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Abstract: This work is the extension of author‘s research, where the modified theory of induced gravity
(MTIG) is proposed. The theory describes two systems (stages): Einstein (ES) and “restructuring”
(RS). We consider equations with quadratic potential that are symmetric with respect to scale
transformations. The solutions of the equations obtained for the case of spaces defined by the
Friedman-Robertson-Walker metric, as well as for a centrally symmetric space are investigated.
In our model arise effective gravitational and cosmological “constants”, which are defined by the
“mean square” of the scalar fields. In obtained solutions the values of such parameters as “Hubble
parameter”, gravitational and cosmological “constants” in the RS stage fluctuate near monotonically
evolving mean values. These parameters are matched with observational data, described as
phenomena of dark energy and dark matter. The MTIG equations for the case of a centrally symmetric
gravitational field, in addition to the Schwarzschild-de Sitter solutions, contain solutions that lead
to the new physical effects at large distances from the center. The Schwarzschild-Sitter solution
becomes unstable and enters the oscillatory regime. For distances greater than a certain critical value,
the following effects can appear: deviation from General relativity and Newton’s law of gravitational
interaction, antigravity.
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1. Introduction

This work is related to research in the field of the theory of gravity and cosmology in connection
with existing problems given below.

1. The difference in the values of the cosmological constant obtained from astrophysical
observations and predictions of the general relativity theory (GRT), taking into account the quantum
effects of vacuum polarization, is known in science as the “problem of the cosmological constant”
(see [1]). The acuity of this problem reinforces the fact that this difference is huge 10120.

2. There is a problem of “accuracy of measurement of the gravitational constant” G [2,3].
For example, in the International System of Units (SI), for 2008: G = 6.67428 × 10−11 m3 c−2 kg−1;
the value of the gravitational constant was obtained in 2000 (Cavendish Experiment): G = 6.67390 ×
10−11; in 2010, the value of G was corrected: G = 6.67384 × 10−11; in 2013 a group of scientists from
the International Bureau of Weights and Measures: G = 6.67545 × 10−11; in 2014, the value of the
gravitational constant recommended by CODATA became: G = 6.67408 × 10−11; in 2014 the journal
Nature published an article by Italian and Dutch physicists, which presented the results of the G
measurements, using atomic interferometers: G = 6.67191 × 10−11.

The recently published results of the new measurements [4] show that, despite two independent
methods of measuring the gravitational constant (using torsion pendulum experiments with the
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time-of-swing method and the angular-acceleration-feedback method), the results differ in the fourth
order after the decimal point. The G values of 6.674184× 10−11 and 6.674484× 10−11 were obtained
with a relative standard uncertainties of 11.64 ppm and 11.61 ppm, respectively. New measurements
make the situation more confusing! In fact, G is not determined even with an accuracy of the fourth
decimal place.

Recent observations used (by Dr. Adam Riesz’s groups) to calculate the Hubble constant value
result in a discrepancy between the results obtained by the Hubble Space Telescope (HST) and
Planck observatory [5]. The Hubble Space Telescope is tuned to measure the parallax Milky Way
Cepheid variables and the distances are 1.7–3.6 kpc (the modern Universe). The measurements
of the Planck spacecraft correspond to distant galaxies (the early Universe is about 375,000 years
old). In 2018, the accuracy of the measurement of H0 is increased to 2.3 percent, which gives
H0 = 73.48 ± 1.66 km · s−1 Mpc−1. In the early Universe, based on the data received from the “Planck”
spacecraft and ΛCDM theory, the predicted value is H0 = 67.0 ± 1.2 km · s−1 Mpc−1. The difference is
about 9 percent. The accuracy of the measurements is about 4.5 percent. There is also a variance in the
observations made at different times and different methods. For example, as indicated in the work [6],
the local and direct definition of H0 gives H0 = 73.24 ± 1.74 km · s−1 Mpc−1, and the most recent value
from [7] in consent with ΛCDM is 66.93 ± 0.62 km · s−1 Mpc−1. In our opinion, the problem can be
reduced to a strong binding of calculations of the Hubble parameter H0 to the ΛCDM model. In our
work we present a model where, due to the oscillatory regime in the solutions of equations, the Hubble
parameter also fluctuates with respect to the mean value—which is also a function of time.

3. The problems of so-called “dark energy” (DE) and “dark matter” (DM). The first of them
can be reduced to the problem of existence and smallness of the “cosmological constant” (par. 1).
The challenge posed by the cosmological constant problem [1] has spurred many attempts at directly
modifying Einstein’s gravity at large distances [8]. As example of such infrared (IR) modification is
the DGP brane-world model [9–11]. In this scenario, our visible world is confined to a brane in an
infinite 5D bulk. As shown in Ref. [12], the current Planck data used is best suited to the model in a
non-planar ΛDGP. In [8–11,13], put forward the idea that if gravity is sufficiently weakened in the
infrared, then vacuum energy could effectively decouple from gravity or degravitate over time. In our
work, we investigate a similar mechanism associated with the nonlocal behavior of a gravitational
system with scalar fields in the classical approximation.

An attempt is also made in [14–20] to move from the paradigm of a particle-like WIMP dark
matter to an alternative possibility that DM could have the structure of a scalar field. In [21,22], Kallosh
and Linde drew attention to a new family of superconformal inflationary potentials, subsequently
called α-attractors. In the works mentioned above it is common to use scalar fields to describe DE
and DM.

Our theory is a phenomenological model used for comparison with observational data DE
and DM. Within the framework of modified theory of induced gravity (MTIG), proposed in the
works [23–25], we attempted to solve the above problems based on the idea of the existence of
macroscopic parameter of the theory (X, X) = XAXBηAB ≡ Y, which generates both gravitational and
cosmological “constants”:

ke f f = ±
wc3

16πξ(X, X)h̄
≡ Ge f f

c3

8πh̄
, Λe f f =

1
2ξY

(−B + Ue f f ), n = 4, (1)

where h̄—Planck’s constant, c—speed of light, B = B0(n − 2)/2 − wεv, εv—vacuum energy
B0, w, ξ—constants of the theory, Ue f f = Ue f f (Y)—effective potential of the theory.

We are going to compare the experimental value of the gravitational constant Gm with the effective
“gravitational constant”:

Gm ≡
8πkn h̄

c3 ≡ 6.565362 · 10−65cm2 = ± w
2ξCm

, (2)
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where Cm is the current value of the function Y = Y(tm), kn = G is the gravitational constant of Newton,
the value of which is 6.674286 × 10−8 cm3 c−2 g−1; tm is a time parameter corresponding to the current
value (approximately 13.8 billion years). Similarly, in accordance with astrophysical observational data,
the modern value of the cosmological constant is assumed to be equal to Λm ' 1.27143 · 10−56 /cm2.

Functions XA = XA(σµ), where A, B = 1, 2, . . . , D, µ, ν = 0, 1, . . . , n − 1, represent
n-dimensional Riemannian manifold M described by the metric gµν, into D-dimensional flat space-time
Π with the metric ηAB [23]. For further calculations we set n = 4.

For a cosmological model (a similar model is constructed for a centrally symmetric space as well),
the mechanism proposed by us reduces to the fact that the differential equations describing the
evolution of the functions Y(t) and a(t) have the form

Ẏ · (Φ1(Y, a)) = 0; Φ2(Y, a) = 0,

where Φ1(Y, a) Φ2(Y, a) some expressions of functions Y(t) and the cosmological scale factor a(t)
and their derivatives up to the second order. For Y(t) = const, the second equation goes to the equation
matching with the equation in general relativity, and the first equation disappears. Thus, there are
solutions that can both match and and not match with the solutions of the standard theory of gravity.
Then the fundamental “constants” of theory, such as gravitational and cosmological, can evolve in time,
and also depend on coordinates. In a fairly general case, the theory describes two systems (stages):
Einsteinian (ES-stage) and “restructuring” (RS-stage). This process resembles the phenomenon of a
phase transition, where different phases (Einstein’s gravitational systems, but with different constants)
pass into each other. Perhaps there is no computable description of such transitions. We can only
indicate the “favorable” points at which such transitions are possible. These are the moments of time
when the second derivative of the scale factor a(t) or the first derivative of Y(t) equals zero. In this
paper we show that the values of the observed characteristics of the gravitational field are affected not
only by the values of the gravitational parameters, but, for the most part, by their derivatives.

In the article [24] to solve Problem 1, we considered two mechanisms for reducing the constant
part of the vacuum energy εvac. In the first variant, the value εvac is compensated by other terms
(−B0 +Ue f f )/(2ξY) from Λe f f . The reduction of two values imposes requirements on the constants of
the theory (w, ξ, C0,) to the accuracy of high orders. The second mechanism for reducing the constant
part of the vacuum energy reduces to the multiplicative reduction. Its principle is simple and is based
on the law of conservation of energy in phase transitions corresponding to different stages of universe
evolution and the structure of the theory which is related by scale invariance. Note that this mechanism
for reducing the vacuum energy is analogical to the mechanism for reducing the divergences in the
quantum renormalization theory, despite the fact that the theory under consideration is classic. In the
work [24] the influence of matter in the form of perfect fluid on the behavior of Y(t) was studied.
We can say that in the cosmology based on the MTIG, the principle of the “whole” Universe (slightly
analogous to Mach’s principle) is realized to some extent, which reduces to the existence of a certain
parameter Y, which in turn depends on all material fields and generates physical “constants”.

In this theory we consider the influence of the quadratic, standard potential on the solutions
of the RS stage. In our opinion, solutions containing anharmonic oscillations caused by random
initial and boundary conditions are of special interest. Unlike the solutions of the Einstein equation
with the asymptotics of flat space-time, the presence of a variable “cosmological term” leads to a
non-local self-interaction of the field Y. Fluctuations with a complex spectrum impose on monotonically
varying solutions (for example, cited in [24]. Such behavior leads to fluctuations in the parameters
relative to their mean classical values. Thus, we propose the hypothesis that the value of such
parameter as the gravitational “constant” G, apart from the slow evolution in the RS stage, can fluctuate
near the classical value. For example, Figures 1 and 2 show the normalized numerical solutions
Y(t)/Y0, b ≡ a(t)/a0, x ≡ t/a0, Z ≡ Y(r)/Y0 of equations (cited in this article).
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Figure 1. Oscillatory solutions for flat cosmological model. x = t/tm, B̃n = 144.517 . . ., k2 = −0.2.
Border conditions: (76), Zm = 1.0040965.

Figure 2. The dependence comparison g00 (the metric component) for the centrally symmetric space
with the Schwarzschild de Sitter’s solution (dashed line); r is given in au. Bn = 0.0059986 . . .,
k1 = −9.263854653 · 10−31 au−2, GM = GM⊙. Border conditions: (97).

First of all, we require the consistency of the results of the theory (after comparison with
observational data) and then look for the predictive possibilities of the theory. Proceeding from this,
the choice of the parameters of the theory should lead to fluctuations affecting the fourth (maximum to
third) order of the solution Y(t)/Y0 ' 1000m1m2 . . ., interpreted as the modern value of this parameter.
Of course, back in time, the values of the parameters could have been substantially different and
these parameters implemented qualitatively different stages of evolution (Figure 1). The graph of the
scale factor shown in Figure 1 can be reconciled with the results of observational data (for example,
to calculate the Hubble constant [5]), if the difference of 9 percent obtained by measuring distant
(corresponding to the early Universe) and close objects is attributed to averaged local fluctuations of
the graph, and 4.5 percent of the inaccuracy [5] can be attributed to the local fluctuations.

Research on numerical solutions for the case of a centrally symmetric space has been made. On the
one hand, obtained solutions agree with the observational data, on the other hand, at far distances
from the center (more than 0.01 parsecs from the Sun and more than one kiloparsec from the center
of the galaxy) the same solutions lead significantly to another astronomical picture. Even if these
examples do not correspond to reality, they demonstrate the existence of models with essentially
non-local behavior and with non-flat asymptotics that do not contradict observations.
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Solutions comparison of the cosmological model and the model in the case of a centrally symmetric
space leads to the fact that DM and DE can be described in a single concept. Please note, this concept
does not entirely correspond to the interpretation of “the evolution of constants”. An important factor
is that the energy is hidden in terms containing derivatives of the field Y. Due to the phenomenological
description, we do not study the quantum mechanical nature of the transformation of DE into DM and
vice versa. Such interpretations are possible within the framework of our theory, but all that are the
issues for further research.

1.1. Introduction to the Original Theory

Historically [23], the theory is based on the generalization of the string theory:

S0 =
1
w

∫ {
−1

2
(∇νX,∇νX) + ξR(X, X) + U + Lm(X, S)

}√
−gd̂nσ. (3)

In (3) the following notation is used:

Y ≡ (X, X) = XAXBηAB, (∇νX,∇νX) = ∇νXA∇µXBgνµηAB,

where A, B = 1, 2, . . . , D, µ, ν = 0, 1, . . . , n − 1; here fixing the Levi-Civita connection ∇ of the
metric g; U = U(XA)—is the potential dependent of the fields XA. For simplicity, in this paper
U(XA) = U(Y(XA)). Lm(X, S)—characterizes all possible interactions XA with other fields of matter.

In the context of our paper, some of the modified scalar-tensor theories of gravitation can be
transformed to the form (3), without taking into account the Einstein term which is absent in (3).
The structure of the theory can also be rewritten in the framework of the modern theories f (R) [26–47].
In Ref. [27,28,48] were presented some classes of modified gravity, considered as the gravitational
alternative to dark energy. In Ref. [29,30], the authors “. . . revised the cosmological standard model
presuming that matter, i.e., baryons and cold dark matter, exhibits a nonvanishing pressure mimicking
the cosmological constant effects”. The authors use an approach in which dark energy arises as a
consequence of the thermodynamics of the Universe [29,49].

For the first time, the concept of “induced gravity” was introduced in the work of A.A. Sakharov
in 1967, in Ref. [32]. The basic idea is that gravity is not “fundamental” in the sense of particle physics.
Instead it was argued that gravity (general relativity) emerges from quantum field theory (see Refs. [33,35]).
The one loop effective action automatically contains terms proportional to the cosmological constant,
the Einstein–Hilbert action, plus “curvature-squared” terms. At present, the concept of induced
gravity has expanded. For example, this concept is used in the theory of superstrings, branes, for the
transition to the 4-dimensional theory of gravity. The paper [34] presents research of the non-compact
(4 + 1)-dimensional fermionic model with a strong local four-fermion interaction and an additional
induced background gravitational field. The gravity is generated completely by five-dimensional
matter and therefore gravity is induced in the Zel’dovich–Novozhilov–Sakharov sense.

In the most of these works, including ours, the Weyl interpretation is considered as the geometric
component of the physical theory, see the extensive review by [36]. The Weylian metric on a
differentiable manifold M (in Ref. [36] dimM = 4) can be given by pairs (g, φ) and of a non-degenerate
symmetric differential two form g, here of Lorentzian signature (3, 1), and a differential 1- form φ.
The Weylian metric consists of the equivalence class of such pairs, with (g̃, φ̃)∼(g, φ) iff

(a) : g̃ = exp(2ψ) g; (b) : φ̃ = exp(Wψ) φ (4)

for a real function ψ on M. A change of representative (4) is called Weyl or scale transformation;
it consists of a conformal rescaling (a) and a scale gauge transformation (b). Also, such a conformal
rescaling is called a change of frame. A manifold with the Weylian metric (M, [g, φ]) will be called
the Weylian manifold. A quantity φ has conformal weight W if, under the Weyl transformation,
it transforms via (b). Examples are: W(gµν) = 2, W(gµν) = −2 etc. A theory or an expression invariant
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under this transformation is called conformally invariant, or is said to possess Weyl invariance or
Weyl symmetry.

Jordan-Brans-Dicke (JBD) theory assumes a scalar field χ of scale weight W(χ) = −1, coupled to
gravity (a pseudo-Riemannian metric g) by a Lagrangian of the following type [36]

LJBD =

{
Rχ− w

χ
∇νχ∇νχ + Lm

}√
−g, (5)

with a free parameter w and scalar curvature R.
The “original” one (defining the affine connection as the Levi-Civita connection of the Riemannian

metric) like in (5) is called Jordan frame. The one in which the scalar field (and thus the coefficient
of the Einstein-Hilbert term, the gravitational coupling coefficient) is scaled to a constant is called
Einstein frame [36].

More recent literature (Fujii/Maeda 2003, Faraoni 2004), prefers a slightly different form of the
scalar field and the Lagrangian, φ2 = χξ−1, ξ = 1/(8w), W(φ) = −1,

LF =

{
ξRφ2 − 1

2
∇νφ∇νφ + Lm

}√
−g. (6)

Penrose (1965) showed that LF is conformal invariant for ξ = ξ0 (n spacetime dimension).

ξ0 ≡ −
n− 2

8(n− 1)
, ξ ≡ ξ0 −

δξ

4(n− 1)
. (7)

Generalization of the action (6) on D of scalar fields (φ → XA, φ2 → Y ≡ (X, X)) and taking
into account the Polyakov‘s action for bosonic strings (first term in action (3) for n = 2) brings us to
action (3). The reverse transition to the Einstein frame or the frame of the Brans-Dicke is ambiguous
due to the presence of the term (∇µX,∇µX). Considering that conformal invariance in principle
does not allow one to distinguish one energy scale from another, we chose [50] conformally invariant
generalization of string theory for multidimensional objects. Thus this theory avoids the problem of
uncertainty of quantum field theory on the Planck scale. For example, Friedmann-like cosmological
models can be described in this framework.

Conformal invariance is a tempting but problematic component for theories of gravity.
The motivations for invoking it are mainly quantum-theoretical: an opportunity for a renormalizable
theory, a better understanding of black hole entropy and perhaps even a step further along the road to
a theory of everything. Conformal symmetry plays a critical role in string theory. The Einstein-Hilbert
action of general relativity is not conformally invariant and would have to be modified. One of these
options is through the action (3) for ξ = ξ0.

Many modifications of scalar-tensor theories are associated with the study of conformal
transformations in the theory of gravity [37]. The Jordan-Brans-Dicke theory also carries the basic
features of a Weyl geometric structure. However, conformal symmetry has to be broken at lower
energies, to account for the obvious existence of massive particles. The theory with Weyl symmetry
breaking is given in Ref. [38]. When the Weyl symmetry is broken, the graviton gets a mass in analogy
with the Higgs mechanism (Ref. [38]).

Thus, in the “induced gravity” approach, the initial classical action of GR is equated to zero—the
idea of the zero Lagrangian. For example, a similar approach is used in Ref. [40], where was proposed
new version of the description of the crossing of singularities. It is based on the transitions between
the Jordan and Einstein frames.

In paper [41] some physical problems related to the existence of an antigravity regime are analyzed,
and the possibility of the indirect observation of such a phenomenon are discussed. It was emphasized
that using Weyl invariance one can get a geodesically complete theory.
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The author of paper [39] bases the discussion on the gravitational theory known as Weyl transverse
gravity. “General relativity exhibits the well-known cosmological constant problem while in Weyl
transverse gravity the cosmological constant sector is protected due to gravitational scale invariance,
and this is possible as the result of abandoning the assumption of full diffeomorphism invariance”.
In this connection, we note that it is precisely the scale invariance of the theory that is the cause of the
multiplicative contraction of the component of the gravitational constant, even in the classical version
of the theory considered in paper [24].

Thus through action (3), within the framework of the Weyl manifold concept, D of scalar fields XA

is considered. At the same time, these same fields are considered as the coordinates of some ambient
flat pseudo-Euclidean space Π. This is also known as nonlinear sigma model. The presence of the
Weyl conformal symmetry (for ξ = ξ0) is an important motivation for the use of the action (3).

After varying action (3), the field equations for g have the following form (See Refs. [23,24])):

T(tot)αβ ≡ Tαβ + T(e)αβ = 0, (8)

where Tαβ and T(e)αβ—the Energy–Momentum Tensors (EMT) of fields XA and other fields of matter
(for example, perfect fluid), respectively. In the bosonic string theory (n = 2, ξ = ξ0, T(e)αβ = 0),
Equation (8) are the called constraint Equations [42]. If (X, X) = const, Equation (8) are similar to the
Einstein equations with an effective gravitational constant.

In the general case, to solve Equation (8) is a very difficult task, even in the case of conformal
invariance. Instead, we can set a narrower task finding all solutions of Equation (8) for the case of
conformally flat metrics. Then for the conformally invariant case the metric can be reduced to (h)—the
metric of Minkowski spacetime. By means of transformations (4): (g, X) → (h, X̃). The equations
are simplified:

(∇νX̃,∇µX̃)− 1
6
[∇µ∇νỸ + hµν(2U + (∇αX̃,∇αX̃))] = 0, (9)

�X̃A + 4ΛXỸX̃A = 0, (10)

where all covariant derivatives are taken by metric (h); n = 4; U = ΛXỸ2; Ỹ = (X̃, X̃).
Considering that conformally flat spaces cover a large enough range, we can try to apply the

quantization procedure for Equations (9) and (10) in the Minkowski spacetime. If there is no self-action
(ΛX = 0) or Y = const the equations for the fields XA are linear. There are problems associated with
the dimension D and boundary conditions..

Let’s mark the important fact, that for strings (n = 2) the general solution of the constraint
equations has the form:

B0gµν = (∇µX,∇νX) µ, ν = 0, n− 1, (11)

where B0 is arbitrary function. Thus the metric gµν is connected by a conformal transformation
with the induced metric (∇µX,∇νX) on the surface XA = XA(σµ). When B0 = const 6= 0
(B0 = 1), the Equation (11) is the conditions for immersion M in a multidimensional flat spacetime Π.
Unfortunately, at n > 2, when considering the Equation (8), in case of arbitrary dimension n this
statement is not true.

However, when considering narrower tasks in the class of conformally flat metrics, the relation (11)
is one of the solutions of the Equation (8). In [23] for a class of metrics with the symmetry of a
homogeneous isotropic space, an attempt was made to show that solutions (11) minimize the total
energy of the system corresponding to the Equation (8). Thus, we can use the Higgs mechanism to
obtain solutions (11). Examples of joint solutions of Equations (8) and (11) are given in Section 2.1.

Note that the Equation (11) fix the conformal gauge. The above reasoning led us to the construction
of a phenomenological theory, where relations (11) were taken as the basis or ansatz. “The breaking of
the original conformal symmetry happened so that the embedding condition (11) is fulfilled”. This is
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the hypothesis of our phenomenological modified scalar-tensor theory, which has an analogy with
the Brans-Dicke theory. This theory is an alternative to the theory of GR. However, its equations for
the case Y = const = Cm are completely reduced to Einstein’s equations (GR) with a cosmological
constant. Based on this, for small deviations of Y from a constant value Cm, the difference from the
known results of the GR theory will be small—beyond the limits of experimental accuracy (famous
experiments), which is achieved by selecting the parameters of the theory. This is what we show in
this article. In the case of a space with spherical symmetry, the difference between MTIG and GR will
appear at large distances from the center.

We consider this model as an intermediate stage before formulating a consistent field theory that
250 takes into account the approaches of local isometric embedding’s methods. These methods were
considered in [43–46]. From these researches it follows that each manifold requires a separate study
on “embedding”, which makes it difficult to develop a general theory used for comparison with the
observed data.

It is known that any n-dimensional Riemannian manifold can be locally isometrically embedded
in an D-dimensional flat ambient space, with D = n(n + 1)/2. If a manifold has any symmetries, the
number of the ambient space dimensions can be smaller than n(n + 1)/2. The difference between the
dimension of the flat ambient space and the dimension of the original manifold is called the embedding
class, p = D− n. In particular, we have p = 1 for constant curvature spacetimes, while for spherically
symmetric spacetimes one obtains p ≤ 2 [46]. When p > 2 no systematic classification of manifolds
has still been performed. Therefore, the phenomenological model in which we can distinguish the
so-called macroscopic part associated with the parameter Y was proposed. We are trying to isolate
some effective equations for the variables g and Y, without terms that depend on individual fields XA.

In the context of our article, the “induced gravity” means that in the initial action the Einstein’s
term R/(2κ) is not explicitly introduced. The introduction of such term, at first violates the conformal
invariance of the theory, secondly leads to the instability of known solutions because of the emergence
of the effective gravitational “constant”:

1
κe f f

=
1
κ
+ 2ξ(X, X)⇒ 0.

When it tends to zero, additional singularities arise. For example, in the case of one scalar field (φ),
instability arises for (ξ = ξ0) [51]. Although in the mentioned above works [21,22] made an attempt to
use instability to realize generic chaotic inflation models. In connection with what has been said, it is
necessary to point out the problem connected with the sign choice in (1) and (2). Unlike single scalar
field φ (where the analog of the expression (X, X) is φ2 > 0), the sign of (X, X) is undefined. The sign
of Gm must be positive. However, before analyzing the solutions of equations, we can not tell the signs
of parameters ξ, Cm = Y(tm).

For a system with matter, the following self-consistent equations were obtained [52]:

Gαβ =
1

2ξY
[−n− 2

2
B + U]gαβ +

1
Y
[∇α∇β − gαβ�]Y− w

2ξY
T(e)αβ, (12)

where Gαβ—the Einstein tensor; T(e)αβ—the Energy–Momentum Tensor (EMT) of matter fields
(for example, perfect fluid).

The consequence of these equations is the law of conservation of energy, which has the form:

− n− 2
2
∇βB +∇βY · (ξR +

dU
dY

)− w∇αTα
(e)β = 0, (13)

and the equation on the field Y:

�Y =
n− 2

4(n− 1)ξ
[−nB + 2ξRY +

2n
n− 2

U]− w
2ξ(n− 1)

Tα
(e)α (14)
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Equation (12) is an analogue of Einstein‘s equations for a macroscopic medium.
While deriving the macroscopic equations, the following assumptions are made:
1. the induced metric (mapping) (∇µX,∇νX) is related to the metric of the manifold M by means

of Formula (11). This model allows us to interpret the development of Universe as development of
n = 4 dimensional objects embedded in the multidimensional flat spacetime Π.

2. the equation for scalar fields acquires an additional term SA due to interaction with vector
fields. Then these equations have the form

�XA + 2ξRXA + 2
dU
dY

XA = SA. (15)

The specific form of this term depends on the interaction model.
From the mathematical point of view, the solution of the inverse task is assumed. Solving the

macroscopic equations (12), we find the metric gµν and the field Y. Then, solving Equations (11)
and (15) we find XA, SA. Our approach is similar to the method of finding the unknown potentials
given in papers [53,54].

Remark 1. In the context of suggested consideration of macroscopic equations, the following considerations can
be offered concerning conditions (11). In general case if we make the following substitution (∇µX,∇νX) =

B0gµνkµν µ, ν = 0, n− 1, where kµν—some tensor functions, then the resulting equations will have the same
form as Equations (12)–(14)and the EMT matter will be redefined:

T(e)αβ ⇒ T(e)αβ +
1
w
(kαβ −

1
2

gαβkµνgµν). (16)

Then we can assume that the “embedding” condition (11), does not limit the proposed theory,
but changes the EMT. In further research, we intend to consider the problem of deriving covariant
Equation (12) directly from action (3).

In order to take into account the effect of vacuum polarization energy into gravity, we highlighted
from EMT matter a part related to this energy, which satisfies the equation of state: εvac + pv = 0,
where εvac and pv are interpreted as the energy density and vacuum polarization pressure. Therefore,
in the equations (except for (11)) we made a substitution: B0 ⇒ B,

B =
n− 2

2
B0 − wεvac. (17)

The action (3) has the property of conformal invariance if ξ = ξ0, (δξ = 0), U(XA) = U0 ≡
Λ(X, X)2, where for dimension n = 4: δξ = −12ξ − 1. This invariance is expressed in the fact that the
equations obtained by varying action (3) with respect to the fields ĝ and X̂ are invariant under the
local Weyl scale changes

gµν ⇒ exp(2ψ)gµν, XA ⇒ exp(4ξ0(n− 1)φ)XA, (18)

for an arbitrary function ψ = ψ(σµ).
The condition (11) for B0 = const limits the conformal invariance to scale transformation

(ψ = const). Indeed, if in (18) we substitute n = 4, exp(ψ) = b = const then gµν ⇒ b2gµν, Y ⇒ Y/b2,
B0 ⇒ B0/b4 (similarly for B). The equations do not change for an arbitrary value of the coefficient ξ.
Thus, fixation of the function B0 (in the general case, this parameter can be a function of the coordinates)
leads to scale fixation of the theory. In our notation, B0 is a dimensionless quantity. The fields XA

interpreted as the coordinates of the space M, have the dimension of a centimeter, which implies
[Y] = cm2 and [w] = cm4. The action (3) is a dimensionless quantity (h̄ = 1, c = 1).

To harmonize general parameters of the cosmological model and the model of galaxies,
the dependence of the coupling constants of the theory on the energy scale (temperature) of the
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Universe is important. Quantum effects are taken into account by the one-loop renormalization group
for coupling constants. For many theories with conformal coupling, the conformal case: ξ = ξ0

corresponds to a fixed point of the one-loop renormalization group for the constant ξ [55].
The authors of [56] investigated the possibility that the additional dark radiation has an origin

associated with the scale invariance.
Note that conformal transformations that preserve the condition (11) are not limited to the

case of scale transformations. We can verify that in addition to them, the theory is invariant under
transformations: gµν ⇒ b2gµν, Y ⇒ Y/b2, B0 ⇒ B0/b4, when b = Yb0, b0 = const, where ξ = ξ0, n = 4.
Proceeding from this fact, the terms with derivatives of B were left in the Equations (12)–(15). Here
this topic is not touched upon and it is assumed that B = const.

Remark 2. The action (3) and the Equations (12)–(15)) were obtained in the earliest articles [23,25], on the
basis of the signature (−+++) of the space Π. In this article, we carried out some subsequent calculations
on the basis of the opposite signature (+−−−). However, in order not to confuse the reader, the original
notation was retained in the old version, although the signs of the potential coefficients, also the sign of B,
must be changed.

In genera case, we get the systems of “macroscopic” Equations (12)–(14), “microscopic” (15) and
constraint Equation (11). The study of complete system of equations requires the definition of the
model, i.e., definition of the functions SA. The fixed sector of the fields {X1, X2, . . . Xk}, k < D can
play the role of Higgs scalar fields. It is proper to consider the function Y as the averaged field (the
vacuum mean in the tree approximation) by analogy with the mechanism of spontaneous symmetry
breaking (the Higgs mechanism). So the previous formulas should be understood in the following
sense: Y =< 0 | (X, X) | 0 >' (< 0 | X | 0 >,< 0 | X | 0 >),

B0gµν ' (∇µ < 0 | X | 0 >,∇ν < 0 | X | 0 >) µ, ν = 0, n− 1.

The latter can be interpreted in the sense that “geometry” is created by vacuum averages.
We note the works of [48,57] Claudia de Rham and her colleagues, where cosmological models

with scalar fields, including branes, were studied, taking into account quantum effects (see also
review [58]).

1.2. Different Types of Solutions

For the “embedding” case (n = 4, B0 = const), as follows from the Equation (13), the following
cases are possible (Zaripov (2010)):

(I) Y = C = const, ∇βTβ

(e)α = 0.

Note also that Y = C = const, B = const.⇒∇βTβ

(e)α = 0.
In this case, we obtain equations that match the Einstein equations, with the gravitational constant

Ge f f = const and with the cosmological constant Λe f f = const.
Equation (15) can be rewritten as:

�XA + (4
B−U

C
+ 2

dU
dY

+
w
C

Tα
(e)α)XA = SA. (19)

For the cosmological model with the EMT of perfect fluid and the potential U = U0 ≡ Λ(X, X)2,
free fields (SA = 0) XA acquire mass µ, when µ2 = −4 B

C + w
C (ε− 3P), where ε, P is the density of

energy and pressure.
(II) Y 6= const, and a separate conservation law for matter is fulfilled: ∇βTβ

(e)α = 0. In this case, from (13)
follows equation

ξR +
dU
dY

= 0. (20)
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Equation (15) can be rewritten as:

�XA = SA (21)

free fields (SA = 0) XA have zero mass.
There is also a third case:
(III) When Y 6= const, B = const separate law of conservation of matter is not necessarily fulfilled.

This case is a generalization of the previous case. The law of conservation takes the form:

∇βY · (ξR +
dU
dY

) = w∇βTβ

(e)α. (22)

2. Cosmological Solutions

2.1. Cosmological Vacuum Solutions. Y = const

Let’s consider the above equations under potential

U = ΛX(X, X)2 + fw(X, X) ≡ ΛXY2 + fwY, (23)

(n = 4; ρ = 2; B0 = const,) for the case of a homogeneous, isotropic cosmological model. A possible
mechanism for the appearance of the term fw is proposed in the article [24].

The metric form of the manifold Π, has the form

ds2 = −dt2 + a2(t)((dχ)2 + K(χ)dΩ2), (24)

when K(χ) = {sinh2 χ; sin2 χ; χ2}—respectively for the models of open, closed and flat types. dΩ2—is
the metric form of a sphere, with a unit radius, expressed in spherical coordinates.

Y = C = const. For the case of vacuum (SA = 0, T(e)αβ = εvacgαβ, B = B0 − wεvac).
Equations (11)–(13) can be analytically solved.

The equations for the scale factor have the form:

ȧ2(t) = −k + h2
0a2(t), h2

0 = −ΛC2 − B + fwC
6ξC

=
Λe f f

3
, (25)

k = −1, 1, 0—for open, closed and flat types of spaces, respectively.
The equations for the fields XA take the following form:

Ẍ + 3
ȧ
a

Ẋ +
(3 + l)k

a2 X− (4
B
C
− 2 fw)XA = 0, l ∈ N. (26)

Here, l eigenvalues for the three-dimensional Laplacian ∆3X = −(3 + l)k.
Particular solutions (l = 0) of these equations are found [23] that satisfy the conditions of

“immersion” (11). For the closed model, these solutions have the form:

a(t) =
cosh(th0)

h0
. (27)

X5 =
sinh(th0)

h0
, Xa = a(t)ka. (28)

where ka—immersion function of 3 dimension sphere

k1 = sin χ sin θ cos φ, k2 = sin χ sin θ sin φ,

k3 = sin χ cos θ, k4 = cos χ. (29)
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And for the open type of space:

a(t) =
sinh(th0)

h0
, (30)

X5 =
cosh(th0)

h0
, Xa = a(t)k̃a, (31)

where k̃a follows from ka by replacing sin χ, cos χ with sinh χ, cosh χ.
For the closed model manifold Π forms “one-sheeted hyperboloid” in a five-dimensional subspace

of flat space M and described by the equation:

(X1)2 + (X2)2 + (X3)2 + (X4)2 − (X5)2 =
q
h2

0
. (32)

For the case of an open model surface equation has the form:

(X1)2 + (X2)2 + (X3)2 − (X4)2 + (X5)2 =
q
h2

0
. (33)

In the derivation of (30)–(33) we assumed that the matrix ηAB (the metric of the space M)
dimension D > 5 is diagonal and this diagonal for the closed and open type of space has the form
(q, q, q, q,−q, q1, .., qD−5), (q, q, q,−q, q, q1, .., qD−5).

For the given solutions, the conditions (11), (26) and (X, X) = C define the relationship between
the constants:

ΛXC =
B(3 + δξ)

2C
−

fw(5 + δξ)

4
, (34)

which follows from the requirement of the Equation (26) for the functions (31).
Note that when fw = 0⇒ Λe f f = 3B/C—does not depend on ξ; and when δξ = −3⇒ ΛX = 0.
From the requirement (11)⇒ q = B0.
The condition (X, X) = C for (31) leads to the relation:

C =
q
h2

0
=

3(B0)

Λe f f
. (35)

From (25), (34) and (35) follows

Λe f f =
3B
C
− 3 fw

2
=

3B0

C
. (36)

From (37) and B = (B0 − wεvac) we get

Λe f f =
3B0

C
, wεvac = −

fwC
2

, ΛXC =
B0(3 + δξ)

2C
+

wεvac

C
. (37)

Thus, if all embedding conditions of the Friedmann world into multidimensional flat spacetime
M are met, the cosmological constant does not depend on the polarization energy of the vacuum for
the model constructed by us. The result obtained can be used to investigate the case of perturbations.

The above solutions correspond to the special case SA = 0—without taking into account the
interaction of the fields XA with other fields. Then, the case (37) corresponds to the minimum of the
potential V1 = (ΛXY + fw − B/Y)/(6ξ), included in the Equations (12) and (26) (in the particular
case (25)).

There is a problem of defining the numerical values of the parameters of the theory. The number
of essential parameters can be reduced to three. For them we use the following notation:

fn =
fw

6ξ
, Ln =

ΛXC
6ξ

, Bn =
B

6Cξ
. (38)
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So that

Ln + fn − Bn = −
Λe f f

3
. (39)

In order to generalize the theory for SA 6= 0 and to reduce the number of parameters of the
theory, we will not be limited to the model described by the solutions (25)–(37). For this we adopt the
following arguments.

For minimum potential energy: V̇1 = 0 ⇒ ΛXYmin = −B/Ymin ⇒ V1min = −(2B/Ymin −
fw)/(6ξ). Taking into account Equation (25), let’s assume V1min = −Λe f f /3⇒

fn = 2Bn −
Λe f f

3
, Ln = −Bn, C ≡ Ymin. (40)

Instead of selecting ansatz ( refmin1) due to the small value of the observed cosmological constant
Λmod = Λe f f —at t = t0, for |ΛX |C2 � |B| two other ansatzes were considered as well:

fn = 2Bn − 2
Λe f f

3
, Ln = −Bn +

Λe f f

3
, C ≡ Ymin− (41)

corresponds to the minimum potential V2 = (ΛXY2 + fwY− B)/(6ξ);

fn = 2Bn, ΛX = 0 (42)

this case is interesting because it is possible to obtain analytical solutions of differential equations, even
if the substance is present in the form of perfect fluid.

2.2. Cosmological Solutions with Matter

In the article [25] a phenomenological model was proposed. The model of the interaction of the
field Y and matter in the form of perfect fluid, with the density of energy and pressure:

ε = εr0/a4 + εp0/a3 + [(Y fr1 + Y2 fr2)/a4 + (Y fp1 + Y2 fp2)/a3]. (43)

p = εr0/(3a4) + [(Y fr1 + Y2 fr2)/(3a4)]. (44)

Equations (12) and (13) take form :

λ2 = − Ż
Z

λ− k
b2 − Z(L̃n + F̃2)− f̃n − F̃1 +

B̃n

Z
− Ẽ

Z
, (45)

Ż{λ̇ + 2λ2 +
k
b2 + 2Z(L̃n + F̃2) + f̃n + F̃1} = 0. (46)

For convenience in computer modeling, dimensionless variables are introduced

x =
t

tm
; b = b(x) =

a(x)
am

; Z = Z(x) =
Y(x)

C0
, λ = λ(x) =

ḃ
b

(47)

where t—proper time, dot denotes the derivative by x; C0 = Y(t1) some value of the field Y, which we
associate with a constant solution Y = const, discussed above in particular (C = C0), am—dimension
value cm2—it is convenient to correspond to the modern value of the scale factor or the age of the
universe. In the first case b(tm) = 1 corresponds to the modern value of the scale factor, and tm—to
the age of the universe. Such a scale is convenient if the required functions are expressed through
the scale factor. However, we do not know the modern value of the scale factor, but we assume
tm ∼ 13.7 · 109 years. Therefore, when the desired functions are expressed in terms of time, we select
tm for the parameter am. Then x = 1, b(1) = bm correspond to the modern values of the parameters.
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The last equation (taking into account the previous one) for Ż 6= 0 can be rewritten as:

λ̇ =
k
b2 +

2Ż
Z

λ + f̃n + F̃1 − 2
B̃n

Z
+ 2

Ẽ
Z

. (48)

Here we have introduced the following notation:

L̃n = Lnt2
m, f̃n = fnt2

m, B̃n = Bnt2
m;

Ẽ = −
ρp

b3 −
ρr

b4 ;

F̃1 = −
µp1

b3 −
µr1

b4 , F̃2 = −
µp2

b3 −
µr2

b4 ,

and also re-parameterized constants taking into account their dimensions

ρp = −εp0wt2
m/(6ξC0a3

m), ρr = −εr0wt2
m/(6ξC0a4

m);

µp1 = − fp1wt2
m/(6ξa3

m), µr1 = − fr1wt2
m/(6ξa4

m);

µp2 = − fp2C0wt2
m/(6ξa3

m), µr2 = − fr2C0wt2
m/(6ξa4

m).

It is interesting to compare the equations obtained from (45) and (48), for Z = const = Z0 with
Einstein’s equations with the same EMT:

λ2 +
k
b2 = γ +

8π

3
Ge f f |ε̃|, (49)

λ̇ =
k
b2 − 4πGe f f |(ε̃ + p̃)|, (50)

where

Ge f f = |
w

16πξC0Z0
|, γ =

B̃n

Z0
− L̃nZ0 − f̃n; ε̃ = −ε/am, p̃ = −p/am.

The first of these Equations (45) and (49) will match, and Equation (46) disappears. Equivalent
(at Ẏ 6= 0 ) to Equation (46), Equation (48) does not match to Equation (50). We recall that in the case of
Einstein’s equations the second one is a differential consequence of the first.

Thus, as already indicated in previous works, in the proposed model, the evolution of the universe
contains two stages that were named as “Einstein” (ES-stage)—when Ẏ = 0 and “restructuring”
(RS-stage) when Ẏ 6= 0. This process resembles the phenomenon of a phase transition, where different
phases (Einstein’s gravitational systems, but with different constants) pass into each other.

From a mathematical point of view, at any time the solutions of the Equations (45)
and (46)—describing the ES and RS stages, can pass into each other. To describe such solutions
it is necessary to join functions of the scale factor b(t) and the field Z(t) and their first derivatives at
the point t1—corresponding to the moment of transition. These transitions are similar to the first-order
phase transitions and apparently can be used to describe transition from the inflationary phase to the
next phase [24]:

ae(t1) = ar(t1); ȧe(t1) = ȧr(t1); Y(t1) = Y0; Ẏ(t1) = 0, (51)

where the index “e” denotes the solutions Ẏ(t) = 0 or the corresponding ES-stages, and the index
“r”—RS-stages.

Transitions similar to the second-order phase transitions are described by the system, if the conditions
(51) are supplemented by the condition of equality of second derivatives at the transition point:

ae(t1) = ar(t1); ȧe(t1) = ȧr(t1); äe(t1) = är(t1); Y(t1) = Y0; Ẏ(t1) = 0; Ÿ(t1) = 0. (52)
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A necessary condition for the existence of solution Z(t) = Z0 = const (if Y0 = C0 then
Z0 = 1)—equations describing both ES and RS stages, is the fulfillment of the following conditions on
the model parameters:

Z0 f̃n = 2B̃n; µp1Z0 − ρp + 3µp2Z2
0 = 0; µr1 + 2µr2Z0 = 0. (53)

2.3. The Case without Quadratic Terms

In the articles [24,25] in order to obtain analytical solutions, we consider a linear approximation
of Y, so that

L̃n + F̃2 = 0. (54)

In this paper we want to focus on the existence of nonstandard solutions related to the branching
effect of solving equations.

The Equation (46) integrated and reduced to the form:

Ż
(

ḃ2

b2 +
k
b2 +

f̃n

2
−

2µp1

b3 −
F0 + µr1ln((b/b0)

2)

b4

)
= 0, (55)

where F0, b0—integration constants.
We can prove that for the case of Ż 6= 0, the scale factor is the solution of Equation (46), taking

into account (54), and where Z = Z(t) is found by the formula:

Z = ḃ
(

c2 +
∫ b

ḃ3
[B̃n − Ẽ]db

)
, (56)

that follows from (45) and (46).
Let‘s consider so-called “equilibrium state” in more detail. This state is obtained by applying the

conditions (53) and the additional condition on the constant F0: F0 · Z0 = ρr. From (53), taking into
account (54), follows µr1 = 0. These conditions are obtained from the requirement of existence and
matching solutions Z = const of Equations (45) and (55).

After substituting these values of the parameters, besides the condition µr1 = 0, the equations
(for Ż 6= 0) can be reduced to the form

Ż
(

ḃ2

b2 +
k
b2 +

1
Z0

(
B̃n −

2ρp

b3 −
ρr

b4

)
− µr1

ln((b/b0)
2)

b4

)
= 0, (57)

Ż
(

Żḃ
b

+
Z− Z0

Z0

(
B̃n +

ρp

b3 +
ρr

b4

)
+ Zµr1

ln((b/b0)
2)− 1

b4

)
= 0. (58)

It is of interest to study the influence of the logarithmic term in the Equations (57) and (58) on their
solutions, so we left this term—as some perturbation violating the solutions of the “equilibrium state”.

The solution of the Equations (57) and (58), in the case µr1 = 0, is found by the formula:

Z(x) = c2 · ḃ + Z0, c2 = const. (59)

The function b = b(x), is defined as the solution of the Equation (57) (for c2 6= 0). The Equation (58),
taking into account (59) and (57), becomes their differential consequence.

Surprisingly, the solution for the scale factor does not depend on the constant c2. This equation
has the form:

ḃ2

b2 = − k
b2 + γ0 +

2ρp

Z0b3 +
ρr

Z0b4 , (60)

where γ0 = − B̃n
Z0

—defines the cosmological constant (from which, presumably, follows B̃n/Z0 < 0).
As a consequence, it follows from the Equations (12), (60) and the solution (59) that there are two
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“gravitational constants”: | w
2ξY0
|—cosmological gravitational constant and | w

2ξY(t) |—time-dependent
function, (possibly) contributing to the gravitational interaction between massive bodies. In addition,
the solution (59) is noteworthy by the fact that the transition between ES and RS stages takes place at the
point when the first derivative Z(t) and the second derivative of the scale factor Ż(t1) = c2b̈(t1) = 0
equal zero. Thus, the transitions between the stages will be located in the vicinity of the special points
(b̈(t1) = 0) for the scale factor function. From this point of view, it is interesting to study all special
points, including the equilibrium points ḃ(t1) = 0, b̈(t1) = 0. In this regard, I want to refer to the
work [59] where he gives arguments to the consistency of the static universe, from the point of view
of observational data on galaxies. In the next section, we present a model of a quasistatic universe,
where the scale factor fluctuates with respect to a constant value.

At Z = Zcr = const, Equations (57) and (58) vanish, and Equation (45) takes form:

ḃ2

b2 +
k
b2 + B̃n

(
2

Z0
− 1

Zcr

)
−

ρp

b3

(
1

Z0
+

1
Zcr

)
− ρr

Zcrb4 −
µr1

b4 = 0. (61)

Joining of solutions (61) with (57) and (58) at some point t = tcr is performed at the equality of
functions b(x), Z(x) and their first derivatives. As for the continuity of the first derivative of a function,
this function is not directly related to the four-dimensional geometry, although in Section 3 we were
able to interpret this parameter as the “radius” of the four-dimensional hyperboloid (embedded in
the five-dimensional space-time). In the vicinity of the transition point, we require the continuity of
the function b(x), as well as its first derivative. This requirement is associated with the requirement
of energy conservation. We can separately consider the question of the continuity of the second
derivatives of these functions. Then we can prove the following relations at the transition point x = xcr:

Żr · ḃr

Z · b =
ḃ2

e − ḃ2
r

b2 ;
Z̈r

Z
= 2

b̈e − b̈r

b
− ḃ2

e − ḃ2
r

b2 . (62)

For greater clarity, Equation (58) is reduced to the form:

Ż · ḃ = (Z− Z0) · b̈−
Z0 · µr1

b3 (ln(b2/b2
0)− 1) (63)

Let’s denote by F(x) the solution (58).
Let’s consider the following conditions for joining solutions at the transition point x = xcr:

Z(xcr) ≡ F(xcr) = Zcr; Ż · ḃr ≡ (Zcr − Z0) · b̈r −
Z0 · µr1

b3
cr

(ln(b2
cr/b2

0)− 1) = 0, (64)

where b(xcr) = bcr;
In spite of the fact that the values of parameters including the value µr1 = 0 were called the

“equilibrium state”, it is interesting to consider a more general case µr1 6= 0. Moreover, there is a free
parameter b0, and we can demand that the term in (63) associated with the parameter µr1 at the critical
point x = xcr to be equal zero. To do this, we must select b0 = bcr/

√
e.

If we require continuity of Z(x) and its first derivative at xcr, it follows from (64) that at least
one of the equalities holds at the critical point: Zcr = Z0 or b̈r(xcr) = 0. The solutions Zcr 6= Z0 are
of interest. Such solutions define a “mechanism” that transfers the constant Z0 (corresponding to
the original (ES)) through the intermediate (RS) stage to the new (ES) stage, with the constant Zcr.
For example, in the case of µr1 = 0, F(xcr) = c2 · ḃr + Z0. In this case, the relations (64) are satisfied
even if Zcr − Z0 = c2 · ḃr 6= 0 (when b̈r = 0). Thus, transitions from the (RS) stage into (ES) stage
are possible in the following form. For points x < xcr: Z(x) = F(x), where b(x) is defined as the
solution of the Equation (57); at the point x = xcr : b̈r = 0 and Zcr = Z(xcr); further for points x > xcr

: Z(x) = Zcr = const, where b(x) is defined as the solution of the Equation (61). If Zcr − Z0 6= 0,
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then an inverse transition from stage (ES) into RS is possible, for example, at the point where the
second derivative of the scale factor (varying by (61)) b̈e = 0.

As an example, Figures 3 and 4 show the joining of solutions for the function Z = Z(b) describing
the transition from RS into ES (Figure 3) and with the possibility of double transition (Figure 4). The first
point (A) is defined by the moment of time xcr ' 0.512625142, b(xcr) ' 0.5665163348, where b̈r(xcr) =

0, Zcr = Z(xcr); from the point (A) the system can evolve along two trajectories: d—transition into
the ES stage or continue to move along the same curve d1 (remain in RS). When the system transits
and evolves according to the Equation (61), under certain initial conditions, the transition back into
RS stage is possible, as shown in Figure 4. The second transition in Figure 4, we associate with the
point x2, which is defined by the condition b̈e(x2) = 0. The lifetime of the ES stage: δx = x2 − xcr =

0.0000238. If we assume that the scale factor is similar to the lifetime of the universe, then δx—is about
400,000 years. Assuming that the RS stage is currently continuing, the estimate of the rate change
of Z (for the model considered in Figure 4) is −2.4 · 10−15 per year, and the “gravitational constant”
increases with the same speed.

Figure 3. Plot of Z = Y/Y0 and b(t) = a(t)/a0: b = 1—current age of the universe. After reaching the
point A, the function Y (t) branches. It may evolve on the straight line d or the curve d1.

The above graphs correspond to the following parameters: k = 0, Z0 = 1.0001, B̃n/Z0 = −0.7333,
µr1 = 0, 2ρp/Z0 = 0.2666, ρr = 0; and the following initial conditions: b(0) = 10−20, Z = 1 for b = 1.

However, if the function Z(x) is treated as a macroscopic parameter and only the function Z(x)
(not including it‘s derivatives) requires the continuity, then transitions are possible at the time when
ḃr(xcr) = 0 and the second derivative of scale factor is not necessarily zero. From (64) follows, that in
the latter case Zcr = Z0 .

As a result, we have possible transitions from RS stage into ES stage of the following form.
For points x < xcr: Z(x) = F(x), b(x) is defined as the solution of the Equation (57); at the point
x = xcr : b̈r = 0 or ḃr = ḃe = 0 and Zcr = Z0; for points x > xcr :Z(x) = Z0 = const, b(x) is defined
as the solution of the Equation (61). Similarly, a solution describing the transition from ES into RS
can be found.
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Figure 4. Plot of Z = Y/Y0 and b(t) = a(t)/a0: b = 1—current age of the universe. Double transition:
from RS into ES and back from ES into RS.

For the solutions analysis of obtained equations we used qualitative research methods for special
solutions of differential equations. From this analysis follows that in the case of the transition from
ES stage into RS and back is more likely near the special points, where the first or second derivative
(or both) of the scale factor equals zero or infinity.

There are numerous versions of modified theories of gravity and cosmology (for example, see the
review [58]). Let us single out some of the works connected with phase transitions in cosmology. It is
possible for a classical field theory to have two stable homogeneous ground states, only one of which is
an absolute energy minimum. In the quantum version of the theory, the ground state of higher energy
is a false vacuum, rendered unstable by barrier penetration. There is a well-established semiclassical
theory [60,61] of the decay of such false vacuums. In articles [62–64], this theory was extended to
the inclusion of gravity effects. It is shown that they are not always negligible and may be of critical
importance in the late stages of the decay process.

A class of oscillating bounce solutions to the Euclidean field equations for gravity coupled to
a scalar field theory with two, possibly degenerate, vacua was studied in articles [63,64]. In these
solutions, the scalar field intersects the vertex of the potential barrier k > 1 times. The results of our
studies do not contradict, but rather agree with the indicated works. However, we paid more attention
to gravitational and cosmological effects, which can be compared with observational data related to
the phenomenon of dark energy and dark matter, and also we tried to take into account the influence
of matter in the form of perfect fluid. A comparison of the theory considered in articles [60–64] with
the solutions of our equations (for the case with quadratic potential) shows that our solutions describe
the transition from the vacuum Zin = −∞ to the vacuum Z0 = 1 corresponding to the (for the most
part unstable) extremum of the potential energy.

2.4. Oscillating Solutions. Influence of Quadratic Terms

Let‘s consider Equations (45) and (46) under the conditions (53). Recall that these conditions are
the requirement for existence of common (for both stages) static solutions Z(x) = Z0 = const. In doing
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so, we must understand that the fulfillment of these conditions implements a “strongly” nonlinear
model. In this article, we do not claim to develop the final realistic cosmological model, but want to
identify the effects associated with nonlinear terms. From the conditions (53) let‘s express µp2, µr2

in terms of ρp, µp1, µr1, Z0 and substitute them in the equations under study that can be reduced to
the form:

db
dt
≡ ḃ = p,

ṗ
b
= −2 ZL1 − fs −

p2

b2 −
k
b2 +

1
b3

(
mp1 +

2Zρp

3Z0
2 −

2mp1 Z
3Z0

)
+

mr1

b4

(
1− Z

Z0

)
, (65)

Ż
Z

p
b
= − k

b2 −
p2

b2 +
1
b3

((
− Z

3Z0
+ 1
)

mp1 +

(
Z

3Z0
2 +

1
Z

)
ρp

)
+

+
1
b4

((
1− Z

2Z0

)
mr1 +

ρr

Z

)
− L1 Z− fs +

B1
Z

(66)

To simplify and reduce the number of parameters, consider the following additional relations
that arise from the requirement of the existence of solutions a = const at Z = Z0:

mp1 = − 2
Z0

ρp; mr1 = − 2
Z0

ρr. (67)

Also consider two different types of relations, corresponding to the ansatzes examined earlier (40)
and (41):

fs = 2
B1

Z0
+ k2; L1 = − B1

Z2
0

. (68)

fs = 2
B1

Z0
+ 2k2; L1 = − B1

Z2
0
− k2

Z0
. (69)

Then, the Equations (65) and (66) are reduced to the form:

Ż
(

ṗ
b
+

p2

b2 +
k
b2 −

2
Z0

(
Z
Z0
− 1
)(

B1 +
ρp

b3 +
ρr

b4

)
+ Krv

)
= 0; (70)

Ż
Z

p
b
+

p2

b2 +
k
b2 −

1
Z

(
Z
Z0
− 1
)2 (

B1 +
ρp

b3 +
ρr

b4

)
+ Kev = 0. (71)

where Krv and Kev for the case (68) equals:Krv = Kev = k2; and for the case (69):

Krv = 2k2(1−
Z
Z0

), Kev = k2(2−
Z
Z0

). (72)

The parameter k2 has the value of the cosmological constant at the point Z(t0) = Z0 with the
minus sign.

Consideration of the “equilibrium state” (53) led to the appearance of a common factor (1− Z/Z0)

in the equations. Such an approach resembles the assumption of thermal equilibrium between the
effective fluid and the “bath” used in determining the DM mass given in [30].

Let‘s consider some numerical solutions of the obtained Equations (70) and (71), for the case of
a flat space k = 0 and ansatz (72). As noted in [49], in principle there is no need to fix a priori flat
universe, since open or closed universes under the f (T) hypothesis of gravity seem compatible with
cosmic data, at least at the level of small redshift regions ([49]). This task in our model will be made in
the future.
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To define the unknown parameters, we use the following reasoning. If in the modern era t = tm

the value of the field Z(tm) = Zm, then the fractions consistent with observations (similarly to ΛCDM)
of the effective “cosmological constant”, dust-like and ultra-relativistic matter, as follows from the
Equation (70), for RS stage equals:

ΩΛR =
2B1

Z0H2
m(1 + qm)

(
Zm

Z0
− 1− Krv

Z0
2B1

)
' 0.739; (73)

ΩpR =
2ρp

b3
mZ0H2

m(1 + qm)

(
Zm

Z0
− 1
)
' 0.26; (74)

ΩrR =
2ρr

b4
mZ0H2

m(1 + qm)

(
Zm

Z0
− 1
)
' 0.001. (75)

By means of Hm = p/b and qm we denoted the normalized Hubble constant Hm = ḃx/b =

tm (ȧt/a) ' 1 and the deceleration parameter (with the minus sign) qm = (b̈/b)/H2
m ' 0.6, calculated

to the moment t = tm (x = 1). Without a loss of generality we can choose Z0 = 1. Setting B1, k2, bm,
from the relations (73)–(75) we can express Zm, ρp, ρr and substitute them in Equations (70) and (71).
The relations (73)–(75) are obtained by analogy with the ΛCDM model, but our model differs from
ΛCDM, by the time dependence of the function simulating the Λ term and the presence in the
equations of the derivatives of Z. If Ż 6= 0, as follows from the Equation (71), there is a fraction of the
energy associated with the term Żp/(Zb), which can have a larger contribution than a term interpreted
as a Λ term. Also we want to note that in this section we do not investigate the joining of solutions
issues of equations describing ES and RS stages, we will study only the solutions of Equations (70)
and (71) without the multiplier Ż. Although from the results of the previous section it follows that
random transitions between the stages are possible at the vicinity of Ż = 0.

Here are some numerical solutions, with the initial conditions:

b(1) = 1, Z(1) = Zm, p(1) ≡ ḃ = 1. (76)

The equations under study are invariant with respect to time shifts x → x + const. That means
that the variable x can also take negative values x 3 (−∞, ∞). For the initial point we will take a point
with a singular solution (if it exists). As it turned out, the parameters B̃n and k2 strongly influence
the solutions. Taking into account quadratic terms, at B̃n > 0, leads to solutions with anharmonic
oscillations, where the “mean” oscillation frequency depends on the value B̃n.

The Purusha Universe: k2 = 0. Starting from the description sequence, first we consider the
exotic case k2 = 0. A slightly comic name for this model is due to the properties of the solutions,
about which, in brief, will be discussed below. The peculiarity of this case (in our opinion is not contrary
to the observational data) associated with the fact that the Equations (70) and (71) for Z = Z0 allow any
constant solutions b(x) = const. The initial conditions γ0 : Zm = Z(x0), bm = b(x0), Pbm ≡ ḃm = ḃ(x0)

that violate this initial state (Z = ∀Z0, b(x) = ∀const), initiate solutions γ : Z = Z(x, Zm), b = b(x, bm)

which are related to the initial conditions as some perturbations. The resulting solutions are of
stochastic (random) character.The stochasticity is as follows: if from the resulting solution γ we choose
different point γ1 : Zn = Z(x1), bn = b(x1), pZn = Ż(x1), pbn = ḃ(x1) (corresponding to the moment
of time x1) as new initial conditions for the same equations, then the new solutions γ1 won‘t match γ.
This assertion follows from our computer studies and means that the uniqueness condition for the
Cauchy problem is violated.

To characterize possible solutions, let‘s see graphs of numerical solutions, starting with the case
k2 = 0, with the values of the parameters indicated in Figures 5–11. An increase in the value of B̃n

leads to an increase in the number of fluctuations and a decrease in their amplitudes near the point
x = 1. For comparison, graphs (Figures 8 and 9), which differ from (Figures 5 and 6) only by a 10-fold
increase in the value of B̃n; and Figure 12 differs by 10,000 fold increase of B̃n.
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Figure 5. Relation of Z = Z(x), where Z(1) = Zm = 1.40908675530186: x = t/tm—current age of the
Universe, B̃n = 1.44517022939, k2 = 0.

Figure 6. Relation of b = b(x) = a(x)/am, b(1) = 1—the current value of the scale factor.
B̃n = 1.44517022939, k2 = 0.
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Figure 7. Relation of H(x) = ḃ(x)/b(x): Hm(1) = 1—the current value of the Hubble constant.
B̃n = 1.44517022939, k2 = 0.

Figure 8. Relation of Z = Y/Y0, Z(1) = Zm = 1.040908675530: x = t/tm—current age of the Universe.
B̃n = 14.4517022939, k2 = 0.
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Figure 9. Relation of b(x) = a(x)/am: b(1) = 1—the current value of the scale factor.
B̃n = 14.4517022939, k2 = 0.

Figure 10. Relation of Z = Y/Y0, Z(1) = Zm = 1.04072460: x = t/tm—current age of the Universe.
B̃n = 14.4517022939, k2 = 0.
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Figure 11. Relation of b(x) = a(x)/am: b(1) = 1—the current value of the scale factor.
B̃n = 14.4517022939, k2 = 0.

Figure 12. Relation of Z = Y/Y0, Z(1) = Zm = 1.0000407246: x = t/tm—current age of the Universe.
B̃n = 14517.022939, k2 = 0.
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In the above solutions (Figures 5, 6, 8, 9 and 12), the evolution continues with the transition of the
scale factor b(x) (and the function Z(x)) to a “quasi-constant” value, which is not defined in advance,
but rather of random character (depends on the choice of the initial data). In fact, the parts of graphs
seeming to be parts of straight lines, are not such on small scales. For example, the above graphs
Figures 8 and 9 when x ∈ (10, 15) look like Figures 10 and 11, that is, the variables change after the
seventh decimal.

Interesting features of these solutions are the absence of singularity and infinite extension, as in
the model ΛCDM. The Purusha Universe model has neither the beginning nor the end. Consider,
for example, the solution corresponding to Figure 6. For large values of time (for example, for t > 2.3tm)
the modern accelerated expansion gradually transforms into fluctuating solution in the vicinity of
a ' 2 · am. In the past, the scale factor fluctuated around the value a ' 0.62 · am. The amplitudes of the
oscillations are small from 10−3 to 10−4 and vary with time. With an increase of B̃n, the amplitude of
oscillations decreases, but their averaged frequency increases (other figures). There is a problem of
obtaining numerical solutions for large values of B̃n, related to the computer capabilities.

Consideration of the case k2 6= 0 leads to the models similar to ΛCDM in the general scenario
of evolution, which are additionally accompanied by fluctuations. Figures 13–15 show graphs
of numerical solutions of equations with initial conditions (76), for the case with parameters:
k0 = 0, k1 = −0.4, B1 = 144.517022939, Zm = 1.0041022218 . . ., ρp = 50.7042299920 . . .,
0.95[0.95]ρr = 0.1950162692 . . . (dots after numbers mean that we give only the first ten numbers after
the decimal point). The main feature of these solutions is the presence of fluctuations that lead to
alternation of accelerated with decelerated expansion passing into a contraction state (at certain values
of the parameters).

Figure 13. Relation of Z = Y/Y0, Z(1) = Zm = 1.0041022218 . . .: x = t/tm—current age of the
Universe. B̃n = 144.517022939, k2 = −0.4.
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Figure 14. Relation of b(x) = a(x)/am, Z(1) = Zm = 1.0041022218 . . .: x = t/tm—current age of the
Universe. B̃n = 144.517022939, k2 = −0.4.

Figure 15. Relation of H(x) = ḃ(x)/b(x): Hm(1) = 1—the current value of the Hubble constant.
B̃n = 144.517022939, k2 = −0.4.

For the given model, there is an initial state at certain moment of time xin ' −0.203793929714828 . . .
The scale factor b(x) → bin ∼ 0 for x → xin. It is remarkable that the model has the characteristic
properties of the inflationary scenario [65], perhaps without the scenario of transition from initial
ES stage to RS stage proposed in the author’s work [24]. As follows from computer calculations,
for x → xin the Hubble function tends to a huge value H(x) → Hin > 0 and Z(x) → Zin < 0.
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For example, at b(x) = 2.93904 . . . · (10)−10 ⇒ Z(x) = −4.03515 . . . · (10)9, H(x) = 5.62489 . . . · (10)23.
We have not been able to fully explore the model for b(x)→ bin∼0 yet. This topic of further research.
In addition, we must remember that the existence of “quasi-static” periods of evolution in our model
initiates a new perspective on solving the problem of large-scale homogeneity and isotropy of the
universe. It can be assumed that during the “quasi-static” period, the Universe manages to pass into
equilibrium state.

3. Centrally Symmetric Solutions

3.1. Analysis of Equations in Centrally Symmetric Space

Consider some solutions of the Equations (12) and (13) for the case of a centrally symmetric
space-time defined by the metric:

ds2 = eνdt2 − eλdr2 − r2(dθ2 + sin2(θ)dϕ2), (77)

where ν = ν(r), λ = λ(r) For the case of Y = Y0 = const—the metric matches with the
Schwarzschild-de Sitter metric:

ν0(r) = −λ0(r); e−λ0(r) = 1−
Λe f f

3
r2 − 2GM

r
, (78)

where Λe f f in the ES stage is expressed in terms of Y0, based on the cosmological solutions discussed
in the previous sections:

Λe f f

3
= −

ΛY2
0 − B + fwY0

6ξY0
= −LnZ1 − fn +

Bn

Z1
, (79)

where Z1 = 1. However, taking into account the possible transitions between the different solutions
Z(r) = const considered above, we assume that Z1 is an arbitrary constant solution of Z(r) = Z1 =

const. For convenience, let‘s introduce the constant K1 dependent on the constant Z1:

K1 ≡ K1(Z1) = −LnZ1 − fn +
Bn

Z1
. (80)

As is well known, the mass term 2GM of the central gravitational field, in the
Einstein-Schwarzschild model, arises as a motion integral and is normalized based on comparison with
Newton’s theory, as well as dimensional consideration GM = MGm/c2, Gm—the current accepted
value of the effective gravitational constant Ge f f ∼ 1/Y = 1/(Z1Cm)⇒ Ge f f = Gm/Z1 (2). Proceeding
from our hypothesis about the variable “gravitational constant”, we assume that the mass of M is
constant, and that the value of Gm, as a motion integral, changes to Gm/Z1 (Z1 = const).

In this formulation of the problem we neglect the influence of matter on solutions. To shorten
expressions, we will not specify the arguments of functions, and derivative with respect to r will be
denoted by (’). Unknown functions: ν(r), λ(r), Z(r).

After the introduction of notation Z = Z(r) = Y(r)/Y0, the Equation (12) in the metric (77) take
the form:

3ZLn + fn −
3Bn

Z
− e−λ

2Z
Z′ν′ − e−λ

r
ν′ − 2e−λ

Zr
Z′ − e−λ

r2 +
1
r2 = 0 (81)

corresponding to component G1
1 .

3ZLn + 3 fn −
3Bn

Z
+ e−lam

(
−ν′2

4
+

ν′λ′

4
− ν′′

2
− ν′Z′

2Z
+

λ′Z′

2Z
− ν′

2r
+

λ′

2r
− Z′′

Z
− Z′

Zr

)
= 0 (82)
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corresponding to components G2
2 = G3

3 .

3ZLn + 3 fn −
3Bn

Z
+ e−λ

(
λ′Z′

Z
+

λ′

r
− Z′′

Z
− 2Z′

Zr
− 1

r2

)
+

1
r2 = 0 (83)

corresponding to component G0
0 .

Equation (13), which is the differential consequence of the Equations (81)–(83) has the form:

Z′
(

6ZLn + 3 fn + e−λ

(
−ν′2

4
+

ν′λ′

4
− ν′′

2
− ν′

r
+

λ′

r
− 1

r2

)
+

1
r2

)
= 0. (84)

To solve the equations, instead of ν(r) we use the function F(r) = λ(r) + ν(r). Then the difference
of Equations (81) and (83) is simplified:

F′
(

Z′

2
+

Z
r

)
− Z′′ = 0. (85)

For the case Z′ = 0 solutions have the form (78). For the case Z′ 6= 0, by simplifying
equations by means of algebraic actions, we can obtain three independent equations for the functions
F(r), λ(r), Z(r). Two of these are the first-order equations, one is the second-order equation:

F′ =
1

Z′r + 2Z

[
2Z′r

[((
−3ZLn − 2 fn +

Bn

Z

)
r− 1

r

)
eλ +

Z′

Z
− 1

r

]]
+

+
4Z

Z′r + 2Z

(
fn −

2Bn

Z

)
reλ; (86)

λ′ =
1

Z′r + 2Z

[
2Z′r

[((
−3ZLn − 2 fn +

Bn

Z

)
r− 1

r

)
eλ +

Z′

Z
+

1
r

]]
+

+
2

Z′r + 2Z

[
eλ

(
r
(
−3Z2Ln − Z fn − Bn

)
− Z

r

)
+

Z
r

]
; (87)

Z′′ = Z′
[

Z′

Z
+ eλ

[
r
(
−3ZLn − 2 fn +

Bn

Z

)
− 1

r

]
− 1

r

]
+ 2Zeλ

(
fn −

2Bn

Z

)
. (88)

Recall that the Equations (81)–(83) contain the solution Z(r) = Z1 = const, which matches with
the solution (78) for Z1 = 1

ν0(r) = −λ0(r); e−λ0(r) = 1− K1(Z1)r2 − 2GM
Z1r

. (89)

The Equations (86)–(88) obtained under the condition Z′ 6= 0 have a constant solution Z(r) 7→
Z2 = const and this solution differs from the previous one that in the expression (89) K1(Z) is replaced
by another function K2(Z):

e−λ0(r) = 1− K2r2 − 2GM
Z2r

, K2 ≡ K2(Z2) = −LnZ2 −
fn

3
− Bn

3Z2
. (90)

Thus, in addition to the fact that the equations have multiplier Z′, the Equations (86)–(88) contain
two branches of solutions with possible transitions between them. The existence of solution Z(r) =
Z2 = const, where Z2 is not known in advance but is defined by the previous evolution. This leads to
stochastic solutions.

The functions K1 and K2 match, only if the relation fnZi − 2Bn = 0. Recall that when considering
ansatzes (68) and (69), for Z0 = 1 the value fn− 2Bn is Vmin = k1 and 2k1 respectively for ((40) and (42)).
We want to obtain the solutions of equations for centrally symmetric gravity confirmed by the
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observational data. Therefore, let‘s compare the value k1 with the value of observed cosmological
constant. Namely, for the reasons given in Section 3 k1 = −Λe f f /3⇒ K1 = −k1, K2 = −k1/3. Then
this parameter has a very small value and as computer calculations show, practically does not affect
the solutions near the central mass (when the mass value is large enough). However, it affects solutions
when the mass tends to zero.

For further numerical solution of obtained equations, we make the substitution:

eλ(r) =
eα(r)

f (r)
, f (r) = 1− Kir2 − 2GM

Zir
. (91)

Thus, let us separately allocate the function f (r), which contains singularities at the points f (r) = 0,
associated with the well-known Schwarzschild-de Sitter solutions. For the solution Z(r) = const⇒
F(r) = 0, α(r) = 0.

For comparison with observational data, we will estimate the acceleration and velocity of test
bodies in a centrally symmetric gravitational field, based on the geodesic equations, which for the
metric (77) (for the ecliptic plane θ = π/2) can be reduced to the following form:

dϕ

ds
=

Lϕ

r2 , Lϕ = const,

A(r) ≡ d2r
ds2 =

f (r)e−α(r)

2

[(
1 +

L2
ϕ

r2

)(
α′(r)− f ′(r)

f (r)

)
+

2L2
ϕ

r3 − e(F(r)−α(r)) f (r)F′(r)
(

dt
ds

)2
]

. (92)

From normalization of 4-velocity follows:(
dt
ds

)2
(

f (r)

(
1− e2α(r)−F(r)

( f (r))2 v2
r

))
= e(α(r)−F(r))

(
1 +

L2
ϕ

r2

)
; vr =

dr
dt

; (93)

In this paper, because of the complexity of finding solutions we do not solve the equations of
geodesics, but numerically solve the Equations (86)–(88) and substitute these solutions in (92), calculate
the acceleration applied by the gravitational field to the stationary test particle with the coordinate
(r, ϕ, 0). After switching to observer time, the right side (92) expresses the radial component of the
force acting on the test body of the mass = 1. In the Newtonian approximation of general relativity,
the acceleration of a freely falling body:

A(r) ≡ d2r
dt2 = −∂Φ

∂r
≈ −ν′(r)

2
eν(r)−λ(r). (94)

Taking into account that the speed of bodies vr � c (the speed of light), based on the
Newtonian approximation, we calculate the “average” velocities of so-called “circular” orbits (vr ≈ 0)
(planets, satellites. . . ):

vco '
√
−r

d2r
dt2 =

√
r

∂Φ
∂r

. (95)

This velocity in Newtonian mechanics is obtained from the equality of the gravitational force
and the centrifugal force. In order for the effective gravitational potential Φ to characterize only the
gravitational field and not to depend of the test body, in the right side of the expression (92), in the
context of using the Formula (95) we need to put Lϕ = 0. We present these arguments to justify the
calculation (dt/ds)2 from the expression (93) by substituting vr = 0. The smallness of the influence of
this term on solutions also follows from computer experiments, for example, calculation of the average
orbital velocities of planets in the solar system according to the Formula (95) matches with known
values with the required accuracy. In the future, the Equations (86)–(93) should be solved jointly in
order to obtain the trajectories of the geodesic.
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Thus we look for unknown functions F(r), α(r), Z(r). We consider the boundary conditions as
some perturbations to the Schwarzschild-de Sitter solution. We assume that for Z = 1 a solution
close to (78) is implemented. Then let the boundary condition reduce to a small difference between Z
and its derivative from this solution at the point r = r0. From a hypothetical consideration, we assume
that the point r0 is close to the central mass (the Sun), but r0 6= 0 (to avoid the singularity point at zero).
For example, we can assume that the perturbations are associated with processes inside a star located
at the center of symmetry. The problem is to determine the value of the Bn parameter and the values of
the boundary conditions.

3.2. Numerical Solution of Equations for the “Conditional Sun” Model

Based on obtained equations, we will simulate a central gravitational field for a mass equal to the
mass of our sun. Proceeding from this, we will calculate all the values in astronomical units (au). Then,
transferring into this system of units

k1 = −9.263854653 · 10−31au−2, GM = GM⊙ ≡ 9.874532 · 10−9au. (96)

Thus, the boundary conditions for r0 = 10−24au ≈ 1.496 · 10−13m:

α(r0) = 0; F(r0) = 0; Z(r0) ≡ Z2 = 1 + 243 · 10−22; Z′(r0) = 10−18.7908au−1. (97)

After choosing (68) from the ansatzes discussed above, we give graphs of numerical solutions for
the parameter

Bn = 0.005998618729128268 au−2. (98)

The initial values (97) and value of Bn were chosen to some extent randomly, with the requirement
that the results of the calculations do not contradict to the observational data on the one hand and
on the other hand lead to new results for distances (r > 60 au)—for which there are no reliable
observational data.

Numerical computations with boundary conditions (97) lead to the results shown in Figures 16–24.
For distances from the center 0.01 < r < 60 the deviations (difference) of the values (g00 = eν(r),
g11 = e−λ(r)) from the Schwarzschild-de Sitter solutions are 4 · 10−15, 6 · 10−14, deviations of Z− 1 are
10−19 ÷ 6 · 10−15 (see Figure 16).

Figure 16. Graph of Z(r) − 1. r is measured in astronomical units. Bn = 0.0059986 . . .,
k1 = −9.263854653 · 10−31au−2, GM = GM⊙.
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For distances from the center 60 < r < 200 the maximum deviations of the same variables are
g00 ∼ 4 ·10−12, g11 ∼ 3 ·10−11, Z− 1 ∼ 5.4 ·10−12.

Figure 17 shows the difference between the accelerations ∆A(r) = A(r)− A0(r) of the test body
calculated by the Formula (92) for the Schwarzschild-de Sitter metric with the same central mass
at Z = 1. Noteworthy is the appearance of an additional acceleration ∼4 ·10−10 m/s2 to the center
(negative sign on the graph indicates direction to the center) for distances 40 < r < 140. In this
connection, I would like to recall the anomalous acceleration of the “pioneers” [66,67]. The Pioneer
anomaly or Pioneer effect was the observed deviation from predicted accelerations of the Pioneer 10
and Pioneer 11 spacecrafts after they passed about 20 astronomical units on their trajectories out of the
Solar System. The apparent anomaly has been a subject of great interest for many years. . .

Figure 17. The “additional acceleration” ∆A(r) graph. r is measured in astronomical units.
Bn = 0.0059986 . . ., k1 = −9.263854653 · 10−31au−2, GM = GM⊙.

Surprising in our solutions is that the large additional effects (differing from the Schwarzschild-de
Sitter solutions) are manifested at large distances from the center r > 200 au. For 200 < r < 500,
the maximum deviations of the same variables are g00 ∼ 10−9, g11 ∼ 8 ·10−11, Z− 1∼ 5·10−9 (Figure 16).
The values of the functions F(r), α(r) are approximately 8 · 10−8, and their difference determining
the function variation ν(r) is about 10−9. The graphs of the functions α(r), F(r)− α(r) characterizing
the relative changes in the components of the metric g11, g00 are presented in Figures 18 and 19.
Figures 2 and 20 show comparative graphs of the metric components (the Schwarzschild-de Sitter
solutions—dashed line).

Thus, at these distances r > rcr (for the considered model of “solar system” rcr ∼ 200 au) the
influence of the terms associated with the central mass decreases and the Schwarzschild solutions
become unstable. The solutions become oscillatory, which does not lead to a flat asymptotic at r → ∞.
We assume that the asymptotics of the solutions of a centrally symmetric gravitational-scalar field for
distances rcr ≤ r < Rs can be chaotic. Here Rs ∼1015 au—corresponds to the de Sitter radius.

In our model, this chaos is defined by the initial conditions, the nature of the occurrence of which
is assumed to be random on the one hand. On the other hand, we solve the RS stage equations,
which also contains Z′(r) = 0 branch similar to the ES stage (possibly with a small difference
between the parameters and solutions). When r is small, the solutions of RS differ very little from
ES (the Schwarzschild-de Sitter solutions), then they represent small random oscillations around
Z(r) = const = Z1 (the influence of 2GM/r prevails in f (r)). However, for large r, most likely the
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solutions Z(r) = const become unstable, since this branch of the solution is due to a decreasing
“mass term” 2GM/r.

Figure 18. The graph of the function ∆λ(r) = α(r). r is measured in astronomical units.
Bn = 0.0059986 . . ., k1 = −9.263854653 · 10−31au−2, GM = GM⊙.

Figure 19. The deviation graph of ∆ν(r) = F(r)− α(r). r in au. Bn = 0.0059986 . . ., k1 = −9.263854653 ·
10−31au−2, GM = GM⊙.
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Figure 20. A comparison of the numerical solution g11 (solid line) with the Schwarzschild-de Sitter
solution (dashed line); r in au.

Let us consider some consequences of our hypothesis. There is the effect of anti-gravity at large
distances r > rcr. Figure 21 shows the graph of A(r) for r ∈ (100, 1200), where acceleration regularly
changes sign. Due to the fact that ∆A(r) ∼A(r), A0(r) 7→ 0, the acceleration of the test body, calculated
from the formula (92), fluctuates around zero. The acceleration values at some intervals reach up to
7.5 ·10−5 m/s2. Recall that such acceleration values exist at distances of ∼8.8 ÷ 11 au.

Figure 22 shows a the velocity of the “circular” orbits (95) vs. distance (km/s).

Figure 21. This figure shows the acceleration vs. distance; r—in astronomical units.
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Figure 22. This figure shows the “circular” orbit velocity vs. distance; r—in astronomical units.

The empty gaps in Figure 22 correspond to the absence of “circular orbits”, because at these
intervals the acceleration is directed from the center.

Based on mathematical considerations, we can associate a test body at the point M(r) in the
“empty band” with a “circular orbit” with an imaginary center S′ located on the radial line (SM) and
−−→
S′M = −−→SM, where S is the center ( r = 0) (see Figure 23).

Figure 23. The “gravity” (“in”) and “antigravity” (“out”) bands formation scheme with different
directions of acceleration in relation to the center.

Figure 23 shows a diagram explaining the bands formation mechanism corresponding to
gravitation and anti-gravitation bands. Accordingly, in those bands (spherical layers) where the
acceleration is directed toward the center (A(r) < 0), a larger amount of matter will accumulate.
And in the bands where (A(r) > 0) velocities of the test bodies ~v2 acquire a component that moves the
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body to the region from the center S. However, when the observational data of distant objects obtained
by telescopes analyzed (stars of galactic systems) (r � rcr), it is hard to estimate that the average
statistical velocities in neighboring layers with different acceleration directions differ. Because of the
large radii of the orbits, as well as the distances to the observer on the Earth (Figure 23), the angle
between the vectors of these velocities α will be very small, and their velocity values can also be
close. Therefore, for comparison with observational data, we should consider the “observed circular
rotational velocities” (take into consideration also the stars in the areas of “antigravity”, radial velocities
of which are directed from the center). For the measure of these velocities, we can take the value:

vob '
√

r|A(r)|, (99)

the graph of which is shown in Figure 24.

Figure 24. “Observed circular rotational velocities” vs. distance circled in pencil, signs-(bottom) mean
“antigravity” ; r ∈ (100, 700) au.

In fact, in regions where “circular orbits” are absent (“antigravity”—region), the velocity of test
bodies should be greater than in neighboring regions where they are present (“gravity”—region).
This is for the reason that (in the “antigravity”) the gravitational field accelerates the test body towards
the outer region from the center. If the body was moving from the center with a velocity close to the
circular to get to the right “antigravity”—region (further from the center) its velocity should increase.
To get to the left “antigravity” region, velocity will decrease. At the same time getting into the left
“antigravity” region, gravitational field starts to push test body back, increasing (restoring) the velocity.
Then we can assume that at the frontier S2bor (see Figure 23) (from the “antigravity” to the “gravity”
region) a “thin” shell of test bodies with stable “circular orbits” is formed. You can also expect in the
middle of the “antigravity” region the presence of a smaller number of test bodies. When the observer
includes orbits of test bodies from “antigravity” region to the number of “observed circular orbits”,
the velocities of these bodies will be greater than in the previous “gravity” region.
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3.3. Numerical Solution of Equations for the Model of “Galaxy”

In all previous calculations, we used the mass of the Sun and the boundary conditions (97). Similar
arguments and results can be obtained if we for simplicity simulate galaxies as centrally symmetric
objects. To do this, we increase the mass GM—107 ÷ 1011 times and assume that the entire mass is
concentrated in the center. This point of view leads to incorrect results for small r (a significant part of
a galaxy mass is formed by non-central masses). However, we are interested in the behavior of the field
characteristics at sufficiently large distances r > rcr, where Kepler laws are violated. At a qualitative
level, our reasoning does not change. Due to the multiple increase of the central mass, the critical
radius rcr will multiply many times as well. However, as computer calculations show, velocities of
“circular orbits” (which in order of magnitude can be compared with what is commonly called the
galaxy rotation curve) does not depend much on the mass, in contrast to the Kepler law. Obviously,
based on our paradigm, it is impossible to define the mass of a galaxy based on the peripheral bodies
rotation velocity. These velocities depend on the perturbation Z2 = Z(r0), r0∼0, which is defined
as the boundary condition. Computer experiments show that the value of rcr and the amplitude
of oscillatory solutions depend on the value of Z2, and the oscillations period on the value of Bn.
A system of units associated with kiloparsec (kpc) was used in calculations for the galaxy model.

Graphs of numerical solutions for the following parameters are given below: k1 = −4.035487823 ·
10−14 kpc−2, GM = GM⊙ · 1010 (kpc), r0 = 10−24 (kpc);

Bn = 0.2665 kpc−2. (100)

For the boundary conditions:

α(r0) = 0; F(r0) = 0; Z(r0) ≡ Z2 = 1 + 243 · 10−8.4; Z′(r0) = 0. (101)

As follows from computer studies, qualitatively, the solutions slightly depend on the boundary
condition Z′(r0). For this model, we chose this value to zero.

Figures 25 and 26 show the graphs of the field Z(r) and “observed circular rotational velocities”.

Figure 25. The field Z deviation vs. distance. r is measured in kiloparsec (kpc). Bn = 0.2665 . . .,
k1 = −4.035487823 · 10−14, GM = GM⊙ · 1010.
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Figure 26. “Observed circular rotational velocities” vs. distance; r ∈ (0.5, 25)kpc. Bn = 0.2665 . . .,
k1 = −4.035487823 · 10−14, GM = GM⊙ · 1010.

It is interesting to compare Figure 23 with the Figure 27 made on the basis of observational
data [68], as well as on the website (National Astronomical Observatory of Japan, https://phys.org/
news/2012-10-mass-dark-revealed-precise-milky.html).

Figure 27. Image of the Galaxy (Milky Way), seen from above. The distribution of 52 stars.

In our case, for the considered parameter values, we can estimate the “period” T ∼ 6.4 kpc
(Figures 25 and 26). The order of magnitude of T is similar to the order of magnitude of the periods
of the rotation curves of typical spiral galaxies, shown in Figure 28 (from the website: http://astro.
osu.edu/~pogge/Ast162/Unit4/spirals.html). This graph is a simplified generalization and does not
contradict to numerous observational data cited in the works: [5,6,68,69].

https://phys.org/news/2012-10-mass-dark-revealed-precise-milky.html
https://phys.org/news/2012-10-mass-dark-revealed-precise-milky.html
http://astro.osu.edu/~pogge/Ast162/Unit4/spirals.html
http://astro.osu.edu/~pogge/Ast162/Unit4/spirals.html


Symmetry 2019, 11, 81 38 of 45

Figure 28. A typical spiral galaxies rotation curve, with parameters close to the Milky Way.

Comparison of the oscillations period T of our model and the observed “period” Tgal ≈ 3.1
kpc (Figure 26, and also [68,69]) gives us at least an estimate of magnitude Bn. Proceeding from the
above arguments, we propose that T ≈ 2Tgal (taking into account the stars from antigravityregion).
Computer experiments show that T depends only on Bn. The problem lies in the absence of method
or idea for estimating this value—the ratio of the vacuum polarization energy to C. The constant
C—has (according to our paradigm) the dimension of the squared distance. All other parameters were
expressed in terms of Bn and there is only one dimensional value in the equations is the distance r. Bn

has the dimension 1/r2 (38).

3.4. General Characteristics of the Models. Attempt to Reconcile

In all three models (the cosmological model, the conditional “Sun” model, the galaxy model)
various systems of units were used: centimeter or Hubble unit (hu) equal to tm ∼ 13.8 ·109 years,
astronomical unit au, kiloparsec kpc ≈ 2.062706271 · 108 au. The values of Bn for these three different
scales was chosen, on the one hand, on the basis of the principle of apparent consistency with
observational data, and on the other hand, on the basis of computer capabilities. The question arises:
Is there an unaccounted mechanism that leads to different values of Bn for theories corresponding to
different scales and different objects? We leave this question for further research.

Let’s consider what happens when we set Bn0 = 0.2665 . . . kpc−2 ≈ 4.770463302 · 1012 hu−2 as
the basis, which corresponds to the model of the galaxy and which leads to oscillations with period
T ≈ 6.2 kpc (Figure 24). Let us compare this period with the period of oscillations (the scale factor) in
the cosmological model. By solving equations for the cosmological model, we can numerically find the
period of oscillations for the value Bn0 for x = 1 · hu: Th1 ≈ 17,000 Earth years. Note that for the time
Th1 ≈ 17,000 the light travels the distance ∼5.31 kpc. Thus, the scale of the galactic periodic structures
and the scale of the oscillations of the entire universe (considered as a homogeneous and isotropic
space-time) are similar, and possibly match. Perhaps this fact is a clue to the development of a theory
describing the universe and spatial structures from the unified point of view.

Figure 29 shows the graph of the function Z = Z(t)—solving the Equations (70) and (71) for a
time equal to two periods of oscillation ∆t = 0.0000024750 hu.
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Figure 29. Z(t)—solutions of Equations (70) and (71) for time interval that equals to two periods of
oscillations ∆t = 0.0000024750 hu.

The result is a bit unexpected. Earlier (see Figures 1, 14 and 15), (and in the work [24]),
we predicted T ∼ 10−1–10−2 hu. Also, the authors of [70] reported the discovery of cosmological
fluctuations (from the analysis of observational data) of the scale factor, with a period of T∼ 1 hu/7.
For the description of dark matter, a scalar field model used in this paper as well. However, the question
arises whether an analysis of observational data takes into account the fact that the “Hubble constant”
fluctuates. Light travels from galaxies millions and billions of years. We observe it in the past and
during that time there were many periods of oscillation. Perhaps, we need to revise the linear Hubble
law (redshift), to take into account fluctuations comparable to the mean value. It is possible that the
oscillations contain other harmonics of fluctuations corresponding to different scales. As pointed out
by J. Lemaitre, the linear correlation between the cosmological redshifts (caused by the expansion of
the universe) and distances is by no means absolute.

In the cosmography method proposed in Ref. [31], observational cosmological data are computed
by the redshift parameter z. In our case, when the solutions are oscillatory in nature, the inverse
dependence of the Hubble constant on cosmological time is not unambiguous within the limits of
observations accuracy (also calculations related by approximation in the model). Such a one-to-one
correspondence can be traced between the scale factor and cosmological time in the later stages of
the Universe expansion. To interpret the observational data with regard to these effects, additional
understanding of the theoretical assumptions and methods of obtaining observational data on the “red
shift” is required.

When converting the value of Bn0 into astronomical units, we get a small value Bn0 =

0.2665 . . . kpc−2 ≈ 6.263577 · 10−18au−2 instead of Bn ≈ 0.0059986au−2 considered in the conditional
“Sun” model. The oscillation period depends on Bn and is independent of the mass (the harmonic
spectrum depends on mass). Thus, if the parameter Bn is one for the entire universe and is similar to
Bn0, then in the immediate vicinity of the solar system there is no gravitational field with “antigravity”
regions caused by the Sun.

Let’s return to the model of the conditional “Sun” at Bn = Bn0. Differences from the Newtonian
law of gravity appear at r1 > 0.1 − 0.5pc (unit of measure r parsec). At such distances, there is
an additional acceleration directed toward the center, with the value of about 10−11m/c2. With the
increasing r, the acceleration of the test body (directed toward the center) increases monotonically
for r > r1. The amplitude of the deviation (value of the acceleration) depends on the value of the
perturbation Z2. Here is the comparative graph of the metric component g00 for our case and for
the Schwarzschild metric (Z = const) (Figure 30), as well as the acceleration graph A(r) (Figure 31).
The “reversal” point of the graph A(r) corresponds to the point ν′′(rcr) = 0.

Apparently, we can talk about the synchronized gravitational field that connects all objects of the
galaxy’s system.
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Figure 30. A comparison of the numerical solution g00 (solid line) with the Schwarzschild-de Sitter
solution (dashed line); r—in the parsecs. Bn = 1.599 · 10−6(pc−2). The solid graph is obtained for the
boundary condition: Z(0) = 1.00009833247, p(0) = 0, α(0) = 0, F(0) = 0.

Figure 31. Test body acceleration A(r) vs. distance; r—in the parsecs. For the case of solar mass.
Bn = 1.599 · 10−6(pc−2), Z(0) = 1.00009833247, p(0) = 0, α(0) = 0, F(0) = 0.

The team of authors (van Dokkum et al.) recently published velocity measurements of luminous
globular clusters in the galaxy NGC 1052-DF2, concluding that it lies far off the canonical stellar
mass—halo mass (SMHM) relation [71–73]. They report that they have discovered a galaxy in which
dark matter is almost completely absent. On the other hand, there are a lot of data on other galaxies,
indicating that they almost entirely consist of dark matter [6,7,74]. Computer experiments allow us
to hope that such a difference in the observational data can be modeled within the framework of the
MTIG by varying the parameters Z2, GM.
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4. Conclusions

The main results of our research.

The MTIG model is proposed for a macroscopic description of gravity and cosmology,
which (possibly) is capable of solving problems 1–3, given at the beginning of the article,
and motivating to further experiments. We propose the working hypothesis according to
which the physical parameters associated with gravitation, such as the gravitational and
cosmological “constants”—G and Λe f f , the Hubble “constant” H, in addition to monotonic
evolution, fluctuate about their mean values. Because of the implementation of the two
branches of solutions, these fluctuations can contain elements of stochasticity. This hypothesis
is realized in the mathematical model considered in this article.

The solutions of the MTIG equations for the case of a centrally symmetric gravitational
field, in addition to the Schwarzschild-de Sitter solutions (for Z = const), contain solutions
that lead to new physical effects at large distances from the center. For distances greater
than a certain critical value, the following effects can appear (depending on the value of
the parameters of the theory): deviation from the law of gravitational interaction of general
relativity and its Newtonian approximation, antigravity, absence of asymptotic flatness at
infinity. The responsibility for these effects (in the first place) carries not an integration
constant that corresponds to the mass of a physical body, but some other (dimensionless)
charge Z2, which is brought into the theory as the boundary value of the field Z(r) at the
center of symmetry (r = 0), different from the (vacuum) mean value (Z0 = 1) of field Z.
The mass affects the value of the critical radius, the charge Z2 affects the amplitude of the
deviation, Bn affects the oscillation frequency. We consider the hypothesis that the parameter
Bn is the same for all objects, and the charge Z2 is different for local objects (stars, galaxies,
clusters. . . ).

Thus, the flat asymptotics (the asymptotics of the field at large distances r > rcr in the
Newton and Schwarzschild theory) becomes unstable and can enter the oscillatory regime
with the elements of of chaotic behavior. The mean oscillation frequency depends on the
value of Bn, which depends on the vacuum polarization energy density. Near the center,
the influence of mass predominates and the laws of general relativity and Newton’s law of
universal gravitation (for the weak field) are approximately fulfilled. At sufficiently large
distances (greater than critical) these solutions pass into other solutions, where the influence
of Z2 and Bn prevails. (Because of the nonlinearity of the theory, such allocation of roles of
the parameters, based on computer experiments, is conditional (approximate)).

5. Discussion

In the general case, the following working hypothesis is advanced.
The consideration of the solutions of the MTIG equations in homogeneously isotropic and in

centrally symmetric space-time leads to the model claiming a single description for DM and DE. It is
assumed that the scalar field Z = Z(r, t) plays the role of a certain World framework (glue) that
synchronizes cosmological evolution with the existing mass type local objects. The observed effects of
dark energy and dark matter are manifestations of proposed by us mechanism.

Based on the data that dark matter is observed on galactic scales (large-scale inhomogeneities),
we estimated the parameter Bn. Fluctuations of the scale factor of the cosmological model also have
been agreed with this value. If we assume that this parameter is unified, then for the solar system the
deviations associated with the phenomenon of dark matter should manifest themselves at distances
r1 > 0.01–0.5 pc (depending on the value of Z2 attributed to the Sun) as an additional acceleration to
the Sun. The objects of the Oort Cloud of the Solar System correspond to such distances. It is possible that
changes in the parameters of long-period comets are related to the phenomenon under consideration.
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The notion of dark matter—that it consists of WIMP’s, massive particles that almost do not interact
with particles of ordinary matter, in our opinion, probably does not oppose the proposed theory of
MTIG. MTIG is a classical, phenomenological description, based on a nonlinear theory and in the
future it is necessary to relate it to a quantum description. The connection between MTIG and the scale
invariance of quantum field theories and the violation of this invariance seemed to us a promising
direction. We noticed that in MTIG, instabilities leading to chaotic solutions are closely related to the
scale invariance of the equations.

We have not finished the study of solving equations in a centrally symmetric space when the field
Z is not static: Z = Z(r, t). These studies will be continued.
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