High-Order Accuracy Approximation for a Two-Point Boundary Value Problem of Fourth Order with Degenerate Coefficients

A. A. Sobolev ${ }^{1 *}$ and M. R. Timerbaev ${ }^{1 * *}$
${ }^{1}$ Kazan (Volga Region) Federal University, Kazan, 420008 Russia
Received April 12, 2017

Abstract

High-order accurate finite element schemes for a fourth-order ordinary differential equation with degenerate coefficients on the boundary are constructed. The method for solving the problem is based on multiplicative and additive-multiplicative separation of singularities. For righthand sides of the given class of smoothness, an optimal convergence rate is proved.

DOI: 10.1134/S1995080218090044
Keywords and phrases: two-point boundary value problem, finite element schemes, weighted function spaces, multiplicative and additive-multiplicative separation of singularity.

We consider the fourth-order two-point boundary value problem

$$
\begin{gather*}
A u \equiv D^{2}\left(x^{\alpha} a(x) D^{2} u(x)\right)-D\left(a_{1}(x) D u(x)\right)+a_{0}(x) u(x)=f(x) \\
x \in \Omega=(0,1), \quad D=d / d x \tag{1}\\
u(0)=D u(0)=u(1)=D u(1)=0 \quad \text { for } \alpha<1 \tag{2}\\
u(0)=\left.x^{\alpha} D^{2} u(x)\right|_{x=0}=u(1)=D u(1)=0 \quad \text { for } 1 \leq \alpha<3 \tag{3}
\end{gather*}
$$

The coefficients of Eq. (1) are assumed to satisfy the conditions $a(x) \geq c_{0}>0, a_{1}(x) \geq 0$, and $a_{0}(x) \geq 0$. Additional conditions on these functions will be specified later.

Since the coefficient $x^{\alpha} a(x)$ degenerates in a neighborhood of the point $x=0$, the solution of the problem has unbounded derivatives in a neighborhood of this singularity. For efficient numerical solution of problems with degeneration, such singularities have to be taken into account. High-order accurate finite element schemes for a second-order degenerate equation were proposed in [1]. For $\alpha<1$, the Dirichlet boundary value problem for Eq. (1) with $a_{1} \equiv 0$ was considered in [2].

In this paper, we show that, for $\alpha<1$, the solution can be represented in the form $u(x)=x^{2-\alpha} \hat{u}(x)$, while, for $1 \leq \alpha<3$, it can be represented in the form $u(x)=u_{0} \varphi_{0}(x)+x^{3-\alpha} \hat{u}(x)$, where φ_{0} is a fixed function, $u_{0} \in R$, and \hat{u} is a new unknown function, which is smooth, as follows from a priori estimates. According to these representations, an approximate solution is sought in the form $u_{h}=x^{2-\alpha} \hat{u}_{h}$ for $\alpha<1$ (multiplicative separation of the singularity [3]) and $u_{h}=z_{0} \varphi_{0}+x^{3-\alpha} \hat{u}_{h}$ for $1 \leq \alpha<3$ (additivemultiplicative separation of the singularity [1]), where \hat{u}_{h} is a piecewise polynomial function. For the indicated approximations with singularity separation, we obtain error estimates that are optimal in the energy norm.

[^0]
[^0]: *E-mail: andreyasob@yandex.ru
 ${ }^{* *}$ E-mail: marat.timerbayev@sofoil.com

