configure for every physics application. The struc-
ture of the environment will be defined before compilation,
the properties of the environment can be configured via con-
figuration files in any way needed for the application. This
can be either static or time-dependent.

The global reference frame is specified by the user and
depends on the chosen environmental model. For a standard
curved Earth this is the center-of-the-earth frame. With dou-
ble floating-point precision this yields a precision better than
a nanometer over more than 10, 000 km distance.

Particles are tracked in the global reference frame. The
secondary particles produced by discrete processes occur-
ring at specific locations in the cascade are transformed and
boosted back into the global coordinate frame.

For specific purposes, like tabulations and some approxima-
tions, the shower coordinate system, in which the z-axis points
along the primary-particle momentum, can also be relevant.

The initial randomization of primary-particle locations
and directions is performed by dedicated modules, which
can be changed and configured by the users to get, on the
detector level, the desired distributions. The environment
object provides all of the required access to the environmen-
tal parameters, e.g., roughly in the following form:

����������� ∶∶ �����������(�����)

����������� ∶∶ ����������������(���������)

����������� ∶∶ ���
��	����������(�����)

����������� ∶∶ ���������(�����)

����������� ∶∶ �������	�����������(���������)

����������� ∶∶ ������������������(�����)

����������� ∶∶ ���
����������(�����)

����������� ∶∶ ����������(�����)

����������� ∶∶ �����	����������(�����)

����������� ∶∶ ����������������(�����)

CascadeEquations::Solve()
{

while (!table.Empty()) {
for (auto cp : continuousProcesses) {

cp.CascadeEquationPropagate(table)
}
for (auto dp : discreteProcesses) {

dp.CascadeEquationPropagate(table)
}

}
}

Computing and Software for Big Science (2019) 3:2

1 3

Page 11 of 12 2

This interface is sufficient, since, for example, a concept like
altitude, defined as distance from a point to a surface on a
direct line to the origin (center of the Earth), is needed only
internally within the environment object.

The environment object will use a C++ policy concept
to provide access to the underlying models. This requires
re-compilation after changes in the model setup. However,
individual models can still be configured at run time.

Geometric objects

We will keep the geometry description as simple as pos-
sible and to the level needed to achieve the physics goals.
At the moment, these goals include being able to define dif-
ferent (typically very large) environment regions with dis-
tinct properties. Initially, it is sufficient to provide only the
most simple forms and shapes, e.g., sphere, cuboid, cylin-
der, and maybe trapezoid as well as pyramid. The geometry
package must be structured in a generic way, so that it can
be extended, if needed, to include more complex and fine-
grained objects at a later time. We are not planning to sup-
port general-purpose geometry as, for example, in geant4
[28]. When, in a specific volume of the simulation, a very
complex geometry is required, it is probably the best choice
to allow seamless integration of ngC with geant4, where
particles can be passed-on from one package to the other.

Summary

The steps towards creation of ngC outlined here are opti-
mized to best support scientific research in fields where the
simulation involves particle transport and particle cascades
with stochastic and continuous processes. The targeted goals
of the resulting framework will be far beyond the capabilities
of the original CORSIKA program. It is up to the scientific
community to decide in which concrete applications ngC
will be used in the future. It is our aim to offer long-term
support for the ngC program over a period of more than
20 years.

The modularity of the proposed code and the magnitude
of the project offer the opportunity for the scientific commu-
nity to participate in a collaborative manner. Specific func-
tionality and modules can be provided and maintained by
different groups. The core of the project, the integration, and
the steering are provided by KIT. This can be also a suitable
model for a scenario where different communities have dif-
ferent requirements, but the overall collaborative approach is
the one that we want to promote and foster. This will require
dedicated and strict commitment to the project from all the
participating parties to assure the stability and functionality
with no compromises needed.

A better access to the air shower physics-simulation
process will be one of the keys to address the main open
questions of cosmic ray physics, the universe at the highest
energies, and related scientific problems.

Acknowledgements We thank the participants of the Next-Generation
CORSIKA Workshop for their valuable comments and suggestions
regarding this white paper and the future of CORSIKA. T.H. acknowl-
edges very fruitful discussions within the radio detection community.
M.R. acknowledges support by the DFG-funded Doctoral School
“Karlsruhe School of Elementary and Astroparticle Physics: Science
and Technology”.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

 1. Heck D, Knapp J, Capdevielle JN, Schatz G, Thouw T (1998)
CORSIKA: a monte carlo code to simulate extensive air showers.
Technical Report FZKA-6019, Forschungszentrum Karlsruhe

 2. Hörandel Jörg R (2006) A review of experimental results at the
knee. J Phys Conf Ser 47:41

 3. Ambrosio M et al (2002) The MACRO detector at Gran Sasso.
Nucl Instrum Method A 486:663

 4. Daum A et al (1997) First results on the performance of the
HEGRA IACT array. Astropart Phys 8:1

 5. Knapp J, Heck D, Sciutto SJ, Dova MT, Risse M (2003) Extensive
air shower simulations at the highest energies. Astropart Phys
19:77

 6. Hillas AM (1997) Shower simulation: lessons from MOCCA.
Nucl Phys B Proc Suppl 52:29

 7. Sciutto SJ (1999) AIRES: a system for air shower simulations.
User’s guide and reference manual. Version 2.2.0

 8. Tueros Matias, Sciutto Sergio (2010) TIERRAS: a package to
simulate high energy cosmic ray showers underground, underwa-
ter and under-ice. Comput Phys Commun 181:380

 9. Drescher Hans-Joachim, Farrar Glennys R (2003) Air shower
simulations in a hybrid approach using cascade equations. Phys
Rev D 67:116001

 10. Risse M, Heck D, Ostapchenko S, Knapp J (2002) EAS simula-
tions at Auger energies with CORSIKA

 11. Kobal M (2001) A thinning method using weight limitation for
air-shower simulations. Astropart Phys 15:259

 12. Billoir Pierre (2008) A sampling procedure to regenerate particles
in a ground detector from a ’thinned’ air shower simulation output.
Astropart Phys 30:270

 13. Bruijn R, Knapp J, Valino I (2011) Study of statistical thinning
with fully-simulated air showers at ultra-high energies. Proceed-
ings of the ICRC2011, p 39

 14. Actis M et al (2011) Design concepts for the Cherenkov Telescope
Array CTA: an advanced facility for ground-based high-energy
gamma-ray astronomy. Exper Astron 32:193

 15. Hinton JA (2004) The status of the H.E.S.S. project. New Astron
Rev 48:331

 16. Achterberg A et al (2006) First year performance of the IceCube
neutrino telescope. Astropart Phys 26:155

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

 Computing and Software for Big Science (2019) 3:2

1 3

 2 Page 12 of 12

 17. van Haarlem MP et al (2013) LOFAR: the low-frequency array.
Astron Astrophys 556:A2

 18. Aleksić J et al (2016) The major upgrade of the MAGIC tele-
scopes, Part II: a performance study using observations of the
Crab Nebula. Astropart Phys 72:76

 19. Abraham J et al (2004) Properties and performance of the proto-
type instrument for the Pierre Auger Observatory. Nucl Instrum
Method A 523:50

 20. Abu-Zayyad T et al (2013) The surface detector array of the tel-
escope array experiment. Nucl Instrum Method A 689:87

 21. Heck D, Engel R (2009) The EHISTORY option of the air-shower
simulation program CORSIKA. Technical report FZKA-7495,
Forschungszentrum Karlsruhe

 22. Fedynitch A, Engel R, Gaisser TK, Riehn F, Stanev T (2016)
MCE

Q
-numerical code for inclusive lepton flux calculations. PoS,

ICRC2015:1129
 23. Bergmann Till, Engel R, Heck D, Kalmykov NN, Ostapchenko

Sergey, Pierog T, Thouw T, Werner K (2007) One-dimensional
hybrid approach to extensive air shower simulation. Astropart
Phys 26:420

 24. Baack Dominik (2016) Data reduction for CORSIKA. Technical
report Baack/2016a, TU Dortmund, SFB 876

 25. Ulrich Ralf COAST. https ://web.ikp.kit.edu/rulri ch/coast .html
 26. Argiró S, Barroso SLC, Gonzalez J, Nellen L, Paul TC, Porter

TA, Prado L Jr, Roth M, Ulrich R, Veberič D (2007) The offline
software framework of the Pierre Auger observatory. Nucl Instrum
Method. A 580:1485

 27. Armengaud Eric, Sigl Gunter, Beau Tristan, Miniati Francesco
(2007) CRPropa: a numerical tool for the propagation of UHE
cosmic rays, gamma-rays and neutrinos. Astropart Phys 28:463

 28. Agostinelli S et al (2003) GEANT4: a simulation toolkit. Nucl
Instrum Method A 506:250

 29. Anchordoqui LA, Cooperman G, Grinberg V, McCauley TP, Paul
Thomas Cantzon, Reucroft S, Swain JD, Alverson G (2000) Air
shower simulation using GEANT4 and commodity parallel com-
puting. In Proceedings of 11th International Symposium on Very
High Energy Cosmic Ray Interactions

 30. Sanjeewa Hakmana, He Xiaochun, Cleven Christopher (2007) Air
shower development simulation program for the cosmic ray study.
Nucl Instrum Method B 261(1):918

 31. The HDF group. Hierarchical data format, version 5. http://www.
hdfgr oup.org/HDF5/

 32. Brun R, Rademakers F (1997) ROOT: an object oriented data
analysis framework. Nucl Instrum Method A 389:81

 33. C++ FAQ. https ://isocp p.org/faq
 34. Zakas Nicholas C (2012) Why Coding Style Matters.
 35. Martin CR (2009) Clean Code: a handbook of Agile Software

Craftsmanship. Prentice Hall, Upper Saddle River
 36. Stroustrup Bjarne, Sutter Herb C++ Core Guidelines. https ://isocp

p.githu b.io/CppCo reGui delin es/CppCo reGui delin es.html
 37. Jakob Wenzel et al PyBind11. https ://pybin d11.readt hedoc s.io
 38. Dobbs Matt, Hansen Jorgen Beck (2001) The HepMC C++ Monte

Carlo event record for high energy physics. Comput Phys Com-
mun 134:41

 39. Guennebaud Gaël, Jacob Benoît et al Eigen v3. https ://eigen .tuxfa
mily.org

 40. Catch2. https ://githu b.com/catch org/Catch 2
 41. Moene Martin PhysUnits C++11. https ://githu b.com/marti nmoen

e/PhysU nits-CT-Cpp11
 42. Lönnblad Leif (1994) CLHEP: a project for designing a C++ class

library for high-energy physics. Comput Phys Commun 84:307
 43. Ivancevic Vladimir G, Ivancevic Tijana T (2011) Lecture Notes

in Lie Groups.
 44. Sjöstrand Torbjörn, Ask Stefan, Christiansen Jesper R, Corke

Richard, Desai Nishita, Ilten Philip, Mrenna Stephen, Prestel
Stefan, Rasmussen Christine O, Skands Peter Z (2015) An intro-
duction to PYTHIA 8.2. Comput Phys Commun 191:159

 45. Tanabashi M et al (2018) Review of particle physics. Phys Rev D
98(3):030001

 46. Huege T, Ludwig M, James CW (2013) Simulating radio emission
from air showers with CoREAS. AIP Conf Proc 1535:128

https://web.ikp.kit.edu/rulrich/coast.html
http://www.hdfgroup.org/HDF5/
http://www.hdfgroup.org/HDF5/
https://isocpp.org/faq
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines.html
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines.html
https://pybind11.readthedocs.io
https://eigen.tuxfamily.org
https://eigen.tuxfamily.org
https://github.com/catchorg/Catch2
https://github.com/martinmoene/PhysUnits-CT-Cpp11
https://github.com/martinmoene/PhysUnits-CT-Cpp11

	Towards A Next Generation of CORSIKA: A Framework for the Simulation of Particle Cascades in Astroparticle Physics
	Abstract
	Introduction, History, and Context
	Purpose and Aim
	Main Design Considerations
	Overcoming Limitations of Current CORSIKA
	Related Projects and Previous Work
	Output
	Computational Efficiency

	Tools and Infrastructure
	Main Challenges
	Details
	Conventions and Coding
	Dependencies
	Configuration
	Units
	Geometry, Coordinate Systems, and Transformations
	Particle Representation
	Framework
	Particle Processing and Stacks
	Main Loop, Simulation Steps, and Processes

	Radio
	Environment
	Geometric objects

	Summary
	Acknowledgements
	References

